
 

 

6 
Analyzed Scenarios 

This chapter explains the approach taken for creating a computational model 

in Abaqus
®
 for a specified casing under various cementing scenarios within a salt 

formation. First, the approximation method and assumptions are established fol-

lowed by the analytical solutions, model verification, initial and boundary condi-

tions and lastly, data results.  

 

6.1  
Case Study 

This research has been motivated by CENPES, who requested to conduct 

further research on poor cementing within the pre-salt basins using data from the 

article presented by Poiate et al. (2006). Although the article focuses on an ap-

proach for drilling fluids, casing design and drilling strategy, it is a valuable refer-

ence, providing a case of a poorly-cemented casing subjected to non-uniform salt 

loading. Using the finite element software ANVEC, Poiate modeled a cemented 

intermediate casing at various depths in a simulated salt layer shown in Figure 6-1 

in reference to Santos Basin, Brazil. This thesis has its interest upon the particular 

depth of 4301 m that is composed of tachyhydrite, a highly mobile salt mentioned 

previously in Chapter 1.3 and is currently the most menacing of all salt types in 

the Santos Basin (Poiate et al., 2006). Poiate’s paper included failure scenarios of 

a poorly-cemented casing considering 1.5% ovality and having a cement channel 

(or void column) with sizes of 5%, 10%, 15% and 20% of the annulus. The salt 

properties used in the model derived from samples from the Northeastern state of 

Sergipe in Brazil—which experts believe to be representative of the salt in the 

pre-salt layers—its creep behavior approximated by the constitutive law of double 

mechanism mentioned in Chapter 3.8.4. Instead of modeling a cement channel, a 

more realistic approach would be to model the cement having a zone consisting of 

lower elastic parameters and strength properties. This damaged zone, or cement 

defect, is modeled having different sizes and geometries for comparison, and is
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simulated for a period of 28 days, allowing the cement to attain adequate com-

pressive strength. In addition, the effects of casing ovalization and eccentricity are 

taken into consideration in order to simulate worst-case scenarios. This is the ap-

proach taken in this research using Abaqus 6.10 considering a similar setting with 

the same material properties and constitutive model for the salt rock as proposed 

by Poiate et al. (2006).  

 

Figure 6-1: Profile and 3D illustration of studied salt sections in Santos Basin, Brazil 

(Poiate et al., 2006). 

 

6.2  
Finite Element Analysis  

Seen as the most suitable and appropriate approach, the finite-element anal-

ysis method was implemented in this research. The concept behind the finite-

element method is approximating the exact solution by taking a given physical 

model and breaking it down to several pieces and employing a constitutive law in 

numerical methods. A constitutive law is a law that describes the response in a 

system due to an applied force (Desai, 1979). It should be noted, however, that 

constitutive laws are not limited to strain and displacement but other laws such as 

thermal relations—the latter not employed in this thesis. The principles of energy 

and work are the constitutive laws used to obtain equations that control the ele-

ment’s behavior. A popular example is a vertical load being applied to a free met-

al plate with only its ends fixed can be approximated by creating small, miniscule 
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pieces (elements) and using a constitutive law where one given element subjected 

to the load reacts, and its reaction affects the surrounding elements, similar to a 

“domino effect”. One of the greatest advantages of this method is its capability to 

be applied to almost any sort of physical problem. The elements may be made of 

any shape or size to mathematically describe the response of the model, allowing 

the most irregular body shapes to be modeled and approximately solved. Elements 

are composed of nodes at specified intervals, and their displacements are meas-

ured. The unknown variables are solved using matrices along with using initial 

and boundary conditions. Strictly speaking, finite element analysis determines 

solutions through the use of matrices, where a matrix is written each for  

1. stiffness properties;  

2. displacements; and  

3. initial and boundary conditions  (force, etc.). 

Once having the final matrix equation, it is generally solved using linear system 

solvers. In the finite-element method, there exists convergence requirements that 

must be satisfied, otherwise the model will yield unreliable results. These can be 

divided into three groups: 

 

Completeness: The displacement models must include the rigid body displace-

ments and the constant strain states of the element. The elements in the model 

must approximate well enough so to capture the analytical solution in the event of 

a mesh refinement process.  

Compatibility: The displacements in each element have to correspond with the 

displacements with the adjacent elements. The shape functions should provide 

displacement continuity between elements. Physically these behave so that no 

discontinuities or gaps occur when the elements deform. If the mesh were to be 

refined, such gaps would make the model worse as they would multiply.   

Stability: The system of finite element equations must consistently be approaching 

the true solution and not diverging from it.  

 

The procedure for finite-element analysis is as follows: 

1. Discretize the mass continuum using elements and nodes. 

2. Determine the appropriate interpolation polynomial functions and their or-

der. 

3. Use the appropriate element type(s) for the model. 
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4. Define shape function for each element. 

5. Define the stress-strain relation. 

6. Assemble the element equations to attain the global equations. 

7. Solve for the main unknown variables. 

It is assumed, however, that the model is continuous, meaning there are 

no breaks or unconnected points. The method uses interpolation functions (or 

shape functions), which describe the shape of the element and the shape it 

takes when deformed. This work uses lagrangian shape functions, having a 

value of one at the corresponding node and zero at all other nodes. Shape 

functions depend on the type of element and its order (linear, quadratic, et al). 

Consider the linear rectangular element in Figure 6-2, for example: If you sub-

stitute the coordinate values of ξ and η for node 1 in the shape function, you 

will obtain a value of 1. Substituting any other value will give zero.   

 

 

Figure 6-2: Interpolation functions of a four-node rectangular element (Reddy, 1984). 

 

In reference to Figure 6-2,  represents the interpolation function, where 

    

  1 , 1 1
a b

 
  

  
    
  

 (6.1) 
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   2 , 1
a b

 
  

  
   
  

 (6.2) 

  3 ,
a b

 
     (6.3) 

  4 , 1
a b

 
  

 
  
 

 (6.4) 

It should be noted that in most textbooks, the vector of a shape function is written 

as  N . 

 

Shape functions are usually written as polynomials because of their easy com-

putation of derivatives, well-balanced functions and low computational effort. 

Each individual element has its own coordinate system or local coordinates. La-

grangian coordinates are used in finite element analysis as well as in Abaqus 

(6.10 Theory Manual 3.2.4). In terms of spatial discretization, the Lagrange meth-

od uses a coordinate system (ξ,η) in which its grid moves with the modeled object 

and is ideal for solid, continuum materials. Another advantage is its computational 

efficiency. One limitation to the Lagrange spatial discretization is element distor-

tion, where the element can easily become tangled, thus leading to numerical er-

rors (Quan et al., 2003). The order of the polynomial used in the model depends 

on the modeled topology and on the expected solution nature. In this research, the 

curved walls of the wellbore, cement and casing along with their inconstant 

strains indicate that a higher order polynomial should be used to achieve reliable 

results. 

