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Abstract

Banaggia, Gabriel; Barbosa, Simone Diniz Junqueira (Advisor). Ex-
plainable Artificial Intelligence
in Machine Learning. Rio de Janeiro, 2024. 117p. Capstone
project report – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Explainable Artificial Intelligence aims to assist in opening the black-
box of opaque algorithms, especially present in machine learning systems,
so they can earn due trustworthiness. This work employs a systematic liter-
ature review in order to understand how the concepts of explainability and
interpretability, among others, are defined in this context. It offers a struc-
tured vocabulary to better comprehend and classify artificial intelligence
systems and models, as well as the techniques used to make them more
intelligible. Inspired by Human-Centered Computing notions, it becomes
crucial to consider the audience to which explanations are owed, emphasiz-
ing that it is composed of a community of heterogeneous users.

Keywords
Artificial Intelligence Machine Learning Explainability Inter-

pretability Human-Computer Interaction (HCI) Human-Centered Com-
puting (HCC) Explainable Artificial Intelligence (XAI) User Experience
(UX) Large Language Models Foundation Models



Resumo

Banaggia, Gabriel; Barbosa, Simone Diniz Junqueira. Inteligência
Artificial Explicável em Aprendizado de Máquina. Rio de
Janeiro, 2024. 117p. Relatório de Projeto Final de Graduação –
Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

A Inteligência Artificial Explicável pretende auxiliar na abertura da
caixa-preta dos algoritmos opacos, especialmente presente em sistemas de
aprendizado de máquina, de modo que eles possam conquistar a confiança
que for merecida. Este trabalho emprega uma revisão sistemática da lite-
ratura para entender como os conceitos de explicabilidade e interpretabili-
dade, entre outros, são definidos nesse contexto. Ele fornece um vocabulário
estruturado para melhor compreender e classificar sistemas e modelos de
inteligência artificial, bem como as técnicas utilizadas para torná-los mais
inteligíveis. Inspirado por noções de Computação Centrada em Humanos,
torna-se crucial considerar a audiência para a qual explicações são devidas,
enfatizando que ela é composta por uma comunidade usuária heterogênea.

Palavras-chave
Inteligência Artificial Aprendizado de Máquina Explicabilidade

Interpretabilidade Interação Humano-Computador (IHC) Computação
Centrada em Humanos (CCH) Inteligência Artificial Explicável (XAI)
Experiência do Usuário (UX) Grandes Modelos de Linguagem Modelos
de Fundação
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D[aughter]: Daddy, what’s a black box?
F[ather]: A “black box” is a conventional agreement between
scientists to stop trying to explain things at a certain point.
I guess it’s usually a temporary agreement.
D: But that doesn’t sound like a black box.
F: No—but that’s what it’s called. Things often don’t sound
like their names.
D: No.
F: It’s a word that comes from the engineers. When they
draw a diagram of a complicated machine, they use a sort
of shorthand. Instead of drawing all the details, they put a
box to stand for a whole bunch of parts and label the box
with what that bunch of parts is supposed to do.
D: So a “black box” is a label for what a bunch of things
are supposed to do. . . .
F: That’s right. But it’s not an explanation of how the
bunch works.
D: And gravity?
F: Is a label for what gravity is supposed to do. It’s not an
explanation of how it does it.
D: Oh.
[...]
D: Do chromosomes learn?
F: I don’t know.
D: They do sound rather like black boxes.
F: Yes, but if chromosomes or genes can learn, then they
are much more complicated black boxes than anybody at
present believes. Scientists are always assuming or hoping
that things are simple, and then discovering that they are
not.

Gregory Bateson,
Steps To An Ecology of Mind (1972).



1
Introduction

Inscrutable, opaque, black boxes, biased, inexplicable. These are just
a few of the ways used to describe a set of computational inventions that
figure among the most important in recent times, with ever increasing levels
of performance and ever more disorienting degrees of complexity (Laato
et al., 2022; Tomaino et al., 2022; Chazette, 2023; Dwivedi et al., 2023;
Mohammadkhani, 2023; Nauta et al., 2023; Sado et al., 2023). Advancements
reached in the last decade in artificial intelligence technologies, especially in
machine learning and, more specifically, in deep neural networks, have made
them nearly ubiquitous in our lives, being part of numerous automated or
semi-automated decision systems in a wide range of application domains (Islam
et al., 2022; Guidotti et al., 2018).

The accelerated growth in the adoption of these technological solutions
has raised concerns regarding their explainability, something considered one
of the main challenges - both for development and user communities - to
address, which was not part of artificial intelligence ecosystems previously
(Laato et al., 2022; Haque et al., 2023). Explainable artificial intelligence
emerges thus as a new field within the realm of artificial intelligence studies,
with the purpose of designing, assessing, and assisting in the construction of
more transparent, interpretable, and less biased models (Guidotti et al., 2018;
Alarcon and Willis, 2023; Dwivedi et al., 2023).

The demand for explanations becomes even more essential in the face
of these systems’ increasing popularity, and the previous emphasis on the
accuracy of predictions made by models indifferent to the communication of the
reasons behind a particular decision faces increasingly sharp criticism (Nauta
et al., 2023). Even possibly due to the achievement of increasingly promising
results, at least partly derived from inspiration in the structure of the human
brain itself, which enables the learning of sophisticated features by artificial
neural networks, the absence of symbolic interpretation capabilities and the
explicit explanation of the model’s functioning and its responses are becoming
increasingly unsustainable (Islam et al., 2022; Ibrahim and Shafiq, 2023; Sado
et al., 2023).

In order to facilitate the use and acceptance of the latest artificial
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intelligence systems by humans, there has been a recognized need to make them
increasingly comprehensible by enhancing transparency in decision-making
processes supported by software, often achieved through the integration of
explanations as part of the computer applications themselves to mitigate
their opacity (Chazette and Schneider, 2020). Explainability becomes a means
of achieving desirable characteristics in software that utilizes this type of
artificial intelligence, helping artifacts become more transparent, accountable,
and reliable, which can be considered essential aspects of a system, filling the
gaps left by the absence of information that inhabit opaque models (Chazette
et al., 2022; Alarcon and Willis, 2023; Dwivedi et al., 2023).

