

Mario Rolando Bonilla Correa

Utilização de vácuo em laboratório para ensaios de adensamento com carregamento unidimensional e isotrópico para material remoldado

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

> Orientador: Prof. José Tavares Araruna Jr Co-Orientador: Prof. Sandro Salvador Sandroni

Rio de Janeiro, Abril de 2013

Mario Rolando Bonilla Correa

Utilização de vácuo em laboratório para ensaios de adensamento com carregamento unidimensional e isotrópico para material remoldado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Eurípedes do Amaral Vargas Jr. Presidente Departamento de Engenharia Civil / PUC-Rio

> > Prof. Sandro Salvador Sandroni

Co-Orientador Geoprojetos Ltda.

Prof. Fernando Schnaid Universidade Federal do Rio Grande do Sul

Prof^a. Maria Esther Soares Marques

Instituto Militar de Engenharia

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico / PUC-Rio

Rio de Janeiro, 23 de Abril de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Mario Rolando Bonilla Correa

Graduou-se em Engenharia Civil pela Universidade de Cartagena, Colômbia em 2004. Na PUC-Rio desenvolveu seu trabalho de pesquisa com ênfase uso de vácuo para em ensaios de laboratório de geotecnia.

Ficha Catalográfica

Bonilla Correa, Mario Rolando

Utilização de vácuo em laboratório para ensaios de adensamento com carregamento unidimensional e isotrópico para material remoldado / Mario Rolando Bonilla Correa; orientador: José Tavares Araruna Jr.; co-orientador: Sandro Salvador Sandroni - 2013.

v., 150 f. il. ; 30 cm

Dissertação (Mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013. Inclui bibliografia.

 Engenharia Civil - Teses. 2. Melhoramento de solos moles 3. Adensamento com vácuo. 4. Ensaios de laboratório.
I. Araruna Jr., José Tavares. II. Sandroni, Sandro Salvador.
III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título

CDD: 624

Agradecimentos

Este trabalho é dedicado a minha mãe, sem ela eu não tivera educação nem esperanças. Ela me ensinou que Deus é o caminho que sempre vai estar.

Agradeço a aquele surfista que me ajudou a sair do mar aquele dia que as maiores ondas do mar que já vi quase me apagam.

Agradeço ao professor José Araruna pelo apoio que deu para que este trabalho fora possível.

Agradeço especialmente ao professor Sandro por os conhecimentos que me ensinou e quem realmente me ajudou continuar no mestrado quando eu pensava desistir.

Agradeço aos professores de pós-graduação do departamento de Engenharia Civil da PUC-Rio por seu conhecimento e a qualidade do seu trabalho.

Agradeço ao professor Sayão por sua ajuda e por ser um exemplo de vida.

Agradeço a Rita por que sempre que precisei dela, ela me ajudou.

Agradeço as pessoas que me acompanharam ao longo destes dois anos e que considero como amigos (Vanesa, Eliot, Jack, Thais, Renata, Nathaly, Lorena, Manuella, Gino, Renzo, Gustavo, João, Thiago, Mariana, Natalia, Ingrid, Ingrid Milena, Mairom, Perlita, Camyla, Javier, Juan David, Bianca, Lidia, Paola, Jorge, Tania, Elvis, Gary, Carol, Carolina, Elaine, Miriam, Ronald, Wellington, Sarah, Juliana, Alexander, Sandra, Michele, Lizbeth, Maria Isabel, Daira, Gerardo, Cristian Chacón, Ruby, Darwin, Pantoja).

Agradeço ao técnico do laboratório Amaury a Eng. Carlinha e a Rogelio que me ajudaram e realmente fizeram possível este trabalho.

Agradeço a empresa Tecnogeo pelo patrocínio técnico e tecnológico.

A PUC-Rio por ser uma instituição tão maravilhosa e que oferece a oportunidade sem a qual eu realmente acho que não ia conseguir estudar um mestrado. A CAPES e à PUC-Rio pelos auxílios concedidos.

