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Abstract

Melo, Diana Marcela Viveros; Landau, Lukas Tobias Nepomuk (Ad-
visor). Advanced Precoding Techniques With Zero-Crossing
Modulation for Channels With 1-bit ADCs and Temporal
Oversampling. Rio de Janeiro, 2024. 104p. PhD Dissertation –
Departament of , Pontifícia Universidade Católica do Rio de Ja-
neiro.
A promising approach to reduce energy consumption is to consider

coarse quantization at the receiver. In this study, we investigate novel
precoding techniques in space and time for bandlimited multiuser MIMO
downlink channels with 1-bit quantization and oversampling at the recei-
ver, considering zero-crossing modulation. The proposed time-instance zero-
crossing modulation conveys the information into the time-instances of zero-
crossings. Two design criteria for time-instance zero-crossing modulation are
investigated, namely, the minimum distance to the decision threshold and
the mean-square error between the received and the desired signal. The
maximization of the minimum distance to the decision threshold can be
formulated as a quadratically constraint quadratic program. As an alter-
native, an equivalent problem is formulated based on power minimization,
which reduces computational complexity. Moreover, another method is im-
plemented where the information is conveyed into the time-instances of
zero-crossings using waveform segments. Departing from the conventional
mean-square error based technique, a more sophisticated algorithm is deve-
loped, which implies active constellation extension to improve the perfor-
mance at high SNR. The extended problem is solved with two approaches:
by formulating the problem as a second-order cone program and by conside-
ring an alternating optimization algorithm. Another method based on the
gradient descent algorithm is implemented with the mean-square error tech-
nique to reduce computational complexity further. Besides, a lower bound
on the spectral efficiency is obtained. Numerical results show that the pro-
posed time-instance zero-crossing precoding methods significantly improve
the bit error rate compared to the state-of-the-art methods. Finally, the
maximization of the minimum distance to the decision threshold and the
mean-square error based precoding techniques are evaluated considering a
frequency-selective millimeter wave channel. Numerical results show that
both precoding techniques respond well to the frequency selectivity of the
channel.
Keywords

1-bit Quantization Oversampling MSE precoding Moore machine
mmWave



Resumo

Melo, Diana Marcela Viveros; Landau, Lukas Tobias Nepomuk.
Técnicas avançadas de pré-codificação com modulação de
cruzamento zero para canais com ADCs de 1 bit e sobrea-
mostragem temporal. Rio de Janeiro, 2024. 104p. Tese de Dou-
torado – Departamento de Engenharia Elétrica, Pontifícia Univer-
sidade Católica do Rio de Janeiro.
Uma abordagem promissora para reduzir o consumo de energia é consi-

derar a quantização grosseira no receptor. Neste estudo, investigamos novas
técnicas de pré-codificação no espaço e no tempo para canais de downlink
MIMO multiusuário limitados em banda com quantização de 1 bit e sobre-
amostragem no receptor, considerando a modulação de cruzamento zero. A
modulação de instância de tempo de zero cruzamento proposta transmite a
informação nas instâncias de tempo de cruzamento zero. Dois critérios de
projeto para a instância de tempo de cruzamento zero são investigados, a
saber, a distância mínima até o limiar de decisão e o erro quadrático médio
entre o sinal recebido e o desejado. A maximização da distância mínima
para o limiar de decisão pode ser formulada como um programa quadrático
restrito quadraticamente. Como alternativa, um problema equivalente pode
ser formulado com base na minimização de potência, o que reduz a com-
plexidade computacional. Além disso, outro método é implementado onde
a informação é transmitida nas instâncias de tempo de cruzamento zero em
segmentos de forma de onda. Partindo da técnica convencional baseada no
erro quadrático médio, um algoritmo mais sofisticado é desenvolvido, o que
implica a extensão ativa da constelação para melhorar o desempenho em alta
SNR. O problema estendido é resolvido com duas abordagens: formulando o
problema como um programa de cone de segunda ordem e considerando um
algoritmo de otimização alternada. Outro método baseado no algoritmo de
descida de gradiente é implementado com a técnica do erro quadrático mé-
dio para reduzir ainda mais a complexidade computacional. Além disso, um
limite inferior para a eficiência espectral é obtido. Os resultados numéricos
mostram que os métodos de pré-codificação de cruzamento zero de instância
de tempo propostos melhoram significativamente a taxa de erro de bit em
comparação com os métodos de última geração. Finalmente, a maximização
da distância mínima ao limiar de decisão e as técnicas de pré-codificação
baseadas no erro quadrático médio são avaliadas considerando um canal de
onda milimétrica seletivo em frequência. Os resultados numéricos mostram
que ambas as técnicas de pré-codificação respondem bem à seletividade de
frequência do canal.
Palavras-chave
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1
Introduction

1.1
Motivation and Context

Future wireless communication systems will have to support a massive
number of devices for promising technologies such as the internet of things
(IoT), which has a wide variety of applications in industrial automation sys-
tems, intelligent transportation, and health care, among others [3,4]. Moreover,
these systems will be required to transmit higher data rates, and for this, the
spectrum in the millimeter-wave (mmWave) is promising [5,6]. In this sense, the
design of systems in this frequency band can also represent a challenge regard-
ing the analog-to-digital converter (ADC) power consumption. Therefore, these
scenarios have important restrictions, since low-complexity and low-power con-
sumption devices are required. Considering the use case of IoT networks with
more than 1 million devices, the energy consumption of the receiving devices
is extremely constrained and in some cases, the devices are supposed to run
for several years on the same battery. For this reason, when IoT systems are
targeted, it is necessary to simplify all the other hardware components as well.
That is why it is necessary to propose approaches in terms of spatial-temporal
waveform design and also consider practical detectors since 1-bit quantization
is a non-linear operation and complexity at the receiver needs to be reduced [2].

In this sense, it is of great interest to study and develop communication
systems with low-resolution ADCs. Employing 1-bit quantization is promising
because the energy consumption of the ADCs grows exponentially with their
resolution in bits [7]. Moreover, systems with 1-bit quantization do not require
linear amplifiers, and the automatic gain control (AGC) can potentially be
omitted. In addition, for 1-bit quantization systems, it is not necessary to
provide a number of reference voltages as required for flash ADCs.

By increasing the sampling rate, it is possible to partially compensate
for the loss of information due to the coarse quantization. In this context, the
achievable rate for bandlimited 1-bit quantized processes improves consider-
ably with oversampling. In a noise free environment, rates of log2(MRx + 1)
bits per Nyquist interval are achievable with MRx-fold oversampling [8].
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1.2
State-of-the-art

Different studies have been conducted concerning communication sys-
tems with 1-bit quantization and oversampling at the receiver. New processing
techniques such as zero-crossing modulation have been studied in [8] where a
Zakai bandlimited process sampled with n times the Nyquist rate is consid-
ered. The Zakai bandlimited process is constructed with one zero-crossing per
Nyquist interval and alternatively with L zero-crossings per each L-Nyquist
interval. Moreover, for systems with oversampling, the study in [9] investi-
gates the benefits of capacity per unit cost, and [10] studies the numerical
computation and maximization of the achievable rate for noisy bandlimited
channels. Furthermore, practical implementations of systems with 1-bit quan-
tization and temporal oversampling consider ASK transmit sequences [11–14]
and runlength-limited (RLL) transmit sequences [14], [15–19] and other meth-
ods based on zero-crossing [20]. The study in [21] exploits the approach of faster
than-Nyquist (FTN) signaling [22] for sequence design optimization using 1-bit
quantization and oversampling at the receiver and [23] considers the case of
1-bit quantization oversampling considering matched pulse shaping filters and
faster than Nyquist signaling.

Other modern methods that consider the reduction of energy consump-
tion in the ADCs are based on sub-Nyquist sampling methods such as the one
presented in [24].

The authors of [25] consider the maximization of the minimum distance
to the decision threshold (MMDDT) for 16-QAM modulation with a linear
transmit filter for a channel with 1-bit quantization and oversampling at
the receiver. The study in [26] devises a practical waveform design where
a waveform set is constructed which conveys the information into the zero-
crossings as suggested in [8]. Other related studies, such as [27–29], also have
shown the benefit of oversampling.

Related approaches for multiple-input multiple-output (MIMO) uplink
systems with 1-bit quantization and oversampling at the base station (BS) have
been investigated in [30–34]. An achievable rate analysis that relies on the zero-
forcing (ZF) receiver and linear channel estimation is presented in [30]. In [31],
a related study with orthogonal frequency division multiplexing is investigated.
The work in [32] proposes a dynamic oversampling technique, whereas [33] in-
vestigates oversampling for channel estimation and corresponding performance
bounds. On the other hand, different methods for downlink systems with 1-bit
quantization and oversampling at the receivers exist. For the multiple-input
single-output case, [35] proposed a similar waveform design as in [25]. More-
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over, for the multiuser MIMO downlink channel, the work in [2] devises the so
called quantization precoding (QP) technique based on an optimal codebook
search which allows high spectral efficiency and symbol-by-symbol detection.
The approach in [2] relies on the MMDDT criterion, which is a well-established
design criterion in literature [25, 36–39], that is mathematically tractable and
suitable for low-resolution techniques. The study in [40] constructs an upper
and a lower bound on the spectral efficiency for a MIMO system considering
zero-crossing modulation.

Furthermore, given the increasing demand for higher data rates, future
wireless communication systems will be required to utilize a broad spectrum
in the mmWave and sub terahertz bands [41]. In this context, high-resolution
ADCs are not energy-efficient for the design of systems with such large
bandwidths. Therefore, related approaches with low-resolution ADCs have
been proposed in the literature, such as [42–44] considering mmWave MIMO
systems. In [45], a practical transceiver design is proposed for a zero-crossing
modulation waveform, which combines faster-than-Nyquist signaling and RLL
transmit sequences while considering a mmWave channel.

1.3
Contributions

In the present study, a bandlimited downlink channel with 1-bit quanti-
zation and oversampling at the receivers is considered with variable signaling
rate including faster-than-Nyquist signaling. For this channel, two different
precoding strategies are proposed, which are constructed for 1-bit quantiza-
tion with the novel time-instance zero-crossing (TI ZX) modulation. The pro-
posed TI ZX modulation is a sophisticated method for 1-bit quantization and
MRx-fold oversampling, where each Nyquist interval is associated with MRx

binary samples. With the proposed modulation, at the receiver, there is at
most one zero-crossing per Nyquist interval in one of the MRx sub-intervals.
Unlike the closely related approach from [8], the proposed method also consid-
ers the absence of zero-crossings during the Nyquist interval as a valid symbol,
resulting in MRx +1 unique patterns. Note that TI ZX modulation results in a
smaller average number of zero-crossings compared to the scheme in [8], which
facilitates the waveform design in practice.

The first proposed precoding strategy is based on the MMDDT criterion
[25], [2] and on the existing techniques introduced in [46] [47]. Unlike previous
works, the novel joint MMDDT is solved in space and time together for all the
transmit sequences and for the in-phase and quadrature components of the
signal. An equivalent problem with lower computational complexity can be
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formulated by considering the minimization of the transmit power for a given
minimum distance criterion constraint and a subsequent power scaling of the
solution vector. Moreover, a similar strategy is proposed in conjunction with
a spatial ZF precoding which further reduces the computational complexity.

The second proposed precoding strategy is based on the minimum mean
square error (MMSE) criterion with TI ZX modulation, which was previously
introduced in [46] and [48] where the problem is formulated jointly in space
and time for the whole transmit sequence and for the in-phase and quadrature
components in a stacked vector approach. A more sophisticated technique is
developed by considering the active constellation extension (ACE) method [49],
which implies a relaxation for the desired output signal. For solving the latter
problem, two different approaches are proposed. The first approach to solve
the MMSE ACE design problem optimally is given by considering the symbol
sequences as optimization variables, which can then be expressed as a second-
order cone program (SOCP). Alternatively, the MMSE ACE can be solved by
considering an iterative optimization algorithm where the symbol sequences
and the precoding vector are optimized by an alternating optimization strategy.
Besides, for the generic MMSE problem, an alternating approach involving two
separate precoding matrices for space and time is proposed to further reduce
the computational complexity. In this sense, a joint optimization problem
is formulated and solved iteratively with gradient descent (GD) projection
method [50]. Then, considering the MMSE problem formulation, a lower bound
on the spectral efficiency is presented, and a waveform comparison is done for
the TI ZX modulation and RLL sequences [51].

Additionally, in this work it is also developed a modulation based on the
TI ZX waveform design where a predefined level of out-of-band radiation is
tolerated. The proposed waveform design considers the TI ZX modulation and
follows a similar idea as presented in [26]. The proposed method conveys the
information into the time-instances of zero-crossings but instead of considering
sequences of samples, input bits are mapped into waveform segments according
to the TI ZX mapping rules. The temporal precoding vector is then used in
conjunction with a simple pulse shaping filter. The optimal set of coefficients is
computed with an optimization problem which is formulated to maximize the
minimum distance to the decision threshold, constrained with some tolerated
out-of-band radiation.

Finally, a precoding framework with the established TI ZX modulation
for the established mmWave channel model is developed. For this channel, the
generic MMSE precoding and the joint MMDDT precoding are considered.

The presented precoding techniques are evaluated in terms of their bit
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error rate (BER) and computational complexity. The results show that in
general the MMDDT based precoding techniques achieve better performance
at high signal-to-noise ratio (SNR), whereas the MMSE techniques are good at
low SNR. The MMSE approach with the ACE strategy shows a considerable
improvement at high SNR in terms of the BER and has the best performance
at low SNR. In general TI ZX precoding yields a significantly lower BER than
QP modulation [2].

When the lower bound spectral efficiency is compared for ZX modulations
as RLL and TI ZX, it is observed that in general, both considered ZX mappings
achieve similar performance in the SE at low SNR. Especially the TI ZX
modulation also offers a low complexity detection scheme.

In terms of the mmWave channel, different parameters are evaluated for a
comprehensive numerical analysis of the performance of precoding techniques
with TI ZX in more realistic environments. The results show that both
bandlimited precoding techniques respond well to the frequency selectivity
of the mmWave channel.

The contributions in this work can be summarized as follows:

- A novel TI ZX modulation approach is presented which conveys the
information in the time-instances of zero-crossings.

- A low complexity detection scheme for time-instance zero-crossing pre-
coding is presented.

- A joint MMDDT precoding technique is developed with an alternative
approach with lower computational complexity.

- The derivation of a TI ZX MMSE precoding approach and a more
advanced approach that relies on ACE, which further improves the
performance.

- The development of an iterative algorithm to find the ACE vector and
the optimal precoding vector with low computational complexity.

- The development of an iterative algorithm with a gradient projection
method to further reduce the computational complexity of the generic
MMSE.

- A waveform design based on the TI ZX modulation is developed where
waveform segments are considered instead of samples.

- The development of a precoding framework with the TI ZX modulation
for a mmWave channel model.

- A lower bound on the spectral efficiency is developed.
- A simulation study of the BER, spectral efficiency, power spectral

density, and computational complexity is presented.
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1.4
Structure of the Work

The document is organized as follows. Chapter 2 presents the system
model. In Chapter 3, the TI ZX modulation is explained in detail, including
the detection process. The proposed precoding design is discussed in Chapter 4,
where the techniques based on the MMDDT and MMSE criteria are presented
with their respective simulation results. The performance evaluation, where
the precoding techniques are compared under BER, power spectral density,
and computational complexity are also presented in Chapter 4. The zero-
crossing waveform comparison and the lower bound on the spectral efficiency
are presented in Chapter 4. In Chapter 5, the state machine-based waveform
design with TI ZX modulation is presented including the numerical evaluation.
The TI ZX framework for mmWave channels is presented in Chapter 6. Finally,
the conclusion is given in Chapter 7. The appendices contain the derivation of
the MMSE, the RLL mapping, the MMSE performance bound, and the list of
published papers.

1.5
Notation

Scalar values are represented by lowercase and regular fonts, e.g., a.
Complex vectors and matrices are represented by bold lowercase and bold
uppercase fonts, e.g., x and X, respectively. The subscript R represents a
real-valued notation. The vec(·) operator applies a matrix vectorization by
stacking the matrix columns. The sgn(·) operator denotes the sign of the
argument, where sgn (x) = +1 if x ≥ 0, and sgn (x) = −1 if x < 0. The
semicolon denotes a vertical concatenation in terms of vectors and matrices.
The Kronecker product is denoted by ⊗. The subscript R/J implies that the
process is done separately and in the same way for the in-phase and quadrature
components.



