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Abstract

Sousa, Camila Lima de; Temporão, Guilherme Penello (Advisor).
Post Processing in Quantum Cryptography Systems. Rio
de Janeiro, 2024. 101p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Quantum communication protocols are essential for secure transmis-
sion of information, utilizing the principles of quantum mechanics to achieve
security unattainable by classical cryptographic systems. Unlike traditional
methods that rely on conventional cryptographic keys, quantum protocols ex-
ploit unique properties of quantum systems to ensure communication security.
However, the practical implementation of quantum key distribution (QKD)
is challenged by errors introduced during the generation and transmission of
quantum states and the potential presence of eavesdroppers. This thesis ex-
plores some of the most commonly used strategies for error estimation, error
reconciliation, and privacy amplification within QKD systems. Through a li-
terature review and comprehensive simulations, the study evaluates the most
effective techniques in each area. The ultimate goal of this analysis is to deve-
lop a method to be implemented on Rede Rio Quântica, a metropolitan quan-
tum communication network interlinking the institutions PUC-Rio, CBPF and
UFRJ via optical fibers and UFF through a free-space channel. The findings
underscore the importance of optimizing error correction and privacy measures
to enhance the reliability and security of quantum communication networks.

Keywords
Quantum Key Distribution; Quantum Bit Error Rate; Error Estima-

tion; Error Reconciliation; Privacy Amplification.



Resumo

Sousa, Camila Lima de; Temporão, Guilherme Penello. Pós Pro-
cessamento em Sistemas de Criptografia Quântica. Rio de
Janeiro, 2024. 101p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Ja-
neiro.

Os protocolos de comunicação quântica são essenciais para a transmis-
são segura de informações, utilizando os princípios da mecânica quântica para
alcançar uma segurança inatingível por sistemas criptográficos clássicos. Di-
ferentemente dos métodos tradicionais que dependem de chaves criptográficas
convencionais, os protocolos quânticos exploram propriedades únicas dos sis-
temas quânticos para garantir a segurança da comunicação. No entanto, a
implementação prática da distribuição quântica de chaves (QKD) é desafiada
por erros introduzidos durante a geração e transmissão de estados quânticos e
pela possível presença de espiões. Esta dissertação explora algumas das estra-
tégias mais usadas para estimativa de erros, correção de erros e amplificação
de privacidade em sistemas de QKD. Por meio de uma revisão bibliográfica e
simulações abrangentes, o estudo avalia as técnicas mais eficazes em cada área.
O objetivo final desta análise é desenvolver um método a ser implementado
na Rede Rio Quântica, uma rede de comunicação quântica metropolitana que
interliga as instituições PUC-Rio, CBPF e UFRJ por meio de fibras ópticas e
a UFF através de um canal de espaço livre. Os resultados destacam a impor-
tância de otimizar as medidas de correção de erros e privacidade para melhorar
a confiabilidade e a segurança das redes de comunicação quântica.

Palavras-chave
Distribuição de Chaves Quânticas; Taxa de Erro de Bits Quânticos;

Estimação de Erro; Correção de Erro; Amplificação de Privacidade.
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“The world of quantum mechanics is not the
world of your intuition. Quantum mechanics
is the way the world really is.”

Peter Shor, MIT News.



1
Introduction

Cryptography transforms readable messages into ciphertext, an en-
crypted format unintelligible without the correct decryption key. It derived
from the Greek terms "crypto" and "graphy", which means hidden/secret and
writing respectively. It is fundamental for securing communication to protect
sensitive data from unauthorized access [1]. Encryption algorithms define how
messages are encoded, ensuring that the resulting ciphertext remains secure
from potential eavesdroppers. The key security requirement is that decryp-
tion without the corresponding key is infeasible. Although achieving absolute
security is challenging, cryptographic systems strive to be highly resistant to
unauthorized access. Initially focused on confidentiality, modern cryptography
now also addresses authentication, digital signatures and non-repudiation [2].

Regardless of classical cryptography’s strengths, the evolution of quan-
tum computing has challenged its security assumptions. Digital computers are
generally effective at simulating physical computing devices, leveraging their
efficiency in handling complex calculations and processes. However, quantum
mechanics introduces a paradigm shift that may challenge this conventional
understanding. Limitations imposed by time and memory in digital simulations
become more pronounced when addressing large-scale problems. Quantum me-
chanics alters these constraints by providing new approaches that could surpass
the capabilities of classical simulations [3].

As the 19th century discovery of electrodynamics significantly influenced
20th century technological advancements, quantum mechanics is increasingly
shaping contemporary science and technology. Quantum mechanics, forms
the basis for Quantum Cryptography (QC), which has transitioned from
theoretical foundations in the 1970s to practical applications in information
security today [4]. This transition reflects a broader shift in how physicists view
quantum mechanics, moving from theoretical puzzles to practical engineering
tools.

The application of quantum mechanics promises to enhance the speed
and security of computing. Quantum computers harness three fundamental
principles that distinguish them from classical systems: superposition, inter-
ference, and entanglement. Superposition enables quantum memory to exist
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in multiple states simultaneously, vastly expanding the computational possi-
bilities compared to classical memory, which is limited to a single state at a
time. Interference allows quantum systems to combine and manipulate these
superpositions in complex ways, enabling more efficient problem-solving. En-
tanglement, perhaps the most profound of these effects, allows different parts of
a quantum computer, or even separate quantum computers, to become corre-
lated in ways that classical systems cannot replicate. This correlation enhances
the computational power of quantum systems, enabling them to solve problems
that are intractable for classical computers [5].

The concept of Quantum Cryptography was formulated with notable
contributions by Wiesner in 1983 [6], and further advancements by Charles
H. Bennett and Gilles Brassard in 1984 [7]. This new approach leverages the
principles of quantum mechanics to further enhance security. Unlike classical
methods, quantum cryptography addresses vulnerabilities exposed by potential
future quantum computers, providing advanced levels of protection. This
ensures the integrity of information against increasingly complex attacks,
marking a major leap in securing communications.

Advancements in quantum cryptography have made quantum communi-
cation possible, enabling the transmission of quantum bits (qubits) over net-
works. The security of these systems is rooted in the fundamental quantum
phenomena of superposition and entanglement [8], which allow qubits to ex-
ist in multiple states simultaneously and to be deeply interconnected across
distances in a way that classical systems cannot replicate. However, a critical
element of quantum security is further reinforced by the no-cloning theorem
[9], a foundational principle in quantum mechanics. The no-cloning theorem
asserts that it is impossible to create an identical copy of an arbitrary un-
known quantum state. Since no unitary transformation can map two distinct
quantum states onto the same state, exact cloning becomes impossible.

This principle stands in direct contrast to classical information, where
perfect duplication of data is routine. Any attempt to clone a quantum state
would disturb it due to wavefunction collapse, making eavesdropping inher-
ently detectable. As a result, quantum key distribution (QKD) protocols lever-
age this principle to safeguard the transmission of secret keys, as the the-
orem ensures that any interception of qubits introduces errors that expose
an eavesdropper’s presence. Nevertheless, challenges remain, including main-
taining qubit coherence over long distances and developing efficient quantum
repeaters to extend the range and reliability of quantum communication.

With current technology, the realistic error rates on the sifted key are
a few percent, compared to the 10−9 error rate typical in optical communi-
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cation [4]. Still quantum communication protocols are vulnerable to errors
from technical imperfections in the channel or equipment and potential eaves-
dropping. To ensure secure communication, additional steps such as error rate
estimation, error reconciliation, and privacy amplification are necessary. The
following chapters will explore these topics in detail and include simulations
to clarify these concepts.

1.1
Motivation

Quantum Networks are designed to enable the transmission, distribu-
tion and sharing of quantum states among users spread across different geo-
graphic locations. Such networks would offer many applications. In the realm
of quantum computing, they enable remote access to quantum computers, al-
lowing users to leverage computational power from afar. In quantum commu-
nications, these networks support distributed cryptographic protocols between
different nodes, enhancing security. Additionally, quantum metrology bene-
fits from quantum networks in applications such as interferometric telescopes
[10], clock synchronization [11] and conducting tests of quantum physics, like
loophole-free Bell inequality violations [12].

Commonly, this type of networks are confined to specific geographic
locations. To achieve their full potential, it is crucial for these networks to be
globally interconnected, enabling seamless exchange, sharing and measurement
of qubits between any two nodes. This worldwide integration defines the vision
of the Quantum Internet, facilitating enhanced communication and computing
capabilities beyond local constraints [13, 14].

In a collaborative effort to advance quantum technology in Brazil,
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), alongside
Universidade Federal Fluminense (UFF), Universidade Federal do Rio de
Janeiro (UFRJ) and Centro Brasileiro de Pesquisas Físicas (CBPF), developed
a specialized center focusing on quantum networks and quantum internet.
This involves the creation of a quantum communication network, Rede Rio
Quântica (RRQ), in Rio de Janeiro. The central hub at PUC-Rio in Gávea is
interconnected with CBPF in Urca and UFRJ in Ilha do Fundão via optical
fibers from the Rede-Rio de Computadores/FAPERJ and links to UFF in
Gragoatá/Niterói through a free-space optical link, as illustrated in Figure
1.1.

In Figure 1.2, users of RRQ are represented by shaded boxes: UFRJ
(Alice), PUC-Rio (Charlie), and UFF (Debbie). Bob is split into CBPF1
and CBPF2, representing two different laboratories. The network’s topology
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Figure 1.1: Basic scheme of Rede Rio Quântica structure. Image: Google Maps.

employs the CAL19 variant of the Twin-Field Quantum Key Distribution (TF-
QKD) protocol [15], incorporating a large Sagnac interferometer [16] to connect
all users. The developed scheme, offers several advantages over protocols used
in commercially available systems today.

In the CAL19 TF-QKD scheme, the qubit is encoded in the direction
of propagation through the Sagnac, forming two orthogonal states |⟲⟩ and
|⟳⟩. Charlie (PUC-Rio) prepares the transmission of a fixed state given by
|ψ⟩ = 1√

2(|⟳⟩ + i |⟲⟩).
Alice and Bob then introduce relative phase shifts to the clockwise

component, affecting the returned state to Charlie as |ψ′⟩ = 1√
2(ei(ϕA+ϕB) |⟳⟩+

i |⟲⟩). The Sagnac interferometer’s automatic phase stabilization removes the
need for active phase control, unlike other TF-QKD systems. Synchronization
is achieved using a Dense Wavelength Division Multiplexing (DWDM) channel,
with Wavelength Division Multiplexing (WDM) elements ensuring proper
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Figure 1.2: Illustration of RRQ scheme.

timing.
To incorporate Debbie (UFF) into the network, a polarization beam split-

ter at CBPF2 and a Faraday mirror at UFF are used, enabling effective opera-
tion of the Sagnac interferometer in free-space connections. Photons traveling
from CBPF to UFF exhibit vertical polarization in a clockwise direction and
horizontal in a counterclockwise direction. Polarization controllers are installed
before coupling with the telescope at CBPF2 to address time-induced polar-
ization state changes.

Finally, 1x2 optical switches at PUC-Rio and CBPF1 reconfigure the
Sagnac interferometer to bypass non-participating users, reducing losses and
improving key generation rates during specific key exchanges. This setup is
particularly useful when Charlie and Debbie engage in key exchange, as the
switches at PUC-Rio facilitate the bypass, optimizing system efficiency.

This work proposes a post-processing protocol designed to enhance the
security of information transmission within Rede Rio Quântica. By focusing
on optimizing both data integrity and confidentiality, the proposed protocol
offers a framework that strengthens the network’s resilience against potential
interception and data loss. It ensures that transmitted information remains se-
cure by incorporating advanced cryptographic techniques and error correction
methods. This dual approach safeguards the data from unauthorized access
and also minimizes the risk of data corruption, thereby maintaining the over-
all reliability of the quantum communication network.



2
Theoretical Background

This chapter provides the fundamental concepts for the understanding of
this work. It begins with an introduction to quantum mechanics, emphasizing
its foundational postulates, which are essential for comprehending the behavior
of quantum systems. Furthermore, the chapter delves into the concept of
Quantum Bit Error Rate (QBER), a parameter for assessing the integrity and
security of quantum communication systems and concludes with principles of
optical interferometry.

2.1
Postulates of Quantum Mechanics

This section provides a summary of quantum mechanics, highlighting
its role as the mathematical framework used to develop physical theories. Al-
though quantum mechanics does not dictate specific physical laws, it provides
the mathematical and conceptual tools necessary for their development.

The postulates of quantum mechanics emerged from a process filled with
assumptions and guesswork. This iterative approach involved exploring ideas
and refining them over time to establish the foundational principles of the
theory [17]. While the sequence and number of quantum mechanics postulates
can differ among various sources, they convey the same fundamental ideas.
This work references [18] due to its detailed approach.

1º Postulate: a physical system’s state is represented by a complex
vector known as the state vector, which belongs to a mathematical structure
called the Hilbert space [19] or state space. Using Dirac’s notation [20], a
quantum state is symbolized as |ψ(t)⟩.

2º Postulate: physical quantities that can be measured are represented
by observable operators within the corresponding Hilbert space.

3º Postulate: measurements yield only the eigenvalues of the observable
operator. For an observable Â and an eigenstate |un⟩, the measurement result
is the eigenvalue an, as shown in equation 2-1.

