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Abstract

Cardoso, Marcelo Costalonga; Kalinowski, Marcos (Advisor). Can Ma-
chine Learning Replace a Reviewer in the Selection of Studies
for Systematic Literature Review Updates?. Rio de Janeiro, 2024.
50p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

[Context] The importance of systematic literature reviews (SLRs) to find
and synthesize new evidence for Software Engineering (SE) is well known, yet
performing and keeping SLRs up-to-date is still a big challenge. One of the most
exhaustive activities during an SLR is the study selection because of the large
number of studies to be analyzed. Furthermore, to avoid bias, study selection
should be conducted by more than one reviewer. [Objective] This dissertation
aims to evaluate the use of machine learning (ML) text classification models
to support the study selection in SLR updates and verify if such models can
replace an additional reviewer. [Method] We reproduce the study selection of
an SLR update performed by three experienced researchers, applying the ML
models to the same dataset they used. We used two supervised ML algorithms
with different configurations (Random Forest and Support Vector Machines) to
train the models based on the original SLR. We calculated the study selection
effectiveness of the ML models in terms of precision, recall, and f-measure.
We also compared the level of similarity and agreement between the studies
selected by the ML models and the original reviewers by performing a Kappa
Analysis and Euclidean Distance Analysis. [Results] In our investigation, the
ML models achieved an f-score of 0.33 for study selection, which is insufficient
for conducting the task in an automated way. However, we found that such
models could reduce the study selection effort by 33.9% without loss of evidence
(keeping a 100% recall), discarding studies with a low probability of being
included. In addition, the ML models achieved a moderate average kappa level
of agreement of 0.42 with the reviewers. [Conclusion] The results indicate that
ML is not ready to replace study selection by human reviewers and may also
not be used to replace the need for an additional reviewer. However, there is
potential for reducing the study selection effort of SLR updates.
Keywords

Systematic Literature Review; Machine Learning; Text Classification;
Automatic Study Selection.



Resumo

Cardoso, Marcelo Costalonga; Kalinowski, Marcos. Machine Learning
pode substituir um revisor na seleção de estudos de atualizações
de revisões sistemáticas da literatura?. Rio de Janeiro, 2024. 50p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

[Contexto] A importância das revisões sistemáticas da literatura (RSLs)
para encontrar e sintetizar novas evidências para Engenharia de Software (ES)
é bem conhecida, mas realizar e manter as RSLs atualizadas ainda é um grande
desafio. Uma das atividades mais exaustivas durante uma RSL é a seleção
de estudos, devido ao grande número de estudos a serem analisados. Além
disso, para evitar viés, a seleção de estudos deve ser conduzida por mais de um
revisor. [Objetivo] Esta dissertação tem como objetivo avaliar o uso de modelos
de classificação de texto de machine learning (ML) para apoiar a seleção de
estudos em atualizações de RSL e verificar se tais modelos podem substituir
um revisor adicional. [Método] Reproduzimos a seleção de estudos de uma
atualização de RSL realizada por três pesquisadores experientes, aplicando os
modelos de ML ao mesmo conjunto de dados que eles utilizaram. Utilizamos
dois algoritmos de ML supervisionado com configurações diferentes (Random
Forest e Support Vector Machines) para treinar os modelos com base na RSL
original. Calculamos a eficácia da seleção de estudos dos modelos de ML
em termos de precisão, recall e f-measure. Também comparamos o nível de
semelhança e concordância entre os estudos selecionados pelos modelos de
ML e os revisores originais, realizando uma análise de Kappa e da Distância
Euclidiana. [Resultados] Em nossa investigação, os modelos de ML alcançaram
um f-score de 0.33 para a seleção de estudos, o que é insuficiente para conduzir
a tarefa de forma automatizada. No entanto, descobrimos que tais modelos
poderiam reduzir o esforço de seleção de estudos em 33.9% sem perda de
evidências (mantendo um recall de 100%), descartando estudos com baixa
probabilidade de inclusão. Além disso, os modelos de ML alcançaram em
média um nível de concordância moderado com os revisores, com um valor
médio de 0.42 para o coeficiente de Kappa. [Conclusões] Os resultados indicam
que o ML não está pronto para substituir a seleção de estudos por revisores
humanos e também pode não ser usado para substituir a necessidade de um



revisor adicional. No entanto, há potencial para reduzir o esforço de seleção de
estudos das atualizações de RSL.

Palavras-chave
Revisão Sistemática da Literatura; Aprendizado de Máquina; Classifi-

cação de Texto; Seleção Automática de Estudos.
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Software gets slower faster than hardware
gets faster.

Niklaus Wirth, .



1
Introduction

1.1
Motivation

In the context of Evidence-Based Software Engineering (EBSE), System-
atic Literature Reviews (SLR) are the main instrument to identify, synthesize
and summarize current evidence on a research topic or phenomenon of interest
(KITCHENHAM; BUDGEN; BRERETON, 2015). Since the introduction of
SLR in the Software Engineering (SE) field in 2004 (KITCHENHAM, 2004),
especially over the last years, the number of SLR has been increased substan-
tially (MENDES et al., 2020; aO et al., 2021).

As stated by Mendes et al. (MENDES et al., 2020), several SLRs in SE are
potentially outdated. Only 20 SLRs were updated between 2006 and 2018 in a
scenario of over 400 published SLRs in SE (MENDES et al., 2020). Outdated
SLRs could lead researchers to make obsolete decisions or conclusions about
a research topic (WATANABE et al., 2020). Despite the several initiatives in
SE to keep SLRs updated (e.g. processes (DIESTE; LÓPEZ; RAMOS, 2008;
MENDES et al., 2020); guidelines (WOHLIN et al., 2020; FELIZARDO et
al., 2016); and experience reports (GARCéS et al., 2017; FELIZARDO et al.,
2020)) there is a lack of investigation on automation tools to support the SLR
update activities.

Performing an SLR update demands significant effort and time for
reasons such as (i) the rapid increase in the number of available evidence
(ZHANG et al., 2018; STOL; FITZGERALD, 2015), which hampers and
slows down the identification of relevant evidence; and (ii) the lack of detailed
protocol documentation and data availability (AMPATZOGLOU et al., 2019;
ZHOU et al., 2015), which makes the SLR update process even more difficult
because most of the tacit knowledge from the original SLR conduction is lost
(FELIZARDO et al., 2020; FABBRI et al., 2013). These two reasons impact
directly on the activity of selecting new studies during SLR updates, since they
are crucial to determining if new evidence should or not be considered. On top
of that, SLR updates require the expertise of multiple reviewers in the area
of study. Ideally, these tasks should be performed by more than one reviewer
(preferably an odd number) to ensure proper application of agreement criteria
during the study selection process. However, due to the labor-intensive and
time-consuming nature of this activity, there is often a shortage of available
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experts. As a result, the correct application of agreement criteria can sometimes
be overlooked.