2
System Model

The downlink of a multiuser MIMO system shown in Fig. 2.1 is considered
with Nt transmit antennas at the BS and Nu single antenna users. The vector
xk is the transmit symbol sequence of the k-th user with N complex symbols,
each denoted as xi = xI

i + jxQ
i with symbol duration T . The sequence xk is

fed into the TI ZX modulator to be mapped on the desired output pattern
coutk

with dimensions Ntot = NMRx + 1. Employing MTx > 1 corresponds to
faster-than-Nyquist signaling and is related to the oversampling factor MRx

by MMTx = MRx, where M is the factor that relates the different sampling
rate domains. M = MRx/MTx corresponds to the relative oversampling factor
with respect to the signaling rate MTx/T . Each symbol x

I/Q
i is drawn from

the set Xin := {b1, b2, · · · , bRin} where Rin = MRx + 1. At the BS ideal digital-
to-analog converters (DACs) and pulse shaping filters gTx(t) with bandwidth
WTx are considered. The transmit filter is normalized to unit energy in terms
of
∫∞

−∞ |gTx(t)|2 dt = 1. In discrete time, the filter gTx(t) is represented by the
Toeplitz matrix GTx given by

GTx = aTx



[
gT

Tx

]
0 · · · 0

0
[
gT

Tx

]
0 · · · 0

. . . . . . . . .
0 · · · 0

[
gT

Tx

]


Ntot×3Ntot

, (2-1)

with gTx = [gTx(−T (N + 1
MRx

)), gTx(−T (N + 1
MRx

) + T
MRx

), . . . , gTx(T (N +
1

MRx
))]T and normalization factor aTx = (T/MRx)1/2. The factor aTx corre-

sponds to the normalization to unit energy in discrete time which relies on
unit energy normalization in continuous time for gTx. The matrix H with
dimensions Nu × Nt describes a frequency flat fading channel. The receivers
consist of the receive filter gRx(t) with bandwidth WRx and the 1-bit ADC.
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Figure 2.1: Multiuser MIMO system model.

The receive filter is represented by the following Toeplitz matrix:

GRx = aRx



[
gT

Rx

]
0 · · · 0

0
[
gT

Rx

]
0 · · · 0

. . . . . . . . .
0 · · · 0

[
gT

Rx

]


Ntot×3Ntot

, (2-2)

with gRx = [gRx(−T (N + 1
MRx

)), gRx(−T (N + 1
MRx

) + T
MRx

), . . . , gRx(T (N +
1

MRx
))]T as the coefficients of the gRx(t) filter and aRx = (T/MRx)1/2 that

corresponds to unit energy normalization. The combined waveform determined
by the transmit and receive filters can be described by v(t) = gTx(t) ∗ gRx(t).
The combined waveform is represented by the Toeplitz matrix V, denoted as

V =


v (0) v

(
T

MRx

)
· · · v (TN)

v
(
− T

MRx

)
v (0) · · · v

(
T
(
N − 1

MRx

))
... ... . . . ...

v (−TN) v
(
T
(
−N + 1

MRx

))
· · · v (0)


Ntot×Ntot

.

(2-3)

At the ADC, the signal y(t) is oversampled at rate MRx
T

= MMTx
T

. The matrix
U with dimensions Ntot×Nq, describes the M -fold upsampling operation and
is defined by

Um,n =

1, for m = M · (n− 1) + 1

0, else,
(2-4)



Chapter 2. System Model 23

where m, n ≥ 1 and Nq = MTxN + 1. The upsampling operation is used to
describe systems with different signaling and sampling rates. At the receiver,
the signal is processed by a matched filter and quantized. The quantized vector
at user k of length Ntot is given by

zk = Q1

(
Nt∑
i=1

hki
V Upxi

+GRxnk

)
, (2-5)

= Q1 ((hk ⊗ INtot) (INt ⊗ V U)px +GRxnk) ,

where the stacked vector px =
[
pT

x1 ,pT
x2 , · · · ,pT

xi
, · · · ,pT

xNt

]T
and pxi

corre-
sponds to the spatial and temporal precoding vector of the i-th transmit an-
tenna. Note that, the vector px depends on the channel H and the sequences
coutk

, which will be detailed in Section 4. The vector hk is the k-th row vec-
tor of the matrix H and hki

corresponds to the ith entry of hk. The vector
nk with length 3Ntot contains i.i.d. complex Gaussian noise samples with zero
mean and variance σ2

n.
Stacking the received sequences of the Nu users in the vector z =[

zT
1 , zT

2 , · · · , zT
k , · · · , zT

Nu

]T
yields the vector z = Q1 (y) with length NuNtot

given by

z = Q1 ((H ⊗ INtot) (INt ⊗ V U)px + (INu ⊗GRx)n) . (2-6)

Defining the effective channel matrix as:

Heff = (H ⊗ INtot) (INt ⊗ V U) , (2-7)

the received signal z is rewritten as:

z = Q1 (Heffpx +GRx,effn) , (2-8)

where the vector n with length 3NtotNu represents the complex Gaussian noise
vector with zero mean and variance σ2

n. The quantization operator is denoted
by Q1 (·) which is defined by Q1 (y) = sgn (R{y})+jsgn (J {y}), where R{·}
and J {·} correspond to the real and imaginary parts, respectively such that
z ∈ {1 + j, 1− j,−1 + j,−1− j}. The stacked received sequence of the Nu
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users from (2-8) can be reformulated in real-valued notation, which yields

zR =
[
R{z}
J {z}

]
= Q1

([
R{y}
J {y}

])

= Q1

([
R{Heff} −J {Heff}
J {Heff} R{Heff}

][
R{px}
J {px}

]
+
[
R{GRx,eff} −J {GRx,eff}
J {GRx,eff} R{GRx,eff}

][
R{n}
J {n}

])
.

(2-9)

With this, the real-valued notation of z is given by zR of length 2NuNtot

described by zR = Q1 (yR) = Q1
(
HeffR

pxR
+GRx,effR

nR

)
. The vector pxR

with length 2NtNq corresponds to the space-time precoding vector in real-
valued notation of all the transmitted segments.



3
Proposed Time Instance Zero-Crossing Modulation

In [8], a Zakai bandlimited process [52] was constructed considering
the sign information within L Nyquist intervals. The study in [8] shows the
benefits of oversampling to compensate for the loss of information due to 1-bit
quantization. The results of [8] prove that the achievable rate increases with
the oversampling factor.

In this work, the TI ZX modulation is proposed for systems with
oversampling. This modulation conveys the information in the time-instances
of zero-crossings and also includes the absence of zero-crossings per time
interval as a valid transmit symbol. Note that the consideration of the absence
of zero-crossings is different from the methods in [8] and [2], which implies
a lower average number of zero-crossings per Nyquist interval. The reduced
number of zero-crossings can be understood as a relaxation of the waveform
design with bandlimitation. The essential idea of TI ZX modulation is to
allocate at most one zero-crossing per symbol interval. When more than
one zero-crossing per symbol interval is allowed, a significant performance
degradation with respect to the optimization criteria MSE and γ, which is
defined as the minimum distance to the decision threshold, can be observed
[47], [48]. Moreover, mapping methods such as QP modulation [2] with more
than one zero-crossings per Nyquist interval present a large number of “peaks”
which correspond to high frequencies in the transmit signal. The realization
of such a signal is difficult due to the bandwidth constraint which then finally
leads to a waveform with a small distance to the decision threshold γ, as shown
in [47]. In this sense, considering the input cardinality given by Rin = MRx +1,
all the symbols x taken from the input set Xin = {b1, b2 · · · , bRin}, are mapped
onto a codeword defined by the time instant within the symbol interval, in
which the zero-crossing occurs or not.

Mapping each symbol of the transmit sequence into the respective
codeword given by the TI ZX modulation, generates the binary sequence
cout, which corresponds to the desired output pattern at the receiver after
quantization in a noise free case. In the following, it is described how to
construct the sequence cout. As the process is done in the same way for each
user and separately for the in-phase and quadrature-phase components of the
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sequence, the focus is on the construction of cout, considering only the in-phase
component.

3.1
Construction of the TI ZX Sequence

Given the oversampling factor MRx, each Nyquist interval is divided into
MRx segments, so each symbol bj from the input alphabet corresponds to
a specific binary codeword, which conveys the information about the time
instant in which the zero-crossing occurs or not within the Nyquist interval.
The mapping table cmap relates each symbol bj to its respective time instance
in which the zero-crossing occurs. As mentioned above, the proposed TI ZX
modulation also considers the absence of a zero-crossing for one of the symbols
of the input alphabet.

In Table 3.1, the zero-crossing assignment is presented for an arbitrary
value of MRx. Note that the assignment can be arbitrarily permuted.

The considered mapping is assumed to be fixed and known by the
receivers. Therefore, it is not required to send additional information. The
latter corresponds to a benefit in comparison to the approach in [2], where
the dynamic codebook mapping requires additional bandwidth for informing
the receivers. Once the table mapping cmap is established, each component in
terms of the real and imaginary parts of the symbol xi taken from the input
sequence x is mapped to a binary codeword csi

∈ {+1,−1} of length MRx that
conveys the zero-crossing information according to cmap. To guarantee that
the codeword csi

corresponding to the input symbol xi fulfills the assignment
given by cmap, the state of the last sample of the previous symbol interval
csi−1 termed ρi−1 must be taken into account. This means that the mapping
assignment can be processed for ρi−1 = 1 or ρi−1 = −1, which results in two
possible codewords per each symbol xi. In terms of sample sequence patterns,
Table 3.2 shows the structure of cs depending on ρ.

As explained, the codeword cs depends on the last sample of csi−1 . Hence,
a predefined pilot signal pb ∈ {1,−1} is required to enable the mapping of the
first transmit symbol of the sequence x, which means that pb = ρ0 for x1.
Finally, the desired binary output pattern cout with length NMRx + 1 which
yields the zero-crossings in the desired intervals for a sequence of N Nyquist
intervals is constructed sequentially by concatenating all the segments csi

,
where the first sample of cout corresponds to pb. The construction of cout with
TI ZX modulation is shown in Fig. 3.1 for MRx = 3. Note that cout can also be
constructed with RLL sequences [14], which then requires a different sequence
detector.
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Table 3.1: Zero-crossing assignment cmap

cmap
symbol Zero-crossing assignment

b1 No zero-crossing
b2 Zero-crossing in the MRx interval
b3 Zero-crossing in the MRx − 1 interval
... ...

bRin−1 Zero-crossing in the second interval
bRin Zero-crossing in the first interval

Table 3.2: Sequence patterns cs

csi

symbol ρi−1 = 1 ρi−1 = −1
b1 11 12 · · · 1MRx−1 1MRx −11 − 12 · · · − 1MRx−1 − 1MRx

b2 11 12 · · · 1MRx−1 − 1MRx −11 − 12 · · · − 1MRx−1 1MRx

b3 11 12 · · · − 1MRx−1 − 1MRx −11 − 12 · · · 1MRx−1 1MRx
... ... ...

bRin−1 11 − 12 · · · − 1MRx−1 − 1MRx −11 12 · · · 1MRx−1 1MRx

bRin −11 − 12 · · · − 1MRx−1 − 1MRx 11 12 · · · 1MRx−1 1MRx

3.2
Gray Coding for Time-Instance Zero-Crossing Modulation

The proposed bit mapping scheme based on Gray coding for TI ZX
modulation implies that symbols with near or consecutive zero-crossings differ
only in one bit from another. Table 3.3 shows the Gray mapping for MRx = 3,
where each binary tuple is mapped on one symbol. The sequence segment
cs is presented for each symbol depending on ρ. For cases when Rin is not
a power of 2 as in the case of MRx = 2, the mapping from bits to symbols
can be based on sequences of symbols to reduce the conversion loss. In the
illustrated example in Table 3.4 for MRx = 2, the conversion loss corresponds
to (1.5 − log2 3) ≈ 0.085 bits per symbol. The total number of transmitted
bits in N Nyquist intervals for MRx = 3 is Nb = 2N , whereas for MRx = 2,
Nb = 3N/2 bits per user per dimension are transmitted. For an input bit
sequence xb of length Nb and MRx = 2, the construction of the cout sequence
is presented in Algorithm 1.
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Algorithm 1 Construction of the cout sequence algorithm for MRx = 2 given
pb

1: Partition xb into Nb/3 segments → xbsi

2: Map xbs1 → cs1 with Table 3.4 and pb
3: cout = concatenate [pb, cs1 ]
4: for i = 2 : 1 : N/2
5: Map xbsi

→ csi
with Table 3.4 and ρi−1 (last sample of csi−1)

6: cout = concatenate [cout, csi
]

end

Table 3.3: Gray code for MRx = 3

MRx = 3
Gray code cs (ρi−1 = 1) cs (ρi−1 = −1)

00 1 1 1 −1 − 1 − 1
01 1 1 − 1 −1 − 1 1
11 1 − 1 − 1 −1 1 1
10 −1 − 1 − 1 1 1 1

Table 3.4: Proposed Gray code for MRx = 2

MRx = 2

Gray Code [cs,2i, cs,2i+1]
ρ2i−1 = 1

[cs,2i, cs,2i+1]
ρ2i−1 = −1

000 1 1 1 1 −1 − 1 − 1 − 1
001 1 1 1 − 1 −1 − 1 − 1 1
011 1 1 − 1 − 1 −1 − 1 1 1
010 1 − 1 − 1 − 1 −1 1 1 1
110 1 − 1 − 1 1 −1 1 1 − 1
111 −1 − 1 − 1 1 1 1 1 − 1
101 −1 − 1 − 1 − 1 1 1 1 1
100 −1 − 1 1 1 1 1 − 1 − 1
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Figure 3.1: Example of the construction of cout for MRx = 3.

3.3
Detection

The described detection process is considered for all proposed precoding
methods, which will be presented later. The detection method should have
low computational complexity. Hence, it is considered a detection technique
based on the Hamming distance metric similar to that presented in [2]. Note
that the in-phase and quadrature components of the received signal zk are
processed independently for all the users. For the detection process, the
received signal zk from (2-5) is considered. The TI ZX modulation implies
a memory corresponding to the last sample of the previous symbol, denoted
by ρi−1 cf. Section 3.A. This memory property, defined by a single previous
sample, does not imply a significant increase in the complexity of the receiver.

At the detector, the received signal zR is divided into N overlapping
subsequences of length MRx + 1 denoted as zbi

, where the first sample of zbi

corresponds to the last sample of the previous subsequence zbi−1 . Subsequently,
the backward mapping process is carried out ←−d : zbi

→ Xin. In a noise free
environment, all the subsequences zbi

meet the requirements imposed in cmap

so the detection is done only considering the backward mapping process and
Table 3.1. All the valid subsequences for zbi−1 are collected in the set Cdet

such that zbi
⊆ Cdet. Table 3.5 shows the set Cdet for MRx = 3 in a noise-free

environment. The detection of the first symbol is done taking into account
the pilot sample pb. Fig. 3.2 shows an example of the construction of the
subsequences zbi

taking into account the pilot sample pb and the last sample
of the previous subsequence ρ̂i−1.

The backward mapping process described above is sufficient for estab-
lishing a unique detection in the noiseless environment allowing a perfect re-
covery of the input sequence x. However, the noise can alter the received
sequence zR such that zbi

can correspond to invalid segments. This means
that zbi

⊈ Cdet. Therefore, additional decision rules are defined considering
the Hamming-distance metric [2]. In the presence of noise, the subsequence
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Table 3.5: Cdet for MRx = 3

Cdet

symbol cdet
ρ = 1 ρ = −1

b1 1 1 1 1 −1 − 1 − 1 − 1
b2 1 1 1 − 1 −1 − 1 − 1 1
b3 1 1 − 1 − 1 −1 − 1 1 1
b4 1 − 1 − 1 − 1 −1 1 1 1

2T 3T 4T

z

T

ρ1

ρ2

ρ3

ρ4

pb

z b1

[1 1 1 1] z b2

[1 1 1− 1]
z b3

[−1− 1− 1 1] z b4

[1 1− 1− 1]

Figure 3.2: Representation of the zb,i subsequences.

zbi
is compared with all the valid subsequences from Cdet with respect to the

Hamming-distance. The codeword with the minimum Hamming-distance c is
selected as the valid code segment and the backward mapping process is carried
out. With this, the i-th symbol is detected according to

x̂i =←−d (c) , where c = arg min
cdet

Hamming (zbi
, cdet) , (3-1)

where Hamming (zbi
, cdet) = ∑MRx+1

n=1
1
2 |zbi,n − cdet,n|, with zbi,n and cdet,n

being the nth element of the subsequence zbi
and cdet, respectively. Note

that the mapping process does not incur error propagation, since if the last
sample of the previous Nyquist interval ρ is detected wrong, it only affects the
corresponding and subsequent Nyquist interval.