Â |un⟩ = an |un⟩ (2-1)
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4º Postulate: the probability of obtaining a specific eigenvalue when
measuring an observable is given by the square modulus of the projection of
the quantum state onto the corresponding eigenstate of that observable. For
the case of a non-degenerated spectrum, the probability P (an) of obtaining the
eigenvalue an when measuring an observable is determined by the expression
2-2.

P (an) = | ⟨un|ψ⟩ |2 (2-2)

5º Postulate: following a measurement, the quantum state collapses to
the eigenstate associated with the observed eigenvalue. This collapse corre-
sponds to the projection of the initial state onto the relevant eigenstate, as
formally described in equation 2-3).

|ψ′⟩ = Pan |ψ⟩√
⟨ψ|Pan |ψ⟩

(2-3)

6º Postulate: the Schrödinger equation 2-4 [21], determines the time
evolution of the state |ψ(t)⟩, with Ĥ(t) representing the Hamiltonian operator.

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ (2-4)

In cases where the Hamiltonian does not depend on time, the Schrödinger
equation simplifies to the expression given in equation 2-5.

|ψ(t)⟩ = e− iĤ
ℏ t |ψ0⟩ (2-5)

Through the use of these mathematical tools, one can conduct an analysis
of classical systems, such as the harmonic oscillator, within the domain of
quantum mechanics. This approach enhances the understanding of states
that are commonly used in quantum communications, thereby deepening the
comprehension of their practical applications.

2.2
Quantum Harmonic Oscillator

The harmonic oscillator is a foundational concept in physics, with appli-
cations across classical and quantum mechanics. It is essential for understand-
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ing the quantization of energy levels and the behavior of quantum fields. In
the context of a one-dimensional cavity containing an electromagnetic field, the
Hamiltonian of this system is expressed through equation 2-6, as derived from
classical principles [22]. Within this framework, the operators p̂ and q̂ represent
the momentum and position, respectively, offering a detailed representation of
the system’s dynamics.

Ĥ = 1
2

(
p̂2 + ω2q̂2

)
(2-6)

To simplify the determination of permissible energy levels and their cor-
responding quantum states, illustrated in figure 2.1, one can employ the an-
nihilation (â) and creation (â†) operators. By employing these non-observable
operators, defined in equations 2-7 and 2-8, the calculations become more
straightforward, making it easier to comprehend the system’s quantum behav-
ior. Within this context, the Hamiltonian can be reformulated in terms of these
operators, as shown in Equation 2-9.

â = (2ℏω)−1/2(ωq̂ + ip̂) (2-7)

â† = (2ℏω)−1/2(ωq̂ − ip̂) (2-8)

Ĥ = ℏω
(
â†â+ 1

2

)
(2-9)

The number operator â†â, denoted as n̂, is fundamental to the analysis of
quantum systems. Its eigenstates, labeled |n⟩, also serve as eigenstates of the
Hamiltonian. Physically, this operator characterizes Fock states [23], which
represent quantum states with a well-defined number of photons within the
cavity. Each Fock state is associated with an energy level En, which corresponds
to an eigenvalue of the Hamiltonian Ĥ. Therefore, investigating the interaction
of the creation operator with the Hamiltonian is essential for understanding
their respective functions and implications.

Ĥ(â† |n⟩) = (En + ℏω)(â† |n⟩) (2-10)
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Figure 2.1: The energy levels of a general harmonic oscillator.

Ĥ(â |n⟩) = (En − ℏω)(â |n⟩) (2-11)

The creation operator increases the system’s energy by ℏω, effectively
adding one photon with frequency ω. In contrast, the annihilation operator
reduces the system’s energy by ℏω by removing a photon of the same frequency.
When applied to the Fock state, these operators lead to the expressions given
in equations 2-12 and 2-13. The following derivations will provide the explicit
values for the allowed energy levels, En, represented in equation 2-14.

â |n⟩ =
√
n |n− 1⟩ (2-12)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (2-13)

En = ℏω
(
n+ 1

2

)
(2-14)

In the analysis of single-mode fields, Fock states play a crucial role. They
constitute an orthogonal and complete set, serving as basis for describing pho-
ton systems in quantum mechanics. This orthogonality and completeness are
fundamental, allowing a precise description of quantum states in a given mode.
The significance of Fock states extends to practical applications, including
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quantum information processing, quantum computing and quantum cryptog-
raphy, where they enable high-precision experiments and the development of
critical technologies like single-photon sources and detectors [22].

2.3
Weak Coherent States

In quantum optics, a coherent state is characterized by a well-defined
phase and amplitude, closely resembling a classical electromagnetic field. Weak
coherent states extend this concept by considering states with relatively low
photon numbers, where quantum effects remain significant, yet the states are
not as fundamentally quantum as Fock states [23, 24].

Weak Coherent States (WCSs) [25] offer a practical and cost-effective ap-
proach for the probabilistic generation of single-photon pulses. Weak Coherent
Pulses (WCPs) represent practical instances of WCSs, where theoretical un-
derstandings of WCSs are applied to generate and use low-photon-number
pulses in quantum communication systems. This technique, involving a faint
laser, is widely employed in quantum cryptography systems designed for QKD.
Due to their laser-like nature, WCPs are characterized by Fock states and are
modeled by a Poissonian distribution [26]. In the Fock state basis, a WCP can
be represented as follows:

|α⟩ = e− |α|2
2

∞∑
n=0

αn

√
n!

|n⟩ , (2-15)

Where α denotes the complex coherent amplitude and |n⟩ represents the
Fock state with n photons. The probability of observing n photons in the weak
coherent pulse follows a Poissonian distribution:

P (n) = |α|2ne−|α|2

n! . (2-16)

This distribution describes the likelihood of different photon number
outcomes, where |α|2 represents the average photon number. The inherent
probabilistic nature of photon counts in WCSs within a given time interval
prevents the deterministic generation of single-photon pulses. This stochastic
behavior requires management of the probabilities associated with the emission
of both multi-photon and vacuum pulses. The strong correlation between these
probabilities underscores the need for precise control to preserve the integrity
of the quantum communication system.
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In the context of QKD systems, the presence of multi-photon pulses
must be avoided due to the potential vulnerability to eavesdropping through
a photon-number splitting attack [27]. Such attacks exploit the additional
photons to gain unauthorized access to the key information. To mitigate
this vulnerability, one can implement substantial attenuation of the source,
ensuring that the average photon count per pulse remains significantly below
one. This strategy effectively reduces the probability of multi-photon emissions,
thereby enhancing the security and reliability of the QKD system.

2.4
QBER

Quantum Bit Error Rate (QBER) is a metric used to assess the integrity
and security of the transmitted quantum keys. It quantifies the proportion
of erroneous bits detected during the key generation process, reflecting the
presence of errors or potential eavesdropping activities. Accurate measurement
of QBER is essential for evaluating the overall performance of QKD systems,
as it directly influences the feasibility of secure communication.

Formally, it is defined as the ratio of incorrect bits to the total number of
bits exchanged between users [4]. Typically, QBER is expected to be low, with
an ideal target being below 11% [28]. The QBER can be expressed as follows:

QBER = Nwrong

Nright +Nwrong
= Rerror

Rsift +Rerror
≈ Rerror

Rsift
(2-17)

The raw rate, denoted as Rraw represents the total bit rate received by
Alice and Bob before any basis reconciliation has been performed. This rate
can be calculated by multiplying the pulse rate frep, the average number of
photons per pulse µ, the probability of a photon reaching the receiver tlink,
and the probability of photon detection η.

The sift rate is defined as half of the raw key rate. This is due to the
fact that the sift key includes only those instances in which Alice and Bob
have selected compatible measurement bases. Consequently, the sift rate can
be expressed as follows:

Rsift = 1
2Rraw = 1

2qfrepµtlinkη (2-18)

The factor q assumes values between 0 and 1, typically being 1
2 or 1,

depending on the specific phase encoding configurations employed to correct
for non-interfering path combinations.
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The error rate, denoted as Rerror, as presented in Equation 2-17, can
be divided into three components. The first component is the rate Ropt,
which quantifies the proportion of photons detected by the incorrect detector,
with a probability popt, due to factors such as interference or polarization
misalignment. This rate is expressed as:

Ropt = Rsiftpopt = 1
2qfreqµtlinkpoptη (2-19)

The second component, denoted as Rdet, arises from spurious detections,
commonly known as dark counts. These are erroneous signals detected due
to internal noise in the detectors rather than actual photon events and are
independent of the bit rate. However, errors are only generated when these
dark counts occur within a specific time window where a photon detection is
expected.

Therefore, Rdet is determined by pdark, which represents the probability
of registering a dark count within a given time window for each detector, and
by n, the number of detectors. Additionally, Rdet incorporates two 1

2 factors.
One accounts for the probability of a dark count occurring when Alice and
Bob choose different bases, and the other represents the probability of a dark
count being registered by the correct detector. Thus, it can be written as:

Rdet = 1
2

1
2freqpdarkn (2-20)

The final component, Racc, is relevant exclusively in protocols employing
entanglement. This error rate arises due to the presence of uncorrelated
photons, which can occur when the photon sources generate multiple pairs.
Thus, it can be described as:

Racc = 1
2

1
2paccfreqtlinknη (2-21)

Where pacc represents the probability of additional photons being present
within a specific time window. By integrating these components, the QBER
can be formulated as:

QBER = Ropt +Rdet +Racc

Rsift

= QBERopt +QBERdet +QBERacc

(2-22)
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In quantum communication systems, QBER is a useful measure of accu-
racy. By identifying and correcting errors through error correction protocols,
and by employing error estimation techniques to optimize these protocols, the
integrity and security of quantum transmissions are maintained. This com-
bined approach ensures that quantum communication systems remain both
secure and reliable.

2.5
Optical Interferometry

Interferometry is a technique used in physics and optics that involves the
superposition of waves to produce interference patterns, thereby providing de-
tailed insights into the properties of light and other waves. This technique finds
applications across various scientific disciplines, including physics, astronomy,
chemistry, and engineering.

The precision and resolution offered by interferometry render it a valuable
tool for optical sensors. The interference patterns generated can reveal infor-
mation about wave sources, distances and variations in physical properties.
Moreover, these patterns can be controlled through external perturbations,
such as modulating light intensity using electrical signals. Hence, this discus-
sion will focus on three principal configurations of light interferometers and
will include calculations of electromagnetic field interactions [29, 30].

2.5.1
Sagnac

The Sagnac interferometer, a device rooted in the principles of interfer-
ence, is particularly notable for its application in ring interferometry. Initially
described by French physicist Georges Sagnac in 1913 [16], this interferome-
ter is used in rotation sensors and gyroscopes due to its capacity to measure
angular rotation by correlating it with phase shifts in the beams.

Typically, it is composed of a beam splitter, a ring-shaped optical path
and multiple mirrors. The light from a source is divided into two counter-
propagating beams that traverse the closed loop of the ring. Considering the
input electromagnetic field as U1, as figure 2.2 shows, one can right the the
split fields as follows:

U2 = 1√
2
U1e

j π
2 (2-23)
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Figure 2.2: Sagnac Interferometer Scheme.

U3 = 1√
2
U1 (2-24)

In this context, U2 and U3 represent the beams that pass through and
reflect off the beam splitter, respectively. The factor 1/

√
2 refers to the power

splitting at the beam splitter, as power is proportional to the absolute square of
the field amplitude. The phase shift of the transmitted beam arises from energy
and momentum conservation considerations [31, 32]. The resulting expressions
for the beams can be written as follows:

U4 = 1√
2
U2e

jϕ + 1√
2
U3e

j π
2 +jϕ (2-25)

U5 = 1√
2
U2e

j π
2 +jϕ + 1√

2
U3e

jϕ (2-26)

Where ϕ represents the additional phase acquired along the interferome-
ter path. Furthermore, using equation 2-23 and 2-24, the output fields can be
expressed in terms of the input fields as follows:

U4 = 1
2U1e

j π
2 +jϕ + 1

2U1e
j π

2 +jϕ = U1e
j π

2 +jϕ (2-27)
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U5 = 1
2U1e

jπ+jϕ + 1
2U1e

jϕ = 1
2(U1 − U1)ejϕ = 0 (2-28)

Therefore, output at the opposite port of the beam splitter is zero.
However, this result can vary if an additional phase difference is introduced
between the internal beams, such as in applications for gyroscopes [33, 34]. In
contrast, the output along the same path as the incoming beam retains the
same power but acquires an additional phase of π/2 + ϕ.

In Rede Rio Quântica, the Sagnac interferometer is chosen for its auto-
matic phase stabilization, which eliminates the need for active phase control
typically required in other QKD systems. This feature simplifies the network’s
architecture and enhances its reliability, making it an optimal choice for a
large-scale, secure quantum communication network like Rede Rio Quântica.

2.5.2
Mach-Zehnder

U1 U2

U3

U4

U5

BS1

BS2

M1

M2

Figure 2.3: Mach-Zehnder Interferometer Scheme.

Originally developed by physicists Ludwig Mach and Ludwig Zehnder,
the Mach-Zehnder interferometer is a tool in wave optics, used to generate and
analyze interference patterns. This device operates by splitting a beam of light
with two beam splitters and redirecting the light paths using mirrors, which
recombine to produce interference effects. Its design and functionality make it
indispensable in various scientific fields, including quantum mechanics, optical
communications, and precision metrology [35, 36].