The finite-element method employs a local system and a global system for a 

given model. The former are coordinates used specifically for the individual ele-

ment while the latter are coordinates for the model in a “macro” sense. The natu-

ral coordinates of the element are commonly written in Lagrangian coordinates 

(ξ,η) where each range from -1 to +1 in local system  and are transformed into 

cartesian coordinates (x,y). This transformation is done by the use of the jacobian 

matrix. cartesian coordinates, x and y, and natural coordinates,   and  , for a 

quadrilateral element as given in Figure 6-3, may be related as follows 
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Figure 6-3: Natural and cartesian coordinates on a quadrilateral element. (Desai, 1979 

modified). 

 
   

   

 

 

0

0

T T

n

T T

n

z xx

y yz

      
    
      

 (6.5) 

Where 

             
1

1 1 , 1 1 , 1 1 , 1 1
4

T
z                     

   1 2 3 4

T

nx x x x x
 

   1 2 3 4

T

ny y y y y
 

 

and since the cartesian coordinates for the element must be known, the jacobian 

operator matrix for this element is written as: 

  
1x

J

y







  
      

   
    
      

 (6.6) 

Here, the jacobian matrix  J  is determined from 
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  
 

 
  

T

n n
T

z

J x y

z





 
 
      
  

 (6.7) 

and 

   detdxdy J d d   (6.8) 

In order to transform the x and y coordinates into the lagrangian coordinates, the 

inverse of  J must exist, meaning that the jacobian determinant of the jacobian 

matrix must be nonzero at every point of  ,  in the domain. An eight-node (se-

cond-order) quadrilateral element is more complex and, according to the Abaqus 

6.10 Theory Manual 3.2.4, its interpolation function written as 

 

       

       

       

       

1 2

3 4

5 6

7 8

1 1
1 1 1 1 1 1

4 4

1 1
1 1 1 1 1 1

4 4

1 1
1 1 1 1 1 1

2 2

1 1
1 1 1 1 1 1

2 2

z z z

z z

z z

z z

       

       

     

     

          

         

       

       

 (6.9) 

 

Figure 6-4: First-order and second-order quadrilaterals and their transformations (Reddy, 

1984). 
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As for the displacement model, displacement components u and v in cartesian 

coordinates are found by using a similar formulation: 

 
       

       

 

 

    

1

1

1 8

1 8

8

8

0 ... 0 ...

0 ... 0 ...

u

v

T T T T

T T T T

u

v

d

d

N Nu
N d u

v N N

d

d

 
 
 
     

      
     

 
 
 
 

 (6.10)  

where  

 u  = Displacement vector; 

 d = Nodal displacement vector; and 

 nN = Shape function for node number n. 

 

The strain at each node within an element must be determined, and can be ex-

pressed as   having components x , y and xy . Strain can be obtained by using 

a transformation matrix  B with the displacement vector  u  having components 

u and v. 

     B u   (6.11) 

The transformation matrix  B  contains the derivatives of the interpolation func-

tion and    1 2,B B B  where Bi represents a sub-matrix applied to each node in 

the element. Once the strain vector   is determined, the stress vector can be 

found by using Hooke’s law: 

     C   (6.12) 

Where  C is the constitutive matrix. Inserting Eq. (6.11)into Eq. (6.12), we have 

      C B u   (6.13) 
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and finally, the global stiffness matrix  K  can be obtained by manipulating ma-

trices  C and  B . 

       
T

V

K B C B dV   (6.14)   

Since double integration is quite cumbersome to solve, numerical methods are 

applied for approximation. For second-order isoparametric elements, Abaqus® 

solves using Gauss quadrature because of its efficiency (Abaqus 6.10 Theory 

Manual 3.2.4). The more refined the elements are in the model, the closer the out-

put results will be to the exact solution. However, this increases the number of 

equations, computational effort and overall simulation time. The nodal displace-

ments in each element must be interpreted or interpolated into cartesian coordi-

nates, for they are written in Lagrangian coordinates.  

Written in lagrangian code, Abaqus® provides two isoparametric ele-

ments: quadrilaterals for two-dimensional applications and hexahedra (“bricks”) 

for three-dimensional applications. It is worth noting that the term quadrilateral 

implies a four-sided element in which its sides are not necessarily of equal length 

nor have 90 degree corners; in many models sides are curved. Isoparametric ele-

ments use symmetric topology mapping, solution approximation function spaces 

and account for a better domain discretization. Triangular elements are also useful 

and have their advantages: 

1. They consist of complete polynomials; 

2. Relatively easy to compute; 

3. Less time consuming; 

4. Capable of fitting into awkward spots in the mesh. 

Nonetheless, isoparametric quadrilateral elements have their own advantage by 

being more cost-effective of the elements that are provided in Abaqus®, and well-

shaped isoparametric elements are better for critical regions in the mesh such as 

an area where the strain must be predicted accurately (Abaqus 6.10 Theory Manu-

al 3.2.1). They can also degenerate to make simpler shapes for particular geome-

tries. First-order elements are mostly constant strain elements: isoparametric 

forms 
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Figure 6-5: 2D elements. (http://stochasticandlagrangian.blogspot.com/2011/07/ 

what-does-shape-function-mean-in-finite.html). 

 

can model this, however second-order elements are capable of representing all 

possible linear strain fields. Though not the case for this research, another draw-

back first-order elements have is their poor representation of strain variations in 

problems involving bending of thin members. This strain variation through the 

thickness must at least be linear. The use of second-order elements is more relia-

ble since they naturally possess the linear strain field, and one element is suffi-

cient to represent this behavior. Another advantage that second-order equations 

have is that they are better for elliptic problems including elasticity such as in this 

research. Also, a much higher accuracy per degree of freedom is usually available 

with higher-order elements (Abaqus 6.10 Theory Manual 3.2.1). For further read-

ing in regard to the finite element method, please consult the literary resources 

from Desai et al. (1979, 1984) and Bathe (1982) in the Bibliographic References. 

 

Constitutive models are required for each material. For the reasons stated in 

Chapters 3 and 4, the casing is chosen to be modeled as elastic perfectly plastic 

using Hooke’s law (see Ch. 2) combined with the von Mises criterion (see Ch. 

4.2); the cement as elastic perfectly plastic, applying the Mohr-Coulomb criterion 

(see Ch. 4); the salt rock as elasto/visco-elastic by using the double mechanism 

(see Ch. 3.8.4).  
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Material Constitutive Models Formula 

Casing 

(elastic perfectly 

plastic) 

1. Generalized Hooke’s Law; 

2. von Mises. 

 
1

i i j k
E

       
 

     
1 2 2 2

1 2 2 3 1 3
2

vm
           

 

Cement 

(elastic perfectly 

plastic) 

1. Generalized Hooke’s Law;  

2. Mohr-Coulomb. 

 
1

i i j k
E

       
   

tan τ c σ φ  

Tachyhydrite 

(elasto/visco-

elastic) 

Double mechanism. 
0

0

0

 

n Q Q

RT Rdev T
e


 



 
 

 
 

  
 
   

Table 6-1: Constitutive models used for the three distinct materials. 

