

Jeferson Ever Menacho Caso

Características de Resistência Não Saturada de um Solo Coluvionar e um Solo Saprolítico de Tinguá, RJ

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio

Orientador: Prof. Tácio Mauro Pereira de Campos

Rio de Janeiro Abril de 2014

Jeferson Ever Menacho Caso

Características de Resistência Não Saturada de um Solo Coluvionar e um Solo Saprolítico de Tinguá, RJ

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Tácio Mauro Pereira de Campos Orientador Departamento de Engenharia Civil – PUC-Rio

> **Prof. Eurípedes do Amaral Vargas Jr.** Departamento de Engenharia Civil – PUC-Rio

Prof. Fernando Antônio Medeiros Marinho Universidade de São Paulo

> Prof. Lucio Flavio de Souza Vilar Universidade Federal de Minas Gerais

> > Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 04 de abril de 2014.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jeferson Ever Menacho Caso

Graduou-se em Engenharia Civil pela Universidade Nacional de Engenharia - UNI em 2007. Principais áreas de interesse: Estabilidade de Taludes e Encostas, Geotecnia experimental com solos não saturados.

Ficha Catalográfica

Menacho Caso, Jeferson Ever

Características de resistência não saturada de um solo coluvionar e um solo saprolítico de Tinguá, RJ / Jeferson Ever Menacho Caso ; orientador: Tácio Mauro Pereira de Campos. – 2014.

177 f. il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2014. Inclui bibliografia

1. Engenharia civil – Teses. 2. Solo não saturado. 3. Cisalhamento direto com sucção controlada. 4. Solo residual jovem e coluvial. I. Campos, Tácio Mauro Pereira de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Ao meu Pai e minha Mãe por todo o apoio e amor incondicional A minha esposa e filhos por ser o motivo de superação cada dia

Agradecimentos

A Deus!

Ao professor Tácio Mauro Pereira, por o conhecimento compartido e a amizade.

A meus Pais por todo o apoio.

A minha esposa e filhos por aguardar sempre meu retorno.

Aos meus amigos e colegas da PUC-Rio, em especial a meus amigos com que passe o maior tempo de convivência durante o dia e durante as noites de estudo.

Ao Departamento de Engenharia Civil da PUC-Rio.

À CAPES pelo apoio financeiro.

Resumo

Caso, Jeferson Ever Menacho; de Campos, Tácio Mauro Pereira. Características de Resistência Não Saturada de um Solo Coluvionar e um Solo Saprolítico de Tinguá, RJ. Rio de Janeiro, 2014. 177p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

Muitos dos movimentos de massa gravitacionais estão fortemente associados a uma perda de sucção na resistência ao cisalhamento do solo, decorrente de variações de umidade de origem natural (variações atmosféricas) ou de origem artificial (atividade humana). Dentro deste contexto, no presente trabalho analisou-se a influência da sucção na resistência ao cisalhamento, determinaram-se as envoltórias de resistência ao cisalhamento na condição não saturada e avaliou-se a influência de ciclos de umedecimento e secagem na resistência dos solos. Dois tipos de solos da região de Tinguá/RJ foram selecionados para estudo: um solo Residual Jovem e um Colúvio. Estes solos foram submetidos a um programa experimental que consistiu da caracterização granulométrica e mineralógica do material, seguido da obtenção da curva de retenção de água pelo método do papel filtro. Os ensaios de resistência ao cisalhamento envolveram ensaios de cisalhamento direto na condição saturada ou inundada e, para a condição não saturada, utilizou-se o equipamento de cisalhamento direto com sucção controlada (CDSC) da PUC-Rio, projetado por de Campos (1988) e implementado por Fonseca (1991) e Delgado (1993). O equipamento está baseado na técnica de translação de eixos. Para a determinação da velocidade de cisalhamento na condição não saturada utilizou-se a metodologia proposta por Ho & Fredlund (1982). A partir dos resultados obtidos foi possível obter os parâmetros da envoltória do solo não saturado, Ø', Ø^b, e c; e plotar a superfície 3D da envoltória que relaciona a resistência do solo não saturado com a tensão normal líquida e a sucção.

Palavras-chave

Solo não saturado; cisalhamento direto com sucção controlada; solo Residual Jovem e um Colúvio.