1.2
Objective

Considering the potential benefits of exploring Machine Learning (ML)
algorithms in the SLR and SLR updates context (NAPOLEÃO; PETRILLO;
HALLÉ, 2021; WATANABE et al., 2020), our study goal is to present an
empirical investigation on the adoption of ML Models to support the selection
of studies for SLR updates in three perspectives: (i) effectiveness of the ML
Models in selecting relevant evidence; (ii) effort reduction; and (iii) agreement
level during the selection activity. To achieve our study goal, we investigate the
potential of two supervised ML Models: Support Vector Machines (SVM) and
Random Forest (RF) comparing their results with a rigorous manual selection
process for an ongoing SLR update performed by three experienced researchers
in SE.

1.3
Document Structure

The remainder of this document is structured as follows. Chapter 2
presents some background information about the process of SLRs and SLR
Updates, as well as related work relevant to our problem. Chapter 3 presents
the research method describing our research goals and questions, investigation
strategy, case selection and the data acquisition. Chapter 4 presents the results.
Chapter 5 presents discussions and threats to validity. Last, contributions and
future work are addressed in Chapter 6.



2
Background and Related Work

2.1
Introduction

In this chapter, we provide a comprehensive overview of important con-
cepts and contributions that set the groundwork of our study. Section 2.2 intro-
duces the methodology of conducting SLRs, emphasizing their important role
in synthesizing empirical evidence in SE. Section 2.3 addresses the challenges
and importance of keeping SLRs up-to-date due to the rapid growth of new
scientific evidence, as well as to perform the update. Section 2.4 reviews sig-
nificant contributions related to the automation of the study selection process
in SLRs, particularly through the application of Artificial Intelligence (AI),
highlighting its potential alongside with its current challenges.

2.2
Systematic Literature Review

SLRs are a form of secondary study which provide a means of evaluating,
interpreting and aggregating relevant evidence around one or more research
questions, summarizing its benefits and limitations and also identifying cur-
rent research areas in need of further investigation (KITCHENHAM, 2004;
KITCHENHAM; CHARTERS, 2007).

There are three main phases during the process of an SLR (planning,
conducting and documenting) and each phase consists of a different number
of activities (BRERETON et al., 2007). During the first phase (planning),
the reviewers specify the research questions and establish a protocol for the
study, to minimize bias and define how the SLR should be conducted. During
the second phase (conducting), the reviewers execute the search strategy and
then analyze each result by applying inclusion and exclusion criteria to select
primary studies. Subsequently, the reviewers assess study quality, extract the
required data and synthesize it to answer the review questions. Once the SLR
is completed, during the third phase (documenting), the reviewers write a
report to document the decisions made throughout the process, and finally,
they validate the report. The Figure 2.1 illustrates all tasks that are executed
during the process of an SLR.
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Phase 1: 
Planning

Phase 2: 
Conducting

1. Specify Research Questions

2. Develop Review Protocol

3. Validate Review Protocol

4. Identify Relevant Research

5. Select Primary Studies

6. Assess Study Quality

7. Extract Required Data

8. Synthesize Data

Phase 3: 
Documenting

9. Write Review Report

10. Validate Report

Figure 2.1: SLR process proposed by Brereton and Kitchenham et al. (BR-
ERETON et al., 2007)

2.3
Systematic Literature Review Updates

Considering the fast speed new empirical evidences appear in SE, SLRs
can become outdated in a short period of time. In order to assert all contri-
butions provided by an SLR, researches need to perform an SLR update from
time to time. The process to perform an SLR update is very similar to the
process to perform an SLR, as described in the previously in Section 2.2, its
structure consists of basically the same phases of an SLR, as illustrated in
Figure 2.1.

Mendes et al. (MENDES et al., 2020) provide guidelines to determine
if and when an SLR should be updated. Their work introduces a framework
consisting of up to eight questions to assess whether an SLR is current or
outdated, and whether updating it is worthwhile. The framework is structured
in three steps: the first step is to assess the currency of the SLR, which involves
evaluating if the SLR still addresses a relevant question, had good accessibility,
and used valid methods; the second step is to identify new relevant information,
focusing on finding new methods, studies, and other pertinent information; the
third step is to assess the impact of updating the review, determining whether
incorporating new information will change the conclusions or credibility of
the review. Figure 2.2 illustrates this framework, including all the steps and
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questions necessary to decide whether an SLR should be updated.

Figure 2.2: Decision framework to assess SLRs for updating proposed by
Mendes et al.. (MENDES et al., 2020)

While the process to perform an SLR update can be very similar to the
process that was performed during its original SLR, the two can differ in some
aspects. For instance, to perform an SLR update, there’s no need to execute the
phase 1 (planning) again, since the research questions and review protocol were
already defined in the original SLR. Another difference between the two is the
search strategy for primary studies. Although using the same search strategy
used to find the primary studies during the process of the original SLR can be
a reliable approach, recent studies have presented alternative search strategies
that have been proven to be more efficient when updating SLRs. (WOHLIN
et al., 2022).

As stated by Felizardo et al. (FELIZARDO et al., 2016), an efficient strat-
egy to find new evidence for an SLR update is to apply forward snowballing
on the original SLR. This method, which utilizes the list of primary studies
included in the original SLR as a seed set to find new citations, has proven to
significantly reduce the workload by limiting the number of studies to be re-
viewed, although it can risk overlooking at some studies. They concluded that
the forward snowballing technique has a precision high enough to be consid-
ered a valuable strategy for updating SLRs. Figure 2.3 illustrates the process
of selecting new studies for an SLR update by using forward snowballing.

The work of Wohlin et al. (WOHLIN et al., 2020) proposes a series of
guidelines designed to optimize the search strategies to find new evidences
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when performing SLR updates, by investigating even further the benefits
of using the forward snowballing technique. They performed a comparative
analysis involving an original SLR and its subsequent updates in the context
of SE, and only executed a single forward snowballing iteration using Google
Scholar. They concluded that this approach is the most cost-effective strategy
for maintaining current and accurate SLRs up-to-date. Their contributions
also highlight the critical role of collaborative efforts in the activity of selecting
studies, emphasizing how having multiple researchers working together on this
activity can significantly diminish potential bias.