Figure 2.3 illustrates a balanced Mach-Zehnder interferometer, where
both beams traverse identical optical paths. Consider U1, the input electro-
magnetic field. The beam is divided into two paths, producing fields U2 and
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U3. Since the balanced nature of the interferometer, both beams acquire the
same phase shift, denoted as ϕ. One can write these fields as in equation 2-23
and 2-24. Upon reaching the final beam splitter, these fields result in output
fields U4 and U5, which can be described as functions of the initial input field.

U4 = 1√
2
U2e

j π
2 +jϕ + 1√

2
U3e

jϕ = 1
2U1e

jπ+jϕ + 1
2U1e

jϕ = 0 (2-29)

U5 = 1√
2
U2e

jϕ + 1√
2
U3e

j π
2 +jϕ = 1

2U1e
j π

2 +jϕ + 1
2U1e

j π
2 +jϕ = U1e

j π
2 +jϕ (2-30)

From the equations presented, it is clear that in one of the output
ports of the beam splitter, the fields are out of phase, resulting in destructive
interference, which effectively cancels the fields. In the other output port, the
fields are in phase, leading to constructive interference. The resultant output
field in this port matches the input field but with an additional phase shift of
π/2 + ϕ.

U1 U2

U3

U4

U5

BS1

BS2

M1

M22

1

Figure 2.4: Unbalenced Mach-Zehnder interferometer.

Now, let us examine the scenario where a phase difference is introduced
between the beams. In this case, the field in the upper arm, denoted as U3,
acquires an additional phase shift ϕ1, while the field in the lower arm gains
a phase shift ϕ2. This configuration is illustrated in figure 2.4, which includes
two phase shifters to illustrate the phase difference. The resulting fields U4 and
U5 can then be expressed as follows.
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U4 = 1√
2
U2e

j π
2 +jϕ2 + 1√

2
U3e

jϕ1 = 1
2U1

(
ejϕ1 − ejϕ2

)
(2-31)

U5 = 1√
2
U2e

jϕ2 + 1√
2
U3e

j π
2 +jϕ1 = 1

2U1
(
ejϕ1 + ejϕ2

)
(2-32)

In this scenario, the output fields are observed to depend on the addi-
tional phases introduced along the two paths. The power of these fields can be
expressed in terms of the input optical power, (P1 = |U1|2), as shown bellow.

P4 = |U4|2 = P1

2 [1 − cos(∆ϕ)] (2-33)

P5 = |U5|2 = P1

2 [1 + cos(∆ϕ)] (2-34)

Here, ∆ϕ = ϕ1 − ϕ2 represents the phase difference between the two
paths. This dependency of output power on the phase difference enables the
Mach-Zehnder interferometer to serve in various applications, such as sensors
[37] and light modulators [38]. Furthermore, Mach-Zehnder modulators are
commonly employed in QKD for generating WCPs [39].

2.5.3
Michelson

The Michelson interferometer is a fundamental optical instrument de-
signed to produce interference patterns of light waves. Invented by the Amer-
ican physicist Albert A. Michelson in the late 19th century, the device gained
prominence through its use in the Michelson–Morley experiment [40], which
provided one of the strongest challenges to the Aether theory. Today, the
Michelson interferometer is widely used across various fields, including spec-
troscopy, metrology, and the testing of optical materials.

Figure 2.5 illustrates a standard Michelson interferometer. An input field
U1 enters a beam splitter, which divides it into two fields, U2 and U3. These
fields, as described by equations 2-23 and 2-24, travel along different paths,
are reflected by mirrors and then return to the beam splitter. The resulting
fields, U4 and U5, follow the same equations as those for the Mach-Zehnder
interferometer, represented by equations 2-31 and 2-32. Therefore, the power
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Figure 2.5: Michelson Interferometer Scheme.

of the output fields, P4 and P5, depends on the input field and the phase
difference between the two paths.

Adjusting the position of the mirrors alters the path difference, a feature
employed to investigate interference phenomena or measure physical quantities
such as refractive index changes in gases [41]. The Michelson interferometer
also finds applications in numerous areas such as medicine [42] and astronomy
[43].



3
Quantum Communication Protocols

As advancements in quantum computing pose new challenges to tradi-
tional cryptographic systems, Quantum Key Distribution (QKD) has emerged
as a groundbreaking solution. QKD offers unparalleled security by ensuring
that once a quantum transmission is completed, no classical transcript remains
available for eavesdroppers to analyze or decrypt. Unlike conventional crypto-
graphic methods, where intercepted data might be stored and later decrypted
with advanced computational resources, QKD provides long-term protection
by fundamentally eliminating the risk of future data breaches [44].

In a QKD protocol, two parties establish a secure key through the use of a
quantum channel for transmitting quantum signals and a classical channel for
authentic communication. Although the quantum channel can be vulnerable to
eavesdropping, any attempt to intercept the transmission introduces detectable
disturbances. Consequently, both parties must estimate the extent of potential
information leakage to ensure the key’s security, as any degradation in the
quantum channel indicates possible information loss [45].

The evolution of QKD has led to the development of a range of quantum
communication protocols, each designed to address specific challenges in both
quantum and classical cryptography. This chapter will explore several of these
protocols, detailing their mechanisms and advantages.

3.1
BB84

The BB84 protocol, introduced by Charles Bennett and Gilles Brassard
in 1984 [7], represents one of the pioneering algorithms in the field of Quantum
Key Distribution. This protocol can be categorized into three distinct phases:
the preparation and transmission of quantum states, the reconciliation of
measurement bases, and the estimation of the quantum bit error rate. To
simplify the analysis and focus on the core principles, it is assumed that
all components involved, the photon source, detectors and optical devices,
are ideal and operate with perfect fidelity. These assumptions facilitate the
understanding of the protocol’s theoretical framework.

Initially, one of the parties, commonly referred to as Alice, prepares the
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quantum states by selecting a random bit sequence, the key, and encoding
it into the polarization modes of photons. She the randomly chooses a basis
for encoding, either the computational basis (|0⟩ and |1⟩) or the Hadamard
basis (|+⟩ and |−⟩), which correspond to the rectilinear and diagonal bases,
respectively. After preparing each photon, Alice transmits it through a quan-
tum channel, such as an optical fiber, to the other party, known as Bob. This
quantum channel can be modeled as a random polarization rotator due to
variations in the medium’s birefringence, which can be influenced by factors
such as temperature and strain [46, 47].

Before receiving the photons, Bob randomly selects the basis in which
he will measure each incoming photon. If Bob selects the same basis as Alice,
he will correctly determine the bit with 100% probability. Alternatively, if he
chooses a different basis, his probability of obtaining the correct bit is 50%.
For example, if Alice transmits a bit encoded as |+⟩, which corresponds to
0 in the Hadamard basis, and Bob measures using the rectilinear basis, the
probability of success is:

Ps = | ⟨0|+⟩ |2 = | ⟨0| 1√
2

(|0⟩ + |1⟩)|2 = 1
2 (3-1)

Therefore, to reduce uncertainties over the mismatched basis, Alice and
Bob perform a basis reconciliation process. They use a public classical channel
to exchange information about the bases they used for each transmission. When
they find that different bases were chosen, they discard the corresponding data.
On average, half of the key is rejected due to the random nature of the base
selection.

Alice’s polarization basis ↔ ↗↙ ↕ ↔ ↖↘ ↕ ↕ ↔ ↗↙ ↕
Alice’s bit sequence 0 0 1 0 1 1 1 0 0 1
Bob’s chosen basis × × + × + + × + + +
Bob’s polarization result ↖↘ ↗↙ ↕ ↖↘ ↔ ↕ ↗↙ ↔ ↕ ↕
After basis reconciliation ↗↙ ↕ ↕ ↔ ↕
Shared key 0 1 1 0 1

Table 3.1: Example of BB84 QKD. The table illustrates the polarization bases
selected by Alice, where ↔ and ↕ correspond to the bits 0 and 1, respectively,
in the horizontal basis. Similarly, the Hadamard basis is represented by ↗↙
and ↖↘. Bob then chooses between these two bases, denoted here as + and ×.
Finally, Alice and Bob publicly compare their chosen bases and discard any
measurements where the bases do not match.

Following basis reconciliation, Alice and Bob proceed to estimate the
QBER. They randomly select a portion of the remaining key and exchange
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the bit information (0 or 1) through a public classical channel. These bits
are discarded to prevent potential interception by eavesdroppers. This stage
is required for assessing the quality of the quantum channel, particularly if it
exhibits any loss or noise. Additionally, the estimated QBER helps detect the
presence of an eavesdropper, often referred to as Eve. If the QBER exceeds or
equals 11%, it indicates a possible eavesdropping attempt [28]. This threshold
is based on the no-cloning theorem, which states that quantum states cannot
be copied or amplified without introducing noise [48]. In such scenarios, it
is advisable to discard the entire key and restart the protocol to ensure the
security of the communication.

3.2
E91

In 1991, Artur K. Ekert introduced the E91 protocol [49]. This protocol
represented a major advancement by incorporating quantum entanglement
as a fundamental component for secure key distribution. Entanglement can
be defined as a quantum phenomenon where two or more particles become
interconnected in such a way that the quantum state of each particle cannot
be described independently of the others. Consequently, even if the entangled
particles are separated by large distances, measuring the state of one particle
instantaneously determines the state of the other particle [22, 50, 51].

Given this definition, the steps of the E91 protocol can be outlined
as follows: Initially, Alice and Bob each randomly select a measurement
basis. They then perform measurements on their respective entangled photons
using these chosen bases. Upon completion of their measurements, Alice and
Bob exchange information about the bases they used and categorize their
measurement results into two distinct groups.

The first group comprises results obtained using different measurement
bases, while the second group consists of results obtained with the same basis.
Measurements where one or both parties fail to register are discarded. Alice
and Bob then publicly disclose the measurement results from the first group,
where different bases were used, while keeping the results from the second
group confidential.

The results obtained from measurements performed with different bases
are used to compute the Clauser-Horne-Shimony-Holt (CHSH) correlation
function, defined by equation 3-2, a specific Bell inequality [52]. The violation of
this inequality implies that the measured state exhibits non-local correlations,
a hallmark of entangled states [53]. This demonstration of non-locality can
only be achieved with entangled states.
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S = E(a1, b1) − E(a1, b3) + E(a3, b1) + E(a3, b3) (3-2)

Where E(ai, bj) represents the correlation coefficient between the mea-
surements conducted by Alice along ai and those performed by Bob along bj,
given by:

E(ai, bj) = −ai · bj (3-3)

If S = 2
√

2 [54, 55], the subset of measurements where the same basis
was used can be reliably employed to form a secure key. This ensures that the
results obtained from these measurements are anti-correlated. Conversely, if
the value of S deviates from this threshold, it suggests that the photons are
not entangled, which could indicate the presence of an eavesdropper, Eve.

In the scenario where Eve attempts to disrupt the key distribution
by replacing Alice and Bob’s measurements with her own, the absence of
knowledge about the chosen bases prevents her from avoiding detection. Thus,
any attempt by Eve to intercept or manipulate the measurements will be
revealed through the violation of the Bell inequality. Consequently, the E91
protocol provides a mechanism for verifying the security of key distribution by
leveraging entanglement to detect eavesdropping attempts.

3.3
Decoy States

Although QKD is theoretically secure [56, 57], practical implementa-
tions often encounter significant challenges that can compromise this security.
One prominent issue arises from the use of highly attenuated lasers as photon
sources. These sources, while typically effective, may occasionally emit pulses
containing multiple photons, creating a vulnerability to advanced eavesdrop-
ping techniques, such as photon splitting attacks. The intended security of
QKD systems can be compromised by these real-world imperfections [58].

In essence, within the standard BB84 protocol, only the signals origi-
nating from single-photon pulses emitted by Alice can be assured of security.
According to the approach outlined by GLLP [59], the secure key generation
rate, per signal state emitted by Alice, can be expressed as:

S ≥ Qµ

{
−H2(Eµ) + Ω

[
1 −H2

(
Eµ

Ω

)]}
(3-4)
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The variable Qµ indicates the gain, i.e., the ratio of detection events by
Bob to the total signals emitted by Alice when both use the same basis, and
Eµ represents the associated QBER. The parameter Ω refers to the fraction
of detection events by Bob that originate from single-photon signals emitted
by Alice, while eN indicates the QBER of an n-photon signal. Additionally,
H2 is the binary Shannon entropy [60], which measures the uncertainty in the
system’s information content.

In a photon splitting attack, an eavesdropper can measure the number of
photons in each pulse emitted by the sender. By suppressing single-photon
signals and intercepting the multi-photon pulses, Eve can potentially gain
information about the key without being detected. This type of attack poses
a significant threat to the security of QKD protocols, as it compromises the
integrity of the key distribution process.

To address this issue, decoy state protocols have been developed. Hwang’s
introduction of decoy states in [61] represented a significant breakthrough,
although his initial security analysis was heuristic. Subsequent advancements
have refined this method, enabling its implementation with current technology
[58]. These protocols introduce decoy states, signal states with varying photon
number distributions that are indistinguishable from standard BB84 states to
an eavesdropper.

Decoy states are used exclusively for detecting eavesdropping attempts,
while standard signal states serve for key generation. The parameters Yn and
en are defined by the photon number n of the state. Specifically, Yn represents
the probability that an n-photon signal results in a detection event, including
contributions from background noise such as dark counts and stray light.
Similarly, the QBER, en, also depends exclusively on the photon number n
of the state:

Yn(signal) = Yn(decoy) = Yn (3-5)

en(signal) = en(decoy) = en (3-6)

By randomly varying the intensity of these pulses, Alice and Bob can
more effectively detect the presence of an eavesdropper. Comparing the detec-
tion rates between decoy states and signal states allows for a more accurate
estimation of the quantum channel’s loss and error rates.