Abstract

Caso, Jeferson Ever Menacho; Campos, Tácio Mauro Pereira (Advisor) Strength Characteristics of Unsaturated Colluvium and Saprolitc Soils from Tinguá, RJ. Rio de Janeiro, 2014. 177p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Many of gravitational mass movements are strongly associated with a loss of suction on shear strength of the soil due to moisture variations of natural origin (atmospheric variations) or artificial sources (human activity). Within this context, the present study examined the influence of suction on shear strength, determined whether the envelopes of shear strength in unsaturated condition and evaluated the influence of wetting and drying cycles in soil strength. Two types of soils in the region of Tinguá / RJ were selected for study: A Young Residual soil and colluvium. These soils were subjected to an experimental program that consisted of particle size and mineralogical characterization of the material, followed by obtaining the curve of water retention by the filter paper method. The shear strength tests involved direct shear tests on saturated or flooded condition and to unsaturated condition, we used the direct shear device with controlled suction (CDSC) of PUC-Rio, designed by Field (1988) and implemented by Fonseca (1991) and Delgado (1993). The device is based on the technique of translation of the axes. For the determination of the shear rate in the unsaturated condition used the methodology proposed by Ho & Fredlund (1982). From the results it was possible to obtain the parameters of the envelope of unsaturated soil, \emptyset ', b, and c; and plot the 3D surface of the envelope which relates the strength of unsaturated soil with net normal stress and suction.

Keywords

Unsaturated Soil; shear direct with controlled suction; Colluvium and Saprolite Soil.

Sumário

1 Introdução	23
2 Revisão Bibliográfica	25
2.1. Origem dos Solos não saturados	25
2.2. Fases constituintes dos solos não saturados	26
2.3. Sucção	28
2.4. Curva de Retenção do solo não saturado	29
2.4.1. Fatores que influenciam a forma da curva de retenção	30
2.4.2. Métodos de obtenção da Curva de Retenção	34
2.5. Equação de Resistência ao Cisalhamento de solos não saturados	40
2.6. Principais equações para representar a curva de retenção	46
2.7. Modelos de Previsão da Resistencia de um solo não saturado	48
2.8. Estudos dos efeitos dos ciclos de umedecimento e secagem na resistênci	a ao
cisalhamento do solo.	50
3 Equipamento, Rotinas de Ensaio e Programa de Ensaios.	52
3.1. Equipamento	52
3.1.1. Ensaio de Cisalhamento Direto Convencional	52
3.1.2. Ensaio de Cisalhamento Direto Com Sucção Controlada	53
3.1.3. Imposição de sucção com Dessecadores	60
3.1.4. Determinação da curva Característica	61
3.2. Rotinas de Ensaio	62
3.2.1. Ensaio de Cisalhamento Direto Convencional	62
3.2.2. Ensaio de Cisalhamento Direto Com Sucção Controlada	62
3.2.3. Imposição de sucção com Dessecadores	65
3.2.4. Determinação das curvas de Retenção	66
3.3. Programa de Ensaios	67
4 Área de Estudo e Amostragem	69
4.1. Área de Estudo	69
4.1.1. Meio Físico	69
4.1.2. Geologia	70
4.1.3. Aspectos Climáticos	71

4.2. Amostragem	72
5 Caracterizações Física, Química e Mineralógica.	74
5.1. Características Físicas	74
5.1.1. Índices Físicos	74
5.1.2. Análise Granulométrica	74
5.1.3. Limites de Consistência	76
5.1.4. Classificação do Solo	77
5.1.5. Porosidade	77
5.2. Características Químicas	79
5.2.1. Análise Química Total	79
5.3. Características Mineralógicas	80
5.3.1. Análise Térmica Diferencial (ATD)	80
5.3.2. Difração de Raios-X	81
5.3.3. Microscopia Digital de Varredura	84
5.4. Curva de Retenção	86
6 Ensaios de Resistencia	91
6.1. Velocidade de cisalhamento	91
6.1.1. Tempo de Rotura para Ensaios saturados.	91
6.1.2. Tempo de Rotura para Ensaios não saturados.	92
6.2. Ensaios de Cisalhamento direto na condição submersa	97
6.3. Ensaios de Cisalhamento direto na condição não saturada	100
6.3.1. Ensaios com Tensão Normal Líquida Constante	103
6.3.2. Ensaios de Cisalhamento em Função da Tensão Normal Liquida	116
6.4. Ensaios de Cisalhamento direto com ciclos de umedecimento e secado.	123
6.4.1. Ciclo I	124
6.4.2. Ciclo II	132
7 Interpretação de Resultados	136
7.1. Critério de definição de ruptura utilizado	136
7.2. Compressibilidade dos Materiais	137
7.2.1. Amostras Submersas	137
7.2.2. Amostras Não-Saturadas	139
7.3. Resistência ao Cisalhamento	140
7.3.1. Resistência ao Cisalhamento na Condição Submersa	140