4
Optimization Based Precoding Methods

This chapter describes the precoding methods developed for the proposed
TI ZX modulation.

4.1
MMDDT Criterion

When processing samples prior to detection, it is known that samples
close to the decision threshold are more sensitive to perturbations. In this
regard, MMDDT considers maximizing the minimum distance to the decision
threshold, denoted as γ, as the optimization criterion. The maximization of
γ is performed in the desired direction induced by cout. These techniques
are presented in the following. First, the optimization problem is a direct
formulation of the MMDDT precoding problem, which corresponds to a
quadratically constrained quadratic program. The second strategy relies on an
equivalent problem formulation which implies minimization of the transmit
energy while taking the minimum distance to the decision threshold as a
constraint, followed by scaling to the desired transmit energy. Another strategy
to approach the MMDDT criterion in space and time involves using spatial
ZF precoding and appropriately scaled, quality of service constrained temporal
precoding, which further reduces the computational complexity. The existing
technique based on the MMDDT criterion presented in [46], which yields the
temporal precoding vector for user k for in-phase or quadrature component
reads as min

rkR/J
aTrkR/J

subject to: BkrkR/J ⪯ 0

rT
kR/JW

TWrkR/J ≤
1
2ETx,

(4-1)
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where

rkR/J =
[
pT

xkR/J
, γ
]T

a =
[
01×Nq ,−1

]T
Bk = − [βCkV U , 1Ntot×1]

Ck = diag
(
coutkR/J

)
W =

[
GT

TxU , 0Ntot×1
]

, (4-2)

and β refers to the real-valued beamforming gain [53]. The second constraint
accounts for the transmit energy constraint considering E0

ETx
= Nu and E0 as

the total transmit energy [47].

4.1.1
MMDDT Criterion in Space and Time

The proposed techniques based on MMDDT in space and time have been
implemented considering stacked vector notation.

4.1.1.1
Joint MMDDT

For the joint MMDDT precoding process, each sequence xk is forwarded
to the TI ZX modulator for mapping to the desired output pattern coutk

. In the
cout stacking block, all the coutk

patterns are stacked for further processing.
The corresponding real-valued representation of the stacked vector cout is a
column vector of length 2NuNtot, which reads as

coutR
=
[
R{cout1}

T , · · · ,R
{
coutNu

}T
,J {cout1}

T , · · · ,J
{
coutNu

}T
]T

.

(4-3)

The coutR
sequence serves as input to compute the space-time precoding vec-

tor pxR
, which is the solution of a convex optimization problem. The waveform

design optimization is addressed through the precoding optimization to max-
imize the minimum distance to the decision threshold of the received signal,
termed γ. In the proposed maximization problem, all the users are addressed
simultaneously, which is different from the approach used in [2,47]. Considering
the maximum total transmit energy per block E0, the corresponding equivalent
optimization problem can be expressed in the epigraph form, cf. [54, Sec. 4.1.3],
with
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minimizerR
aTrR

subject to: BrR ⪯ 0

(WrR)T (WrR) ≤ E0,

(4-4)

where
rR =

[
pT

xR
, γ
]T

, a =
[
01×2NtNq ,−1

]T
B = [−CHeffR

, 12NtotNu×1] , C = diag (coutR
)

W = [A, 06NtotNt×1] , A =
(
I2Nt ⊗GT

TxU
)

.

The optimization problem in (4-4) has a linear objective, a quadratic, and
a linear constraint, which is a particular case of the convex quadratically
constrained quadratic program (QCQP), cf. [54, Sec. 4.4]. In the formulation of
the convex optimization problem in (4-4), the objective function corresponds
to the maximization of the minimum distance to the decision threshold of
the received signal in the noise free case, where the vector rR contains
the temporal precoding vector of all the users and the distance to the
decision threshold γ, which corresponds to its last entry. The first constraint
addresses the optimization problem to maximize the minimum distance to
the decision threshold in the desired direction induced by coutR

considering
the effective channel HeffR

. The second constraint with W accounts for the
maximum transmit energy constraint. In the following, the precoding vector
corresponding to the optimal solution in (4-4) is denoted by pxRjoint

. Note that
for a given problem, the optimal precoding vector pxRjoint

scales proportionally
with

√
E0 and γ in terms of pxRjoint

∝
√

E0 ∝ γ. In other words, optimal
precoding vectors with different power constraints can be readily extracted
from the solution in (4-4). Therefore, an equivalent problem formulation
to (4-4) is given by a reverse problem formulation in terms of a power
minimization problem for a given positive scalar value for γ. The corresponding
problem formulation is described as follows

minimizerpR

(
ArpR

)T (
ArpR

)
subject to: BoptrpR

⪯ −γ1,
(4-5)

where Bopt = −CHeffR
. The problem formulation in (4-5) corresponds to a

convex quadratic program given that ATA is positive semi-definite. In this
case, the precoding vector pxR

is a scaled version of the optimization variable
in terms of rpR

= αpxR
. The solution to the problem in (4-4) can be obtained

by scaling the solution of (4-5) such that the total power constraint holds with
equality. Taking into account the power constraint (WrR)T (WrR) = E0 and
the power of the scaled version

(
ArpR

)T (
ArpR

)
= E, it is possible to extract

pxRjoint
from rpR

with the scaling factor given by α =
√

E/E0. With this, the
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precoding vector reads as pxRjoint
= rpR

/α.

4.1.1.2
Joint MMDDT ZF

An approximate solution for the problem in (4-4) can be obtained with a
lower computational complexity considering that spatial ZF precoding [55] is
employed and that the convex optimization problem is solved separately per
user and dimension for a given positive scalar value of γ and scaling due to
the total power constraint as the final step.

The conventional spatial ZF precoding matrix [56] is defined as

Psp = czfPzf with Pzf = HH
(
HHH

)−1
, (4-6)

where the ZF scaling factor is expressed as

c2
zf =

(
Nu/trace

((
HHH

)−1
))

. (4-7)

The optimization problem per user and dimension for a given minimum
distance γ, like considered as a quality of service constraint in [57], can be
expressed as a convex quadratic program given by

minimizerzfkR/J
(WrzfkR/J )T (WrzfkR/J )

subject to: BkrzfkR/J ⪯ −γa,
(4-8)

where

Bk = −β (CkV U)

Ck = diag
(
coutkR/J

)
a = [1MRxN+1×1] .

In (4-8) β acts as an effective channel gain that results from the channel and
the ZF precoding βI = HPsp. The subscript R/J denotes that the problem is
solved separately for the in-phase and quadrature component of the signal and
the corresponding complex representation is denoted by rzfk = rzfkR + jrzfkJ .

The constraint in (4-8) ensures that the noise free received signal after
quantization is equal to coutkR/J . The symbol⪯ in (4-8) constrains each element
of the vector BkrzfkR/J to be less than or equal to −γ such that the minimum
distance of the samples of the received signal to the decision threshold is equal
to γ. Implicitly, the optimization problem shapes the waveform y(t) at the
receiver, which is described in the discrete model by βV Upxk

for the noiseless
case. The total transmit energy considering the temporal and spatial precoding



Chapter 4. Optimization Based Precoding Methods 35

can be computed as

ETx = trace
(
PspRxTxR

H
xTx
P H

sp

)
, (4-9)

where the matrix RxTx is given by

RxTx =
[
(GT

TxUrzf1)T; (GT
TxUrzf2)T; · · · ; (GT

TxUrzfNu
)T
]

. (4-10)

An appropriate temporal precoding matrix that fulfills the total energy con-
straint with equality can be found via scaling the complex matrix defined as
Pxtemp = 1

αzf

[
rT

zf1 ; rT
zf2 ; · · · ; rT

zfNu

]
. Taking into account ETx and the desired

transmit energy E0, the scaling factor is given by αzf =
√

ETx/E0. After defin-
ing the matrix Pxst = PspPxtemp it is vectorized as pxstk = vec(P T

xst). Finally, the
corresponding real-valued notation pxstkR

serves as an approximate solution for
the problem in (4-4) such that pxstkR

≈ pxRjoint
.

4.1.2
Numerical Results

This section presents the numerical evaluation of the proposed MMDDT
TI ZX precoding techniques, in terms of the uncoded BER. The proposed
precoding methods are compared with the state-of-the-art method in terms of
quantization precoding [2]. The simulations were carried out for different sets
of signaling rate (MTx/T ) and sampling rate (MRx/T ). For all the evaluated
configurations, gTx(t) is an RC filter and the receive filter gRx(t) is an RRC
filter, where the roll-off factors are ϵTx = ϵRx = 0.22, as in [2]. The bandwidth
is defined with WRx = WTx = (1 + ϵTx) /Ts, wherein the simulations it is
considered T = Ts. A Rayleigh fading model is considered for the channel
matrix H , whose entries are i.i.d. zero-mean complex Gaussian distributed
with unit variance. The noise samples are complex Gaussian with zero mean
and variance σ2

n. Moreover, in all the evaluated scenarios, the BS is equipped
with Nt = 8 antennas, Nu = 2 users, N = 30 Nyquist intervals, and maximum
energy constraint E0. The SNR is defined by the ratio between the transmit
power and the noise power in the occupied bandwidth. With noise spectral
density N0, the SNR can be defined as

SNR = E0/(NT )
N0(1 + ϵTx)/T

= E0

NN0(1 + ϵTx) . (4-11)

Note that (4-11) can also be interpreted as the common receive SNR (in the
occupied frequency band) for the case of uncorrelated signals at the transmit
antennas.
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Figure 4.1: BER comparison of the considered modulations. In (a) for MRx = 2
and in (b) for MRx = 3.

A BER comparison between TI ZX modulation, QP modulation [2] and
RLL modulation [14] is presented, where the established precoding methods
are considered with per user per dimension MMDDT in combination with
spatial ZF precoding [47], [2].

The TI ZX modulation and QP modulation approaches are evaluated
with the same rate and under the same simulation environment for different
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sets. The considered modulations result in different data rate: For TI ZX with
MRx = 3, 2 bit/T/dim and with MRx = 2, 1.5 bit/T/dim. In the case of RLL
sequences for MRx = 2 and parameter d = 1, 1.33 bit/T/dim are considered
and for MRx = 3 and d = 2, 1.5 bit/T/dim. With this, the throughput for TI
ZX is higher than the throughput for RLL and QPSK.

Fig. 4.1 compares the TI ZX modulation, QP modulation [2] and RLL
sequences in terms of the BER. It can be observed that the TI ZX modulation
yields better performance than QP modulation, which can be explained by
the fact that TI ZX modulation sequences contain on average, a smaller
number of zero-crossings in comparison with sequences constructed with QP
modulation [2]. In the presence of appropriate bandlimitation, the QP method
with its relatively large number of zero-crossings, indirectly yields a lower
performance in the waveform optimization. Note that, without bandlimitation,
QP modulation [2] and the proposed TI ZX modulation can be equivalent
in terms of γ or MSE as shown in [47, Fig. 3] and [48, Fig. 3], where the
effect of bandlimitation is investigated. On the other hand, RLL mapping
achieves a lower BER than TI ZX and QP modulation approaches. However,
the proposed TI ZX yields a higher data rate and its detection scheme
has lower complexity than the Viterbi detector for RLL sequences [51].
Note that sequence construction with 4-ASK symbols [11, 13, 14] has a lower
computational complexity than the proposed modulation approach but would
result in out-of-band radiation.

The BER comparison of the MMDDT based precoding techniques is
shown in Fig. 4.2. It can be observed that in the high SNR regime, the
established MMDDT ZF precoding technique is outperformed significantly by
the precoders considering the MMDDT criterion jointly in space and time.
Moreover, Fig. 4.2 shows that the alternative formulation of the joint MMDDT
with (4-5) yields an equivalent performance to the direct joint MMDDT
formulation (4-4). A complexity performance trade-off is found in the total
MMDDT ZF (4-8), which yields a better BER performance than the MMDDT
ZF while having the lowest computational complexity among all the methods,
as confirmed in Table 4.1.
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Figure 4.2: BER vs. SNR for Joint MMDDT and total MMDDT ZF with
MRx = MTx = 2, considering the proposed TI ZX modulation.

4.2
MMSE Criterion in Space and Time

The general MMSE precoding problem with TI ZX modulation is formu-
lated as

minimizef>0,px E{∥f(Heffpx +GRx,effn)− cout∥2
2} (4-12)

subject to: pH
x A

HApx ≤ E0

withA = INt⊗GT
TxU . Note that the scaling factor f is essential for the MMSE

problem formulation, however f does not need to be included in the system
model because scaling at the receiver does not change the output of the 1-bit
quantization. The sequence cout is obtained by stacking in a column vector the
coutk

patterns expressed as cout = [cT
out1 , cT

out2 , · · · , cT
outk

, · · · , cT
outNu

]T . It can be
shown that the MSE optimal solution of px corresponds to a maximum total
transmit energy E0. The linear MMSE precoder minimizes the mean square
error between the received signal z and the desired output pattern cout with
transmit energy E0. By exploiting the knowledge that the optimal precoding
vector must fulfill the total energy constraint with equality, the optimization
problem in (4-12) can be solved in closed form, e.g., by a strategy similar to
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what is presented in [58]. With this, the optimal solution of (4-12) is given by

pxMSE = f−1
(
HH

effHeff + E0
−1trace{GH

Rx,effCnGRx,eff}AHA
)−1

HH
effcout,

(4-13)

where the scaling factor is defined by f =
∥∥∥cH

out∆
∥∥∥

2
/
√

E0 and Cn = E
[
nnH

]
corresponds to the noise covariance matrix. The derivation of (4-13) and the
description of the matrix ∆ are provided in Appendix A.1. Using (4-13), the
MSE of the received signal samples can be expressed as

MSE =trace{HeffXH
H
effE{coutc

H
out}HeffX

HHH
eff}

− 2Re{trace{HeffXH
H
effE{coutc

H
out}}}+ 2Ntot

+ (1/E0)trace{∆HE{coutc
H
out}∆}trace{GRx,effCnG

H
Rx,eff}, (4-14)

where X =
(
HH

effHeff + E−1
0 trace{GRx,effCnG

H
Rx,eff}AHA

)−1
.

4.2.1
MMSE With Active Constellation Extension

The MSE cost function in the proposed system also penalizes waveforms
where the received signal has amplitude larger than 1 per dimension, which
is not a disadvantage for detection performance. This issue corresponds to a
relatively poor BER performance for high SNR. Allowing for the case that
the amplitude of the received signal can be larger than 1 the MMSE problem
can be reformulated using the active constellation extension [49]. The ACE
corresponds to an extension of cout to constellation point with relaxation in
amplitude which can be larger or equal to 1.

tT 2T 3T 4T 5T 6T 7T 8T 9T

cout

S(cout)

1

−1

T

Symbol
duration

Figure 4.3: Active constellation extension example for a given cout.

It is considered that the constellation points s in the region S(cout) are
chosen with the MSE criterion. An example of the ACE is shown in Fig. 4.3,
where the constellation region S(cout) is determined by cout. Using s ∈ S(cout),
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the extension of (4-12) can be formulated as

minimizes,f>0,px E{∥fHeffpx − s∥2
2}+ f 2trace{GRx,effCnG

H
Rx,eff} (4-15)

subject to: pH
x A

HApx ≤ E0

s ∈ S(cout).

In order to approach the solution for the problem in (4-15) two strategies are
developed in the following in terms of the MMSE ACE and iterative MMSE
ACE.