A Rio por ser a cidade maravilhosa e a Brasil por ser um exemplo em muitos aspectos para Latino América.

Resumo

Bonilla Correa, Mario Rolando; Araruna, José Tavares (Orientador); Sandroni, Sandro Salvador (Co-orientador). **Utilização de vácuo em laboratório para ensaios de adensamento com carregamento unidimensional e isotrópico para material remoldado**. Rio de Janeiro, 2013. 150p. Dissertação de Mestrado – Departamento de Engenharia Civil da Pontifícia Universidade Católica do Rio de Janeiro.

A técnica de melhoramento de solos moles com carregamento com vácuo é uma técnica que a cada dia está sendo mais usada em diferentes lugares do mundo, por oferecer, para alguns projetos, uma série de vantagens em relação a outras técnicas de melhoramento de solos moles. Os ensaios de laboratório constituem-se em uma fonte de informações fundamental para um projeto de melhoramento de solos moles. No presente trabalho é feito um estudo experimental para usar vácuo em laboratório. ensaios de adensamento com para carregamento unidimensional (convencional, na prensa tipo Bishop) e com carregamento isotrópico (na célula triaxial), usando material remoldado. Para isto, foi fundamental desenvolver procedimentos para a execução de cada um desses ensaios. Apresentaram-se vaias dificuldades para levar a pressão de vácuo até o corpo de prova, para evitar perdas de pressão, para manter constante a pressão durante todo o ensaio e outras mais. Foi necessário testar diferentes técnicas para superar as dificuldades, até obter um funcionamento satisfatório. Com os procedimentos desenvolvidos foi realizada uma campanha de ensaios para conhecer os resultados que estes ensaios fornecem. Com os resultados obtidos foram feitas análises para sua interpretação. Comprovou-se experimentalmente que o vácuo trabalha como um carregamento para adensamento de solos moles.

Palavras-chave:

Melhoramento de solos moles; adensamento com vácuo; ensaios de laboratório.

Bonilla Correa, Mario Rolando; Araruna, José Tavares (Advisor); Sandroni, Sandro Salvador (Co-advisor). **Use of vacuum in one dimensional and isotropic tests carried out in remoulded material**. Rio de Janeiro, 2013. 150p. MSc. Dissertation – Departamento de Engenharia Civil da Pontifícia Universidade Católica do Rio de Janeiro.

The technique of improve soft soils with vacuum consolidation, is a technique that is more and more used, in different places of the world, because it offer a series of advantages in relation with others techniques of improve soft soils, depending of the kind of project. The laboratory tests are important fonts of information for projects of improve soft soils. This work is an experimental study for use vacuum in laboratory, for consolidation tests with one-dimensional load (conventional, in the Bishop's press) and with isotropic load (in the triaxial cell), using remolded material. For make this, was fundamental the development of procedure for the execution of each tests. Various difficulties happened during this development, this situation forced to test different techniques until to obtain a satisfactory operation. With the development of the procedures was done a series of tests for know the results, that these tests provide. With the results obtained were done analyses for its interpretation.

Keywords:

Soft soils improvement; vacuum consolidation; Laboratory test.

