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Abstract

Califrer, Igor José; Guerreiro, Thiago Barbosa dos Santos (Advi-
sor). Low intensity light meets feedback cooled levitated
nanoparticles. Rio de Janeiro, 2024. 99p. Dissertação de Mestrado
– Departamento de Física, Pontifícia Universidade Católica do Rio
de Janeiro.

Cooling is the necessary first step for any optomechanical experiment
aiming to unleash the full potential of optical tweezers, both in the context of
improving force sensitivity in sensor applications and of studying fundamental
quantum physics at the microscale. The purpose of the work described in this
dissertation was to improve an optical tweezer setup for electrical feedback
cooling of the translational motion of levitated nanoparticles. We implement
collection of backscattered light from the particle for improved detection
efficiency of motion along the optical axis. Using a numerical simulation
environment in Python, we also explore the potential of optomechanical
systems as sensors for light states with very low intensities.

Keywords
optomechanics; optical tweezer; control theory; feedback cooling;

numerical simulations; Euler-Maruyama method.



Resumo

Califrer, Igor José; Guerreiro, Thiago Barbosa dos Santos. Luz de
baixa intensidade encontra nanopartículas resfriadas. Rio
de Janeiro, 2024. 99p. Dissertação de Mestrado – Departamento de
Física, Pontifícia Universidade Católica do Rio de Janeiro.

Resfriamento é o passo inicial necessário a qualquer experimento
optomecânico que tenha como objetivo desbloquear o potencial das pinças
ópticas, tanto para a melhoria da sensiblidade a forças em aplicações
de sensoreamento quanto para estudos de física quântica fundamental
na microescala. O propósito do trabalho descrito nesta dissertação foi
o de melhorar a montagem de uma pinça óptica para resfriamento por
retroalimentação do movimento translacional de nanopartículas levitadas.
Nós implementamos a coleta de luz retroespalhada pela partícula para
melhorar a eficiência de detecção do movimento ao longo do eixo óptico.
Usando um ambiente de simulação numérica em Python, nós também
exploramos o potencial de sistemas optomecânicos como sensores para estados
de luz com intensidades muito baixas.

Palavras-chave
optomecânica; pinça óptica; teoria de controle; resfriamento por

retroalimentação; simulações numéricas; método de Euler-Maruyama.
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1
Introduction

Optical tweezers are a versatile platform for studies both in experimental
and in theoretical sciences. Applications have been proposed in research fields
ranging from biology [1–5] and thermodynamics [6–10] to metrology [11–21]
and fundamental physics [22–28]. In part, this versatility may be justified by
the simplicity of the fundamental model implemented in many optomechanical
experiments - that of a harmonic oscillator. In this dissertation, we opt to omit a
thorough theoretical detailing of the physical models describing the mechanisms
which underlie optical trapping. Such descriptions have been provided in several
other dissertations from our group, we refer the reader to the extensive material
in [29–33].

The research hereby reported is composed by two main endeavors, one
relying on theory and on computational methods, and another which is
experimental. The common point between these two research lines is that
both revolve around center of mass (CoM) translational cooling of levitated
nanoparticles, either as a prerequisite or as a main objective. On the theoretical
side, the central idea is to investigate whether small forces associated with
the optomechanical interaction between feeble amounts of light and levitated
nanoparticles (NPs) can be detected. Our experiments, on the other hand,
aimed to cool the CoM motion of levitated nanoparticles with the perspective of
preparing our experimental setup for bearing ground state cooled oscillators. Let
us dive a bit into an overview of what results are reported in this dissertation,
while also discussing why these goals are relevant in a general sense and,
specifically on the experimental side, why it is important for us to be able to
reach the motional ground state in our optical tweezer setup.

The manipulation of single photons is crucial for many quantum commu-
nication applications, as well as for quantum cryptography protocols. Aside
from quantum information, the necessity for such states has stimulated the
development of single photon sources and detectors [34]. Applications require
detectors with high detection efficiency, low dark count rates and low dead
times [35]. A number of single photon detector architectures has been proposed,
but the two main ones are superconducting nanowire single photon detectors
(SNSPDs) and single photon avalanche diodes (SPADs) [36], both of which
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generally require cryogenic conditions for functional operation. In particular,
the work in [37] reports the development of an SNSPD with detection efficien-
cies higher than 90% and photon detection rates higher than 150 MHz. In the
context of levitated optomechanics, we propose an ambient temperature, opti-
cal tweezer-based detector of light states of very low intensity, which perhaps
could serve as a prototypical system with potential for eventually breaking
into the single photon regime. A numerical simulation environment has been
developed in Python, with the purpose of quantitatively analyzing whether
optomechanical systems can be used to sense very feeble optical impulses. A
linearized optomechanical coherent scattering interaction is considered between
a mechanical mode of a tweezed oscillator and a cavity mode, and we take
advantage of the gaussianity of the system to describe its evolution only via
first and second cumulants of the quantum state of the system. We carry out
a Kalman filter implementation for optimal estimation of the system’s state
based on a complete description of its dynamics and on the outcomes of noisy
measurements taken at a predefined sampling rate. The information provided
by the Kalman filter is used to cool the oscillator using an optimal control
protocol, the linear quadratic regulator (LQR), which in conjuction with the
Kalman filter composes the linear quadratic gaussian (LQG) controller - see,
for instance, [38]. Then, a coherent state with known phase and amplitude is
introduced as an optical input, and we study whether state estimation of the
system can be used to infer about the presence of this optical input.

Ground state preparation is a starting point for quantum experiments
and for unlocking the full potential of optical tweezers in the context of sensing
applications. To bring the motion of the levitated oscillator from a thermal
state at room temperature down to the ground state, a few schemes have been
proposed. Cavity-assisted “passive” strategies can be designed. Such techniques
rely on favoring anti-Stokes scattering processes, such that removal of energy
from the mechanical mode takes place naturally due to the optomechanical
interaction [39–41]. “Active” schemes are also possible – in this case, a feedback
signal is generated from a continuous measurement of the oscillator’s state.
This signal is transduced into force by some kind of actuator system which
implements the control. There is a number of possible pathways for active
feedback schemes, including parametric control, cold damping schemes and
the LQR. In parametric control, the trap stiffness is modulated at twice the
oscillator’s natural frequency with an appropriate phase shift such that energy
is removed from its motion. In cold damping experiments, one implements a
control law proportional to the oscillator’s velocity at each time, such that an
artificial increase of the damping rate is generated. Another option is to use
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optimal control schemes, such as the LQR for gaussian systems, for defining an
appropriate control law. For more information, we refer the reader to the works
in [42–48]. Furthermore, feedback actuation can be either optical or electrical
[49, 50]. Electrical actuation avoids the potential complications entailed by
optical feedback with regards to the alignment and implementation of the
optical elements involved. On the other hand, it naturally introduces the
difficulty of adapting the tweezer for the assembly of electrodes in a system
which is required to be functional in low pressure conditions.

In general terms, measurement of the position of an optically trapped
nanoparticle can be performed using either the forward-scattered or the
backscattered light from the particle, which acts as a dipolar scatterer [51].
The idea is that the phase of the scattered fields carry information regarding
the displacement of the scattered from the optical focus [52,53]. Interference
between the signal beam, which carries the position information, and a phase
reference beam – often termed the local oscillator (LO) – yields an intensity
profile which can be transformed into an electrical signal using a photodiode
and readout by an oscilloscope. Now, it is worth noticing that the interference
between signal and phase reference beams is asymmetric in the forward and
backward directions due to the Gouy phase shift, see [52]. This asymmetry
leads to a detection efficiency which is potentially much higher in the backward
direction.

The experiments described in this work were performed in multiple
steps. First, we learned how to apply an electrical feedback control to an
optically levitated oscillator by subjecting it to a feedback-induced non-harmonic
potential, and measuring its response as a function of the feedback control
intensity. Having performed this experiment, we moved on to the implementation
of electrical feedback cooling using forward scattered light to obtain information
about the motion of the tweezed nanoparticle along the three orthogonal
directions. Using an electrically actuated LQR controller, this information was
used to achieve cooling of the transversal degrees of freedom down to about
0.5 K, and of motion along the longitudinal axis down to 3.6 K. In the last
step of our experiment, we have taken the experimental setup and upgraded it.
Through many modifications which are to be properly detailed in appropriate
sections of the text, we have managed to implement detection of longitudinal
motion of the particle using backward scattered light. The implementation of
this detection scheme is very relevant to our experiments, because the higher
detection efficiencies associated with it potentially allows us to achieve quantum
limited detection, see [54], which is a primary requirement for investigating
quantum behaviors of nano- to microscale objects.
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This dissertation is organized as follows. Chapter 2 reports our first
implementations of an electrical feedback system in an optical tweezer setup
at medium vacuum (up to ∼ 10−2 mbar) [55]. Our purpose was to generate a
nonlinear perturbation to the force experienced by the tweezed nanoparticle
(NP) and measure its dynamics in such a controllably nonharmonic potential,
thereby validating path integral methods previously developed by our group
in [56]. These results represent the first contact of our group with electrical
feedback systems, and the know-how stemming from their development was
advantageous for the works which have followed.

We begin Chapter 3 by reporting another of our experimental works [55],
where an all electrical feedback cooling system for our vacuum tweezer (working
at pressures down to ∼ 10−5 mbar). As previously mentioned, we have been
able to cool the center of mass (CoM) motion of silica NPs in three dimensions,
down to ∼ 0.5 K for the transversal directions and to ∼ 3.6 K for motion along
the longitudinal axis. This work and the expertise we developed while putting
it forth were cornerstones for the remaining experimental results presented in
this dissertation.

In the second part of Chapter 3, we go on to describe how the setup was
improved and adapted for compatibility with a backward detection scheme for
measuring motion along the optical axis. We comment on the experimental
details regarding the assembly of this detection scheme and present further
cooling results in the longitudinal direction, enhanced by the backward detection
method and by the other upgrades we’ve implemented upon the experimental
setup.

Chapter 4 describes the numerical simulation developed in Python with
the purpose of analyzing whether an optically levitated feedback cooled system
can be used to detect very feeble optical impulses, in an effective attempt
at proposing an optomechanical detector for few or for single photons. Our
discussion is oriented towards characterization of this metaphorical detector
and optimization of the system’s parameters for detection of the lowest possible
optical input amplitudes.

We wrap up the dissertation by discussing possible pathways to follow
and improvements to be made in the near future in Chapter 5.



2
Perturbative nonlinear feedback forces for optical levitation
experiments

This chapter describes the experimental verification of the perturbative
path integral theory used to describe the dynamics of optically tweezed NPs in
nonlinear potentials, which was developed in [56]. The implementation of the
nonlinear perturbation was carried out using electrical feedback, and we have
validated the theory by matching the predicted particle frequency shift due to
the presence of the perturbation with the observed one. This chapter reports
the results presented in [55].

2.1
Introduction

Optical levitation of NPs provides a robust setup for both fundamental
and applied physics [57,58], from classical stochastic thermodynamics [6,59–61]
to mesoscopic quantum science [9,62,63]. In the typical levitated optomechanics
experiment, a dielectric particle is trapped in a tightly focused Gaussian beam
providing, to leading order approximation, a confining harmonic potential
[64,65]. The particle undergoes Brownian motion due to interaction with its
surrounding medium and measurements of its position correlation functions,
notably the auto-correlation and the associated power spectrum, allows for the
characterization of the trap’s parameters [65,66].

While the harmonic approximation is commonly employed in optical
trapping, the ability to engineer potential landscapes beyond the quadratic
approximation is central to optomechanics. Nonlinear force landscapes are a
valuable resource to nonequilibrium Brownian machines [67,68], the preparation
of non-classical and non-Gaussian quantum states [69] and matter wave
interference experiments [70], to mention just a few examples. Nonlinear
potential landscapes also appear in structured light optical tweezers [71], as in
double-well landscapes [8, 72–74], structured light beams with pattern revivals
[75], cylindrical vector beams [76] and dark focus traps [77,78].

In these nonlinear potential landscapes, to which we refer here as
nonlinear optical tweezers, quantitative statistical description of the stochastic
particle motion is significantly more complicated as it involves nonlinear
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stochastic differential equations. To make quantitative predictions regarding
the statistical correlators of the trapped particle’s motion we can, however,
resort to perturbation theory [79].

A perturbative method for nonlinear optical tweezers has been developed
in [56], wherein it is possible to compute corrections to the statistical moments
of particle motion, in particular the position power spectrum. The purpose of the
present work is to experimentally validate these methods. In standard Gaussian
optical tweezers, the ratio between linear and nonlinear spring constants cannot
be varied independently, given that both scale linearly with the trapping power
[80, 81]. Thus, we turn to effective feedback potential landscapes to implement
nonlinear position-dependent forces upon a levitated nanosphere. We implement
the nonlinearity via electric feedback and characterize its effects on the particle
motion.

This paper is organized as follows. In the next section, we briefly review
the perturbation theory for computing corrections to the correlation functions
of a trapped particle under the influence of a nonlinear force, and generalize
it to include the effect of delayed forces. Since we deal with artificial electric
feedback potentials relying on measurements and processing of the trapped
particle’s position, they imply an inherent delay to the nonlinear force and
therefore accounting for the effects of this delay is essential to validating the
methods of [56]. We then describe the experimental setup used to generate
nonlinear potential landscapes through electric feedback on the particle and
numerically compute the effects of delay, showing that within the range of
parameters employed in our experiment they are negligible. We implement a
cubic force (quartic potential) on the particle and finally verify the perturbation
theory by comparing the predicted center frequency of the position power
spectral density with experimental results. We conclude with a brief discussion
on the applications of artificial nonlinear forces to levitated optomechanics
experiments.

2.2
Theory

2.2.1
Formulation of the perturbation theory

We model the stochastic motion of a particle in a fluid at thermal
equilibrium at temperature Teff and under a force field F(r) using the Langevin
equation,

r̈(t) = −γmṙ(t) + F(r(t))/m +
√

Cη(t), (2-1)
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where m is the particle’s mass, γm = γ/m, C = 2γkBTeff/m2 with γ the drag
coefficient and η(t) is isotropic Gaussian white noise, whose components satisfy

E[ηi(t)ηj(t′)] = δijδ(t − t′). (2-2)

Concentrating in the motion along the longitudinal z-direction, Eq. (2-1) reduces
to a one dimensional Langevin equation

z̈(t) = −γmż(t) + Fz(z(t))/m +
√

Cη(t). (2-3)

For an approximately linear trapping force perturbed by nonlinear corrections,
the steady state position auto-correlation A(t) ≡ E[z(t)z(0)] can be perturba-
tively approximated. We next summarize the perturbation theory outlined in
[56] and used throughout this work.

Consider the force acting on the particle,

Fz(z) = −mω2
0z − Gfbz

3, (2-4)

where the first term accounts for an optical trap with resonance frequency ω0

and the second term is a small nonlinear correction, which in the experiment
originates from a feedback force on the particle proportional to the feedback
gain Gfb times a nonlinear function of the particle’s position. We define the
Green’s function

G(t) = sin(Ω t)
Ω exp

(
−γmt

2

)
H(t), (2-5)

where Ω =
√

ω2
0 − γ2

m/4 and H(t) is the Heaviside step function with H(t) = 1
for t > 0 and H(t) = 0 for t ≤ 0. We introduce the auxiliary variable (also
referred to as the response paths) z̃(s) and define the Wick sum bracket ⟨(· · · )⟩0:

⟨z(t1) · · · z(tn)z̃(s1) · · · z̃(sm)⟩0 = δnm

∑
σ

n∏
j=1

G(tj − sσ(j)) (2-6)

where the sum goes over all permutations σ of indexes {1, . . . , n}. The
response variables z̃(s) can be understood as auxiliary integration variables
in a stochastic path integral defining the perturbation theory expansion; we
refer to [56,79] for details on stochastic perturbation methods. Note that the
second order correlator is given by the Green function, ⟨z(t)z̃(s)⟩0 = G(t − s).
The perturbation theory is summarized by the expression for the position
auto-correlation function,
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A(t) ≡ E[z(t)z(0)] = ⟨z(t)z(0)eC
2

∫
z̃2(s)dse

Gfb
m

∫
z̃3(t′)z(t′)dt′⟩0, (2-7)

where the right-hand side is defined by expanding both exponentials inside the
brackets as a power series in C and in Gfb/m and interchanging summations
and integrations by applying the Wick bracket ⟨(· · · )⟩0. Note that only brackets
with an equal number of z and z̃ variables are non-vanishing [56,79].