Part of this call is made by the field of Human-Computer Interaction,
whose research indicates the importance of considering the perspectives of the
end-user community, collaborating with software engineering teams so that
neural networks can provide a range of different explanations regarding their
operation and results (Laato et al., 2022; Ibrahim and Shafiq, 2023). Fur-
thermore, this goal becomes even more essential in decision-making processes
involving sensitive situations, where decisions will have a direct or indirect
impact on people’s lives, requiring these systems to not only be robust and ac-
curate but also take into account socially relevant values such as equity, privacy,
accountability, reliability, and acceptance, including the possibility of appro-
priately appealing decisions made based on them, providing reasonable rec-
ommendations for adequately altering a particular evaluation (Coeckelbergh,
2020; Karimi et al., 2022; Kaur et al., 2022; Li et al., 2023).

The seriousness required in carefully considering explainability deepens
even further when the subject is part of the universe of critical applications,
including, for example, the medical and legal fields, an expansion that becomes
even more pronounced when one considers the possibility of using autonomous
systems, including robotic agents with a high degree of automation working
in conjunction with humans on tasks that often carry serious risks (Vouros,
2022; Zini and Awad, 2022). In these cases, any breakdown of trust in the
explanations provided by these systems among the parties involved can have
serious consequences, even leading to the loss of human lives (Li et al., 2023).

Thus, it can be seen that the absence of explainability constitutes a
simultaneously practical and ethical issue, especially when vast amounts of
data are involved in model training, which may contain human prejudices
that can be inherited by systems that will start making incorrect and unfair
decisions, possibly exacerbating problems that a hidden, internally sealed logic
may conceal (Guidotti et al., 2018). A series of legislative initiatives around the
world aimed at data protection and regulation have also turned their attention
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to decision-making systems that use automation, such as profiling individuals,
seeking to ensure the individual right to an explanation of the logic involved
in processes using these technologies (Guidotti et al., 2018; Sado et al., 2023).

In addition to the already evidenced reasons that point to the need
for explainability, the literature also indicates a series of benefits that its
adoption can bring in any domain, such as increasing the trust of stakeholders
in a particular application, improving the quality of training data and the
neural network models themselves, increasing the accuracy and performance
of specific tasks, enhancing the communicability of the application as a whole,
and even reducing energy consumption since the processes of implementation
and use of these types of systems become increasingly computationally costly
(Chazette et al., 2022; Habiba et al., 2022; Zini and Awad, 2022; Alarcon and
Willis, 2023; Haque et al., 2023; Ibrahim and Shafiq, 2023; Saeed and Omlin,
2023).

As such, first of all this work consists of an investigation on the different
meanings that explainability and its related concepts can acquire according to
a systematic literature review on the topic. We will deal with a wide range
of solutions aimed at achieving greater explainability and elaborate a possible
typology to classify the techniques at hand. Finally, we will offer ways in which
our findings can equip communities of developers and of users with ways to
deal with artificial intelligence systems in a more explainable manner.

This report is structured as follows. Chapter 2 introduces the background
of Explainable Artificial Intelligence and organizes the knowledge that was
taken into account for proposing the current study. Chapter 3 presents the
methodology employed in the systematic literature review, which is further
detailed in Appendix A. Chapter 4 gives a rundown of the texts that were
discovered in the review and how they were organized for deeper study.
Chapter 5 constitutes the bulk of the work, in which the selected texts
are considered in depth and the themes found among them are compared,
contrasted and discussed. Lastly, Chapter 6 recaps and concludes our findings,
indicating avenues for future work.



2
Background and Related Works

To get a better feel of the subject before properly diving into the main
idea for this study, initial and non-systematic literature reviews were conducted
through searches on Google Scholar and the ACM Computing Surveys journal,
using terms such as explainability, explicability, interpretability, AI, XAI,
explainable AI, and others. As will be detailed later, the proposal for this work
involved conducting a systematic review of the available literature on these
topics, following a more well-defined protocol. However, even the procedures
outlined for a review of this kind, described in Chapter 3, involve an initial
exploratory research that informs the creation of the protocol itself, and this
is what is presented in the current chapter, with an initial identification of
current trends in the field (Biolchini et al., 2005).

Several possible definitions can be taken into consideration regarding the
topic of explainability in the context of artificial intelligence, and since it is
still a relatively nascent field, there is not yet a well-established consensus
about them. It’s worth noting that there is work that points out how the topic
was already important in the field of artificial intelligence at least since the
1980s; however, it did not receive the same degree of attention it got in recent
years, when efforts began to systematize previously scattered results, providing
classifications of methods and taxonomies in a literature that is still clearly in
a state of evident effervescence (Guidotti et al., 2018; Chazette et al., 2022;
Alarcon and Willis, 2023; Dwivedi et al., 2023).

First and foremost, possibly the most important relationship to establish
is between the concepts of explainability and interpretability. While some
works equate the two, considering them even as simple synonyms (Kaur et al.,
2022; Zini and Awad, 2022; Nauta et al., 2023), others prefer to create a clearer
distinction between them, giving them different forms of intelligibility (Kaur
et al., 2022; Karimi et al., 2022; Alarcon and Willis, 2023; Saeed and Omlin,
2023). Ultimately, it is evident that each scientific approach is developed to
provide a solution to a specific problem, and consequently, the ways in which
a context is delineated carry with them, either implicitly or explicitly, their
own definitions of what explainability and interpretability would be, with
considerable variation within different scientific communities (Guidotti et al.,
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2018).
We can temporarily start from one of the broader definitions of expla-

nation found in the literature to proceed with the description of the current
state of the field: “An explanation is a presentation of (aspects of) the rea-
soning, functioning and/or behavior of a machine learning model in human-
understandable terms” (Nauta et al., 2023) This sounds like it could be a good
initial definition, as it allows for the inclusion of some of the different senses
of explainability: after all, with it, one can both aim to explain details of the
general functioning of a system, model, or architecture, as well as the reasons
that lead to a specific decision (e.g., classification or prediction), providing this
information to the development and/or user communities of applications that
make use of these technologies (Kaur et al., 2022; Alarcon and Willis, 2023).

The exploratory analysis indicates that there is a consensus regarding
the importance of the explainability principle, considered one of the major
current scientific challenges (Guidotti et al., 2018). Since explainable artificial
intelligence is still in its embryonic stage, widespread adoption of its techniques
and premises in applications currently available to the general public has not
yet been observed (Ibrahim and Shafiq, 2023). The very understanding of what
explainability means, especially in the context of deep neural networks, is still
not something settled (Vouros, 2022). Consequently, there also do not appear
to be agreed-upon metrics for evaluating explainable artificial intelligence
methods in the literature, leading to a lack of benchmarks for performance
comparison, even though some have already been proposed and analyzed
(Mohammadkhani, 2023; Nauta et al., 2023).