 

6.3  
Plane Strain Theory 

Since three-dimensional modeling is relatively complex and computational-

ly time consuming, a simplified two-dimensional analysis was appropriate and 

made possible in virtue of the plane strain theory. The plane strain theory is a 2D 

analysis of a slice of a continuous body that assumes that all the points remain on 

this plane. It is used when the body’s longitudinal length is great compared to its 

width, making it sensible to assume a strain equal to zero in this axis. In other 

words, the deformations outside the plane are assumed to be zero (Pagano et al., 

1967). There are a total of eight variables that are determinable in plane strain, 

namely σx, σy, τxy, εx, εy, γxy, u and ν. In this research, the well depth represents 

the longitudinal length.  
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6.4  
Modeling Assumptions 

Prior to beginning model simulation, an outline of the assumptions was es-

tablished:  

 The model considers the state of the wellbore as plane strain. 

 There is a specific state of stress in the salt rock before drilling. 

 The tachyhydrite layer is isotropic, homogeneous and  non-porous. 

The casing and cement are also considered isotropic except for the 

poorly-cemented regions in the annulus. 

 The cement defect covers a single area and hence not scattered 

throughout the annulus. 

 The cement is perfectly bonded to the casing and formation, having 

no gaps along the interfaces. 

 Cement cracking is not accounted for. 

 The in situ stresses are three dimensional and independent of time. 

 The wellbore is vertical. 

 Internal pressure inside the casing (i.e., drilling fluid) is accounted 

for. 

 The salt formation is impermeable. 

 Thermal properties of the cement, casing and tachyhydrite are negli-

gible.  

 Although well symmetry could be utilized, the model size was not 

reduced since the defected areas are subject to change during the 

analysis phase. 

 Casing ovalization of 1.5 percent is induced by compression from 

the overburden pressure. 
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6.5  
Analytical Solution 

6.5.1  
Elastic Stresses Around a Wellbore 

Before implementing well simulations, an analytical solution must be used 

to verify that the model is accurate and reliable. Different material properties are 

used in the analysis; hence each material will be assigned an analytical solution. 

For elastic, homogeneous, isotropic, continuous and linearly elastic materials, the 

Kirsch solution may be employed. This exact solution is suitable for the steel cas-

ing and cement when loaded within their elastic regions.  The Kirsch solution is a 

2D plane strain approximation (Goodman, 1989) and consists of the subsequent 

equations: 

 

 
2 2 4

1 2 1 2

2 2 4

4 3
1 1 cos 2

2 2
r

p p p pa a a

r r r
 

    
       

   
 (6.15) 

  

 
2 4

1 2 1 2

2 4

3
1 1 cos 2

2 2

p p p pa a

r r
 

    
      

   
 (6.16) 

 
2 4

1 2

2 4

2 3
1 sin 2

2
r

p p a a

r r
 

 
    

 
 (6.17) 

Where 

r Radial stress, or stress in the direction of changing r; 

 Tangential stress, or stress in the direction of changing  ; 

r  Shear stress; and 

 Angle measured counterclockwise from the x axis on the xy plane. 

 

Given a point in a medium using polar coordinates r, θ near the hole having radius 

a, the stresses r ,   and r can be determined.  
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Figure 6-6: Kirsch solution identifies stresses in a medium (Goodman, 1989). 

 

A simple hole-in-a-plate model was used in Abaqus® in order to verify the output 

data of the program. The model was composed of a total of 2,000 eight-node 

quadrilateral elements for plane strain continuum (element type CPE8 in 

Abaqus®). By taking advantage of the square plate’s symmetry, only ¼ of the 

model was simulated, constraining the left and lower boundaries. The left bounda-

ry impeded horizontal displacement while the lower boundary impeded vertical 

displacement. A single steel-like material was assigned to the model with proper-

ties given in Table 6-2 and results in Figure 6-8 and Figure 6-9.  
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Figure 6-7: Kirsch hole-in-a-plate model in Abaqus. 

 

 

 

 

 

 

 

Stress & Material Properties Values Geometry Values 

Young’s modulus (E) 3.0E+06 MPa Height 15 m 

Poisson’s ratio (ν) 0.3 Width 15 m 

Horizontal to vertical pres-

sure ratio (K=p1/p2) 
1, 2, 3 Hole radius 1 m 

 

Table 6-2: Model data for Kirsch solution. 
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Figure 6-8: Abaqus results using the Kirsch solution (θ=270°) which correspond to the 

graph shown in Figure 6-6. 

 

 

Figure 6-9: Abaqus results using the Kirsch solution (θ=0°) which correspond to the graph 

shown in Figure 6-6. 
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Finally, the Abaqus® model was verified to have stress convergence as the dis-

tance from the circular hole increases (see Figure 6-10).  

 

 

Figure 6-10: Abaqus model results for radial and hoop stress convergence. 

 

6.5.2  
Viscoelastic Model 

 An exact solution for a viscoelastic model is necessary in regard to the 

salt formation. Thus the van Sambeek model was adopted as the salt rock’s ana-

lytical solution. This viscoelastic solution is applicable for a power-law creep 

model of an infinitely long, thick-walled cylinder subjected to pressure on its out-

er surface. Despite that the double mechanism creep model is being used in this 

research, it is still valid for comparison with the single-component power law: 

 
nA   (6.18) 

The aforementioned symbols can be reviewed in Chapter 3.7.  Knowing the 

parameters in Eq. (6.18), the van Sambeek steady-state solution (Flac
3D

 v4.0, 

1.5.3) can be used and is expressed as 
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Where 

z = out-of-plane stress component; 

Pb = applied boundary stress;  

ru = radial displacement rate; 

r = radius to point of calculation; and  

a, b = inner and outer radii of the cylinder, respectively.  

 

The same procedure from the Kirsch solution was carried out, using the same 

mesh, geometry, boundary conditions and element type. The material properties, 

however, were modified for modeling convenience and are shown in Table 6-3. 

 

Stress & Material Properties Values 

Young’s modulus (E) 820 MPa 

Poisson’s ratio (ν) 0.3636 

Reciprocal viscosity coefficient (A) 5.3E-14 MPa
-3

 h
-1

 

Stress power (n) 7.55 

Pressure (Pb) 10 MPa 

Table 6-3: Model data for van Sambeek solution. 
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Prior to proceeding with the analysis, it was verified that the model reached the 

steady-state regime shown in Figure 6-11.   

 

Figure 6-11: The viscoelastic model generated in Abaqus reaches steady state. 

 

The model’s viscoelastic behavior at steady-state was compared to the van 

Sambeek solution, showing good agreement in terms of σr, σθ and ru . Confirming 

both the accuracy of the Kirsch solution and van Sambeek solution along with 

Abaqus’ reliability, it is safe to proceed to the modeling sequences. 

 

Figure 6-12: Radial stress results at steady-state condition. 
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Figure 6-13: Hoop stress results at steady-state condition. 

 

 

Figure 6-14: Radial displacement rate results. 