4.2.1.1
Optimal MMSE ACE

The proposed optimal MMSE ACE formulates the problem in (4-15) as
a convex optimization problem for jointly solving the problem with respect to
f , s, and px. Rewriting (4-15) with real-valued notation yields

minimizesR,f>0,pxR
E{∥f(HeffR

pxR
)− sR∥2

2}+ f 2trace{GRx,effR
CnR

GT
Rx,effR

}
(4-16)

subject to: pT
xR
AT

RARpxR
≤ E0

CsR ⪰ 1

where C = diag(coutR
). By introducing pfxR

= pxR
f , (4-16) can be rewritten

as

minimizesR,f>0,pfxR
E{∥HeffR

pfxR
− sR∥2

2}+ f 2trace{GRx,effR
CnR

GT
Rx,effR

}
(4-17)

subject to: pT
fxR
AT

RARpfxR
≤ f 2E0

CsR ⪰ 1.

Considering the stacked vector ν =
[
pT

fxR
, sT

R, f
]T

the problem in (4-17) can
be expressed as

minimizeν νT Ων (4-18)

subject to: ∥Rν∥2 ≤
√

E0δ
Tν

δTν > 0

Λν ⪰ 1,
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where

Ω = ΘT Θ + Ξ

Θ = [HeffR
, 02NuNtot×2NuNtot+1]−

[
02NuNtot×2NqNt , I2NuNtot , 02NuNtot×1

]
Ξ = diag

([
01×2NqNt+2NtotNu , trace{GRx,effR

CnR
GT

Rx,effR
}
])

R = [AR, 06NtNtot×2NuNtot+1]

δ =
[
01×2NqNt+2NtotNu , 1

]T
Λ =

[
02NtotNu×2NqNt ,C, 02NtotNu×1

]
.

Considering L =
√

Ω the objective function in (4-18) becomes νTLLTν =∥∥∥LTν
∥∥∥2

2
. Then, by considering the 2-norm, an equivalent optimization problem

as in (4-18) is given by

minimizeν
∥∥∥LTν

∥∥∥
2

(4-19)

subject to: ∥Rν∥2 ≤
√

E0δ
Tν

δTν > 0

Λν ⪰ 1.

By considering the epigraph form, the problem in (4-19) can be expressed as
a SOCP in standard form. By introducing η ≥

∥∥∥LTν
∥∥∥

2
, the objective function

in (4-19) can be replaced by η. Using stacked vector notation with ξ = [η,ν],
an equivalent problem to (4-19) is given by

minimizeξ θTξ (4-20)

subject to: ∥ΓTξ∥2 ≤ θTξ

∥Dξ∥2 ≤
√

E0ψ
Tξ

ψTξ > 0

Φξ ⪰ 1,



Chapter 4. Optimization Based Precoding Methods 42

Algorithm 2 Proposed iterative MMSE ACE algorithm
1: Calculate pxand f → by (4-13) for a given cout vector

repeat
2: Calculate sp = fHeffpx
3: Extract samples from sp such that → saux =

{
spi
|
∣∣spi

∣∣ < 1
}

4: Bring saux to -1 or 1 according to cout
5: Generate s,→ s =

{
sp |

∣∣spi

∣∣ < 1 = sauxi

}
6: Calculate px and f → by (4-13) with s instead of cout

until convergence criterion triggers

where

D = [06NtNtot×1,R]

Γ =
[
01×2NqNt+2NtotNu+1;

[
01×2NqNt+2NtotNu+1,L

]]
ψ =

[
01×2NqNt+2NtotNu+1, 1

]T
θ =

[
1, 01×2NqNt+2NtotNu+1

]T
Φ = [02NtotNu×1, Λ] .

4.2.1.2
Iterative MMSE ACE Algorithm

The iterative MMSE ACE algorithm is proposed as an alternative
approach to finding an approximate solution for the problem in (4-15) with
an iterative strategy and reduced complexity. The initial step to find s ∈
S(cout) is to solve the MMSE problem using (4-13) considering cout. With
the corresponding precoding vector px, the auxiliary vector sp is calculated
by sp = fHeffpx. Note that the vector sp can include samples with small
amplitudes, i.e., −1 < spi

< 1. In this case, such samples are forced to the
corresponding samples given in cout ∈ {1,−1}. Accordingly, the vector s is
determined by sp and cout jointly. Subsequently, the problem in (4-15) is solved
like in (4-13) with the fixed vector s instead of cout. The process is repeated
until a convergence criterion is reached, e.g., a maximum number of iterations.
The process is summarized in Algorithm 2.

4.2.2
Iterative MMSE Gradient Descent Method

This section introduces the collaborative work presented in the study [50].
For this method the considered system model is presented in Fig. 4.4, which
changes slightly concerning the system model presented in Section. 2, since



Chapter 4. Optimization Based Precoding Methods 43

Zero-crossing

X 1

XNu
Modulation stacker

cout
MMSE
Time

Precoding

DAC
s1(t)

DAC

Cout1

CoutNu

Cout

gTx(t)

gTx(t) sNt
(t)

schk,1
(t) + nk,1(t)

H

gRx(t)

Signaling rate
MTx

/T

NuNr × Ntot

P
a
rt
it
io
n
in
g

Nq

Nq

NuNr × Nq

Nr × Ntot
Nr × N

CoutPtime

Precoding

PspCoutPtime

Space

1-bit ADC

Detector

schk,Nr
(t) + nk,Nr (t)

x̂k,Nryk,Nr zk,Nr

Sampling rate MRx
/T

Q(·)gRx(t)

1-bit ADC

Detector
x̂k,1yk,1 zk,1

Sampling rate MRx
/T

Q(·)
1-bit

receiver

x̂ 1,1

1-bit
receiver

x̂ 1,Nr

x̂Nu,1

x̂Nu,Nr

user k with Nr antennas

Figure 4.4: Multiuser MIMO system model for the Iterative Gradient Descent
method.

spatial and temporal precoders are defined separately and multiantenna users
are taking into account.

Considering Nu users with Nr receive antennas and defining the matrices
Cout = [cout,1; . . . ; cout,Nu ], the spatial precoding matrix Pspace and the tempo-
ral precoding matrix Ptime, the unquantized received signals can be expressed
with a stacked vector notation in terms of a matrix with dimensions NuNr×Ntot

by

Y =HPspaceCoutPtimeU
TV T +NGT

Rx, (4-21)

[Y1; . . . ;YNu ] =[H1; . . . ;HNu ]PspaceCoutPtimeU
TV T + [N1; . . . ;NNu ]GT

Rx,

whereHk ∈ CNu×Nt andNk ∈ CNr×3Ntot contains i.i.d. complex Gaussian noise
samples with zero mean and variance σ2

n = N0.
The aim is to find an optimal Pspace with dimensions Nt ×NuNr and an

optimal Ptime with dimensions Ntot × Nq, that minimizes the MSE which is
denoted as ϵ in the sequel. With the MMSE criterion and an instantaneous
power constraint, the optimization problem can be cast as

minf,Ptime,Pspace E{∥fY −Cout∥2
F} (4-22)

subject to: ∥PspaceCoutPtimeU
TGTx∥2

F ≤ E0.

The derivative of the objective function in (4-22) with respect to (w.r.t.)
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P ∗
space is given by

∂ϵ

∂P ∗
space

=f 2HHHPspaceCoutPtimeU
TV TV UPH

timeC
H
out

− fHHCoutV UP
H
timeC

H
out. (4-23)

The derivative w.r.t. P ∗
time is given by

∂ϵ

∂P ∗
time

=f 2CH
outP

H
spaceH

HHPspaceCoutPtimeU
TV TV U

− fCH
outP

H
spaceH

HCoutV U . (4-24)

Taking the derivative of ϵ w.r.t. f and equating it to zero yields

f =(trace{HPspaceCoutPtimeU
TV TCH

out} (4-25)

+ trace{CoutV UP
H
timeC

H
outP

H
spaceH

H})/

(2(∥HPspaceCoutPtimeU
TV T∥2

F

+ trace{GRxRNG
T
Rx})).

Based on the instantaneous power constraint in (4-22), it can be defined
Q = CoutPtimeU

TGTx, A = PspaceCout, and B = UTGTx. With this, the
power constraint can be further expressed as

∥PspaceQ∥2
F = ∥APtimeB∥2

F ≤ E0. (4-26)

Hence, the spatial- and time-domain filters can be normalized to satisfy the
instantaneous power constraint with equality as

P̂space = Pspace ·
√

E0∥PspaceQ∥−1
F (4-27)

P̂time = Ptime ·
√

E0∥APtimeB∥−1
F . (4-28)

Using the introduced gradient expressions and normalizations from above a
projected gradient descent algorithm is proposed as described in Algorithm 3.

For the initialization, we use a spatial zero-forcing precoder with scaling
factor expressed as

czf =
√

NrNu/trace{(HHH)−1}. (4-29)

Then, the maximum transmit power can be expressed without the spatial
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Algorithm 3 Proposed Projected Gradient Descent
1: i← 0
2: Set µs and µt
3: Initialize Pspace[i]← Spatial ZF
4: Initialize Ptime[i], f [i]← Closed-form MMSE (4-39), (4-40)
5: repeat
6: Update Precoding matrices:
7:
8: Calculate Q[i] = CoutPtime[i]UTGTx
9: Calculate ∂ϵ/∂P ∗

space[i] by (4-23)
10: Pspace[i + 1]← Pspace[i]− µs · ∂ϵ/∂P ∗

space[i]
11: Normalize Pspace[i + 1] due to (4-27)
12:
13: Calculate A[i] = Pspace[i + 1]Cout
14: Calculate ∂ϵ/∂P ∗

time[i] by (4-24)
15: Ptime[i + 1]← Ptime[i]− µt · ∂ϵ/∂P ∗

time[i]
16: Normalize Ptime[i + 1] due to (4-28)
17:
18: Update f
19: Calculate f [i + 1] by (4-25)
20:
21: i← i + 1
22: until convergence criterion triggers

precoding as

E0 = trace{CoutPtimeU
TGTxG

T
TxUP

H
timeC

H
out}. (4-30)

Based on the ZF-precoding matrix the unquantized received signal is described
by

Y = czfCoutPtimeU
TV T +NGT

Rx. (4-31)

With this, the temporal MMSE problem can be cast as

minf,Ptime E{∥fY −Cout∥2
F} (4-32)

subject to: ∥CoutPtimeU
TGTx∥2

F ≤ E0,

which is a similar problem as solved in [59]. By denoting the new MSE
expression by ϵT, the Lagrangian function reads as

L(P ∗
time,Ptime, f) = (4-33)

ϵT + λ(trace{CH
outCoutPtimeU

TGTxG
T
TxUP

H
time} − E0).
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The derivative w.r.t. P ∗
time yields

∂L

∂P ∗
time

=f 2 c2
zf C

H
outCoutPtimeU

TV TV U (4-34)

− f czf C
H
outCoutV U

+ λCH
outCoutPtimeU

TGTxG
T
TxU .

By equating it to zero implies

czf

f
CH

outCoutV U =c2
zfC

H
outCoutPtimeU

TV TV U (4-35)

+ λ

f 2C
H
outCoutPtimeU

TGTxG
T
TxU ,

and

czf

f
V U = c2

zfPtimeU
TV TV U + λ

f 2PtimeU
TGTxG

T
TxU .

The latter can be rearranged such that the structure of the optimal precoding
matrix can be determined as

Ptime = czf

f
V U( c2

zfU
TV TV U + λ

f 2U
TGTxG

T
TxU)−1.

The derivative w.r.t. f yields

∂L

∂f
=2fc2

zf∥V UPH
timeC

H
out∥2

F (4-36)

− czf 2Re{trace{CH
outCoutV UP

H
time}}

+ 2f trace{GRxRNG
T
Rx}.

Equation it to zero yields

czf

f
trace{CH

outCoutV UP
H
time} = (4-37)

c2
zf∥CoutPtimeU

TV T∥2
F + trace{GRxRNG

T
Rx},

where the real part operator has been skipped due to the structure of the
optimal Ptime. After multiplication from the right with Ptime and applying the
trace operator, (4-35) is equal to (4-37). Putting together the right hand sides
yields

λ

f 2 = trace{GRxRNG
T
Rx}

trace{CH
outCoutPtimeUTGTxGT

TxUP
H
time}

, (4-38)
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where it is considered that the power constraint holds with equality such
that trace{CH

outCoutPtimeU
TGTxG

T
TxUP

H
time} = E0 . With this, the temporal

precoding matrix reads as

Ptime = f−1 czf V UΓ−1, (4-39)

with Γ = c2
zfU

TV TV U + trace{GRxRNG
T
Rx}

E0
UTGTxG

T
TxU . Inserting (4-39) into

the power constraint (4-30) yields

f = czfE
− 1

2
0 ∥Cout V UΓ−1UTGTx∥F . (4-40)

4.2.3
Numerical Results

This section presents the numerical evaluation of the proposed MMSE TI
ZX precoding techniques, in terms of the MSE. The simulations were carried
out for different sets of signaling rate (MTx/T ) and sampling rate (MRx/T ).
For all the evaluated configurations, gTx(t) is an RC filter and the receive filter
gRx(t) is an RRC filter, where the roll-off factors are ϵTx = ϵRx = 0.22, as
in [2]. The bandwidth is defined with WRx = WTx = (1 + ϵTx) /Ts, wherein the
simulations it is considered T = Ts. A Rayleigh fading model is considered for
the channel matrix H , whose entries are i.i.d. zero-mean complex Gaussian
distributed with unit variance. The noise samples are complex Gaussian with
zero mean and variance σ2

n. Moreover, in all the evaluated scenarios, the BS is
equipped with Nt = 8 antennas, Nu = 2 users, N = 30 Nyquist intervals, and
maximum energy constraint E0. The SNR is defined as in (4-11).

Fig. 4.5 shows a performance comparison among the conventional MMSE
precoding (4-12), the optimal MMSE ACE (4-15) and the iterative MMSE
ACE considering different numbers of maximum iterations imax (Algorithm 2).
In Fig. 4.5, the configuration MRx = MTx = 2 is considered. It is observed that
when increasing the number of iterations, the iterative MMSE ACE precoding
approaches the MMSE ACE performance. The proposed MMSE precoding
techniques are compared for different sets in Fig. 4.6, with imax = 30 for the
iterative MMSE ACE. As expected, a substantial improvement can be achieved
with ACE compared to the MMSE precoder, especially at high SNR. Based
on Fig. 4.5 and Fig. 4.6, one can conclude that the iterative MMSE ACE in
general, yields a performance close to the optimal MMSE ACE at low and
medium SNR.



Chapter 4. Optimization Based Precoding Methods 48

−10 −5 0 5 10 15 20 25 3010−2

10−1

100

imax = 1
imax = 5
imax = 10
imax = 20
imax = 30
imax = 50

SNR [dB]

M
SE

Proposed optimal MMSE ACE
Proposed MMSE (4-12)
Proposed MMSE ACE iter

Figure 4.5: Comparison between the optimal MMSE ACE and the iterative
MMSE ACE for different number of iterations for MRx = MTx = 2.
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Figure 4.6: MSE comparison for different configurations. In (a) MRx = 2,
MTx = 1. In (b) MRx = MTx = 3. In (c) MRx = 3, MTx = 1.
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Figure 4.7: MSE cost function for different precoding strategies.

For the numerical evaluation of the iterative MMSE gradient descent
method it was considered a system with Nu = 2 users with Nr = 2 antennas and
Nt = 5 base station antennas. Each transmit block consists of N = 50 symbols.
The signaling and sampling rate are chosen as MRx = MTx = 2. The step size
for the proposed projected gradient descent algorithm equals µt = 10−7 and
µs = 10−3. In Fig. 4.7 the proposed iterative spatial temporal MMSE precoding
algorithm is compared with the joint space time MMSE precoder [48] in terms
of the MSE, which confirms that the MSE decreases with the iterations.
The computational complexity of the precoder in [48] is on the order of
O((NtNq)3). With O((NrNu)3 + N3

q + imax(2NtotNuNrNq) + Ntot(NuNr)2) +
NtotNtNrNu + N2

t NrNu + (NrNu)2Nt + NtotNtNrNu + NtotNtNq + N2
t NrNu +

NtotNtNrNu+N2
q NrNu+NtotNqNrNu), which is approximatelyO(N3

q ) for small
imax, the proposed method has significantly lower computational complexity,
in comparison to the method in [48]. Fig. 4.8 illustrates the uncoded bit error
rate. The different precoding methods are compared in combination with the
zero-crossing approach and the forward mapping approach presented in [2]. The
results show a significant benefit for the zero-crossing approach. Finally, it is
shown that the proposed iterative approach has a comparable bit error rate to
the closed form approach in [48] while having significantly lower computational
complexity.
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Figure 4.8: BER performance comparison.

