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Abstract

Ferrari, Felipe; Feitosa, Raul Queiroz (Advisor); Ferreira, Matheus
Pinheiro (Co-Advisor). Deforestation detection under diverse
cloud conditions from the fusion of optical and SAR data
with deep learning models. Rio de Janeiro, 2024. 158p. Tese
de doutorado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Deforestation monitoring is highly dependent on human specialists analyz-
ing cloud-free optical images. Developing methodologies that minimize the
dependency on human specialists and the availability of cloud-free optical
images can contribute to environmental conservation efforts. Despite the
more accessible use of optical images for deforestation detection, the pres-
ence of clouds in these images limited the operation, forcing the selection
of images at specific times of the year when the presence of clouds is lower.
However, even in the dryest period of the year, there are certain regions
of the Brazilian Amazon Forest where the cloud presence is still high. On
the other hand, the SAR images suffer less interference from clouds, but
are more challenging to interpret. Aiming to take advantage of both, we
investigated Deep Leaning methods of fusion of these data, especially in di-
verse cloud presence conditions, which is an unexplored subject, as best as
we know. We proposed using a pre-training strategy from single-modality
optical and SAR models. We investigated ways to combine the SAR images
across the analyzed period. We also investigated Vision Transformer-based
architectures. Our best results reached the same F1-Score result fusing SAR
images with optical images with diverse cloud conditions and with cloud-free
optical images.

Keywords
Remote Sensing; Data Fusion; Deforestation; Deep Learning;

Clouds.



Resumo

Ferrari, Felipe; Feitosa, Raul Queiroz; Ferreira, Matheus Pinheiro.
Detecção de desmatamento sob condições diversas de nu-
vens a partir da fusão de dados ópticos e SAR com modelos
de aprendizado profundo. Rio de Janeiro, 2024. 158p. Tese de
Doutorado – Departamento de Engenharia Elétrica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

O monitoramento do desmatamento é altamente dependente de espe-
cialistas humanos que analisam imagens ópticas livres de nuvens. O desen-
volvimento de metodologias que minimizem a dependência de especialistas
humanos bem como da disponibilidade de imagens ópticas livres de nuvens
pode contribuir para os esforços de conservação ambiental. Apesar do uso
mais fácil de imagens ópticas para detecção de desmatamento, a presença
de nuvens nessas imagens limita a sua utilização, obrigando a seleção de
imagens em épocas específicas do ano em que a presença de nuvens é me-
nor. Porém, mesmo no período mais seco do ano, existem certas regiões da
Floresta Amazônica Brasileira onde a presença de nuvens ainda é elevada.
Por outro lado, as imagens SAR sofrem menos interferência das nuvens, mas
são mais difíceis de interpretar. Visando aproveitar ambos, investigamos mé-
todos de fusão desses dados, especialmente usando imagens com condições
diversas de nuvens, que é um assunto inexplorado até onde sabemos. Pro-
pusemos o uso de uma estratégia de pré-treinamento a partir de modelos
ópticos e SAR. Investigamos arquiteturas baseadas em Vision Transformers.
Nossos melhores alcançaram o mesmo resultado de F1-Score usando a fusão
de imagens SAR com imagens ópticas com condições diversas de nuvens e
imagens ópticas livres de nuvens.

Palavras-chave
Sensoriamento Remoto; Fusão de Dados; Desmatamento; Apren-

dizado Profundo; Nuvens.
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1
Introduction

Since the first aerial photographs taken by Félix Nadar from balloons
in the 1850s, Remote Sensing (RS) technologies developed rapidly until the
launch of modern satellites [20], these systems can board different sensors, like
multispectral, hyperspectral, thermal, and radar. The main advantage of these
systems is the ability to obtain data from the Earth’s surface and atmosphere at
any location on the planet and with regular time intervals between collections
(depending on the orbit and the spatial and temporal resolutions chosen for
the satellite) [22].

However, the images produced by these systems need to be interpreted
to generate helpful information. When humans analyze an RS image, their
brain interprets the features found in the scene (shapes, sizes, patterns, colors,
textures, shadows, location, and associations) by comparing them with their
personal experience [20, 22, 23]. Consequently, the manual interpretation of
the images depends on qualified specialists (demanding training time) to
correctly identify features in the images, limiting the productivity of generating
information from the RS images.

According to the Union of Concerned Scientists, there were 1,182 satel-
lites in Earth’s orbit at the beginning of 2023, for which the purpose is Earth
observation [24]. In a scenario in which an increasing number of RS imaging sys-
tems are available, visual interpretation by human experts considerably limits
the potential for extracting information from the generated images, either be-
cause of the complexity involved in training these specialists or because of the
natural limitations of human productivity. Automatic methods for interpreting
changes in RS images, which can minimize the dependence on specialists, have
been developed over the last few years, among which Deep Learning (Deep
Learning - DL) methods represent the State-of-the-art (SOTA) [25].

The Brazilian Amazon Forest (BAF) is the largest rainforest on Earth.
It is a habitat for millions of species and regulates the planet’s climate [26].
Deforestation is an important driver of land use change, as this process consists
of suppressing vegetation areas by anthropogenic actions [1].

Due to recent increases in deforestation rates in the BAF [27], monitoring
this biome has become even more relevant. Due to the almost non-existent
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transport infrastructure in native forest regions and their extensive areas,
the use of RS images becomes an essential tool for detecting new areas
of deforestation, especially with RS satellite systems, for which the image
acquisition covers large areas and is independent of local infrastructure.

In this context, the PRODES program, conducted by the National Insti-
tute for Space Research (INPE) since 1988, detects new areas of deforestation
by comparing images taken annually from optical sensors, which seek to locate
changes in native vegetation produced by new deforestation areas [1]. These
sensors can detect spectral responses in different wavelength ranges and pro-
duce images. To minimize cloud presence in regions with a high occurrence of
clouds, PRODES employs more than one image [1]. However, there are regions
in the BAF where the probability of the presence of clouds is so high that it is
unlikely to obtain images with low cloud cover throughout the whole year [9].

Although the use of optical images facilitates the interpretation by human
experts, they can suffer interference from atmospheric effects, especially in case
of obstructions caused by the presence of clouds. When clouds are present, an
alternative to optical images is using Synthetic Aperture Radar (SAR) images,
which are much less affected by the presence of clouds [20]. Thus, using SAR
images to monitor areas with the recurrent presence of clouds raises a practical
possibility [28].

Even though DL models can employ data from each sensor individually,
these data sources can also be utilized together. Optical and SAR data fusion
techniques have proved helpful in computer vision tasks when applied to cloud-
free RS images [15]. However, none of the works so far aimed to minimize the
problem of cloud occurrence, conditioning the application of data fusion to the
availability of cloud-free optical images. As cloud occurrence is frequent in the
BAF region, developing new models for detecting deforestation independent
of the atmospheric conditions is relevant when taking images.

In summary, this work investigates fusion models based on different base
architectures, combining SAR data and optical images with diverse cloud
conditions for deforestation detection. We proposed a new training strategy to
minimize the optical and SAR models’ convergence differences. We concluded
that our methodology delivered deforestation predictions fusing SAR and
cloud-diverse optical images very close to the predictions fusing SAR and
cloud-free optical images.
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Hypothesis

The central hypothesis of this work is that Deep Learning models, which
integrate Optical and SAR data, can assess the reliability of each data source
and leverage this understanding to extract the most relevant information from
each.

Objective

Based on this hypothesis, this work aims to investigate Deep Learning
models capable of fusing optical and SAR data under diverse cloud conditions.
To evaluate these models, they will be refined to identify new deforestation
areas from multitemporal Remote Sensing optical and SAR data fusion,
regardless of the cloud condition of the optical data.

To test our hypothesis, we established the following specific objectives,
focusing on identifying new deforestation areas from multitemporal optical and
SAR images:

1. Investigate Deep Learning architectures to identify new deforestation
areas from multitemporal optical and SAR images.

2. Based on these single-modality architectures, explore different methods
of utilizing multitemporal optical and SAR images, selecting the one that
yields the best results.

3. Investigate end-to-end DL models to fuse SAR and optical multitemporal
images, using the models with cloud-free optical images as the baseline
to evaluate the models using optical data with diverse cloud conditions.

Contributions

The main contributions of this work are:

1. We adapted Deep Learning models to fuse Remote Sensing images from
SAR and optical sensors regardless of the cloud presence in the
optical images to identify new deforestation areas in the Brazilian
Amazon Forest biome.

2. We proposed and validated a training strategy for the fusion of optical
and SAR images.
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3. We investigated a different method for combining SAR images for
deforestation detection, capturing the features across the analyzed period
and the behavior of this data in other seasons.

4. We investigated the recent new architectures, especially those based on
the Vision Transformer concept, as a substitute for convolution in DL
data fusion models from different sources.

5. We evaluated the feasibility of the investigated models, especially in
terms of the demand for computational resources for training and in-
ference.

Text Organization

The rest of this work is organized as follows:

– Chapter 2 details the theoretical foundations of Remote Sensing and the
models used throughout the work.

– Chapter 3 reviews prominent publications on deforestation detection,
data fusion, and cloud presence (missing data) in remote sensing images.

– Chapter 4 presents the work methodology to achieve the proposed
objective.

– Chapter 5 presents the experimental protocol, including the utilized data.

– Chapter 6 presents the experiments’ results and the respective discussion.

– Chapter 7 concludes the work, presenting a brief discussion about the
results achieved and the potential contribution for future works.



2
Theoretical Foundations

This chapter introduces the main theoretical foundations related to this
work. We present the remote sensing (RS) data sources employed, including
the Optical and Synthetic Aperture Radar (SAR), the PRODES project, in
which data will be utilized as ground truth. Closing this chapter, we explain
the Deep Learning (DL) concepts employed in this work’s methodology.

2.1
Spaceborne Remote Sensing Data Sources

In the spaceborne RS systems, the satellites’ sensors measure the energy
reflected from the Earth’s surface, transforming this measures in images
[23]. The data acquisition process of these systems consists of the following
elements: source of energy, propagation through the atmosphere, interactions
with the Earth’s surface, retransmission through the atmosphere, and satellite
acquisition sensor [20]. These systems can be classified as active or passive RS
depending on the energy source. In the active systems, the energy source is
emitted by the system, while in the passive systems, the energy source is the
environment, usually the Sun [22]. Figure 1 shows examples of these elements
in the case of active and passive sensors.

1(a): Active sensors. 1(b): Passive sensors.

Figure 1: Data acquisition process of spaceborne RS systems.

These days, many nations and a broad range of corporations operate
spaceborne RS systems specially designed to collect information concerning
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crops, forests, water bodies, land use, cities, defense, and mineral resources
from the Earth’s surface [20, 22, 29]. The applications in which the images
generated from these systems range from global resource monitoring to such
activities as city planning, agricultural development, natural disaster response,
defense activities, and forest monitoring [30–34].

The interaction between energy and Earth’s surface is the information to
be detected by satellite sensors. These interactions vary based on the energy
wavelength [23]. The optical and radar are the most usual sensors boarded in
RS spaceborne systems focused on Earth’s surface observation [29].

2.1.1
Optical Data

The optical spaceborne systems operate within the optical spectrum, in
which the wavelengths extend from approximately 0.3 to 14 µm. This range
includes ultraviolet, visible, near-, mid-, and thermal infrared [20]. The sensed
data are acquired in spectral regions, also called spectral bands, and are related
to the reflectance (or the emissivity in the case of thermal sensors) of Earth’s
surface for each spectral band.

Civilian organizations operate many optical spaceborne systems, such as
Landsat, SPOT, and Sentinel-2. The Sentinel-2 is managed by the European
Space Agency (ESA) and consists of Sentinel-2A and Sentinel-2B, launched
in June 2015 and March 2017, respectively. They are designed to provide
continuous multispectral imagery to assist land management, agriculture,
forestry, disaster response, and security programs. Sentinel-2 provides 12 bits,
high-resolution multispectral imagery, including 13 spectral bands covering a
290-km swath at resolutions between 10 and 60 meters [19], as shown by Table
1.

The Sentinel-2 has two products available to the users, which differ from
each other by the processing level applied. The product Level-1C is radiometric
and geometric corrected, including orthorectification and spatial registration),
representing the Top-Of-Atmosphere reflectances. In product Level-2A, an
atmospheric correction is applied in addition to the Level-1C corrections,
reaching Bottom-Of-Atmosphere reflectances [19].

Remote sensing instruments detect energy across many spectral bands,
including bands with wavelengths outside the visible wavelength range region.
Human vision perceives the colors from the combinations of the primary
colors: red, green, and blue. This limits the representation of the images by
compositions of its bands, in which each band is presented by a primary color,
highlighting specific bands depending on the task. Each band can represent
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Band wavelength (nm)
Central Bandwidth (nm) resolution (m)

Spatial

1 443 20 60
2 490 65 10
3 560 35 10
4 665 30 10
5 705 15 20
6 740 15 20
7 783 20 20
8 842 115 10
8b 865 20 20
9 945 20 60
10 1375 30 60
11 1610 90 20
12 2190 180 20

Table 1: Wavelengths and spatial resolutions of Sentinel-2 [19].

the sensed spectral band or arithmetic operations between them. The most
usual is the true color composition, as shown by Figure 2(a), in which the
reflectance values in the bands 4, 3, and 2 are represented by the colors red,
green, and blue, respectively, which produces images similar to the human
vision. However, other bands’ compositions can be utilized, like the false colors,
as shown by Figure 2(b), in which the reflectance values in the bands 8, 4, and
3 are represented by the colors red, green, and blue, which produces images
highlighting the vegetation [23].