Sumário

1 Introdução	20
1.1. Objetivos	20
1.2. Fora do Escopo	21
1.3. Estrutura	21
2 Revisão Bibliográfica	23
2.1. Aterros construídos sobre depósitos de argilas moles	23
2.2. Breve descrição das técnicas de melhoramento de solos moles	24
2.2.1. Carregamento com aterro	24
2.2.2. Carregamento com aterro junto com o uso de drenos verticais	
para aceleração de recalque	26
2.2.3. Colunas granulares	28
2.2.4. Mistura com cimento seco (STABTEC ou Dry Mix)	30
2.2.5. Carregamento com vácuo	31
2.3. Detalhes do usa da técnica de carregamento com vácuo	32
2.3.1. Mecanismo de funcionamento do carregamento com vácuo	33
2.3.2. Técnicas de aplicação de vácuo no campo	34
2.4. Descrição de pesquisas sobre adensamento com vácuo	41
2.4.1. Trabalhos de Campo	41
2.4.2. Trabalhos de Laboratório	43
3 Desenvolvimento dos Ensaios	48
3.1. Utilização de vácuo em um ensaio de adensamento convencional.	49
3.1.1. Objetivo do ensaio	49
3.1.2. Equipamento desenvolvido e breve descrição do ensaio	49
3.1.3. Dificuldades encontradas durante o desenvolvimento	50
3.1.4. Descrição do procedimento do ensaio	56
3.1.5. Ensaios teste	62

3.2. Ensaio de adensamento isotrópico, na célula triaxial.	71
3.2.1. Objetivo do ensaio	71
3.2.2. Esquema montagem do ensaio	72
3.2.3. Dificuldades encontradas durante o desenvolvimento do ensaio	72
3.2.4. Descrição do procedimento do ensaio	78
3.2.5. Ensaios teste	86
3.3. Sistema de aplicação de vácuo	95
3.3.1. Trocador de calor	97
4 Resultados dos Ensaios	101
4.1. Caracterização do material usado	103
4.2. Resultados ensaios de adensamento convencional na prensa tipo	
Bishop.	105
4.2.1. Ensaio V-10 (Um estágio com vácuo)	105
4.2.2. Ensaio V-11 (Todos os estágios carregamento convencional com	
pesos)	109
4.2.3. Resultados ensaios de adensamento, isotrópico, na célula triaxial.	112
5 Análises dos Resultados	123
5.1. Ensaios de adensamento convencional na prensa tipo Bishop.	123
5.1.1. Comparação dos resultados estágio com vácuo Vs. estágio sem	
vácuo.	123
5.1.2. Comparação das curvas índice de vazios (e) Vs. Log σ 'v do	
ensaio V-10 e do ensaio V-11.	128
5.2. Ensaio de adensamento isotrópico, na célula triaxial.	129
5.2.1. Cálculo do coeficiente de adensamento para cada um dos ensaios	129
5.2.2. Comparação dos resultados obtidos nos ensaios com vácuo com	
os ensaios sem vácuo.	132
5.2.3. Pressão de estabilização dos ensaios sem vácuo	140
5.2.4. Poro pressão de estabilização dos ensaios com vácuo	141
6 Conclusões e Sugestões para Futuras Pesquisas	143
6.1. Conclusões	143
6.2. Sugestões para futuras pesquisas	144

7 Referências Bibliográficas	146
7.1. Trabalhos sobre o uso de carregamento com vácuo em campo	146
7.2. Trabalhos sobre o uso de carregamento com vácuo em laboratório	148
7.3. Trabalhos sobre outros temas de geotecnia	149
Anexos	150

Anexo 1.	Calibração	transdutor	utilizado	nos ensaios	triaxiais	150
----------	------------	------------	-----------	-------------	-----------	-----