Publisher Portals

Search Strategy List of Studies Applying Inclusion /
Exclusion Criteria

Applying Agreement
Criteria

Forward Snowballing
(Single Iteration)

Included
Studies

Excluded
Studies

ORIGINAL SLR

SLR UPDATE

Applying Inclusion /
Exclusion Criteria

Applying Agreement
Criteria

Included
Studies

Excluded
Studies

List of Studies

Figure 2.3: Study selection for an SLR update using a single iteration of forward
snowballing.

2.4
Automatic Selection of Studies

Based on the contributions of the mapping study performed by Napoleão
et al. (NAPOLEÃO; PETRILLO; HALLÉ, 2021) a variety of tools and text
classification approaches have been evaluated to automate the activities of
searching and selecting evidences for secondary studies. However, only two
studies were applied in the context of SLRs updates in SE ((FELIZARDO et
al., 2014); (WATANABE et al., 2020)).

Felizardo et al. (FELIZARDO et al., 2014) also propose an alternative
to support the selection of studies for SLR updates, based on Visual Text
Mining (VTM) techniques. The authors propose a tool called Revis which
links new evidence with the original SLR’s evidence using the K-Nearest
Neighbor (KNN) Edges Connection technique. The tool output is presented
in two distinct visualizations, a content map and an Edge Bundles diagram,
to support knowledge discovery through visual processing and interactive data
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exploration. The results showed an increase in the number of studies correctly
included compared to the traditional manual approach.

The work of Watanabe et al. (WATANABE et al., 2020) also evaluated
the use of text classification (text mining combined with ML Models) to
support the study selection activity for SLR updates in SE. They performed an
evaluation with 8 SLRs from different research domains in a cross-validation
procedure using Decision Tree (DT) and SVM as ML classification algorithms.
The results achieved on average an F-score of 0.92, Recall of 0.93 and Precision
of 0.92. Unlike the approach proposed in (WATANABE et al., 2020), our study
evaluates the ML Models SVM and RF using a detailed database of a solid
ongoing SLR update conducted by renowned researchers in the field of EBSE.
Furthermore, we perform a Euclidean Distance analysis and a Kappa analysis
(COHEN et al., 2010; KITCHENHAM; BUDGEN; BRERETON, 2015) to
evaluate the similarity and the agreement level between our ML Models with
the expert reviewers.

Octaviano et al. (OCTAVIANO et al., 2022) propose a semi-automated
strategy called SCAS-AI to support the initial selection task in SLRs in SE.
SCAS-AI incorporates fuzzy logic and genetic algorithms to refine the selection
process, aiming to reduce the human effort and potential bias when selecting
studies. They conducted a quasi-experiment with eight SLRs demonstrated
that SCAS-AI could reduce the effort required by 39.1% compared to the
original strategy, while maintaining a low error rate with false negatives at
0.3% and false positives at 3.3%. These results underline the effectiveness of
integrating AI techniques to support critical tasks in SLR processes, potentially
revolutionizing how studies are selected and reviewed.

The work of Napoleão et al. (NAPOLEÃO et al., 2022) addresses
the challenges of keeping SLRs up-to-date due to the fast-paced nature of
research and limited update efforts. Their work propose a model of Continuous
Systematic Literature Review (CSLR). Inspired by the Living Systematic
Review (LSR) in medicine and the concept of Continuous Integration practices
from DevOps (in the context of software development), CSLR integrates open
science principles to ensure SLRs are continuously updated, facilitating access
to the latest research findings. This model promises to mitigate the risks
associated with outdated reviews and supports the ongoing advancement of
Evidence-Based Software Engineering (EBSE).

Bolaños et al. (BOLANOS et al., 2024) performed a secondary study
to evaluate the current use of AI techniques in the automation of SLRs,
specifically during the screening and extraction activities of the second phase.
They evaluated 21 tools that incorporate AI features, particularly examining
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the impact of advanced Large Language Models (LLMs) during the research
process. They concluded that AI shows great potential in enhancing the
automation of SLRs during the studies selection and data extraction activities,
specially considering the recent emerge of new tools based on LLMs. However,
they also highlighted the current challenges of using LLM tools, such as
ensuring the accuracy and ethical use of AI-generated.

2.5
Concluding Remarks

In this chapter, we have provided a comprehensive overview of the
methodologies and technological advancements related to the process of con-
ducting SLRs in SE. These advancements underscore a step towards more
automated and efficient processes of performing SLR and SLR updates, high-
lighting the potential of reducing the human effort by adopting the use o
AI-based solutions to support these activities. Chapter 3 will build upon this
groundwork, detailing the specific research methods employed in this study
and will describe how the research questions were formulated, how the investi-
gation strategy was designed, and how the case selection process was executed,
all aimed at achieving the goals of this study.



3
Research Method

3.1
Introduction

In this chapter, we present the key aspects of our research method.
We begin by introducing our proposition and then describe the small-scale
evaluation (WOHLIN; RAINER, 2022) conducted to assess it. Our research
method is divided as follows. In Section 3.2 we present how our research
questions were formulated according to GQM practices. In Section 3.3 we
detail our proposed solution, a pipeline developed to train and configure the
investigated ML models, providing details of its architecture. In Section 3.4 we
describe our case selection and data acquisition process used in our small-scale
evaluation to train and test our ML models, as well as the contributions made
by the team assessment.

3.2
Research Goals and Questions

Our goal is to evaluate the adoption of ML models to support researchers
during the activity of selecting studies for SLR updates. We translated our goal
into three different research questions (RQs).

1. RQ1: How effective are ML Models in selecting studies for SLR updates?
We represent the effectiveness of the ML models in supporting
the selection of studies activity using metrics such as Recall, Pre-
cision and F-measure (NAPOLEÃO; PETRILLO; HALLÉ, 2021;
WATANABE et al., 2020). Our ML automated analysis considers
only title and abstract of the studies to make its predictions. The
results made by our ML models are compared with the included
studies selected manually for the SLR update under evaluation.

2. RQ2: How much effort can ML Models reduce during the study selection
activity for SLR updates?

We calculate the effort reduction by the relation of the number of
studies that will need to have their title, abstract and keywords
manually analyzed without the support of ML Models versus the
number of studies to be analyzed after the use of the ML solution.
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3. RQ3: Can Machine Learning replace a reviewer in the selection of studies
for SLRs?