Given that the relations between the variables Qµ and Yn, as well as
between Eµ and en, are linear, Alice and Bob can use the experimental values
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of Qµ and Eµ to accurately deduce the corresponding values of Yn and en

with high confidence. This allows them to set acceptable ranges for Yn and
en across all photon numbers n. Consequently, any eavesdropping attempt
that significantly alters these values will be detected through the decoy state
method.

To address the inefficiencies in practical error correction protocols, [58]
incorporates a correction factor f(e) > 1 in equation 3-4, which is based on
the ideal Shannon limit. This adjustment compensates for deviations from the
theoretical performance, ensuring a more accurate representation of the key
generation rate.

S ≥ q {−Qµf(Eµ)H2(Eµ) +Q1 [1 −H2 (e1)]} (3-7)

The work presented by the authors [58] demonstrate that their decoy
state method enhances the key generation rate in QKD when compared to the
GLLP [59] framework. This method improves efficiency by producing higher
key rates and also extends the distance over which secure QKD can be achieved,
surpassing previous limitations.

3.4
MDI-QKD

The Measurement-Device-Independent Quantum Key Distribution
(MDI-QKD) protocol enhances the security of Quantum Key Distribution
(QKD) systems by addressing vulnerabilities associated with measurement
devices, which are treated as untrusted and potentially compromised. In
conventional QKD protocols, the security is heavily reliant on the assumption
that the measurement devices are secure, which can be a substantial risk.
MDI-QKD overcomes this limitation by employing principles of entangled pho-
ton pairs and quantum correlations to securely establish a key between remote
parties, independent of the trustworthiness of the measurement apparatus.

A fundamental aspect of MDI-QKD is the elimination of the necessity for
users to fully trust their measurement devices. Instead, the protocol operates
on the premise that even if the measurement devices are compromised, the
integrity of the key exchange can still be maintained. By utilizing a set of
entangled particles and comparing measurement results between the parties,
MDI-QKD effectively detects and mitigates potential eavesdropping attempts.
This approach ensures that any interference from an eavesdropper can be
identified, thus reinforcing the overall security of the key exchange process.
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Consequently, MDI-QKD represents a significant advancement in quantum
communication, offering a robust framework for secure key distribution in a
complex threat landscape.
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BS PBS

Measurement
     Device

PBS

D1H

D1V D2V

D2H

Bob

WCP

Pol-M

Decoy-IM
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Figure 3.1: Setup of MDI-QKD.

To illustrate the protocol, the authors provide a simple example in [62].
Initially, Alice and Bob randomly prepare WCPs in one of four different
polarization modes, similar to the BB84 protocol [7]. They then modulate the
pulse intensity to implement decoy state techniques [58], which help estimate
the relay’s success probability and QBER. Alice and Bob transmit their WCPs
to an untrusted relay, Charlie (or Eve), who is located between them. Charlie
then performs a Bell state measurement (BSM) using linear optical elements,
as shown in figure 3.1.

To enhance the accuracy of their key distribution, Alice and Bob apply
decoy state techniques to estimate the gain, defined as the probability that the
relay successfully outputs a result, and the QBER for different input photon
numbers. After all the states have been transmitted, Charlie communicates the
successful measurements through a public channel. Alice and Bob then discard
any data not associated with a successful measurement, comparing the bases
of the remaining states and retaining only those that match. Additionally, a bit
flip is applied to the data by either Alice or Bob, except in instances where the
diagonal basis was used and Charlie’s successful measurement corresponds to a
triplet state. This final step ensures that the shared key is correctly correlated.

The following table outlines the possible measurement outcomes, their
associated probabilities and respective uses. This table clarifies the necessity
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of the bit flipping process while also helping to elucidate the possible paths
that Alice and Bob’s pulses can take, as well as the overall performance of the
protocol.

Alice
Polarization

Bob
Polarization Possible Detected States Probability of Generating

a Usable Detection State Shared Bit

↕ ↔ 100% 1
↔ ↕

Usable: cV cH , dV dH ,cV dH ,cHdV

Unusable: none 100% 0
↕ ↕ Unusable: cV cV , dV dV Usable: none
↔ ↔ Unusable: cHcH , dHdH Usable: none 0% none

↖↘ ↖↘ 0
↗↙ ↗↙

Usable: cHcV , dV dH

Unusable: cHcH ,dHdH ,cV cV ,dV dV 1
↖↘ ↗↙ 0
↗↙ ↖↘

Usable: cHdV , cV dH

Unusable: cHcH ,dHdH ,cV cV ,dV dV

50%

1

Table 3.2: Detection outcomes and their utilities for each scenario, with dV and
dH representing events on detectors D1H and D1V , and cH and cV on detectors
D2H and D2V , respectively.

This protocol offers a significant security enhancement by eliminating all
detector side-channel vulnerabilities, surpassing traditional methods like ILM
[63] and GLLP [59]. It can potentially double the transmission distance of
conventional QKD systems using weak coherent pulses, with a key generation
rate that that is comparable to those achieved by standard security proofs
using entangled photon pairs. Although MDI-QKD requires nearly perfect
state preparation, this challenge can be effectively managed, making it a highly
secure and practical solution for quantum communication.

3.5
TF-QKD

Recent advancements in optical QKD have demonstrated impressive
achievements, such as key rates of 1.26 megabits per second over 50 kilometers
of standard fiber and 1.16 bits per hour over 404 kilometers of ultralow-
loss fiber using MDI-QKD configurations. Despite these successes, overcoming
the fundamental rate-distance limit of QKD, continues to be a formidable
challenge. This limit defines the maximum achievable secret key rate over
a given distance, determined by the quantum channel’s secret-key capacity
[64, 65, 66, 67, 68].

In Twin-Field Quantum Key Distribution (TF-QKD) [69], optical fields
are phase-randomized at two distant locations and then combined at a central
station, where they interfere to form "twin" fields. These twins, sharing the
same random phase, enable secure key generation. The key rate in TF-QKD
scales with the square-root of the channel transmittance, akin to quantum
repeaters but without their complex technology, making TF-QKD a viable
method for extending secure quantum communications.
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Figure 3.2: Schematic of the TF-QKD setup. Alice and Bob each use light
sources (LSs) to generate pulses, which are then modulated by intensity
modulators (IMs) to adjust their intensities, µa and µb, in accordance with the
decoy-state technique. Phase encoding is achieved through phase modulators
(PMs) combined with random number generators (RNGs), resulting in pulses
with phases ϕa and ϕb. These pulses, which are either bright or dim, are
regulated by variable optical attenuators (VOAs) and accumulate phase noise,
denoted as δa and δb, during transmission. At Charlie’s beam splitter, the pulses
interfere and are detected by single-photon detectors D0 and D1. Charlie uses
the bright pulses for phase alignment, while the dim pulses are employed for
key bit extraction.

In this protocol, Alice and Bob encode their data into dim, phase-
randomized optical pulses, which are sent to a central station, Charlie. At
Charlie’s station, these pulses interfere on a beam splitter, allowing him to de-
termine if the secret bits are the same or different without knowing their exact
values, thereby ensuring security against eavesdropping. The protocol also uses
phase randomization and decoy states to improve range and performance. By
publicly disclosing phase slices, matching twins can be identified, which mini-
mizes the QBER and enhances efficiency. This approach significantly advances
secure quantum communication over long distances [69].

The Rede Rio Quântica employs the CAL19 variant of the Twin-Field
Quantum Key Distribution (TF-QKD) protocol [15]. This protocol employs a
Sagnac interferometer to link all network users, capitalizing on the interferom-
eter’s phase stabilization and interference properties. In the CAL19 scheme,
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qubits are encoded based on their propagation direction through the Sagnac
interferometer, forming two orthogonal states. This approach ensures secure
QKD, enhances the network’s performance and scalability, making it well-
suited for the Rede Rio Quântica’s extensive quantum communication infras-
tructure.



4
Error Rate Estimation

Error rate estimation is the process of quantifying the occurrence rate
of errors in a predictive system. In the context of Quantum Key Distribution,
it ensures the security and reliability of the generated keys. Precise error rate
estimation is indispensable for detecting and mitigating potential eavesdrop-
ping activities, enhancing the security of the communication channel. Errors
in practical applications may also be caused by factors such as optical mis-
alignment, disruptions in the quantum channel, or noise in Bob’s detectors
[70]. Moreover, it plays a fundamental role in optimizing QKD protocols to
achieve better performance. This chapter explores an algorithm for error rate
estimation, providing an analysis of its methodologies and applications within
a QKD system.

The first step of the process involves generating a raw key using a
specified QKD protocol. Alice prepares and transmits qubits to Bob, who
measures these qubits using randomly chosen bases. Following the generation
of the raw key, Alice and Bob publicly share their basis choices over a classical
channel. This comparison step ensures that only the qubits measured with
matching bases are preserved, as any discrepancies in basis choices lead to the
corresponding bits being discarded.

The code developed in this work assumes that Alice generates and
transmits a random key consisting of 1 million bits to Bob. Considering that
this key was obtained after Alice and Bob have compared their measurement
bases and discarded the mismatched ones, this preliminary step ensures that
both parties are working with a mutually agreed upon subset of bits. It is
expected that Bob’s key will contain a certain percentage of errors, which is
randomly distributed along the key.

To accurately estimate the error rate in Bob’s key, part of the key must
be sacrificed. This involves performing comparisons in random parts of Alice’s
and Bob’s key. By analyzing this subset, the percentage of errors in the
overall key can be estimated, thereby enabling the implementation of error
correction protocols to ensure the security and reliability of the QKD system.
The estimated QBER is calculated as follows:
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QBEREST = number of sacrificed mismatched bits
total number of sacrificed bits (4-1)

The first parameter of interest is the amount of bits required to sacrifice
in order to determine the error rate percentage. In the following simulation, it
is considered that 5% of the key bits are flipped. These errors are randomly
distributed over Bob‘s key. The initial simulation indicated that every iteration
of error estimation resulted into different estimated error, though they were
consistently close to the actual error rate. Given this variability, it is more
informative to consider statistical measures of the error estimations by running
multiple iterations and evaluating the outcomes.

For the following analysis, the code runs 1000 events for each sacrifice
rate. Figure 4.1 illustrates the distribution of these estimations using a box
plot. Each box represents essential statistical parameters, the central mark
denotes the median, while the lower and upper edges indicates the 25th and
75th percentiles, respectively. The whiskers extend to encompass the most
extreme non-outlier data points and outliers are distinctly marked using the
cross symbol [71].

As illustrated in figure 4.1, it is notable that as the sacrifice rate increases,
the standard deviation decreases, and the median tends towards the expected
error. Therefore, there is a compromise relation between the amount of the key
that can be sacrificed and the precision and accuracy of the error measurement.
Consequently, users must balance the need for a minimum key distribution
rate with the requirement for security, as both are influenced by the error
estimation.

Figure 4.1: Box plot illustrating the statistical outcomes of a simulation with
a 5% error rate across different sacrifice rate values.



Chapter 4. Error Rate Estimation 45

To validate the observed compromise relation, additional simulations
were performed for different error rates. It was considered error rates of
1%, 10% and 20%, with the latter representing the worst case scenario. The
following figures, 4.2, 4.3 and 4.4, show the box plot for these error rates,
respectively.

Figure 4.2: Box plot illustrating the statistical outcomes of a simulation with
a 1% error rate across different sacrifice rate values.

Figure 4.3: Box plot illustrating the statistical outcomes of a simulation with
a 10% error rate across different sacrifice rate values.

To summarize, the coefficient of variation for each data set is analyzed
and plotted, as shown in figure 4.5. Although the standard deviation increases
with higher error rates, the relative uncertainty, defined as the standard
deviation divided by the mean value, tends to decrease. This is evident from
the box plots, which demonstrate that while deviations are larger at higher
error rates, their impact relative to the mean value diminishes. Thus, while
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Figure 4.4: Box plot illustrating the statistical outcomes of a simulation with
a 20% error rate across different sacrifice rate values.

absolute deviations grow with increasing error rates, their relative effect on
overall uncertainty is reduced.

Figure 4.5: Simulation of the Coefficient of Variation across different error rate
scenarios (1%, 5%, 10%, and 20%) as presented in the preceding box plots.

Examining the extreme error rate values, it is observed that the standard
deviation for a 1% error rate is approximately 0.10, whereas for a 20%
error rate, it decreases to around 0.02. This highlights the importance of
setting reliability thresholds when designing QKD systems to define acceptable
tolerance levels. Should the error rate exceed this threshold, Alice and Bob are
expected to discard the key and initiate a new process. In the case of the
BB84 protocol, the threshold for acceptable error rates is approximately 11%,
as established by Shor and Preskill in [28].
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Figure 4.6: Box plot comparing two scenarios with a 10% error rate: the top
graph represents scattered errors, while the bottom graph depicts burst errors.