4.3
Performance Comparison Between the Optimization Based Precoding
Methods

This section presents a performance comparison between the proposed
precoding techniques based on the MMDDT and MMSE approaches in terms
of the BER, PSD, time offset analysis, and computational complexity.

4.3.1
BER Performance and PSD Evaluation

In Fig. 4.9 and Fig. 4.10, a performance comparison between the consid-
ered precoders in terms of BER is shown. Fig. 4.9 compares the performance
of the precoders for MRx = MTx = 2. In addition, a conventional QPSK mod-
ulated signal is presented as a reference. Fig. 4.10 shows the simulation results
for other configurations. The joint MMDDT precoder has the best performance
at high SNR among all the evaluated precoding methods. In general, it can be
observed that the conventional MMSE criterion corresponds to performance
degradation in the high SNR region. In contrast, the MMDDT precoding ap-
proaches correspond to performance degradation in the low SNR region. It is
demonstrated that a performance trade-off can be obtained with the MMSE
ACE, which has a good performance at low and high SNR region. The BER
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results align with the previously shown MSE results, confirming that the MSE
is an appropriate design criterion. Fig. 4.11 shows simulation results in terms
of normalized PSD for all the precoding techniques. The results were simu-
lated for MRx = MTx = 2, employing PSDdB = 10log10

[
E{
∣∣∣Fi(
√

3Ntot)(−1)
∣∣∣2}],

where Fi is the discrete Fourier transform of the signal per transmit antenna
given by si = GT

TxUpxi
.
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Figure 4.9: BER vs. SNR for MRx = MTx = 2.
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Figure 4.10: BER vs. SNR for different configurations. In (a) MRx = 2,
MTx = 1. In (b) MRx = MTx = 3. In (c) MRx = 3, MTx = 1.
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Figure 4.11: Power spectral density for MRx = MTx = 2.

4.3.2
Time Offset Analysis

In addition, simulation results are presented with sampling time offset τ

at the receiver. In this context, the received signal has a sub-sampling time
offset τ , and the impulse response v(t) becomes voffset(t), whose discrete-time
representation is given by matrix Voffset

Voffset = (4-41)
v (τ) v

(
T

MRx
+ τ

)
· · · v (TN + τ)

v
(
− T

MRx
+ τ

)
v (τ) · · · v

(
T
(
N − 1

MRx

)
+ τ

)
... ... . . . ...

v (−TN + τ) v
(
T
(
−N + 1

MRx

)
+ τ

)
· · · v (τ)


Ntot×Ntot

.

The received signal at user k taking into account the sub-sampling time offset
is described by

zkoffset = Q1 ((hk ⊗ INtot) (INt ⊗ VoffsetU)px + (INuNr ⊗GRx)n) , (4-42)

where px relies on the impulse response v(t). In the detection process v(t) is
also considered. Using the described configuration, BER simulations have been
carried out for different sampling time offsets as shown in Fig. 4.12. Note that
for the proposed iterative MMSE imax = 30. From Fig. 4.12, it is possible to
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observe that the MMDDT based precoding techniques are the most robust
against the effects of sampling offset in high SNR regions.
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Figure 4.12: BER vs. time delay for MRx = MTx = 2 considering different
values of SNR. In (a) for SNR [dB] = 10 and in (b) for SNR [dB] = 30.

4.3.3
Computational Complexity Evaluation

In this section, the computational complexity of the proposed methods
is evaluated. Table 4.1 lists the optimization problem associated with each
method, algorithm and complexity order.

The MMDDT ZF precoding technique, the joint MMDDT and the
total MMDDT ZF are quadratically constrained quadratic programs solved
with interior point methods. Unlike joint MMDDT, MMDDT ZF and total
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Table 4.1: Computational Complexity analysis

Method Problem Algorithm Complexity Order

MMDDT ZF [47] [2] QCQP and
matrix inversion

Interior point
methods and
Gauss–Jordan
elimination

O
(
2Nu(Nq + 1)3.5 + N3

t
)

Proposed joint MMDDT (4-5) QCQP Interior point
methods O

(
(2NqNt)3.5)

Proposed total MMDDT ZF QCQP and
matrix inversion

Interior point
methods and
Gauss–Jordan
elimination

O
(
2Nu(Nq)3.5 + N3

t
)

Proposed optimal MMSE ACE SOCP Interior point
methods O

(
(2NqNt + 2NuNtot + 2)3.5)

Proposed iterative MMSE ACE Matrix inversion Gauss–Jordan
elimination O

(
(NqNt)3 + imax(NuNtot + (NqNt)3)

)
Proposed MMSE Matrix inversion Gauss–Jordan

elimination O
(
(NqNt)3)

MMDDT ZF are solved separately for the in-phase and quadrature components
and each user stream. With this, the complexity scales linearly twice by
the number of users. As a result, the MMDDT ZF and the proposed total
MMDDT ZF are the precoders with the lowest complexity. Moreover, the
proposed optimal MMSE ACE corresponds to a SOCP which can be solved
with interior point methods. The proposed iterative MMSE ACE and the
proposed MMSE involve a matrix inversion problem that corresponds to cubic
complexity. The complexity results are presented in Fig. 4.13. In Fig. 4.13 (a)
the precoding techniques are evaluated in terms of the number of transmit
antennas Nt, where imax = 30 and MTx = MRx = 2. Fig. 4.13 (a) confirms
that MMDDT ZF and the proposed total MMDDT ZF are the precoders with
the lowest complexity among all the evaluated precoders, while MMSE ACE
optimal and joint MMDDT are the precoders with relatively high complexity.
The proposed conventional MMSE precoder has the lowest complexity among
all the considered MMSE-based techniques. In Fig. 4.13 (b), a complexity
comparison between the optimal MMSE ACE and iterative MMSE ACE is
shown in terms of the number of iterations and different values for MTx and
MRx, where the BS is equipped with Nt = 8 antennas and Nu = 2 users. It can
be seen that the proposed iterative MMSE ACE yields a significantly lower
complexity in comparison with the proposed optimal MMSE ACE even when
the number of iterations imax is high.
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Figure 4.13: Computational complexity. (a) vs. the number of transmit anten-
nas. (b) comparison between the optimal and iterative MMSE ACE.

4.4
Zero-Crossing Waveform Comparison

This section presents a comparison between the mappings with the TI
ZX modulation, and the RLL sequence-based mapping derived in [60]. This
part of the thesis corresponds to the collaborative study [51].

In this analysis, the multi-user MIMO downlink scenario shown in
Fig. 2.1 with the spatio-temporal MMSE precoder from (4-12) is considered.
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Furthermore, instead of using the soft-input soft-output RLL decoder from [60],
a low-complexity minimum Hamming distance Viterbi algorithm for RLL
sequence decoding is presented. Finally, a simple SE lower bound, which
depends on the system’s uncoded BER is derived. The description of the RLL
mapping derived in [60] is explained in detail in Appendix A.4.

4.4.1
Spectral Efficiency

In this section, we obtain a lower bound on the SE for the considered
system model.

First, we evaluate the average mutual information limIb→∞
1
Ib

I (xk; x̂k),
where xk ∈ {0, 1}Ib and x̂k ∈ {0, 1}Ib denote the transmitted bit sequence
and its estimate at the kth user, both of length Ib. In the following, we drop
the index k for ease of notation. If the sequence x is i. i. d., then it holds
H (x) = ∑Ib

n=1 H (xn) [61, Th. 2.6.6], where H(·) denotes entropy. Hence, we
obtain

1
Ib

I (x; x̂)
(a)
≥ 1

Ib

Ib∑
n=1

H (xn)− 1
Ib

Ib∑
n=1

H (xn|x̂n)

= 1− 1
Ib

Ib∑
n=1

Hb (Pr(xn ̸= x̂n))

(b)
≥ 1−Hb

 1
Ib

Ib∑
n=1

Pr(xn ̸= x̂n)
 ≜ ĪLB, (4-43)

where the inequality (a) is due to the chain rule for information [61, Th. 2.5.2],
due to independent xn, and due to the fact that conditioning cannot increase
entropy [61, Th. 2.6.5]. The last step, i. e., (b), is due to Jensen’s inequality [61,
Th. 2.6.2]. Furthermore, Hb(·) denotes binary entropy (cf. [61, eq. (2.1)]) and
1
Ib

∑Ib
n=1 Pr(xn ̸= x̂n) corresponds to the uncoded BER.
Using (4-43), a lower bound on the SE can be obtained as

SELB = 2 · Ξ · ĪLB

1 + ϵTx
, (4-44)

where the factor 2 in the numerator is due to complex signaling and Ξ denotes
the transmission rate of the considered mapping in bit per Nyquist interval per
real signaling dimension (cf. 4.2). Furthermore, ϵTx denotes the roll-off of the
RC transmit filter. Note that in contrast to [21,62,63], the SE lower bound in
(4-44) is evaluated w. r. t. a strictly band-limited channel. Defining the uncoded
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Table 4.2: Considered zero-crossing mapping configurations.

Number of Nyquist intervals per block N = 30
Precoding MTx = MRx Ib Os Ξ [bit/T/dim]

TI ZX 2 45 60 1.5
TI ZX 3 60 90 2
RLL d = 1, [60, Table I] 2 40 60 1.33
RLL d = 2, [60, Table II] 3 45 90 1.5

BER as ϖ, the lower bound in the mutual information ĪLB is calculated as

ĪLB = 1−Hb(ϖ) (4-45)

= 1− (−ϖlog2(ϖ)− (1−ϖ)log2(1−ϖ)) (4-46)

Note that ϖ is calculated numerically. For practical design, in this study,
the uncoded BER has been considered to obtain a lower bound on spectral
efficiency. However, alternative methods like the one presented in [20] have
been developed to calculate the lower bound on the spectral efficiency for
mappings with zero-crossing information.

4.4.2
Numerical Results

Here, we compare the performance of the considered ZX mappings
numerically. Simulation parameters are listed in Table 4.2, where Ib and Os

denote the number of input bits and output symbols per block of N Nyquist
intervals. For the RLL mapping, we always choose d = MTx − 1. The SNR is
defined as in (4-11).

Simulation results are obtained for a system with Nt = 8 transmit
antennas and Nu = 2 single-antenna users. The entries of H are i. i. d. zero-
mean complex Gaussian distributed with unit variance. The noise samples in
n are complex Gaussian with zero mean and variance σ2

n. The receive and the
transmit filters are chosen as a root-raised cosine and RC, respectively; each
with roll-off factor ϵRx = ϵTx = 0.22. Parameters are chosen similarly to [2].
Furthermore, for all numerical evaluations, it holds MRx = MTx.

First, we evaluate the uncoded BER for all ZX mapping configurations
from Table 4.2 in Fig 4.14 Comparing the time-instance ZX mapping with
MTx = 2 and the RLL ZX mapping with MTx = 3, which both achieve the
same transmission rate (cf. Table 4.2), we notice that for SNR above approx.
10dB, the RLL ZX mapping achieves a substantially lower uncoded BER.
Note that the remaining configurations are difficult to compare, as they result
in different transmission rates (cf. Table 4.2).



Chapter 4. Optimization Based Precoding Methods 60

−10 −5 0 5 10 15 20 25 3010−3

10−2

10−1

100
TI ZX
RLL

SNR [dB]

un
co

de
d

B
ER

QPSK
MTx = 3
MTx = 2

Figure 4.14: Uncoded BER.

In Fig 4.15 we evaluate the SE lower bound given in (4-44). For SNR
below 0dB, all schemes show a similar performance. The RLL ZX mappings
achieve the highest SE for all considered SNR. However, the encoding and
decoding complexity of the RLL ZX mappings is also higher. For SNR below
and above 10dB, the highest SE is achieved using the RLL mapping with
MTx = 2 and MTx = 3, respectively. Surprisingly, the TI ZX mapping achieves
a higher SE for MTx = 2 as for MTx = 3. This could be caused by increased
ISI in case of higher MTx.

Finally, for MTx = 2, we compare the SE lower bound for the ZX
mappings to QP [2]. QP involves zero-forcing spatial precoding and per user
MMDDT codebook optimization [2], i. e., temporal precoding; its performance
is depicted in Fig. 4.16 Because MMDDT precoding is known to outperform
MMSE precoding at high SNR, whereas MMSE precoding is better at low SNR,
we also consider a modified version of QP here: We optimize a single codebook
for all users w. r. t. the MSE criterion and then employ MMSE precoding. This
scheme is denoted as QP w/ MMSE in Fig. 4.16 The ZX mappings achieve
a significantly higher SE as QP with MMSE precoding for SNR > 0dB. This
demonstrates the effectiveness of signaling in the time-domain, i. e., encoding
the information in the ZX, as compared to signaling in the amplitude-domain,
e. g., using QP, for systems employing 1-bit quantization and oversampling.
QP achieves the highest SE at high SNR, which is also partly due to MMDDT
precoding. However, in practice, the complexity of QP is prohibitive as it
involves optimization and transmission of a codebook for each user and channel
realization [2].
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Figure 4.15: Lower bound on the SE for a bandlimited channel. All ZX
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5
Proposed State Machine-based Waveform Design With TI
ZX Modulation

In this part of the study, we propose a TI ZX waveform design for
multiuser MIMO systems in downlink scenarios with 1-bit quantization and
oversampling where a predefined level of out-of-band radiation is tolerated. The
proposed waveform design considers the novel TI ZX modulation and follows a
similar idea as presented in [26]. The proposed method conveys the information
into the time-instances of zero-crossings but instead of considering sequences of
samples, input bits are mapped into waveform segments according to the TI ZX
mapping rules. The temporal precoding vector is then used with a simple pulse
shaping filter. The optimal set of coefficients is computed with an optimization
problem which is formulated to maximize the minimum distance to the decision
threshold, constrained with some tolerated out-of-band radiation.

A multiuser MIMO downlink scenario with Nu single antenna users and
Nt transmit antennas at the BS, is also considered as shown in Fig. 5.1. The
input sequence of bits for user k is mapped into the sequences of symbols
xk, such that transmission blocks of N symbols (N Nyquist intervals) are
considered. The input sequence for user k is mapped using the TI ZX mapping
and the set of coefficients G which yields the temporal precoding vector
sgk
∈ CNtot , where Ntot = MRxN and MRx/T denotes the sampling rate and T

refers to the symbol duration. Moreover, the transmit filter gTx(t) and receive
filter gRx(t) are presented, where the combined waveform is given by v(t) =
(gTx ∗ gRx) (t). Furthermore 1-bit quantization is applied at the receivers. The
channel matrix H ∈ CNu×Nt is known at the base station and is considered to
be frequency-flat fading as typically assumed for narrowband IoT systems [2].
Then, stacking the temporal precoding vector of all the Nu users, the temporal
precoding vector sg is otained such that sg =

[
sT

g1 , sT
g2 , · · · , sT

gk
, · · · , sT

gNu

]T
.

The received signal z ∈ CNtotNu can be expressed by stacking the received
samples of the Nu users as follows:

z = Q1 ((HPsp ⊗ INtot) (INu ⊗ V ) sg + (INu ⊗GRx)n)

= Q1 ((HPsp ⊗ V ) sg + (INu ⊗GRx)n)

= Q1 (Heffsg +GRx,effn) , (5-1)



Chapter 5. Proposed State Machine-based Waveform Design With TI ZX
Modulation 63

x 1

xNu

Spatial
Precoder

DAC

s1(t)

DAC

gTx(t)

gTx(t)
sNt

(t)

sx1

sxNt

P
ar
ti
ti
on

in
g

sx

H

sg

1-bit ADC

Detector

schk
(t) + nk(t)

x̂ky
k

z k

Sampling rate MRx
/T

Q(·)gRx(t)

Mapper

Figure 5.1: Considered multi-user MIMO downlink system model.

where, n ∈ C3NtotNu denotes a vector with zero-mean complex Gaussian noise
samples with variance σ2

n. The matrix Psp denotes the spatial zero-forcing
precoder.