2(a): True colors 2(b): False colors

Figure 2: Examples of optical color compositions.

The sensed energy acquired by the satellites’ sensors is affected by the
atmospheric conditions during the propagation and retransmission [20], as
shown by Figure 1. Some of these atmospheric effects can be corrected, but not
the presence of clouds, which block the energy reflected by the Earth’s surface
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and produce shadows on the surface, as shown in Figure 3. The presence of
clouds is common in the Brazilian Amazon Forest. In some regions, it is possible
to acquire images free of clouds during some period of the year (called the dry
period). However, there are other areas where clouds are constant throughout
the year [9]. For these last areas, optical imagery can’t be employed for tasks
in which the Earth’s surface is the essential data, like forest monitoring.

Figure 3: Sentinel-2 image with the presence of clouds.

2.1.2
Synthetic Aperture Radar Data

The active microwave sensor is an example of an active sensor that
broadcasts a directed pattern of microwave energy to the Earth’s surface,
receiving the scattered energy back to the sensor. As optical sensors produce
images from reflected solar energy, their use is constrained by weather and the
time of day, as shown in section 2.1.1. On the other hand, active sensors acquire
the energy they produce, and their usage is subject to fewer constraints. The
main capabilities of active microwave systems include [23]:

– Less weather dependency, constrained only by extreme weather events.

– Operates free of atmospheric effects and at any time of the day.
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– Record details of the emitted energy (such as wavelength, phase, and
polarization), comparing them to the returned sensed signal.

– Acquire detailed imagery at great distances.

The spaceborne SAR systems employ a short physical antenna moving
along its orbit, which synthesizes the effects of a very long antenna, modifying
the data recording and applying processing techniques. They provide unique
images that correspond to geometrical properties of the Earth’s surface in
diverse weather conditions [35]. Such applications include polar ice research,
vegetation, biomass measurements, and soil moisture mapping [36–39].

Two main characteristics affect the signal transmission of SAR systems:
the wavelength and the polarization. Table 2 presents the usual wavelength
ranges used by SAR systems. Each wavelength band is represented by a letter
originally designated by military security and is still utilized.

Designation
Band

(cm)
Wavelength

Ka 0.75 − 1.1
K 1.1 − 1.67
Ku 1.67 − 2.4
X 2.4 − 3.75
C 3.75 − 7.5
S 7.5 − 15
L 15 − 30
P 30 − 100

Table 2: Usual wavelengths of SAR systems and their designations [20].

The influence of the atmosphere on the radar signal is related to the signal
wavelength. In general, radar signals are relatively unaffected by the presence
of clouds. However, precipitation can interfere with the signal, especially
in shorter wavelengths (bands K, X, and C). Another effect of weather
interference in SAR images occurs in the case of rainfalls, which significantly
changes the moisture of the soil or plants, affecting their signal backscatter.
Spaceborne SAR systems have frequently used X, C, S, and L bands [40].

The radar signal can be emitted and sensed in different modes of polar-
ization. The polarization of an electromagnetic wave describes the geometric
plane in which the energy oscillates. Usually, spaceborne SAR systems emit
energy in two polarization modes: vertical (the oscillation plane is perpen-
dicular to the antenna) and horizontal (the oscillation plane is parallel to the
antenna). As the sensor usually can emit and sense in both polarization modes,
four polarization combinations are available [20]:
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– HH: The energy is emitted and sensed in horizontal polarization;

– VV: The energy is emitted and sensed in vertical polarization;

– HV: The energy is emitted in horizontal polarization and sensed in
vertical polarization;

– VH: The energy is emitted in vertical polarization and sensed in hori-
zontal polarization.

The Sentinel-1 is a spaceborne SAR system operated by ESA, with a
C-band sensor designed to image global landmasses, coastal zones, sea–ice,
polar areas, and shipping routes at high resolution and covering the global
ocean. The primary sensor can generate images with 10 m spatial resolution
and VV and VH polarization modes. The system operates two satellites, which
deliver images with six days of repetition [41]. Figure 4 presents an example
of Sentinel-1 on VV, Figure 4(a), VH, Figure 4(b), polarization modes, and
the respective colored composition in which VV, VH and the VV/VH ratio are
represented by red, green and blue colors, Figure 4(c).

4(a): VV polarization. 4(b): VH polarization. 4(c): colored composi-
tion.

Figure 4: Sentinel-1 image in VV (a) and VH (b) polarization modes and
VV/VH composition (c).

2.2
PRODES Program

Since 1988, the PRODES program, a part of the Program of Monitoring
of Amazon and other Biomes (also called PAMZ+ and conducted by the
INPE), performs the primary forest loss inventory through Earth observation
satellite images. The term deforestation used by PRODES is defined as the
primary vegetation suppression by anthropogenic actions. Deforestation begins
with the intact forest and usually ends with the full forest conversion by other
land coverage. [1].

The PRODES employs optical images generated by optical satellite
systems. Currently, PRODES utilizes Landsat-8, Landsat-9, Sentinel-2, and
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CBERS-4/4A images. PRODES splits the area based on the Landsat grid
scenes, as shown by Figure 5 to monitor the BAF region. From each area, an
annual image is selected from the dry season (between July and September)
based on weather parameters. Due to the high cloud coverage probability in
some BAF regions [9], more than one image can be used. However, if some
regions are cloud-covered in all analyzed images in a specific year, these regions
can’t be inspected and are included in the cloud mask of that year [1].

Figure 5: Landsat grid coverage in the Brazilian Amazon Forest [1].

Deforestation is identified by photointerpretation of the pair of optical
images, carried out by trained specialists, who delimit the deforestation
polygons directly on the computer screen. These experts identify the pattern
of change in forest cover based on the main elements observable in the image
pair: tonality, color, shape, texture, and context. The image from the analyzed
year is compared to the image from previous year, looking for differences in
the elements that indicate a new area of deforestation. Cloud-free images from
previous years can be used to compare when clouds cover last year’s image.
[1]. An example of the deforestation areas identified by PRODES is shown
in Figure 6, in which the deforestation identified until 2007 and the yearly
identified deforestation, including the identification year, are presented in blue
and red, respectively.

The data acquired by PRODES are made publicly available through the
portal Terrabrasilis [42]. Only new deforestation areas of at least 6.25 ha are
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Figure 6: Deforestation areas identified by PRODES.

included in the annual deforestation increment [1]. Terrabrasilis provides the
following data:

– Increment deforestation: deforestation areas identified annually from the
year 2008.

– Previous deforestation: mask of deforestation areas identified before the
year 2008.

– Hydrography: Mapping of water bodies (rivers, lakes, dams, and reser-
voirs).

– Cloud mask: Areas covered by clouds and shadows in the utilized optical
image.

– No forest: Areas not included in the Forest class adopted in the mapping,
which consequently, are not objects of analysis and mapping by the
PRODES.

– Residual deforestation: Consists of deforested areas from previous years
that, for some reason, were not observed.

Although PRODES does not carry out a field survey to inspect the actual
occurrence of new deforestation areas, it can be considered a Gold-Standard
reference data to assess the deforestation classification accuracy, due to the
achieved accuracy higher than 93% [43, 44]. Many works aimed to identify
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deforestation areas from RS images utilized PRODES data as reference [13, 45–
47].

2.3
Convolutional Networks

The RS data images are typically stored in the form of 2D grid layers,
in which each layer represents diverse information, like a band of Optical
satellite systems or a polarization combination of SAR satellite systems. The
Convolutional Network, also called Convolutional Neural Networks (CNN) [48]
is a specialized neural network for processing this data.

These models are based on the convolution operation, defined formally
for real-valued arguments by the Equation 2-1, in which x is the input, and
w is the kernel. In image-based applications, the input and the kernel are
discretized and multi-dimensional. An example of the convolution applied in
two-dimensional arrays as input and kernel can be found in Equation 2-2,
in which I and K are the input and kernel, respectively. Figure 7 shows an
example of a convolution evaluation with a 2 × 2 kernel applied in 4 × 4
two-dimensional image, highlighting in which elements the operation was
applied [49].

s(t) = (x ∗ w)(t) =
∫

x(a)w(t − a)da (2-1)

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i + m, j + n)K(m, n) (2-2)

Figure 7: 2D Convolution operation example.

A typical DL model based on the convolutional operation and widely
used for RS tasks is the ResUnet [2], which improved the U-Net [50], including
the residual learning concept [51], minimizing the vanish gradient difficulty.
Figure 8 shows the residual block (a) and the general architecture of the
ResUnet.
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Figure 8: The residual block in detail (a) and ResUnet general architecture
(b). Adapted from [2].

2.4
Vision Transformer Networks

Many DL models designed to identify deforestation areas from RS data
were variations of CNN models [12, 52–58]. However, recently, these models
have been superseded by models based on the Vision Transformer (ViT)
model [3], which was based on the Transformer concept, based on the self-
attention mechanism, initially employed for language translation task [4].

Initially, ViT was designed to classify images. Figure 9 shows the ViT
model overview. The Transformer uses a latent vector with a size D, similar
to a CNN feature maps’ depth. In its first step, the input image is split into a
sequence of two-dimensional flattened patches, in which its initial pixel values
are projected to the latent size D, generating the embedded patches. A position
embedding is then added to the embedded patches, and its result serves as
input to the Transformer Encoder.

The Transformer Encoder consists of a sequence of L blocks, as presented
by Figure 9b. The blocks have two parts. Around each block part, there is a
residual connection. The first part consists of a layer normalization followed
by multi-head attention, and the second one consists of a layer normalization
followed by multilayer perceptrons (MLP). The MLP consists of two densely
connected layers activated by Gaussian Error Linear Unit (GELU), a non-
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Figure 9: Vision Transformer: the model overview (a), and the Transformer
Encoder (b) [3].

linear activation function [59]. Figure 10 describes the multi-head attention
layer.

Figure 10: Multi-head attention description [4].

In each of the h attention heads, the same V , K, and Q are projected
by the product with LV

i , LK
i , and LQ

i , respectively, where i is the head
index. Equation 2-3 describes each i-th head attention output, where dK is
the dimension related to the matrix LK

i K. The multi-head attention output,
described by Equation 2-4, is given by the concatenation of all attention heads
followed by a projection, given by the product with LO [4].

Attentioni(Q, K, V ) = softmax((LQ
i Q)(LK

i K)T

√
dK

)(LV
i V ) (2-3)

Multi-head(Q, K, V ) = (Concat(Attentioni(Q, K, V )))LO (2-4)
The Swin Transformer [5] improved from ViT, replacing the multi-

head self-attention layer with the window multi-head self-attention (W-MSA)
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Figure 11: The Swin Transformer model: the overview (a) and two successive
Swin Transformer blocks (b)[5].

and shifted window multi-head self-attention (SW-MSA), which are applied
alternately in each successive Swin Transformer block. It also included the
successive downsize operation performed by the Patch Merging operation.
The model overview and two successive Swin Transformer blocks are shown in
Figure 11.

Figure 12: The Swin Transformer hierarchical feature maps (a) in comparison
to ViT (b). The attention operations are limited to the red boxes [5].

In the Swin Transformer, the attention mechanism is limited to the
patches inside the windows. The window size is a parameter that must be
chosen. These windows limitations allow a faster computation than ViT, in
which the attention must be computed globally. Figure 12 compares the feature
maps distribution between the layers inside the models [5].

Figure 13: The Swin Transformer windows shift [5].
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Despite the reduction in complexity, applying self-attention to a window
area could ignore important relations between information that are not close
to each other in the image. To minimize this problem, the shifted window is
utilized, as shown by Figure 13, which presents how the windows are shifted
between two successive layers [5].

The Swin-unet [6], based on [5, 50], was proposed for the semantic
segmentation task in medical images. Figure 14 shows the Swin-Unet model
architecture.

Figure 14: The Swin-Unet model architecture [6].

2.5
Change Detection

Change detection is a computer vision task that aims to identify differ-
ences in the state of an object or a phenomenon between two different instants.
The Remote Sensing field is based on the premise that the difference of the
state or phenomenon on the Earth’s surface results in differences in the energy
interaction and, consequently, in the energy sensed by the sensor [60].
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In a deep learning context, change detection methods can be classified
into three sets based on the training strategy. The first one employs supervised
methods, where enough labeled data is available for training purposes. Another
approach utilizes fully unsupervised methods and is suitable when labeled data
is unavailable. The last one is used when labeled data is limited and needs to
be used more to train models. They consist of the methods that apply transfer-
learning techniques, pre-training the model with available labeled data, and
refining it with the limited available labeled data [61].

The change detection capability strongly depends on the feature extrac-
tion. The feature extraction strategies can be classified as single-stream or
multi-stream (usually dual-stream). The temporal aggregation strategy (also
called fusion strategy, but this terminology will not be utilized to avoid mis-
leading with sensor data fusion) also affects the change detection quality. The
most usual temporal aggregation strategies are concatenation, difference, and
summation operations performed in the images’ channel dimension [62, 63].
Figures 15 and 16 present the single and multi-stream feature extraction strate-
gies, respectively.