 

6.6  
Model Description 

The two-dimensional plane strain model used in the analysis was designed 

to be perpendicular to the vertical axis of the wellbore—similar to a plan view 

layout—and consisted of the three distinct materials: the steel casing, cement and 
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salt rock. The model was created with a circular outer boundary of 100 m in di-

ameter having a 0.445 m diameter wellbore and composed of 20,442 quadratic 

isoparametric elements with a total of 46,326 nodes. In this model, each element 

consists of eight nodes and all were assigned the Abaqus element type CPE8: 

eight-node continuum stress/displacement plane strain element. This element type 

was selected as opposed to four-node and three-node elements for the sake of re-

quiring fewer elements and also to increase accuracy in critical regions that ap-

pear in the narrow annulus due to high eccentricity. A subroutine was used in 

Abaqus® in order to implement the double mechanism constitutive salt creep law 

proposed by Costa (2005) and Poiate et al. (2006) for tachyhydrite. After conduct-

ing laboratory experiments on salt samples collected from Sergipe, Brazil, Poiate 

et al. (2006) observed a sudden shift for both tachyhydrite's and halite's mechani-

cal behavior. The strain rate for each sample was obtained by applying a differen-

tial stress ranging from 0 to 20 MPa at a temperature of 86ºC.  During the steady 

state creep stage, the stress component n for tachyhydrite changes from 2.4 to 

7.12 after a 7 MPa differential stress. Recalling Eq. (3.14) from Chapter 3.8.4, the 

double mechanism formula consists of two stresses, namely the deviatoric stress 

dev and the referential stress 0 , where the former represents the differential 

stress varying with time while the latter is the stress value (e.g., 7 MPa) at which 

shifting occurs. This subroutine was verified with the results from Poiate et al. 

(2006) shown in .  With the Abaqus result superimposed in this figure, it should 

be noted that Poiate’s graph shows the time of drilling beginning at a depth of 

zero. Thus, the time of drilling the tachyhydrite layer begins at approximately 192 

hrs. The results show good agreement, proving the proposed subroutine to be ac-

ceptable. It is also important to note the horizontal deviation of the Abaqus curve 

being the result of the introduction of the casing and cement. 
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Figure 6-15: Data (left) used in the double mechanism equation to approximate the tach-

yhydrite behavior shown in the graph (right) provided by Poite et al. (2006). 

 

 

Figure 6-16: Abaqus tachyhydrite subroutine result (purple) compared with Poiate et al. 

(2006) tachyhydrite result (red). 
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6.7  
Boundary Conditions 

The idea of imposing boundary conditions can be thought of as imposing a 

physical support on a model’s extremities, with the purpose of defining or approx-

imating how the material external to the simulation domain influences it. Fixed 

ends were assigned to the model’s outer boundary as well as for the casing. In 

other words, displacement was permitted in neither of these. The casing however, 

is fixed only in the equilibrium stage of the modeling sequence but for the rest of 

the model was left free to move unbounded. This was done to avoid initial compu-

tation errors that may precipitate throughout the simulation. A detailed explana-

tion of the modeling sequence is discussed later in this chapter. Initial stresses 

were assigned to the model’s exterior boundary as well as an out-of-plane stress to 

simulate the overburden stress.  

 

Figure 6-17: Imposed fixed boundary conditions on the model’s exterior surface. 
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Figure 6-18: Model zoom showing elements for the casing and cement. 

 

Since salt rock is isotropic, the horizontal and vertical loads induced upon 

the cemented casing are equal to a magnitude of 70.2 MPa and remains constant 

throughout the analysis. For verification purposes, the drilling fluid pressure with-

in the casing was compared with values of 65.87 MPa (~13 ppg) and 50.59 MPa 

(~9.98 ppg).The results indicate that the internal pressure of 50.59 MPa is more 

appropriate for simulation purposes as opposed to 65.87 MPa since a greater pres-

sure differential relative to the salt creep provokes a higher compressive stress, 

creating a more critical and interesting scenario that offers a better understanding 

of the effects of salt creep.  

 

6.8  
Model Data 

Material properties for the steel casing, cement and salt rock were assigned 

to their corresponding sections in the model. All material properties used in the 

modeling were gathered from available literature: Poiate et al. (2006) and Bosma 

(1999). Competent cement was selected for the analysis since high compressive 

strength slurries are used for deep wells (Fleckenstein, 2000). A steel grade of P-

110 (yield strength of 110,000 psi or 758 MPa) and an OD of 14 inches are suita-

ble property and geometric characteristics for a 4301 m depth. 
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Material properties 
Young's Modulus, 

E (MPa) 

Poisson's ratio, 

ν 

Salt Rock (tachyhydrite) 4,920 0.33 

Cement (Class G) 21,000 0.25 

Casing (14" X 0.722" - P110) 210,000 0.28 
 

Table 6-4: Elastic properties for the salt rock, cement and steel casing. 

 

Material  
Thickness 

(m) 

Specific 
weight 
(kN/m3) 

Vertical 
Stress σz 

(MPa) 

Seawater  2140 10 21.40 

Salt layer 1303 22.56 29.69 

Other 
layers 858 22.56 19.36 

Total σz at studied depth 4301 m 70.20 
 

Table 6-5: Vertical stress induced upon the cemented casing. 

 

Reviewing his work, Poiate et al. (2006) used an ovalization value of 1.5 

percent— Eq. (5.2) was verified by superimposing the oval geometry over the 

circular 14-inch P-110 casing. This ovality was compared with Pattillo’s formula 

given in Eq. (5.1) which would yield a value of 3.0 percent, a value nearly ten 

times that of an initial manufacturing ovality as seen in Pattillo et al. (2004) and 

Aldin et al. (1998). Hence, an ovality of 1.5 percent in terms of Poiate’s formula 

would be significant enough to affect the cement’s stress state and condition. 

 

Initial wellbore diameter  17 ½ inches (0.4445 m). 

Casing dimensions  14" x 0.722" (OD = 0.3556 m, E = 0.0183 m).  

Ovalization (1.5%) ODmax = 0.3609 m, ODmin = 0.3503 m. 
 

Table 6-6: Wellbore and casing data. 

 

For employing the power creep law, Abaqus® gives two options: The time 

hardening form and the strain hardening form. The time hardening formulation 

can be expressed as  
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n mA t   (6.23) 

and by taking its derivative with respect to time t, it can be written as 

 
1n mA mt    (6.24) 

By solving for t in Eq. (6.24) and substituting it back into the formula, the 

strain hardening formulation is obtained: 

  
1 1/n

m m
m m

A m  


  (6.25) 

Of these two formulations, the time hardening form was selected for the 

model because it is ideal for simulating deformations over long periods of time in 

which the stress state does not vary rapidly (Botelho, 2008), whereas the strain 

hardening formulation is more appropriate for a rapidly changing stress state. Fur-

thermore, it is the simplest form of the power law and Botelho’s work demon-

strates its accuracy and reliability in Abaqus® for salt wellbore drilling simula-

tions.  

 

6.9  
Modeling Sequence 

The intention of the model is to simulate strictly the wellbore drilling phase 

followed by the casing and cementing phase. The production phase is not consid-

ered and is beyond the scope of this work. Though the state of stress of the cement 

and casing is observed during the period of 28 days, the primary concern is at the 

end of this period in which the cement attains adequate strength. Instead of simu-

lating three steps, the model was subdivided into five steps. 