The first non-vanishing term in the expansion of Eq. (2-7) is

C

2

∫
⟨z(t)z(0)z̃2(s)⟩0 ds = C

∫
G(t − s)G(−s)ds , (2-8)

which gives the auto-correlation for the case of a linear force Fz(x) = −mω2
0z,

A(t)(Gfb=0) = Ce−γm|t|/2(2Ω cos Ω|t| + γm sin Ω|t|)
γmΩ(γ2

m + 4Ω2) . (2-9)

The leading order correction in the feedback gain reads,

∆A(t) ≡ C2Gfb

8m

∫
⟨z̃2(s1)z̃2(s2)z̃(t1)z3(t1)z(t)z(0)⟩0 ds1ds2dt1. (2-10)

Expanding the brackets using (2-6) would produce a sum with 5! = 120
terms, but many of these vanish since ⟨z̃(t1)z(t1)⟩ = G(0) = 0. Moreover,
by symmetry of the integration variables s1 and s2, the contribution to
the integral of the non-vanishing terms is equal to the contribution of
G(t − t1)G(−s1)G(t1 − s1)G2(t1 − s2) or G(−t1)G(t − s1)G(t1 − s1)G2(t1 − s2).
Therefore, the integral in (2-10) is computed by integrating these two terms over
t1, s1, s2 and multiplying both integrals by a multiplicity factor 23(3!) = 48. We
note that a diagrammatic expansion can be employed to organize non-vanishing
terms in the Wick sum; for more details we refer to [56].

From the auto-correlation function perturbation ∆A we can obtain the
correction in the power spectral density (PSD) of the particle motion by taking
the Fourier transform [56],

∆S = 3GfbC
2

γmω2
0

ω2 − ω2
0

[γ2
mω2 + (ω2 − ω2

0)2]2 . (2-11)

The PSD of the motion of a particle with unperturbed resonance frequency ω0

subject to a frequency shift ∆Ω can be expanded to first order as:

C

γ2
mω2 + [ω2 − (ω0 + ∆Ω)2]2 ≈ C

γ2
mω2 + (ω2 − ω2

0)2 +
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+ 4Cω0∆Ω ω2 − ω2
0

[γ2
mω2 + (ω2 − ω2

0)2]2 , (2-12)

Comparing the first order correction in Eq. (2-12) with the correction in Eq.
(2-11), we conclude that the nonlinearity causes a frequency shift given by:

∆Ω
2π

= 3kbTeff

4πm2ω3
0
Gfb ≡ κGfb. (2-13)

We see that effectively, the nonlinear perturbation manifests as a shift
in the PSD central frequency scaling linearly with the feedback gain Gfb and
with a slope given by the constant κ. This is valid for small Gfb,

Gfb ≪ m2ω4
0

2kbTeff
. (2-14)

The right-hand side of (2-14) can be used to delimit the validity region of
perturbation theory. The shift ∆Ω in the central frequency of the PSD is the
experimental signature which we use as an indicator of the effect of nonlinear
perturbations. It is worth noticing that the shift described by (2-13) also includes
intrinsic nonlinearities of the tweezer, which arise due to anharmonicities of
the trapping potential [80]. Note, however, that only relative shifts to the
original resonance frequency (with the cubic feedback off but in presence of the
intrinsic nonlinearities) are measured. Thus, our experiment is not sensitive
to the intrinsic anharmonicities of the trap, but only to those effected by the
cubic feedback.

2.2.2
Delayed nonlinearities

Besides nonlinear force perturbations, we will be interested in delayed
forces. Artificially produced feedback forces will naturally be subject to
electronic delay. Accounting for the effects of such delays in perturbation
theory allows us to understand the limits of validity of Eq. (2-7) for modelling
the artificial feedback forces. More broadly, understanding the role of delays
might also enable the study of perturbative nonlinear non-Markovian stochastic
dynamics [82].

We consider the generalized Langevin equation,

z̈(t) = −γmż(t) − ω2
0z(t) − Gfb

m
z3(t − τ) +

√
C η(t), (2-15)

where τ > 0 is a fixed (constant) time delay. Note the delayed position can be
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written in terms of a memory kernel,

z(t − τ) =
∫

z(s)K(t − s) ds (2-16)

where,

K(t − s) = δ(t − τ − s) (2-17)

The perturbation expansion for τ = 0 (Eq. (2-7)) can then be generalized to

A(t, τ) ≡

E[z(t)z(0)] = ⟨z(t)z(0)eC
2

∫
z̃2(s)dse

Gfb
m

∫
z̃(t′)z3(t′−τ)dt′⟩0. (2-18)

Expanding the exponentials in power series and using the Wick sum as defined
in (2-6), the leading correction to the auto-correlation function (2-9) is given
by the following integrals,

∆A(t, τ) ∝∫
G(t − t1)G(−s1)G(t1 − s1 − τ)G2(t1 − s2 − τ)dt1ds1ds2

+
∫

G(−t1)G(t − s1)G(t1 − s1 − τ)G2(t1 − s2 − τ)dt1ds1ds2 . (2-19)

We note both integrals are multiplied by the constant 3GfbC
2/m, which we

omit to avoid cluttering the notation. Evaluating the integrals leads to the
corrected auto-correlation function to first order in the perturbation,

A(t, τ) = Ce−γm|t|/2(2Ω cos Ω|t| + γm sin Ω|t|)
γmΩ(γ2

m + 4Ω2) + 3C2Gfbe
−γm|t|/2

64mγ3
mΩ4ω6

0


eγmτ/2[8γmΩ4 − 4ω2

0γ2
mΩ2(|t| − τ)] cos(Ω(|t| − τ))

+ eγmτ/2[8γmΩ3ω2
0(|t| − τ) + 8Ω5 + 4γ2

mω2
0Ω + 6γ2

mΩ3] sin(Ω(|t| − τ))
+ e−γmτ/2[Ω2(2γ2

mΩ − 8Ω3) sin(Ω(|t| + τ))

+ 8γmΩ4 cos(Ω(|t| + τ))]
+ O

(
G2

fb, C3
)
, (2-20)

The quantity A(0, τ) can be experimentally obtained from the area under
the PSD of the particle’s motion, which in turn can be related to the mean
occupation number of the mechanical modes. In what follows, we use these
expressions to account for the effects of delay in the artificially generated
nonlinear forces, and to show that perturbation theory in the absence of delay
provides a good approximation to current experiments.
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3(t − τ)
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Figure 2.1: Experimental setup. A silica NP is trapped by
an optical tweezer in vacuum. The forward scattered light
is collected and sent to a photodiode, producing a signal
proportional to the particle’s axial coordinate, z(t). An FPGA
processes the signal to produce a voltage that induces a force
on the trapped particle proportional to z3(t−τ). Amplification
prior to and after the FPGA enhance the maximum resolution
of its analog-to-digital converter, enabling the exploration of
a broader range of values for the applied electrical force. The
x-direction pictured in the scheme is parallel to the optical
table.

2.3
Experiment

A simplified schematic of the experimental setup is shown in Figure
2.1. A (continuous wave) laser at 780 nm (Toptica DL-Pro) is amplified using
a tapered amplifier (Toptica BoosTa) producing up to 1.5 W at the output
of a single mode fiber, yielding a high quality Gaussian beam. The beam
is expanded to overfill an aspheric lens of numerical aperture (NA) = 0.77
(LightPath 355330) mounted inside a vacuum chamber, which provides a tightly
focused Gaussian beam to form the optical trap. A solution of silica spheres of
diameter 2R = 143 nm (MicroParticles GmbH) is mono-dispersed in ethanol
and delivered into the optical trap using a nebulizer. Once a single particle
is trapped, the pressure in the chamber is reduced to 10 mbar. The trapped
particle’s axial center-of-mass (COM) motion, z(t), is recorded by collecting
forward scattered light with an aspheric lens of numerical aperture NA = 0.50,
and directing it to a photodiode (Thorlabs PDA100A2), generating an electric
signal proportional to z(t).

The signal from the detector is sent to a wide band-pass filter, amplified
and then input into an FPGA (field-programmable gate array). The FPGA
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introduces a tunable delay, raises the signal to the third power and multiplies it
by a tunable gain. The output signal is then amplified once again and applied to
the mount of the trapping lens, producing a voltage difference with respect to
the mount of the collection lens, which is grounded. This generates an electric
force at the particle position given by Gfbz

3(t − τ), where τ is the total delay
introduced by the electronics and Gfb is the overall feedback gain. For more
details on the generated electric field and electronics, see Appendices A.1 and
A.2.

The electronics naturally introduce a delay to the applied position-
dependent electric forces, which could lead to deviations from the predictions of
the perturbation theory discussed in Sec. 2.2.1. To qualitatively understand the
effects of a delayed feedback nonlinear force, we have exaggerated the electronic
delay τ applying a cubic force of the form Gfbx

3(t − τ) for τ = (2π/4ω0) = T/4
and τ = 6π/4ω0 = 3T/4, and subsequently measured the PSDs of the particle
motion along the longitudinal direction. The results can be seen in Figure 2.2a),
in comparison to the PSD of the trapped particle in the absence of nonlinear
feedback. We see that depending on the delay, the particle undergoes cooling
(τ = T/4) or heating (τ = 3T/4). This can be understood as the nonlinear
analogue of cold damping, where the delayed feedback signal acquires a force
component proportional to the velocity [45,83,84].

We can quantify the effect of delay for the case of our experiment using
the theory described in Sec. 2.2.2. To do that, we have simulated the particle
dynamics under the influence of a delayed feedback cubic force for two different
values of the feedback gain Gfb within the regime of perturbation theory.
For each simulation, we extract the particle motion traces and compute the
position variance, from which the effective temperature Teff of the mechanical
oscillator can be obtained. The results are plotted in Figure 2.2b) as a function
of τ , in comparison to the theoretical prediction given by Eq. (2-20). The
simulations confirm the qualitative cooling/heating results shown in Figure 2.2
and are in good agreement to the perturbation theory with the inclusion of
delay. Notably, for the electronic delay in our experiment, characterized to be
τ = (0.518 ± 0.074) × 10−6 s, we verify that the expected cooling/heating effects
due to a delayed nonlinear feedback provide a correction to the auto-correlation
at the level of 1.10% and are buried within experimental uncertainties. With
this analysis we conclude that any effect associated to electronic delay in our
experiment is negligible and the perturbation theory in the absence of delay
can be used to model the effect of nonlinear perturbations.

We next proceed to verify the perturbation theory as described in Sec.
2.2.1 (without delay, τ = 0). We apply an effective quartic perturbation to
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a) b)

Figure 2.2: Effect of a delayed nonlinearity. a) Longitudinal po-
sition PSDs for the reference measurement ( ) in comparison
to cubic feedback forces at a gain of Gfb = 5.31 × 106 N/m3

and delays of τ = T/4 ( ) and τ = 3T/4 ( ). Here, T
represents the period of the particle motion along the longitu-
dinal direction. These comparisons reveal how the introduction
of a delayed cubic force can either cool or heat the particle
motion. b) Numerically simulated effective temperature Teff
of particle motion as a function of the delay in the cubic
feedback force, displaying cooling and heating in accordance
to the predictions of nonlinear delayed perturbation theory
described in Sec. 2.2.2. With this analysis, we conclude that
the electronic delay present in our experiment, measured to
be τ/T = 0.042 ± 0.006, can be safely neglected.

the optical potential by acting on the trapped particle with a cubic force
which was generated, as previously described, from the position measurement
feedback. PSDs of particle motion under the influence of the cubic feedback
force with positive and negative feedback gains can be seen in Figure 2.3a).
These measurements qualitatively confirm the effect of the cubic force predicted
by perturbation theory as a shift in the PSD central frequency. Note the shift
depends on the sign of the feedback gain, in accordance to Eq. (2-13), indicating
an effective hardening or softening of the optical trap due to the cubic actuation.

To quantitatively compare the frequency shifts with the predictions from
perturbation theory, we acquired the longitudinal motion PSD for different
values of feedback gain Gfb. Note that all parameters going into κ (see Eq.
(2-13)) are obtained from additional setup characterizations, leaving no free
parameters for adjusting the theory to the data. For instance, the trap central
frequency ω0 and mechanical damping γm are obtained from Lorentzian fits of
the unperturbed PSD, the NP mass m is calculated from the diameter provided
by the manufacturer and from the density of silica, and the applied feedback
gain Gfb is obtained after the calibration of the detector, electrode and other
intermediate electronic elements as described in more detail in Appendix A.2.
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The particle is taken to be at ambient temperature Teff = 293 K; note that a
5 K variation in temperature yields a 2 % variation in theoretical prediction.

Once these characterizations have been performed, the central frequencies
of the perturbed PSDs – and consequently the associated shifts – can be
obtained by a Lorentzian fit as a function of feedback gain and compared to the
theoretical predictions. The result of these measurements is shown in Figure
2.3b), in comparison to the theoretical prediction given in Eq. (2-13) for our
experimental parameters.
a) b)

Figure 2.3: Verifying the predictions of perturbation theory: a)
PSDs of the trapped particle’s longitudinal motion under cubic
force, displaying central frequency shifts. The data was taken
at 293 K and a pressure of 10 mbar. The reference PSD ( )
has a central frequency of 77.8 kHz and a shift of ±1.4 kHz
was measured for Gfb = ±1.2 × 106 N/m3. b) Frequency shifts
as a function of Gfb, verifying the prediction of perturbation
theory given by Eq. (2-13) (dashed line). The grey shaded
region marks the regime of validity for perturbation theory
described in Eq. (2-14). Each point corresponds to 250 seconds
of data acquisition at 500 kHz divided into 1000 traces and
organized into batches of 5 traces each. All data points were
collected using the same NP.

Good agreement between the data and the theoretical prediction was
observed within the perturbation regime, indicated by the non-shaded region
of the plot. Note also that outside the regime of perturbation theory (grey
shaded regions in Figure 2.3b)), the measured shifts fall systematically slightly
bellow the predicted first order correction, consistent with the second-order
correction scaling of O(G2

fb) [56]. Note the error bars in Fig. 3b) are larger
for negative feedback in comparison to positive feedback gains. We attribute
this to the fact that the intrinsic nonlinearity of the optical trap introduces an
effective negative feedback gain (Goptical ≈ 106 N/m3), shifting the regime of
validity of perturbation to the right, towards positive gains [80]. Finally, the
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experimentally obtained angular coefficient κe was measured to be

κe = (5.46 ± 0.10) × 10−4 Hz m3 N−1 (2-21)

which compares to the theoretical prediction given the parameters for our
experiment,

κt = 5.69 × 10−4 Hz m3 N−1 . (2-22)

2.4
Conclusions

In conclusion, we have implemented a cubic nonlinear force based on
position measurement feedback acting on an underdamped levitated NP. Effects
of the cubic force on the particle’s stochastic dynamics have been experimentally
studied. In particular, shifts introduced in the particle motion power spectrum
due to the presence of the cubic feedback force have been measured. We have
verified that these shifts are in accordance to the predictions of the stochastic
path integral perturbation theory for nonlinear optical tweezers introduced in
[56]. To account for the experimental imperfections due to electronic delay in
the feedback, we have also extended the perturbation theory and showed that
for feedback schemes currently available in levitated optomechanics experiments
the effects of electronic delay can be made negligible.