Figure 15: Single-stream feature extraction strategy.

Figure 16: Multi-stream feature extraction strategy.
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2.6
Data Fusion

The number of available RS systems has increased in the last few years.
Multiple sensors provide a large variety of RS data. Despite each sensor
type capturing diverse characteristics, the multi-sensor fusion can exploit the
complementary and correlated, generating more comprehensive and accurate
information [64, 65]. Figure 17 presents the data fusion workflow for RS
applications [7].

Figure 17: Data Fusion for Remote Sensing tasks [7] .

According to Li et al. [7], RS data fusion can be classified into two
groups based on the sensors’ characteristics: homogeneous and heterogeneous
fusion. Homogeneous fusion aims to increase the spectral, spatial or temporal
resolution. They include the fusion of multispectral or hyperspectral (narrow
wavelengths spectral bands and higher spatial resolution) with panchromatic
data (broad wavelengths spectral bands and smaller spatial resolution), called
MS and HS panshaperning, respectively. Spatiotemporal fusion (also a homo-
geneous fusion) aims to increase spatial and temporal resolutions, fusing lower
spatial and higher temporal resolutions with higher spatial and lower temporal
resolutions. Different from homogeneous, heterogeneous fusion aims to extract
complementary information from diverse sensors. Each sensor modal has di-
versified capabilities. Optical and SAR fusion, e.g., can explore the Earth’s
surface iteration with different wavelengths and optical and Radar bands in a
complementary way.

Based on which level the fusion takes place, we can organize DL data
fusion into three categories: pixel-level, feature-level, and decision-level. Pixel-
level, also called low level or raw data level, we generate new images (fused)
from the original data. Feature-level, in which the fusion occurs on the feature
extractors’ outputs. Decision-level, also called high level, refers to the methods
in which the data fusion is done after the individual classifications [7, 8, 66].
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Fusion Class Domain

Homogeneous

Panshaperning
Hyperspectral Panshaperning
Hyperspectral - Multispectral

Spatiotemporal

Heterogeneous
Hyperspectral - LiDAR

SAR - optical
RS - Geospatial Big Data

Table 3: Classifications of RS data fusion classification tasks (adapted from [7]).

Figures 18, 19, and 20 present examples of the fusion on pixel-, feature-, and
decision-levels, respectively.

Figure 18: Pixel-level data fusion (adapted from [8]).

Figure 19: Feature-level data fusion (adapted from [8]).

Figure 20: Decision-level data fusion (adapted from [8]).
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2.7
Cloud Coverage

As shown by section 2.1.1, the surface information is occluded by clouds
in images from optical sensors. Asner et al. [9] evaluated the monthly
probability of obtaining a Landsat scene with 30% or less cloud presence in
the BAF, analyzing all acquired scenes between 1984 and 1997. Figure 21
synthetizes the monthly probability month by month. From these results, one
note that is challenging to have cloud-free (or with low cloud presence) from
some BAF regions, especially the northern region.

Figure 21: Monthly probability to obtain a Landsat scene with 30% or less of
cloud presence in the BAF [9].



3
Related Works

This chapter presents the main published works closely related to this
Thesis, especially those that aim to detect deforestation areas (as a typical
change detection task) from multitemporal RS images using deep learning
models. To demonstrate the gap in the knowledge covered by the contributions
of this work, we highlighted those focused on data fusion and missing data by
cloud coverage in Section 3.5.

3.1
Change Detection

A simple way to apply CNN architectures to detect changes from
RS images is with single-stream temporal aggregation strategy, combining
the temporal images before input in a traditional CNN model architecture,
like [10, 67–75]. Figure 22 presents an example of a single-stream temporal
aggregation strategy evaluated by [10].

Figure 22: Single-stream model strategy evaluated by [10].

However, the most usual way to identify change detections from bi-
temporal RS images is from dual-stream architectures, particularly with
Siamese networks. In these architectures, the weights of the feature extractors
are shared between streams [10, 76–94]. Some of these studies also included
the contrastive loss function [95] to ensure that stream outputs belong to the
same latent space [96–98]. These networks can perform multiple tasks simul-
taneously, including change detection identification [99]. Figure 23 presents
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an example of a multi-stream temporal aggregation strategy, which was also
evaluated by [10].

Figure 23: Multi-stream model strategy evaluated by [10].

Recurrent Neural Networks (RNN) have been utilized to handle sequen-
tial temporal data to identify its effects on the Earth’s surface [100–102]. These
architectures are usually based on Long Short-Term Memory (LSTM), which is
a particular RRN unit that stores and forgets the temporal information [103–
108].

Lately, attention-based methods have increased in popularity, includ-
ing for Change Detection purposes. These methods usually apply transformer
concept [3] to identify the differences between the images from different in-
stants [109, 110]. However, other attention methods are also utilized, especially
channel and spacial excitation [111], which increase the network attention in
some channels or locations in the image, respectively [98, 112–114].

3.2
Deforestation Detection

Xiang et al. [11] investigated convolutional-based models in combination
with various loss functions, using optical images (Sentinel-2) between 2017 and
2021 to identify annual forest changes in Hunan Province (center of China).
In this work, they identified any changes in the forest, including deforestation
and forest growth. Figure 24 presents the results from each investigated model
by [11].

Other works, like [12, 52, 53, 55–58, 115–118], conducted similar research
using optical images, investigating different models or optical images from
other sensors. Some of these works used the single-stream temporal aggregation
of the images, and others multi-stream. However, none of them explored optical
images with cloud presence. Figure 25 presents examples of deforestation
detection from [12].



Chapter 3. Related Works 42

Figure 24: Comparison between results from the investigated models from [11].

Figure 25: Examples of deforestation detection predictions from [12].

3.3
Cloud Presence

As is widely known, the presence of clouds in optical images affects any
investigation using these images. We could not find any work investigating
cloud presence interference in deforestation detection tasks using deep learning
models.
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However, as cloud coverage is an obstacle to the wide use of optical
images, some alternatives emerged, like SAR data, especially in regions with
high-frequency cloud presence [119]. Some works, like [54, 120], investigated
deforestation detection by replacing optical images with SAR images, exploring
single and multi-stream temporal aggregation strategies. Other works, like
[13, 121], compared the convolutional-based networks using cloud-free optical
and SAR images to monitor forests. Although these works investigated the
SAR images as a replacement for optical images, they didn’t compare their
results with those in the presence of clouds, as shown by figure 26.

Figure 26: Sample of deforestation detection from [13].

3.4
Data Fusion

Deep Learning models can apply pixel-level fusion to generate new sim-
ulated images. For example, the fusion of panchromatic with multispectral or
hyperspectral can generate a new image with a higher spatial resolution (from
panchromatic) holding the spectral resolution (from multispectral or hyper-
spectral), also called pansharpening. A simple DL strategy for pansharpening
is the End-to-end model, in which the source images are the input of a DL
model, and its output is the simulated image [122–129]. The adversarial train-
ing strategy, like GAN [130], is also a usual way to pansharpening [131–135].
The previous strategies are based on supervised methods, but sometimes, the
desired high-resolution data volume needs to be more available. In these cases,
unsupervised methods were proposed for pansharpening tasks [136, 137].

Beyond the typical pansharpening task fusing data from two or mul-
tiple sources, other traditional machine learning tasks, like classification or
regression, can also be performed by fusing data in pixel, feature [138–145], or
decision levels, usually to exploit the complementary data from diverse sources.
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Another usual strategy is translating the data from one source modal
domain to another. These strategies usually apply GAN generating a synthetic
image (target sensor domain) from a real one (source sensor domain) [146–
151]. This strategy allows the creation of synthetic optical images to remove
the clouds in the image and replace them with information based on other
modality data, like SAR.

Other works investigated the SAR-optical translation replacing the cloud-
covered pixels with synthetic data based on the SAR information in the optical
data, generating a synthetic cloud-free optical image [150, 152, 153]. These
synthetic images could be used to classify optical models.

Hong et al. [14] proposed a fusion strategy called cross-fusion, which
focuses on learning representations across modalities from different subnet-
works. Unlike other methods, in this approach, each modality’s stream can
learn specific properties from itself and also incorporate diverse information
from another stream to achieve comprehensive information blending, as shown
by Figure 27.

Figure 27: Cross-fusion layout [14].

Cue La Rosa et al. [15] investigated a multitask fusion model, using
optical and SAR data to detect new deforestation areas in the BAF region.
Figure 28 presents the proposed multitask model architecture. They trained
the model utilizing only cloud-free optical images, concluding that the SAR
classification can be used independently of the fusion and optical.
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Figure 28: Multitask proposed model by [15]

3.5
Gap of Knowledge

The earlier section explored research on Change Detection, Deforestation
Detection, Cloud Presence, and Data Fusion in combination with Remote
Sensing data and Deep Learning context. To demonstrate the innovation
of this thesis, we present a compilation of works focused on deforestation
detection from multitemporal data, classifying if they addressed data fusion,
cloud presence, or both. Table 4 summarizes the main works and the respective
investigated issues.

Main Works
Investigated Topics

Fusion
Data

Presence
Cloud

[12] [52] [53] [55] [56] [57] [58]
[10] [115] [116] [117] [118]

✗ ✗

[15] ✓ ✗

[13] [54] [120] [121] ✗ ✓

[16] [17] [154] [18] ✓ ✓

Table 4: Related works investigation topics.

Despite the previous works, which mainly investigated each topic indi-
vidually, some investigated data fusion and cloud presence, like this current
work.

Even with the visual quality of cloud-free images, usually generated from
optical and SAR data fusion, these synthetic images are limited to the available
information under cloud-covered optical regions, in this case, the information
provided by the SAR sensor. The use of these synthetic images for classification
purposes typically did not outperform the use of only SAR data, as in [16], who
investigated deforestation detection at two sites in the BAF using synthetic
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images from Sentinel-1 and Sentinel-2 and the same DL model from [13].
Figure 29 presents the results of the F1-Score from Sentinel-2 cloud-free (S2
Clear), Sentinel-1 (S1), and synthesized images, showing that the synthesized
images from any method outperformed the single-modality models.

Figure 29: Comparison between deforestation detection using real cloud-free
optical, SAR, and synthetic optical cloud-free images from different sites [16].

Li et al. [17] proposed a spatiotemporal fusion method to calculate the
Normalized Difference Vegetation Index (NDVI), which can be used to estimate
the vegetation density in the area, usually a proxy to monitor the deforestation
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process. They used a combination of Sentinel-1 and Sentinel-2 (cloud-free or
partially covered by clouds), as shown in Figure 30. Unlike our work, the optical
images’ parts partially covered by clouds were discarded and replaced by the
information from SAR data.

Figure 30: Timeline of the images from Sentile-1 and Sentinel-2 used by [17].

In previous works, we have investigated the fusion of SAR and optical
data with diverse cloud conditions. In [154], we created multiple tiles across the
BAF. We used optical with diverse cloud conditions and SAR images from two
consecutive years, using some tiles for training, validation, and test purposes.
In that work, the best model delivered predictions with an F1-Score value of
0.72. We also investigated this in [18], replacing the location-based training-
validation-test split used in [154] with a time-based split, using images from
two consecutive years (2018 and 2019) for training-validation purposes and
images from another consecutive year (2019 and 2020) for testing, in which
the best model delivered predictions with F1-Score values of 0.92 for all pixels,
as shown by Figure 31.

Figure 31: F1-Score from convolution (CNN-*) and transformer-based (TRA-*)
models, using optical (*-OPT) and SAR (*-SAR) data and the early (*-EF),
joint (*-JF) and late (*-LF) fusion of optical and SAR data evaluated by [18]

From the presented works, confirmed by Table 4, we can identify a lack
of investigation into combining the data fusion of RS data with cloud presence
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to deforestation detection using Deep Learning models. Despite some works
investigating the fusion of SAR and optical images, they didn’t explore the
optical images with cloud presence.



4
Methodology

This chapter introduces the methodology utilized in this Thesis. Initially,
the baseline models will be shown. Then, we present the fusion models, followed
by a strategy to train them to improve their robustness.

As described in Chapter 1, we hypothesize that Deep Learning models
can learn how to identify cloud-covered regions and select the trustful data
source(s). To evaluate this hypothesis, we will investigate models capable of
fusing data from optical and SAR satellite systems to identify new areas of
deforestation from bitemporal images with an interval of one year between
them.

Initially, we selected some architectures based on CNN (ResUnet [2]) and
Transformer (Swin-Unet [6]), which are aimed at semantic segmentation. These
models will serve as the baseline and identify the influence of the temporal
aggregation strategy and the previously known information on deforestation.

4.1
Base Architectures

4.1.1
ResUnet Based Architecture

The ResUnet-based model is organized into Encoder, Decoder, and
Classifier, as shown in Figure 32. The input X ∈ RH×W ×B, in which H,
W , and B are the height, the width, and the number of bands in the Input
Image Patch. The Encoder consists of a sequence of Residual Blocks followed
by 2 × 2 max pooling operations (orange arrows). The first Residual Block’s
convolutions have D filters, and the following doubles after each max pooling
operation. The Decoder comprises a nearest neighbor upsampling operation
(green arrows), followed by a Residual Block, whose outcome is concatenated
with the feature map produced by the corresponding Encoder until the height
and width match the original image size. Finally, the Classifier consists of a
Residual Block followed by a 1×1 convolution layer, with a softmax activation,
producing the Patch Prediction with N classes ∈ RH×W ×N .