7.3.2. Resistencia ao Cisalhamento na Condição Não saturada	142
7.3.3. Comparação dos Resultados Obtidos com Estimativas Indiretas da Re	esistencia ao
Cisalhamento Através de Formulações Simplificadas	151
7.3.4. Comparação dos Resultados Obtidos com outros materiais encontrad	os na literatura
	152
7.3.5. Influência dos Ciclos de Umedecimento e Secagem na Resistencia ad	o Cisalhamento.
	156
7.3.6. Secagem após a Saturação	156
7.3.7. Saturação após a secagem	158
8 Conclusões e sugestões	160
8.1. Conclusões	160
8.1.1. Caracterização física, química e mineralógica.	160
8.1.2. Compressibilidade	161
8.1.3. Resistencia ao cisalhamento	161
8.2. Sugestões	163
Referências Bibliográficas	164

Apêndice A Calibração dos instrumentos eletrônicos e saturação do disco cerâmico (DAVE)

	171
A.1. Calibração dos instrumentos eletrônicos de medição.	171
A.2. Saturação do Disco Cerâmico de Alto Valor de Entrada de Ar (DAVE).	176

Lista de Figuras

Figura 2.1 – Formação do solo não saturado no ciclo hidrológico. Lu and Likos (2004) 26
Figura 2.2 - Elemento de solo não saturado com a fase gasosa continua. (adaptado de
Fredlund e Morgenstern, 1977) 27
Figura 2.3 - Definição de Sucção Total e suas componentes através de uma membrana
semipermeável, Marinho (2000) 29
Figura 2.4 - Curva de Retenção típica para um solo siltoso, segundo Fredlund e Xing
(1994)
Figura 2.5 – Influência do tipo de solo na curva de característica, Fredlund e Xing (1994) 31
Figura 2.6 – Curvas de retenção para dois solos tropicais, Futai (2002)
Figura 2.7 - Curvas de retenção obtidas no trecho seco e trecho úmido da compactação,
Oliveira (2002)
Figura 2.8 - Curvas características obtidas seguindo trajetórias de umedecimento e
secagem, Ng e Pang (2000)
Figura 2.9 - Curvas características obtidas para diferentes tensões liquidas, Ng e Pang
(2000)
Figura 2.10 - Aplicação de sucção por imposição da umidade relativa através dos
dessecadores, Soto (2004) 38
Figura 2.11 - Possíveis envoltórias de ruptura para um solo não saturado, adaptado de
Fredlund (2002)
Figura 2.12 - Resultados obtidos a partir de ensaios de cisalhamento direto com sucção
controlada plotados nos planos τ vs. (σ -u _a) e τ vs. (u _a -u _w), Escário e Sáez (1986) 43
Figura 2.13 – Não linearidade da envoltória de resistência no plano τ vs. (u_a-u_w) Fredlund et
al. (1987)
Figura 2.14 – Relação entre curva característica e envoltória de resistência ao cisalhamento,
Fredlund (2002)
Figura 2.15 – Envoltória de resistência no plano τ vs. (u _a -u _w) para diferentes solos, Rassam
e Cook (2002)
Figura 2.16 – Determinação gráfica dos parâmetros necessários para calcular os valores de
a, n e m. Fredlund e Xing (1994)
Figura 2.17 - Relação entre o parâmetro de ajuste (k) e o índice de plasticidade (IP)
(Vanapalli & Fredlund, 2000)
Figura 3.1 – Equipamento de Cisalhamento Direto Convencional da PUC-Rio
Figura 3.2 – Equipamento de Cisalhamento Direto com sucção controlada da PUC-Rio 54
Figura 3.3 – Câmara de Pressão de Ar 55