5.1
Waveform Design Optimization

The proposed waveform design, suitable for systems with 1-bit quantiza-
tion and oversampling, considers the TI ZX modulation, in conjunction with
the optimization of a set of coefficients. It means that instead of considering
binary sequences of samples, the proposed waveform is built by concatenat-
ing segment sequences of coefficients that contain zero-crossings at the desired
time-instances according to cmap.

The proposed waveform design relies on the transmit and receive filters
gTx(t) and gRx(t) which preserve the zero-crossing time-instance. Different to
the classic TI ZX, the sequence is no longer binary but is defined by the set of
coefficients G so that each symbol xi drawn from the set Xin is mapped into
a codeword gi with MRx different coefficients which convey the information
into the time-instances of zero-crossings. As in the original TI ZX modulation,
it is considered that sequences are constructed for real and imaginary parts
independently. In the following, a real-valued process is described.

The set of optimal coefficients G with dimensions ns × q is defined in
terms of G = {G+;G−} where G− = −G+, such that they both convey the
same zero-crossings information. In this context, G+ is associated to ρ = 1
and G− is associated to ρ = −1.

Considering bit sequences as input and the Gray coding for TI ZX
modulation shown in Table 3.3 and Table 3.4, q is established such that
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q = 3 for MRx = 3 and q = 4 for MRx = 2, where q denotes the length of
the codeword when Gray coding is considered. In the same way, ns = 8 for
MRx = 3 and ns = 16 for MRx = 2, where ns represents the number of different
codewords. By considering the symmetry in G, we define the reduced matrices
G+/− =

[
gT

1+/−
; gT

2+/−
; · · · ; gT

ns
2 +/−

]
, where gi+/− =

[
gi,1+/− , gi,2+/− , · · · gi,q+/−

]
and ρ = sgn (gi,q).

In this context the set G is shown in Table 5.1 for MRx = 3 and the
matrix G+ = −G− for MRx = 3 is described as

G+ = −G− =


g1,1 g1,2 g1,3

g2,1 g2,2 −g2,3

g3,1 −g3,2 −g3,3

−g4,1 −g4,2 −g4,3

 (5-2)

Table 5.1: Set of optimal coefficients G for MRx = 3.

G
g1,1 g1,2 g1,3

g2,1 g2,2 − g2,3

g3,1 − g3,2 − g3,3

−g4,1 − g4,2 − g4,3

−g1,1 − g1,2 − g1,3

−g2,1 − g2,2 g2,3

−g3,1 g3,2 g3,3

g4,1 g4,2 g4,3

Then, as initially established, the symbol xi is mapped in the segment
gi+/− . The pilot sample ρb is required for the encoding and decoding processes
of the first symbol x1. Finally, the input sequence of symbols xk is mapped
in the sequence sgk

with length Ntot by concatenating all the segments gi+/−

such that, sgk
= [gT

0 , . . . , gT
N−1]T . Note that the pilot sample ρb is predefined

and known at the receivers, hence not included in the precoding vector sgk
.

5.1.1
Autocorrelation for TI ZX Modulation

In this section, it is described how to compute the autocorrelation
function of the TI ZX modulated signal, considering the set of coefficients
G which conveys the information into the time-instances of zero-crossings.
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To obtain the autocorrelation function, the TI ZX modulation system
is converted to a finite-state machine where the current output values are
determined only by its current state which corresponds to an equivalent Moore
machine [45]. For MRx = 3, one symbol in terms of two bits is mapped in one
output pattern, so ns = 8 different states are presented. While for MRx = 2
sequences of symbols are considered in terms of mapping three bits segments
in four samples, such that there are ns = 16 different states. Table 5.2 and
Table 5.3 provide the equivalent Moore machine for MRx = 3 and MRx = 2,
respectively. The states with positive subscripts represent sequences for ρ = 1
and states with negative subscripts represent sequences for ρ = −1.

Considering a symmetric machine, the matrix Γ is defined with m

different positive coefficients, where m = 12 for MRx = 3 and m = 32 for
MRx = 2.

The state transition probability matrix Q of the equivalent Moore
machine, with dimensions ns × ns is defined for i.i.d. input bits, all valid state
transitions have equal probability p with p = 1/4 for MRx = 3 and p = 1/8
for MRx = 2. Furthermore, the vector π = (1/ns)1 of length ns corresponds
to the stationary distribution of the equivalent Moore machine, which implies
πTQ = πT . Then, the matrix Γ with dimensions ns ×MRx for MRx = 3 and
ns× 2MRx for MRx = 2 is defined which contains the Moore machine’s output
gi+/− . The block-wise correlation matrix of the TI ZX mapping output is given
by [64, eq. 3.46]

Rκ
g = E{gκ′gT

κ′+κ} = ΓT ΠQ|κ|Γ. (5-3)

Then, the average autocorrelation function rg of the TI ZX modulation output
sequence can be obtained as [64, eq. 3.39]

rg[kq + l] = 1
q

q−l∑
i=1

[
Rk
g

]
i,l+i

+
q∑

i=q−l+1

[
Rk+1
g

]
i,l+i−q

 , (5-4)

for k ∈ Z, 0 ≤ l ≤ q − 1.
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Table 5.2: Equivalent Moore machine for TI ZX mapping for MRx = 3.

Current
state

next state output
gi00 01 11 10

1+ 1+ 2+ 3+ 4+ g1,1 g1,2 g1,3

2+ 1− 2− 3− 4− g2,1 g2,2 − g2,3

3+ 1− 2− 3− 4− g3,1 − g3,2 − g3,3

4+ 1− 2− 3− 4− −g4,1 − g4,2 − g4,3

1− 1− 2− 3− 4− −g1,1 − g1,2 − g1,3

2− 1+ 2+ 3+ 4+ −g2,1 − g2,2 g2,3

3− 1+ 2+ 3+ 4+ −g3,1 g3,2 g3,3

4− 1+ 2+ 3+ 4+ g4,1 g4,2 g4,3

Table 5.3: Equivalent Moore machine for TI ZX mapping for MRx = 2.

Current
state

next state output
gi000 001 011 010 110 111 101 100

1+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ g1,1 g1,2 g1,3 g1,4

2+ 1− 2− 3− 4− 5− 6− 7− 8− g2,1 g2,2 g2,3 − g2,4

3+ 1− 2− 3− 4− 5− 6− 7− 8− g3,1 g3,2 − g3,3 − g3,4

4+ 1− 2− 3− 4− 5− 6− 7− 8− g4,1 − g4,2 − g4,3 − g4,4

5+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ g5,1 − g5,2 − g5,3 g5,4

6+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ −g6,1 − g6,2 − g6,3 g6,4

7+ 1− 2− 3− 4− 5− 6− 7− 8− −g7,1 − g7,2 − g7,3 − g7,4

8+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ −g8,1 − g8,2 g8,3 g8,4

1− 1− 2− 3− 4− 5− 6− 7− 8− −g1,1 − g1,2 − g1,3 − g1,4

2− 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ −g2,1 − g2,2 − g2,3 g2,4

3− 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ −g3,1 − g3,2 g3,3 g3,4

4− 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ −g4,1 g4,2 g4,3 g4,4

5− 1− 2− 3− 4− 5− 6− 7− 8− −g5,1 g5,2 g5,3 − g5,4

6− 1− 2− 3− 4− 5− 6− 7− 8− g6,1 g6,2 g6,3 − g6,4

7− 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ g7,1 g7,2 g7,3 g7,4

8− 1− 2− 3− 4− 5− 6− 7− 8− g8,1 g8,2 − g8,3 − g8,4

5.1.2
Waveform Design

As the signs of the coefficients are predefined by the TI ZX modulation,
we optimize the amplitude of the coefficients in the optimization process by
introducing the matrixG. LetG be a matrix such thatGi,j =

∣∣∣G+i,j

∣∣∣ =
∣∣∣G−i,j

∣∣∣.
Then, the matrixG, is vectorized such that gu = vec(G). The vector gu is later
optimized such that with this optimal vector the set G is shaped to construct
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the temporal precoding vector sg. The autocorrelation function is calculated
with (5-4) and the PSD is calculated by

S(f) = Sx(f) |GTx(f)|2 , (5-5)

where GTx(f) refers to the transfer function of the transmit filter gTx and Sx(f)
to the PSD of the transmit sequence

Sx(f) = MRx

T

∞∑
l=−∞

cle
j2π lT

MRx
f , (5-6)

where cl denotes the l-th element of the autocorrelation function from (5-4). By
defining a critical frequency fc and a power containment factor η, the inband
power is defined as

∫ fc

−fc

S(f)df = ηP , (5-7)

where P =
∫∞

−∞ S(f)df. Then, when considering gRx(t) and gTx(t) as rectangu-
lar filters,

gRx(t) = gTx(t) =
√√√√ 1

T
MRx

rect
 t

T
MRx

 , (5-8)

matrix V is as an identity matrix. The absolute value squared of the transfer
function is given by

|GTx(f)|2 = T

MRx
sinc2

(
f

T

MRx

)
. (5-9)

With this, (5-5) can be expressed as

S(f) = sinc2
(

f
T

MRx

) ∞∑
l=−∞

cle
j2π lT

MRx
f . (5-10)

Samples close to the decision threshold are more noise-sensitive. Then, the
maximization of the minimum distance to the decision threshold γ is consid-
ered as the optimization criterion. With this, an optimization problem that
maximizes γ can be formulated as:

minimizegu − γ

subject to gu ⪰ γ1

∥gu∥2
2 ≤ m

E0

2NuNMRx

η(gu, fc) ≥ δ,

(5-11)
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where δ corresponds to the in band power target ratio. Assuming that the
optimal solution for gu fulfills the power constraint with equality, we can make
the following statement. Using the optimal set of coefficients G, the sequence
sgk

is constructed for each user. Then, the average total power of the complex
transmit signal sg is given by

E
{
sH

g A
HAsg

}
= E0, (5-12)

where A = INu ⊗ GT
Tx. Note that under the assumption in (5-8), AHA

corresponds to the identity matrix of dimensions Ntot × Ntot. Due to the last
constraint in (5-11) the problem is non convex and it is difficult to find a
solution directly.

When no spectral constraint is considered, the maximum value for γ, it
is γM is reached, and it is obtained by solving the optimization problem

minimizegu − γ

subject to gu ⪰ γ1

∥gu∥2
2 ≤ m

E0

2NuNMRx
.

(5-13)

The maximum values γM reached by solving (5-13) corresponds to γM =√
E0

2NuNMRx
.

The optimization problem in (5-11) can be solved more easily with
fewer restrictions if it is considered that instead of maximizing γ, the power
containment bandwidth factor η is maximized. Then, the next section explains
in detail how to find sub-optimal solutions to the optimization problem in
(5-11).

5.2
A Practical Waveform Design Optimization Strategy

This section describes the implementation of the solution to problem
(5-11). Once the oversampling factor MRx has been defined, an initial vector
gu = γ1 of positive coefficients of length m = 12 is established. Then
the matrix Q of the equivalent Moore machine, which defines the transition
probability from one state to another, is established as shown below for
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MRx = 3.

Q = 1
4



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0



. (5-14)

With the initial vector gu the matrix Γ is shaped. Then the matrix Π =
diag(π) is defined. With a maximum value κ established, the average autocor-
relation is calculated through equation (5-4).

To calculate the PSD in (5-10), a new variable fT = fT is introduced
such that normalized vector fT is defined as

fT = [0, 0.001, 0.002, · · · , λ].

Then the double side average autocorrelation function is shaped by flipping
the vector rg in the left-right direction except for the first sample and
concatenating with the original rg vector. Then, S(f) = S

′(fT ) is calculated
with (5-10) using the vector fT .

The approximate integral PT of S(f) is computed as:

PT =
∫ λ/T

0
S(f)df ≈ ∆f

2

Nf∑
n=1

(S ′(fT,n) + S
′(fT,n+1)), (5-15)

where ∆f = λ
Nf T

and Nf + 1 corresponds to the length of the vector
fT . Then the critical frequency is set to fc, and the approximate integral
Pfc of S(f) = S

′(fTc) is calculated for a normalized frequency vector fTc =
[0, 0.001, · · · , fcT ]. Then, the in-band power can be computed as follows

Pfc =
∫ fc

0
S(f)df ≈ ∆fc

2

Nc∑
n=1

(S ′(fTc,n) + S
′(fTc,n+1)), (5-16)

where ∆fc = fc

NcT
and Nc +1 corresponds to the length of the vector fTc . Next,

the power containment factor η is calculated as

η = Pfc

PT

. (5-17)
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Algorithm 4 Proposed algorithm to solve (5-11)
1: Define a critical frequency fc

2: Define γ = ∆γ

3: Define an in band power target ratio α
repeat

4: Initialize gu = γ1
repeat

5: solve minimizegu − η(gu)

subject to ∥gu∥2
2 ≤ m

E0

2NuNMRx

gu ⪰ γ1,
until A feasible solution is found.

6: Increase γ, γ = γ + ∆γ in (5-18)
until η ≤ δ.

With the latter, an equivalent optimization problem to (5-11) is expressed as:

minimizegu − η(gu)

subject to ∥gu∥2
2 ≤ m

E0

2NuNMRx

gu ⪰ γ1,

(5-18)

where γ corresponds to the minimum value of gu. Practical solutions for the
problem in (5-18) can be found by numerical local optimization. When the
optimal value for η > δ, then γ can be increased, in terms of γ = γ + ∆γ and
the process is repeated until η ≈ δ. The optimization strategy is summarized
in Algorithm 4.

Finally, the detection process for the proposed waveform, follows the
same process as for the existing TI ZX waveforms described in Section 3.3

5.3
Numerical Results

This section presents numerical results in terms of uncoded BER and
normalized PSD for the proposed TI ZX state machine waveform design.
Moreover, the proposed technique results are compared with other methods,
namely TI ZX MMDDT and ZX transceiver design [26]. The system under
consideration employs Nt = 8 transmit antennas and Nu = 2 single-antenna
users for all the evaluated methods. The SNR is defined as follows:

SNR =
E0trace

(
HHH

)
NTN0NuNt2fc

, (5-19)

where N0 denotes the noise power spectral density. The bandwidth B is defined
as B = 2fc, where the critical frequency is set to fc = 0.65/T . The entries of
the channel matrix H are i.i.d. with CN (0, 1).
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The presented results for the TI ZX MMDDT method consider MRx = 3
and the same data rate as for the proposed TI ZX state machine waveform
design with gTx(t) as an RC filter and gRx(t) as an RRC filter with roll-off
factors ϵTx = ϵRx = 0.22, with fc = (1 + ϵTx)/2T . On the other hand, for
the ZX transceiver design [26], MRx = 3 is considered for the random and
the Golay mapping methods. The truncation interval is set to ζ = 3 and the
number of bits per subinterval n = 2, and at the receiver an integrate-and-
dump-filter is considered [26]. Table 5.4 presents the simulation parameters
considered to solve the optimization problem in (5-18). On the other hand,
Table 5.5 summarizes the simulation specifications for the proposed TI ZX
waveform design and other methods from the literature, where Ib corresponds
to the number of input bits per user and Os represents the number of samples
after the mapping process.

The optimal matrix G of positive coefficients is shown in Table 5.6 and
Table 5.7 for MRx = 2 and MRx = 3, respectively, where the normalization
E0
N

= 1 is considered for the problems in (5-11), (5-13) and (5-18). The input
sequences of symbols x are mapped onto the temporal transmit vector sg

considering the set of coefficients in Table 5.6 and Table 5.7 where Nu = 1
are considered and δ = 0.95. Moreover, ∆γ was set to ∆γ = 0.1 for MRx = 3
and ∆γ = 0.001 for MRx = 2. Fig. 5.2 illustrates an example for MRx = 3, of
how the sequence sg is built taking into account the optimal coefficients G of
Table 5.7. For Fig. 5.2, it is considered an example of the input sequence
of bits xk = [0, 0, 1, 0, 1, 0, 1, 1, 0, 1] and with the Gray coding shown in
Table 3.3 two bits are mapped in one sequence g. The pilot sample is set
to ρb = 1 such that for the first binary tuple 00 the mapped sequence
corresponds to g1+ = [g1,1, g1,2, g1,3] = [0.6592, 0.3531, 0.2237]. To map the
second binary tuple 10, the last sample of g1+ needs to be taken into account,
so that ρ = sgn (0.2237) = 1, therefore the mapped sequence corresponds to
g4+ = [−g4,1,−g4,2,−g4,3] = [−0.1823,−0.3117,−0.5094]. The process is done
for the whole sequence xk and the final sequence sg =

[
g1+ , g4+ , g4− , g3+ , g2−

]
.