Chapter 4. Methodology 50

Figure 32: ResUnet-based architecture.

The Residual Block is a sequence of two 3 × 3 convolution layers with a
dropout between them and a residual connection, in which a 3 × 3 convolution
layer is applied to adjust the depth dimensionality. Figure 32a shows the
Residual Block. After 3 × 3 convolution layers, a ReLU activation is applied.

4.1.2
Swin Based Architecture

Figure 33 presents the Swin-based architecture, organized into Encoder,
Decoder, and Classifier. Initially, the Input Image Patch X ∈ RH×W ×B is
partitioned into smaller patches called image tokens ∈ R4×4×B, where H, W ,
and B are the height, the width, and the number of bands in the Input Image
Patch, respectively. A Linear Embedding layer projects each feature map onto
an arbitrary C-depth.

The Swin-based architecture Encoder comprises the Patch Partition and
a sequence of Swin Transformer Blocks followed by a Patch Merging operation.
Each Swin Transformer Block consists of a Windowed Multihead Self-Attention
(W-MSA) or the Shifted W-MSA (SWMSA) operation. The W-MSA and SW-
MSA apply the MSA between image tokens restricted to the same window. To
ensure the connection between the windows, each W-MSA is followed by a
SW-MSA, which shifts the window by a fixed number of tokens. Following the
W-MSA or SW-MSA, there are two layers of Multilayer Perceptron (MLP),
with Gaussian Error Linear Unit (GELU) activation modules, as presented in
Section 2.4. Each module is preceded by a Layer Normalization (LN) operation
and a residual connection, as shown in Figure 33(a).

Patch Merging is applied to reduce the height and width of the image
tokens while expanding the depth, similar to ResUnet. Each Patch Merging
operation halves the height and width while doubling the depth dimension by
a linear projection of the concatenated rearranged image tokens, as presented
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Figure 33: Swin-based architecture.

in Figure 33(b). In the rearrangement, the image tokens’ colors means in which
position the token will be concatenated.

The Decoder of Swin-based architecture consists of a Patch Expanding
operation, a concatenation with the respective Encoder output, a linear
projection to reduce the depth, and Swin Transformer Blocks applied in
sequence until the tokens’ height and width turn back to their original
size. Patch Expanding performs the opposite operations of Patch Merging,
increasing image tokens’ depth with a linear projection followed by an image
tokens rearrangement, increasing the height and width while reducing the
depth, as presented in Figure 33(c). All Patch Expanding doubles the size
while halves the depth dimension, except the last one, which quadruples the
size without changing the depth dimensionality.

The Classifier of Swin-based architecture consists of a Swin Transformer
Blocks followed by the last Patch Expanding, to recover the original image
height and width from the image tokens’ size, followed by a linear projection
and softmax activation to generate the Patch Prediction with N classes, as
shown in Figure 33.

4.2
Single-modality Models

Single-modality models use only one type of data (either optical or SAR)
for model training and prediction. Figures 34 and 35 present how the Encoder,
Decoder, and Classifier blocks are organized for single-modality optical and
SAR models’ architectures, respectively.
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Figure 34: Optical models architecture.

Figure 35: SAR models architecture.

4.2.1
Temporal Aggregation

As presented in Section 2.5, in change detection problems, we can perform
the temporal aggregation in single-stream or multi-stream feature extraction
strategies.

Figure 36 shows the single-stream temporal aggregation strategy. For
optical models (Figure 36a), we just concatenated the images taken in dates
(T0 and T1) from two consecutive years. For SAR models, we concatenated
the images from dates (T0 and T1) from two successive years (as in the optical
models) or all available data between these two dates(T0, ..., TN), capturing
the features across the analyzed period and the behavior of this data in other
seasons, depending on the SAR dataset. SAR datasets will be discussed in
Section 5.3.1.2. We concatenated the images with the available auxiliary data
for both models. The auxiliary data used in this work are detailed in Chapter
5.

The Siamese architecture models utilize the multi-stream temporal ag-
gregation strategy. In this strategy, only two images were taken on two dates
(T0 and T1) from consecutive years. The Encoder blocks related to each image
input share their weights. If the model uses any auxiliary data, it is input in a
sequential Maximum Pooling block, generating multiple outputs with the same
size (height and width) as the related skip connections outputs from the En-
coder blocks. The single Decoder block has as input the concatenated feature
maps from the encoders and the Auxiliary Data Maximum Poolings outputs.
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Figure 36: Single-stream temporal aggregation for optical (a) and SAR (b)
models

Figure 37: Multi-stream temporal aggregation
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4.3
Fusion Models

We investigated three main architectures for optical and SAR data fusion:
Pixel Level, Feature Level (Middle), and Feature Level (Late).

Figure 38: Pixel Level models architecture.

In the Pixel Level strategy (Figure 38), the optical, SAR, and Auxiliary
Data are concatenated in the channel dimension before input into the model.
The Encoder, Decoder, and Classifier setup is the same as in the single-
modality models.

In the Feature Level (Middle) fusion strategy (Figure 39), the model
architecture has two independent Encoder blocks. The Encoder blocks outputs
(including the skip connections) are fused before input in the Decoder. This
strategy uses only the concatenation-fusion strategy to fuse optical and SAR
data.

In the Feature Level (Late) fusion strategy (Figure 40), the model archi-
tecture has independent Encoder and Decoder blocks. The Decoder outputs
are fused before entering the Classifier. This strategy uses concatenation-fusion
and cross-fusion to fuse optical and SAR data.
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Figure 39: Feature Level (Middle) models architecture.

Figure 40: Feature Level (Late) models architecture.
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4.3.1
Optical-SAR Fusion Methods

We investigated two ways to fuse optical-SAR data: Concatenation and
Cross-fusion. The simplest way to combine data from optical and SAR is to
concatenate them in the channel dimension. The Concatenation-fusion consists
of the concatenation of the feature maps from each modal, optical, and SAR,
followed by a 1 × 1 convolution with N kernels, in which N means the depth
of each feature map, as shown by Figure 41.

Figure 41: Concatenation-fusion.

The other fusion strategy was the Cross-fusion, based on [14]. As applied
in the original work, we only used this strategy in the Feature Level (Late)
models. Figure 42 shows the Cross-fusion, in which the 1 × 1 convolutions are
presented by the solid arrows, in which the same color means they share their
weights. Dashed arrows mean the feature maps flow. Red and black dotted
rectangles mean the sum and concatenation operations, respectively.

4.3.2
Pre-training Strategy

Typically, DL model weights are initialized randomly. However, models
trained using optical and SAR data show distinct convergence behaviors, which
can impact the performance of fusion models trained from randomly initialized
weights. To address this issue, we proposed a pre-training strategy to mini-
mize the convergence differences between these data types. By aligning their
convergence more closely, our approach reduces the convergence discrepancies
between these data types in fusion models, enhancing the overall effectiveness
of these models, especially using optical images with the presence of clouds.

In this pre-training strategy, the randomly initialized weights are replaced
by the weights of the same blocks from the single-modality trained models. As
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Figure 42: Cross-fusion (adapted from [14]).

the Pixel Level models don’t have any stream belonging to a single model,
we can’t apply this strategy in these models. Figures 43 and 44 present the
proposed pre-training strategy for Feature Level (middle) and Feature Level
(late) models, respectively, in which the dashed arrows mean the source (single-
modality) and destination (fusion models stream related to respective modality
data) weights.



Chapter 4. Methodology 58

Figure 43: Pre-training strategy for Feature Level (middle) models

Figure 44: Pre-training strategy for Feature Level (late) models



5
Experimental Protocol

This chapter serves as a roadmap for the experiments executed in this
study. It outlines a series of steps, beginning with defining the study areas
(Section 5.1) and corresponding reference dates (Section 5.2). We meticulously
detail the comprehensive data collection process, including Remote Sensing
and PRODES (Section 5.3). Sections 5.4 and 5.5 describe how we created the
Reference Data and the Previous Deforestation Map, respectively. Section 5.6
presents the evaluated models. Section 5.7 explains how we prepared this data
to train the models. Section 5.8 details how the prepared data is used to train
these models effectively. The trained models are then employed to predict new
deforestation areas, as described in Section 5.9. Finally, Section 5.10 explains
how these predictions are used to evaluate the performance of each proposed
model.

Figure 45: Experimental protocol steps flow.
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5.1
Study Areas Selection

We chose our study areas based on two main factors: the presence of
deforested regions suitable for training and testing and the minimal cloud
coverage in the optical satellite images used by PRODES between 2019 and
2021. The training step utilized images from 2019 to 2020, while testing relied
on images acquired between 2020 and 2021. Figure 46 presents the selected
sites’ locations, called Site 1 and 2.

Figure 46: Study Sites.

A high number of deforestation areas detected by PRODES is crucial for
mitigating the imbalance issue. Even in regions where deforestation happens
rapidly, the proportion of total deforested area within a year compared to
the total area is low. Choosing areas with a larger deforested area aids in
model training. Furthermore, to ensure an adequate number of samples for
evaluation, it’s also important that study areas exhibit a high quantity of
deforested regions during the testing period. Figures 47 and 48 present the
spatial distribution of deforestation occurrence in Site 1 and 2, respectively,
and Table 5 show the proportion of deforestation occurrence in each site in
each period, in comparison to total site’s area.

Although this research focuses on deforestation detection independently
of cloud-free optical images, the images utilized by PRODES for deforestation
detection in the chosen years must have minimal cloud cover. PRODES’s usage
of an (almost) cloud-free image ensures that a human operator has examined
(almost) the entire extent of the area, as these data will be used to generate
reference data employed in model training and evaluation.
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47(a): 2019-2020. 47(b): 2020-2021.

Figure 47: Deforestation areas (in yellow) identified by PRODES in Site 1.

48(a): 2019-2020. 48(b): 2020-2021.

Figure 48: Deforestation areas (in yellow) identified by PRODES in Site 2.

Site Area (Km2)
Total

(2019-2020)
Proportion (%)
Deforestation

(2020-2021)
Proportion (%)
Deforestation

Site 1 15 112 0.72 1.16
Site 2 16 481 1.85 1.62

Table 5: Deforestation areas identified by PRODES in both Sites.
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5.2
Reference Dates

As described in Section 2.2, the PRODES project utilizes a range of
optical imagery sources to identify newly deforested areas. Each deforestation
polygon is associated with the date it was first detected, corresponding to
when the image capturing the deforestation was acquired. Figure 49 presents
examples of PRODES deforestation polygons identified in 2020, showing their
respective image acquisition dates.

Figure 49: Reference dates examples.

We had to select a reference date for each site for each year, which would
be used later to choose the images to be acquired. We attempted to select the
most representative date possible, considering that the PRODES deforestation
polygons from that year are present in each site. Table 6 presents the selected
reference dates for each site in each year. The reference date may not coincide
with the PRODES date.

Site 2019 2020 2021
Site 1 2019-08-14 2020-07-31 2021-07-02
Site 2 2019-07-24 2020-07-26 2021-07-29

Table 6: Reference dates for each site in each year.
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5.3
Dataset

All data used in this work were collected from two primary sources.
The imagery data, Sentinel-1 and Sentinel-2, were collected from Google
Earth Engine Platform [155]. The deforestation data were acquired from
TerraBrasilis [21].

5.3.1
Remote Sensing Images

5.3.1.1
Optical Images

The optical data used in this work consisted of Sentinel-2 images covering
the study areas. The processing level product used was Level-2A to minimize
the effect of atmospheric distortions, as described in Section 2.1.1. These
images were downloaded using the Google Earth Engine platform, in which the
product ID is "COPERNICUS/S2_SR_HARMONIZED", which guarantees
the spectral response uniformity between the different processing procedures
updates [155].

We excluded the optical image bands with 60 meters of spatial resolution
and resampled the remaining bands to 10 meters using the nearest neighbor
method when necessary. The optical bands used in this work and their
respective spatial resolutions are presented in Table 7.

Band Original Spatial Resolution Final Resolution
B2 10 10
B3 10 10
B4 10 10
B5 20 10
B6 20 10
B7 20 10
B8 10 10

B8A 20 10
B11 20 10
B12 20 10

Table 7: Optical bands and spatial resolutions.

The image dates were selected from all available images within a window
of ±30 days around each reference date presented in Table 6, respecting the
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following other criteria:

– Three optical images were selected for each reference date;

– One image must be cloud-free;

– One image must have some thin clouds;

– One image should have the maximum cloud cover possible;

– All images must be as close to the reference date as possible.

The optical images were organized into two optical datasets called
CLOUD-FREE and CLOUD-DIVERSE. The first one comprises only the
optical images with cloud-free conditions, and the last one comprises all optical
images, regardless of the cloud condition.

Figure 50: Samples of RGB composition from both sites.

Figure 50 shows examples of optical images from both sites. Appendix
B.1 presents an overview of the optical data, including their acquisition dates.
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5.3.1.2
SAR Images

The SAR images utilized in this study were sourced from Sentinel-
1 images covering the study area. Specifically, the Ground Range Detected
(GRD) product with VV and VH bands (available bands within the study
area) was employed. Like the optical data, the SAR images were acquired
via the Google Earth Engine platform using the product ID "COPERNI-
CUS/S1_GRD_FLOAT". This product delivers GRD information in raw
power values rather than in decibels [155].