Figura 3.4 – Caixa de cisalhamento Bipartida	56
Figura 3.5 – Câmara de Ar comprimido com válvulas para pressão de água e ar	57
Figura 3.6 - Sistema de aplicação de carga vertical composto por um pendural e braço	de
alavanca	58
Figura 3.7 – Sistema de extração de bolhas de ar	59
Figura 3.8 – Sistema de Aquisição de Dados	60
Figura 3.9 – Imposição da sucção através dos dessecadores	60
Figura 3.10 - Papel filtro tipo Whatman N°42 utilizado na determinação da curva	de
retenção	61
Figura 3.11 - Trechos de avaliação para detecção de vazamentos, Adaptado de Delga	ado
(1993)	63
Figura 4.1 – Localização da Área de Estudo	70
Figura 4.2 – Localização dos dois pontos de amostragem dentro do plano geológico	70
Figura 4.3 - Talude escavado de leucognaisse, a foliação é caracterizada por bandame	nto
composicional	.71
Figura 4.4 - Feldspato róseo e micas centimétricas característico localmente	71
Figura 4.5 - Classificação da Reserva Biológica do Tinguá quanto à temperatura e umida	ade
médias (Fonte: Plano de Manejo da Reserva Biológica do Tinguá)	72
Figura 4.6 - Talude de retirada da amostra do solo Colúvio (Campus Avançado da PL	JC-
Rio).	73
Figura 4.7 – Talude de retirada da amostra do solo Residual Jovem (Reserva Biológica	de
Tinguá)	73
Figura 5.1 – Curvas granulométricas do solo Colúvio realizado com hexamefosfato de só	olio
e água como defloculante respectivamente.	75
Figura 5.2 – Curvas granulométricas do solo Residual Jovem realizado com hexamefosf	ato
de sódio e água como defloculante respectivamente	76
Figura 5.3 – Curvas de Distribuição de poros respeito ao tamanho dos poros	78
Figura 5.4 – Curvas de Distribuição Acumulado de poros ao tamanho dos poros	78
Figura 5.5 – Termograma do solo Residual Jovem.	80
Figura 5.6 – Termograma do solo Coluvio.	. 81
Figura 5.7 – Difratograma do material retido na peneira #200 do solo Residual Jovem	82
Figura 5.8 – Difratograma do material retido na peneira #400 do solo Residual jovem	82
Figura 5.9 – Difratograma do material retido na peneira #200 do Colúvio	83
Figura 5.10 – Difratograma do material retido na peneira #400 do Colúvio	83
Figura 5.11 – Distribuição de poros (macroporos) na estrutura do solo Residual Jovem	84

Figura 5.12 - Presença de material cimentante (óxido de ferro) envolvendo os grãos de
quartzo e feldspato na estrutura do solo Residual Jovem
Figura 5.13 – Distribuição de poros na estrutura do solo Residual Jovem
Figura 5.14 – Visualização dos macroporos e microporos na estrutura do Colúvio
Figura 5.15 – Curva de retenção seguindo uma trajetória de umedecimento – solo Colúvio.
Figura 5.16 – Curva de retenção seguindo uma trajetória de secagem – solo Colúvio 87
Figura 5.17 – Curva de retenção – solo Residual Jovem
Figura 5.18 – Curva de retenção em função da umidade Gravimétrica – Colúvio 88
Figura 5.19 – Curva de retenção em função da umidade Volumétrica – Colúvio 89
Figura 5.20 – Curva de retenção em função do grau de saturação – Colúvio 89
Figura 5.21 - Curva de retenção em função da umidade Gravimétrica - Solo Residual
Jovem
Figura 5.22 – Curva de retenção em função da umidade Volumétrica – Solo Residual Jovem.
Figura 5.23 – Curva de retenção em função do Grau de Saturação – Solo Residual Jovem.
Figura 6.1 - Coeficiente de Permeabilidade relativa versus sucção mátrica para o solo
Residual Jovem
Figura 6.2 – Previsão da função permeabilidade não saturada para o solo Residual Jovem.
Figura 6.3 – Coeficiente de Permeabilidade relativa versus sucção mátrica para o Colúvio.95
Figura 6.4 – Previsão da função permeabilidade não saturada para o solo o Colúvio 96
Figura 6.5 - Ensaio de cisalhamento Direto - curva tensão - deslocamento, do solo
Residual jovem
Figura 6.6 – Ensaio de cisalhamento Direto – curva tensão – deslocamento, do Colúvio 100
Figura 6.7 - Curvas de deslocamento vertical e variação volumétrica de água que sai ou
entra no C.P em função do tempo de ensaio da série I – solo Residual Jovem 104
Figura 6.8 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica com
respeito ao deslocamento horizontal ao longo do ensaio da série I – solo Residual
Jovem
Figura 6.9 - Curvas de deslocamento vertical e variação volumétrica de água que sai ou
entra no C.P em função do tempo de ensaio da série I – Colúvio
Figura 6.10 - Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica
com respeito ao deslocamento horizontal ao longo do ensaio da série I – Colúvio 107