We anticipate that nonlinear electric feedback potentials will find a number
of applications in levitated optomechanics experiments, both in the classical
stochastic and quantum regimes. For instance, delayed nonlinear feedback can
be used to engineer a non-conservative system with nonlinear damping of the
Van der Pol type [85]. Finally, weak measurements of a levitated optomechanical
system in a cavity might allow for feedback-induced nonlinear dynamics in the
quantum regime [86] – the non-classical version of feedback-induced nonlinear
forces. In combination with recent advances in levitated quantum control
experiments [45,48], weak nonlinear feedback could then enable the preparation
of non-Gaussian states beyond the nonlinearities naturally present in optical
potentials [70, 87].



3
Cooling

As mentioned in Chapter 1, given a position measurement of the optically
levitated nanoparticle, one way to achieve cooling is to implement active
feedback control of the levitated nanoparticle. Once we have mastered the
implementation of electrical feedbacks in optical tweezers, as demonstrated in
the previous chapter, we move on to cooling experiments. We shall first present
the results previously obtained with our setup in the context of feedback cooling
of optically levitated NPs as reported in [88]. Information about the particle’s
position was obtained by detecting forward-scattered light from the tweezer,
and this is input to an LQR feedback control system which actuates upon the
nanoparticle. Using this feedback cooling scheme, we have managed to achieve
effective temperatures down to 0.5 K for the transversal mechanical modes and
3.6 K for the longitudinal one.

As previously argued, longitudinal detection efficiency is much higher in
the backward than in the forward direction [51]. In the second part of this
chapter, we detail how our experimental setup was modified with the final
goal of implementing detection of longitudinal motion using backscattered light
from the optical tweezer. The main modifications to the setup included entirely
remodelling the mechanical mount of the optical tweezer, replacing the knife-
edge detection in the forward direction by a quadrant photodetector (QPD),
implementing a libration detector for proper distinction between differently
shaped nanoparticles and stabilizing the interference between a phase reference
and the collected beam using a fiber stretcher. We document and detail these
changes in the following sections, and present the 1D cooling results obtained
using information from the backward detection to electrically feedback control
our levitated nanoparticle along the optical axis.

3.1
All electrical cooling of an optically levitated nanoparticle
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3.1.1
Introduction

Optical tweezers [89] have emerged as a valuable tool for isolating
and controlling the motion of micro- and nano-objects [57, 58, 65]. By clever
combinations with electric and magnetic traps and actuators [28, 46, 90–92],
optical traps can be used to design highly sensitive sensors for force, acceleration,
and torque [16, 93–96], with a high degree of control enabling cooling of the
center-of-mass motion of a levitated NP to the ground state [41, 45, 48, 97].
Moreover, tweezers provide a versatile platform for many-body [47,98–101] and
fundamental physics experiments, with applications in diverse areas such as
stochastic thermodynamics [59,102–105], nonlinear dynamics [8,55,80,104,106],
the search for new particles and forces of nature [107–112], and unprecedented
tests of quantum mechanics [70, 113–116]. All these applications require the
levitated object to be well isolated from its surrounding environment, which is
mainly limited by the vacuum quality of the experiment, photon recoil heating
[117], and black body radiation [118]. Regarding the vacuum quality, since the
nano-object is initially trapped at atmospheric pressure, it is thermalized at
room temperature, preventing stable trapping at low pressures and rendering the
trapping potential nonlinear due to large thermal fluctuations [80]. Therefore,
cooling the object’s motion is often a prerequisite for levitation experiments.

Active feedback cooling [83, 84], in particular parametric cooling, has
emerged as the standard technique for achieving 3D cooling of the levitated
NP’s motion [119], enabling temperatures as low as sub-mK [117]. In practice,
parametric control techniques are often used as a precooling mechanism.
The performance of parametric feedback, however, comes at the cost of
employing a nonlinear control protocol which modulates a portion of the
optical trapping power according to the resonance frequencies of the NP. In
addition, expensive electro- (EOM) or acousto-optic (AOM) modulators must be
used in combination with lock-in devices capable of modulating a signal locked
to the particle’s motion. Alongside the parametric control, once the thermal
occupation number has been reduced to around 103, the levitated object’s
charge can be exploited to further control its motion along one direction to
even lower temperatures all the way into the quantum ground state [45,48].

In this letter we explore an all electrical approach to pre-cool the motion
of a levitated NP from room temperature to a point where the trap’s nonlinear
features are significantly reduced and stable trapping can be achieved in high-
vacuum (p < e−3 mbar). To do so, we design a simple electric actuator based
on a custom made printed circuit board (PCB), capable of influencing the
particle’s motion via Coulomb forces. Fine alignment of the PCB with the
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levitated NP is not required. After a careful calibration of the electrical forces,
we employ a delayed feedback scheme to 3D cool the CoM motion of the
particle. We experimentally measure the effect of the delay in the feedback
force and show excellent agreement with theoretical predictions [120]. Finally,
we successfully demonstrate 3D cooling down to sub-Kelvin temperatures while
completely avoiding modulation of the trap’s power, in a first step towards the
larger effort of simplifying optomechanical cooling experiments. With numerical
simulations based on our electrical actuator we argue that, in combination
with a stiffer optical trap, quantum-limited detection for all three axes [51] and
optimal quantum state estimation [121–123], an all electrical optimal control
approach can be employed to reach, in the three axes, a few phonons regime.

We highlight that 3D electrical feedback cooling of levitated NPs has been
recently implemented in levitated optomechanics experiments – see [21,124,125]
for examples using integrated chip photonics, hybrid optical Paul trap and
finely aligned electrode tips. Our setup adds a simplified solution to that list,
while still offering the possibility of 3D quantum control of a levitated NP. This
paper is organized as follows. In Sec. 3.1.2 we briefly describe the equations of
motion and the LQR, used to evaluate the optimal proportional and derivative
gains used in the control feedback. Next, Sec. 3.1.3 describes the experimental
setup, while 3.1.4 shows the results on all electrical feedback cooling and the
prospects for 3D ground state cooling. We conclude in Sec. 3.1.5 with a brief
discussion.

3.1.2
Theory

The CoM motion along the x, y and z-axes of an optically levitated
NP trapped by a strongly focused Gaussian beam can be effectively modeled
through a set of second-order Langevin equations,

ẍ(t) + γmẋ(t) + Ω2
xx(t) = 1

m
Fth,x(t) + bxux, (3-1a)

ÿ(t) + γmẏ(t) + Ω2
yy(t) = 1

m
Fth,y(t) + byuy, (3-1b)

z̈(t) + γmż(t) + Ω2
zz(t) = 1

m
Fth,z(t) + bzuz, (3-1c)

where m is the particle’s mass, γm the drag coefficient, Ωi the angular frequency
along the i-axis and Fth,i represents the (white-noise) stochastic force on each
axis due to residual gas pressure in the vacuum chamber, satisfying

⟨Fth,i(t)⟩ = 0, (3-2a)
⟨Fth,i(t)Fth,j(t + τ)⟩ = 2mγmkBTδijδ(τ), (3-2b)
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where kB is the Boltzmann constant, T the residual gas temperature, δij is the
Kronecker delta and i, j ∈ {x, y, z}. The biui terms in Eqs. (3-1) account for
external forces that may influence the particle’s motion, with ui representing
the control signals defining feedback forces acting on the trapped particle.

By defining the state vector

x(t) ≡
[
x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)

]T
, (3-3)

one can then write Eqs. (3-1) in the state-variable representation [126], resulting
in the Multiple-Input-Multiple-Output (MIMO) system

ẋ(t) = Ax(t) + Bu(t) + w(t), (3-4)

where
A =

 03×3 I3

−diag(Ω2) −γmI3

 , w(t) = 1
m

 03×1

Fth(t)

 , (3-5)

and

B =
 03×3

diag(bx, by, bz)

 , u =


ux

uy

uz

 , (3-6)

with Ω2 =
[
Ω2

x Ω2
y Ω2

z

]T
and Fth(t) =

[
Fth,x(t) Fth,y(t) Fth,z(t)

]T
. Note

that due to the geometry of the feedback actuators in our experiment, the
submatrix in B is not block diagonal, but assumes a more complicated form;
see Sec. 3.1.3 for more details.

Optimal control theory provides tools to find a control policy u(t) capable
of minimizing the energy of a physical system. For linear systems, such as the
one described by Eq. (3-4), this is achieved by the LQR, a controller where the
optimization task targets the minimization of a quadratic cost criterion J of
the form

J = 1
2

∫ ∞

0
[xT (t)Qx(t) + uT (t)Ru(t)] dt, (3-7)

where Q is the weighting matrix and R is the control effort matrix. The optimal
control policy which minimizes Eq.(3-7) is [127]

u = −Kx, (3-8)

where K = R−1BS is the controller’s gain matrix and S is the solution of the
algebraic Riccati equation

SA + AT S + Q − SBR−1BT S = 0. (3-9)

Practical application of the LQR poses the significant challenge of
obtaining the complete state vector x. Experimentally, access is not granted to
x but rather to a measurement vector y, which is related to the states according
to

y(t) = Cx(t) + m(t), (3-10)
where C is a 3 × 6 matrix, known as the output matrix (for more details about
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a)

b)

Figure 3.1: Experimental setup. a) Simplified scheme of the
setup. An optical tweezer is assembled within a vacuum
chamber, and a CCD is used for imaging of the tweezed
particle upon illumination with a 532 nm laser beam. The
trapping lens is grounded, and detection of forward-scattered
light is used to generate the electrical feedback signal sent to
the electrodes. The collection lens works as the z-electrode,
whilst the board shown in b) is placed close to the trap’s
focus and contains the x- and y-electrodes. The axes at the
top left indicate the orientation between the electrodes’ axes
(x′, y′) and the coordinate system of the detection. We note
that, along with an appropriate choice of design parameters,
sufficient proximity between the center of the PCB and the
tweezer focus ensure that the beam is not cropped by the
board.

its structure we refer to Appendix B.3). The term m is the measurement
noise vector and can be expressed as m =

[
ζx(t) ζy(t) ζz(t)

]T
. Here ζi(t) are

zero-mean white-noise processes with variance σ2
i , satisfying

⟨ζi(t)⟩ = 0, (3-11a)
⟨ζi(t)ζj(t + τ)⟩ = σ2

i δijδ(τ). (3-11b)

On the one hand, measurements of x(t), y(t) and z(t) can be implemented
by collecting forward or backward-scattered light from the NP [51]. On the other
hand, the velocities are not accessible experimentally. An optimal estimation x̂
can be computed by applying real-time filtering techniques to estimate x. For
linear dynamics where the disturbances and measurement noises adhere to Eq.
(3-2) and (3-11), x is best estimated using the Kalman filter [128,129].
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Implementing the Kalman filter significantly increases the complexity of
the feedback loop. As a simplification, it is possible to estimate the velocity
as being proportional to a delayed position measurement. This approach has
proven successful for cooling one of the spatial degrees of freedom of the levitated
NP [84], albeit increasing the minimal effective temperature achievable. The
effective temperature for each axis can be computed by using the integral [45]

T i
eff = mΩ2

i

kB

∫ ∞

0

1 + Ω2

Ω2
i

Sii(Ω) dΩ − 1
2 , (3-12)

where Sii is the double-sided Power Spectral Density (PSD) for the particle’s
motion along the i-axis, expressed as

Sii = 2γmkBT

m[(Ω2 − Ω2
i )2 + γ2

mΩ2
i ]

, (3-13)

Note the PSD is computed directly from measurements of the particle’s position.

3.1.3
Experiment

The experimental setup is schematically illustrated in Fig. 3.1a. A CW
laser at 1550 nm (RIO Orion) amplified by an Erbium-doped fiber amplifier
(Keopsys CEFA-C-BO-HP-SM) is used to produce a high-quality Gaussian
beam linearly polarized along the x direction with a power of Pt ≈ 2 W, at the
output of a single-mode fiber. The beam is focused by an aspheric lens (Thorlabs
C330TM-C, NA = 0.68) assembled inside a vacuum chamber, allowing for stable
optical trapping. The light scattered by the particle along the forward direction
is collimated by a collecting lens (Thorlabs C110TM-C, NA = 0.40). Silica
NPs (diameter 143 nm, MicroParticles GmbH) are loaded into the vacuum
chamber by a nebulizer and trapped at atmospheric pressure. The trapped
particle oscillates with resonance frequencies along the three axes given by
Ωx/2π = 96.24 kHz, Ωy/2π = 101.49 kHz and Ωz/2π = 31.52 kHz.

Detection of transversal motion, x(t) and y(t), is carried out using balanced
photodiodes (Newport 2117-FC), while information about the longitudinal z(t)
direction is obtained by direct intensity photodetection. The optical trap is
characterized through measurements of the particle’s position PSDs for each
direction. Information on the occupation numbers and effective temperatures
of each direction can also be obtained from the PSDs by using Eq. (3-12).

A PCB containing two orthogonal pairs of electrodes, illustrated in Fig.
3.1b), is placed in the vicinity of the optical trap’s focus, allowing for two-
dimensional electrical feedback control of the NP’s CoM motion. The PCB has
a thickness of 1.5 mm and is designed to be compatible with cage plate optical
systems (Thorlabs SP02). The four square-shaped contacts (2 × 2 mm2) around
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Figure 3.2: Effect of delayed feedback forces. Comparison
between experimental results and theory (solid lines) is pre-
sented. Measurements were conducted at room temperature
(293 K) and a pressure of 1.2 mbar. Each data point corre-
sponds to 10,000 50 ms-traces. The used gains were Gx =
(9.17 ± 0.98) × 10−9 N/m and Gy = (8.97 ± 0.97) × 10−9 N/m.
The gray shaded area marks the region that could not be
measured due to the minimal delay imposed by the electronics.
The horizontal axis, ϕ, represents the phase Ωiτi introduced
by the delay. In the inset, the interval where the delay induces
cooling is presented with more detail.

its center are arranged symmetrically, with a separation of 2.5 mm between
adjacent contacts. Note also that only coarse alignment of the PCB with respect
to the levitated NP is required, and this can be achieved by placing the PCB
near the optical focus. Due to the employed control method, coupling between
degrees of freedom in the transverse plane is compensated by the calibration
process.

A third pair of electrodes is implemented by applying an electric signal
to the mount of the collection lens, producing a voltage difference with respect
to the grounded trapping lens. Simulations conducted using the finite-elements
method have numerically demonstrated that this voltage difference establishes
a uniform electric field near the particle’s position [55]. The signal from the
detection is digitally processed by two FPGAs (STEMlab 125-14, Red Pitaya)
and analogically amplified before being fed back to the electrodes. We remove
any cross-talk between z and xy electrodes by digital filtering, which is facilitated
by the difference in characteristic frequencies between the longitudinal and
transversal degrees of freedom. Taking this and the geometry of the actuators
into consideration, the gain matrix assumes a block diagonal form,

K =
Kp,xy 0 Kd,xy 0

01×2 kp,z 01×2 kd,z

 . (3-14)
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b)a)

Figure 3.3: All electrical cooling. a) Dependence of x, y
and z effective temperatures on pressure, calculated using
(3-12). The grey shaded region shows a region of instability,
as discussed in the main text. b) PSD of the y motion.
Measurements were made at 1.0 mbar( ), 5.4 × 10−2 mbar
( ) and 1.2 × 10−4 mbar ( ).

A detailed description of the analogical amplification and the digital pro-
cessing of the detection signal can be found in Appendix B.2. Digital processing
includes frequency filtering, delaying and application of derivative/proportional
gains to the signal. The choice of optimal gains was based on control theory, as
presented in Appendix B.1. Since the theory predicts only a weak dependence
of optimal gain on pressure, we consider a single gain to be optimal throughout
the experiment.

Appropriate calibration of the electrodes accounts for misalignment
between the electrodes’ axes and the mechanical modes, allowing for a partial
reconstruction of the B matrix, which assumes a 45◦ rotated form with respect
to the diagonal matrix given by Eqs. (3-1). During calibration, the effect of the
z-electrode was observed to be too weak, such that only the x- and y-electrodes
could be calibrated. This has led to applying the control LQR only to the x and
y motion and a cold damping protocol [45, 83] along the z direction (kp,z = 0).
We refer to Appendix B.3 for more information on the calibration procedure.