In Fig. 5.3 the influence of the bandwidth on γ is presented, which
confirms that when higher amount of out-of-band radiation is allowed, the
optimal γ reaches a higher value. For MRx = 3 the maximum value for
γM = 1/

√
6Nu where an 79% of in band radiation is reached. In the case

of MRx = 2 the maximum value for γM = 1/(2
√

Nu), where an 83% of in band
radiation is reached. It is also observed that the case with MRx = 2 reaches
a higher γ value than for MRx = 3 when achieving the same in-band power.
Then, Fig. 5.4 presents the BER results considering γM = 0.35 for MRx = 2
and γM = 0.28 MRx = 3. In the case of MRx = 2, it shows a better performance
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Figure 5.2: Mapping process for construction of sg with the set of optimal
coefficients G for MRx = 3.

since it is based on a higher γM value.
Numerical results are also presented in terms of BER for the proposed

TI ZX state machine waveform design in Fig. 5.5 for MRx = 2 and MRx = 3.
As expected for MRx = 2 a lower BER is achieved than for MRx = 3. In both
cases, a target power containment factor δ = 0.95 was reached. On the other
hand, γ = 0.07 for MRx = 3 and γ = 0.17 for MRx = 2.

In Fig. 5.6 the BER is evaluated and compared with other methods form
the literature for MRx = 3. The proposed TI ZX state machine waveform
design achieves a lower BER than the TI ZX MMDDT while having a
lower computational complexity. In this context, the complexity order for
the proposed state machine waveform design is dominated by the spatial
ZF precoder whose complexity in Big O nation is given by O (N3

t ). This is
because the coefficients are optimized only once for any transmitted sequence
of symbols. On the other hand, the complexity order for the TI ZX MMDDT is
given by O (2Nu(Ntot)3.5 + N3

t ). However, note that the proposed TI ZX state
machine waveform design yields a low level of out-of-band-radiation as seen in
Fig. 5.7. Additionally, the proposed method is compared with the transceiver
design from [26]. The transceiver design method considers the nonuniform
zero-crossing pattern with random and Golay mapping and power containment
factor η = 0.95. The proposed TI ZX state machine BER performance is better
than the transceiver design [26] when both allow the same level of out-of-band
radiation since the concatenation of the codewords which conveys the zero-
crossing information for TI ZX method is done considering the sign of the last
coefficient of the previous Nyquist Interval. The latter implies a lower number
of zero-crossings on average, which can be understood as a relaxation in the
waveform design. The concatenation process for the TI ZX method is different
from the method in [26] which does not consider the state of the previous
Nyquist Interval.

Simulation results are presented also in terms of the normalized PSD.
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Figure 5.4: BER vs SNR for γM with Nu = 2.

In Fig. 5.7 the analytical and numerical PSD are compared for the proposed
TI ZX state machine waveform design with MRx = 3. The analytical PSD
is calculated with (5-5) considering the autocorrelation function in (5-4). In
Fig. 5.7, the normalized PSD of the proposed waveform design is also compared
with the normalized PSD of the methods from the literature which is calculated
by

PSDdB = 10log10

[
O(−1)

s E{|Fi|2}
]

, (5-20)

where Fi is the discrete Fourier transform of the normalized temporal transmit
signal per user.
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Figure 5.5: BER vs SNR for the proposed waveform with δ = 0.95.
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Figure 5.6: BER vs SNR for MRx = 3 for all the considered methods.

Table 5.4: Parameters values

Parameter Value
κ 400
fc 0.65/T
λ 2MRx

∆γ 0.01
δ 0.95
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Figure 5.7: PSD for MRx = 3.

Table 5.5: Simulation parameters

Method MRx Transmit Filter Receive filter Ib Os

TI ZX MMDDT 2 RC α = 0.22 RRC α = 0.22 45 61
3 60 91

ZX transceiver design [26] 3 RC window α = 0.1 Integrate-and-dump 180 270

TI ZX waveform design 2 Integrator T
MRx

Integrator T
MRx

45 60
3 60 90

Table 5.6: Optimal set G for MRx = 2 with Nu = 1 and δ = 0.95

G
g1 000 0.8176, 0.5430, 0.4428, 0.25
g2 001 0.25, 0.25, 0.25, 0.25
g3 011 0.19, 0.5461, 0.25, 0.25
g4 010 0.25, 0.5131, 0.6711, 0.25
g5 110 1.1826, 0.25, 0.25, 0.25
g6 111 0.25, 0.25, 0.7025, 0.25
g7 101 0.7287, 0.25, 0.3715, 0.4114
g8 100 0.25, 0.25, 0.462, 0.424

Table 5.7: Optimal set G for MRx = 3 with Nu = 1 and δ = 0.95

G
g1 00 0.6592, 0.3531, 0.2237
g2 01 0.1, 0.6986, 0.1
g3 11 0.1, 0.3724, 0.5866
g4 10 0.1823 0.3117 0.5094



6
TI ZX for mmWave Channels

In this part of the study, we develop a precoding framework with the
novel TI ZX modulation with the established mmWave channel model. We
adopted different precoding techniques namely the MMSE precoding and the
joint MMDDT precoding.

6.1
Precoding Framework

For the development of the precoding framework, the adopted system
model is the one presented in Fig. 2.1. The channel is considered as a frequency-
selective mmWave channel with impulse response in continuous time for user
k defined as

hk(t) =
Lk−1∑
l=0

αl,ka
H
Tx(θl,k)δ(t− τl,k), (6-1)

where δ(t − τl,k) corresponds to the Dirac delta function, τl the delay of the
l-th path, αl ∈ C is the channel coefficient on the l-th path and θl,k the angle
of departure for the l-th path. The steering vector aTx(θl,k) ∈ CNt is defined
as

aTx(θl,k) = 1√
Nt

[
1, · · · , e−jπ(Nt−1)sin(θl,k)

]T
, (6-2)

where the inter-element spacing is half-wavelength. Including the effects of
pulse shaping filtering, the corresponding channel is represented as

h̃k(t) =
Lk−1∑
l=0

αl,ka
H
Tx(θl,k)v(t− τl,k). (6-3)

The effects of pulse shaping filtering are given by the combined waveform
determined by the transmit and receive filters which is described by v(t) =
gTx(t) ∗ gRx(t). In discrete time, the combined waveform for the l-th path of
user k is represented by the matrix Vl,k with size Ntot in equation (4-41). The
received signal is quantized and vectorized such that the vector zk ∈ CNtot is
obtained. Considering a frequency selective channel with Lk number of channel
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Vl,k = (6-4)
v (τl,k) v

(
T

MRx
+ τl,k

)
· · · v (TN + τl,k)

v
(
− T

MRx
+ τl,k

)
v (τl,k) · · · v

(
T
(
N − 1

MRx

)
+ τl,k

)
... ... . . . ...

v (−TN + τl,k) v
(
T
(
−N + 1

MRx

)
+ τl,k

)
· · · v (τl,k)



paths, the received signal for user k is described as

zk = Q1 (yk) , (6-5)

where

yk =
Lk−1∑
l=0

Nt∑
i=1

αl,kaTxi
(θl,k)Vl,kUpxi

+GRxnk

=
Lk−1∑
l=0

αl,k [aTx1(θl,k)Vl,kU , aTx2(θl,k)Vl,kU , · · · ,

aTxNt
(θl,k)Vl,kU

] [
pT

x1 , · · · ,pT
xNt

]T
+GRxnk

=
Lk−1∑
l=0

αl,k

(
aH

Tx(θl,k)⊗ INtot

)
(INt ⊗ Vl,kU)px

+GRxnk,

(6-6)

where the stacked vector px =
[
pT

x1 ,pT
x2 , · · · ,pT

xi
, · · · ,pT

xNt

]T
and pxi

∈ CNq

corresponds to the spatial and temporal precoding vector of the i-th transmit
antenna and nk ∈ C3Ntot represents the complex Gaussian noise vector with
zero mean and variance σ2

n. Defining the matrix

Heffk
=

Lk−1∑
l=0

αl,k

(
aH

Tx(θl,k)⊗ INtot

)
(INt ⊗ Vl,kU) (6-7)

equation (6-6) can be rewritten as

yk = Heffk
px +GRxnk. (6-8)

Then, stacking the received sequences of the Nu user in the vector z =[
zT

1 , zT
2 , · · · , zT

i , · · · , zT
Nu

]T
the received signal can be written as

z = Q1 (y)

= Q1 (Heffpx +GRx,effn) , (6-9)
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Figure 6.1: BER vs. β for MRx = MTx = 2, Lk = 5 and SNR = 20dB.

where

Heff =
[
Heff1 ,Heff2 , · · · ,HeffNu

]H
GRx,eff = (INu ⊗GRx) , (6-10)

and n = [n1,n2, · · · ,nk, · · · ,nNu ].
The two considered precoding designs are the joint MMDDT from

Section 4.1.1.1 and the general MMSE criterion in space and time from
Section 4.2.

6.2
Numerical Results

The numerical evaluations of the precoding techniques joint MMDDT
and MMSE considering signals transmitted over a frequency selective channel
are presented in this section in terms of BER considering different parameters.
The transmit filter gTx(t) is an RC filter and the receive filter gRx(t) is an RRC
filter, where the roll-off factors are ϵTx = ϵRx = 0.22 [2]. The bandwidth is
defined with WRx = WTx = (1 + ϵTx) /T . The BS is equipped with Nt = 8
antennas, Nu = 2 single antenna users, N = 30 transmit symbols, and
maximum energy constraint E0. The mmWave channel parameters are defined
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Figure 6.2: BER vs. SNR. for different sets of signaling and sampling rates
with Lk = 5 and β = 1.5.
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Figure 6.3: BER vs. SNR. for different sets of signaling and sampling rates
with Lk = 5 and β = 0.

as follows

αl,k ∼ CN
(

0,
1

Lk

)
(6-11)

θl,k ∼ uniform
([−π

2 ,
π

2

])
(6-12)

τl,k ∼ uniform ([0, βT ]) . (6-13)



Chapter 6. TI ZX for mmWave Channels 80

0 5 10 15 20 25 3010−3

10−2

10−1

β = 0
β = 2.5
β = 5
β = 10
β = 20
β = 30
β = 40
β = 50

SNR [dB]

B
ER

Figure 6.4: BER vs. SNR with MRx = MTx = 2 and Lk = 5 for different values
of β for joint MMDDT.
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Figure 6.5: BER vs. SNR with MRx = MTx = 2 and Lk = 5 for different values
of β for MMSE.

Moreover, we also considered the special case where τl,k = 0, [65]. The SNR is
defined as in (4-11).

Fig. 6.1 presents the BER performance in terms of β for SNR = 20dB
with Lk = 5 paths for each user and MRx = MTx = 2. The results show that
starting from β = 5 the BER decreases faster for both precoding techniques.
Moreover, the BER for the MMSE is lower in comparison with the joint



Chapter 6. TI ZX for mmWave Channels 81

10 12 14 16 18 20 22 2410−3

10−2

10−1

Lk = 5
Lk = 10
Lk = 20
Lk = 50
Lk = 100

SNR [dB]

B
ER

Figure 6.6: BER vs. SNR with MRx = MTx = 2 and β = 1.5 for different values
of Lk for joint MMDDT.
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Figure 6.7: BER vs. SNR with MRx = MTx = 2 and β = 1.5 for different values
of Lk for MMSE.

MMDDT precoding technique.
Fig. 6.2 shows simulation results in terms of BER where different sets of

signaling rate (MTx/T ) and sampling rate (MRx/T ) are considered. Moreover,
the same number of paths is set for all the users with Lk = 5 and β = 1.5. In
the figure, it is possible to observe that the joint MMDDT technique reaches a
better performance than the MMSE technique in the high SNR region, while
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Figure 6.8: Power spectral density for MRx = MTx = 2, Lk = 5 and β = 1.5.

the MMSE based technique presents a better performance in the lower SNR
region. Additionally, in Fig. 6.3 simulation results are presented with the same
parameters as in Fig. 6.2 but considering β = 0. These results present the
same trend as those presented in Section 4.3, where a channel based on a
Rayleigh fading distribution is considered. Moreover Fig. 6.4 and Fig. 6.5
compare simulation results for MRx = MTx = 2 and Lk = 5 for different values
of β, for the MMDDT precoding technique and MMSE precoding technique,
respectively. From both figures, it is possible to observe that for relatively large
β the BER performance decreases.

Fig. 6.6 and Fig. 6.7 show the numerical evaluation for the MMDDT
precoding technique and MMSE precoding technique respectively, in terms of
the number of Lk paths considering β = 1.5. The number of paths is the same
for all the Nu users. The results indicate that when the number of paths is
increased, the BER shows a slight decrease.

Finally, Simulation results in terms of normalized PSD are also presented
for the joint MMDDT and MMSE precoding techniques in Fig. 6.8. The results
were simulated considering MRx = MTx = 2, Lk = 5 and β = 0.0001 employing

PSDdB = 10log10

[
E{
∣∣∣∣Fi(

√
3Ntot)(−1)

∣∣∣∣2}
]

, (6-14)

where Fi is the discrete Fourier transform of the signal per transmit antenna
given by si = GT

TxUpxi
.
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Conclusions

This study proposes different precoding methods for bandlimited multi-
user MIMO downlink channels with 1-bit quantization at the receivers. To
compensate for the loss caused by the quantization, oversampling is considered
at the receivers. For this specific channel with a given oversampling factor,
a sophisticated modulation is proposed, namely TI ZX modulation. The
proposed modulation conveys the information in the time-instance of the zero-
crossings. Also it considers the absence of a zero-crossing during a Nyquist
interval as a unique pattern, which is different from prior studies. The proposed
TI ZX modulation is compared with the established method known from the
literature using the existing precoding strategy [2]. Simulation results show a
significant benefit of the proposed TI ZX in terms of the uncoded BER, which
can be explained by the reduced number of zero-crossings in the modulated
sequence. For the considered channel, in conjunction with the proposed TI ZX
modulation, novel precoding techniques are developed based on the distance
to the decision threshold criterion and the MMSE criterion, namely the joint
MMDDT, total MMDDT ZF, MMSE, optimal MMSE ACE, iterative MMSE
ACE and the iterative Gradient Descent method for MMSE.

The MMDDT based precoding techniques maximize the minimum dis-
tance to the decision threshold where the joint MMDDT maximizes the crite-
rion jointly for space and time. An approximate solution that relies on spatial
ZF precoding and quality of service constraint is developed in the proposed to-
tal MMDDT ZF method. The conventional MMSE based precoding technique
minimizes the MSE between the received signal and the desired discrete output
pattern. A more advanced method is proposed in terms of the optimal MMSE
ACE, where the output pattern is optimized jointly. An approximate solution
to the optimal MMSE ACE is devised by the iterative MMSE ACE, where the
precoding vector and the output pattern are optimized with an alternating
strategy.

The proposed precoding methods are evaluated in terms of the BER,
MSE, and computational complexity. In general, it can be observed that the
MMDDT approaches yield superior performance in the high SNR region and
that the MMSE approaches are beneficial in the low SNR region. Moreover,
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by taking into account the ACE in the MMSE method, the BER performance
significantly improves for the high SNR. Among all the considered precoding
approaches, the joint MMDDT approach yields the best performance in terms
of BER at high SNR regime. On the other hand, the MMSE ACE methods yield
good performance for all SNR regions. The complexity analysis illustrates the
benefits of the approximate solutions namely total MMDDT ZF and iterative
MMSE ACE. Moreover, numerical results show that the proposed iterative
gradient descent method approach has a comparable bit error rate as compared
to the closed form MMSE while having significantly lower computational
complexity.

In another part of the study, the TI ZX modulation and RLL sequences
are compared considering the MMSE precoder, where the TI ZX offers lower
complexity with only slightly lower spectral efficiency than the RLL mapping.
Furthermore, numerical results showed that both mappings achieved a signifi-
cantly higher SE at low SNR compared to QP method [2], while simultaneously
offering a lower complexity. This demonstrates the advantage of signaling in
the time-domain for systems employing 1-bit quantization and oversampling.