Índice de Figuras

Figura 2.1 - Variação ao longo do tempo, em um processo de	
carregamento com aterro, a) do excesso de poro pressão, b) da tensão	
efetiva.	25
Figura 2.2 - Equipamentos instalando drenos verticais, Kirstein 2007	27
Figura 2.3 - Execução de colunas granulares com vibrador profundo,	
(Referência: site da Keller).	29
Figura 2.4 - Equipamento com vibrador profundo para execução de	
colunas granulares, Sandroni, 2012.	29
Figura 2.5 - Esquema geral de estabilização de solos moles com mistura	
com cimento seco, (Referência site da Stabtecno).	31
Figura 2.6 - Variação ao longo do tempo, em um processo de	
carregamento com vácuo.	34
Figura 2.7 - Tanque com interface ar-água para ligação do sistema de	
bombas de vácuo e drenos verticais.	35
Figura 2.8 - Sistema de carregamento com vácuo com membrana. Detalhe	
A, ver Figura 8	36
Figura 2.9 - Vala perimetral, (Referência Masse 2001).	36
Figura 2.10 - Tubo corrugado flexível	37
Figura 2.11 - Sistema de bombas de vácuo. Do lado a vala perimetral.	
Pode se observar as mangueiras que se ligam aos drenos horizontais	
entrando através da membrana, (Referência Masse 2001).	37
Figura 2.12 - Foto aérea, zona tratada com carregamento com vácuo,	
técnica com membrana, Menard 2012.	38
Figura 2.13 - Sistema de carregamento com vácuo dreno a dreno (sem	
membrana). Detalhe A, ver figura 8. Todos os tubos impermeáveis.	39
Figura 2.14 - a) Dreno stardrain, b) Junção entre PVD convencional e	
tubulação.	39
Figura 2.15 - Vista das conexões entre tubos ligados a drenos verticais.	
Referência Sandroni 2012.	40

Figura 2.16 - Esquema geral do ensaio $.\Delta\sigma_v$ em alguns ensaios foi feito	
com vácuo e em outros com carregamento convencional. Chai et al.,	
2007.	43
Figura 2.17 - Modelo usado por Li, 2011. Para simular o modelo dreno a	
dreno o vácuo foi ligado diretamente no dreno, no caso do modelo	
Menard o vácuo foi ligado no dreno horizontal na base do corpo de	
prova.	44
Figura 2.18 - Consolidômetro de grande escala usado por Rujikaitkamjorn	
et al., 2008.	45
Figura 2.19 - Esquema do ensaio triaxial estudado por Duong et al., 2012.	46
Figura 2.20 - Esquema do equipamento usado (consolidômetro de grande	
escala) por Saowapakpiboon et al. 2011.	47
Figura 3.1 – Esquema do oedômetro utilizado e ligações para o estágio	
com vácuo.	49
Figura 3.2 - Montagem do ensaio de adensamento em um oedômetro	
convencional	50
Figura 3.3 - Interior da base de oedômetro convencional	51
Figura 3.4 - Base de oedômetro fabricada com fundo em forma de funil.	51
Figura 3.5 - Foto de amostra trincada e afastada do anel de confinamento,	
depois de ser submetida a uma pressão de vácuo bem maior que a	
tensão por carga vertical.	52
Figura 3.6 - Contato A, entre o anel de ajuste e a parte superior do	
oedômetro. Contato B, entre o anel de ajuste e o cap.	53
Figura 3.7 - Vedação no contato B, com borracha de pequena espessura;	
no contato B com silicone.	54
Figura 3.8 - Deformações que se apresentaram na borracha de vedação,	
depois de certo tempo, por onde entrou ar.	54
Figura 3.9 - Vedação durante os estágios convencionais de carregamento	
com pesos. No contato A, graxa de vaselina em grande quantidade,	
No contato B, água.	55
Figura 3.10 - Vedação durante o estágio de aplicação do vácuo. Nos	
contatos A e B se botou graxa de vaselina em grande quantidade.	55
Figura 3.11 - Peças do oedômetro para fazer o ensaio de adensamento com	
um estágio de vácuo,	56