We performed an agreement and similarity analysis using the ML
Model with the highest F-score. Firstly, we used the Cohen’s Kappa
coefficient to measure the level of agreement between the ML Model
and reviewers (COHEN et al., 2010; KITCHENHAM; BUDGEN;
BRERETON, 2015). Then, we used the Euclidean Distance to
measure the similarity between the ML Model, reviewers and final
result (considering the studies that were actually included and
excluded for the SLR update).

The Figure 3.1 illustrates our goal, research questions and metrics used
to answer each question altogether.

The purpose is to evaluate the
adoption ML Models to support the

selection of studies for SLR updates

 How effective are ML Models in
selecting studies for SLR updates?

How much effort can ML Models
reduce during the study selection

activity for SLR updates?

Can Machine Learning replace a
reviewer in the selection of studies

for SLRs?

GOAL

QUESTIONS

Number of studies to be analyzed
(based on their probability of being

included or excluded)

Analysis of metrics (Recall, F-score)
based on the predictions made by

the ML models

Agreement Analysis
(Cohen's Kappa, Euclidean Distance)

METRIC

RQ1 RQ2 RQ3

Figure 3.1: Research goal and questions diagram.

3.3
Investigation Strategy

In this study, we developed a pipeline1 with the following steps to
automate the study selection process of an SLR update by using ML and
answer our research questions. Our pipeline is illustrated in Figure 3.2,
describing its architecture and all the steps it performs since the moment it
starts processing the list of studies until its output used to answer our research
questions.

In summary, our pipeline process a set of .bib files containing the list of
studies to train the ML models and the list of studies to be analyzed. After
completing its execution, it returns a report file in .xlsx format informing
which studies should be included and excluded, as well as metrics about the

1More details about our pipeline’s implementation can be seen here: <https://github.
com/bmnapoleao/SLR-Automated_selection_of_studies>

https://github.com/bmnapoleao/SLR-Automated_selection_of_studies
https://github.com/bmnapoleao/SLR-Automated_selection_of_studies
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Metrics Analysis
(F-score, Recall)

Number of studies
excluded by ML Models

Agreement and
Similarity Analysis
(Cohen's Kappa,

Euclidean Distance)

RQ1

RQ2

RQ3

File Validation Text Filtering 
(NLP)

Text Vectorization
(TF-IDF)

 Best Features
Selection 

ML Models
Tuning

ML Models
Predictions

Included Excluded

Testing Set

.bib .bib

Included Excluded

Training Set

.bib .bib

ML Algorithm

1     SVM

2      RF

FS Method

1 Chi2

2 Pearson
Correlation

3 Anova-F

Metric Target

1 F-Score

2 Recall

Number of Features

* [ 900 ... 1500 ] 

Cross Validation

1 GridSearch

2 Time-Series

3 K-fold

Figure 3.2: Investigation Strategy Pipeline

predictions made by the ML model and the configuration that was used to run
its execution. It’s important to mention that this process is not completely
automated. Our pipeline expects to receive four different .bib files as input,
each set (training and testing) should have one file containing the list of studies
that should be excluded and one file containing the list of studies that should
be included. In case there are any errors in the input files, the pipeline will
stop its execution and will inform which entry was associated to each error as
well as the type of error. Currently, our pipeline doesn’t support automatic
error resolution for invalid .bib files, they need to be manually fixed by the
user.

As shown in Figure 3.2 we firstly validated the .bib files of our test-
ing and training sets to ensure completeness of the set avoiding duplicated
entries or missing keys. Each study entry must have a title, the year of pub-
lication, an abstract text and a list of authors. Secondly, we applied text fil-
tering techniques with Natural Language Processing (NLP) (NLTK Team,
), such as Lemmatization and Tokenization, to remove irrelevant characters
from the texts. Thirdly, we applied Text Vectorization on the filtered texts us-
ing Term-frequency/Inverse-Document-Frequency (TF/IDF), a technique that
transforms text data into a numerical matrix of features. Fourthly, we used sta-
tistical methods to compute and select the most relevant features. In the fifth
step, we trained and tuned our ML Models using our training set. Finally, in
the last step, we used our ML Models to predict which studies of our testing
set should be included and excluded and compared the results of each one and
the agreement level in comparison with the team assessment in order to answer
our research questions that were previously described in Section 3.2.

Our pipeline also allows the user to pass an .env file containing the
configuration to be used for each execution, where they can configure the
Feature Selection (FS) method to compute the features and the number of
best features that will be used in step four, as well as the ML algorithm, the
metric target and the type of cross validation to be used with our ML models
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during step five. If no file is passed, the pipeline will perform its execution with
a default configuration. All of these parameters that can be configured are also
illustrated in Figure 3.2.

Based on the promising results achieved using SVM in the work of
Watanabe et al. (WATANABE et al., 2020) and the work of Napoleão et al.
(NAPOLEÃO; PETRILLO; HALLÉ, 2021), which highlighted SVM as one of
the most used ML classifiers for assisting the selection of studies in SLRs, we
decided to evaluate SVM in our work. Additionally, considering the work of
Pintas et al. (PINTAS; FERNANDES; GARCIA, 2021), which evaluated the
most adopted ML classifiers and Feature Selection (FS) techniques for text
classification and concluded that the five most used classifiers are SVM, NB,
KNN, DT, and RF, we performed initial tests using these classifiers. Our first
tests showed that SVM and RF were achieving better results than the others.
Therefore, we decided to focus our evaluation on these two classifiers: Support
Vector Machines (SVM) and Random Forest (RF).

We experimented multiple configurations of our pipeline and evaluated
different configurations for FS and for training and tuning of our ML classifiers.
During step four to compute the best features, we tested different statistical
methods such as Chi-squared (Chi2) (Scikit-learn, b), Pearson Correlation
(Scikit-learn, c) and Analysis of Variance (Anova-F) (Scikit-learn, a) as well
as a different range of features. We also tested different techniques to tune our
ML classifiers such as K-fold cross-validation, Time-Series cross-validations
and hyperparameter tuning with GirdSearch (Scikit-learn, d).

For each evaluation, we executed the pipeline from start to finish in a
clean environment using a unique configuration each time. To avoid introducing
bias, the FS step was conducted solely based on the training set texts.
Once the best features were identified in the training set, the same set of
features was applied to the testing set to ensure consistency. To prevent
overfitting, our machine learning classifiers were trained using a single type of
cross-validation in each evaluation. Specifically, when utilizing GridSearch for
parameter tuning, we didn’t perform any other cross-validation technique, as
GridSearch inherently includes cross-validation for measuring the most efficient
parameter configuration. We chose this approach to maintain evaluation
coherence and rigor.