What is considered desirable is that computational agents using artificial
intelligence can be capable of providing informative explanations about their
decision-making, even in cases where humans might not be able to, although
humans can provide paradigmatic demonstrations of skills that can teach a
system how to solve certain tasks (Vouros, 2022). The types of explanations
can vary widely, with a considerable range of explanatory techniques available,
of varying interest depending on characteristics such as the application domain,
the type of explanation itself, the type of data used by the system, the assumed
background knowledge of the user community, and the specific question being
sought to explain (Zini and Awad, 2022; Nauta et al., 2023). Initially, it is worth
noting that the relative importance of a feature emerges as the most common
type of explanation, and most explainable artificial intelligence methods focus
on explaining individual predictions rather than providing global insights into
a model’s reasoning (Nauta et al., 2023).

Another aspect of the current situation relates to the widely discussed
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need for more systematic studies on explainable artificial intelligence, with
the observation of a scarcity of secondary studies (Islam et al., 2022). We
would like to exercise caution regarding agreement with diagnoses of this kind,
especially when considering that even an exploratory research has found more
than one assessment claiming to be the only systematic literature review on a
particular topic (e.g., Chazette et al. (2022); Mohammadkhani (2023)), despite
the nuances investigated more thoroughly in each of them. Conversely, lists
were found that enumerate a significant number of systematic reviews already
conducted (cf. references in Zini and Awad (2022); Haque et al. (2023); Nauta
et al. (2023)), and it seems reasonable to acknowledge that a systematic review
is never truly complete; it reaches a point of saturation when no more new
concepts or interpretations can be obtained from new material (Chazette et al.,
2022).

There are many distinct ways to provide explainability in artificial
intelligence, and they also vary not only in terms of ‘how’ but also effectively
in terms of ‘what’ is being sought to explain, which are non-trivial questions.
Regarding the ‘how’, it is possible, for example, to invest in visual explanations,
rule extraction, providing semantic descriptions (Islam et al., 2022; Ibrahim
and Shafiq, 2023; Saeed and Omlin, 2023). As for the ‘what’, research points to
important distinctions between the explainability of the data used for training,
the model itself to be trained, and also the results of the model after making
specific predictions or decisions (Vouros, 2022; Zini and Awad, 2022; Dwivedi
et al., 2023; Ibrahim and Shafiq, 2023).

Furthermore, it is also useful to consider in which phases of an applica-
tion’s life cycle explainable artificial intelligence techniques should be taken
into account, which entails different moments and modes of implementation,
investing in methods that are inherently explainable to the extent possible
(Vouros, 2022; Dwivedi et al., 2023; Li et al., 2023). Similarly, approaches that
consider offering explainable artificial intelligence often need to deal with the
possibility of a trade-off between explainability and performance, where perfor-
mance is understood as the degree of accuracy of a predictive model (Guidotti
et al., 2018). To address this dilemma, the suggestion is to consider ‘for whom’
explanations should be provided since the different stakeholders involved in
the creation and use of artificial intelligence systems may require very distinct
forms of explanations, which need to be properly managed (Orphanou et al.,
2022).

Many of the existing studies we have brought to bear in this background
exploratory research were aimed at very different application domains, and it
is crucial to distinguish between, on one hand, critical domains or those that
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involve sensitive data, and on the other hand, the rest. While some of the
texts thus found presented arguments that did not take into account different
application domains, others were more directly related to one or more of these
domains, including economics and finance (like obtaining credit lines), health,
education, insurance, transportation, hiring, public safety, the judicial system,
scientific research (in various disciplines), robotics, and defense. Meanwhile,
applications in sales, advertising, entertainment, message filters, or online
search services are examples among non-critical domains (Guidotti et al., 2018;
Islam et al., 2022; Kaur et al., 2022; Laato et al., 2022; Dwivedi et al., 2023;
Haque et al., 2023; Ibrahim and Shafiq, 2023; Li et al., 2023; Sado et al., 2023).

There are different approaches that have caught our attention in the
research on explainable artificial intelligence during the exploratory search,
and we highlight two of them. The first one is related to understanding
explainability as an emerging non-functional requirement that would be part
of the quality assessment of software (Chazette and Schneider, 2020; Chazette
et al., 2022; Chazette, 2023), assessable through specific metrics (Ibrahim and
Shafiq, 2023; Nauta et al., 2023). In this sense, one of the works takes a
stance by asserting the existence of synergy between requirements engineering
and explainable artificial intelligence (Habiba et al., 2022). A point that
connects this approach with the following one is related to the understanding
of requirements geared towards the end-user community, which leads us to the
second envisioned perspective.

Focusing on explainability directed towards the user community, various
works point out how explainability takes on a different meaning when this
group is more directly in mind, considering their specific needs, indicating their
relative scarcity compared to other existing ones, and suggesting the need for
more primary research involving the perceptions of the humans who use these
systems (Alarcon and Willis, 2023; Haque et al., 2023). This literature aims
to identify when explanations are necessary or desirable, in what formats and
levels of detail (with the possibility of further elaboration when appropriate),
and generating the greatest impact on user community trust in the employed
technologies and suggested solutions, while keeping the focus on the human
agents who will be making critical decisions with the support of these systems,
without losing sight of all the stakeholders involved in the process (Orphanou
et al., 2022; Vouros, 2022; Alarcon and Willis, 2023; Ibrahim and Shafiq, 2023).

Here are some of the main conclusions highlighted in the initial bibliogra-
phy we had access to. The available explainable artificial intelligence methods
are often more applicable to so-called classical machine learning models (ran-
dom forests, decision trees, and regression models) than to more complex ones
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(such as deep neural networks and generative models, such as transformational
architectures) (Mohammadkhani, 2023). The use of collaborative and inter-
disciplinary research, the value of combining explanatory methods to obtain
more powerful explanations (including causal, contrastive, and counterfactual
ones), the relevance of explaining different types of data differentially, and the
importance of communicating uncertainty (both about the models and the
explanations themselves) to the user community are just some of the contribu-
tions chosen among the 15 key conclusions synthesized in one of the considered
studies (Saeed and Omlin, 2023).