3.1.4
Results

Proper implementation of the control method as previously described
requires precisely delaying each detection signal. The delay characterization
process involves applying a force proportional to the delayed position inde-
pendently in the x and y directions. For instance, referring to Eq. (3-1), this
translates to ux = Gxx(t − τx) for the x coordinate (and similarly for y and
z). Each delay τi consists of two components, the intrinsic electronic delay
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τe,i, and an adjustable delay τc,i. Fig. 3.2 shows measures of T x
eff and T y

eff while
subjecting the particle to the delayed force. The controllable delay τc,i was
varied to span the range of τi from τe,i to one period of oscillation (ϕ = 2π). The
experimental results show excellent agreement with the theoretical predictions
from [120]. Furthermore, this measurement allowed for the characterization
of the electronic delays, τe,x and τe,y, both of which were determined to be
0.639 µs. We assume τe,z has the same value.

Figure 3.3a) shows the results of 3D feedback cooling. The minimal
effective temperatures achieved in the experiment are T x

eff = (0.58 ± 0.12) K,
T y

eff = (0.55 ± 0.11) K and T z
eff = (3.63 ± 0.77) K, for each of the three axes.

The gray shaded area in Fig. 3.3a) depicts an instability region observed
near 10−2 mbar, characterized by a sudden increase in T i

eff . We attribute this
phenomenon to variations on the net charge of the NP [17]. The net charge
acts as a linear parameter affecting the input matrix, thus linearly impacting
the control gain. As electrode calibration was performed at high pressure
(> 1 mbar), for pressures smaller than 0.01 mbar, it cannot be assumed that the
applied gain was optimal. Nonetheless, stable cooling has been implemented
by using only electrical actuators and the application of LQR returned a gain
matrix capable of handling any coupling between degrees of freedom in the
dynamics. The PSD of the CoM motion for the y direction under three distinct
pressures is shown in Fig. 3.3b). Feedback cooling not only reduces the area
of the PSD, from which the effective temperatures are estimated, but also
introduces a term which increases its linewidth, as expected due to the presence
of derivative terms in the NP’s motion.

For pressures smaller than 0.01 mbar, no instability has been encountered,
agreeing with results previously shown [130]. Therefore, the control protocol
employed should be capable of successfully controlling the NP until the
stochastic thermal force becomes negligible and the dynamics starts to be
dominated by measurement back-action and photon recoil heating. When
compared to parametric cooling, an all electrical approach is advantageous
since it avoids contamination of the signal by spurious modulation signals,
which are rendered unnecessary. Additionally, in contrast to parametric cooling,
the LQR employs a linear control law, thus not affecting the overall linearity
of the system.

Since the LQR has been successfully employed in combination with
Kalman filter for ground-state cooling along the longitudinal axis [48], extending
its application as a 3D quantum control policy should be experimentally
achievable. By considering the electrode parameters presented in Appendix B.3,
an implementation of a Kalman filter for state estimation and the trapping and
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Figure 3.4: Simulation of optimal all electrical 3D cooling
with improved trapping lens and detection scheme: expected
thermal occupation numbers n̄, obtained from the estimation
of the particle’s covariance matrix, as a function of pressure
for the x, y and z directions. Dashed line marks a single
phonon. Error bars correspond to one standard deviation over
30 simulation runs.

detection efficiency parameters reported in [48], we numerically simulated 3D all
electrical cooling of a trapped NP. Figure 3.4 presents the expected final mean
occupation numbers with our all electrical controller. To account for quantum
effects, the same parameters of measurement uncertainty, detection efficiency ηz

and backaction provided in [48] were taken into account in the simulation. Note
that the simulation considers a backward detection scheme, resulting in a higher
detection efficiency for the longitudinal axis compared to the transversal axes,
thereby leading to a smaller thermal occupancy for z. In contrast, the experiment
employed a forward detection scheme, therefore yielding the opposite effect due
to limited detection efficiency [51]. The detection efficiency along the transverse
axes, ηx and ηy, were computed by considering the expected proportion
between the efficiency along x and y and the longitudinal directions for the
corresponding trap’s NA [51]. Such efficiencies led to detection imprecisions of
1.561×10−20 m2/Hz, 3.122×10−20 m2/Hz and 5.204×10−21 m2/Hz for x, y and
z, respectively. For pressures on the order of 1e−10 mbar, the simulation results
agree with the experimental findings in [48]. It must be noted that, for higher
pressures, we expect that experimental imperfections increase the minimum
number of phonons . Moreover, while it is evident that in simulation the thermal
occupancy for y exceeds that of x, the experimental results in Fig. 3.3.a) shows
the opposite. This most likely arises from experimental imperfections due to
detection efficiency in the x-axis. Note that systematic errors in the experiment,
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such as errors in the NP’s mass, density, and charge, or imperfections in the
calibration processes, alter the calculation of optimal gain and, consequently,
the performance of the cooling protocol.

3.1.5
Conclusions

In conclusion, we have demonstrated an all electrical feedback cooling
scheme for reducing the CoM temperature of a levitated NP in high vacuum.
Through a simple custom-designed electrical actuator, we have shown sub-
Kelvin temperatures for the transverse directions of motion, avoiding the use of
nonlinear feedback cooling schemes such as parametric feedback cooling. This
greatly simplifies levitated optomechanics experiments by avoiding the need
for modulation of the trapping power. Numerical simulations point that future
improvements over our setup, in particular implementation of a higher NA
trapping lens and of the optimal backward detection scheme reported in [48],
should enable all electrical 3D cooling near the ground state.

3.2
Backward detection

A few modifications have been applied to our previous setup (illustrated by
Fig. 3.1). The updates consisted of i) removing the 532 nm beam, ii) exchanging
the knife-edge forward detection scheme with a QPD, iii) increasing the NA of
the tweezing lens, iv) implementing a polarization-based detector for librational
motion and, finally, v) assembling a scheme for collection of backscattered
light from the tweezer. The updated setup is illustrated in Fig. 3.5. About
800 mW of optical power from a CW 1550 nm laser beam is split between
input to an EDFA (99%) and generation of a local oscillator (LO, 1%). The
polarization controller (PC) denoted by PC2 defines the polarization of the
beam which is directly coupled to free-space after the EDFA. PC2 aligns the
polarization for maximal transmission through the first free-space polarizing
beamsplitter (PBS). Forward scattered light from the tweezer is split into
transversal detection (denoted by x, y-detection in the Figure) and libration
detection. Transversal detection is carried out using a PDQ30C quadrant
photodetector (QPD) from Thorlabs. Libration detection is implemented by
splitting the polarization components of the forward scattered beam into two
arms of a balanced photodetector (BPD), which yields a signal containing
information about the particle’s angular degrees of freedom. Before the vacuum
chamber, the faraday rotator (FR) and the half-waveplate ensure collection
of backscattered light from the tweezed nanoparticle, which is coupled to the
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z-detection system. Each transmission of the beam through the FR rotates
its polarization by 45°, such that after being transmitted twice it is directed
to the reflecting arm of the first PBS, and led into the backward detection
scheme. The function of the half-waveplate is to realign the polarization to
the transversal detection axes, in the context of splitting the detection along
the CoM modes between the QPD channels - an operation which is effectively
undone in the backwards transmission through the waveplate. PC1 and the
PBS split the optical power of the LO between heterodyne measurement, which
is to be implemented in the future and will yield absolute effective temperature
measurements, and the homodyne detection of the particle’s position using
backscattered light, previously described. The LO polarization is aligned with
that from the backwards collected beam. Phase-stabilized interference using
a 50:50 beamsplitter and PID control of a phase shifter acting upon the LO
yield the backward detected signal. Before moving on to the cooling results,
we detail on some aspects regarding the preparation, optical alignment and
verification of these modifications.

��

λ/2

λ/2

EDFA

PC 2

99:1

LO

PC 1

PC 3
PBS

heterodyne measurement (future implementation)

PC 4 AOM 50:50

50:50

90:10

feedback
control

z-detection

x,y-detection

PBS

beam block

libration detection

PBS

FR

coupler

coupler1550nm

vacuum chamber

Figure 3.5: Uptaded optical tweezer setup. Polarization con-
trollers are denoted by PC, and ∆ϕ represents the phase shifter
which stabilizes the interference for backward detection. The
detection system is composed of four blocks: libration detec-
tion, which gives information regarding the angular degrees
of freedom of the tweezed nanoparticle, x, y-detection, which
yields transversal motion measurement, z-detection, which
represents the backward detection system in the figure, and a
yet to be implemented heterodyne measurement, which will
provide absolute temperature measurements for motion along.
These detection subsystems are better detailed in the main
text.
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Figure 3.6: Tweezer mount and trapping lens. The Lightpath
355617 aspheric lens, dimensions given by the technical drawing
in panel (a), was glued into the custom made cage plate system
illustrated in the technical drawings from panel (b) using
vacuum epoxy, as described by the main text. In (c) we show
a picture of the lens glued into its respective supporting piece,
which in its turn is held by an appropriately threaded plate.
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The QPD used is the PDQ30C model from Thorlabs, which has a
responsivity of 1.05 A/W @ 1550 nm. In order not to damage or saturate the
QPD, we input up to roughly 760 µW optical power to the detector, using
appropriate filters so as to attenuate the collected light from the tweezer in the
forward direction.

The trapping NA was enhanced from 0.68 to 0.75 by using a new aspheric
lens from Lightpath, model 355617, kindly provided to us by Prof. Joanna
Zielińska (Tecnológico de Monterrey) and Prof. Lukas Novotny (ETH Zurich).
Its dimensions are introduced by panel (a) of Fig. 3.6. In particular, the 1.4 mm
total diameter of the new aspheric lens has prompted us to design a new mount
for the tweezer, illustrated in its turn by the technical drawings from panel (b)
of Fig. 3.6. Lastly, panel (c) of the same Figure shows pictures of the trapping
lens after it was glued into its custom made cage plate using vacuum-compatible
epoxy. The cage plates are connected by four Teflon rods, and the system is
held onto the bottom of the vacuum chamber using a base which is compatible
with the utilization of vacuum designed screws.

The 900 µm clear aperture of the trapping lens required us to modify the
collimation system which transfers the beam from fiber optics to free space.
The last polarization controller (denoted by PC2 in Fig. 3.5) prior to free space
has a fiber specification given by the code CCC1310-J9, which corresponds to
a mean field diameter of 9.7(5) µm. Given a focal distance f , a wavelength λ

and a collimated beam waist w0, the waist at the focus w is given by

w = λf

πw0
. (3-15)

Equating w to half the fiber’s mean field diameter and w0 to the trapping lens’
effective diameter, we get f ≈ 4.42 mm. We have used the C230TM-C aspheric
from Thorlabs, which has a focal distance of 4.50 mm, as the collimating lens.
The corresponding beam diameter at the focus is 916 µm.

Given the non-monotonic dependence of forward detection efficiency of
particle motion along the optical axis (z) as a function of collection NA [51], the
introduction of the 355617 aspheric induced also a modification of the collection
lens. We have chosen the N414TM-C model from Thorlabs, which has an NA
of 0.47 and a theoretical resulting forward detection efficiency for motion along
the z-direction of 6.57 × 10−4, close to the limit of about 6.63 × 10−4 for our
system. Given our goal of implementing backward detection of motion along
the z-axis, it may seem contradictory to base our choice of collection lens upon
the efficiency of forward detection along this direction. It should be kept in
mind that the assembly of the tweezer was made prior to the transition from
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Figure 3.7: Transversal power spectral densities. Calculated
curves are obtained from the mean of a thousand PSDs of
50 ms-long individual traces taken at a pressure of 3.0 mbar
from the QPD channels. They are displayed in the same window
and fitted by relativistic Breit-Wigner models. From these fits
we extract the damping coefficients of Γx = 14.17 ± 0.15% kHz
and Γy = 14.27 ± 0.12% kHz.

forward to backward detection in our setup, at a stage where we were still
strongly reliant upon forward detection for measurement of longitudinal motion.
Now, this stands out as a direction of improvement for the setup in the near
future, considering that transversal detection efficiency increases monotonically
with collection NA, saturating at the value of the trapping NA [51].

The increase in trapping NA has led to an increase also in the optical
trapping frequencies. In comparison with the previously reported transversal
frequencies of Ωx/2π = 96.24 kHz and Ωy/2π = 101.49 kHz, we now have the
values of Ωx/2π = 135.77 kHz and Ωy/2π = 156.08 kHz. The power spectral
densities of the signal derived from the x and y QPD channels at a pressure of
3.0 mbar are displayed in Fig. 3.7. The obtained curves are obtained from an
average of a thousand PSDs of 50 ms-long individual traces. Overlayed upon
these spectral densities are the respective model fits, from which we extract the
damping coefficients of Γx = 14.17 kHz ± 0.15% and Γy = 14.27 kHz ± 0.12%.

As reported in [131], dumbbell particles can be identified from the ratio
between measured damping coefficients for motion along each of the transversal
directions. From the damping coefficients highlighted in Fig. 3.7, we obtain a
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ratio given by Γy/Γx = 1.007 ± 0.002, indicating that the tweezed particle for
which the corresponding data is acquired is indeed a single particle.

Along the lines of characterizing the optically trapped nanoparticles in
our system, one significant drawback of our previous experiment was the lack
of other objective criteria for estimating their shape. We have enhanced our
system in this direction by implementing a detector for librational motion of
the silica NPs, consisting of a simple combination between a half-waveplate, a
polarizing beamsplitter PBS and a BPD in the forward direction. Due to silica’s
birefringence, rotational degrees of freedom of the oscillator become enconded
into the polarization of the forward scattered light. The half-waveplate aligns
the polarization orientation to the PBS axes, and each component is introduced
into one arm of a BPD, allowing us to perform an indirect measurement of these
degrees of freedom. The references in [132,133] show the librational PSDs for a
halter-like (or dumbbell) particle, composed of two bound spherical NPs, and
for a cluster of particles. While the former is composed of a central peak with
two symmetrical side bands, the latter has an asymmetrical profile with two
shoulders. In contrast, a spherical nanoparticle does not exhibit any spectral
information regarding librational degrees of freedom, due to the symmetry of its
inertia tensor. Fig. 3.8 shows our libration measurements, which help us infer
what kind of particle is trapped at each run of the experiment. Characteristic
librational PSDs of halters and of nanoparticle clusters are shown, and a clear
distinction between them can be drawn. In Fig. 3.9, we cross-validate our shape
measurement in the dumbbell case by verifying that the transversal damping
coefficients for the dumbbell are not the same. We measure the damping
coefficients of Γx = 18.86 ± 0.18% kHz and Γy = 18.38 ± 0.10% kHz, amounting
to a damping coefficient ratio of Γx/Γy = 1.026 ± 0.002.