 

Step 1: Equilibrium 

This step simulates the natural state of stress of the salt formation which has 

to remain in equilibrium. In other words, it represents the salt zone before drilling. 

This was simulated by beginning the 2D model—having only the salt rock pre-

sent—imposing an equal and opposite uniform stress along the face of the initial 

wellbore diameter as demonstrated in Figure 6-19. This is same as having a con-

tinuous salt rock under static equilibrium, and was simulated for one second. 
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Figure 6-19: Step 1 - Borehole in static equilibrium. 

 

 

Step 2: Drilling 

The drilling step is simulated by removing a circular area from the salt for-

mation. This step was simulated by reducing the balanced uniform stress along the 

wellbore face to a lower value of 50.59 MPa. This step is simulated for a time of 

60 seconds. 

Step 3: Drilling continuation 

This step is a continuation of the previous step elongating the time. Well-

bore closure is simulated for 100 hours (4.17 days). 

Step 4: Casing installation and cementing. 

The casing and the cement are instantaneously introduced while the salt 

formation continues to close. The model simulates the cement-salt formation in-

terface to be in complete contact since the cement molds to fit the deformed well-

bore face.   

Step 5: Well closure 

A continuation of the previous step simulating the casing/cement/salt inter-

action over a period of 28 days.  

 

The analysis was performed using three main stages: 

 Stage 1: Begin with analyzing the casing and cement having only 

elastic behavior.  

 Stage 2: Analyze the casing and cement with elastic and plastic 

properties (i.e., elastic perfectly plastic). 

DBD
PUC-Rio - Certificação Digital Nº 1012301/CA



101 
 

 

 Stage 3: Analyze the cement with casing eccentricity.  

Various scenarios were created to effectively predict and analyze the behav-

ior of a poorly-cemented casing under salt loading.  

 

6.9.1 
Stage 1: Cement as an Elastic Material 

Table 6-7: Scenarios in Stage 1: Cement as an Elastic Material 

 

The scenarios were analyzed having a poorly-cemented region with an area no 

greater than 20 percent of the annulus. A hypothesis was made suggesting that a  

larger area would unlikely be encountered in the field. Moreover, no relevant arti-

cles were found suggesting area sizes. 

This initial stage is a simulation that assigns strictly an elastic response 

for the cement and casing while the salt formation obeys the double mecha-

nism constitutive model. Such an approach prohibits the casing and cement 

from attaining failure, allowing the stress, strain and displacement values to 

be observed. In this step, the following scenarios were tested:  

Case 1: The geometry of the casing, cement and wellbore are given the shape of 

a perfect circle.  

 Case 1.1: Well-cemented (homogeneous cement with no defects). 

 Case 1.2: Ten percent of annulus poorly-cemented (i.e., 10 percent of the 

cement area having a young’s modulus 10 percent, 20 percent and 75 per-

cent weaker than the rest).  

 Case 1.3: Twenty percent of annulus poorly-cemented (i.e., 20 percent of 

the cement area having a Young’s modulus 10 percent, 20 percent and 75 

percent weaker than the rest). 

 Case 2: Casing with 1.5 percent ovality. 

 Case 2.1: Well-cemented (homogeneous cement with no defects). 

 Case 2.2: Ten percent poorly-cemented (i.e., 10 percent of the cement ar-

ea having a young’s modulus 10 percent, 20 percent and 75 percent weak-

er than the rest).  

 Case 2.3: Twenty percent poorly-cemented (i.e., 20 percent of the cement 

area having a young’s modulus 10 percent, 20 percent and 75 percent 

weaker than the rest). 

DBD
PUC-Rio - Certificação Digital Nº 1012301/CA



102 
 

 

 

 

Figure 6-20: Outline of the six simulated scenarios. 

 

 

 

Figure 6-21: Casing ovalization modeled as 1.5%. (Wadee MK et al., 2006). Note: Image 

not to scale. 

 

6.9.2  
Stage 1 Results 

The results for the six scenarios were compared in terms of stress, strain and 

displacement. The preliminary results indicate that a 10 percent or 20 percent re-

duction in parameters E and v do not have a significant effect on the state of 

stress. The stresses taken into consideration were the maximum principal stresses, 

since the stress state at a point is characterized by the principal stresses. The de-

fected cement models with areas of 10 percent and 20 percent show a difference 

in stress values no greater than 1 percent with respect to the well-cemented model. 
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The maximum values for strain and displacement are 0.03 percent and 0.0209 m, 

respectively. The values for strain and displacement in the casing are smaller than 

those for the cement.  

The models with casing ovality of 1.5 percent also exhibit practically the 

same stress values as the well-cemented model. The same is witnessed for the 

casing. The strains and displacements are relatively small and also similar to the 

models having a circular casing. A change is only seen, however, once the poorly-

cemented area was modeled with a 75 percent reduction in the elastic parameters. 

This caused an increase in the stress values in the cement, seeing differences as 

great as 9 percent with respect to the maximum values for principal stresses.  

Observing Table 6-8 through Table 6-13, the elastic model indicates that the 

tangential stress is dominant for both the casing and cement.  

The von Mises stress in the casing never exceeds the SMYS value (758 

MPa), meaning that the steel casing is being loaded within the elastic region. This 

was also verified by observing the differences between 1  , 2  and 3 . The 

induced stresses upon the casing do not provoke significant ovalization.  

All scenario results show stresses solely in compression. It should be noted 

that Abaqus’ maximum and minimum values are in reverse due to the sign con-

vention, where a negative sign denotes compression. 

CEMENT

 E (MPa) 21,000 Stress

ν 0.25 Mini graph

ε max.: 0.03% -69 -82 -82

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000   min. max. (%)

ν 0.28 3.55E-01 3.55E-01 0.02

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

Mises (MPa) 147 -67 -217 -217

ε max.: 0.03% Load Type: comp. comp. comp.

u max (m): 0.0001

Well-cemented annulus.

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max.(MPa)

 

Table 6-8: Well-cemented annulus. 
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CEMENT

 E (MPa) 5,250 Stress

ν 0.25 Mini graph

ε max.: 0.09% -70 -82 -89

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000    min. max. (%)

ν 0.28 3.55E-01 3.55E-01 0.01

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

Mises (MPa) 158 -72 -229 -229

ε max.: 0.04% Load Type: comp. comp. comp.

u max (m): 0.0001

10% of cement area with a 75% parameter reduction (E,v ).

Principal σ 

max. (MPa)

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

 

Table 6-9: 10% of cement area with a 75% parameter reduction (E,v). 

 

CEMENT

 E (MPa) 5,250 Stress

ν 0.25 Mini graph

ε max.: 0.10% -69 -82 -87

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000     min. max. (%)

ν 0.28 3.55E-01 3.55E-01 0.01

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

Mises (MPa) 158 -70 -229 -229

ε max.: 0.04% Load Type: comp. comp. comp.

u max (m): 0.0001

20% of cement area with a 75% parameter reduction (E,v ).