In addition to these, it is worth mentioning among the findings of
the texts in question the existence of at least four dimensions that shape
explanations in artificial intelligence, namely, format, completeness, accuracy,
and timeliness (Haque et al., 2023), while pointing out the lack of research
on perceptions of how much trust and reliance there is on machine learning
(Alarcon and Willis, 2023). One literature synthesis indicates that there are
five main objectives in the communication of artificial intelligence systems with
the user community, which are degrees of understanding, trust, transparency,
control, and fairness, with corresponding design suggestions, that there is no
one-size-fits-all solution that is best for all cases, and that it is necessary
to consider the multiple possible trade-offs between them (Laato et al.,
2022), potentially creating the possibility of optimizing a system for greater
explainability (Nauta et al., 2023).

Finally, it is worth mentioning in this section an apprehension of the
conduction of the systematic literature reviews found in the exploratory
research. Most of them cite as a reference works authored by researcher
Barbara Kitchenham (the most frequent of them being Kitchenham and
Charters (2007)): Chazette et al. (2022); Islam et al. (2022); Laato et al.
(2022); Chazette (2023); Haque et al. (2023); Mohammadkhani (2023); Saeed
and Omlin (2023). However, a closer examination reveals that the proposed
systematic review methods (which will be further unveiled in Chapter 3)
were not always consistently followed: there were often excessive limitations
in the chosen keywords for the searches (cf. Islam et al. (2022); Saeed and
Omlin (2023)), improper use of logical operators for conducting searches (cf.
Haque et al. (2023)), restrictions on the sources effectively consulted (cf.
Haque et al. (2023)), outdated time constraints (cf. Chazette (2023)), a lack
of bibliographic reference to the sources that would structure the systematic
review (cf. Votto and Liu (2023)), or simply excessive deviations from the
systematic research protocol (cf. the so-called “manual search” conducted in
Chazette et al. (2022)).



3
Methodology and Execution

A considerable part of this work involved enacting a Systematic Litera-
ture Review on the topic of explainability in artificial intelligence, based on the
results of the initial searches that were detailed in the previous chapters. This
allowed us to determine if the chosen topic was too broad to be covered within
the available time, helping to narrow the focus to arrive at the appropriate re-
search questions (Carrera-Rivera et al., 2022). As one of the preliminary steps
before conducting the actual review is to ensure its necessity by conducting
a search for existing similar reviews (Kitchenham, 2004), if the existence of
one or more high-quality reviews was confirmed, providing information on the
selected topics (Biolchini et al., 2005), we envisioned two alternatives: either
shifting the chosen topics (for example, delving into a specific application con-
text or a specific technology), or conduct a tertiary study by considering the
range of existing systematic reviews. Since that was the case, the first option
was pursued, as will be detailed further down.

The method used for conducting systematic reviews in computer science
is explicitly inspired by guidelines used for similar studies in medical research,
with adaptations to be applicable to specific problems in software engineering
research (Kitchenham, 2004). Significant differences arose in this transition,
including the fact that techniques used in software engineering can potentially
impact a part of its lifecycle, with non-trivial effects to isolate, as they interact
with other development techniques and procedures (Biolchini et al., 2005).
Establishing linear causal links in this way is challenging, especially when the
use of the technique and the final outcome of an application are distant from
each other and separated by a series of other activities or tasks that can affect
the latter (Biolchini et al., 2005). Another fundamental difference compared
to medical studies is that in software research protocols, it is not possible
to establish double-blind experiments, since in the realm of computing they
depend on the participation of humans who necessarily possess specialized
knowledge of the procedures they apply (Biolchini et al., 2005). The extensive
involvement of humans in this process indicates another interesting approach,
with methods related to other fields of knowledge.

That is why a portion of the available bibliography on conducting sys-
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tematic literature reviews in computer science indicates that their methods are
not only similar to those used in healthcare sciences research but also to those
in the social sciences, a field known for conducting observational studies where
the definition and measurement of constructs of interest and understanding the
impact of context on research outcomes are equally important (Kitchenham,
2004; Carrera-Rivera et al., 2022). One of the consulted texts even mentions
that the origin of these research synthesis methods, even in the medical sci-
ences, can be traced back to the field of social sciences, where the first books
on these research methodologies were published in the 1980s (Biolchini et al.,
2005).

The execution of a systematic review follows a specific scientific method
that goes beyond a simple review, through empirical research that allows
for generalizations (Biolchini et al., 2005). Among its objectives are the
formulation of appropriate research questions, as well as the conduction of
quantitative and qualitative analyses, grouping the found studies according
to key themes or characteristics through a research protocol that structures
the methods to be effectively used in its search, selection, organization, and
presentation, in a process that aims to be transparent and potentially replicable
(Kitchenham, 2004; Carrera-Rivera et al., 2022).

The texts that detail procedures for conducting systematic literature
reviews emphasize that they do not constitute a guaranteed way to find all
relevant literature in a specific area (Kofod-Petersen, 2015), a project that
would be overly ambitious. For our current purposes, it is worth noting that
much more commonly, systematic reviews are carried out by collaborative
research teams rather than individual researchers, and more often as extensive
academic works such as master’s theses or doctoral dissertations (Kitchenham,
2004; Biolchini et al., 2005; Carrera-Rivera et al., 2022). One of the consulted
sources even suggests a simplified version of the systematic review protocol
for individual researchers (Kitchenham, 2004), which closely aligns with the
procedures recommended by the version we have chosen as the main guide for
our endeavor (Carrera-Rivera et al., 2022).

The process of constructing a protocol for conducting a systematic
literature review is iterative, and even its initial results can help refine it,
as was the case in this study. However, it is not advisable to change the data
extraction form after starting to fill it out, as this could result in the need for
significant rework (Carrera-Rivera et al., 2022). Thus, any potential changes to
the protocol after its approval were limited to its initial fields, such as refining
research questions or search strings after obtaining some initial results.

The systematic literature review was initially conducted according to a
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protocol specified in Carrera-Rivera et al. (2022). A form containing the final
established protocol is available in Appendix A, a version in which we arrived
at after initial trial and error. While this chapter sums up the review process,
the previously referenced section contains a lot more detail about the minutiae
of the systematic search, so readers can effectively reproduce the steps taken
and critique them as necessary.

After the preparatory study was enacted and the initial proposal drafted
and adjusted with continuous help from this work’s supervisor, five sets of
criteria were chosen to delineate the searches proper. For these choices, the so-
called PICOC Criteria were selected, a method mentioned in Carrera-Rivera
et al. (2022), that was initially devised as PICO for evidence-based medical
research (Richardson et al., 1995) and then expanded upon in the social
sciences (Petticrew and Roberts, 2006).