Backscattered light is collected from the tweezer by introducing a PBS,
a faraday rotator (FR) and a half-waveplate prior to the vacuum chamber.
The polarization of light output from the PBS is rotated by 45° in-plane each
time it passes through the FR. In this way, when the backward detected beam
reaches the PBS again, its polarization is orthogonal to that of the incident
beam, thus getting reflected by the element. The half-waveplate is inserted
to make the polarization orientation compatible with that of the QPD axes
before introducing it into the tweezer, an operation which is compensated for
by the same waveplate in the back propagating beam. We then couple the
collected light to the fiber system where detection actually takes place. Another
detail regarding collection of backscattered light is that we tilt the vacuum
chamber, since spurious reflections of the incident light have been observed to
be generated by its viewports. These reflections mix with the signal beam at
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Figure 3.8: Libration detection. We show the characteristic
librational peaks observed when the tweezed object is a
nanodumbbell (left) or a cluster of nanoparticles (right).
Even though the spectral peaks were observed at different
frequencies, their shapes have allowed us to swiftly determine
what kind of particle was trapped each time we ran the
experiment.
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Figure 3.9: Nanodumbbell transversal PSDs. Calculated curves
are obtained from the mean of five thousand PSDs of 50 ms-
long individual traces taken from the QPD channels. They
are displayed in the same window and fitted by Breit-Wigner
models. From these fits we extract the damping coefficients
of Γx = 18.86 ± 0.18% kHz and Γy = 18.38 ± 0.10% kHz.
As expected for a nanodumbbell, the transversal damping
coefficients are different, we obtain a ratio of Γx/Γy =
1.026 ± 0.002
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normal incidence, compromising the backward detection scheme.
Linear detection of motion in the forward scheme requires simply focusing

the collected light on a photodetector. Interference between light scattered by
the nanoparticle and portions of the beam not scattered by the tweezer allows
for direct measurement of the phase of the forward scattered beam [52]. In this
sense, the portions of the beam which did not interact with the particle provide
a phase reference for the measurement of its motion. By design, the backward
detection scheme does not come with intrinsic phase referencing, such that we
are required to generate an LO. This is carried out by passing the non amplified
beam through a 99:1 beamsplitter and selecting the least intense arm, while the
remaining optical power is sent to the EDFA. A polarization controller allows
for polarization alignment between the LO and the signal beam. A phase shifter
(PZ2 Fiber Stretcher from Optiphase) is introduced in the path of the LO,
the beams are combined in a 50:50 beamsplitter and input to a BPD, yielding
the measurement. The phase shifter is controlled by an FPGA-implemented
PID-loop using the BPD output. Here, we aim to stabilize the low-frequency
components of the interference, such that the BPD signal oscillates around
zero voltage. Due to mechanical vibrations and to polarization drifts associated
with temperature variations, the near-DC component of the phase between
LO and signal fluctuates. Resonances from the fiber stretcher circuit at 18 kHz
and at 110 kHz prompted us to low-pass the control signal using a fifth-order
analogical filter. The FPGA’s DAC (digital-to-analog converter) output range
is limited to ±1 V, such that we also include an analogical gain in order to
bring the control signal up to the 15 V range. The simulated Bode diagram of
the filter is presented by Fig. 3.10, and the corresponding cut frequency, where
there is an amplitude loss of 3 dB with respect to the DC load, is of about
192 Hz.

By compensating for the low frequency oscillations in the interferometer,
we manage to improve the SNR of the backward z-detection. Fig. 3.11 shows
PSDs of 500 ms-long traces taken at different times, showing how the interference
at the BPD drifts on the time scale of a few seconds when the stabilization loop
is turned off, an effect which we associate with room temperature oscillations –
see Appendix C for a discussion on this point. A measurement with the control
system enabled is also shown in the background. Within the corresponding
PSD, one can notice how phase stabilization leads to strong attenuation of the
second harmonic of the z-detection at about 105 kHz, while the first harmonic
at Ωz = 52.61 kHz is enhanced.

Next, we comment on our detector and electrode calibrations. We follow
a protocol similar to the one described in [95]. Let us briefly recall these results;
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Figure 3.10: Low-pass filter for phase stabilization signal. The
left and right panels show, respectively, amplitude and phase
responses of the analogical low-pass filter which we apply on
our phase stabilization control signal before directing it to the
fiber stretcher. Inclusion of this element was necessary due to
observed resonances from the stretcher circuit at 18 kHz and
110 kHz. The fifth-order filter has a cut frequency of about
192 Hz, as highlighted in the left panel. The cut frequency is
defined as the frequency for which there is a 3 dB-loss with
respect to the DC-response. Design and assembly of the filter
were carried out by courtesy of Daniel Tandeitnik.

the one-sided power spectral density of the particle’s motion along the j-th axis
is approximately given by,

Sth
xj

(ω) = 4ΓkBT

m
[
(ω2 − Ω2

j)2 + Γ2ω2
] . (3-16)

By fitting the PSD of the output voltage to this model we can obtain a detector
calibration coefficient Cj

V M , which characterizes the voltage response per unit
displacement of the particle along the j direction,

SVj
(ω) = (Cj

V M)2Sth
xj

(ω). (3-17)

Once we have calibrated our detectors, it is also relevant to quantify how
much force is generated by our electrodes per unit applied voltage upon the
particle. When a sinusoidal driving force is applied at a frequency ωdr with an
amplitude F0, the position PSD measured over a time interval 2τ changes from
Sth

xj
(ω) in Eq. (3-16) to

Sxj
(ω) = Sth

xj
(ω) + F 2

0 τ sinc2[(ω − ωdr)τ ]
m2

[
(ω2 − Ω2

j)2 + Γ2ω2
] . (3-18)

In this way, after calibrating the detector, it is possible to isolate the particle’s
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Figure 3.11: Phase stabilization demonstration. PSDs for
500 ms-long traces are shown with phase stabilization turned
on (solid curve) and off (dashed curves). We measure the
unstabilized signal over an interval of a few seconds and
verify that, when the phase control loop is disabled, a strongly
variable behavior in the measured spectra can be observed. We
attribute these variations to room temperature drifts which
cause the fiber optics to expand and contract at long time
scales. Measurements were taken at a pressure of 0.86 mbar.

response to this drive and obtain a sequence of measured forces for different
applied voltages, from which we can finally calibrate our electrodes.

To summarize what is done in practice, a sinusoidally varying voltage drive
is applied to the electrodes placed in the vicinity of the particle. A “base line”
PSD corresponding to the Sth

xj
(ω) term is obtained by digitally notch-filtering

the signal at the driving frequency, as suggested by the same reference in [95].
The value of the unfiltered position PSD at the driving frequency is compared
with the base line, and using Eq. (3-18) we obtain the applied force F0.

In the z-direction, this protocol was carried out for the two driving
frequencies of 41 and 45 kHz, and for six voltage values between 0.2 and 1.0 V.
Fig. 3.12 shows an example calibration fit for a voltage of 1.0 V and a frequency
of 45 kHz. The calibrations for each frequency and voltage were performed in
two steps. In the first step we obtain the damping coefficient, central frequency
and detector calibration factor using the notch-filtered PSD as input data.
Then the unfiltered data is modelled using Eq. (3-18), and from the difference
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Figure 3.12: Calibration illustration. A digital notch filter at
the driving frequency is applied to our measurement, and we
fit this filtered data in order to obtain the central frequency,
the damping coefficient and the detector calibration factor.
Along with the particle’s mass and the measurement time,
these parameters are used to fit the drive peak and extract
the applied force.

between filtered and unfiltered models at the driving frequency we obtain the
applied force. By measuring the force for different voltages and frequencies, we
obtain the electrode calibration factor Cj

NV , which is given by the best fit for the
ratio between measured forces and applied biases. For the longitudinal direction,
we have measured an electrode calibration factor of Cz

NV = 1.556 ± 0.038 fN/V,
whilst the best detector calibration obtained was of Cz

V M = 3.16 ± 0.002 MV/m.
It is worth noticing that the detector calibration was observed to vary over the
time span of a few hours, a fact which we attributed to temperature and/or
polarization instabilities in the interferometer. As it will be described shortly,
this has prompted us to perform the cooling experiment as swiftly as possible,
within a time interval where detector calibration was seen to remain stable, and
an effective temperature could be appropriately obtained from the measured
PSDs.

Another unexpected aspect of the experiment was related to the calibra-
tions associated with the transversal directions, a problem which we report here
before finally describing our cooling results. For reasons not yet understood,
the sensitivity of the detectors to motion along the x- and y-directions was
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very low in comparison to our results prior to the introduction of the QPD
(see Appendix B.3 for the earlier results). We attribute this weak sensitivity
to the unexpectedly low observed swing of the detector (a few mV), which
the DACs of our oscilloscope and of the FPGA were not properly optimized
to deal with. The detector calibration factors we observed in the transversal
forward detection were of the order of 8 × 103 V/m, which is a factor from two
to four hundred times smaller than the ones we had in the previous run of the
experiment and in the presently implemented longitudinal backward detection.
Aside from this poor transversal detector calibration, our transversal electrodes
were also observed to actuate more weakly upon the particle than expected,
with a force per unit of applied voltage about ten times smaller than what was
previously obtained, an issue which might be related to the positioning between
the tweezer focus and the plane where the electrodes were placed. Both of
these problems are strong candidates for immediate improvement in the setup.
They are to be addressed shortly with an exchange of the PCB containing the
electrodes used for control, and by appropriately adapting our signal readout
scheme for the forward direction. Despite the momentary inability to proper
control the motion along transversal directions, we shall see that it was possible
to improve the lowest effective temperatures achievable in our experiment, even
if only for motion along the optical axis. Nevertheless, cooling along a single
direction led to unstable dynamics at the lowest pressure ranges in which we
aimed to achieve cooling. This has ultimately led to a loss of the particle in
the pressure range of 10−4 mbar.

The experiment was carried out as follows. For each pressure value, we
verified stabilization of the z-detection and of the feedback cooling using a
scheme for live visualization of the PSD. Each time that the system was verified
to be stable, we took a measurement, then lowered the pressure and waited for
it to stabilize again, and repeated.

Given the lack of a reliable calibration, we replace the effective temperature
calculation in Eq. (3-12) from [45] by an approximation using the ratio between
a reference PSD taken at 0.86 mbar and the PSDs of the detected motion under
feedback cooling. We roughly approximate the potential to be harmonic such
that, by application of the Virial theorem, we have equal values for the mean
kinetic and potential energies. An implicit application of the Parseval’s theorem
then leads us to the conclusion that there is a proportionality between the
area under the PSD and the particle’s energy. Then, we assume the reference
PSD to be associated with thermalized dynamics at room temperature, and
the effective temperature for each measurement is given by 293 K times the
ratio between areas under the spectral curves of the data and of the reference.



Chapter 3. Cooling 48

30 40 50 60 70 80 90 100

Frequency [kHz]

10−9

10−8

10−7

10−6

10−5

10−4

V
2
/H

z
Reference at 0.86 mbar

p = 0.860 mbar. T = 26.53 K

p = 0.120 mbar. T = 3.21 K

p = 0.054 mbar. T = 1.56 K

p = 0.003 mbar. T = 0.32 K

Figure 3.13: Backward cooling results. PSDs of the backward
detected signal are shown for feedback cooling under different
pressures. A reference PSD at 0.86 mbar is used as a replace-
ment for the calibration factor which we noticed to be presently
unstable. Temperature is calculated by assuming the reference
PSD to be associated to motion at an effective temperature
of 293 K, and the feedback-cooled PSD temperatures are ob-
tained considering the area ratio between each of them and
the reference.

We are also working under the assumption that the average potential energy
is much larger than the zero-point energy of the oscillator, which is generally
true when we are far away from the ground state.

All this being said, Fig. 3.13 displays PSDs in the backward direction for
different pressures. The labels also indicate the effective temperature calculated
as previously described. In this calculation, we also include the second harmonic
of the longitudinal motion, which is visible in the spectra. The lowest pressure
where we were able to perform stable measurements on was of 3 × 10−3 mbar.
Towards the 10−4 mbar range, the uncontrolled motion along the transversal
directions has caused us to lose the tweezed nanoparticle. Nevertheless, we have
managed to attain a temperature of about 0.32 K, roughly 11 times smaller
than our previous best result along the longitudinal direction, and slightly
better than the previous transversal results in our setup. Notice that this
mild improvement was obtained at a higher pressure than before, and under
1D feedback cooling. With a central frequency of Ωz ≈ 44 kHz, our lowest
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temperature is associated with a number of phonons given by,

n̄bw
z = kBTeff

ℏΩz

= 1.5 × 105 phonons. (3-19)

We compare this result with the calculated number of phonons for the
z-motion previously obtained in the forward cooling experiment,

n̄fw
z = 2.4 × 106 phonons, (3-20)

which indicates an improvement by an approximate factor of 16. The result
illustrated by Eq. (3-19) gives an indication of how many orders of magnitude our
cooling must be enhanced in order to achieve the ground state (by convention,
n̄ < 1), a goal which was already carried out by other groups, see [41,45,97,134].



4
Feedback cooled levitated nanoparticles for few photon detec-
tors

The previous chapters detail how, in our experiments, we’ve learned how
to electrically control an optically levitated nanoparticle using measurements
of its position, and how this knowledge can be used to reduce the effective
temperature of its center of mass translational dynamics. In this chapter, we
describe simulation efforts which aimed to address the following question: “can
such a feedback cooled levitated nanoparticle be used to detect individual
photons?” We have developed a Python environment to implement numerical
simulations of the dynamics of an optically trapped oscillator under feedback
cooling inside a cavity resonator, as depicted in Fig. 4.1.

By inputting a low intensity coherent optical pulse into the optomechanical
dynamics, we mimic the effects of a few-photon state interacting with our system.
Noisy position measurements are passed through a Kalman filter algorithm, and
from the resulting state estimates we attempt to infer the input pulse intensity.
Within the next sections, we outline the dynamics which we’ve simulated
using an Euler-Mayurama approach. The Kalman filter implementation is also
detailed, and we follow up with an attempt at characterizing this system in
regards to its capability of distinguishing states of light with very low intensity.

The code used to obtain our results is available in [135].
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Figure 4.1: Detector schematics. A particle is levitated using
a trapping beam of wavelength λt. Homodyne detection of the
trap’s backscattered light reveals information on the particle
motion, which is used to feedback cool the particle to the
ground state. Around the particle, a low finesse cavity tuned
to wavelength λd enables either the coherent scattering or
dispersive interaction between the mechanical motion and
the field we wish to detect. Signature of the detected photon
appears in the feedback error signal.

4.1
Dynamics: parameters and general framework

We simulate the linear optomechanical dynamics describing the mechanical
mode of an oscillator coupled by coherent scattering to an optical mode inside
a cavity with resonance frequency ωc, and whose position can be readout by
homodyne detection with efficiency η. Let ∆, κ, g, ωm and γm denote the
detuning, cavity linewidth, linearized optomechanical coupling rate, mechanical
mode frequency and damping coefficient, respectively. We also denote by T

and kB the temperature and the Boltzmann constant. In a frame rotating at
the frequency of the laser driving the cavity, ωL = ωc + ∆, the dynamics of the
first moments of the dimensionless optical (X, Y ) and mechanical (Q, P ) mode
quadratures read (see, for instance, [136]),

Ẋ = −(κ/2)X + ∆Y +
√

κXin +
√

κ/2ξX(t), (4-1a)

Ẏ = −∆X − (κ/2)Y − 2gZ +
√

κYin +
√

κ/2ξY (t), (4-1b)
Ż = ωmP, (4-1c)
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Ṗ = −2gX − ωmZ − γmP +
√

4γmmkBT

Pzpm

ξth

+
√

4πK

Pzpm

(√
ηξ

(1)
ba +

√
1 − ηξ

(2)
ba

)
+ u(t).

(4-1d)

By the dimensionless mechanical quadratures Z and P , we denote dimensionless
position and momentum means. They are represented in units of their respective
zero-point values, that is, Zzpm =

√
ℏ/(2mωm) and Pzpm =

√
ℏmωm/2, with m

representing the oscillator’s mass. For the sake of clarity, we also emphasize that
the dimensionless momentum P is not to be confused with the tweezer beam
power Ptw, which is to be introduced shortly. We denote by u(t) an arbitrary
external force associated with a control law applied upon the system. ξi are
white noise terms with the following properties,

⟨ξi(t)⟩ = 0, (4-2a)
⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′), (4-2b)

used to describe optical shot noise, thermal and measurement backaction
fluctuations. Following the quantum Langevin description in [48] we introduce
K. This is a constant which specifies the intensity of measurement backaction,
and it is related to the coupling between the mechanical oscillator’s motion and
the measured electromagnetic field. The input terms Xin and Yin come from an
input-output formalism and account for the open cavity dynamics considered
([136, 137]). By generating time traces for these input terms, we artificially
include an optical excitation on the dynamics and study the simulated system’s
response.

For pressures lower than 10 mbar, the damping coefficient γm has a linear
dependence on pressure p [117,138],

γm ≈
(

11.85
πrpρvgas

)
p, (4-3)

where we assume a spherical silica nanoparticle with radius rp, density ρ

and refractive index n. The mass of the gas particles is denoted by mgas ≈
28.96 amu = 4.81 × 10−26 kg, and vgas is their root mean square velocity, drawn
from a Maxwell-Boltzmann distribution.