3.4
Case Selection and Data Acquisition

We used as instrument of our small-scale evaluation an ongoing SLR
update conducted by the same members of the team assessment. We chose
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this ongoing SLR update since the inclusion and exclusion of new studies
were conducted based on individual assessments and the consensus of three
experienced SLR researchers by analysing title, abstract, keywords and then
full-text of the studies manually, allowing us to have confidence in this data for
building reliable training and testing sets. Figure 3.3 summarizes this entire
process.

The team assessment performed the forward snowballing search strategy
to find new evidences for the SLR update. They used the 45 studies that were
included in the original SLR as their seed set of studies. After performing the
search strategy, the team assessment found a total of 591 new references, of
which 39 were included and 552 were excluded for the update.

The team assessment provided us all the 591 studies they analyzed during
the SLR update (.bib files). We used these studies to form our testing set for
our ML models, we manually filtered the studies to consider only first studies
in English with a valid abstract field. At the end, we used 551 studies in our
testing set, of which 38 were included by the team assessment and 513 were
excluded for the update.

To train our ML models, we used a training set with 128 studies, of which
45 studies were included and 83 were excluded. The 45 studies used to train
our models with what should be included were the same studies included in
the original SLR. Since the team assessment did not list the studies that were
excluded during the study selection phase of the original SLR, we performed a
backward snowballing on the original references to obtain the 83 studies used
to train our models with what should be excluded.

The forward snowballing looked for studies that were published after the
original SLR, since this technique looks for the studies that cited the study
being examined and use them as the seed studies for the first iteration. While
the backward snowballing looked for studies that were published before the
original SLR, since this technique looks for the studies cited by the study
being examined and use them as the seed studies for the first iteration. This
allowed us to simulate a more realistic set of excluded studies for our training
set when the original set of excluded studies was not available.

It is important to point out that while our training and testing sets
reflected realistic references used during the SLR update process and the
original SLR process, our training set and testing set had a large difference
in their sizes. Although the two sets had a similar number of included studies,
the number of excluded studies in the testing set was considerably greater
than in our training set. Figure 3.4 illustrates their differences, indicating the
number of studies in each set as well as the percentage of studies that were
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Figure 3.3: Data Acquisition Process

included and excluded in each set.
In the original table provided by the team assessment, besides what

studies were included and excluded for the update, it also had the opinion
of each reviewer about each study during the study selection process they
performed. The reviewers could express their opinions about each study in
three different level of certainty: 0 – certain that the study should be excluded,
1 – uncertain if the study should be excluded or included and 2 – certain that
the study should be included. We used this information to answer RQ3 and
perform the agreement and similarity analysis. Table 3.1 illustrates the format
of the document provided by the assessment team, containing each reviewer’s
opinion about each study (decided right after the inclusion/exclusion criteria
was applied) as well as the final result of each study (decided after applying
the agreement criteria).

Table 3.1: Example of the document format provided by the assessment team.

Study Final
Result R1 R2 R3

First Study 1 2 1 2
Second Study 0 2 0 0
Third Study 1 2 1 0
Fourth Study 0 0 2 1
Fifth Study 0 0 0 0

3.5
Concluding Remarks

This chapter has described the research method used to conduct our
experiment. Our investigation strategy introduced a comprehensive pipeline
leveraging text processing, NLP, feature selection and ML techniques to
evaluate the use of ML models in each one of our research questions. The
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results for each one of the three research questions is presented in the next
chapter.



4
Results

4.1
Introduction

In this chapter, we present the results of our study, following the research
questions presented earlier in Section 3.2. To answer each question, we analyzed
the results of the ML Models and then compared them with the results
obtained manually by the SLR update authors under evaluation. This chapter
is divided as follows. In Section 4.2 we provide general details of how we
executed and configured our pipeline in order to answer each RQ. In each of
the subsequently sections, Section 4.3, Section 4.4 and Section 4.5 we describe
the best configuration found for our ML models to answer each question.

4.2
Execution

To address questions RQ1 and RQ2, we replicated the same evaluation
performed by SLR update authors during the selection of studies for the SLR
update by using our classifiers to predict which studies should be included and
excluded. For RQ1 we configured our model maximizing F-score and for RQ2
we configured our model maximizing Recall. Then we performed the agreement
and similarity analysis using the predictions made by our model used in RQ1.

Precision indicates how accurate the positive predictions made by the
model are, while Recall indicates how well the model captures all the actual
positive instances. For Precision, values closer to 1 indicate a lower number of
False Positives (FP) results and values closer to 0 indicate a higher number
of FP. And for Recall, values closer to 1 indicate a lower number of False
Negatives (FN) and values closer to 0 indicate a higher number of FN.

We conducted our evaluation by varying the number of best features
to be considered in each execution. After applying Text Filtering and Text
Vectorization techniques, presented in steps three and four of our pipeline, our
training set comprised a total of 23630 features, in contrast to our testing set,
which comprised 119560 features. Given that the number of features in our
testing set was more than five times greater than our training set, maximizing
the number of best features in our training set was crucial to the performance
of our ML models.
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We identified the range with the most relevant features in our training set
as 900 to 1500 features, which was the range used in most of our evaluations.
Notably, the best results, both in terms of F-score (RQ1) and Recall (RQ2),
were consistently achieved with experiments that selected the 1200 best
features.

The document provided by the team assessment contained the final result
of each study (if they were included or excluded), and also had the opinion
of each reviewer about each study during the study selection process they
performed. The reviewers could express their opinions in three different levels
of certainty: 0 – certain that the study should be excluded, 1 – uncertain if the
study should be excluded or included and 2 – certain that the study should be
included. We used this information to answer RQ3 and perform the agreement
and similarity analysis. Table 3.1 illustrates the format of this document.

We displayed the complete information of our results for the best config-
urations we found for RQ1 and RQ2, as well as all the other tests executions
in an Appendix document1 available online.

4.3
RQ1: How effective are ML models in selecting studies for SLR updates?

To answer this question, during the ML models tuning step, we trained
our classifiers with GridSearch focusing on maximizing the F-score. Our best
result was obtained by RF with a Precision of 0.22, Recall of 0.63 and F-
score of 0.33 using the Anova-F statistical method, with 1200 features. We
used a default threshold of 0.5 to consider which studies should be included
and excluded by our ML models. Table 7.1 shows the parameters tested and
selected by GridSearch for this configuration. And the table containing all the
predictions made by our ML model for each study for this question can be
seen in this document2.

Figure 4.3 illustrates the distribution of the predictions’ scores made
by RF with this configuration. In order to calculate each of these metrics, we
compared our ML models’ predictions with the final results only, obtained after
the agreement criteria was applied by the team assessment, which is illustrated
by the first column of Table 3.1.