The acronym stands for Population, Intervention, Comparison, Outcome,
and Context. In our case, that initially meant roughly Foundation Models, Ex-
plainability, Black Boxes, Explanations and Definition, a set of keywords ac-
companied by synonyms that accompanied the possibly five research questions
the systematic review could attempt to answer, being:

RQ1. How is ‘explainability’ defined in the domain of foundation models?

RQ2. What are the current efforts to explain emergent capabilites in AI?

RQ3. To whom are AI explanations owed, and what does that figuration entail?

RQ4. How does trying to achieve explainability affect a model’s performance?

RQ5. What does considering explainability a (non-functional) requirement in-
volve?

After some deliberation, the first two questions were deemed more
feasible for the work given the available time, and the first one was finally
selected considering the initial search results. Four digital library sources were
considered, and we settled upon two of them to conduct the search queries
in the end. A set of different inclusion and exclusion criteria were enacted to
arrive from the final search results to the set of texts that were part of the full
knowledge extraction process. The finalized search string and corresponding
options for querying each repository, as well as the rest of the discussion on how
we arrived at it, can be found in Appendix A, as has been mentioned. Notably,
we tried our best not to veer too far off the initial intent of contemplating
Large Language Models, and even Foundation Models as a whole, but as we
will see in the next chapter, our focus ended up having to be Deep Learning
more generally instead.



4
Results

The initial search results comprised 213 unique items, including journal
articles, conference papers, books, and book chapters. Further details on how
these were processed are supplied in Appendix A, which also includes a link to
a publicly available spreadsheet recording the application of the inclusion and
exclusion criteria mentioned therein.

For each of the entries we proceeded to a complete reading of the re-
source’s title and abstract, and to a complementary reading of each entry’s
Introduction and/or Conclusion whenever it was necessary in order to gather
the required information. Other than the metadata that was already program-
matically available (Title, Type of Source, and Publication Year), that infor-
mation included full text Availability, Relevance to our RQ1 (with the options
being ‘Fully Relevant’, ‘Partially Relevant’, or ‘Not Relevant’), and the Main
Application to which the item made reference, whenever the entry fulfilled the
relevance criterion at least partially.

Figure 4.1: Distribution of publications over the years

Figure 4.1 shows an exponentially rising frequency for the texts, with a
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clear spike in 2022, the year in which large language models dominated the
interest of the public eye in regard to Artificial Intelligence. Since the final
queries were run on July 7, 2023, it is very probable the tendency of interest
in the theme either confirms itself or tapers out.

The different applications for explainable artificial intelligence techniques
found in the initial query are summed up in Figure 4.2. Whenever more
specific applications were mentioned, they were preferred to more general
characterizations. For instance: if the task was mentioned as ‘Drug discovery’,
that was the label chosen, even if the application also involved ‘Property
prediction’ more broadly. If an item could be classified as having two or more
different types of specific applications, the most prevalent one was chosen.
When no single application stood out, the item was classified as dealing with
‘Various’ applications. It was no coincidence that all of the texts that were
deemed ‘Fully Relevant’ for our research question were labeled as dealing with
various kinds of applications, since these texts were the ones more interested
with more general definitions regarding explainable artificial intelligence as
well.

Figure 4.2: Applications frequency

We concluded the steps chosen for inclusion and exclusion of texts by
selecting all of the items that were considered ‘Fully Relevant’ to our research
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question with the intent of reading them in full for the information extraction
stage. During this process, we realized one of the items did not actually deal
directly with the research question, since it did not address a definition of
explainable artificial intelligence in the context of deep machine learning. At
the same time, from each of the book entries we usually chose one chapter
that dealt more directly with the theme of our work. However, there were two
instances when two chapters were considered relevant in the same book. That
brought us to a final total of 16 texts for the information extraction process,
listed in Table 4.1.

Table 4.1: SLR results
First author, Year Title

Barredo Arrieta, 2020
Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and chal-
lenges toward responsible AI

Chaudhari, 2021 An Attentive Survey of Attention Models

Bruce, 2021
Background: Modeling and the Black-Box
Algorithm

Bruce, 2021 Model Interpretability: The What and the Why

Loh, 2022
Application of explainable artificial intelligence
for healthcare: A systematic review of the last
decade (2011–2022)

Bhattacharya, 2022a
Foundational Concepts of Explainability
Techniques

Bhattacharya, 2022b Model Explainability Methods

Meador, 2022 Explainable AI - Using LIME and SHAP

Correia, 2022
Collaboration in relation to Human-AI Sys-
tems: Status, Trends, and Impact

Li, 2022
Interpretable deep learning: interpretation, in-
terpretability, trustworthiness, and beyond

Zini, 2022
On the Explainability of Natural Language
Processing Deep Models

Liu, 2023 Fundamentals of Deep Learning Explainability

Simon, 2023 Understanding Explainable AI

Continued on next page
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Table 4.1: SLR results (Continued)

Nannini, 2023
Explainability in AI Policies: A Critical Review
of Communications, Reports, Regulations, and
Standards in the EU, US, and UK

Räuker, 2023
Toward Transparent AI: A Survey on Inter-
preting the Inner Structures of Deep Neural
Networks

Liu, 2023 Trustworthy AI: A Computational Perspective

The information extraction involved reading the texts in full, highlighting
and annotating the most important parts in each one, deriving a set of
categories considered significant for our research question, and iterating on
them as more items were analyzed, noticing recurrences and gaps along the
way. After reading the texts, the passages and annotations from each one were
reread and classified in one or more categories. The results of this step are also
supplied in full in a publicly available spreadsheet, as detailed in Appendix A,
and were organized as thus:

1. Organizational information:

• Title
• Year
• Author(s)
• Item Type
• Keywords

2. Summarizing information:

• Initial context and motivation
• Application domains and specific applications mentioned
• Main contribution summary

3. Definitions for key terms:

• Explainability characterizations
• Distinction between explainability and interpretability
• Explainability definition
• Interpretability definition
• Relevant additional terms (understandability, comprehensibility,

transparency, etc.)

4. Effects and ways of achieving explainability:
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• Benefits of explainability/interpretability
• Risks of non-explainability/non-interpretability
• Techniques for explainability/interpretability

5. Key takeaways for additional exploration:

• Important references (for backward snowballing)
• Interdisciplinarity
• Assessment and metrics
• Future challenges and possible drawbacks

The detailed analysis of these passages constitutes the remainder of this
work.