This study also proposes a TI ZX state machine waveform based on the
TI ZX modulation. The waveform design considers the optimization of a set
of coefficients that conveys the information into the time-instances of zero-
crossings. The optimization is performed considering the power containment
bandwidth and the maximization of the minimum distance to the decision
threshold. The simulation results were compared with methods from the liter-
ature which employ techniques based on zero-crossings. The BER performance
shows that the proposed method achieves a comparable BER result as the TI
ZX MMDDT method but with significantly lower computational complexity.

Finally, in this work, it was also developed a precoding framework with
TI ZX modulation for a mmWave channel model. The proposed framework
allows the application of the previously developed precoding strategies. Two
precoding techniques were considered to optimize the transmit vector, the joint
MMDDT and the MMSE. Both precoding techniques jointly optimize trans-
mitted vectors in time and space. Simulation results regarding BER show that
some small delay spread can yield a performance improvement. Besides, both
bandlimited precoding techniques respond well to the frequency selectivity of
the mmWave channel. Moreover, comparing both precoding techniques, it can
be observed that the joint MMDDT presents better performance in high SNR
than the MMSE, which follows what was presented in Chapter 4.
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Future Work

As future work we propose the investigation of advanced zero-crossing
precoding methods for the multi user MIMO downlink which take into account
imperfect channel state information.

Existing studies on zero-crossing precoding show promising results in
terms of bit error rate which achieve high spectral efficiency simultaneously.
However, the existing studies rely on perfect channel state information, which
is difficult to achieve in practical downlink systems due to channel estimation
errors. To evaluate the TI ZX precoding technique with imperfect CSI one
aspect is to study channel estimation algorithms from the state of the art
which are suitable for 1-bit quantization channels. One strategy could be the
consideration of channel estimation at the user terminals by adopting the
channel estimation approach for systems with 1-bit quantization and temporal
oversampling. For this case, the channel estimation error statistics can be
calculated in terms of the error correlation matrix. This information can be
exploited in a robust precoding design for TI ZX modulation. Alternatively,
the channel estimation can be done at the BS for time division duplex
(TDD) with the reciprocal channel. Therefore, we propose to develop robust
TI ZX precoding techniques that take into account imperfect channel state
information.

In this context, one can consider that the channel can be defined by a
part that is known and a part that is random H = H̃+ϵ. For the random part
ϵ some statistical information might be available in terms of E

{
ϵϵH

}
, which

can be exploited for the precoding algorithm.
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Appendix

A.1
Derivation of The Space-Time MMSE Precoding

The derivation of the space-time MMSE precoder can be done with a
strategy similar to what is suggested in [58]. The MSE objective function
considers scaling with factor f of the received signal that could model an
automatic gain control. Given the received signal (2-8) and the complex desired
output pattern cout, the MMSE precoding problem can be cast as (4-12). With
an equivalent cost function, the Lagrangian function reads as

L(px, f, λ) =f 2
(
∥Heffpx∥2

2 + trace{GRx,effCnG
H
Rx,eff}

)
− 2fRe{cH

outHeffpx}+ λ
(
∥Apx∥2

2 − E0
)

.

Equating to zero the derivative of (A-1) w.r.t. p∗
x yields

px,opt = f−1
(
HH

effHeff + λf−2AHA
)−1

HH
effcout, (A-1)

which can also be written as

f−1pH
x H

H
effcout = pH

x

(
HH

effHeff + λf−2AHA
)
px. (A-2)

The derivative of the Lagrangian function w.r.t. f reads as

dL(px, f, λ)
df

=2fpH
x H

H
effHeffpx − 2Re{pH

x H
H
effcout}+ 2ftrace{GRx,effCnG

H
Rx,eff},

(A-3)

where the real part operator can be skipped because its argument is always
real valued when taking into account the structure of px,opt (A-1). Equating
(A-3) to zero yields

f−1pH
x H

H
effcout = pH

x H
H
effHeffpx + trace{GRx,effCnG

H
Rx,eff}. (A-4)
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Equating the RHS of (A-2) with the RHS of (A-4) gives

λf−2 = trace{GRx,effCnG
H
Rx,eff}

(
pH

x A
HApx

)−1
. (A-5)

Due to the fact that any precoding vector px with less than the maximum
transmit energy can not be optimal in the MSE sense, equality can be
considered for the transmit energy constraint. With this, (A-5) can be written
as λf−2 = trace{GRx,effCnG

H
Rx,eff}E−1

0 . Then the optimal precoding vector can
be expressed as (4-13). Inserting (4-13) into the transmit energy constraint
determines the scaling factor, which is then given by f =

∥∥∥cH
out∆

∥∥∥
2

/
√

E0, with

∆ =Heff
(
HH

effHeff + E−1
0 trace{GRx,effCnG

H
Rx,eff}AHA

)−1
AH . (A-6)

A.2
MMSE Precoding Performance Bound
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Figure A.1: Equivalent Moore machine for MRx = 3.
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Table A.1: Equivalent Moore machine for MRx = 3.

Current state
Next state for input

Output cs00 01 10 11
1+ 1+ 2+ 3+ 4+ 1 1 1
2+ 1− 2− 3− 4− 1 1 − 1
3+ 1− 2− 3− 4− 1 − 1 − 1
4+ 1− 2− 3− 4− −1 − 1 − 1
1− 1− 2− 3− 4− −1 − 1 − 1
2− 1+ 2+ 3+ 4+ −1 − 1 1
3− 1+ 2+ 3+ 4+ −1 1 1
4− 1+ 2+ 3+ 4+ 1 1 1

In this section, the analytical MMSE is presented for the MMSE precoder
in Section 4.2. Applying the trace operator and its properties to the MSE
expression in (4-14) yields

J =trace{HeffXH
H
effE{coutc

H
out}HeffX

HHH
eff} − 2Re{trace{HeffXH

H
effE{coutc

H
out}}}

+ 2Ntot +E{f 2trace{GRx,effCnG
H
Rx,eff}}, (A-7)

where cH
outcout = 2Ntot is considered. With the scaling factor f =∥∥∥cH

out∆
∥∥∥

2
/
√

E0 and ∆ from (A-6), (A-7) can be rewritten as

J =trace{HeffXH
H
effE{coutc

H
out}HeffX

HHH
eff} − 2Re{trace{HeffXH

H
effE{coutc

H
out}}}

+ 2Ntot + (1/E0)trace{∆HE{coutc
H
out}∆}trace{GRx,effCnG

H
Rx,eff}. (A-8)
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Figure A.2: Analytical and numerical MSE comparison for MRx = 2 and
MRx = 3.

The matrix Rcout = E{coutc
H
out} can be computed by following similar

steps as in [64, Sec. 3.5]. First, the modulation systems are converted to the
equivalent Moore machines. Table A.1 and Fig. A.1 show the Moore machine
for MRx = 3 with ϱ = 8 states. The states 1+, 2+, 3+, 4+ represent sequences
for ρ = 1 and states 1−, 2−, 3−, 4− for ρ = −1. The state transition probability
matrix Q of the equivalent Moore machine, with dimensions ϱ × ϱ is defined
for i.i.d. input bits. All valid state transitions have a probability p = 1/4 for
MRx = 3 and p = 1/8 for MRx = 2 according to the Gray coding for TI ZX.
Furthermore, the vector π of length ϱ which corresponds to the stationary
distribution of the equivalent Moore machine with πTQ = πT , is given by
π = (1/ϱ)1. Then, the matrix Γ with dimensions ϱ ×MRx defines the Moore
machine’s output, in terms of the codewords cs. The block-wise correlation
matrix of the TI ZX mapping output is given by Rκ

cs = E{csκ′c
T
sκ′+κ
} =

ΓT ΠQ|κ|Γ [64, eq. 3.46], where Π = diag(π) and csκ′ denotes the κ′th
codeword of cout. Finally, the autocorrelation matrix Rcout is obtained by
considering the concatenation of the matrices Rκ

cs with κ = 0, 1, · · · , N as

Rcout = 2E{coutc
T
out} = 2



ρ2
0 E{ρ0cs

1T } E{ρ0cs
2T } · · · E{ρ0cs

NT }
E{cs

1ρ0} R0
cs R1

cs · · · RN−1
cs

E{cs
2ρ0} R1T

cs R0
cs · · · RN−2

cs
... ... ... · · · ...

E{cs
Nρ0} RN−1T

cs RN−2T

cs · · · R0
cs


,

(A-9)
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where E{ρ0cs
kT } = 1T

ϱ×1diag([1, 0ϱ−1×1])Q|κ|Γ for the Moore machine with
MRx = 3 and ρ2

0 = 1. Note that sequences with independent real and imaginary
parts are considered which is supported by factor 2 in (A-9). Fig. A.3 compares
the MSE obtained with (A-8) and (A-9), and the numerical MSE for MRx = 2
and MRx = 3. Note that, for MRx = 2 Table 3.4 is considered.

A.3
MMDDT Precoding Performance Bound

This section presents the semi-analytical symbol error rate (SER) upper
bound for the MMDDT precoder with quality of service constraint regarding
the minimum distance to the decision threshold γ. Considering MRx = 3, 4
different symbols b1, b2, b3, b4 can be transmitted. The SER is defined as

SER = Perror. (A-10)

Considering the probability of correct detection as Pcd, the Perror probability
is defined as Perror = (1− Pcd),

SER = 1− Pcd (A-11)

= 1− P (b)
( 4∑

i=1
P (x̂i = bi|xi = bi)

)
, (A-12)

where P(b) = 1/4, since all input symbols have equal probability. Considering
the worse case, that all Ntot samples of the temporal precoding vector px are
equal to a value γ, where γ corresponds to the minimum distance to the decision
threshold, the probability of correct detection P, can be lower bounded with

P′ (x̂i = bi|xi = bi) ≤ P (x̂i = bi|xi = bi) . (A-13)

With this, the SER upper bound is defined as

SERub = 1− P (b)
( 4∑

i=1
P′ (x̂i = bi|xi = bi)

)
, (A-14)

The probability density function of the 4-dimensional multivariate normal
distribution is

f (y,µ, Σ) = 1√
|Σ| (2π)4

exp
(
−1

2(y − µ)Σ−1(y − µ)T
)

, (A-15)

where µ corresponds to the mean vector and Σ to the covariance matrix defined
as Σ = E

{
(GRxn)(GRxn)T

}
. Considering the received vector yi of length

MRx + 1 before quantization associated with the input vector xi, the correct
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detection probability is defined as:

P′ (x̂i = bi|xi = bi) =
∫∫∫∫

R
f (y,µ, Σ) dy1dy2dy3dy4 (A-16)

The integration regions R and µ for each symbol bj are presented in Table A.2.

Table A.2: Integration regions R for each symbol bj.

Symbol µ
Received sequence
zi detected as bi

R
xl xu

b1 [γ, γ, γ, γ]
[ 1, 1, 1, 1] [ 0, 0, 0, 0] [∞,∞,∞,∞]
[ 1, 1,−1, 1] [ 0, 0,−∞, 0] [∞,∞, 0,∞]
[ 1,−1, 1, 1] [ 0,−∞, 0, 0] [∞, 0,∞,∞]

b2 [γ, γ, γ,−γ]
[ 1, 1, 1,−1] [ 0, 0, 0,−∞] [∞,∞,∞, 0]
[ 1,−1, 1,−1] [ 0,−∞, 0,−∞] [∞, 0,∞, 0]

b3 [γ, γ,−γ,−γ] [ 1, 1,−1,−1] [ 0, 0,−∞,−∞] [∞,∞, 0, 0]

b4 [γ,−γ,−γ,−γ]
[ 1,−1,−1,−1] [ 0,−∞,−∞,−∞] [∞, 0 0, 0]
[ 1,−1,−1, 1] [ 0,−∞,−∞, 0] [∞, 0 0,∞]

Note that, invalid codewords are also detected as the received symbol
bj, therefore, also invalid codewords are included in Table A.2. Moreover,
due to symmetry, only the codewords for positive ρ are considered. Fig. A.3
compares the numerical SER for the MMDDT precoding with (4-5) and the
semi-analytical SER upper bound with noise variance σ2 = 1. For numerical
evaluation, sequences of 1 symbol only were considered.

0.5 1 1.5 2 2.5 3
10−3

10−2

10−1

100

γ

SE
R

Analytical SER upper bound
Numerical SER

Figure A.3: Semi-analytical and numerical SER comparison for the MMDDT
precoding method with MRx = MTx = 3, N = 1 and σ2 = 1.
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A.4
Runlength-Limited Zero-Crossing Precoding

Using RLL sequences [66] for systems employing 1-bit quantization and
temporal oversampling has been proposed in [62,67]. They are a natural choice
for such systems because the information is conveyed in the temporal distance
between ZXs, which can be recovered after 1-bit quantization.

RLL sequences are discrete bipolar sequences, typically with amplitude
±1, which are constraint such that the minimum and maximum distance
between two amplitude transitions is given by d+1 and k+1, respectively [66].
An example for an RLL sequence with constraint (d = 1, k = ∞) is given
below:

coutk
= [. . . , +1, +1, +1,−1,−1, +1, +1, +1,−1,−1, . . .]T .

The minimum runlength constraint, also denoted as d-constraint, is introduced
to reduce ISI, whereas the maximum runlength constraint, also denoted as k-
constraint, is introduced to ensure proper synchronization. The k-constraint is
omitted here, i. e., k = ∞, so synchronization is not considered. The reader
is referred to [66] for more details on RLL sequences. This work employed the
FSM RLL codes derived in [60].

The encoder is initialized to a pre-defined state s0 ∈ SRLL, where SRLL

denotes the set of all encoder states. Then, depending on the current state
s0 and the current input block of p bits, the encoder produces an output
RLL sequence block of length q and translates it into a new state s1. The
procedure is repeated for each input block. The code rate is consequently given
by RRLL = p/q. The encoders are specified in Table A.3 and Table A.4 [60].
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Table A.3: Finite-state machine encoder for (1,∞) RLL constraint with code
rate RRLL = 2/3.

Current state Input Output Next State

1

00 001 1
01 010 2
10 000 3
11 010 3

2

00 100 2
01 000 3
10 100 3
11 000 2

3

00 010 2
01 010 3
10 101 1
11 001 1

Table A.4: Finite-state machine encoder for (2,∞) RLL constraint with code
rate RRLL = 1/2.

Current state Input Output Next State

1
0 00 3
1 00 4

2
0 01 1
1 00 3

3
0 01 1
1 10 2

4
0 00 3
1 00 4

A.4.1
Runlength-Limited Sequence Detection

For RLL sequence detection, we present a low-complexity minimum
Hamming distance Viterbi algorithm [68]. The algorithm is implemented on
the time-invariant trellis, which is defined by the FSM RLL encoders given
in [60, Table I-II]. Trellis states and transitions are denoted by sk ∈ SRLL



Appendix A. Appendix 102

Algorithm 5 Viterbi RLL Sequence Detection
Inputs: K, s0
Initialization: Γ(s = s0) = 0, Γ(s ̸= s0) =∞
for k = 0 to K − 1 do
for sk+1 ∈ SRLL do
Update path metric:
Γ(sk+1) = min

sk∈SRLL
Γ(sk) + λk(sk, sk+1)

Store survivor sequence:
x̂(sk+1) = [x̂T (sk), ⃗σT (sk, sk+1)]T
end
end
return x̂(sK) where sK = arg min

sK∈SRLL

Γ(sK)

and (sk = m, sk+1 = m′) ∈ TRLL, respectively. The forward mapping
σ(m, m′) ∈ {+1,−1}q denotes the output for a transition (m, m′) ∈ TRLL.
Furthermore, ⃗σ(m, m′) ∈ {0, 1}p denotes the inverse mapping for a transition
(m, m′) ∈ TRLL, i. e. it specifies the input bits corresponding to this transition.
Then, we define the Hamming distance branch metric as

λk(m, m′) =
q∑

n=1

1
2
∣∣∣[z](k−1)q+(n−1) − [σ(m, m′)]n

∣∣∣ , (A-17)

where [z]n and [σ(m, m′)]n denote the nth element of z and σ(m, m′), respec-
tively. Finally, the minimum Hamming distance Viterbi algorithm is given by
Algorithm 5(cf. [69]), where K = NMRx

q
and s0 ∈ SRLL denote the number of

decoder iterations and the start state, respectively.
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