Figura 6.11 – Curvas de deslocamento vertical e variação volumétrica de água que sai ou entra no C.P em função do tempo de ensaio da série II – solo Residual Jovem. 108

Figura 6.14 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica com respeito ao deslocamento horizontal ao longo do ensaio da série II – Colúvio... 111

Figura 6.15 – Curvas de deslocamento vertical e variação volumétrica de água que sai ou entra no C.P em função do tempo de ensaio da série III – solo Residual Jovem. 112

Figura 6.18 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica com respeito ao deslocamento horizontal ao longo do ensaio da série III – Colúvio. 115

Figura 6.20 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica com respeito ao deslocamento horizontal ao longo do ensaio da série I – Colúvio. ... 118

Figura 6.22 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica com respeito ao deslocamento horizontal ao longo do ensaio da série II – Colúvio... 120

Figura 6.24 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica com respeito ao deslocamento horizontal ao longo do ensaio da série III – Colúvio. 122

- Figura 7.1 Critério de definição dos pontos de ruptura......137

- Figura 7.5 Variação do índice de vazios com a tensão normal líquida para o Colúvio. ... 139
- Figura 7.6 Envoltória de resistência de amostras submersas do solo Residual 141
- Figura 7.8 Envoltória de resistência não saturada no plano Tensão Cisalhante vs. sucção mátrica do solo Residual jovem.
 144
 Figura 7.9 Envoltória de resistência não saturada no plano Tensão Cisalhante vs. sucção mátrica do Colúvio.
 145

Figura 7.10 – Envoltória de resistência não saturada no plano Tensão Cisalhante vs. Tensão
Normal Líquida do solo Residual jovem 145
Figura 7.11 – Envoltória de resistência não saturada no plano Tensão Cisalhante vs. Tensão
Normal Líquida do solo Colúvio146
Figura 7.12 – Variação da coesão aparente com relação à sucção mátrica para o solo
Residual jovem
Figura 7.13 – Variação da coesão aparente com relação à sucção mátrica para o solo
Colúvio
Figura 7.14 – Variação de Ø' e Ø ^b com relação à sucção mátrica para o solo Residual
Jovem
Figura 7.15 – Variação de Ø' e Ø ^b com relação à sucção mátrica para o Colúvio
Figura 7.16 – Envoltória Tridimensional de Resistência para o solo Residual jovem 149
Figura 7.17 – Envoltória Tridimensional de Resistência para o Colúvio
Figura 7.18 – Comparação das envoltórias obtidas com as formulações propostas pelos
autores com a envoltória obtida experimentalmente para o solo Residual jovem 151
Figura 7.19 – Comparação das envoltórias obtidas com as formulações propostas pelos
autores com a envoltória obtida experimentalmente para o Colúvio
Figura 7.20 – Comparação das envoltórias de resistência para todos os solos Coluvionares.
154
Figura 7 21 – Comparação das envoltórias de resistência para todos os solos residuais 154
Figura 7.22 – Comparação das Variações de \emptyset^{b} com a sucção para todos os solos
Coluvionares
Figura 7.23 – Comparação das Variações de \emptyset^{b} com a sucção para todos os solos
Residuais
Figura 7.24 – Supernosição dos pares de tensões do ciclo I na envoltória de resistência
nara uma tensão normal líquida de 120 kPa - Colúvio
Figura 7.25 Superposição dos pares de tensões da série Lina envoltória de resistência
ngura 1.25 – Superposição dos pares de tensões da sene i na envoltoria de resistencia,
Figure 7.26 – Desistêncie en ciselhamente anée e esturação versus e nível de cueção
etingida entre de esturação, pero umo tenção líquido de 120 kDa. Colúvia
atingido antes da saturação, para uma tensão líquida de 120 kPa – Coluvio
Figura 7.27 – Resistencia ao cisalnamento apos da saturação versus o nivel de sucção
atingido antes da saturação, para uma tensão líquida de 120 kPa – solo Residual
Jovem
Figura A.1 – Sistema de aquisição de dados.
Figura A.2 – Curva de calibração do transdutor de deslocamento: (a) vertical; (b) horizontal.