To this point, errors have been assumed to be randomly and uniformly
distributed across the key. However, if an eavesdropper, Eve, manipulates the
key by targeting specific sequences of bits, this could lead to burst errors rather
than random errors. In an intercept-resend attack, Eve intercepts and measures
specific bits using her chosen bases, then fabricates and sends replacement
pulses to Bob. This method introduces an error probability of at least 25%
[70] for each bit measured by Bob in the correct basis. For simplicity, it is
assumed that Eve’s interference affects the initial segments of the key, leading
to a concentration of errors in that specific portion. Figure 4.6 presents the
box plot for a 10% error rate under both random and burst error scenarios.

Figure 4.7: Illustration of the standard deviation calculated from statistical
results under a 10% error rate, comparing scattered errors and burst errors.
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In figure 4.6, it is challenging to discern significant differences between the
random error and burst error scenario. However, it indicates that burst errors
do not mislead the estimation process. For a more detailed comparison, the
standard deviations of both scenarios are plotted together in figure 4.7. Since
the result mean values are practically identical, there is no need to compare
this parameter.

Based on this analysis, it can be concluded that the presence of burst
errors does not impact the error estimation technique employed in this study.
This indicates the robustness of the estimation method against different
error distribution patterns, ensuring reliable performance under various attack
strategies by an eavesdropper.



5
Error Reconciliation

As discussed in the previous chapter, if the error rate exceeds a specific
threshold, the presence of an eavesdropper is detected, leading to the discarding
of all measured values and the restarting of the process. If the estimated error
rate is below this threshold, the process continues. However, even with an error
rate below the threshold, measurement errors must be identified and corrected
or discarded. This procedure of detecting and correcting discrepancies between
the secret key sent by Alice and the one received by Bob is known as Error
Reconciliation and is conducted over a public classical channel [72].

In the context of QKD, error reconciliation serves two primary purposes.
It corrects the errors that naturally occur during the transmission of quantum
states through noisy channels. Furthermore, it enables the detection and
correction of errors that might be introduced by Eve, thereby reinforcing
the protocol’s security against potential attacks. It is recognized as a highly
time-consuming and computationally intensive part of the QKD process. As
demonstrated in traffic analysis experiments [73, 74], the key reconciliation
step can impact the quantum channel and the key generation rate, depending
on the specific implementation.

Error reconciliation protocols employ classical error correction techniques
adapted for the quantum domain. Methods such as the Cascade protocol,
Winnow and Low-Density Parity-Check (LDPC) are used to manage and
rectify errors effectively. Each method offers unique advantages and is selected
based on the specific needs of the system, such as the error rate, computational
resources and the desired security level [75].

The following sections will review the most used error reconciliation
approaches and conduct a comparative evaluation. This analysis will emphasize
the error reconciliation in bridging the theoretical quantum cryptography
and secure communication systems. Ultimately, a simulation of the selected
approach will be conducted to demonstrate its application and efficacy.
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5.1
Cascade

The Cascade protocol defines an iterative method for error detection
and correction through the application of parity checks and binary search
techniques, making it particularly effective for managing low to moderate error
rates. Although this technique is employed within QKD protocols, the error
correction process itself is entirely classical. The error correction relies on the
binary search algorithm, also known as the binary search method [72], which
is a recursive code capable of precisely correcting a single error within an odd
number of errors.

The protocol operates by dividing the raw key into blocks and employing
parity checks to identify discrepancies. It consists of multiple passes, each
refining the error detection and correction process. In the first pass, Alice and
Bob divide their keys into blocks of a predetermined size and publicly compare
the parities of these blocks. When a discrepancy in parity is found, indicating
an error within the block, they perform a binary search to locate and correct
the erroneous bit [76].

In [72], the first pass uses blocks sized 0.73
QBER , thereby increasing the

probability of a block containing a single error. Alice and Bob calculate the
parity for each block. Alice sends Bob her parity and Bob uses this information
to calculate the parity error through a XOR operation. For even results, Bob
cannot extract much information, since the block may either contain no errors
or an even number of errors. However, for odd results, Bob can infer that there
is at least one bit error, which is sufficient for him to apply the binary search
algorithm to locate and correct the error.

The Binary Algorithm is a recursive error correcting code capable of
correcting a single error within a block of bits. As a consequence, Bob can
only operate on blocks with odd parity errors during this pass. The algorithm
consists of dividing the parent block, identified by an odd parity error, into two
sub-blocks: the left block and the right block. Then, Bob requests the parity
of Alice’s left block. Since the parent block’s parity error is odd, the left and
right blocks will have opposite error parity. This means Bob only needs the
parity information for one of these blocks to determine the parity of the other.
Bob then applies the binary algorithm recursively to the block with the odd
parity error. This process continues until they are left with a single-bit block.
At this point, Bob inverts the remaining bit, thereby correcting the single bit
error [77].

For a better overview of this algorithm, consider an example where Alice
and Bob have used a QKD protocol to establish a shared key and are now
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performing error reconciliation using the Cascade protocol. They have divided
their key into blocks of 8 bits each. To illustrate, figure 5.1 demonstrates the
procedures of this example. Suppose Bob’s block is 10110101, and Alice’s is
10010101. Therefore, the third bit, highlighted in red, indicates the need for
correction.

Figure 5.1: Illustration of an example of Alice and Bob using the Binary
algorithm.

Both parties calculate the parity of their respective blocks. Bob finds
an odd parity (PB = 1), while Alice obtains an even parity (PA = 0).
Alice then communicates her result to Bob, who calculates the error parity
as EL = PA XOR PB = 1. This indicates that Bob’s block contains at least
one error, enabling him to initiate the Binary Algorithm for error correction.
Bob informs Alice of his intention to begin error correction, splits his block into
two halves, and calculates the parity of the left block (PL). Alice performs the
same calculation for her corresponding block and shares the result with Bob.
Bob then computes the error parity of the left block (EPL) and communicates
the outcome to Alice.
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If the error parity is 1, both Alice and Bob understand that the left block
contains at least one erroneous bit. If EPL = 0, while the status of the left block
remains uncertain, they can conclude that the right block contains at least one
error. In this scenario, since EPL = 1, the process is repeated in the left block.
Bob and Alice split the left block in half, calculate the parity of the new left
block, and Alice communicates her result to Bob. Upon determining that the
parity is 0, Bob informs Alice, and they shift their focus to the right block, as
the left block’s error parity is now even. In the final step, Bob identifies and
corrects the erroneous bit within the block or addresses one of the odd errors,
thereby aligning his key with Alice’s.

After completing the first pass of error correction, Bob and Alice obtain
blocks with even parity, making it impossible to apply the error correction
procedure again within the same blocks. To initiate the next iteration, they
randomly shuffle their keys using a shared mapping that is agreed upon through
a public classical channel. With the error count reduced, they can increase the
block sizes for subsequent passes. As suggested in [72], doubling the block
size after each pass and conducting a total of four passes enhances the error
correction capacity.

Despite the efficiency of the Cascade protocol in correcting errors, the
high number of iterations required for communication between Alice and Bob
causes security concerns. Although these iterations are performed rapidly, the
high frequency of exchanges can lead to significant information leakage. While
it ensures error correction with high accuracy, it also increases the risk of
compromising the key’s security. Therefore, when implementing the Cascade
protocol, it is essential to balance its error correction capabilities with the
associated communication overhead and potential privacy risks.

5.2
Winnow

One of the significant challenges of the Cascade algorithm for QKD error
reconciliation is the unplanned leakage of small portions of the key during
the iterative process. To address these concerns, the Winnow protocol was
introduced in 2003, as presented in [78]. This protocol is designed to require
only two rounds of communication between the communicating parties, Alice
and Bob. Its objective is to increase throughput and reduce the interactivity
in the Cascade protocol by eliminating the binary search step. Additionally,
the Winnow protocol incorporates a privacy maintenance step, which involves
discarding bits that have been leaked.

The Winnow protocol bases its error correction in Hamming Code
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[79, 80]. It initiates with a parity comparison on blocks of size N = 2m, where
m ∈ {3, 4, 5, 6, . . .}. Following this comparison, one bit is removed from each
block to ensure the privacy of the remaining bits. For blocks where the parities
did not match, a Hamming hash function is applied to the remaining N−1 bits
to correct single-bit errors. Finally, m bits are discarded from the blocks where
the Hamming algorithm has been applied. This step, referred to as privacy
maintenance, ensures that any information potentially leaked during the error
correction process is eliminated, thereby preserving the confidentiality of the
key [78].

Consider a scenario where Alice generates a random key and sends it
to Bob through a noisy quantum channel, which introduces errors into Bob’s
measurements and the sifted key. Alice and Bob then divide their respective
keys into blocks of size N . According to the optimal initial block size suggested
in [75], N is set to 8 bits. Alice and Bob use a parity matrix H, a specific form
of the hash function [81], to calculate their respective syndromes SA and SB

for each block. Alice transmits SA to Bob, who compares it with his syndrome
by performing a XOR operation. If the block contains no errors, the result
is the zero vector. In the event of a single error within the block, the XOR
operation reveals the error’s position. Bob then applies a NOT gate to the
identified bit position to correct the error. Below is an example of how the
Hamming protocol identifies an error:

SA = H ·MA

=


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ·
[
0 1 1 0 0 1 1

]

=


0
0
0


(5-1)

SB = H ·MB

=


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ·
[
0 1 1 0 0 0 1

]

=


0
1
1


(5-2)
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Sd = SA × SB =


0
1
1

 (5-3)

Consequently, Bob determines that the erroneous bit is located at posi-
tion 110, which corresponds to the 6th bit in the block.

It is important to note that the Hamming code’s capacity is restricted
to correcting blocks with a single bit error, which necessitates the use of the
smallest possible block sizes at the start of the Winnow protocol. Moreover,
a significant drawback of the Winnow protocol arises from its dependence on
Hamming codes, this reliance can potentially introduce errors during the error
correction process [78]. Although Winnow operates considerably faster than
the Cascade protocol, its efficiency diminishes for error rates below 10%, a
common scenario in practical QKD implementations [82].

5.3
Low Density Parity Check

Low-Density Parity-Check (LDPC) codes represent a class of linear block
codes characterized by a sparse parity-check matrix, i.e., a matrix composed of
many zeros and a few ones [83]. These codes provide error correction near-ideal
performance that approaches the limits established by Shannon [60].

In parity-check codes, codewords are generated by combining a block of
binary information digits with a block of check digits. The check digits are
calculated as a binary sum of a predefined set of information digits [84]. The
sparsity of the parity-check matrix enables efficient encoding and decoding
processes. Decoding is typically performed using iterative algorithms, such as
Sum-Product Algorithm (SPA).

After the initial raw key generation and basis reconciliation phases, Alice
and Bob share a sifted key that includes bits measured with matching bases.
However, this sifted key still contains errors due to quantum noise and potential
eavesdropping. A portion of the sifted key is sacrificed to estimate the average
QBER. This step helps in determining the amount of errors present in the key.

Alice and Bob agree on a parity check matrix, H, before starting the
protocol, such that only they know. Therefore, the message length M and code
length N are defined. During the reconciliation stage, they split the remaining
key into M -bit blocks. Each block is then encoded using G, the generator
matrix.
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cA = mAG

cB = mBG
(5-4)

Where cA and cB are 1 × N coded block, and mA and mB are 1 × M

message blocks from Alice and Bob, respectively. The Generator matrix G is
a M ×N matrix calculated as follows:

G =
[
H2H

−1
1 |IM×M

]
, (5-5)

H2 and H1 are obtained by splitting the N ×N −M parity check matrix
H.

HT =
H1

H2

 (5-6)

H1 is a N − M × N − M matrix and H2 is M × N − M . The ratio M
N

determines the code rate.
After encoding, Alice transmits the codewords through a classical chan-

nel. The confidentiality of the parity-check matrix, known only by Alice and
Bob, ensures the protocol’s reliability [85]. Upon receiving Alice’s codewords,
Bob employs the sum-product algorithm in the logarithmic domain. This tech-
nique begins with initializing the logarithmic coefficients |LQx

ij| to the initial
logarithmic probabilities of the symbols |Lfx

ij|. Where x represent either sym-
bol 0 or 1.

Next, Bob initiates the horizontal steps, calculating the logarithmic
coefficients |LRx

ij| for each pair (i, j) using the following equations:

|LR0
ij| = ln(2) ∓ | ln(1 ± |eLδRij |)| (5-7)

|LR1
ij| = ln(2) ± | ln(1 ∓ |eLδRij |)| (5-8)

The signal in the expression is dependent on whether δRij is even or odd.
this parameter is obtained by:
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|LδRij| =
∑

j′∈N(i)\j

|LδQij′ | (5-9)

In vertical steps, similar to horizontal steps, but the values of the
logarithmic coefficients |LQx

ij| are calculated for each pair (i,j). This process
uses the following equations:

|LQx
ij| = |Lcx

ij| − min(Lc0
ij, LC

1
ij) +

∣∣∣ln (
1 + |e−|LQ0

ij−LQ1
ij |

)∣∣∣ (5-10)

Here, |Lcx
ij| is calculated by:

|Lcx
ij| = |Lfx

ij| +
∑

i′∈M(j)\i

|LRx
ij|. (5-11)

Subsequently, an estimation of each symbol d̂j is obtained. This iteration
repeats until the predefined maximum number of iterations is reached. The
explanation provided here represents a basic simplification of the Sum-Product
Algorithm (SPA) in the logarithmic domain [83].

Therefore, after the maximum number of iterations, Bob expects to have
the original codewords that Alice transmitted. He then compares his received
codewords to those expected and corrects any mismatches. If the SPA decoding
technique has successfully corrected the errors, the resulting average QBER
should ideally be zero.