Principal σ 

max. (MPa)

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

 

Table 6-10: 20% of cement area with a 75% parameter reduction (E,v). 

 

CEMENT

 E (MPa) 21,000 Stress

ν 0.25 Mini graph

ε max.: 0.04% -69 -84 -84

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000   min. max. (%)

ν 0.28 3.50E-01 3.61E-01 1.53

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

Mises (MPa) 170 -68 -243 -243

ε max.: 0.04% Load Type: comp. comp. comp.

u max (m): 0.0002

Well-cemented annulus with 1.5% ovality.

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

 

Table 6-11: Well-cemented annulus with 1.5% ovality. 
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CEMENT

 E (MPa) 5,250 Stress

ν 0.25 Mini graph

ε max.: 0.08% -70 -84 -90

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000    min. max. (%)

ν 0.28 3.50E-01 3.61E-01 1.53

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

Mises (MPa) 171 -73 -244 -244

ε max.: 0.04% Load Type: comp. comp. comp.

u max (m): 0.0002

10% of cement area with a 75% parameter reduction (E,v ) with 1.5% ovality.

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

σ radial max. 

(MPa)

 

Table 6-12: 10% of cement area with a 75% parameter reduction (E,v) with 1.5% ovality. 

 

CEMENT

 E (MPa) 5,250 Stress

ν 0.25 Mini graph

ε max.: 0.12% -70 -83 -85

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000     min. max. (%)

ν 0.28 3.50E-01 3.61E-01 1.53

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

Principal σ 

max. (MPa)

Mises (MPa) 179 -70 -253 -253

ε max.: 0.04% Load Type: comp. comp. comp.

u max (m): 0.0002

20% of cement area with a 75% parameter reduction (E,v ) with 1.5% ovality.

Principal σ 

max. (MPa)

σ radial max. 

(MPa)

σ tangential 

max. (MPa)

 

Table 6-13: 20% of cement area with a 75% parameter reduction (E,v) with 1.5% ovality. 

 

6.9.3  
Stage 2: Cement as an Elastic Perfectly Plastic Material 

 

In this stage, the cement’s mechanical properties are changed to elastic per-

fectly plastic while the casing and the salt rock remain unchanged. This is done by 

adding the Mohr-Coulomb failure criterion in Abaqus®. As mentioned in chapter 

4, this failure criterion requires material strength parameters φ and c which are 

empirically determined. In his work, Bosma (1999) obtained reliable results using 

a Class G cement cohesion value of 21 MPa with an angle of friction of 17 de-

grees (assuming for 28-day strength). These values were adopted for the analysis. 
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Once experimental data was received from the rock mechanics laboratory at 

Petrobras Research Laboratories (CENPES), a comparison was made with Bos-

ma’s strength parameters. This was done for the purpose of determining the ap-

propriate values that yield a greater change in the wellbore’s state of stress. The 

experimental results yielded an angle of internal friction of 15.5 degrees and a 

cohesive strength of 14.5 MPa. The dilation angle is a required input value in 

Abaqus®, but since it was not given, the parameter was determined by imple-

menting an equation given by M.P Nielson (2010): 

 

 sin tan   (6.26)  

where   is the angle of internal friction and   is the dilation angle. This formula 

yielded a value of 15 degrees. The former set of cement strength parameters was 

given conservative values to allow for contrast in the scenarios results. It should 

be noted that the experimental results correspond to 7 days of curing. By manipu-

lating the strength gain graph in Figure 5-10, a 28-day estimate was made possible 

for the parameters provided by  CENPES by extrapolation. The parameters sur-

prisingly yielded nearly the same values as provided by Bosma (1999).  

 

 

Bosma’s Cement 

Strength Parameters 

(28 days):  

CENPES Experi-

mental Parameters  

(7 days of curing): 

 CENPES Estimat-

ed Parameters (28 

days): 

φ = 17.0° φ = 15.5°  φ = 15.5°
1
 

Ψ = 16.0° Ψ = 15°  Ψ = 15° 

c = 21 MPa c = 14.5 MPa  c = 21 MPa 

 

Table 6-14: Mohr-Coulomb strength parameters. 

 

Therefore, since these two data results given in  

Table 6-14 are almost identical, the strength parameters from Bosma were as-

signed to the subsequent simulations.  

                                                 
1
 It should be noted that the angle of friction typically remains constant for strength gain. 
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6.9.3.1  
Geometry of the Poorly-Cemented Region 

 To establish a sensitivity analysis for the mechanism of the defected ce-

ment region, it was decided to simulate using three different geometries as shown 

in Figure 6-22, and in this research they will be referred to as Geometry No. 1, 

Geometry No. 2 and Geometry No. 3, respectively.  

 

 

Figure 6-22: Three different geometries for the damaged cement region. 

 

The following objectives were defined for Stage 2: 

 Identify what percent reduction of the cement parameters E, v and c in the 

defected region provokes plasticity. 

 Simulate using a substantially higher percent reduction and compare re-

sults with the previous percent reduction. 

 Analyze further by comparing the stress states for the geometries for areas 

of 5 percent, 10 percent and 20 percent of the annulus. 

 Identify what type of stress is most critical for the defected cement region 

and its location. 

 Interpret from the stress magnitude and its location what is occurring. 

 Observe the effect, if any, that casing ovalization has upon the cement. 
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6.9.4  
Stage 2 Results  

The simulation results shown in Figure 6-23 indicate that plasticity appears 

in the defected cement region in all the geometries and areas (i.e., 5%, 10% and 

20%) when parameters E, v and c reduce to only 15 percent. This plastic straining 

is controlled by the compressive stress induced by the surrounding tachyhydrite 

layer. The poorly-cemented region fails due to high dilation which stabilizes the 

scenario. The stress state in this case, however, does not show any significant in-

crease when compared to the well-cemented model.  After several simulation 

tests, it was found that the stress levels for the cement and casing became signifi-

cant at a 75 percent stiffness and cohesion reduction.  

 

 

Figure 6-23: Plasticity results for Geometry No. 1; when parameters E, v and c reduce to 

only 15 percent. 

 

 Observing the Mises stress, there were no occurrences where the steel cas-

ing reached its SMYS limit of 758 MPa in any of the analyses. Moreover, the 

casing shows values of displacement and strain at approximately 0.028 cm and 

0.045 percent, respectively. These results suggest to model the casing merely as 

elastic. With a 75 percent reduction in the parameters E, v, and c, the maximum 

stress values in the cement become significantly greater by at least 82 percent 

compared to the results with a 15 percent reduction. These values are located on 
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the upper and lower boundaries of the poorly-cemented region. The greatest max-

imum principal stress is found in Geometry No. 3 with an increase of almost 130 

percent compared to the well-cemented model.  

Unexpectedly, the results such as in Figure 6-24 indicate that a 10 percent area is where 

the maximum stress appears for all geometries and areas. The maximum stresses, how-

ever, are always found along the upper and lower boundaries of the defected cement 

area. These border lines show an angle closer to forty-five degrees at a 10 percent area 

than do the areas of 5 percent or 20 percent. 

  

 

 

Figure 6-24: Maximum principal stress distribution for cement defects in Geometry No. 3. 