Next, we describe how the cavity parameters are set for our simulation.
The theory regarding optical resonators can be seen, for instance, in [139].
Given the beam’s central wavelength λ and a cavity length L, the driving
frequency at zero detuning is resonant with the cavity only if it is an integer
multiple of the free spectral range (FSR) νf ,
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c

λ
= nνf (L) = n

c

2L
. (4-4)

In Eq. (4-4), c is the speed of light in the medium inside the cavity, which
we assume to be vacuum. In order to satisfy the resonance condition at zero
detuning, given λ and L, the length used in our simulations is rounded down
to the closest multiple of λ/2. The beam frequency is given by

ν = c

λ
+ ∆

2π
, (4-5)

and the cavity’s finesse F can be related to its linewidth by

F = νf

κ
. (4-6)

F can also be obtained from the reflectances of the cavity mirrors, which we
assume to be the same for both and denote as r,

F = π
√

r

1 − |r|
. (4-7)

Given an intensity I0 externally incident to the cavity, the steady state intensity
inside it is given by

I = I0(1 − |r|)−2

1 + (2F/π)2 sin2(πν/νf (L)) . (4-8)

In practice, we use Eq. (4-8) to describe the (steady state) field amplification
effect which takes place inside the cavity. Assuming the cavity field buildup
to happen in timescales which are negligible with respect to the period of
the oscillator’s motion, we simplify its treatment by including an effective
amplification of the incident intensity.

The dynamics in Eq.s (4-1) assume a coherent scattering interaction
between the mechanical and the cavity modes. By also introducing c, ℏ ϵ0 and
the tweezer’s waist and power w0 and Ptw, we can obtain the cavity waist,
volume and electric field amplitude wc, Vc and Ec, as well as the particle’s
polarizability α, the tweezer’s field E0 and the optomechanical coupling rate g

[140],

wc =
√

Lc

ν
, (4-9)

Vc =
(

π

4

)
w2

cL, (4-10)
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Ec =
√

ℏωc

2ϵ0Vc

, (4-11)

α = 4πϵ0R
3
(

n2 − 1
n2 + 2

)
, (4-12)

E0 =
√

4Ptw

πw2
0ϵ0c

, (4-13)

g =
(2π

ℏλ

)
αE0EcZzpm. (4-14)

Values of g/ωm up to about 55% have already been achieved in optomechanical
experiments [138]. It has been proposed that even higher values for g could be
achieved, perhaps by reduction of the cavity mode volume, and the investigation
of such systems may be relevant in the context of squeezed states - see, for
instance, [141].

Aside from the shot noise terms in the dynamics for the X and Y optical
quadratures, there are two white noise processes in the dynamics modeled by
Eq.s (4-1). The first is associated with thermalization of the oscillator’s motion
with the surrounding gas, while the second describes the effect of measurement
backaction. As previously mentioned, we follow [48] for the introduction of
the coupling constant K and of an effective detection efficiency η. We skip a
thorough derivation of these results and indicate the equations which tie some
of our parameters to the measurement backaction force standard deviation σba

and to the position uncertainty σz [51]. From the latter we can also extract the
(discrete) measurement noise standard deviation σdet,

σba =
√

2ℏPscatt

5cλ
(4-15)

σz =
√

5 ℏcλ

16πPscatt
=
√

2ηTsσdet (4-16)

Where Ts is the interval between measurements and Pscatt is the power scattered
by the dipole, given by the product between the tweezer beam intensity I0 and
the particle’s scattering cross section σ0,

Pscatt = I0σ0,

Pscatt =
( 2P0

πw0

)(8π2mSiO2(n2 − 1)
ρϵ0λ2(n2 + 2)

)
,

(4-17)

where the molecular mass of silica is denoted by mSiO2.
All this being considered, we may take a minimal set of parameters which

fully characterize our system in the context of simulating the optomechanical
dynamics. This was the set chosen: i) for the particle, rp, ρ and n; ii) for the
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environment, p and T ; iii) for the tweezer, ωm, Ptw, w0, λ and η; and, lastly,
iv) for the cavity, κ, ∆ and L.

Numerical simulation of this system is carried out by time discretization
using an Euler-Maruyama scheme, given the presence of stochastic terms in
the dynamics. A comprehensive and well detailed explanation of the transition
from a continuous to a discretized time description of the dynamics is given
in the MSc thesis [32] from our group, and also in [48]. Let us denote by δt

the time step separating adjacent timestamps of our simulation. We write the
continuum dynamics in Eq.s (4-1) as a vector equation, with x(t) representing
the four-component state at a time t,

ẋ(t) = Ax(t) + Bu(t) + w(t) + uopt(t), (4-18)

where w(t) contains the noise terms previously defined and we introduce the
following definitions,

A =


−κ/2 ∆ 0 0
−∆ −κ/2 −2g 0
0 0 0 ωm

−2g 0 −ωm −γm

 , B =


0
0
0
1

 , uopt =



√
κXin√
κYin

0
0

 . (4-19)

Time discretization is carried out by integrating the equation of motion in Eq.
(4-18) from t to t + δt. Let x(tn) be denoted by xn, x(tn + δt) by xn+1 and
analogously so for u(tn), w(tn) and uopt(tn). Then,

xn+1 = eAδtxn +
∫ δt

0
eA(δt−τ)(Buk + wk + uopt,k)dτ,

xn+1 = Adxn + Bduk + w̄k + ūopt,k,

(4-20)

Where the integral may be performed to yield (I is the identity matrix),

Ad = eAδt, Bd = (Ad − I)A−1B and ūopt,k = (Ad − I)A−1uopt,k, (4-21)

and the white noise processes are implemented by sampling from a zero-mean
gaussian distribution whose variance is given by the product between the noise
autocorrelation and the simulation time step δt.

Gaussian states evolving under dynamics governed by hamiltonians no
higher than second-order on bosonic creation and annihilation operators remain
gaussian [142]. Given this preservation of gaussianity and the fact that to fully
describe a gaussian state we only need its mean and covariance matrix, the
toolkit outlined so far can be extended for simulating the quantum dynamics
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of our system, as long as our initial states are gaussian. In the next section,
we address how the covariance matrix evolves both in the presence and in
the absence of measurements. We also introduce the manner in which those
measurements are taken into account within our system. In particular, we
sample the system at a decimated rate with respect to the simulation time
step, and optimal estimates of the mean and of the covariance are obtained
after each sampling by using a Kalman filter. With this estimation procedure
in hands, we move on to detailing how the uk is specified, which also depends
on an optimal control method.

4.2
Measurements, optimal estimation and control

For clarity and completeness of this chapter, we state the results which
were necessary for implementing the simulation framework described so far,
including some which are also outlined in Sec. 3.1 and in Appendix B.1.

Based on the theory previously outlined, we can define a protocol for
simulating the dynamics, given an assumed initial state. We also consider that
the position of the oscillator is sampled every few simulation steps Ns, yielding
a measurement yk associated with a discrete white noise vk whose variance is
R. It is customary to define a measurement matrix C, such that the dynamics
of the simulated state and of the measurement reads,

xk = Adxk-1 + Bduk-1 + w̄k-1 + ūopt,k-1, (4-22)
yk = Cxk + vk. (4-23)

Given that we measure the position and our measurement at each step results
in a scalar, C is a 1×4 matrix with its third component being the only non-zero
element. We pass the measurements yk into an estimator, namely an algorithmic
implementation of a Kalman filter, which is widely known for optimality in the
context of state estimation and control in linear gaussian systems [143]. The
book in [123] has most of the relevant information about optimal control and
estimation to complement the results indicated in this section.

Before describing our Kalman filter implementation, let us first introduce
some other definitions. We denote by x̂k the estimate of our system’s first
moments at the time step k resulting from our algorithm, and by Σj

k the
covariance matrix estimate at time step k conditioned upon the measurements
up to step j. Given the iterative structure to be described shortly, it the step
j is either the present step, k, or the previous one, k-1. These two “states
of knowledge” are henceforth referred to as, respectively, a posteriori and a
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priori, with respect to the measurement, and this notation is extended also to
the estimates of the averages. This separation is introduced both for ease of
interpretation and for clarity of the numerical implementation. We also denote
by N the diffusion matrix of our system, whose diagonal terms are proportional
to the noise variances and the off-diagonal terms describe their covariances.

In the continuous case, given A and N , the covariance matrix of a state
Σ evolves according to a Lyapunov equation,

Σ̇ = AΣ + ΣA + N , (4-24)

which prescribes an a priori update of the covariance matrix estimate in the
discrete case,

Σk-1
k = AdΣk-1

k-1AT
d + Nd, (4-25)

with Nd being the product between half the sampling rate Nsδt/2 and the noise
variance matrix. Notice that the a priori updates for the averages are already
implictly defined by Eq. (4-22). The only adaptation we need to include in the
aforementioned equation is to regard xk-1 as the a posteriori estimate from the
previous simulation step k-1, while xk is to be read as the a priori estimate of
the current step k.

On the other hand, the a posteriori updates of the mean and covariance
estimates are prescribed by the Kalman filter as follows. Define the Kalman
gain matrix Kk by,

Kk = Σk-1
k CT

(
R + CΣk-1

k CT
)−1

. (4-26)

The estimate update for the averages is computed using Kk and the Kalman
error ζk between the measurement yk and the current a priori estimate,

ζk = yk − Cx̂k-1
k , (4-27)

x̂k
k = x̂k-1

k + Kkζk. (4-28)

While the estimate update for the covariance matrix reads,

Σk
k = (I − KkC) Σk-1

k (I − KkC)T + KkRKT
k . (4-29)

If we make Σk
k = Σk-1

k-1 using the relations for the a priori and a posteriori
updates in Eq.s (4-25) and (4-29), we get the Riccatti equation satisfied by the
steady-state covariance matrix Σss,
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Σss = AdΣssAT
d + Nd − AdΣssC

(
CTΣssC + R

)−1
(AdΣssC)T (4-30)

The control law u(t) is obtained from LQR theory, see, for instance, [144]. The
idea is to minimize an objective function J , defined based on a user-defined
cost matrix Q and a control effort which we parametrize using a feedback gain
gfb,

J(u) = lim
N−→∞

〈
1
N

N−1∑
k=0

(xT
k Qxk +

(
ωm

g2
fb

)
u2

k)
〉

, (4-31)

where in our examples we use an identity cost matrix, Q = (ωm/2)I. The
control law that minimizes J given an estimate x̂k is [48],

uk = −kTx̂k (4-32)

Where the LQR gain kT is given by,

kT =
(

ωm

g2
fb

+ BT
d ΩssBd

)−1

BT
d , (4-33)

and Ωss is obtained by solving the discrete algebraic Riccatti equation,

Ωss = Q + AT
d ΩssAd − AT

d ΩssBdkT. (4-34)

As customary, we denote the mechanical vibrational quanta from the
estimated states as ‘phonons’, even though this may be regarded as an abuse
of notation from solid state physics. In the case where the cavity is absent, we
estimate the number of phonons ⟨n̂m⟩ as follows,

⟨n̂m⟩ + 1
2 ∼ Em

ℏωm

=
〈

mω2
mZ2

2ℏωm

+ P 2

2ℏmωm

〉

⟨n̂m⟩ ∼ 1
4

〈
Z2

Z2
zpm

+ P 2

P 2
zpm

〉
− 1

2

⟨n̂m⟩ ∼ 1
4
(
∆Ẑ2 + Ẑ2 + ∆P̂ 2 + P̂ 2

)
− 1

2 ,

(4-35)

such that ⟨n̂m⟩ can be obtained from the estimates of the means xk
k and

from the trace of the estimated covariance matrix Σk
k. For the case where the

cavity is present, an analogous definition can be performed for the vibrational
quanta (photons, with an estimated number ⟨n̂γ⟩) in the optical quadrature
components of the state estimates. In the results that follow, ⟨n̂⟩ denotes ⟨n̂m⟩
in the mechanical-only case, and ⟨n̂m⟩ + ⟨n̂γ⟩ in the cavity optomechanical case.
In practice, we perform the computation of ⟨n̂⟩ using moving window statistics.
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The estimated variables are further decimated according to a controllable
step, and we assume the resulting moving window means and variances to be
representative of each timestamp window.

A final detail that needs to be mentioned is related to the initialization
of the Kalman filter. One possible approach is to set the means to zero and
the initial covariance matrix as large as possible [145], Σ0 = ϵI, with ϵ −→ ∞,
representing complete distrust upon the initial mean estimate. We choose to
initialize the Kalman algorithm with zero mean, but with Σ0 given by σ2

detI. We
have observed that this choice does not affect the performance of the estimator
at long time scales.

Having laid out most of the ingredients for the numerical simulation,
we dedicate the last section of this chapter to describing the results obtained
when exploring this implementation. Weak optical impulses are input into the
system and we use the Kalman estimates to analyze whether it is possible to
characterize the system’s response to those optical inputs.

4.3
Results

We begin this results section by benchmarking the Python environment
we developed via the simulation of a cooling experiment in the absence of
a cavity. We use parameters akin to those reported within [48] and verify
whether we observe similar results. Fig. 4.2 shows a section of a simulation run,
containing the simulated, measured and Kalman-estimated (Ẑ) position traces.
p is set to 9.2×10−9 mbar, ωm to 2π ×104 kHz, η to 34% and we use a feedback
gain of gfb = 2π × 110 kHz, where the control step is set to 32 ns. We see that,
given full knowledge of the dynamics and of the noise processes involved, the
Kalman filter algorithm is able to output very precise state estimates from
measurements which may appear, at a first glance, completely degenerated by
noise.

In the left panel of Fig. 4.3 we show another short simulation trace
containing the estimated position, with a shaded gray region representing the
estimated position variance. The parameters used to generate Fig. 4.2 are
maintained. Dashed lines indicate one of the moving windows used to calculate
the estimated number of phonons of the state, with a length set to one period
of the oscillator. In the right panel we plot the estimated number of phonons
for each time window in this short simulation.

Next, in Fig. 4.4 we show simulated phase space trajectories for runs using
the feedback gain values of gfb = 2π × 110 kHz and gfb = 2π × 8.0 kHz. The
data is band passed at appropriate frequencies for smoothness. Histograms for
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Figure 4.2: Simulation trace samples in the absence of a cavity.
A simulation time of about 577 ms is displayed in the left
panel, which contains the measured position in light blue,
simulated and estimated traces. The right panel is a zoom-
in within the region highlighted by the red rectangle. In it,
the measured trace was left out for better visualization of
how the simulated trace is followed by the Kalman estimate.
A detection efficiency of 0.34 is considered, the oscillator’s
frequency is ωm/2π = 104 kHz and it is maintained under
feedback cooling with a gain of gfb = 2π × 110 kHz.
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Figure 4.3: Estimated phonons in the absence of a cavity. In
the left panel, a simulation trace containing the estimated
position and a shaded gray region with the estimated position
uncertainty. The dashed lines mark one of the time windows
used to estimate the phonon numbers shown in the right panel
as a function of time. We use the same parameters as those
used for Fig. 4.2, and the time window width corresponds to
one period of the oscillator’s motion.

position and momentum are shown at each of the axes, and a circle representing
zero point fluctuations is inserted in the figure, as well as the final number
of phonons for each simulation run. Good qualitative compatibility with a
similar analysis in [48] might indicate that the simulation is physical and that
it behaves as expected. One of the only incompatibilities is with regards to
the covariances of the phonon number estimates, which are hard to reproduce
within our simulations. The numerical simulation’s sensitivity to the value of
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the feedback gain is also weak, provided that it is high enough to keep the
oscillator under stable cooling. Nevertheless, if its value is too large or too low,
we observe numerical overflow and the simulated traces diverge.
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〈n̂8.0〉 = 1.99 ± 1.54

zpm

Figure 4.4: Simulated phase space trajectory. Estimated
position and momentum are shown for two separate simulation
traces, one where the feedback gain is given by 2π × 8.0 kHz,
corresponding to the trace with larger amplitude, and another
with a feedback gain equal to 2π×110 kHz, closer to the center.
A circle indicating the zero-point uncertainties is shown at
the center of the figure, and the phonon number estimates are
shown for each trace at the bottom right. Compare with the
experimental result in [48].