Although decoding LDPC codes involves substantial computational and
memory requirements, it manages large matrices while delivering high pre-
cision and computational efficiency. Moreover, the process necessitates only
a single information exchange and does not require excessive equipment or
computational resources.

5.4
Simulation of Cascade Protocol

In general, the optimal error reconciliation protocol would fix all bit
errors within each block, avoid creating new errors, and disclose as little
information as possible about the key bits to an eavesdropper during public
communication [78]. Each error reconciliation protocol used in QKD systems
presents its unique advantages and disadvantages. Protocols such as Cascade,
Winnow and LDPC codes vary in their approach to error detection and
correction, computational complexity, and communication overhead. These
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differences make them suitable for different scenarios and requirements of
implementations.

Decoding LDPC codes involves greater computational and memory de-
mands than the Cascade or Winnow protocols. However, this increased com-
plexity is offset by a significant reduction in communication overhead, as LDPC
codes require only a single round of information exchange. This is particularly
advantageous in network environments where bandwidth and latency are con-
strained, making efficient communication essential.

The Cascade protocol is simple and effective at low to moderate error
rates but is vulnerable to information leakage due to its iterative process. The
Winnow protocol improves throughput by reducing the number of interactions
required but also faces potential leakage problems.

For this study, the Cascade protocol was selected due to its proven
efficacy in managing low to moderate error rates and its straightforward
implementation. Despite the potential risk of information leakage, this concern
will be addressed using privacy amplification techniques. These techniques are
designed to mitigate the risk of leakage and enhance the security of the key
against potential eavesdropping attempts.

Figure 5.2: Simulation of the Cascade protocol for different values of QBER.

To simulation purposes, it is assumed that Alice generates and sends the
key to Bob through a quantum channel. The basis reconciliation and error
estimation have already been completed, meaning that both parties share a
sifted key and have an estimated QBER. Following [72], the protocol undergoes
four passes for error reconciliation. This scenario is simulated for various QBER
values, ranging from 0.1 to 10. The simulation executes 100 events for each
QBER value, as illustrated in figure 5.2.
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Additionally, it is interesting to investigate the cascading effect inherent
in this protocol by simulating different numbers of passes and revisiting
previously completed passes to determine how these adjustments enhance error
correction efficiency. For this simulation, a fixed QBER value of 5% is assumed,
and multiple scenarios are evaluated. Figure 5.3 illustrates the resulting average
QBER after implementing different orders and numbers of passes. This analysis
aims to demonstrate the impact of the iterative process on error reduction.

Figure 5.3: Simulation of the Cascade protocol for different scenarios of passes
considering a QBER of 5%.

Scenario 1 follows the standard procedure of passes 1 through 4 as
detailed in Section 5.1. In Scenario 2, the standard procedure is followed,
after which pass 1 is repeated. This addition notably reduces the mean error
value by almost tenfold. However, it significantly increases the number of
iterations due to the smaller block size in pass 1. In Scenario 3, where pass 2
is repeated after the standard procedure, the reduction in error is less effective
compared to the repetition of pass 1. This observation suggests that adding
passes 3 or 4 would be progressively less beneficial, given their larger block
sizes. Nonetheless, introducing additional passes after these larger blocks can
enhance error correction while maintaining a lower number of iterations.

In Scenario 4, the addition of passes 3 and 2 was tested, respectively. This
configuration yielded a mean error rate close to zero, outperforming Scenario
2 and demonstrating greater efficiency due to fewer iterations compared to
repeating pass 1. Scenario 5 explores another variation by running passes 3
and 4 after the standard procedure. Although the mean error rate in this
scenario is close to that in Scenario 4, it is slightly higher. While it requires
fewer iterations.
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In this section, the Cascade protocol was simulated and tested under
various parameters. The results indicated a trade-off between the protocol’s
performance and the permissible number of iterations. Furthermore, as dis-
cussed in Section 5.1, the frequency of interactions between Alice and Bob
during this protocol correlates with the amount of key leakage. Consequently,
the allowable number of iterations is directly related to the privacy amplifica-
tion process discussed in the next chapter, which will determine the extent of
Eve’s knowledge about the key, ensuring its reliability.



6
Privacy Amplification by Public Discussion

In Quantum Key Distribution, privacy amplification is essential for elim-
inating any residual information that an eavesdropper, might have obtained
through various attacks or noise in the communication channel. Furthermore,
even after error reconciliation, some information may be compromised due to
the exchange of key information between Alice and Bob over a public channel
[86].

Introduced in 1988 [87], this technique transforms a partially secure key
into a fully secure one by reducing the information available to the eavesdrop-
per to insignificant levels. Eve might gain partial information about the secret
key by intercepting the quantum communication channel and eavesdropping
on the public reconciliation discussions. To eliminate this compromised infor-
mation, a privacy amplification algorithm is employed, ensuring the secrecy
and integrity of the final key [72].

The process involves Alice and Bob agreeing on a public hashing function
to distill a shorter, but highly secure, key from the initially shared partially
secure key. The theoretical basis relies on the properties of universal hash
functions [88, 89], which guarantee that any partial information Eve has about
the original key will be exponentially reduced after the hashing process.

This chapter explores the principles of privacy amplification and the
concept how it can protect the key against an eavesdropping. Moreover,
it examines the implementation of a most common privacy amplification
technique. This simulation combines all concepts from the previous chapters
and allow us to obtain the final final goal for the QKD protocol, the secret key
sharing between two parties.

6.1
Introduction

The main principles behind privacy amplification involve correctness,
secrecy and the eavesdropper’s uncertainty. To grasp these ideas, it is essential
to understand the broader context of a QKD protocol, which provides the
framework for their application. Consider a scenario in which Alice and Bob
aim to share a secret key via a QKD protocol. Their quantum and classical
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channel may be intercepted by an eavesdropper. It is assumed that Eve
possesses unlimited technological capabilities and access to both quantum and
classical channels, striving to extract as much information as possible from
their key.

Figure 6.1: Basic QKD scheme where parties A and B aim to share a secret
key, while an eavesdropper E attempts to intercept information during the key
exchange.

After Alice and Bob have completed all steps of the QKD protocol,
Bob holds a sifted and corrected key initially prepared and sent by Alice. To
minimize any potential eavesdropper’s knowledge, they must apply a method
adhering to three essential parameters: correctness, secrecy and eavesdropper
uncertainty. Correctness ensures that Alice and Bob have the same result.
Secrecy dictates that Eve’s information about the key is reduced compared
to the initial state. Eavesdropper uncertainty sets a limit on Eve’s minimum
knowledge required for process success [86]. This final step must enhance
the key’s entropy and the conditional entropy of the shared key and Eve’s
key without introducing errors. Consequently, Alice and Bob cannot use a
predefined function, as Eve could anticipate this and select her attacks to
maximize information gain.

In computer science, the concept of a randomness extractor, or simply
an extractor, is critical for transforming weak sources of randomness into out-
puts that approximate a uniform distribution. This transformation effectively
increases the entropy of the original input [90]. Specifically, in the context of
privacy amplification, focus is directed towards a subset of randomness extrac-
tors that leverage universal2, or dual universal2, hash functions [91]. These hash
functions constitute a special family characterized by the property that for a
given family of functions H = {f |X → Y } any two distinct inputs x1 and x2

yield distinct outputs for more than 1/dim(Y ) of the functions within the fam-
ily. This characteristic makes universal2 hash functions particularly valuable in
cryptographic applications, including privacy amplification. By reducing the
dimensionality of the output to slightly less than the eavesdropper’s knowledge
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of the key, these functions enhance the security of the cryptographic process
[86].

6.2
Simulation

The concept of privacy amplification is very broad, since it can be used
for any QKD protocol. As QKD technology progresses, the implementation
of privacy amplification becomes increasingly vital. Having this in mind,
this section delves into the application of privacy amplification techniques
within the context of previously conducted simulations, thereby completing
the comprehensive post-processing of a QKD protocol.

In the scenario under consideration, represented in Figure 6.1, Alice and
Bob employ the BB84 protocol and are currently engaged in the privacy
amplification phase. After the initial key exchange, Alice has prepared and
transmitted quantum states to Bob. They have shared their basis choices and
discarded any incompatible selections. Additionally, a portion of the key has
been sacrificed to estimate the error rate, and an error correction protocol has
been employed to correct any discrepancies in the key bits [92].

To enhance the secrecy of the protocol, it is crucial for Alice and Bob
to select a family of universal hash functions. They utilize these functions
by sharing a small seed, which is shorter than their current shared key.
Research indicates that modified Toeplitz matrices serve as an efficient family
of dual universal hash functions suitable for QKD applications [93, 94, 95]. The
structure of a Toeplitz matrix [96] is defined by the rule Tij = ti−j, resulting
in the following matrix representation:

T =



a0 a−1 a−2 · · · · · · a1−n

a1 a0 a−1
. . . . . . ...

a2 a−1 a0
. . . . . . ...

... . . . . . . . . . . . . a−2

... . . . . . . . . . a0 a−1

an−1 · · · · · · a2 a1 a0


(6-1)

The modified Toeplitz matrix is defined by concatenating the original
matrix with the identity matrix, represented as T ′ = [I T ]. To randomly
generate this matrix, Alice and Bob must share a seed. This seed is used to
create the first row and column of the matrix. Once the matrix is constructed,
they apply a mathematical operation to derive their final secret key, denoted
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as K:

Kk×1 = Ik×kRk×1
⊕

T (S)k×r−kRr−k×1 (6-2)

The variables in the expression are defined as follows: R represents the
column vector containing the keys after error reconciliation and r is the size
of this vector. The ⊕ operation, commonly referred to as the XOR operation
in binary arithmetic, represents a modulo 2 addition, represents a modulo 2
addition. The variable S denotes the seed used to generate the Toeplitz matrix,
while k signifies the size of the secret key. In this study, the size of the random
seed is determined by the following expression:

S = max({r − k, k}) (6-3)

It is essential to define the secret key length or the resulting dimension
of the hashing. This parameter has been the subject of considerable debate in
numerous studies. In this research, the secret key rate is determined according
to the definitions provided by [28, 97]:

k = r[1 −H(Q) − ηecH(Q)] (6-4)

In this context, H(·) refers to the Shannon entropy [60] modulo 2 and
ηec represents the efficiency of the error correction protocol. It is important to
highlight that ηec ≤ 0. For the simulations conducted, since it is not feasible
to compute this efficiency during the protocol, the worst-case scenario for the
Cascade protocol was considered, with ηec = 1.24 [98].

The simulation employed the previously described processes to analyze
the secret key ratio across a range of initial QBER values. For each QBER, 50
events of the BB84-based QKD protocol were executed. The results, shown in
Figure 6.2, present a box plot of the ratio between the secret key and the initial
key. This analysis allows for theoretical calculations of the secret key ratio using
predefined equations and considering that, on average, half of the initial key
is discarded during basis reconciliation. The calculation of a theoretical secret
key ratio is given by the equation bellow.

Kest

Rinit

= 1
2(1 − ηsac)[1 −H(Q) − ηecH(Q)] (6-5)
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Figure 6.2: Simulation of the secret key rate for various initial QBER values,
with a 10% sacrifice rate applied for error estimation.

In these calculations, the parameter ηsac represents the percentage of the
key sacrificed for error estimation. The theoretical curve depicted in Figure
6.2 aligns closely with the mean values of the box plots, demonstrating the
simulation’s effectiveness as a tool for estimating the secret key length in a
QKD protocol. One can calculate the QBER using data and measurements
from the channel, as described in section 2.4, and further adjust the simulation
parameters to explore potential enhancements in the secret key rate.

This approach validates the theoretical predictions and also provides a
practical framework for experimenting with different parameters and strate-
gies to optimize the secret key rate. Through this process, researchers and
practitioners can better understand the impacts of various protocol configura-
tions and channel conditions, ultimately leading to more secure and efficient
quantum communication systems.



7
Conclusion and Future Work

This work provides an analysis of post-processing in QKD, exploring
the concepts and procedures involved at each stage. The analysis includes a
detailed examination of error estimation and reconciliation processes, with par-
ticular emphasis on the Cascade protocol, chosen for its efficiency and speed
in resolving discrepancies in the raw key. Furthermore, a privacy amplifica-
tion algorithm was developed to enhance security by minimizing potential
eavesdropper information. The research outlines the theoretical foundations
and translates them into practical application through the development of a
corresponding code. This implementation, developed in MATLAB, effectively
integrates the discussed protocols and algorithms, offering a practical solution
for ensuring secure quantum communication.

To ensure that the estimated key generation rate is both practical and
secure, it is essential to perform post-processing steps. This post-processing
phase involves the processes of error correction and privacy amplification.
Error correction reconciles discrepancies in the raw key caused by noise and
imperfections in the quantum channel, ensuring that both parties share an
identical key. Privacy amplification, on the other hand, mitigates any potential
knowledge that an eavesdropper might have gained, even after error correction,
by further securing the key and reducing any partial information available to
unauthorized parties.

By employing mathematical techniques such as universal hash functions,
privacy amplification transforms the reconciled key into a secure form with
negligible eavesdropper knowledge. This post-processing phase is essential for
achieving the desired security levels in quantum cryptographic systems, as it
protects the keys against both technical imperfections and potential adversarial
attacks.