Figura A.3 – Curva de calibração do transdutor de pressão: (a) de ar; (b) de água	174
Figura A.4 – Curva de calibração da célula de carga: (a) horizontal; (b) vertical	175
Figura A.5 – Curva de calibração do medidor de variação volumétrico	176
Figura A.6 – Curva de Volume percolado vs. Tempo de percolação.	177

Lista de Tabelas

Tabela 2.1 – Técnicas utilizadas para a medição da sucção do solo, Fredlund e Rahardjo,(
1993); Marinho, (1997)
Tabela 2.2 - Tempos de equilíbrio necessários para medições de sucção total; Marinho
(1997)
Tabela 2.3 - Equações de calibração dos papeis filtro Schleider & Schuell No. 589. e
Whatman No 42, Feuerharmel (2007)
Tabela 2.4 - Níveis de sucção total para diferentes concentrações de NaCI, Lu and Likos
(2004)
Tabela 2.5 - Principais equações de ajuste da Curva de Retenção. Adaptado de Oliveira
(2004)
Tabela 3.1 - Principais Características dos Equipamentos CDSC, adaptado de Fonseca
(1991)
Tabela 3.2 – Concentrações de soluto para as sucções desejadas
Tabela 3.3 – Séries de ensaios de cisalhamento direto convencional, com sucção controlada
e com ciclos de umedecimento e secagem, respectivamente
Tabela 5.1 – Índices físicos das amostras indeformadas
Tabela 5.2 – Resumo da granulometria de cada solo analisado
Tabela 5.3 – Limites de consistência e atividade da fracção argila
Tabela 5.4 – Classificação IUPAC (Diâmetro de Poros). 77
Tabela 5.5 – Análise Química Total
Tabela 6.1 – Velocidades de Cisalhamento para a condição Saturada do solo Coluvio 92
Tabela 6.2 - Velocidades de Cisalhamento para a condição Saturada do solo Residual
Jovem
Tabela 6.3 Apresenta as velocidades calculadas para os ensaios de cisalhamento direto
com sucção controlada para o solo Residual Jovem
Tabela 6.4 Apresenta as velocidades calculadas para os ensaios de cisalhamento direto
com sucção controlada para o Colúvio97
Tabela 6.5 - Índices Físicos no inicio, após o adensamento e no final do ensaio - solo
Residual Jovem
Tabela 6.6 – Índices Físicos no inicio, após do adensamento e no final do ensaio – Colúvio.
Tabela 6.7 - Índices Físicos no inicio, após o adensamento e no final do ensaio do solo
Residual Jovem

Tabela 6.8 – Índices Físicos no inicio, após o adensamento e no final do ensaio do Colúvio.
Tabela 6.9 – Série de Ensaios em função da Tensão Normal líquida aplicada 116
Tabela 6.10 – Ciclos de Umedecimento e Secagem para o Colúvio e solo Residual 123
Tabela 6.11 – Índices físicos ao longo do Ciclo I para o Colúvio 124
Tabela 6.12 – Índices físicos ao longo do Ciclo I para o Solo Residual Jovem 124
Tabela 6.9 – Índices físicos ao longo do Ciclo II para o Colúvio
Tabela 6.10 – Índices físicos ao longo do Ciclo II para o Solo Residual Jovem 132
Tabela 7.1 - Tensão cisalhante, tensão normal e deslocamento horizontal na ruptura para o
solo Residual jovem
Tabela 7.2 - Tensão cisalhante, tensão normal e deslocamento horizontal na ruptura para o
Colúvio
Tabela 7.3 - Tensão cisalhante, tensão normal líquida, sucção mátrica e deslocamento
horizontal na ruptura para o solo Residual Jovem142
Tabela 7.4 - Tensão cisalhante, tensão normal líquida, sucção mátrica e deslocamento
horizontal na ruptura para o solo Colúvio142
Tabela 7.5 – Equações de ajuste Hiperbólico para o solo Residual Jovem
Tabela 7.6 – Equações de ajuste Hiperbólico para o Colúvio
Tabela 7.7 - Parâmetros de resistência no plano da Tensão normal líquida para o solo
Residual Jovem
Tabela 7.8 – Parâmetros de resistência no plano da Tensão normal líquida para o Colúvio.
Tabela 7.9 – Resumo das características físicas dos 4 Colúvios considerados 152
Tabela 7.10 – Resumo das características físicas dos 3 Solos Residuais considerados 153
Tabela A.1 – Características dos instrumentos elétricos de medição