The SAR data is already available at a 10-meter resolution, so there’s
no need for resampling. Furthermore, because the Sentinel-1 image is georefer-
enced using the same parameters as Sentinel-2, they are already coregistered,
and there’s no need for a new registration between them.

We selected two approaches for the SAR images. The first was to use
a single SAR image, similar to the optical images. The second was to use all
SAR images between two sequential reference dates.

Given the limitation of not being able to acquire Sentinel-1 images
covering all study areas on a single day, we opted to mosaic Sentinel-1 images
from multiple days. This process was carried out for each year and each
site, according to the following steps, generating a dataset henceforth called
SINGLE-2 :

1. Mosaic all Sentinel-1 images belonging to the same satellite cycle;

2. Discard mosaics with corrupted data;

3. Select the mosaics acquired as close to the reference date.

Another approach aims to exploit all available SAR data between two
consecutive reference dates, capturing the features across the analyzed period.
To accomplish this, we organized all the days between one month before
reference date 1 and reference date 2 into 12 sets. Subsequently, we identified all
available Sentinel-1 images for each set and computed the average image from
this selection. Figure 51 presents a schema of the construction of these average
images. We generated two additional datasets from these average images, called
AVERAGE-12 and AVERAGE-2. The AVERAGE-12 dataset comprises all 12
average images, while the AVERAGE-2 dataset contains only the first and last
average images. We generated average images for the reference dates from 2019
to 2020 and 2020 to 2021.
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Figure 51: Average SAR.

An overview of the SAR images, including their acquisition dates, is
presented in the Appendix B.2.

5.3.1.3
Cloud Map

The Level-2A of Sentinel-2 data provides cloud coverage maps and optical
images. This map has a spatial resolution of 20 meters, where each pixel
value indicates the percentage probability ([0, 100]) of cloud presence in the
corresponding optical image. Figure 52 shows examples of cloud maps and the
respective optical image dates.

An overview of the cloud maps, including their acquisition dates, is
presented in Appendix B.3.
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Figure 52: Cloud maps examples.

5.4
Reference Data

We require reference data to train deep learning models and evaluate their
predictions. For semantic segmentation, the ideal reference data is generated by
classifying individual pixels by a human specialist who views the same input
images (optical and SAR). Since this is impractical, we used the PRODES
project’s deforestation polygons to generate the labeled pixels.

5.4.1
Deforestation Data

The deforestation data used in this study belongs to the Amazon Biome,
in which Sites 1 and 2 are located. They were downloaded in a shapefile
format containing polygons of each information class, as described in Table
8. In addition to deforestation data, PRODES also provides other information
such as Hydrography, Non-Forest, and Cloud Mask, which were also used, as
will be described in section 5.4.

PRODES Data Data Description
Accumulated Vegetation
Suppression Area Mask

Deforestation polygons identified until 2007

Hydrography Represents the water bodies coverage.
Annual Deforestation In-
crement

Provides information on annual deforestation
increment polygons.
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PRODES Data Data Description
Cloud Mask Identifies cloud-covered areas in the PRODES

imagery each year.
Non-Forest Indicates non-forest land cover.
Annual Residue in Vege-
tation Suppression

Reviewed deforestation areas from previous
years before the current mapping year

Table 8: PRODES data Description [21].

5.4.2
Classes

The primary objective of the models trained in this study was to detect
newly deforested areas between two consecutive dates, with an interval of
approximately one year between them. As detailed in Section 5.2, we chose
one reference date per year for each site. We proposed four classes for use in
this study based on two consecutive dates, denoted as D0 and D1. Table 9
presents each class, an acronym, and the respective description.

Class Acronym Description
No Deforestation Cno def No deforestation was identified

until D1.
Deforestation Cdef Deforestation was identified be-

tween D0 and D1.
Previous Deforesta-
tion

Cprev def Deforestation was identified until
D0.

Background Cbg Areas excluded from this study
during training, prediction, and
evaluation steps.

Table 9: Classes and descriptions.

Using the PRODES polygons, we labeled the pixels with a spatial
resolution of 10 meters and a coordinate reference system of the data images
(optical and SAR). In this process, usually called rasterization, we classified
each pixel based on the presence of PRODES deforestation polygons covering
(even partially) the pixel area.

Figure 53 shows an example of the described classes. Pixels were classified
as Cno def if any PRODES deforestation polygon did not cover them. If any
PRODES deforestation polygon covers the pixel, it was classified based on
the acquisition date from the image used in the deforestation identification
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Figure 53: Examples of Cno def , Cdef , Cprev def , and Cbg classes.

by PRODES. If the date was after D1, or between D0 and D1, or before D0,
the pixel was classified as Cno def , Cdef , and Cprev def , respectively. If a pixel
was covered by the polygons belonging to hydrograph, no forest, or residual
deforestation PRODES classes (described in Table 8), it was classified as Cbg.
Due to the difference in the resolution of the main PRODES imagery source,
which is the Landsat with 30 meters of spatial resolution, and the imagery used
in this work, Sentinel with 10 meters of spatial resolution, the pixels covered
by a buffer from the Cdef polygons borders were classified as Cbg. This buffer
was 30 meters (the equivalent of Landsat spatial resolution) and was applied
in both directions, inner and outer.

5.5
Previous Deforestation Map

To identify new deforestation between consecutive PRODES dates, D0

and D1, we can assume we know pre-existing deforestation before D0. We
proposed using the Previous Deforestation Map for the model to see the
already-known data. This map differentiates the old deforestation from recent
deforestation, including the deforestation age information, setting the value 1
for the deforestation identified in D0 and reducing this value by 0.1 for each
additional year of the deforestation age, keeping a minimum value of 0.1. The
areas with no deforestation until D0 are represented by value 0. Figure 54
presents an example of the Previous Deforestation Map.
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Figure 54: Previous Deforestation Map.

5.6
Evaluated Models

All proposed models were based on Swin-Unet and ResUnet networks
presented in Chapter 4. Initially, we evaluated the single-modality models with
all optical and SAR datasets. Table 10 lists the single-modality models. Each
single-modality model has a ResUnet and Swin-Unet variation, as presented
in Section 4.2. Some models incorporated the Previous Deforestation Map
as auxiliary data, assessing its effectiveness in deforestation detection, while
others didn’t. We also investigated an alternative architecture, Multi-stream
networks, similarly to [10].

Model Name [Dataset]
Map

Deforestation
Previous

Architecture
Multi-stream

Optical[CLOUD-FREE] Yes/No Yes/No
Optical[CLOUD-DIVERSE] Yes No

SAR[AVERAGE-12] Yes/No No
SAR[AVERAGE-2] Yes Yes/No

SAR[SINGLE-2] Yes Yes/No

Table 10: Single-Modality models.

The evaluation of these single-modality models had the following primary
objectives:

1. To be used as a baseline to be compared to the fusion models;

2. Assess the influence of the Previous Deforestation Map in detecting new
deforestation areas;

3. Investigate the influence of three SAR datasets approaches;
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4. Identify the influence of the Multi-stream architecture.

Based on the results of these single-modality models, which will be
thoroughly discussed in Chapter 6, we decided:

1. To use the Previous Deforestation Map in all models;

2. To use the AVERAGE-12 as SAR dataset;

3. Discard the Multi-stream architecture for temporal aggregation.

Guided by these decisions, we proposed optical and SAR fusion models
based on ResUnet and Swin-Unet, using AVERAGE-12 as the SAR dataset
and including the Previous Deforestation Map as a crucial component. Table 11
outlines the Optical and SAR fusion models, each with a ResUnet and Swin-
Unet variation, as detailed in Section 4.3. We also evaluated if the models
used the pretraining strategy, where applicable, to ensure the integrity of our
findings.

Model Name [Optical Dataset] Pre-trained
Pixel Level[CLOUD-FREE] No

Pixel Level[CLOUD-DIVERSE] No
Feature Level (Middle Concat.)[CLOUD-FREE] Yes/No

Feature Level (Middle Concat.)[CLOUD-DIVERSE] Yes/No
Feature Level (Late Concat.)[CLOUD-FREE] Yes/No

Feature Level (Late Concat.)[CLOUD-DIVERSE] Yes/No
Feature Level (Late Cross-fusion)[CLOUD-FREE] Yes/No

Feature Level (Late Cross-fusion)[CLOUD-DIVERSE] Yes/No

Table 11: Optical and SAR fusion models.

5.7
Training Data Preparation

The Sentinel-1 (SAR) and Sentinel-2 (Optical) images, created using
analogous algorithms, yield registered images within the same coordinate
reference system and spatial resolution. This is illustrated in Figure 55, where
Sentinel-1 (a) and Sentinel-2 (b) images cover the same region. The red crosses
in both images mark the same sample points located in both images, showing
that they are co-registered, thus eliminating the need for further registration
between them.

The Sentinel-1 GRD images were already acquired as raw power powers
instead of decibels, eliminating the need for conversion. The Sentinel-2 images
were downloaded with processing Level-2A, which scales the reflectance in
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55(a): Sentinel-1. 55(b): Sentinel-2.

Figure 55: Sample points located in Sentinel-1 and Sentinel-2.

each wavelength band by multiplying it by 10000 and rounding to an integer.
Sentinel-2 data were converted to reflectance, dividing the values by 10000.

Outliers in the Sentinel-1 and Sentinel-2 images were removed to reduce
the influence of extreme values on the analysis. This was done by clipping the
data to values between the 0.01% and 99.99% percentiles of each image. The
missing pixels, usually represented by NaN values, were then set to 0.

5.8
Training

To train the models, we generated patches with 224 × 224 pixels with
70% overlapping. We divided the area into training and validation tiles, from
which we extracted the patches for the Training and Validation patches sub-
datasets. Patches covering more than one type of tile (training or validation)
were discarded to avoid data leakage, which may lead to overfitting the model’s
weights.

As we have an imbalanced dataset, we decided to artificially minimize it
by showing more deforestation pixels to the model during the training step.
We classified each patch according to the Cdef pixels percentage. Patches with
a minimum of 2% of Cdef pixels were classified as Pdef and the rest as Pno def .
Due to the class imbalance, the number of Pno def is much greater than Pdef .
We randomly discarded Pno def patches until the numbers of Pno def and Pdef

were equal. Figure 56 presents the spatial distribution of training (red) and
validation (blue) patches in both study areas.

Another strategy to minimize the class imbalance was to choose Focal
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56(a): Site 1. 56(b): Site 2.

Figure 56: Training (red) and validation (blue) patches.

Loss as the loss function to adjust the weights. We selected the Focal Loss
parameter γ = 3 and ignored the Cbg pixels.

To allow the comparison of the models’ convergence, we fixed the number
of mini-batches for each epoch to 200 mini-batches per epoch.

As some models, especially the single-modality SAR models, presented
convergence issues, we did a warming-up training for 10 epochs for all models
except the pre-trained models.

We trained all models for 10 warmup epochs. Then, we monitored the
F1-Score metric of the Cdef from the training and validation patches during
the training process. We trained the model for 500 epochs or until the Cdef

F1-Score, using the validation patches, didn’t improve more than 10−3 for 10
epochs (Early Stopping). The model was discarded if the Cdef F1-Score was
at most 0.2 to avoid models that did not converge.

We trained each proposed model, presented in Section 5.6, five times,
creating a committee of five independent instances for each model, using the
Adam optimizer with a learning rate of 2.0 · 10−5.

The datasets CLOUD-DIVERSE and SINGLE-2 have three possible
images for each year. The models using these datasets employed random image
combinations. This strategy maximized the diversity conditions in the images
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the models saw during the training step, especially the cloud diversity in the
optical images from the CLOUD-DIVERSE dataset.

5.9
Prediction

For each model instance, we predicted the whole study area. As the patch
size is much smaller than the image size, we divided the site region into patches
with 224 × 224 pixels with an overlap of 36 pixels. From each predicted patch,
border pixels of 36 pixels (from all sides) were discarded to avoid a border
effect in the patches.

As in the training step, we employed all possible image combinations,
which is especially important to evaluate more diverse cloud-covered optical
images in the CLOUD-DIVERSE dataset. All assessed models applied the
Softmax in the output, ensuring that all class scores totaled 1. The final pre-
diction for each image combination is the average of the predictions generated
by each model instance.

5.10
Evaluation

Before calculating the metrics, we adjusted the class scores to incorporate
prior knowledge into the evaluation. Considering the score of the classes from
each pixel as a vector [Pno def , Pdef , Pprev def , Pbg], we adjusted these scores
which the labels belong to the known classes, Cprev def and Cbg, as presented
in Equation 5-1, in which ∗ is the element-wise product. Then, we determined
the predicted class, identifying the maximum value of P∗.

V aluesadjusted =


[0, 0, 1, 0] if label is Cprev def

[0, 0, 0, 1] if label is Cbg

[1, 1, 0, 0] ∗ V aluesoutput otherwise

(5-1)

Each predicted image was evaluated using F1-Score, Precision, and Recall
metrics. Each predicted pixel classified to classes Cprev def and Cbg were
reclassified as discard class (Cdiscard), which weren’t considered in the metrics
calculation.