In the preceding chapters, equation 6-5 was adapted for the QKD
protocol to estimate the average secret key generation rate. The final objective
of this work was to use the tools developed in the previous chapters to estimate
the key generation rate for Rede Rio Quântica. The first modification involved
redefining Rinit as Rsift, as outlined in equation 2-18. In this context, q is set
to 1, frep is 50 MHz, µ is 1 photon per pulse, considering decoy states as in
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[99], η = 10% and tlink for RRQ is given by the following equation:

tlink = 10
−α2L

10 (tatb)1/2 (7-1)

Where, L represents the distance between Alice and Bob, α is the fiber
attenuation coefficient (0.2 dB/km), ta and tb are the insertion losses in Alice’s
and Bob’s systems, respectively. Empirical tests by the RRQ team measured
these losses to be around 13 dB, approximately 5% transmission efficiency.

The final parameter necessary for the simulation is the QBER, which
was estimated using equation 2-22. To simplify the calculations, QBERopt

term was excluded due to the fact that QBERdet ≫ QBERopt. The system
in question employs two detectors, each with a dark count rate of 3 × 10−6

counts per pulse. Using the developed tools and equations, the key generation
rate was evaluated for various distances between Alice and Bob. The results
are presented in figure 7.1. Given that the RRQ link has an extension of 27
km, this distance was used for the simulation. For this distance, the estimated
secret key generation rate between Alice and Bob is approximately 2300 keys
per second. This estimation reflects the effective use of the QBER and other
parameters in determining the practical key rate achievable under the given
conditions.

Figure 7.1: Simulation results for key generation in Rede Rio Quântica.

For future research, it would be valuable to explore alternative methods
for privacy amplification, given that the final key size considered in this study’s
simulations is the smallest possible. This exploration could examine scenarios
where an eavesdropper may have some information, but not enough to fully
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compromise the key’s security. Additionally, assessing the frequency at which
keys can be reused without undermining security would provide important
insights. The initial assumption that the encrypted message size is equivalent
to the key size results in a relatively low transmission rate of 2 kbits per second,
which warrants further investigation.

Moreover, comparing the theoretical results obtained in this work with
empirical data from RRQ could provide validation. For instance, laboratory
measurements over varying distances within the RRQ would help assess the
practical accuracy of the presented simulations. Another key aspect for future
research is to validate the proposed methods by measuring the actual key
generation rate of the RRQ and determining whether it aligns with the
simulation results discussed in this thesis, thereby ensuring that the theoretical
models accurately reflect real-world performance.
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A
Error Estimation Code

%% Master Thesis - Error Estimation - Camila Lima

clc
clear all
close all

%% Initializing Alice’s Key

key_leng = 1e6;
error_percent = 20;
sift_percent = 20;
Alice_key = randi([0,1],1,key_leng);

%% Bob’s Key

Bob_key = bob_key_generator(key_leng,error_percent,Alice_key);

%% Error Estimation

num_iter = 1e3;

mean_est_error = mean(error_estimation_calculator(key_leng,
↪→ sift_percent,num_iter,Alice_key,Bob_key));

%% Estimated Error x Sifted Percent

max_sift = 20;
min_sift = 1;
num_points = 20;
num_iter = 1e3;

sifted_percent_var = linspace(min_sift,max_sift,num_points);
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est_error_var = zeros(num_iter,num_points);

for i = 1:num_points
est_error_var(:,i) = error_estimation_calculator(key_leng,

↪→ sifted_percent_var(i),num_iter,Alice_key,Bob_key);
end

%% Plotting Full Result (Box Plot)

figure(1)
boxplot(est_error_var,sifted_percent_var)
grid on
%plot(sifted_percent_var,ones(num_points)*error_percent,’--’,’

↪→ Color’,’r’,’LineWidth’,2,’DisplayName’,’Absolute Error’)

xlabel(’Sacrificed␣Keys␣[%]’)
ylabel(’Estimated␣Error␣[%]’)
set(gca,’FontSize’,26)

%% Standard Deviation

error_std_dev = zeros(1,num_points);

for i = 1:num_points
error_std_dev(i) = std(est_error_var(:,i));

end

figure(2)
plot(sifted_percent_var,error_std_dev,’LineWidth’,3)
grid on
xlabel(’Sacrificed␣Keys␣[%]’)
ylabel(’Standard␣Deviation␣[%]’)
%title(’Standard Deviation For Error Estimation’)

legend(’Error␣=␣5%’)
set(gca,’FontSize’,26)

%% Stadard Deviation Multiple Errors

max_sift = 20;
min_sift = 1;
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num_points = 20;
num_iter = 1e3;
error_std_dev = zeros(4,num_points);
error_mean = zeros(4,num_points);
j = 1;
figure(3)
hold on
for error_percent = [1,5,10,20]

Bob_key = bob_key_generator(key_leng,error_percent,Alice_key
↪→ );

sifted_percent_var = linspace(min_sift,max_sift,num_points);

est_error_var = zeros(num_iter,num_points);
% error_std_dev = zeros(1,num_points);

form = ["-diamond","-o","-^","-*"];
leg = ["Error = 1%","Error = 5%","Error = 10%","Error =

↪→ 20%"];

for i = 1:num_points
est_error_var(:,i) = error_estimation_calculator(key_leng

↪→ ,sifted_percent_var(i),num_iter,Alice_key,Bob_key);
error_std_dev(j,i) = std(est_error_var(:,i));
error_mean(j,i) = mean(est_error_var(:,i));

end
% plot(sifted_percent_var,error_std_dev(j,:),form(j),’

↪→ LineWidth’,3)

plot(sifted_percent_var,error_std_dev(j,:)./error_mean(j,:),
↪→ form(j),’LineWidth’,3)

grid on
xlabel(’Sacrificed␣Keys␣[%]’)
ylabel(’Coefficient␣of␣Variation’)
%title(’Standard Deviation For Error Estimation’)

set(gca,’FontSize’,26)
j = j + 1;

end
legend(leg)
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hold off

%% Simulation of Eve Attacking First Bits

error_percent = 10;

Bob_key = bob_key_generator(key_leng,error_percent,Alice_key);
Bob_key_2 = bob_key_generator_eve_attack(key_leng,error_percent,

↪→ Alice_key);

max_sift = 2;
min_sift = 0.1;
num_points = 5;
num_iter = 1e3;

sifted_percent_var = linspace(min_sift,max_sift,num_points);

est_error_var_1 = zeros(num_iter,num_points);
est_error_var_2 = zeros(num_iter,num_points);
error_std_dev_1 = zeros(1,num_points);
error_std_dev_2 = zeros(1,num_points);

for i = 1:num_points
est_error_var_1(:,i) = error_estimation_calculator(key_leng,

↪→ sifted_percent_var(i),num_iter,Alice_key,Bob_key);
est_error_var_2(:,i) = error_estimation_calculator(key_leng,

↪→ sifted_percent_var(i),num_iter,Alice_key,Bob_key_2);
error_std_dev_1(i) = std(est_error_var_1(:,i));
error_std_dev_2(i) = std(est_error_var_2(:,i));

end

%% Plot Results For Eve’s Attack

figure(4)
subplot(2,1,1);
boxplot(est_error_var_1,sifted_percent_var);
grid on
title("Error = 10%, Random Error")

xlabel(’Sacrificed␣Keys␣[%]’)
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ylabel(’Estimated␣Error␣[%]’)
set(gca,’FontSize’,16)

subplot(2,1,2);
boxplot(est_error_var_2,sifted_percent_var);
grid on
title("Error = 10%, First Bits Error")

xlabel(’Sacrificed␣Keys␣[%]’)
ylabel(’Estimated␣Error␣[%]’)
set(gca,’FontSize’,16)

figure(5)
plot(sifted_percent_var,error_std_dev_1,sifted_percent_var,

↪→ error_std_dev_2,’LineWidth’,3);
grid on
legend("Error = 10%, Random Error","Error = 10%, First Bits

↪→ Error")

xlabel(’Sacrificed␣Keys␣[%]’)
ylabel(’Standard␣Deviation␣[%]’)
set(gca,’FontSize’,26)

%% Bob’s Key Generator

function Bob_key = bob_key_generator(key_leng,error_percent,
↪→ Alice_key)

error_index = randperm(key_leng,round(error_percent/100*key_leng
↪→ ));

Bob_key = Alice_key;

for i = error_index
Bob_key(i) = not(Bob_key(i));

end
end

%% Bob Key Generation (Given Eve is Attacking First Bits)
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function Bob_key = bob_key_generator_eve_attack(key_leng,
↪→ error_percent,Alice_key)

Bob_key = Alice_key;

for i = 1:key_leng*error_percent/100
Bob_key(i) = not(Bob_key(i));

end
end

%% Error Estimation Calculator

function est_error = error_estimation_calculator(key_leng,
↪→ sift_percent,num_iter,Alice_key,Bob_key)

est_error = zeros(1,num_iter);
for m = 1:num_iter

error_count = 0;

sifted_index = randperm(key_leng,round(sift_percent/100*
↪→ key_leng));

for i = sifted_index
error_count = error_count + (Bob_key(i) ~= Alice_key(i));

end

est_error(m) = error_count/(key_leng*sift_percent/100)*100;
end

% mean_est_error = mean(est_error);

end



B
Error Reconciliation Code

%% Master Thesis - Error Reconciliation - Camila Lima

clc
clear all
close all

%% Initializing Alice’s Key

key_len = 1e6;
error_percent = 5;
Alice_key = randi([0,1],1,key_len);

%% Bob’s Key

Bob_key = bob_key_generator(key_len,error_percent,Alice_key);

%% Cascade Error Correction

Bob_corrected_key = Cascade(Bob_key,Alice_key,error_percent/100,
↪→ key_len);

error_after = sum(xor(Bob_corrected_key,Alice_key))/key_len;

fprintf("Error after: %0.4f percent \n",error_after*100);

%% Cascade Error Correction For Multiple Errors

num_runs = 100;
QBER = [0.1,0.5,1,2,3,4,5,6,7,8,9,10];
QBER_after = zeros(num_runs,length(QBER));
i = 1;
for q = QBER

for j = 1:num_runs
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Bob_key = bob_key_generator(key_len,q,Alice_key);

Bob_corrected_key = Cascade(Bob_key,Alice_key,q/100,
↪→ key_len);

QBER_after(j,i) = sum(xor(Bob_corrected_key,Alice_key))/
↪→ key_len*100;

end
i = i + 1;

end

figure(1)
boxplot(QBER_after,QBER)
grid on
xlabel(’Initial␣QBER␣[%]’)
ylabel(’QBER␣After␣Reconciliation␣[%]’)
set(gca,’FontSize’,26)

%% Multiple Iteractions Cascade

n_sce = 5;
sce = [[1 2 3 4 0

↪→ 0];[1,2,3,4,1,0];[1,2,3,4,2,0];[1,2,3,4,3,2];[1,2,3,4,3,4]];
↪→

num_runs = 100;
QBER = 5;
QBER_after = zeros(num_runs,n_sce);

for i = 1:n_sce
fprintf("Scenario %d start\n",i);

for j = 1:num_runs
Bob_key = bob_key_generator(key_len,QBER,Alice_key);

Bob_corrected_key = Cascade_multi(Bob_key,Alice_key,QBER
↪→ /100,key_len,sce(i,:));

QBER_after(j,i) = sum(xor(Bob_corrected_key,Alice_key))/
↪→ key_len*100;

end
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fprintf("Scenario %d done\n",i);

end

figure(2)
boxplot(QBER_after)
grid on
xlabel(’Scenarios’)
ylabel(’QBER␣After␣Reconciliation␣[%]’)
set(gca,’FontSize’,26)

%% FUNCTIONS %%

%% Bob’s Key Generator

function Bob_key = bob_key_generator(key_leng,error_percent,
↪→ Alice_key)

error_index = randperm(key_leng,round(error_percent/100*key_leng
↪→ ));

Bob_key = Alice_key;

for i = error_index
Bob_key(i) = not(Bob_key(i));

end
end

%% The Binary Algorithm

function Corrected_block = Binary_algorithm(parent_block,
↪→ correct_parent_block,block_size)

left_block = parent_block(1:ceil(block_size/2));

right_block = parent_block(ceil(block_size/2)+1:end);

correct_left_block_parity = parity_check(correct_parent_block(1:
↪→ ceil(block_size/2)));
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is_left_odd = error_parity(correct_left_block_parity,
↪→ parity_check(left_block));

switch is_left_odd

case 1
odd_parity_error_block = left_block;

if isscalar(odd_parity_error_block)
Corrected_block = [not(odd_parity_error_block)

↪→ right_block];
return

else
Corrected_block = [Binary_algorithm(left_block,

↪→ correct_parent_block(1:ceil(block_size/2)),ceil
↪→ (block_size/2)) right_block];

end

case 0
odd_parity_error_block = right_block;
if isscalar(odd_parity_error_block)