 

Significant values of tension appear only for defected area sizes of 20 percent 

having a 75 percent reduction in parameters E, v and c. Within a few hours after it 

is introduced into the annular, the cement in Abaqus® exhibits tensile stress as it 

slowly decreases with time. According to Schlumberger’s Oilfield Glossary, it 

takes approximately 12 to 24 hours for the cement to solidify in offshore oil wells. 

Tensile stress is taken into consideration strictly after a period of 24 hours to ac-

count for the event that the cement may not have hardened sufficiently in all 

spots. Since slurry as a fluid can only be under a hydrostatic state of stress, there 

will be no tensile stress nor shear stress within the solid cement (Gray et al., 

2009).  Geometry No. 2 shows tensile stress but no considerable values through-

out the 28-day period for areas of 5 percent, 10 percent nor 20 percent. Geometry 
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No. 1 shows a magnitude greater than 15 MPa located on the upper corner on the 

casing-cement interface in 24 hours after the commencement of cementing. Given 

that in 24 hours a typical Class G cement gains a compressive strength of about 20 

MPa (Carina, 2009) resulting in a tensile strength of nearly 2 MPa, any tension 

exceeding this value is significant and should be taken into consideration. It 

should be noticed that tensile stress appears strictly along the upper and lower 

boundaries of the defected cement region but nowhere else in the cement is tensile 

stress present. This corresponds to the 5 percent, 10 percent and 20 percent mod-

els for geometry No. 1, No. 2 and No. 3. Due to its steep corners, Geometry No. 3 

presents the greatest tensile scenario as displayed in Figure 6-25. 

 

 

Figure 6-25: Tensile stress in the first 24 hours for Geometry No. 3 having a 20% defect-

ed area. 

 

The cement defect was relocated 90 degrees from its current position for 

comparison. In view of Figure 6-26, the maximum compressive stress marginally 

decreases, but the stress distributed over the cement is shown to be greater for a 

cement defect along the axis of the ODmax. Therefore, a defect in the cement lo-

cated on the same axis as the ODmax is more critical than if it were located per-

pendicular to the ODmax. 
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Figure 6-26: Left: Cement defect located perpendicular to the ODmax. Right: Cement de-

fect along the same axis as the ODmax.  

  

 Ovalization proves to have a weighty effect upon the defected region’s 

state of stress depending on its geometry. It can be seen in Figure 6-27 that an 

ovality of 1.5 percent reduces the maximum compressive stress in Geometry No. 

1 nearly 28 percent. The maximum compressive stress in Geometry No. 2, how-

ever, drops insignificantly.  

 

 

Figure 6-27: Comparison of maximum compressive stresses in Geometry No. 1, with and 

without ovality. 
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On the contrary, Figure 6-28 shows that ovalization augments the maximum com-

pressive stress in Geometry No. 3. This is in fact due to the geometry’s steep cor-

ner angles which encourage shearing. 

 

Figure 6-28: Geometry No. 3 with and without Ovalization (1.5%). 

 

 Ovalization also reduces tensile stress for nearly all of the geometries, and 

in fact, causes tension to vanish in Geometry No. 1 and No. 2. For Geometry No. 

3, the tensile stress remains for the same reason mentioned previously for com-

pressive stress (see Figure 6-29).  

 

Figure 6-29: Compressive and tensile stress values for the three studied geometries. 
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Figure 6-30: Plastic strain in the three geometries with 1.5% ovality. 

 

 

Figure 6-31: Plastic strain for the poorly-cemented region and non-oval casing. 

 

Knowing the worst scenario, a further investigation was conducted to ob-

serve the state of stress in the cement and casing for Geometry No. 3 (1.5% ovali-

ty) after 60 days. Results in Table 6-15 and Table 6-16 show only a slight change 

in the cement and casing’s stress conditions, increasing no more than two percent.  

In contrast with the results found in Stage 1, radial stress is dominant and controls 

plastic straining in the cement by the addition of the Mohr-Coulomb failure crite-
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rion. In the elastic model, there is no limit for the tangential stress, while in the 

elastic perfectly plastic model there exists a limit that the tangential stress cannot 

surpass. Also, the total strain increased up to 9 percent. The change in displace-

ment is insignificant mostly because it includes wellbore closure along with the 

decrease in the cement area.  

 

CEMENT

 E (MPa) 5,250 Stress

ν 0.25 Mini graph

ε max: 9% -199 -99 -200

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000    min (m) max (m) (%)

ν 0.28 3.50E-01 3.61E-01 1.51

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential max. 

(MPa)

Principal σ max. 

(MPa)

Mises (MPa): 214 -109 -294 -294

ε max: 0% Load Type: comp. comp. comp.

u max (m): 0

σ tangential max. 

(MPa)

Principal σ 

max.(MPa)

σ radial max. 

(MPa)

Geometry No. 3: 10% Poorly cemented with 1.5% ovality (φ = 17°, c = 5.25 MPa).

 

CEMENT

 E (MPa) 5,250 Stress

ν 0.25 Mini graph

ε max: 9% -197 -97 -198

u max (m): 0.02 Load Type: comp. comp. comp.

CASING OD (y axis) OD (x axis) Ovalization

 E (MPa) 210,000     min max (%)

ν 0.28 3.50E-01 3.61E-01 1.50

σyield (MPa) 758
Stress                  

Mini graph

σ radial max. 

(MPa)

σ tangential max. 

(MPa)

Principal σ max. 

(MPa)

Mises (MPa): 206 -108 -291 -291

ε max: 0.05% Load Type: comp. comp. comp.

u max (m): 0

Geometry No. 3: 10% Poorly cemented with 1.5% ovality (φ = 17°, c = 5.25 Mpa).

σ radial max. 

(MPa)

σ tangential max. 

(MPa)

Principal σ 

max.(MPa)

 

Table 6-15: Comparison of 60-day results (top) with 28-day results (bottom) for Geometry 

No. 3. 
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CEMENT

-199 -99 -200

1.0% 2.0% 1.0%

greater greater greater

CASING

60-day σ radial 

max. (MPa)

60-day σ tangential 

max. (MPa)

60-day Principal                      

σ max. (MPa)

-109 -294 -294

0.9% 1.0% 1.0%

greater greater greater

60-day and 28-day cement comparison.

60-day and 28-day casing comparison.

60-day σ radial 

max. (MPa)

60-day σ tangential 

max. (MPa)

60-day Principal                    

σ max.(MPa)

 

Table 6-16: 60-day comparison with 28-day results (1.5% ovality) for Geometry No. 3. 

 

In summary, Geometry No. 1 is affected mostly by ovalization while Ge-

ometry No. 2 overall shows the lowest maximum stress values and Geometry No. 

3 exhibits the greatest maximum stresses. For all scenarios, plastic straining in the 

cement is dominantly controlled by compressive stress while tensile stress plays a 

stronger role in Geometry No. 3.  Plastic straining never occurs in the casing (See 

Figure 6-31). Furthermore, it displays values of von Mises stress no greater than 

50 percent of the SMYS (758 MPa) in all scenarios. Hence, it is acceptable to 

simulate the casing as elastic.  