1https://zenodo.org/records/11021614
2https://zenodo.org/api/records/11019279/draft/files/RQ1-RF-predictions.csv/content
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4.4
RQ2: How much effort can ML models during the study selection activity
for SLR updates?

To answer this question, we tuned the ML models with the intention
of maximizing the Recall. Since the purpose of this question was to evaluate
how much human effort could be reduced by the use of ML Models during the
selection of studies, we wanted to mitigate the chances of a false negative (FN)
result, so the reviewers could simply ignore the studies excluded by the ML
model without worrying about losing a relevant study.

Our best result was obtained by using the SVM algorithm with a
Precision of 0.10, Recall of 1.0 and F-score of 0.19 using the Pearson Correlation
statistical method, with 1200 features. We used a default threshold of 0.5 to
consider which studies should be included and excluded by our ML models.
Table 7.2 shows the parameters tested and selected by GridSearch for this
configuration. And the table containing all the predictions made by our ML
model for each study for this question can be seen in this document3.

According to Table 4.1, by maximizing the Recall, SVM was able to
exclude a total of 187 studies, which represents 33.9% of the total amount
of studies in our testing set. By increasing the threshold, we are able to see
that we can reduce the human effort even more at the risk of having more
FN results. For a threshold range greater than 0.5 until 0.75, only one false
negative was found, while the number of TN increased by 87. Notably, this
FN result was one of the few cases where the team assessment had a lot of
disparity. Considering only the initial analysis of the reviewers individually
(before they discussed it with each other), the reviewer R1 voted 2, R2 voted
1, and R3 voted 0. For a threshold range greater than 0.75 until 0.80, when
compared to the previous threshold range, the number of FN results increased
by 1, while the number of TN increased by 18. Finally, for a threshold range
greater than 0.80 until 0.85, when compared to the previous threshold range,
the number of FN results increased by 2, while the number of TN increased
by 24.

As well as RQ1, to answer this question, we compared our ML models’
predictions with the final results only, obtained after the agreement criteria
was applied by the team assessment, which is illustrated by the first column
of Table 3.1.

3https://zenodo.org/api/records/11019279/draft/files/RQ2-SVM-
predictions.csv/content



Chapter 4. Results 33

Threshold(%) RECALL (%) TN TP FN FP Reduced (%)
0.50% 100.00% 187 38 0 326 33.9%
0.75% 97.37% 265 37 1 248 48.3%
0.80% 94.74% 283 36 2 267 51.7%
0.85% 89.49% 307 34 4 206 56.4%

Table 4.1: Tradeoff between effort reduction and number of FN.

4.5
RQ3: Can Machine Learning Replace a Reviewer in the Selection of
Studies for Systematic Literature Reviews?

To truthfully answer this question, we conducted a two-fold analysis to
evaluate both aspects of agreement and similarity, considering not only the
comparison between our ML model and single reviewer results but also the
final results and the average answer between multiple reviewers.

The agreement analysis, which measures the concordance of results,
indicates how two or more raters make the same classifications. For this, we
used the Cohen’s Kappa Coefficient. The equation to calculate Kappa is:

Kappa = Pr(a) − Pr(e)
1 − Pr(e)

where Pr(a) is the relative observed agreement among raters, and Pr(e) is the
theoretical probability of chance agreement (CARLETTA, 1996).

The similarity analysis, which measures the resemblance between the
classifications of two or more raters, indicates how close the results are, even if
they are not exactly the same. For this, we used the Euclidean Distance. The
equation to calculate the Euclidean Distance between two sets of data i and j

is:

EuclideanDistance(i, j) =
√√√√ n∑

k=1
(ik − jk)2

where ik and jk are the k-th elements of the sets i and j, respectively, and n is
the number of elements in each set (SERRà; ARCOS, 2014). In this context,
the elements ik and jk represent the scores of each study given by one of the
reviewers, or the final result or our ML model, as illustrated in Table 3.1.

Firstly, we looked at the agreement and similarity levels between the
reviewers among the team assessment, and analyzed the information provided
by the team assessment regarding each reviewer’s vote before applying the
agreement criteria, which is illustrated by the last three columns of Table 3.1.

Figure 4.1 shows the distribution of votes given by each reviewer of the
assessment team during the SLR update, considering only the 551 studies used
in our testing set. As expected, during the study selection phase, the number of
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studies selected to be excluded, after applying the inclusion/exclusion criteria,
was by far the greatest, which on average the team assessment voted to exclude
87.87% of all studies. Subsequently, the second most common vote mark given
by each reviewer was 2, indicating that on average the team assessment voted
to include 8.3% of all studies. Last, the least common vote mark each reviewer
expressed was about "uncertain", which on average the team assessment wasn’t
sure whether 3.87% of all studies should be excluded or included.

It’s important to note that although all three reviewers had a similar
vote distribution, meaning that the population standard deviation between the
reviewers by each vote category was significantly low (the highest deviation
being equal to 1.56% for vote 2 - "should be included"), does not directly
imply the similarity neither the agreement level between the reviewers will be
strong, since each reviewer can have voted for completely different studies in
each category.

Considering the following rage of Cohen’s Kappa coefficient values,
results can be interpreted as the following agreement levels (CARLETTA,
1996):

– from 0.00 to 0.20: Poor Agreement

– from 0.21 to 0.40: Fair Agreement

– from 0.41 to 0.60: Moderate Agreement

– from 0.61 to 0.80: Substantial Agreement

– from 0.81 to 1.00: Almost Perfect Agreement
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Figure 4.1: Assessment Team Votes Distribution.
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R1 R2 R3
R1 1 0.47 0.35
R2 0.47 1 0.43
R3 0.35 0.43 1

Table 4.2: Cohen’s Kappa Coefficient Comparison Among the Assessment
Team.

R1 R2 R3
R1 0 13.0 14.04
R2 13.0 0 11.22
R3 14.04 11.22 0

Table 4.3: Euclidean Distance Comparison Among the Assessment Team.

Table 4.2 shows the agreement level and Table 4.3 shows the similarity
level between each reviewer among the team assessment. We can see that the
highest agreement was between reviewer 1 (R1) and reviewer 2 (R2) with
0.47 of agreement, which can be considered a Moderate Agreement. Whilst,
the lowest agreement was between the reviewer 3 (R3) and R1 with 0.35 of
agreement, which can be considered a Fair Agreement. Since the similarity is
inversely proportional to the Euclidean Distance (ED), we can notice that R2
and R3 had the most similar opinions with the smallest distance of 11.22 in
comparison to R1 and R3 with the highest distance of 14.04.