To ensure the compatibility between the predictions of the class Cdef

and the PRODES data, which was used to generate the labels, the contiguous
predictions belonging to the class Cdef with an area less than 6.25 hectares
were reclassified to class Cdiscard.
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The cloud presence can affect each pixel of the predictions from the
optical data models. We classified each pixel as Cloudy Pixel or Cloud-free
Pixel to evaluate this effect. The Cloud Maps, described in Section 5.3.1.3,
related to the optical, were used for this classification. If the maximum value of
the pixels from these Cloud Maps were greater than 50, the pixel was classified
as Cloudy Pixel; otherwise, the pixel was classified as Cloud-free Pixel.



6
Results

This chapter presents the results of the models proposed in the previous
chapters, followed by a discussion about them. Section 6.1 presents the results
for Single-modality models, comparing the single-stream and multi-stream
temporal aggregation strategies and the Previous Deforestation Map. Section
6.2 presents the Fusion models results, aiming to verify if the proposed
methodology can generate results using CLOUD-DIVERSE dataset close to
the results from CLOUD-FREE dataset.

In this chapter, we present the F1-Score metric results. However, the
results from all evaluated metrics can be found in Appendix B.4

To make comprehension easier in this chapter, we created short names
for some models, as shown in Table 12

Model Name Aggregation
Temporal Short Name

Optical Single-stream Optical
Optical Multi-stream Optical Multi-Stream

SAR Single-stream SAR
SAR Multi-stream SAR Multi-Stream

Pixel Level Single-stream Pixel
Feature Level (Middle Concat.) Single-stream Feat-Mid
Feature Level (Late Concat.) Single-stream Feat-Late

Feature Level (Late Cross-fusion) Single-stream Cross-Fusion

Table 12: Models’ short names.

6.1
Single-Modality Models

The first single-modality analysis aimed at assessing the influence of the
Previous Deforestation Map, presented in Section 5.5, as auxiliary data. We
analyzed this influence by comparing the results from the evaluation metrics
from the models’ predictions using or not the Previous Deforestation Map as
auxiliary data.

Figures 57 and 58 compare the models’ F1-Score with (orange bars) and
without (blue bars) the Previous Deforestation Map as part of the input.



Chapter 6. Results 77

We considered ResUnet and Swin-based architectures with single and
multi-stream temporal aggregation strategies using optical CLOUD-FREE
dataset in Site 1 and 2, respectively.

Figure 57: F1-Score Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 1).

Figure 58: F1-Score Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 2).

We also investigated the influence of the Previous Deforestation Map on
the F1-score in experiments on the SAR datasets. Figures 59 and 60 compare
the models with (orange bars) and without (blue bars) this auxiliary data,
whereby we took the ResUnet and Swin-based architectures with single (using
AVERAGE-12 dataset) and multi-stream (using AVERAGE-2 and SINGLE-2
datasets) temporal aggregation strategies in Site 1 and 2, respectively.
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Figure 59: F1-Score Comparison of the models with (orange) and with-
out (blue) Previous Deforestation Map (AVERAGE-12, AVERAGE-2, and
SINGLE-2 datasets from Site 1).

Figure 60: F1-Score Comparison of the models with (orange) and with-
out (blue) Previous Deforestation Map (AVERAGE-12, AVERAGE-2, and
SINGLE-2 datasets from Site 2).

Figures 61 and 62 present the training and prediction average times and
Standard Deviation (gray vertical lines) from ResUnet and Swin-based archi-
tectures using the Previous Deforestation Map (blue bars) and not (orange
bars) as auxiliary data in CLOUD-FREE and SAR datasets, respectively.

We also calculate the number of trainable parameters of each model.



Chapter 6. Results 79

Figure 61: Training and Prediction times for Previous Deforestation Map
(CLOUD-FREE dataset)

Figure 62: Training and Prediction times for Previous Deforestation Map (SAR
datasets)

Figures 63 and 64 present the number of trainable parameters (Millions) from
ResUnet and Swin-based architectures using the Previous Deforestation Map
(blue bars) and not (orange bars) as auxiliary data in optical and SAR
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datasets, respectively.

Figure 63: Trainable Parameters (Millions) comparison - Previous Deforesta-
tion Map (Optical datasets)

Figure 64: Trainable Parameters (Millions) comparison - Previous Deforesta-
tion Map (SAR datasets)

We also investigated the temporal aggregation strategies. In Section
4.2.1, we presented the single-stream temporal strategy, in which the temporal
aggregation is done by concatenating the data from different times before input
in the model. We also presented the multi-stream temporal aggregation. This
analysis was realized by comparing the results from the evaluation metrics
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from the models’ predictions using single and multi-stream architectures. All
models in this analysis used the Previous Deforestation Map as auxiliary data.

Figure 65: Temporal aggregation comparison (F1-Score) in CLOUD-FREE
dataset (Site 1).

Figure 66: Temporal aggregation comparison (F1-Score) in CLOUD-FREE
dataset (Site 2).

The temporal aggregation analysis in the optical data used only the
CLOUD-FREE dataset. Figures 65 and 66 compare the single (blue bars) and
multi-stream (orange bars) temporal aggregation strategies by the F1-Score
metric, from ResUnet and Swin-based architectures with optical CLOUD-
FREE dataset in Site 1 and 2, respectively.

We also analyzed the temporal aggregation using the SAR datasets.
Figures 67 and 68 compare the single (blue, orange, and green bars) and
multi-stream temporal (red and purple bars) aggregation strategies by the
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F1-Score metric, from ResUnet and Swin-based architectures with AVERAGE-
12, AVERAGE-2, and SINGLE-2 datasets in the Site 1 and 2, respectively.

Figure 67: Temporal aggregation comparison (F1-Score) in SAR datasets
(Site 1).

Figure 68: Temporal aggregation comparison (F1-Score) in SAR datasets
(Site 2).

Figure 69 presents the training and prediction average times and Stan-
dard Deviation (gray vertical lines) from ResUnet and Swin-based architec-
tures using Single-Stream (blue bars) and Multi-Stream (orange bars) in
optical datasets.

Figure 70 presents the training and prediction average times and Stan-
dard Deviation (gray vertical lines) from ResUnet and Swin-based architec-
tures using single (blue, orange, and green bars) and multi-stream temporal
(red and purple bars) aggregation strategies in SAR datasets.

We also calculate the number of trainable parameters of each model.
Figure 71 presents the number of trainable parameters (Millions) from ResUnet
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Figure 69: Training and Prediction times for Temporal Aggregation’s strategies
(CLOUD-FREE dataset)

Figure 70: Training and Prediction times for Temporal Aggregation’s strategies
(SAR datasets)

and Swin-based architectures using Single-Stream (blue bars) and Multi-
Stream (orange bars) in optical datasets.

Figure 71: Trainable Parameters (Millions) comparison - Temporal Aggrega-
tion (Optical datasets)

Figure 72 presents the number of trainable parameters (Millions) from
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ResUnet and Swin-based architectures using single (blue, orange, and green
bars) and multi-stream temporal (red and purple bars) aggregation strategies
in SAR datasets.

Figure 72: Trainable Parameters (Millions) comparison - Temporal Aggrega-
tion (SAR datasets)

6.1.1
Single-modality Models Discussion

Analyzing the single-modality models, we can identify that the classes
Cno def and Cprev def converge faster than Cdef . Figure 73 presents the F1-Score
for Validation sub-datasets from each class (including the respective Standard
Deviation colored bands) evaluated during the training of all single-modality
models. The imbalance between the classes’ pixels can explain this difference.
As the Cdef ’s convergence is the hardest, all the convergence analysis was
focused on this class.

73(a): Site 1. 73(b): Site 2.

Figure 73: F1-Score for Validation sub-dataset patches from classes Cnodef

(blue lines), Cdef (orange lines), and Cprev def green lines), and the respective
Standard Deviation (colored bands), for all single-modality models.



Chapter 6. Results 85

Based on the comparison results of the Previous Deforestation Map, this
additional data improved the deforestation detection capabilities of almost
all the proposed models without significant computational cost impact. The
optical models using the Previous Deforestation Map always produced greater
or equal results than the respective models without this data. In Site 2 (Figure
58), the improvement was more significant than in Site 1 (Figure 57), probably
because the results in Site 1 were already very high and close to the reference
data, which makes any improvement harder.

The SAR models incorporating the Previous Deforestation Map generally
yielded results equal to or better than their counterparts, which lacked this
data across most models. Notable exceptions were observed in the multi-stream
models utilizing the AVERAGE-2 (ResUnet and Swin-based) and SINGLE-2
(solely Swin-based) datasets from Site 1 (Figure 59). An examination of the
F1-Score for Cdef within the Validation sub-dataset patches over the training
epochs (Figure 74) reveals that these multi-stream models (shown in Sub-
figures 74(a), 74(c), and 74(e)) encountered convergence issues, even when
excluding models that failed to achieve the minimum F1-Score. Since this issue
was exclusive to the images from Site 1, a decision was made not to retrain
these models.

Based on the optical models’ results, the multi-stream strategy did not
significantly improve overall. When examining the results from Site 1 (Figure
65), the single-stream strategy performed slightly better than the multi-stream
strategy. However, the multi-stream temporal aggregation strategy required
more substantial training and prediction times, with increases of 33% and 35%
on average, respectively, compared to the single-stream approach (Figure 69).
This discrepancy highlights the variability in performance between different
sites and suggests that the effectiveness of the multi-stream strategy may
depend on specific site characteristics.

Unlike the optical models, where the single and multi-stream strategies
produced similar results, the SAR models showed more varied outcomes. After
analyzing each base architecture and site combination, the best model always
used single-stream temporal aggregation. The AVERAGE-12 dataset, which
was only used in single-stream models, could better extract the deforestation
features in SAR images because it could capture the information throughout
the year, allowing the identification of deforestation occurrences where vege-
tation has regenerated and is not identifiable in the last image, as shown by
the sample in Figure 75.

Despite the significant difference in the number of trainable parameters
between ResUnet and Swin-based models (Swin-based models have approxi-
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74(a): ResUnet (AVERAGE-2 ) - Site 1. 74(b): ResUnet (AVERAGE-2 ) - Site 2.

74(c): Swin (AVERAGE-2 ) - Site 1. 74(d): Swin (AVERAGE-2 ) - Site 2.

74(e): Swin (SINGLE-2 ) - Site 1 74(f): Swin (SINGLE-2 ) - Site 2

Figure 74: F1-Score for Cdef in Validation sub-dataset patches from training
epochs in SAR models using single (blue lines) and multi-stream (orange
lines) temporal aggregation strategies.

mately nine times more trainable parameters), this discrepancy did not affect
the training and prediction times (Figures 63, 64, 71, 72, 61, 62, 69, and 70).
This can be attributed to the convolution operation, which reduces the number
of trainable parameters but applies them multiple times in a sliding window
operation across the entire input feature maps (Section 2.3). In contrast, the
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Figure 75: AVERAGE-12 SAR dataset sample (12 monthly average images).

Vision Transformer concept, which is used in the Swin-based models, repeats
the operation for each window much less frequently than the sliding window
operation (Section 2.4), and were the same results from [18].

Based on the presented Single-modality models’ results, we made the
following decisions regarding the fusion models:

1. Use the single-stream strategy for temporal aggregation across all models.
The multi-stream strategy did not show significant improvements and
required more computational resources.

2. Use the AVERAGE-12 dataset for all models. This dataset consistently
delivers the best, or nearly the best, results in all scenarios, especially
when combined with the previously decided strategy.

3. Use the Previous Deforestation Map as auxiliary data for all models. This
additional data improved the results for all scenarios using the single-
stream temporal aggregation strategy, with an insignificant impact on
training and prediction times and the trainable parameters.

6.2
Fusion Models

We compared the results from the models using the optical CLOUD-
DIVERSE (with and without pre-training strategy) and the CLOUD-FREE
dataset.

Figures 76 and 77 present the F1-Score metric results from Optical
(blue bars), Pixel Level Fusion (orange bars), Feature Level (Middle) Fusion
(green bars), Feature Level (Late) Fusion (red bars), Feature Level (Late
Cross-Fusion) Fusion (purple bars), and SAR (brown bars) models, using
ResUnet and Swin-based architectures in Site 1, respectively. These models
were also organized based on the dataset used. The results from the models
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Figure 76: F1-Score for ResUnet-based models’ comparison (Site 1)

Figure 77: F1-Score for Swin-based models’ comparison (Site 1)

Figure 78: F1-Score for ResUnet-based models’ comparison (Site 2)
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Figure 79: F1-Score for Swin-based models’ comparison (Site 2)

using CLOUD-FREE optical dataset are grouped in the green background.
The SAR model didn’t use any optical dataset and is presented with red
background. The models using CLOUD-DIVERSE optical dataset are grouped
in the blue (without pre-training strategy) and in the yellow (using the pre-
training strategy) background. The best result from each base architecture is
presented as a dotted blue line, allowing the comparison between the different
models (single-modality or fusion), training strategies (from scratch or pre-
training), and datasets (CLOUD-FREE, CLOUD-DIVERSE, or non-optical).
Figures 78 and 79 present the same results for Site 2.

We detailed the cloud influence, analyzing the results in different cloud
conditions. To accomplish this goal, we classified each pixel based on the
maximum value of the Cloud Maps (presented in Section 5.3.1.3) related to
the optical images used by the model. If the Cloud Map’s pixel from any
optical image was greater than 50%, that pixel was classified as Cloudy Pixel;
otherwise, the pixel was classified as Cloud-free Pixel. These models were also
organized based on the dataset used.