Figura 3.12 - Anel de confinamento com amostra e cápsulas com material	
para medir o teor de umidade inicial.	58
Figura 3.13 - Peça para o ajuste do anel de confinamento, que contém o	
corpo de prova, no oedômetro.	59
Figura 3.14 - Técnico fazendo o nivelamento da prensa tipo Bishop.	60
Figura 3.15 - Oedômetro montado na prensa tipo Bishop	60
Figura 3.16 - Curva granulométrica material usado nos ensaio s teste	63
Figura 3.17 - Curva % deformação Vs. raiz de tempo para o estágio com	
pressão de vácuo, ensaio No. 6.	66
Figura 3.18 - Curva e Vs. Log σ'v para o ensaio No. 6	67
Figura 3.19 - Curva e Vs. Log σ 'v para o ensaio No. 7.	70
Figura 3.20 - Comparação entre as curvas e Vs. Log σ 'v do ensaio No. 6	
(com estágio 7V com vácuo) e do ensaio No. 7 (sem vácuo).	70
Figura 3.21 - Esquema montagem do ensaio na célula triaxial	72
Figura 3.22 - Instrumentos para medição de variação volumétrica de	
leitura visual, inadequados para um ensaio de altos tempos de	
duração.	73
Figura 3.23 - Válvulas que ligam célula, reservatório, transdutor e o MVV.	74
Figura 3.24 - Célula totalmente preenchida de água	75
Figura 3.25 - Instrumento para a medição da variação volumétrica (MVV).	75
Figura 3.26 - Vista superior do instrumento para medição da variação	
volumétrica (MVV).	76
Figura 3.27 - Resultados de dois ensaios de medição do Creep da célula	
triaxial ao longo do tempo com uma pressão de confinamento	
constante de 200kPa.	76
Figura 3.28 - Mangueiras inadequadas de cor vermelha que impedem	
observar a presença de bolhas de ar nas linhas.	78
Figura 3.29 - Teste para detectar presença de furos na membrana	79
Figura 3.30 - Moldagem corpo de prova.	80
Figura 3.31 - Corpo de Prova cortado no comprimento necessário no berço	
e cápsulas para a medição do teor de umidade inicial.	80
Figura 3.32 - Membrana em tubo bipartido pronta para a instalação no C.P.	81
Figura 3.33 - C.P. montado.	81
Figura 3.34 - Parte superior da célula triaxial	82

Figura 3.35 - Tabuleiro de válvulas para regulagem das pressões na célula	
triaxial	82
Figura 3.36 - Base do equipamento triaxial antes da montagem do C.P.	83
Figura 3.37 - Ligações no tanque da interface ar-água	84
Figura 3.38 - Corpo de Prova adensado por a ação conjunta da tensão	
confinante e a pressão vácuo.	85
Figura 3.39 - Curvas de poro pressão Vs. tempo para corpos de prova de	
diferentes alturas.	87
Figura 3.40 - Cálculo de coeficiente de adensamento para o ensaio 1BG,	
por confrontação de curva U(%) Vs. Tv do ensaio com a curva teórica	
de adensamento isotrópico.	91
Figura 3.41 - Cálculo de coeficiente de adensamento para o ensaio 3BG.	91
Figura 3.42 - Cálculo de coeficiente de adensamento para o ensaio 4BG.	92
Figura 3.43 - Comparação das curvas de poro pressão Vs. tempo obtidas	
para C.P. de 2.90cm, em azul ensaio com vácuo e em verde ensaio	
sem vácuo.	93
Figura 3.44 - Cálculo de coeficiente de adensamento para o ensaio 2BG e	
comparação com o correspondente cálculo para o ensaio 1BG.	95
Figura 3.45 - Sistema de vácuo usado nos ensaios apresentados no capítulo	
4.	96
Figura 3.46 - Partes do trocador de calor.	98
Figura 3.47 - Conexões do Freezer.	98
Figura 3.48 - Condensadora submergida em água dentro do freezer.	99
Figura 3.49 - Esquema funcionamento trocador de calor.	100
Figura 4.1 - Curva granulométrica do material usado nos ensaio Capitulo	
4.	104
Figura 4.2 - Curva típica de % de deformação Vs. raiz quadrada de tempo	
para os estágios por carregamento convencional com pesos do ensaio	
No. V-10.	106
Figura 4.3 - Curva % deformação Vs. raiz quadrada de tempo para o	
estágio com vácuo do ensaio No. V-10.	107
Figura 4.4 - Curva e Vs. Log σ 'v para o ensaio No. V-10.	109
Figura 4.5 - Ensaio No. V-11, feito com um oedômetro convencional.	110
Figura 4.6 - Curva e Vs. Log σ 'v para o ensaio No. 11.	112