Corrected_block = [left_block not(
↪→ odd_parity_error_block)];

return

else
Corrected_block = [left_block Binary_algorithm(

↪→ right_block,correct_parent_block(ceil(
↪→ block_size/2)+1:end),floor(block_size/2))];

end
end

end

%% Parity Check Function

function parity = parity_check(binary_string)

parity = 0;
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for b = binary_string
parity = xor(parity,b);

end

end

%% Error Parity Function

function par = error_parity(b1,b2)

par_vec = xor(b1,b2);

par = parity_check(par_vec);

end

%% Cascade Reconciliation Protocol (Single Iteration)

function corrected_key = Cascade_single_iter(Bob_key,Alice_key,
↪→ tl_block_size)

corrected_key = Bob_key;

num_blocks = floor(length(Alice_key)/tl_block_size);

for n = 1:num_blocks

ib = 1 + (n-1)*tl_block_size;
eb = ib - 1 + tl_block_size;

if error_parity(corrected_key(ib:eb),Alice_key(ib:eb))

corrected_key(ib:eb) = Binary_algorithm(corrected_key(ib:
↪→ eb),Alice_key(ib:eb),tl_block_size);

end
end
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if error_parity(corrected_key(num_blocks*tl_block_size:end),
↪→ Alice_key(num_blocks*tl_block_size:end))

corrected_key(num_blocks*tl_block_size:end) =
↪→ Binary_algorithm(corrected_key(num_blocks*
↪→ tl_block_size:end), ...
Alice_key(num_blocks*tl_block_size:end), ...
length(Alice_key)-num_blocks*tl_block_size);

end

end

%% Cascade Reconciliation Protocol (Single Run)

function corrected_key = Cascade(Bob_key,Alice_key,QBER,key_len)

k1 = ceil(0.73/QBER);

corrected_key = Cascade_single_iter(Bob_key,Alice_key,k1);

k2 = 2*k1;

per = randperm(key_len);

corrected_key = Cascade_single_iter(shuffle(corrected_key,per),
↪→ shuffle(Alice_key,per),k2);

corrected_key = unshuffle(corrected_key,per);

k3 = 2*k2;

per = randperm(key_len);

corrected_key = Cascade_single_iter(shuffle(corrected_key,per),
↪→ shuffle(Alice_key,per),k3);

corrected_key = unshuffle(corrected_key,per);

k4 = 2*k3;
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per = randperm(key_len);

corrected_key = Cascade_single_iter(shuffle(corrected_key,per),
↪→ shuffle(Alice_key,per),k4);

corrected_key = unshuffle(corrected_key,per);

end

%% Cascade Reconciliation Protocol (Multiple Runs)

function corrected_key = Cascade_multi(Bob_key,Alice_key,QBER,
↪→ key_len,order)

k = zeros(1,4);

k(1) = ceil(0.73/QBER);
k(2) = 2*k(1);
k(3) = 2*k(2);
k(4) = 2*k(3);

corrected_key = Bob_key;

i = 0;
for o = order

if o == 0
return

elseif i == 0
corrected_key = Cascade_single_iter(corrected_key,

↪→ Alice_key,k(1));
i = 1;

else
per = randperm(key_len);

corrected_key = Cascade_single_iter(shuffle(corrected_key
↪→ ,per),shuffle(Alice_key,per),k(o));
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corrected_key = unshuffle(corrected_key,per);
end

end
end

%% Shuffle and Unshufle Function

function shuffled_key = shuffle(key,new_pos)

shuffled_key = key;

for i = 1:length(key)
shuffled_key(i) = key(new_pos(i));

end

end

function unshuffled_key = unshuffle(shuffled_key,new_pos)

unshuffled_key = shuffled_key;

for i = 1:length(shuffled_key)
unshuffled_key(new_pos(i)) = shuffled_key(i);

end

end



C
Post Processing Code

%% Master Thesis - Post Processing - Camila Lima

clc
clear all
close all

%% Pre-determined

key_init_len = 1e6;

QBER_sim = [1,2,3,4,5,6,7,8];

sacrifice_percent = 10;

cascade_order = [1,2,3,4,3,4];
i=1;

SIM_events = 50;

secret_key_len = zeros(SIM_events,length(QBER_sim));

for QBER_channel = QBER_sim
for sim = 1:SIM_events

%% Alice Preparation

Alice_bases = randi([0,1],1,key_init_len); %% 0:

↪→ horizontal/vertical ; 1: Diagonal/Anti-diagonal

Alice_init_key = randi([0,1],1,key_init_len);

Alice_QBIT = [Alice_bases ; Alice_init_key];
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%% Bob Key Extraction

Bob_bases = randi([0,1],1,key_init_len);

Bob_init_key = key_extraction(Bob_bases,Alice_QBIT,
↪→ QBER_channel,key_init_len);

%% Key Sifting

[sift_index,sift_key_len] = basis_reconciliation(
↪→ Alice_bases,Bob_bases);

Alice_sift_key = Alice_init_key(sift_index);

Bob_sift_key = Bob_init_key(sift_index);

%% Error Estimation

[est_QBER,Alice_sac_key,Bob_sac_key,sac_key_len] =
↪→ error_estimation(sift_key_len,sacrifice_percent,
↪→ Alice_sift_key,Bob_sift_key);

%% Error Correction: Cascade Protocol

Bob_corrected_key = Cascade_multi(Bob_sac_key,
↪→ Alice_sac_key,est_QBER/100,sac_key_len,
↪→ cascade_order);

%% Privacy Amplification

f_EC = 1.24;

secret_key_len(sim,i) = ceil(sac_key_len*(1-(1+f_EC)*
↪→ sh_entropy(est_QBER/100)));

% seed_size = max([sac_key_len - secret_key_len,

↪→ secret_key_len]);

% seed = randi([0 1],1,seed_size);
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% T = toeplitz(seed(1:secret_key_len),seed(1:sac_key_len

↪→ - secret_key_len));

% Alice_secret_key = xor(Alice_sac_key(1:secret_key_len)

↪→ ’, T*Alice_sac_key(secret_key_len+1:end)’)’;

% Bob_secret_key = xor(Bob_corrected_key(1:

↪→ secret_key_len)’, T*Bob_corrected_key(

↪→ secret_key_len+1:end)’)’;

end
i = i + 1;
fprintf("End of QBER = %f\n",QBER_channel);

end

%% Print Result

figure(1)
hold on
boxplot(secret_key_len/key_init_len,QBER_sim)
grid on

plot(QBER_sim, 1/2*(1-sacrifice_percent/100)*((1-(1+f_EC)*
↪→ sh_entropy(QBER_sim/100))), "--",LineWidth=2)

grid on
hold off
ylim([0 0.45])
xlim([0.5 8.5])
xlabel("QBER [%]")

ylabel("Secret Key Rate")
set(gca,’FontSize’,26)
legend(’Estimated␣Curve’)

%% FUNCTIONS %%

%% Key Extraction
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function extracted_key = key_extraction(measuring_base,
↪→ QBIT_array,QBER,key_len) %% QBIT_array is a matrix 2x(

↪→ key_len) which the first row is the base and the colum

↪→ the key bit

extracted_key = zeros(1,key_len);

wrong_index = randperm(key_len,ceil(key_len*QBER/100));

for i = 1:key_len
if measuring_base(i) == QBIT_array(1,i)

extracted_key(i) = QBIT_array(2,i);
else

extracted_key(i) = randi([0,1]);
end

end

for i = wrong_index
extracted_key(i) = ~ extracted_key(i);

end

end

%% Basis Reconciliation

function [sift_index,sift_key_len] = basis_reconciliation(
↪→ Alice_bases,Bob_bases)

sift_index = find(~xor(Alice_bases,Bob_bases));

sift_key_len = length(sift_index);

end

%% Error Estimation

function [est_QBER,Alice_sac_key,Bob_sac_key,sac_key_len] =
↪→ error_estimation(key_len,sacrifice_percent,Alice_key,
↪→ Bob_key)
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est_QBER = 0;

sifted_index = randperm(key_len,ceil(sacrifice_percent/100*
↪→ key_len));

for i = sifted_index
est_QBER = est_QBER + (Bob_key(i) ~= Alice_key(i));

end

est_QBER = est_QBER/(key_len*sacrifice_percent/100)*100;

Alice_key(sifted_index) = [];

Alice_sac_key = Alice_key;

Bob_key(sifted_index) = [];

Bob_sac_key = Bob_key;

sac_key_len = length(Alice_sac_key);

end

%% The Binary Algorithm

function Corrected_block = Binary_algorithm(parent_block,
↪→ correct_parent_block,block_size)

left_block = parent_block(1:ceil(block_size/2));

right_block = parent_block(ceil(block_size/2)+1:end);

correct_left_block_parity = parity_check(correct_parent_block(1:
↪→ ceil(block_size/2)));

is_left_odd = error_parity(correct_left_block_parity,
↪→ parity_check(left_block));
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switch is_left_odd

case 1
odd_parity_error_block = left_block;

if isscalar(odd_parity_error_block)
Corrected_block = [not(odd_parity_error_block)

↪→ right_block];
return

else
Corrected_block = [Binary_algorithm(left_block,

↪→ correct_parent_block(1:ceil(block_size/2)),ceil
↪→ (block_size/2)) right_block];

end

case 0
odd_parity_error_block = right_block;
if isscalar(odd_parity_error_block)

Corrected_block = [left_block not(
↪→ odd_parity_error_block)];

return

else
Corrected_block = [left_block Binary_algorithm(

↪→ right_block,correct_parent_block(ceil(
↪→ block_size/2)+1:end),floor(block_size/2))];

end
end

end

%% Parity Check Function

function parity = parity_check(binary_string)

parity = 0;

for b = binary_string
parity = xor(parity,b);



Appendix C. Post Processing Code 97

end

end

%% Error Parity Function

function par = error_parity(b1,b2)

par_vec = xor(b1,b2);

par = parity_check(par_vec);

end

%% Cascade Reconciliation Protocol (Single Iteration)

function corrected_key = Cascade_single_iter(Bob_key,Alice_key,
↪→ tl_block_size)

corrected_key = Bob_key;

num_blocks = floor(length(Alice_key)/tl_block_size);

for n = 1:num_blocks

ib = 1 + (n-1)*tl_block_size;
eb = ib - 1 + tl_block_size;

if error_parity(corrected_key(ib:eb),Alice_key(ib:eb))

corrected_key(ib:eb) = Binary_algorithm(corrected_key(ib:
↪→ eb),Alice_key(ib:eb),tl_block_size);

end
end

if error_parity(corrected_key(num_blocks*tl_block_size:end),
↪→ Alice_key(num_blocks*tl_block_size:end))
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corrected_key(num_blocks*tl_block_size:end) =
↪→ Binary_algorithm(corrected_key(num_blocks*
↪→ tl_block_size:end), ...
Alice_key(num_blocks*tl_block_size:end), ...
length(Alice_key)-num_blocks*tl_block_size);

end

end

%% Cascade Multi Passes

function corrected_key = Cascade_multi(Bob_key,Alice_key,QBER,
↪→ key_len,order)

k = zeros(1,4);

k(1) = ceil(0.73/QBER);
k(2) = 2*k(1);
k(3) = 2*k(2);
k(4) = 2*k(3);

corrected_key = Bob_key;

i = 0;
for o = order

if o == 0
return

elseif i == 0
corrected_key = Cascade_single_iter(corrected_key,

↪→ Alice_key,k(1));
i = 1;

else
per = randperm(key_len);

corrected_key = Cascade_single_iter(shuffle(corrected_key
↪→ ,per),shuffle(Alice_key,per),k(o));

corrected_key = unshuffle(corrected_key,per);
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end

end
end

%% Shuffle and Unshufle Function

function shuffled_key = shuffle(key,new_pos)

shuffled_key = key;

for i = 1:length(key)
shuffled_key(i) = key(new_pos(i));

end

end

function unshuffled_key = unshuffle(shuffled_key,new_pos)

unshuffled_key = shuffled_key;

for i = 1:length(shuffled_key)
unshuffled_key(new_pos(i)) = shuffled_key(i);

end

end

%% Shannon Entroy

function h = sh_entropy(x)

h = -x.*log2(x)-(1-x).*log2(1-x);

end



D
Post Processing in RRQ Code

%% Master Thesis - RRQ Simulation - Camila Lima

clc
clear all
close all

%% Initialization

L = linspace(1,1e6,61e6); % Distance [m]

F_rep = 50e6; % Pulse Repetition rate [Hz]

mu = 1; % Avarage number of photons per pulse

eta_det = 0.1; % Detectors quantum efficiency

alpha = 0.2; % Fiber loss [dB/km]

tatb = 0.01; % Alice and Bob total insertion loss

t_link = 10.^(-2*alpha/10.*L*1e-3)*(tatb); % Probability of a

↪→ photon reaching the detectors

D = 3e-6; % Dark count per pulse per detectors

n = 2; % Number of detectors

%% Rates

R_sift = 1/2 * F_rep * mu * t_link * eta_det; % Sifted key rate

R_det = 1/4*F_rep*D*n* eta_det; % Error Detection rate

Q = R_det./R_sift;
Q((Q>1))=1;

eta_sac = 0.1; % Sacrificed percentual of the key for error

↪→ estimation

eta_ec = 1.16; % Efficiency of error correction protocol
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K = (1-eta_sac).*(1-(1+eta_ec).*sh_entropy(Q)).*R_sift;
K(find(K<0,1):end) = 0;

%% Result

figure(1)
loglog(L,K,’LineWidth’,3);
xlabel("Total Distance Between Alice and Bob [m]");
ylabel("Secret Key Rate [Bit/s]");
set(gca,’FontSize’,26);
grid on

fprintf("Expected Secure key per second for Rede Rio: %.0f\n",K(

↪→ find(L>=24e3,1)));

%% Shannon Entroy

function h = sh_entropy(x)

h = -x.*log2(x)-(1-x).*log2(1-x);

end
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