Figures 80 and 81 present the F1-Score metric results from each model,
based on the cloud condition, using ResUnet and Swin-based architectures in
Site 1, respectively. All Pixels (blue bars) presents the results considering all
pixels, independent of the cloud condition. The models using only CLOUD-
FREE or SAR datasets present only this result. Cloudy Pixels (orange bars)
presents the pixels affected by clouds in any optical image. Finally, Cloud-free
Pixels (green bars) presents the pixel less affected by clouds. The results
from the models using CLOUD-FREE optical dataset are grouped in the
green background. The SAR model didn’t use any optical dataset and is
presented with red background. The models using CLOUD-DIVERSE optical
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Figure 80: F1-Score for ResUnet-based models’ cloud effect comparison (Site 1)

Figure 81: F1-Score for Swin-based models’ cloud effect comparison (Site 1)

dataset are grouped in the blue (without pre-training strategy) and in the
yellow (using the pre-training strategy) background. The best result from each
base architecture is presented as a dotted blue line, allowing the comparison
between the different models. Figures 82 and 83 present the same results for
Site 2.
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Figure 82: F1-Score for ResUnet-based models’ cloud effect comparison (Site 2)

Figure 83: F1-Score for Swin-based models’ cloud effect comparison (Site 2)

6.2.1
Pre-training Strategy Discussion

A notable difference in convergence was observed in the F-1 Score metric
between models using SAR and optical datasets during the training step for
single-modality models (Figure 84).

These aspects, such as the difference in the number of available patches,
their cloud presence, and the convergence of the Optical and SAR models,
could affect the models from Site 1. To minimize this problem, we proposed
the pre-training strategy for fusion models using CLOUD-DIVERSE dataset.
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84(a): ResUnet-based - Site 1. 84(b): Swin-based - Site 1.

84(c): ResUnet-based - Site 2. 84(d): Swin-based - Site 2.

Figure 84: F1-Score for Cdef in Validation sub-dataset patches from training
epochs in all single-modality models for Site 1 and 2.

The exception was the Pixel Level model, in which the fusion occurs before
input in the model, and we don’t have weights related to a specific modal.

Initially, we tried initializing the weights with those from the respective
single-modality models trained on the CLOUD-DIVERSE dataset. However,
this did not improve the results, likely because the optical model trained
with CLOUD-DIVERSE patches was affected by previously mentioned issues.
Therefore, we used weights from optical models trained on the CLOUD-FREE
dataset to initialize the fusion models and then trained these models using
the CLOUD-DIVERSE dataset. This strategy showed the best results and is
presented by the bars in the yellow background in Figures 76, 77, 78, 79, 80,
81, 82, and 83.
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6.2.2
Cloud Presence Discussion

Analyzing the predictions and the metrics’ results, we can infer that,
using the CLOUD-FREE dataset, the optical-SAR data fusion didn’t signifi-
cantly improve the deforestation detection capabilities. Figure 85 presents ex-
amples from the input optical images, the reference data, and the predictions
from Optical, Pixel, Feat-Mid, Feat-Late, and Cross-Fusion models based on
ResUnet and Swin, from the same area.

85(a): ResUnet-based.

85(b): Swin-based.

Figure 85: Predictions from optical and fusion models using CLOUD-FREE
dataset.

As expected, the predictions from the optical model using CLOUD-
DIVERSE dataset (blue bars in blue background from Figures 76, 77, 78, 79)
dropped in comparison to the respective model using CLOUD-FREE dataset.
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However, this difference was more evident in the ResUnet-based models than
in the Swin-based models, especially from Site 1. Figure 86 compares the
predictions from ResUnet and Swin-based Optical models using CLOUD-
DIVERSE dataset from a region from Site 1. Further experiments are needed
to determine the reason for the discrepancy between ResUNet and Swin-
based models. However, the difference in model parameters and the learning
strategies inherent to each architecture may offer some justification.

Figure 86: Predictions from ResUnet and Swin-based optical models using
CLOUD-DIVERSE dataset.

The results from the fusion models using CLOUD-DIVERSE dataset
(blue background from Figures 76, 77, 78, 79) presented a diverse behaviour
between the sites. In the models from Site 2, all fusion models delivered results
very close to the models using CLOUD-FREE dataset, especially the Feat-Mid,
Feat-Late, and Cross-Fusion models. However, the fusion models from Site 1
presented a more varied performance, especially the Swin-based models.

In analyzing the cloud effect comparison (Figures 80, 81, 82, 83), it
is evident that the fusion models from Site 1 performed significantly worse
on Cloudy Pixels compared to their performance on Cloud-free Pixels. This
disparity was not as apparent in the models from Site 2. Although all models
showed reduced performance on Cloudy Pixels, this effect was more pronounced
in the fusion models from Site 1. Table 13 shows the probability of a cloudy
patch and the number of patches in each sub-dataset for each site. In this case,
a cloudy patch was defined as a patch in which at least 50% of its pixels can
be classified as Cloudy Pixel (as described in the Section 5.10).

Site Sub-dataset Probability
Cloudy Patch

Patches
Amount of

1 Training 12.3% 25 416
1 Validation 6.9% 16 002
2 Training 8.4% 59 418
2 Validation 7.3% 43 074

Table 13: Average cloud probability in Training and Validation sub-datasets.

We hypothesized that differences in cloud presence and the number of
patches between the training and validation sub-datasets could impact the
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training process.

87(a): Sample 1.

87(b): Sample 2.

87(c): Sample 3.

Figure 87: Error maps from ResUnet and Swin-based Optical models using
CLOUD-DIVERSE dataset in the same area.

Figure 87 presents the error maps from ResUnet and Swin-based Optical
models using CLOUD-DIVERSE dataset using different input image combina-
tions from the same area. In the error map, the True Positive, True Negative,
False Negative, and False Positive are presented by white, black, blue, and
red pixels, respectively. As the pixels from Cdiscard weren’t considered dur-
ing the evaluation step, they are shown as gray. These error maps confirm
the metrics results in which the Swin-based models using CLOUD-DIVERSE
dataset were less affected by clouds than the respective ResUnet-based. The
ResUnet-based model prediction presented much more False Negative pixels
than the Swin-based one using the same input optical images.

However, this effect is only observed when the clouds are present in the
last optical image. Figure 88 presents the same error maps from another area,
in which only the first optical image is affected by cloud presence. We can
note that both models could identify deforestation well despite the first optical
image being fully covered by clouds. This effect can be explained by the training
protocol that ignored the Cbg pixels. During the training step, the models might
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prioritize the last optical image, focusing on identifying the presence or absence
of deforestation phenomena in this image.

88(a): Sample 1.

88(b): Sample 2.

Figure 88: Error maps from ResUnet and Swin-based Optical models using
CLOUD-DIVERSE dataset in the same area.

When we examine the error maps from the fusion models using the
CLOUD-DIVERSE dataset and a pre-training strategy (except in the Pixel
Level model), as shown in Figure 89, we notice a clear pattern: the Pixel Level
model is more adversely affected by clouds in the optical data compared to the
other fusion strategies. This indicates that the Pixel Level model is less robust
to cloud interference.

From these error maps, we can observe that when clouds impacted the
optical model, the fusion models (except the Pixel Level model) produced
errors similar to those of the SAR model. This is evident because the errors
(False Positives or False Negatives) predicted by the SAR model appeared in
similar locations within the fusion models’ predictions.
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89(a): ResUnet-based.

89(b): Swin-based.

Figure 89: Error maps from fusion and single-modality models using CLOUD-
DIVERSE dataset in the same area.

6.2.3
Models Computational Complexity Analysis

Figures 90(a) and 90(b) present the total training and prediction times
(considering the five independent instances for each model), including the
respective Standard Deviation (gray vertical lines) from ResUnet and Swin-
based architectures using Optical (blue bars), Pixel Level Fusion (orange
bars), Feature Level (Middle) Fusion (green bars), Feature Level (Late) Fusion
(red bars), Feature Level (Late Cross-Fusion) Fusion (purple bars), and SAR
(brown bars) models. Considering the total area of the BAF and the areas
of the sites used in this work, we can estimate the prediction time of the
whole Brazilian Amazon Forest using the Cross-Fusion models is 47 hours and
the total training time of 678 days, using one single computer with GPU,
considering the five models committee and the pre-training strategy. If the
same optical and SAR models are used in the pre-training strategy, the total
training time for all BAF can be reduced to 332 days. Appendix A describes
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the computer setup used in this estimation.

90(a): Average training times.

90(b): Average Prediction Times.

Figure 90: Training and prediction average times.

We calculate the number of trainable parameters of each model. Fig-
ure 91 presents the number of trainable parameters (Millions) from ResUnet
and Swin-based architectures using Optical (blue bars), Pixel Level Fusion
(orange bars), Feature Level (Middle) Fusion (green bars), Feature Level
(Late) Fusion (red bars), Feature Level (Late Cross-Fusion) Fusion (purple
bars), and SAR (brown bars) models.

Examining the training and prediction times and the number of trainable
parameters of the fusion models (Figures 90 and 91, respectively), we observed
a significant difference in the number of trainable parameters between the
ResUnet and Swin-based models. However, this difference did not affect their
training and prediction times.

In addition, within each base architecture, we observed that the later the
fusion occurs, the more parameters the models have, leading to more extended
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Figure 91: Trainable Parameters (Millions) comparison - Fusion Models

average training and prediction times.



7
Conclusion

We explored our central hypothesis that Deep Learning models, which
combine Optical and SAR data, can assess the reliability of each data source.
By doing so, these models can effectively extract the most relevant information
from each type of data, leveraging their strengths to improve overall perfor-
mance.

The following points summarize the main findings from the results of this
research:

1. Despite the traditional usage of multi-stream as the temporal aggregation
strategy, especially using the Siamese architectures, in change detection
tasks, this strategy didn’t improve the models’ results and increased the
training and prediction times. In addition to requiring less computational
resources, the single-stream temporal aggregation strategy allowed using
the AVERAGE-12 dataset, which can capture deforestation throughout
the year.

2. SAR models converged significantly slower than optical models. The
noise inherent to SAR images could make learning difficult for these
models. The higher number of available bands in the used optical
images, which have ten wavelength bands, compared to two polarizations
available in SAR images, could also affect the convergence.

3. The predictions from optical models when clouds are present in the first
image show that these clouds are affected much less than the predictions
from the same models when the cloud occurs in the last image. Utilizing
the Previous Deforestation Map could minimize the importance of the
first image.

4. The fusion models using the CLOUD-FREE dataset didn’t significantly
improve the deforestation detection capabilities of the models compared
to the optical one. However, the optical-SAR data fusion proved helpful
when the optical data can have the presence of clouds, like the CLOUD-
DIVERSE dataset. In Site 1, the fusion only proved beneficial with the
pre-training strategy.
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5. Despite the significantly greater number of trainable parameters of Swin-
based models, they presented lower training and prediction times than
the ResUnet-based. The nature of the convolution operation, which is
applied multiple times in a sliding window sequence, in opposition to
the Vision Transformer concept used in a non-overlap in 4 × 4 patches,
can explain this difference. However, both base architectures presented
similar computer resource demands. Even the models that take more
time to predict presented feasible values.

While this research delivered valuable findings, it is important to recog-
nize the limitations that may have influenced the results. The following points
outline the main limitations of this study:

1. In this research, we provided insights into deforestation detection in
specific regions of the BAF. Although this work can be replicated in
other areas, different environmental conditions, land use patterns, and
deforestation dynamics can limit the applicability of the utilized method.

2. This research combined optical images taken under various cloud con-
ditions with SAR images. To achieve multiple cloud conditions in the
optical images, we selected images from different days, sometimes only a
few days apart from those used as references by PRODES. As reflected in
the results, this could lead to discrepancies between the reference images
and the ground truth.

Despite this research’s significant contributions, there are opportunities
for further exploration. The following points outline the suggestions for future
research:

1. This work focused on deforestation detection in the BAF biome. Future
research can adapt the methodology used to identify deforestation with
different environmental conditions, land use patterns, and deforestation
dynamics in other geographical locations.

2. We used sensor data with identical spatial resolution and coordinate
reference system, Sentinel-1 for SAR and Sentinel-2 for optical data.
Future works can explore advanced fusion techniques that integrate
optical and SAR data from more diverse sources, considering different
spatial resolutions and data pre-processing methods. Investigating the
use of deep learning architectures specifically designed for more varied
multi-modal data fusion can improve the robustness of the delivered
models and exploit the diversity of multiple models.
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3. Our results using optical images with diverse cloud conditions showed
less dependency on the cloud coverage in the first image. Future research
can investigate the need for the first optical image, especially using the
previous deforestation information.

4. Apply transfer learning techniques to adapt deforestation detection
models trained in one region to other geographically distinct areas.
Investigate domain adaptation methods to improve model generalization,
reducing the need for extensive ground truth data in the new areas or
multiple single-modality model training to use the pre-training strategy.

5. In this research, we don’t investigate a shorter temporal window, which
can be helpful in early deforestation detection efforts. Further investiga-
tions can aim to identify deforestation in shorter periods, like one month.
However, the difficulty of this research comes up against the problem of
difficulty in obtaining reliable data with this temporal resolution.