After that, we compared the best configuration found for RQ1 and RQ2.
By looking at the distribution of RF in Fig 4.3 and SVM in Fig 4.2, we can see
that the one used to answer RQ1 is closer to the behavior of the assessment
team, as expected, since we focused on maximizing its F-score. In comparison,
our the model used in RQ2, which was focused on maximizing the Recall,
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Figure 4.2: RQ2: SVM Predictions Distribution.
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included most of the studies instead, which is uncommon in most cases during
the process of selecting studies for SLR and SLR Updates performed by experts
in the field.

In order to compare our ML models’ results with the assessment team
answers, we normalized our ML results into three ranges to also represent
three categories. As mentioned before, by looking at 4.1 we can see that the
frequency of occurrence of a 0 vote is way greater than the others, because
of this we decided it would be more fair if the threshold for the exclusion of
studies would be greater than the rest, as well as having the smallest range for
the votes of type 1. We decided to use the following predictions’ score range
for each category.

– from 0.00 to 0.50: should be excluded

– from 0.51 to 0.60: uncertain

– from 0.61 to 1.00: should be included

Figure 4.4 illustrates the normalized distribution of our ML model used in RQ1
according to the range previously mentioned.

After we converted the probabilities given by our RF model used in RQ1
into the three categories, we compared the normalized results of the RF model
with the results of each reviewer and calculated the Cohen’s Kappa Coefficient
and the Euclidean Distance between them. The agreement level between the
RF model and each reviewer was: RF | R1 = 0.27, RF | R2 = 0.37, RF | R3 =
0.30. The Euclidean Distance between the RF model and each reviewer was:
RF | R1 = 17.89, RF | R2 = 16.76, RF | R3 = 17.52. Table 4.4 illustrates both
results.
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Figure 4.3: RQ1: RF Predictions Distribution.
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Comparison Cohen’s Kappa Coefficient Euclidean Distance
R1 vs RF 0.27 17.89
R2 vs RF 0.37 16.76
R3 vs RF 0.30 17.52

Table 4.4: Agreement and Similarity between ML and Reviewers

We used the Euclidean Distance to evaluate the similarity between the
answers of our RF model and reviewers considering the Final Results (FR),
when compared individually and collectively. In order to evaluate the Euclidean
Distance between our model and reviewers against the FR accurately, we
multiplied the FR answers by two, to normalize the binary answers from FR
with the three-category answers from reviewers and ML, so if a reviewer voted
to include a study with certainty and the study was indeed included, the
distance between these two points is zero.

Finally, we evaluated the Euclidean Distance in three different ways, as
follows:

– Similarity between single answers and FR:

EuclideanDistance(i, FR) where i ∈ {R1, R2, R3, RF}

– Similarity between pairs and FR:

EuclideanDistance
(

i + j

2 , FR
)

where i ̸= j and i, j ∈ {R1, R2, R3, RF}

– Similarity between groups and FR:

EuclideanDistance
(

i + j + k

3 , FR
)

where i ̸= j ̸= k and i, j, k ∈ {R1, R2, R3, RF}

Table 4.5 shows the Euclidean Distance (ED) measured in each case.
As we can see, the smallest distance in comparison to the FR in each case
was given by: R2 with ED = 9.95, pair(R2,R3) with ED = 8.86 and team
assessment with ED = 8.17.

4.6
Concluding Remarks

In this chapter, we presented the results of our experiments using our ML
models to replicate the study selection performed by the team assessment. The
results highlighted how specific configurations significantly influence model
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Comparison Euclidean Distance
R1 vs FR 12.00
R2 vs FR 9.95
R3 vs FR 11.00
RF vs FR 17.94

avg(R1,R2) vs FR 8.90
avg(R1,R3) vs FR 9.12
avg(R2,R3) vs FR 8.86
avg(R1,RF) vs FR 12.37
avg(R2,RF) vs FR 11.84
avg(R3,RF) vs FR 12.03

avg(R1,R2,R3) vs FR 8.17
avg(RF,R2,R3) vs FR 10.06
avg(R1,RF,R3) vs FR 10.20
avg(R1,R2,RF) vs FR 10.15

Table 4.5: Euclidean Distance Analysis

performance, particularly in terms of precision and recall. Our analyses provide
a foundation for deeper discussions that will be presented in the next chapter.
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5
Discussion and Threats to Validity

5.1
Introduction

In this chapter, we present discussions about the outcomes and the in-
herent challenges associated with validating the findings from our investigation
into the application of our ML models for SLR updates in SE. By analyzing
the effectiveness and reliability of our ML models as outlined in the previous
Chapter 4, in the first three sections, Section 5.2, Section 5.3 and Section 5.4
we discuss the meaning of the results found for each RQ and their implications.
Then, in Section 5.5 we address some validity threats that might influence the
interpretation and generalizability of our results.

5.2
Research Question 1

Regarding RQ1 - “How effective are ML models in selecting studies for
SLR updates?”, based on our results, we concluded that the best configuration
to maximize the F-score of our ML models was using RF with Anova-F. Not
only that, but in almost all of our tests configurations, RF outperformed SVM
in terms of F-score with exception for one test, where we selected only 900
best features and used the Pearson Correlation method to compute the best
features. We also noticed that for most cases, the Anova-F improved the F-
score rating at the cost of lowering its Recall. However, even noticing that the
RF was more successful in this task than SVM and considering its best result,
its F-score was still not good enough to be considered to automate the process
of selecting studies for the SLR update.

5.3
Research Question 2

Regarding RQ2 - “How much effort can ML models reduce during the
study selection activity for SLR updates?”, our results showed that the best
configuration to maximize the Recall of our ML models was using SVM with
Pearson Correlation. On one hand, it’s possible to see that in all of our tests,
SVM had higher Recall marks than RF. Particularly, when used with Pearson
Correlation to select the best features, it had the highest marks for Recall in
most cases (although even in executions using Anova-F it still reached a high
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Recall of 0.97 for some tests). On the other hand, its F-score and Precision
marks were very low. However, even if a big number of FP studies remained
after that, we believe that our SVM model showed potential for reducing
human effort during the study selection task of SLR updates, by automatically
excluding part of the irrelevant studies.