Moving on to the introduction of a cavity around the oscillator, the
simulation involves some new parameters, as indicated in the first section of
this chapter. Namely, we introduce the cavity’s detuning ∆ = ωL −ωc, linewidth
κ and length L. Last but not least, we must also pick an optical pulse to be
used as an input and to respect to which the system’s response is evaluated.
Maintaining the preservation of gaussianity presented by our system’s dynamics
requires the optical input states to also be gaussian. Thus, instead of using
(non-gaussian) Fock states, which are associated with well defined numbers of
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photons, all of our simulations are carried out using coherent optical states.
A coherent state described by a complex eigenvalue α containing both its
amplitude and phase satisfies,

Xin = α∗ + α, (4-36)
Yin = i (α∗ − α) , (4-37)

⟨nγ,in⟩ = α∗α, (4-38)

where ∗ represents complex conjugation. In what follows, we deal with zero-phase
coherent states, and the following values for the newly introduced parameters
have been picked: κ = 1 MHz, ∆ = 0.3ωm. The cavity length is set around 3 cm
and corrected to the closest resonance at zero detuning.

We must also pick a temporal envelope shape for our optical input pulse.
We have chosen a simple step-like optical pulse with start and end times denoted
by tstart and tend, respectively. The pulse is set to start at the timestamp at
half the total simulation time (300 oscillator periods ∼ 2.88 ms are simulated)
and to last 50 µs.

Fig. 4.5 shows traces corresponding to such a simulation. The left panel
presents a crop of the estimated state around the time where the step-like pulse
is present, while the right panel shows the Kalman error δK corresponding to
the difference between the estimated and the measured positions after each
measurement step. The coherent input contains an average ⟨nγ⟩ = 5 photons.
We see that, during the time window of the pulse, the Kalman error increases
slightly. This can be interpreted as the internal model used for estimation
not possessing knowledge about the input optical state, being thus unable
to predict its interaction with the system. This enhancement of the Kalman
error, associated with a discrepancy between expected and observed position
averages, drives not only updates of the first moments, but also of the estimated
covariances.

Given these covariance updates associated with an enhanced Kalman
error, we suggest that perhaps the estimated number of quanta ⟨n̂⟩ as a function
of time can be used to evaluate the system’s response to the optical input. Fig.
4.6 shows a crop of the simulation in the same window as the one shown before,
but the quantity plotted is the estimated number of quanta ⟨n̂⟩. We quantify
this response to the optical input by defining an SNR: given a chosen metric
(Ẑ or ⟨n̂⟩), a reference window prior to the introduction of the pulse is defined
and used to compute a background root mean square (RMS) of the signal.
The SNR is then calculated as the ratio between the signal RMS within the
pulse time window (shaded in green in the Figure) and the calculated reference
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Figure 4.5: Simulation trace samples in the presence of a cavity.
The left panel shows the estimated position for visualization of
the system’s response to a step-like coherent pulse containing
⟨nγ⟩ = 5 photons and with a duration of 60 µs. The right panel
shows the associated Kalman error δK , which is calculated
using the difference between estimated and measured position
at each timestamp. The increase of δK around the time of the
pulse, associated with the lack of knowledge with respect to the
optical input, drives updates not only of the mean estimates,
but also of the covariance estimates.
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Figure 4.6: Estimated number of quanta and SNR illustration.
We show the response of the system to a pulse containing
⟨nγ⟩ = 5 photons between tstart and tend. The green-shaded
area represents the window where we measure our signal, whilst
the red-shaded area indicates the reference for calculating the
signal-to-noise ratio. The SNR is given by the squared ratio
between the RMS of the signal and of the reference. We have
set the width of the moving average for phonon computation
to a tenth of the oscillator’s period, for improvement of
visualization.
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(shaded in red). We choose to crop a reference window having the same width
as the pulse, although this is not strictly necessary. For this trace in particular,
the SNR obtained from ⟨n̂⟩ is of about SNR⟨n̂⟩ ≈ 26 dB, while a correspondent
calculation yields SNRẐ ≈ 14 dB if we use the position as a metric. The higher
SNR of the system’s response to the pulse when we inspect ⟨n̂⟩ instead of Ẑ

may be interpreted as being due to the usage of information not only from the
averages, but also from the covariance estimates.
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Figure 4.7: SNR as a function of cavity linewidth and detuning.
Each (κ, ∆) pair is associated with ten simulation runs. We
quantify the system’s response to the optical input using the
SNR of the estimated number of quanta within the pulse
window, and each point on the colormap shows the average
result over all runs.

The colormap presented by Fig. 4.7 shows the computed SNR⟨n̂⟩ for
different simulation parameters. Aside from ∆ and κ, evaluation of the system’s
response is made using the same parameters as previously, including the pulse
duration of 50 µs and an average optical input photon number of five. For
improved smoothness of the data, each point is an average of ten simulation
runs. Due to the cavity resonance, the expected signal enhancement around
zero detuning is observed. A nonmonotonic behavior of the system’s response
to the pulse as a function of cavity linewidth is observed. SNR⟨n̂⟩ increases
steadily with κ until about κ ≈ 2.3ωm, and decreases for higher values. This
nonmonotonic behavior can be intuitively justified after inspection of Eq.s
(4-1) and (4-6): the dynamics of the quadratures are influenced by the optical
input amplitude proportionally to

√
κ, whilst the cavity’s finesse decreases

with the inverse of the linewidth. The cavity’s finesse, in its turn, affects the
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system’s response nontrivially via the effective amplification factor, which at
zero detuning increases with F . From these opposite influences we could expect
the appearance of a local maximum in parameter space.

Fig. 4.8 shows the computed SNR⟨n̂⟩ as a function of mean photon number
within the optical pulse, with κ = 2ωm and for the detuning values of ∆ = ωm/5
and ∆ = ωm for the left and right columns, respectively. The bottom panels
show zoomed-in data within the region up to ⟨nγ⟩ = 10 photons. For the
almost optimal conditions associated with the left column, we observe that the
presence of optical input pulses containing average photon numbers down to
⟨nγ⟩ = 0.1 can be inferred from the estimated states. This indicates that the
system has potential applications as a detector for single photons, at least in
terms of its sensitivity to external optical inputs.
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Figure 4.8: SNR as a function of input photon number.
Setting a linewidth of κ = 2ωm, we inspect the system’s
response to optical pulses with different intensities. The left
and right panels consider a detuning of ∆ = ωm/5 and
∆ = ωm, respectively. The bottom panels zoom into the regions
highlighted by the blue and orange rectangles in the top panels.
We see that optical pulses with intensities corresponding to
average photon numbers down to ⟨nγ⟩ = 0.1 can be sensed by
the system in the (almost) best case scenario.

Let us wrap this chapter up with a qualitative sanity check of our
simulation efforts. As already described, the coherent scattering hamiltonian is
of the form,
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H/ℏ = gZX, (4-39)

and let us denote position by Q = ZzpmZ, in consistency with the definitions
at the beginning of the chapter. An estimate of the force caused by a cavity
electromagnetic state upon the particle can be obtained by,

e
−i
ℏ Hδt ∼ e−igZXδt ∼ e

−i gℏ
Zzpm

Xδt Q
ℏ ∼ e−iδp Q/ℏ. (4-40)

From the last two expressions we get an estimate of the force,

F ∼ δp

δt
∼ gℏ

Zzpm

X. (4-41)

Considering a short pulse containing an average 2000 photons, we could
estimate an associated displacement ∆Q in the harmonic approximation,

∆Q = F

mω2
m

= 1.46 nm ∼ O(1 nm). (4-42)
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Figure 4.9: Verification of amplitude estimate. We introduce
a short pulse with a duration of 1.0 µs and an average 2000
photons to our system and plot the estimated position trace
in a time window around the center of the pulse. A detuning
of ∆ = ωm/5 and a cavity linewidth of κ = 2ωm were used in
this example.

We test this estimate within our simulation using a short pulse lasting
1.0 µs and verify the observed amplitude. The pulse is defined as “short” with
respect to the other relevant time scales in our problem. Were the pulse too
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long, the approximations previously introduced would likely start to fail. A
detuning of ∆ = ωm/5 and a cavity linewidth of κ = 2ωm were used, and
the estimated position trace is shown in Fig. 4.9. We see that the estimate
obtained in Eq. (4-42) is very well followed, which reinforces the thought that
our simulation lies on physical grounds.



5
Outlook

In this work, we have implemented the collection of backscattered light
from an optical tweezer for improved cooling of CoM motion along the optical
axis. This enhanced efficiency was used to improve previous cooling results
along the longitudinal direction. A demand for two immediate improvements
can be formulated. The investigation of the low calibration factors along the
transversal directions is a natural next step, as well as the improvement of the
interferometer’s stability for backward detection. Solving the issue regarding
the transversal directions will allow us to perform 3D-cooling in an improved
way, making the trap more stable at lower pressures. Improving the stability
of the interferometer might not necessarily lead to much higher detection
efficiencies in the longitudinal direction. Nevertheless, it will allow us to reliably
perform experiments during time spans longer than a few hours without having
to constantly rerun the calibration protocol for both the detector and the z-
electrodes. This is relevant since high vacuum environments demand pump-down
times ranging from many hours to a few days. Thus, performing experiments
at these conditions is a goal which naturally requires troubleshooting drifts
with magnitudes such as those presently observed in our setup. Some other
directions for experimental implementation can be envisioned for the near future
as well. First, higher detection efficiencies along the transversal directions can
be achieved by using a collection lens with the same NA as the trapping
lens [51]. Second, implementation of heterodyne detection will provide us
with absolute measurements of effective temperatures of the motion along
each degree of freedom [45]. Independence between this absolute temperature
measurement and the calibration of the detectors will improve precision and
reliability of effective temperature estimates. Third, state estimation using an
FPGA-implemented Kalman filter algorithm will yield optimal estimation of
both position and velocity of the particle along each axis. This might enhance
our system’s robustness to measurement noise and possibly the outcomes of
our cooling endeavors [48]. Lastly, we are working on implementing an ionic
pumping system in order to lower the minimal vacuum pressures down to
∼ 10−11 mbar, consequently improving the lowest temperatures which can be
potentially achieved in our cooling experiments, opening the way to ground
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Turbomolecular stage
(DN 40 KF)

Ionic pump (DN 40 CF)

Vacuum gauge (DN 16 KF)

Gate valve (DN 40 CF)

Butterfly valve (DN 40 KF)

Adapters from DN 40 CF
to DN 40 and 16 KF,
respectively

Flexible hose (DN 40 CF)

Tee (DN 40 CF)

Vacuum chamber
(DN 40 CF)

Included elements:

Straight connector (DN 40 CF)

Figure 5.1: Future vacuum system. In the near future, an ionic
pumping system will be appended to the system. Flanges will
be replaced by their knife-edge sealed counterparts wherever
possible, and gate valves will control restriction of the pumped
volume when the turbomolecular stage reaches its final pressure
levels. A rough schematic of the planned scheme is shown, with
a symbol caption to the right, including flange standards
wherever applicable. The straight connector was included
because we have verified the possibility of a bulge from the
design of the ionic pump being incompatible with the gate
valve chosen.

state cooling and to the marvelous possibilities thereby attainable [23,54]. A
schematic of the vacuum system we plan on assembling is displayed in Fig. 5.1.

Our simulation efforts can also be further refined, for instance, via inclusion
of phase and amplitude noises of both the “calibration” and tweezing beams. One
possible line of further investigation is phase measurement of the input coherent
state, in a state tomography fashion. Other directions include looking for better
definitions of what does it mean to detect an optical input in the context of the
optomechanical simulations. This could naturally lead to analyzing dead times,
dark counts and the system’s response to the introduction of multiple pulses.
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A
Perturbative nonlinear feedback forces for optical levitation
experiments: Supplementary material

A.1
Electric field simulation

One of the experiment’s central assumptions is that the electric force acting
upon the trapped particle is proportional to the voltage applied to the electrodes
and does not depend on its position. Moreover, due to symmetry around the
optical axis, we expect the components of the electric force orthogonal to the
optical axis to be negligible. To verify these assumptions, a simulation of the
electric potential and electric field generated by the geometry of the optical
setup was conducted using COMSOL Multiphysics software (version 5.4).

In Fig. A.1, the electrical potential between the electrodes is shown for a
slice in the xz plane, where the internal contour of the optical setup is displayed
for clarity. The left electrode, which contains the trapping lens, is set at 1 V
relative to the right one, which holds the collection lens. The black dot denotes
the average position of the trapped particle, 1.59 mm away from the flat base of
the aspheric lens. Figures A.2(a) and A.2(b) show the electric field components
in the vicinity of the particle. Considering an average amplitude of 100 nm for
the COM motion, the simulation shows a percent change of roughly 0.01% for
the z component of the electric field. Moreover, the x and y components are
four to five orders of magnitude smaller than the z component, thus providing
a firm foundation for our assumptions.
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Figure A.1: Electric potential generated by the electrodes’
geometry for a slice in the xz plane passing through the optical
axis. The contour shows the internal structure of the optical
setup with the black dot marking the average position of the
trapped particle, about 1.59 mm away from the flat base of
the trapping lens.

a) b)

Figure A.2: (a)-(b) The z and x, y components of the electric
field in the vicinity of the trapped particle. The dashed line
denotes the average position of the particle.

A.2
Electronics

In order to apply the feedback signal, essential steps were undertaken
regarding the implementation of an electronic setup aimed at preprocessing the
detection signal. First, it was crucial to address a strong DC (direct current)
component present in the signal obtained from the photodetector. To prevent
saturation of the Red Pitaya RF (radio frequency) input used in the experiment,
an analog band-pass filter was implemented for its capability to remove both
DC and high-frequency components effectively. While it’s common to opt for a
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Butterworth filter based on the Sallen-Key topology [146], it is important to
highlight that this choice introduces an undesirable phase effect.

As demonstrated by simulation results showed in Fig. A.3 (a), the addition
of a Butterworth filter results in a shift of the PSD central frequency, which
deviates from the theoretical prediction presented in [56]. To overcome this
problem a passive RC filter is used along with a non-inverter amplifier. As
evident from Fig. A.3 (b), the comparison of the Bode diagrams for both
topologies illustrates that the passive filter will have minimal impact on
the signal phase, while simultaneously maintaining a flat band over a wider
frequency range.

The addition of a non-inverting amplifier after the band-pass filter enables
the utilization of the full resolution of the ADC on the Red Pitaya board.
Furthermore, a second amplifier is incorporated after the FPGA, facilitating
the generation of voltage values approximately ten times higher than the board’s
limit. Upon characterization of both amplifiers, we found that the gains, A1 and
A2, before and after the FPGA were measured as 11.00 V/V and 11.27 V/V,
respectively. These values will be necessary for the calibration of the overall
feedback gain Gfb, detailed in appendix A.3.

In Fig. A.3 (c) we illustrate an example of input and output signals of
the Red Pitaya. In order to implement the non-linear function, we employed
fixed-point arithmetic—a method for representing fractional numbers within a
specified range. This approach enables us to execute complex mathematical
operations without suffering from information loss [147], as is often the case
with binary representation. Furthermore, it offers straightforward means of
extending the code to implement higher-order polynomial functions.



Appendix A. Perturbative nonlinear feedback forces for optical levitation
experiments: Supplementary material 87

b)

a)

a)

c)

Figure A.3: Filter design. (a) PSD’s obtained from simulations
of a tweezed NP (Ωz/2π = 81.5 kHz and γm = 1.3 ×
104 s−1) under the influence of a cubic force. Three scenarios
were considered: second-order Butterworth filter with 1 kHz
bandwidth ( ), 10 kHz bandwidth ( ) and, lastly, with no
filter ( ). (b) Bode diagrams of a highly selective Butterworth
filter ( ) and of a passive RC filter ( ), both circuits were
simulated using LTspice XVII. (c) Results from the FPGA
program. The dashed line represents the input, which is a
triangular wave with a frequency of 81 kHz. The solid line
corresponds to the output, which is proportional to the input
raised to the third power.