6. To achieve cloud diversity in the optical images, we must select images
from multiple dates, trying to choose images as close as possible to the
acquisition dates of the images used by PRODES. Depending on the
environmental conditions, the cloud-covered images may not be available
on dates close to the reference data dates. Further research can explore
synthetic cloud image generation using a single cloud-free image acquired
very close to the date from PRODES’s images, exploring multiple cloud
forms and thicknesses.

7. We used the GRD product from the Sentinel-1 satellite as SAR data.
However, other information can be extracted from SAR data, such as
the phase of the electromagnetic response. Investigate using this data
and architectures that explore their new information can improve the
deforestation detection capabilities of fusion models.

8. In this research, we identified differences in the results from the investi-
gated sites. We proposed that this difference occurred due to the patch’s
availability and the cloud presence in these patches, which were mitigated
through the pre-training strategy. However, other approaches to mini-
mize this problem can be investigated, such as controlling the patches
and ensuring the proportion of cloudy and cloud-free patches seen by the
models during the training.
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9. We proposed the pre-training strategy to minimize the convergence
difference between optical and SAR models. Future works can investigate
the influence of pre-training on other modality fusions, like LIDAR.

10. Future research can explore other computer vision tasks besides semantic
segmentation, as this work did. Tasks like object detection or image
classification can also be improved by the fusion of multiple modals
when some are suffering an obstruction, like the cloud presence in optical
images.

In conclusion, this study significantly advances deforestation detection
using Remote Sensing and Deep Learning techniques. This research has demon-
strated robust methodologies for predicting deforestation areas by integrating
optical (independent of the cloud coverage) and SAR data and employing state-
of-the-art models. The findings emphasize the importance of multi-modal data
fusion to enhance the accuracy and reliability of deforestation detection mod-
els.

However, the research has limitations. Challenges such as the minimum
deforestation area, the limited geographical location, and the data availability
deserve further investigation. Addressing these limitations through continued
research and collaboration will be essential for refining model robustness and
applicability across diverse landscapes and socio-ecological contexts.

Future research should focus on enhancing fusion strategies, integrating
additional variables, and developing new models’ architectures that capture
temporal and spatial dynamics in deforestation processes. Such efforts are crit-
ical for advancing the field and supporting conservation policies to safeguard
global biodiversity and mitigate climate change impacts.

In summary, this thesis significantly advances our understanding of
and capabilities for monitoring deforestation, refining and analyzing Deep
Learning models fusing SAR and optical multitemporal data, regardless of
cloud coverage in the optical images. Using SOTA architectures and proposing
a training strategy for end-to-end DL models to identify new deforestation
areas, fusing these data sources delivered robust results. Using the pre-training
strategy, we reached the best F1-Score of 0.91, using optical images with
diverse cloud conditions, which was very close to the best F1-Score of 0.93
using optical cloud-free images. This research can contribute to more effective
and sustainable environmental conservation efforts in the future and expand
the boundaries of scientific knowledge in the field.
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A
Computer Setup

The computer setup used in the experiments is:

– CPU: Intel Core i9-14900KF

– RAM: 128 GB

– GPU: RTX 4090

– GPU Memory: 24 GB



B
Utilized images

B.1
Optical Images

Table 14 presents the acquisition dates of the optical images used in this
work, including the cloud condition of each image.

Site Cloud Condition Image dates

Site 1

Cloud-free 2019-07-27
Partially covered 2019-08-11

Fully Covered 2019-08-16
Cloud-free 2020-07-21

Partially covered 2020-08-05
Fully Covered 2020-08-10

Cloud-free 2021-07-21
Partially covered 2021-06-26

Fully Covered 2021-07-01

Site 2

Cloud-free 2019-07-16
Partially covered 2019-07-31

Fully Covered 2019-08-05
Cloud-free 2020-07-30

Partially covered 2020-08-19
Fully Covered 2020-06-30

Cloud-free 2021-07-25
Partially covered 2021-07-30

Fully Covered 2021-08-14

Table 14: Acquisition dates of the optical images and the respective cloud
condition.

Figures 92, 93, and 94 present the optical images acquired from Site 1 for
the years 2019, 2020, and 2021, respectively. Similarly, Figures 95, 96, and 97
illustrate images obtained from Site 2 for the same years.



Appendix B. Utilized images 123

Figure 92: Optical Images from Site 1 (2019).

Figure 93: Optical Images from Site 1 (2020).

Figure 94: Optical Images from Site 1 (2021).
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Figure 95: Optical Images from Site 2 (2019).

Figure 96: Optical Images from Site 2 (2020).
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Figure 97: Optical Images from Site 2 (2021).
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B.2
SAR Images

B.2.1
SAR Single Images

Table 15 presents the acquisition dates of the Sentinel-1 images used to
create each mosaic. This SAR dataset is henceforth called SINGLE.

Site Mosaic dates

Site 1

2019-08-05:2019-08-12
2019-08-17:2019-08-24
2019-08-29:2019-09-05
2020-07-18:2020-07-25
2020-07-30:2020-08-06
2020-08-11:2020-08-18
2021-06-19:2021-06-26
2021-07-01:2021-07-08
2021-07-13:2021-07-20

Site 2

2019-07-14:2019-07-12
2019-07-26:2019-08-02
2019-08-07:2019-08-14
2020-07-08:2020-07-15
2020-07-20:2020-07-27
2020-08-01:2020-08-08
2021-07-03:2021-07-10
2021-07-15:2021-07-22
2021-07-27:2021-08-03

Table 15: Mosaic acquisition dates of the SAR images.

Figures 98, 99, and 100 present the Sentinel-1 images from Site 1 for the
years 2019, 2020, and 2021, respectively. Similarly, Figures 101, 102, and 103
illustrate images obtained from Site 2 for the same years. All these images are
presented with bands VV, VH, and the bands’ ratios VV/VH in the channels
red, green, and blue, respectively.
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Figure 98: SAR Mosaic images from Site 1 (2019).

Figure 99: SAR Mosaic images from Site 1 (2020).

Figure 100: SAR Mosaic images from Site 1 (2021).
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Figure 101: SAR Mosaic images from Site 2 (2019).

Figure 102: SAR Mosaic images from Site 2 (2020).
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Figure 103: SAR Mosaic images from Site 2 (2021).
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B.2.2
SAR Average GRD Images

Table 16 presents the acquisition dates of the Sentinel-1 images used to
create each average image for each pair of consecutive years.

Site Years Average image dates

Site 1

2019-2020

2019-07-14:2019-08-14
2019-08-15:2019-09-15
2019-09-16:2019-10-17
2019-10-18:2019-11-18
2019-11-19:2019-12-20
2019-12-21:2020-01-21
2020-01-22:2020-02-22
2020-02-23:2020-03-25
2020-03-26:2020-04-26
2020-04-27:2020-05-28
2020-05-29:2020-06-29
2020-06-30:2020-07-30

2020-2021

2020-06-30:2020-07-30
2020-07-31:2020-08-30
2020-08-31:2020-09-30
2020-10-01:2020-10-31
2020-11-01:2020-12-01
2020-12-02:2021-01-01
2021-01-02:2021-02-01
2021-02-02:2021-03-03
2021-03-04:2021-04-02
2021-04-03:2021-05-02
2021-05-03:2021-06-01
2021-06-02:2021-07-01

Site 2 2019-2020

2019-06-23:2019-07-26
2019-07-27:2019-08-29
2019-08-30:2019-10-02
2019-10-03:2019-11-04
2019-11-05:2019-12-07
2019-12-08:2020-01-09
2020-01-10:2020-02-11
2020-02-12:2020-03-15
2020-03-16:2020-04-17



Appendix B. Utilized images 131

Site Years Average image dates

Site 2

2019-2020
2020-04-18:2020-05-20
2020-05-21:2020-06-22
2020-06-23:2020-07-25

2020-2021

2020-06-25:2020-07-28
2020-07-29:2020-08-31
2020-09-01:2020-10-04
2020-10-05:2020-11-06
2020-11-07:2020-12-09
2020-12-10:2021-01-11
2021-01-12:2021-02-13
2021-02-14:2021-03-18
2021-03-19:2021-04-20
2021-04-21:2021-05-23
2021-05-24:2021-06-25
2021-06-26:2021-07-28

Table 16: Average SAR images’ dates.

Figures 104 and 105 present the Average GRD images for the pairs of
years 2019-2020 and 2020-2021 from Site 1, respectively. Likewise, Figures 106
and 106, illustrate the images obtained from Site 2 for the same pairs of years.
All these images are presented with bands VV, VH, and the bands’ ratios
VV/VH in the channels red, green, and blue, respectively.
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Figure 104: Average SAR images from Site 1 (2019-2020).

Figure 105: Average SAR images from Site 1 (2020-2021).
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Figure 106: Average SAR images from Site 1 (2019-2020).

Figure 107: Average SAR images from Site 1 (2020-2021).
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B.3
Cloud maps

Figures 108, 109, 110 present the cloud maps related to the optical images
from Site 1 acquired in the years 2019, 2020, and 2021. Figures 111, 112, 113
present the same cloud maps from Site 2 acquired in the same years.

Figure 108: Cloud maps from optical data (Site 1 - 2019).

Figure 109: Cloud maps from optical data (Site 1 - 2020).
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Figure 110: Cloud maps from optical data (Site 1 - 2021).

Figure 111: Cloud maps from optical data (Site 2 - 2019).

Figure 112: Cloud maps from optical data (Site 2 - 2020).
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Figure 113: Cloud maps from optical data (Site 2 - 2021).
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B.4
Results

Figure 114: F1-Score Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 1).
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Figure 115: F1-Score Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 2).

Figure 116: Precision Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 1).



Appendix B. Utilized images 139

Figure 117: Precision Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 2).

Figure 118: Recall Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 1).
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Figure 119: Recall Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (CLOUD-FREE from Site 2).

Figure 120: F1-Score Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (SAR datasets from Site 1).
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Figure 121: F1-Score Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (SAR datasets from Site 2).

Figure 122: Precision Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (SAR datasets from Site 1).
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Figure 123: Precision Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (SAR datasets from Site 2).

Figure 124: Recall Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (SAR datasets from Site 1).
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Figure 125: Recall Comparison of the models with (orange) and without
(blue) Previous Deforestation Map (SAR datasets from Site 2).

Figure 126: Temporal aggregation comparison (F1-Score) in CLOUD-FREE
dataset (Site 1).
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Figure 127: Temporal aggregation comparison (Precision) in CLOUD-FREE
dataset (Site 1).

Figure 128: Temporal aggregation comparison (Recall) in CLOUD-FREE
dataset (Site 1).
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Figure 129: Temporal aggregation comparison (F1-Score) in CLOUD-FREE
dataset (Site 2).

Figure 130: Temporal aggregation comparison (Precision) in CLOUD-FREE
dataset (Site 2).
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Figure 131: Temporal aggregation comparison (Recall) in CLOUD-FREE
dataset (Site 2).

Figure 132: Temporal aggregation comparison (F1-Score) in SAR datasets
(Site 1).

Figure 133: Temporal aggregation comparison (Precision) in SAR datasets
(Site 1).
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Figure 134: Temporal aggregation comparison (Recall) in SAR datasets
(Site 1).

Figure 135: Temporal aggregation comparison (F1-Score) in SAR datasets
(Site 2).

Figure 136: Temporal aggregation comparison (Precision) in SAR datasets
(Site 2).
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Figure 137: Temporal aggregation comparison (Recall) in SAR datasets
(Site 2).

Figure 138: F1-Score for ResUnet-based models’ comparison (Site 1)



Appendix B. Utilized images 149

Figure 139: Precision for ResUnet-based models’ comparison (Site 1)

Figure 140: Recall for ResUnet-based models’ comparison (Site 1)
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Figure 141: F1-Score for Swin-based models’ comparison (Site 1)

Figure 142: Precision for Swin-based models’ comparison (Site 1)

Figure 143: Recall for Swin-based models’ comparison (Site 1)
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Figure 144: F1-Score for ResUnet-based models’ comparison (Site 2)

Figure 145: Precision for ResUnet-based models’ comparison (Site 2)

Figure 146: Recall for ResUnet-based models’ comparison (Site 2)
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Figure 147: F1-Score for Swin-based models’ comparison (Site 2)

Figure 148: Precision for Swin-based models’ comparison (Site 2)

Figure 149: Recall for Swin-based models’ comparison (Site 2)
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Figure 150: F1-Score for ResUnet-based models’ cloud effect comparison
(Site 1)

Figure 151: Precision for ResUnet-based models’ cloud effect comparison
(Site 1)
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Figure 152: Recall for ResUnet-based models’ cloud effect comparison (Site 1)

Figure 153: F1-Score for Swin-based models’ cloud effect comparison (Site 1)
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Figure 154: Precision for Swin-based models’ cloud effect comparison (Site 1)

Figure 155: Recall for Swin-based models’ cloud effect comparison (Site 1)
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Figure 156: F1-Score for ResUnet-based models’ cloud effect comparison
(Site 2)

Figure 157: Precision for ResUnet-based models’ cloud effect comparison
(Site 2)
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Figure 158: Recall for ResUnet-based models’ cloud effect comparison (Site 2)

Figure 159: F1-Score for Swin-based models’ cloud effect comparison (Site 2)



Appendix B. Utilized images 158

Figure 160: Precision for Swin-based models’ cloud effect comparison (Site 2)

Figure 161: Recall for Swin-based models’ cloud effect comparison (Site 2)
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