Lista de Símbolos

- CDSC = cisalhamento direto com sucção controlada;
- DAVE = disco cerâmico de alto valor de entrada de ar;
- ABNT = Associação Brasileira de Normas Técnicas;
- SUCS = sistema unificado de classificação de solo;
- ASTM = American Society for Testing and Materials;
- σ = tensão normal;
- σ_r = tensão normal na ruptura;
- σ' = tensão efetiva;
- c', Ø' = parâmetros efetivos de resistência do solo saturado;
- c = coesão aparente do solo devido ao acréscimo de sucção mátrica;
- τ = tensão cisalhante;
- τ_r = tensão cisalhante na ruptura;
- χ = parâmetro que dependente do tipo e da estrutura do solo, do grau de saturação,

da seqüência de umedecimento e secagem, da história, do nível e da trajetória de tensões;

Ø^b= parâmetro que quantifica o aumento na resistência devido a um aumento na sucção matricial;

- u_w = pressão de água;
- u_a = pressão de ar;
- (σu_a) = tensão normal líquida;
- $(\sigma u_a)_r$ = tensão normal líquida na ruptura;
- $(u_a u_w) = sucção mátrica;$
- $(u_a u_w)_r$ = sucção mátrica na ruptura;
- # = diâmetro da abertura da malha da peneira;
- Gs = densidade relativa dos grãos;
- LC = limite de contração;
- LL = limite de liquidez;
- LP = limite de plasticidade;
- IP = índice de plasticidade;

CH = argila de alta plasticidade, de acordo com a classificação do solo da SUCS;

o-ring = anel de borracha de vedação;

top-cap = tampa metálica para distribuição uniforme da carga normal sobre toda a área da amostra;

- α = ângulo de inclinação constante da curva tensão-deslocamento;
- δv = deslocamento vertical;
- δh = deslocamento horizontal;
- δh_r = deslocamento horizontal na ruptura;
- n = porosidade;
- ρ_s = massa específica dos grãos de solo;
- γ_n = peso específico natural;
- γ_d = peso específico seco;
- γ_w = peso específico da água;
- e = índice de vazios;
- e_o = índice de vazios inicial;
- w = teor de umidade gravimétrico;
- w_{real} = teor de umidade gravimétrico calculado a partir de secagem em estufa;
- w_{calc} = teor de umidade gravimétrico calculado utilizando o sistema de medição de variação volumétrica;
- θ = teor de umidade volumétrico;
- θ s = teor de umidade volumétrico do solo saturado;

θr = teor de umidade volumétrico do solo correspondente a condição de saturação residual;

- S = grau de saturação;
- a, b = parâmetros de ajuste da função hiperbólica;
- k = parâmetro de ajuste;
- $\psi = suc\eta\gamma o;$
- Θ = teor de umidade volumétrico normalizado;
- T_f = tempo de ruptura;
- Cv = coeficiente de adensamento relacionado ao ensaio;
- U = grau médio de dissipação do excesso de poro-pressão (95%);
- η = parâmetro referente a drenagem;
- Cw = coeficiente de adensamento do solo não saturado relacionado com a fase líquida;
- Kw = coeficiente de permeabilidade do solo não saturado relacionado com a fase líquida;

pw = densidade da água;

- g = aceleração da gravidade;
- m_w = 2 inclinação da curva característica de sucção;
- λ = fator de impedância;
- Kd = coeficiente de permeabilidade do DAVE;
- Ld = espessura do DAVE;
- $Kr(\psi)$ = coeficiente de permeabilidade relativa em função da sucção;
- $Kw(\psi)$ = coeficiente de permeabilidade não saturado em função da sucção;
- Ks= coeficiente de permeabilidade saturado;
- a, n, m = parâmetros de ajuste segundo a metodologia de Fredlund e Xing (1994).