Figura 4.7 - Curvas de Poro pressão (kPa) Vs. tempo (hora) obtidas nos	
ensaios 1BJ, 3BJ e 5BJ.	116
Figura 4.8 - Curvas de Poro pressão (kPa) Vs. tempo (hora) obtidas nos	
ensaios 2BJ, 4BJ e 6BJ.	120
Figura 4.9 - Curva de Poro pressão (kPa) Vs. tempo (hora) obtida no	
ensaio 7BJ comparada com as correspondentes curvas obtidas nos	
ensaios 5BJ e 6BJ.	122
Figura 5.1 - Comparação curvas, % deformação (ho = altura inicial no	
estágio) Vs. raiz quadrada do tempo, obtidas no estágio 7 dos ensaios	
No. 10. e No. 11.	124
Figura 5.2 - Comparação curvas, % deformação (ho = altura inicial no	
estágio) Vs. raiz quadrada do tempo, obtidas no estágio 7 dos ensaios	
No. 6. e No. 7.	125
Figura 5.3 - Curva U(%) Vs. Tv, calculada com os resultados obtidos no	
estágio 7, do ensaio V-10.	126
Figura 5.4 - $c_{v}~(cm^{2}\!/\!s)$ vs. log $\sigma'v~(kPa)$ para os ensaios teste feitos com	
material da Baia de Guanabara	128
Figura 5.5 - c_v (cm2/s) vs. log σ 'v (kPa) para os ensaios teste feitos com	
material da Baixada de Jacarepaguá	128
Figura 5.6 - Comparação curvas e Vs. Log σ 'v obtidas nos ensaios No. 10.	
e No. 11.	129
Figura 5.7 - Curva U(%) Vs. Tv. para o calculo do c_v do material testado	
no ensaio 1BJ.	130
Figura 5.8 - Curva U(%) Vs. Tv. para o calculo do c_v do material testado	
no ensaio 3BJ.	130
Figura 5.9 - Curva U(%) Vs. Tv. para o cálculo do c_v do material testado	
no ensaio 5BJ.	131
Figura 5.10 - Curva U(%) Vs. Tv. para o cálculo do c_v do material testado	
no ensaio 2BJ.	131
Figura 5.11 - Curva U(%) Vs. Tv. para o cálculo do c_v do material testado	
no ensaio 4BJ.	132
Figura 5.12 - Curva U(%) Vs. Tv. para o cálculo do c_v do material testado	
no ensaio 6BJ.	132

Figura 5.13 - Comparação curvas de Poro pressão (kPa) Vs. tempo (hora)	
obtidas nos ensaios 2BJ e 1BJ, feitos com C.P. de 2.90cm de altura.	133
Figura 5.14 - Comparação curvas de % de deformação volumétrica Vs.	
tempo (hora), dos ensaios 2BJ e 1BJ.	134
Figura 5.15 - Comparação curvas de Poro pressão (kPa) Vs. tempo (hora)	
obtidas nos ensaios 4BJ e 3BJ, feitos com C.P. de 4.50cm de altura.	135
Figura 5.16 - Comparação curvas de % de deformação volumétrica Vs.	
tempo (hora), dos ensaios 4BJ e 5BJ.	136
Figura 5.17 - Comparação curvas de Poro pressão (kPa) Vs. tempo (hora)	
obtidas nos ensaios 6BJ e 5BJ, feitos com C.P. de 5.95cm de altura.	137
Figura 5.18 - Comparação curvas de % de deformação volumétrica Vs.	
tempo (hora), dos ensaios 6BJ e 5BJ.	138
Figura 5.19 - Comparação curvas de Poro pressão (kPa) Vs. tempo (hora)	
obtidas nos ensaios 5BJ, 6BJ e 7BJ feitos com C.P. de 5.95cm de	
altura.	139
Figura 5.20 - Comparação curvas de % de deformação volumétrica Vs.	
tempo (hora), dos ensaios 6BJ e 5BJ e 7BJ	140
Figura 5.21 - Teste para medição de pressão de borbulhamento das pedras	
porosas usadas nos ensaios de adensamento isotrópico na célula	
triaxial.	142