A.3
Calibration of applied force

To validate the theoretical predictions outlined in [56], it was necessary
to calibrate the overall feedback gain Gfb, defined as

Gfb = CNV A2AdA3
1C

3
mV , (A-1)

where A1 and A2 represent the gains originating from the electronic amplifiers,
Ad is the tunable digital gain defined within the FPGA, CmV is the calibration
factor which converts the measured voltage into corresponding displacement in
meters and CNV is the transduction coefficient that establishes the connection
between applied voltage across the electrodes and the resulting force applied to
the particle; see appendix A.2 for further details.

To calibrate the photodetector, 1000 traces of 0.1 seconds were collected.
The PSD of the time traces is fitted by a Lorentizan distribution,
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SV (ω) = D

γ2
mω2 + (ω2 − ω2

0)2 , (A-2)

where D = 2γmkBTeffC2
mV /m; this take in consideration that SV (ω) =

C2
mV Sz(ω) [66]. This procedure led to a calibration factor of CmV = (1.504 ±

0.073) × 104 V/m. After calibration of the detector, we proceed to determine
the transduction coefficient, denoted as CNV . To obtain CNV , we subjected the
particle to a series of sinusoidal signals with varying amplitudes and measured
the particle’s response in the position PSD [95]. For a particle subjected to Eq.
2-3, the total PSD ST

z (ω) in the presence of an electric drive Fel(t) = F0 cos(ωdrt)
can be expressed as [95],

ST
z (ω) = Sz(ω) + Sel

z (ω) =
2γmkBTeff

m[(ω2 − ω2
0)2 + γ2

mω2] + F 2
0 τel sinc2[(ω − ωdr)τel]

m2[(ω2 − ω2
0)2 + γ2

mω2] , (A-3)

with 2τel being the duration of the measure. In Figure A.4a), we display
one of the PSDs used for the electrode calibration. The resulting calibration
curve is presented in Figure A.4b), which yields a transduction coefficient
CNV = (3.06 ± 0.13) × 10−15 N/m. All measurements described in the main
text were performed with the same NP.

b)a)

Figure A.4: Electrode calibration: (a) PSD obtained from a
trapped NP at 10 mbar and Teff = 293 K under the action of
a sinusoidal drive (voltage amplitude V0 = 10 V and frequency
ωdr/2π = 90 kHz). b) Calibration curve for electrodes used to
map the applied voltage to the resulting force applied on the
NP.
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B.1
Digital control theory

In the study and analysis of physical systems, time is conventionally
treated as a continuous variable. However, when employing signal processing
and control methods, a transition to a discrete representation becomes necessary.
This is specially crucial when implementing systems on microprocessors or
FPGAs, where a set of instructions is executed based on a sampling frequency
fs [148]. The discrete-time formulation of a state-space model can be obtained
through the integral approximation, which is based on the assumption that
x and u remain constant during a sampling period δt = 1/fs. The system
evolution is then considered to unfold at fixed time-steps tn = nδt, leading to
the following recursive equations

xn+1 = Adxn + Bdun + w̄n, (B-1a)
yn+1 = Cdxn+1 + m̄n+1, (B-1b)

where Ad, Bd and Cd can be expressed in terms of their continuous analogues,

Ad =
∞∑

k=0

δtk

k! Ak, (B-2a)

Bd = (Ad − I)A−1B, (B-2b)
Cd = C. (B-2c)

Also, xn = x(nTs) and un = u(nTs). The discrete disturbance and noise
terms, w̄n and m̄n, represent discrete-time white-noise processes adhering to
conditions akin to those established in Eqs. (3-2) and (3-11) in the main text.
Considering w̄n = 1

m

[
03×1 F̄th,n

]T
, with F̄th,n =

[
F̄th,x,n F̄th,y,n F̄th,z,n

]T
and

m̄n =
[
ζ̄x,n ζ̄y,n ζ̄z,n

]T
, the conditions are

⟨F̄th,i,k⟩ = 0, (B-3a)
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⟨F̄th,i,kFth,j,k′⟩ = 2mγmkBTTsδijδkk′ , (B-3b)

and

⟨ζ̄i,k(t)⟩ = 0, (B-4a)

⟨ζ̄i,kζ̄j,k′⟩ = σi

Ts

δijδkk′ . (B-4b)

Similar to its continuous version, the LQR for discrete-time systems
returns an optimal control law, expressed as a linear combination on the states
xn,

un = −Kdxn, (B-5)

however, the expression for the controller’s gain changes to

Kd = (Rd + BT
d SdBd)−1BT

d SdAd, (B-6)

where Sd is the solution of the discrete algebraic Ricatti equation

Sd = AT
d SdAd + Qd

− AT
d SdBd(Rd + BT

d SdBd)−1BT
d SdAd,

(B-7)

and Qd and Rd are the matrices defining the cost function Jd for the digital
control law, which reads

Jd = 1
2

∞∑
n=0

[xT
n Qdxn + uT

n Rdun]. (B-8)

B.2
Electronic setup

The control law defined in Eq. (B-5) was implemented using two Red
Pitayas, each equipped with a Xilinx Zynq 7010 FPGA and a 2 channel 14-
bits ADC, allowing for a maximum sampling frequency of 125 MHz for two
distinct inputs, xa and xb. The feedback loop incorporated a decimation block,
increasing the sampling time Ts from 8.00 ns to 64.00 ns, enabling synchronous
execution of more complex tasks.

In Fig. B.1 a simplified block diagram of the main components imple-
mented within each FPGA is shown. The controller block is responsible for
computing the output signal ua,n and ub,n, being equivalent to the following
expression
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a) b)

Figure B.1: Digital electronic implementation. a) Block dia-
gram illustrating the FPGA implementation for stable control
of the particle CoM motion. The digital filters are responsible
for signal conditioning. A Block Random Access Memory al-
lows the implementation of delay blocks, delaying the signal
in multiples (Na, Nb) of the sampling time. The delayed and
non-delayed filtered signals are then transmitted to the con-
trollers to compute the output signals. b) Bode plots for each
notch filter Hz and Hxy, depicting their magnitude and phase
behavior for the frequency range of interest.

ua,n

ub,n

 =
kd

p,aa kd
p,ab kd

d,aa kd
d,ab

kd
p,ba kd

p,bb kd
d,ba kd

d,bb




x̃a,n

x̃b,n

x̃a,n−Na

x̃b,n−Nb

 . (B-9)

The signals x̃a,n, x̃b,n result from passing the inputs through a D.C block and a
notch filter, both implemented by using digital biquadratic filters. The constant
kd

p,ij and kd
d,ij refer to the digital proportional and derivative gains. The signals

x̃a,n−Na , x̃b,n−Nb
are the delayed positions, serving as estimates of the particle’s

velocity. Here, Na and Nb are integers representing the applied delay in units
of Ts.

The notch filter transfer function is shown in Fig. B.1.b). For the FPGA
processing the x and y signals, the transfer function used was Hxy to remove
harmonic components near Ωz. In the other FPGA, a filter Hz was applied to
remove any components sufficiently close to Ωx and to Ωy. The filter’s impact
on the phase of each signal is approximately constant near each resonance
frequency, being included in the overall intrinsic delay of the electronic setup,
already described in Section 3.1.4. The computed control signals were sent to
non-inverting analog amplifiers, providing a constant gain A = 5.00 V/V with
minimal phase impact for signals with harmonic components from D.C up to
150.00 kHz.
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B.3
Model parameters

Implementation of LQR relies on the accurate extraction of the A and B
matrices, essential for the correct computation of Ad and Bd. This appendix
clarifies how the parameters that allow the reconstruction of these matrices
were extracted for the experiment.

B.3.1
Detector calibration

Assuming the trapped NP reaches thermal equilibrium with the residual
gas in the vacuum chamber, its initial effective temperature along the three axes
is approximately 293 K. Calibration of the detection system involves establishing
the linear relationship between the PSD of the detector output for motion along
the i-axis, denoted as SViVi

(Ω), and the displacement PSD for the same axis,
denoted as Sii(Ω) [66],

SViVi
(Ω) = (Ci

V m)2Sii(Ω), (B-10)

with Ci
V m representing the calibration factor and SViVi

being defined by the
Lorentzian function,

SViVi
(Ω) = (Ci

V m)2 2γmkBT

m[(Ω2 − Ω2
i )2 + γ2

mΩ2
i ]

(B-11)

Calibration was done by collecting 10,000 traces, each with a duration
of 50 ms. The average PSDs were then fitted to Equation (B-11), enabling the
extraction of Ci

V m, Ωi and γm. The coefficients were found to be

Cx
V m = (6.87 ± 0.72) × 105 V/m

Cy
V m = (7.08 ± 0.75) × 105 V/m

Cz
V m = (1.07 ± 0.11) × 106 V/m.

Given these calibration factors, and considering a completely decoupled
detection scheme, the C matrix can be expressed as

C =


Cx

V m 0 0 0 0 0
0 Cy

V m 0 0 0 0
0 0 Cz

V m 0 0 0

 (B-12)
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B.3.2
Electrodes calibration

To compute the controller’s gain matrix Kd described in Appendix B.1,
it is necessary to measure the transduction coefficient Cij

NV that provides the
linear relation between the applied voltage across the electrodes j and the
resulting force along the i-axis. From these, it is possible to reconstruct the
terms of the B matrix, which due to the geometry of the actuators couples the
x and y-axes.

a) b)

Figure B.2: Electrode calibration. a) Calibration curves are
presented for each coefficient of the xy plane. Each point
corresponds to the analysis of 7000 traces with an individual
duration of 50 ms. The particle was driven with a sinusoidal
signal at Ωdr/2π = 97.50 kHz. b) PSD of the particle’s CoM
motion under the action of a sinusoidal force. The dashed line
delineates the peak region from which the amplitude of the
force F0 can be extracted.

Force calibration of the electrodes can be carried out by measuring the
particle’s response to sinusoidal voltage drives applied to an individual pair of
electrodes at known frequencies near each resonance [95]. The driving voltage in
the electrode j introduces a sinusoidal force F j

i cos(Ωdrt) which can be observed
within the PSD of the driven CoM motion of the i direction Sj

ii,

Sj
ii = Sii(Ω) + Sj,el

ii (Ω), (B-13)

where Sii(Ω) follows Eq. (3-13) and Sj,el
ii (Ω) is

Sj,el
ii (Ω) = F j2

i τel sinc2[(Ω − Ωdr)τel]
m2[(Ω2 − Ω2

i )2 + γ2
mΩ2] , (B-14)



Appendix B. All electrical cooling of an optically levitated nanoparticle:
Supplementary material 94

with τel being the duration of the measure.
In Figure B.2a), the calibration curves for each coefficient is shown,

yielding
Cxx

NV = (2.83 ± 0.14) × 10−16 N/V

Cxy
NV = (2.18 ± 0.13) × 10−16 N/V

Cyx
NV = (2.21 ± 0.13) × 10−16 N/V

Cyy
NV = (2.36 ± 0.12) × 10−16 N/V

An example of one of the PSDs used for calibration is presented in Fig. B.2b).

B.3.3
Gain matrix

After ensuring proper calibration of the detectors and actuators, compu-
tation of the LQR gains becomes feasible. Analysis of the PSDs of the x, y

and z confirms the trapped NP’s oscillation frequencies Ωx/2π = 96.24 kHz,
Ωy/2π = 101.49 kHz and Ωz/2π = 31.52 kHz. Given the average diameter of
the NP as provided by the manufacturer, the its mass is calculated to be
m ≈ 3.37 fg. The weighting and cost-effort matrices used were

Rd = m

diag(Ω2) 03×3

03×3 I3

 , (B-15)

and

Qd = 100
m


Ω−2

x 0 0
0 Ω−2

y 0
0 0 Ω−2

z

 . (B-16)

These matrices were selected to ensure that the cost function Jd possesses
appropriate energy units, considering the states measured in S.I units and u
accounting for feedback forces. Such dimensional considerations are crucial
for converting the controller’s gain from the LQR theory to the digital gains
configured in the FPGA. The B matrix is expressed as

B =
03×3

Bxyz

 , where Bxyz =
Bxy 0
01×2 bz

 . (B-17)

The submatrix Bxy, expressed in kg−1, is determined by m and the
proportion of the electrodes coefficients Cij

NV ,
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Figure B.3: Optimal gains dependence with pressure. The con-
stant behavior for values bellow 1 mbar allows one to employ
the same matrix Kd for the underdamped and undamped
regimes.

Bxy = 1
m

 −1 Cxy
NV /Cxx

NV

Cyx
NV /Cxx

NV Cyy
NV /Cxx

NV

 . (B-18)

Without loss of generality, its terms were normalized by the biggest transduction
coefficient, Cxx

NV . The negative sign accounts for the orientation of the electrodes
axes, x′ and y′, as illustrated in Fig. 3.1.

The final parameter required to fully describe the dynamics given by Eq.
(3-4), is γm. To assess the impact of varying it, we substitute the values for the
resonance frequencies, B, Ts, Qd, and Rd and compute Kd for different drag
coefficients. The results of this evaluation are depicted in Fig. B.3. Notably, for
pressures below 1 mbar, the influence of γm on the controller’s gains is negligible.
Therefore, under the premise that pressure solely affects the drag coefficient,
Kd can be computed only once, even as pressure reduces.

After completing the system characterization, with γm considered as zero,
Kd can be properly computed. The next step involves converting the theoretical
gains into digital values configured within the FPGA. The following expressions
govern this conversion

kd
p,ij = kp,ij

ACxx
NV Cj

V m

, (B-19a)

kd
d,ij = − Ωjkd,ij

ACxx
NV Cj

V m

. (B-19b)
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Here, Ωj emerges from estimating the velocity as proportional to the delayed
position, leading, for example, to ẋ = −Ωxx(t − τx), for a delay τx. The factor
Cxx

NV arises from the Bxy matrix normalization, while Cj
V m is used to convert

displacement in the j-axis to output voltages from its detector. In Table B.1,
both theoretical and digital gains are presented.

Gain LQR (Eq. B-5) Digital Gains (Eq. B-19)
kp,xx −3.40 × 10−10 N/m −0.35
kp,xy 7.99 × 10−10 N/m 0.80
kp,yx 1.46 × 10−9 N/m 1.50
kp,yy −1.15 × 10−9 N/m −1.15
kd,xx −2.19 × 10−13 N · s/m 136.45
kd,xy 1.86 × 10−13 N · s/m −119.14
kd,yx 1.96 × 10−13 N · s/m −122.22
kd,yy 2.32 × 10−13 N · s/m −148.23

Table B.1: Controller’s gains. Values returned by optimal
control theory and implemented values within the FPGA
are shown according to the system characterization and Eq.
(B-19). The digital gains had to pass through a conversion to a
fixed-point representation during the VHDL implementation,
allowing arithmetical operations with minimal loss of numerical
resolution [147].



C
Thermal polarization drifts

We have carried out a protocol for monitoring polarization drifts in our
setup, which consisted in measuring the output power from a PBS after the
vacuum chamber over extended periods. These measurements are illustrated in
Fig. C.1, and they indicated that room temperature fluctuations may generate
polarization drifts. Power variations with an amplitude of a few percent have
been observed over a time scale of hours and seem to be caused by the air
conditioning cycles in our lab.

These drifts have inspired us to build an insulating case for the fiber
systems in our setup, given that backward detection is strongly reliant upon
phase stability of interference happening inside a fiber system. This insulating
box is depicted in Fig. C.2, and we have noticed that stabilization of the
interferometer for backwards z-detection was significantly facilitated after
introducing this structure.
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Figure C.1: Thermal polarization drifts. Panel a) shows a short
measurement over the course of an hour, and cycles of about
six minutes associated with the air conditioning system have
been observed. Panel b) shows a longer measurement over
many hours which was taken during the night, when room
temperature is the most stable.
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Figure C.2: Experimental insulating case. We have assembled
two boxes for thermal and mechanical environment insulation.
The external box, shown at the top, is made of polystyrene,
while the internal box, shown at the bottom and made of rock
wool, encases fiber optics exclusively.
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