 

6.9.5  
Stage 3: Eccentricity  

 A major part of this research is simulating poorly-cemented casing when it 

is eccentric to the wellbore. Eccentricity and poor cementing are the two main 

contributors of non-uniform loading upon the casing (Salehabadi, 2011 and Shen, 

2011). In addition, salt creep enhances the non-uniform loading by closing the 

wellbore over time. This leaves less spacing in the annular for the cement to dis-

tribute itself evenly and attain good quality. As was mentioned in chapter 5.1.1, 

eccentricity is defined as the ratio between the casing deviation to the annulus 

width at the time of cement displacement. Observing the results obtained from 

Stage 2, the deformed distance between the salt rock and the casing’s exterior 

surface decreases to 2.4 cm. This distance will also be referred to as the annular 

spacing. Small spacing alone creates a critical scenario. Hence this leaves little 
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room for the casing to translate, but it was hypothesized that eccentricity could 

still have an impact in these situations. It is sensible to simulate casings with a 

high eccentricity such as 90 percent demonstrated by Berger et al. (2004) since a 

small eccentricity would be meaningless in these circumstances. Knowing the 

annular spacing and also choosing an appropriate eccentricity percentage, the cas-

ing’s deviation δ can be found: 

 

For 90% eccentricity, δ ~ 2.16 cm 

 

The casing was shifted horizontally to the right by the distance δ where the same 

scenarios from Stage 2 would be simulated.  

 

6.9.6  
Stage 3: Results for Eccentricity 

 

The goal of simulating the casing with 90 percent eccentricity was not suc-

cessfully simulated in Abaqus®. Node rearrangement was very large in which the 

nodes would, for instance, surpass the displacement of the node lying in front of it 

pertaining to the same element (see Figure 6-32 below) or shared by elements. 

This resulted in negative eigenvalues in which remeshing was required. 

 

Figure 6-32: Excessively distorted 8-node quadrilateral element. 

 

The discrepancy was resolved by increasing the element sizes for the cement 

mesh combined with a slight reduction in eccentricity to 85 percent: 

 85% 100
2.4 cm


  

 2.0 cm   
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Figure 6-33 Abaqus sketch of the eccentric casing. 

 

The results show cement failure to be controlled by compression as was 

determined in the previous section for simulations having no eccentricity. Figures 

6-34 and 6-35 respectively show the radial stresses and tangential stresses induced 

by the salt formation immediately after cementing, validating the presence of non-

uniform loading.   

 

Figure 6-34: Non-uniform radial stress distribution induced by salt formation immediately 

after cementing (casing and cement not displayed). 
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Figure 6-35: Non-uniform tangential stress distribution induced by salt formation immedi-

ately after cementing (casing and cement not displayed). 

 

Results also indicate that the size of the defected area becomes less sensi-

tive due to eccentricity. With eccentricity, the values of compressive stress vary 

little with respect to the defected sizes for both 15 percent and 75 percent reduc-

tions of parameters E, v and c. On the contrary, Geometry No. 2 with eccentricity 

shows an increase in maximum compressive stress of almost 9 percent (see Figure 

6-36). Its geometry initially has flat boundary edges; however the small annular 

spacing provoked by eccentricity causes the midpoint of its extremities to pro-

trude, creating arrow-shaped edges. Such geometry portrays greater stress than 

geometries with sharp-cornered edges such as Geometry No. 1 and No. 3 since the 

latter geometries are more susceptible to failure. With the exception of Geometry 

No. 2, it can be concluded that the smaller the cement-filled annulur spacing is, 

the less control the geometry of the defected area has on the cement’s strength and 

failure. Confirmed by similar studies (Akgun et al., 2004), the analyses results 

indicate that the critical cement region for eccentric casings is almost guaranteed 

to be located in the area having the smallest annular spacing. 
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Figure 6-36: Effects upon the boundary in Geometry No. 2 due to eccentricity. 

  

All of the eccentricity simulations exhibit no significant tensile stress. This is pri-

marily due to the compressive stress from salt creep. Hence, cement failure con-

tinues to be controlled by compression. Comparing models with 15 percent and 75 

percent parameter reductions for an area size of 10%, the maximum principal 

compressive stress for the latter is nearly 88 percent greater than for the 15 per-

cent parameter reduction. In spite of plasticity, all three geometries yielded results 

that were quite similar. With a 15 percent reduction in E, v and c, plastic strain 

appears solely near the upper and lower boundaries of the defected cement region 

while its core shows no plastic strain.  This is also due to well closure provoked 

by salt creep, where the annular achieves an unbalanced geometry that leaves little 

spacing for cement filling. As a result, the non-uniform salt loading squeezes the 

cement through the annular area with little spacing and begins to fail along its 

extremities. 

 Ovality reduces the compressive stress upon the cement by no more than 3 

percent as shown in Figure 6-37. Furthermore, it leaves less room for the cement 

filling in the defected region (i.e., considering that the casing translates along the 

same axis of the maximum OD). Overall, casing ovalization increases the risk of 

poor cement jobs including weak cementation, voids or channels if casing eccen-

tricity exists.  

In terms of geometry, there is virtually no difference in compressive stress 

when comparing circular casings and ovalized casings with the exception of Ge-
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ometry No. 2. Similar to results from Stage 2, the greatest values of compressive 

stress are found along the upper and lower boundaries within the poorly-cemented 

area regardless of geometry or size. Although a concentric casing with Geometry 

No. 2 may portray a higher maximum compressive stress value in the cement, 

eccentricity creates a larger stress zone with higher magnitudes surrounding the 

boundaries of the defected cement (see Figure 6-38). Casing eccentricity therefore 

increases the possibility of cement failure due to compressive stress in salt for-

mations, knowing that compressive stress depends upon the defected cement’s 

geometry. 

 

 

Figure 6-37: Comparison of the maximum compressive stress in Geometry No. 2. 
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Figure 6-38: Comparison of the maximum compressive stress for Geometry No.1. 

 

As for Geometry No. 3, accurate eccentricity results could not initially be 

retrieved. With its steep angles combined with the thin annular space for meshing 

provoked negative eigenvalues to appear during simulation. An approach was 

taken to estimate the output stress values for an 85 percent eccentricity scenario. 

The results from Geometry No. 2 show a difference between a 33 percent eccen-

tric and 85 percent eccentric casing in terms of compressive stress of approxi-

mately 13 percent. This correlation was used to estimate the results for Geometry 

No. 3. Having a 33 percent eccentric casing successfully simulated for Geometry 

No. 3, its compressive stress values for an 85% eccentric casing were extrapolated 

by reducing the stresses by 13 percent as seen in Figure 6-39. As for tensile stress, 

no significant change was found by extrapolation. Consequently, Geometry No. 3 

is practically the most unfavorable of all three geometries.  
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Figure 6-39: Top: An estimate was made for Geometry No. 3 using data from Geometry 

No. 2. Bottom: A 13% difference in compressive stress was used to extrapolate the ap-

proximate value.  
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