5
Discussion

This chapter discusses all of the themes that we organized during the in-
formation extraction procedure, according to five different groups of subjects,
as detailed below: organizational information; summarizing information; defi-
nitions of key terms; effects and ways of achieving explainability; key takeaways
for additional exploration.

5.1
Organizational information

We used the following simple formula in Google Sheets to count the
occurrences of keywords in the selected texts:

=ArrayFormula(
query(

flatten(split(E2:E17,",")),
"select Col1,count(Col1)
where Col1 <> ”
group by Col1
label Col1 'Unique words',
count(Col1) 'Frequency'" ,
0)

)
)

There was very little overlap, with only a few keywords appearing more
than once. The full list and how many times each keyword occurred are in
Table 5.1.

Most of the keywords that appear more than once have to do directly
with the main themes of our work, which is to be expected, though there
were actually very few terms that appeared more than once in the survey.
The great degree of variability in the keywords found indicates considerable
thematic dispersion in the domain under review, which will be further explored
in the subsequent sections.
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Keywords Count

AI Policy, Altmetrics, Attention, Attention Models, Attention Mech-
anism, Autonomy, CBR, Comprehensibility, Computer Vision, Data
Fusion, EBM, Emerging Topics Detection, Environmental Well-
being, Expert System, Explaining Decisions, Funding, Generative
Models, Governmental Regulations, GradCAM, Healthcare, Human-
AI Systems, Interpretable Deep Learning, Interpretation, Law,
LIME, LRP, Language Models, Neural Networks, PRISMA, Respon-
sible Artificial Intelligence, Robustness, Rule-based, SHAP, Saliency
Map, Scientometrics, Security and Privacy, Social Epistemology, Sur-
veys and Overviews, Transformers, Transparent Embedding Models,
Trust, Trustworthiness

1

Accountability, Deep Learning, Fairness, Interpretability, Neural Ma-
chine Translation, Privacy

2

Artificial Intelligence, Explainability, Interpretability, Machine
Learning, Natural Language Processing/NLP, Transparency

3

Explainable Artificial Intelligence/Explainable AI/ExAI 4

Table 5.1: Keyword Frequency

5.2
Summarizing information

The next subsections discuss the texts concerning initial context and
motivation; application domains and specific applications mentioned; and
summaries of main contributions.

5.2.1
Initial context and motivation

The texts under review point that Artificial Intelligence has achieved
notable momentum in recent years, affirming the existence of a consensus about
the paramount importance of machines endowed with capabilities for learning,
reasoning and adapting, describing them as pivotal for the future development
of the human society (Barredo Arrieta et al., 2020). In comparison with rule-
based computer programs, which are said to be limited by the knowledge and
intelligence of the programmer, machine learning algorithms have the ability
to provide rich insights and accurate predictions even in inordinately complex
situations, in some cases surpassing human performance (Bhattacharya, 2022a;
Zini and Awad, 2022).

Deep neural networks (artificial neural networks with multiple layers be-
tween the input and output layers, systems also referred to as ‘deep learning’)
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are being increasingly deployed in real scenarios, used in all sorts of problems,
focusing mostly on classification, regression (numeric predictions), and cluster-
ing. Reinforcement learning and recommendation systems also deserve special
mention due to their rising adoption across different industries, and all of these
technologies and models are said to be revolutionizing applications all around
(Räuker et al., 2023; Liu and Zaharia, 2022; Zini and Awad, 2022).

At least part of the context the review shows frames the current moment
as one ripe for an area that discusses collaboration between human and artifi-
cial intelligence systems, even if riddled with growing concerns for the adoption
and democratization of the latter (Correia and Lindley, 2022; Bhattacharya,
2022b). Considering their role in the current times, the texts under review
deem necessary making these systems trustworthy, in order for humans to rely
on them with minimal concern for the potential harm they could do (Liu et al.,
2023).

While mentioning the rapid development and sophistication of artificial
intelligence systems, several of the texts mention that there are now even low
and no-code options available to user with little technical expertise, to the point
that almost no human intervention is needed for their design and deployment
(Barredo Arrieta et al., 2020; Meador and Goldsmith, 2022; Simon and Barr,
2023).

This ease of use and deployment, and sometimes configuration, could
not pose a higher contrast to the way these systems are said to be internally
developed and constituted: in this context, the terms that appear in the re-
view include some like black-box, opaque, non-linear, too complicated, overly
complex, hard or difficult to understand or even approximate, particularly so
for deep neural network architectures (Barredo Arrieta et al., 2020; Bruce and
Fleming, 2021a; Li et al., 2022; Chaudhari et al., 2021; Zini and Awad, 2022).
A few of the texts under consideration even opted for terms that orbit the
semantic universe of occultism to describe these systems, calling them oracles,
magical, mystifying, capable of providing silver bullets to automatically deci-
pher life, which makes their unregulated use and the incontestable truths so
produced at least somewhat worrying: especially when they are wrong (Bruce
and Fleming, 2021b; Bhattacharya, 2022a)

With the so called deep learning revolution that took place accelerated
by the breakthrough of the ImageNet dataset in 2012, the Defense Advanced
Research Project Agency (DARPA) of the United States sounded a call
for Explainable Artificial Intelligence research in 2015, formally launching
a program in 2017 intending to develop intelligent systems that end users
could understand and trust (Simon and Barr, 2023). The following years
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saw explainability as one of the main barriers to practical implementation
of these systems, which faced public ire due to misapplication, demands for
increased regulation, legal exposure, and also the simple desire for greater
transparency for the algorithms which increasingly affect people’s everyday
lives (Barredo Arrieta et al., 2020; Bruce and Fleming, 2021b).

The context to which the review initially points is one in which this
burgeoning area of explainability in artificial intelligence has recently gained
a lot of traction, not just in the public eye but also in the industry and
academia, where there have been comparatively limited works so far (Correia
and Lindley, 2022; Loh et al., 2022). The relative paucity of systematic
studies on the theme in this still emerging area also contributes at least in
part to the difficulty in finding agreement about not only methods but even
for the terminology involved in the phenomenon, with growing interest in
disambiguating the lexicon and proposing precise definitions for the concepts
under use, which should also help with successful regulatory efforts and
actionable recommendations (Liu and Zaharia, 2022; Simon and Barr, 2023;
Nannini et al., 2023).

Lastly, it should be mentioned, for a characterization of the initial context
pointed to by the review, that explainability has also become a prominent
research focus in human-computer interaction as well as machine learning
communities, fueled by the growth of focus on user interests, social trust,
regulatory compliance, model debugging, and business interests, all themes to
which we will return in detail later on in the current work (Nannini et al.,
2023; Simon and Barr, 2023).