Índice de tabelas

Tabela 3.1 - Caracterização material usado nos ensaios teste	62
Tabela 3.2 - Características iniciais e finais do material testado no ensaio	
No. 6	64
Tabela 3.3 - Resultados ensaio No. 6.	65
Tabela 3.4 - Características iniciais e finais do material testado no ensaio	
No. 7	68
Tabela 3.5 - Resultados ensaio N. 7.	69
Tabela 3.6 - Características iniciais e finais do ensaio 1BG	88
Tabela 3.7 - Características iniciais e finais do ensaio 3BG	89
Tabela 3.8 - Características iniciais e finais do ensaio 4BG	90
Tabela 3.9 - Características iniciais e finais do ensaio 2BG	94
Tabela 4.1 - Tensões usadas em cada um dos estágios de um ensaio	. 101
Tabela 4.2 - Resumo ensaios de adensamento unidimensional	. 102
Tabela 4.3 – Resumo ensaios de adensamento isotrópico	. 103
Tabela 4.4 - Caracterização material usado nos ensaios Capítulo 4	. 104
Tabela 4.5 - Características iniciais e finais do material testado no ensaio V-	
10	. 105
Tabela 4.6 - Resultados dos estágios do ensaio V-10	. 108
Tabela 4.7 - Características iniciais e finais do material testado no ensaio V-	
11	. 110
Tabela 4.8 - Resultados dos estágios do ensaio V-11	. 111
Tabela 4.9 - Características iniciais e finais do material testado no ensaio	
1BJ	. 113
Tabela 4.10 - Características iniciais e finais do material testado no ensaio	
3BJ	. 114
Tabela 4.11 - Características iniciais e finais do material testado no ensaio	
5BJ	. 115

Tabela 4.12 - Características iniciais e finais do material testado no ensaio
2BJ117
Tabela 4.13 - Características iniciais e finais do material testado no ensaio
4BJ118
Tabela 4.14 - Características iniciais e finais do material testado no ensaio
6BJ119
Tabela 4.15 - Características iniciais e finais do material testado no ensaio
7BJ121
Tabela 5.1 – Cálculo relação entre c_v obtido no estágio 7 com vácuo e no
estágio 7 feito sem vácuo127
Tabela 5.2 - Cálculo relação entre c_v obtido no estágio 10 com vácuo e no
estágio 10 feito sem vácuo127

Lista de Símbolos

Romanos

- av Coeficiente de compressibilidade
- Cc Índice de compressão do solo
- Cr Índice de recompressão do solo
- c_v Coeficiente de adensamento vertical
- e Índice de vazios
- k Coeficiente de permeabilidade
- k₀ Relação entre a tensão horizontal e a tensão vertical em um solo
- mv Coeficiente de deformação volumétrica
- t Tempo
- Tv Fator tempo
- u Poro pressão
- U% Porcentagem de Adensamento

Gregos

- Δp Incremento na pressão de carregamento
- Δu Incremento na poro pressão
- $\Delta \sigma'$ Incremento na tensão efetiva
- $\Delta\sigma_{vac}$ Incremento na tensão com vácuo
- Δvol Incremento no volume
- Υ_w Peso específico d'água
- σ_T Tensão total
- σ´ Tensão efetiva
- σ'_{vo} Tensão efetiva vertical inicial
- σ'_v Tensão efetiva vertical
- σ_c Tensão de confinamento