5.4
Research Question 3

Regarding RQ3 - “Can Machine Learning Replace a Reviewer in the Se-
lection of Studies for Systematic Literature Reviews?” our evaluation showed
that the best result was achieved by the RF classifier with the same configura-
tion used for RQ1. As we can see in Table 4.2, the strongest level of agreement
was between R1 and R2 with a score of 0.47 for Cohen’s Kappa Coefficient,
followed by an agreement of 0.43 between R2 and R3, and followed by the
weakest agreement between R1 and R3 with a score of 0.35. In this case, two
pairs of reviewers had a moderate level of agreement and one pair had only a
fair level of agreement.

On the other hand, when compared with our RF classifier, it had its
strongest agreement of 0.37 with R2, followed by an agreement of 0.30 with
R3 and an agreement of 0.27 with R1, all considered as fair level of agreement.
Even though the pair RF classifier and R2 had a stronger agreement than the
pair R1 and R3, both still had the same agreement level (fair agreement), also
the R2 had a Moderate Agreement with both reviewers, while it had only a
fair agreement with the RF classifier. Also, when comparing the agreement
of RF with R3 and its respective pairs (R3|R1 and R3|R2), it had a weaker
agreement than both, the same was true when comparing RF with R2 and its
respective pairs.

Looking at Table 4.3, we can see that R2 and R3 had the most similar
answers, with an Euclidean Distance (ED) of 11.22 between them. As showed
in Table 4.5 R2 also had the smallest distance from FR when compared
individually (with an ED of 9.95), as expected, the pair R2 and R3 had the
strongest similarity with FR (with an ED of 8.86) in contrast to the other pairs.
Finally, the closest distance was given by the team assessment with an ED of
8.17, which is expected since the FR was generated from their answers. It’s
possible to see that our RF model had the highest distances in all comparisons
and even though looking at the distance to FR obtained when working together
with R1 didn’t cause much negative impact (ED(R1,RF) = 12.37 vs ED(R1) =
12.00) as the rest, it shows that our ML model didn’t help any of the reviewers
to get closer to the FR.
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Therefore, we concluded that our supervised ML Models are not ready
to replace a reviewer during the selection of studies for SLR updates.

It is worth mentioning that the similarity and agreement levels between
our classifier and the team assessment could increase or decrease depending
on how we configure the thresholds to normalize the probabilities given by
our ML classifier into the three categories used by the team assessment. We
noticed that reducing the range to consider a vote as uncertain would increase
the level of agreement with all members of the assessment team. But in most
cases, our classifier still had only a fair level of agreement, so our conclusion
was the same.

5.5
Threats to Validity

In this section, we discuss the main threats to our experiment based on
the categorization presented in Wohlin et al. (WOHLIN et al., 2012) and the
adopted mitigation strategies.

Construct Validity. Our evaluation results might have been affected
by the choice of ML algorithms. Other algorithms could have been explored in
our study and can be considered as part of future work.

Internal Validity. Our training dataset comprised only studies includ-
ing in the SLR replication (WOHLIN et al., 2022) (training included) and those
obtained through backward snowballing (training excluded). We deliberately
excluded studies not in English or those categorized as Ph.D. dissertations or
book chapters from our testing set, the same approach adopted by the SLR
replication. This focused approach aimed to provide our models with only rel-
evant and essential data. Another potential threat is that during the manual
process performed by the team assessment, the authors could end up reading
other sections of the studies besides the title and abstracts when they are not
completely sure if the study should be included or excluded just by reading
its abstract. This is a possible advantage manual process could have over our
models that consider only content from title and abstract.

External Validity. The dataset used in our analysis might not repre-
sent the diversity of SLR Updates in SE. Similar analyses could have been
conducted based on other SLRs to improve the generalizability of our results.
However, replicating our results on other SLRs to strengthen external validity
would require significant effort. Moreover, it is challenging to acquire a reliable
and detailed SLR dataset for SLRs updates that could be considered in our
evaluation.

Reliability. One limitation of our study is associated with the dataset
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used in our evaluation and the possibility of sample bias. The data used in
our evaluation was acquired from the same authors who performed the SLR
replication, also through a rigorous analysis process. In addition, to improve
the reliability of our results, our ML models and the small-scale evaluation
dataset are openly available.

5.6
Concluding Remarks

In this chapter, we underscored the potential and limitations of using
our ML models to support the process of performing SLRs. While the models
demonstrate a promising reduction in manual effort required for study selec-
tion, their capacity to replace a reviewer remains below expectations. The next
chapter will build upon these findings, exploring potential enhancements and
proposing alternative strategies for future work, aiming to highlight opportu-
nities to explore even further the topic of supervised ML models within the
context of SLR updates in SE.



6
Contributions and Future Work

6.1
Contributions

This study advances the application of supervised ML models as a
supporting tool for researchers during SLRs updates, by developing and testing
a comprehensive supervised ML-based pipeline to automate the study selection
process. We have demonstrated through our tests, using realistic data to build
our datasets, that while our ML models, have shown promise in reducing
human effort to perform the study selection activity by pre-filtering irrelevant
studies, they currently lack the precision required to completely automate the
selection of studies for SLR updates. We also concluded that they did not
achieve a level of similarity and agreement strong enough to be considered
sufficient to replace a human reviewer during an SLR update in the study
selection phase. Our work also highlights different configurations used for our
ML models that correlates to their recall and F-score, providing results that
can be useful for further exploration in this area.

6.2
Limitations

The study’s scope was limited by several factors that could be addressed
in future research. Primarily, we only tested a few ML algorithms in our
experiments, as well as the number of strategies for NLP and FS tested.
Additionally, we did not explore the potential of Large Language Models
(LLMs) of automating the selection of studies activity in comparison to our
ML models, which showed a lot of potential in our research topic (BOLANOS
et al., 2024). Also, we did not leverage from the work of Pintas et al. (PINTAS;
FERNANDES; GARCIA, 2021) to perform a deeper analysis of our dataset
structure and decide a specific FS strategy related to it. Last, we did not find
more primary studies to increase the number of excluded studies in our training
set and decrease the contrast in the size of our training and testing sets, which
could have improved our results.
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6.3
Future Work

In summary, this dissertation lays the groundwork for significant advance-
ments in the use of supervised ML to automate and enhance the efficiency of
SLR updates in SE. While our ML models currently supplement rather than
replace human expertise, they mark a substantial step forward in the integra-
tion of supervised ML models into the process of performing SLR updates.
The exploration of more sophisticated models and methodologies, as outlined
in our future work, shows potential for further investigation.



7
Appendix

This chapter contains tables with the configuration used to tune our ML
models for RQ1 and RQ2, describing the parameters that were tested, and the
best configuration selected after performing GridSearch.

7.1
GridSearch Configurations
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