5.2.2
Application domains and specific applications mentioned

Like we mentioned in Chapter 4, we prioritized items in which the
focus tended to be more on definitions for explainability than on specific
applications. Consequently, it makes sense that, in contrast with the texts
that were excluded from a more detailed appraisal, the ones that were read in
full deal comparatively less with particular tasks or applications. Nonetheless,
several domains of interest are indeed mentioned in the texts under review.
They are summarized in Table 5.2.

There were also quite a few more particular tasks mentioned without
reference to specific applications and corresponding domains: natural language
processing, computer vision, multi-modal tasks, recommender systems, graph
systems, dialogue systems, text summarization, machine translation, question
answering, sentiment analysis, and information retrieval (Chaudhari et al.,
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2021; Li et al., 2022; Liu et al., 2023).



Chapter 5. Discussion 34

Domains (and example applications) Source(s)

Commerce (retail, supply chain, purchase rec-
ommendation)

Bruce and Fleming (2021b);
Bhattacharya (2022a);
Meador and Goldsmith
(2022); Liu et al. (2023)

Education (co-creativity) Bhattacharya (2022a);
Correia and Lindley (2022)

Finance (insurance, credit lending, banking,
auditing, risk assessment)

Barredo Arrieta et al. (2020);
Bruce and Fleming (2021a);
Bhattacharya (2022a);
Meador and Goldsmith
(2022); Liu and Zaharia
(2022); Liu et al. (2023)

Healthcare (precision medicine, predictive
medicine, clinical decision support, drug dis-
covery, disease diagnosis, gene analysis)

Barredo Arrieta et al. (2020);
Loh et al. (2022); Bhat-
tacharya (2022a); Correia
and Lindley (2022); Li et al.
(2022); Liu and Zaharia
(2022); Liu et al. (2023)

Hiring (job application screening, human re-
source management, job recommendation)

Bhattacharya (2022a);
Correia and Lindley (2022);
Liu et al. (2023)

Leisure (games) Correia and Lindley (2022)

Military (patented technologies) Meador and Goldsmith
(2022); Correia and Lindley
(2022)

Security (prison sentencing, recidivism pre-
diction, authentication)

Barredo Arrieta et al. (2020);
Meador and Goldsmith
(2022); Liu and Zaharia
(2022); Liu et al. (2023)

Transportation (autonomous vehicles) Barredo Arrieta et al. (2020);
Bhattacharya (2022a); Liu
and Zaharia (2022)

Weather (forecasting) Bhattacharya (2022a)

Table 5.2: Application Domains Mentioned (critical applications in italics)
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Table 5.2 also makes a distinction between two types of applications, fol-
lowing the literature under review: that of low-stake and high-stake problems,
with the latter also called critical or vital tasks (Bhattacharya, 2022a; Liu et al.,
2023; Meador and Goldsmith, 2022). Explainability is considered even more
crucial for these critical applications, which often include scenarios where ex-
perts require more information from the models than simple predictions, where
companies or teams operate in more tightly regulated or risky industries, and
where affected people’s interests warrant even more responsibility in uncover-
ing the reasons for algorithms’ outputs (Barredo Arrieta et al., 2020; Bruce
and Fleming, 2021b; Meador and Goldsmith, 2022; Liu and Zaharia, 2022; Liu
et al., 2023).

5.2.3
Summaries of main contributions

Here we offer brief summaries of the main contributions of each of the
texts under review, in light of our research questions. We do this not only to
be able to easily reference the place each text occupies in the economy of our
argumentation, but also to delineate some of the ways in which we framed
them for our purposes. They are described here sorted in chronological date of
publication, which also corresponds to the order in which the texts were first
read.

Barredo Arrieta et al. (2020) aim to establish a novel definition of
explainability in machine learning, having the audience for which explanations
are sought as one of their key foci. The authors employ the expression
“Responsible Artificial Intelligence” to refer to a series of AI principles that
need to be met in real application deployment, with a prominent role dedicated
to the idea of ‘understandability’, to which we will return. Another key aspect
of their contribution has to deal with fusing both black-box and transparent
methods (such as using knowledge bases with semantic representations) to
improve the explainability of exclusive data-driven approaches, combining
connectionist and symbolic paradigms.

The same authors indicate that explanations are better when constrictive,
by which they mean not only indicating why a model made a specific decision
but also why it did not make a different one. They also suggest that referring
to probabilities is not as important as offering causal links for supplying a
satisfying explanation, translating probabilistic results into qualitative notions.
The text mentions the importance of selective explanations, meaning that
focusing solely on the main causes of a decision-making process is often
sufficient. Finally, the authors put forward the idea that explanation generation
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should not be left to end users, since different rationales might be employed
depending on existing background knowledge.

Chaudhari et al. (2021) offer a survey with a structured overview on
modeling attention based systems, proposing a taxonomy for such techniques.
Their main hypothesis is that the magnitudes of the attention weights in a
neural network correlate with how relevant a specific region of input is for the
prediction of output, something that can be investigated by visualizing the
attention values for sets of input and output pairs. One of the conclusions of
their survey is that exploring the relationship between attention weights and
model interpretability is still an early and active area of research, with future
work being capable of looking at attention distributions of models and how
they can be modified to offer plausible justifications of predictions.

Bruce and Fleming (2021b) and Bruce and Fleming (2021a) compare
intrinsically interpretable methods, which yield output where the analyst can
readily determine the role that individual predictors play in predictions, with
black-box methods, like random forests or neural nets, which are too complex
to allow such determinations. The author points to the existence of a trade-off
between the two ways a model can err: it can be too flexible and complex,
capturing so much information that it ends overfitting the data and modeling
noise as well as real information, or too simple, underfitting the data and failing
to capture some useful information. At the same time, the work goes on to say
that simple coefficients and decision rules allow for ready interpretation and
understanding, while black-box models are not easily interpretable due to how
precisely they fit the subtle nonlinear relationships within the data, usually
achieving better performance in the process.

The author concludes that ideally a good interpretability method is one
that strikes a balance between being robust to unimportant changes in the
underlying model while being sensitive to meaningful changes within it. He
also mentions that to minimize a project’s risk one should stick to using
intrinsically interpretable models, which also lowers the time spent learning
new interpretability methods and layering them over the original model.
On the other hand, to maximize performance it is necessary to spend time
developing expertise and toolchains that allow for using black-box models and
interpretability methods together.

The work by Loh et al. (2022) directs itself to determining which
explainability technique is more appropriate or widely proposed for different
types of datasets in the specific domain of healthcare applications. They
executed a systematic review arriving at 99 scientific articles, after removing
duplicates and journals that were not ranked in the first quartile from an initial
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1,194 search results. The authors indicate that the most popular explainability
methods were SHapley Additive exPlanations (SHAP), Local Interpretable
Model-agnostic Explanations (LIME), and Gradient-weighted Class Activation
Mapping (GradCAM). They also indicate that such techniques can be used not
only to generate explanations but also to guide the hyperparameter tuning of
artificial intelligence models.

Bhattacharya (2022a) and Bhattacharya (2022b) suggest four different
dimensions for explaining black-box algorithms, namely understanding the
data (by using a robust data curation process, including the analysis of data
purity and the impact of adversarial effects), the model (by figuring out
how the input data is mapped to the output predictions and being aware
of the limitations assumptions and biases of the algorithms), the outcomes (by
following why a certain prediction or decision is made by a model) and the
end users (since it is vital to choose the right level of abstraction and details
to achieve reliable and trustworthy results for the final consumers).

The same author indicates that knowledge extraction methods can be
used to deal with essential information about input and output data from
which the expected model outcomes are defined, while also noting that
result visualization methods can be used to compare model outcomes with
previously predicted values, particularly with surrogate models. Two more
options mentioned are influence-based methods, which are techniques that
help in understanding the role played by certain data features in influencing
the model outcome (examples being feature importance, sensitivity analysis,
key influencer maps, saliency maps, class activation maps) and example-
based methods, which, unlike the other three types, do not require technical
knowledge (the main examples are counterfactuals, which try to look at certain
single instances of the data to explain a model’s decision-making process and
suggest which changes would result in a different prediction).

Meador and Goldsmith (2022) focus on the responsibility that is created
when automated predictions affect real people’s lives. The authors are keen to
point that, for problems that deal with smaller datasets, or that are unrelated
to natural language processing or computer vision, using more interpretable
models might give better or very close results, while being able to be interpreted
with much less effort. As such, they remark that simpler algorithms do not
mean inferior results, especially when more complex tools like neural networks
are used without careful consideration, even in cases where they provide very
little benefit. They also point to the fact that there is always great uncertainty
around how the logic of day-to-day aspects is applied, noting that even if
artificial intelligence methods should not get a free pass, that also does not
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mean that there are not many things in the world that we deal with all the
time that are black boxes, with no clear way to get better interpretations of
them.

In their paper, Correia and Lindley (2022) present the results of a
bibliometric evaluation of scientific publications on collaboration between
human and intelligent systems. Their findings highlight a significant focus
on aspects like trust, explainability, transparency, and autonomy in highly
complex scenarios through the use of generative models and hybrid interaction
techniques, also pointing to a growth in the number of publications and funding
grants, accompanied however by a lack of maturity observable in terms of
citation patterns and coherence of thematic clusters.

The focus of Li et al. (2022) is the categorization of algorithms dedicated
to interpretation in accordance with three orthogonal dimensions: representa-
tions of interpretations, targeting model’s types for interpretations, and the
relation between interpretation algorithms and models. The first dimension is
the most relevant for our case, and it is quite varied, including: feature impor-
tance (estimating the contribution of each one with respect to the result given),
model response (finding or generating new examples to see how the model be-
haves when responding to them), model rationale (replacing opaque models
with interpretable ones to gain insights on the former’s internal processes),
and datasets (with algorithms aiming to explain how some data samples in
the training set affect the optimization of the models).

As for Zini and Awad (2022), their contribution deals with the specificity
of natural language processing tasks, since textual datasets present different
challenges like polysemy, sarcasm, slang, cultural effect, and ambiguity, which
end up being proliferated when using explainability methods. Since linguistic
features are not as straightforward when compared to others like pixels
or numerical attributes, and the majority of language models operate with
embeddings, which are opaque representations, providing explanations in terms
of specific embedding dimensions is not as practical, and requires further
processing to dissect the learned knowledge in terms of not only their syntactic
but also semantic (including contextual) qualities.

As the authors indicate, it is thus necessary to sparsify the dense term
embedding models to be able to map these different dimensions of structure
and meaning. That is usually done with the help of attention mechanisms,
which the text points out has been accompanied by controversy ever since
their inception: while some attention weights are able to provide reliable
explanations, they are far from being easily interpretable. They conclude that
most available work ends up focusing on understanding the inner workings
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of the underlying models rather than understanding particular outputs of
classification, which adds to that type of challenge.

The text by Liu and Zaharia (2022) is another one that drives the point
that a precise definition of explanation depends on who wants the explanations,
for what purpose, and at what time across an artificial intelligence system’s
life cycle. As they mention, the complexity of the explanations supplied needs
to be tailored and selective to the receiving audience, without overwhelming
information, including technical jargon. The piece draws on the human-
computer interaction and user experience fields to drive forth the argument
that there is no one-size-fits-all approach to explanations, so each method needs
to be tailored according to different audiences like data scientists, machine
learning engineers, business stakeholders, or other types of end users.

Simon and Barr (2023) is another text that reinforces the point that in
explainability there are different stakeholder personas with diverse viewpoints,
such as auditors, research scientists, industry experts, data scientists and
other end users, for whom the definition of what counts as a meaningful
explanations, and under which scopes, varies. As such, it is essential to gather
direct user feedback and perform user testing to validate acceptance criteria
for the explanations given, while not forgetting that users’ perspectives on
meaningful explanations can also change over time.

The review by Nannini et al. (2023) also centers on the importance
of the context of use, but stemming from the point of view of legislation
analysis, taking in existing governmental policies in the European Union, the
United States of America, and the United Kingdom impacting the fruition of
artificial intelligence explanations. Their main argument is that there exists
a considerable discrepancy in how technological developers and policymakers
tend to differently define these systems and their capabilities, and they suggest
that establishing a proactive regulatory approach and regulate explainability
of artificial intelligence systems is crucial to ensure their ethical alignment with
human values and principles.

The same authors go on to identify misalignment with policies based
on the literature from distinct research communities (algorithmic, human-
computer interaction, ethics). They indicate that balancing model complexity,
end-user expertise, as well as legal and commercial constraints is a considerable
challenge, made even more difficult due to pervasive ambiguities, partly stem-
ming from terminological imprecisions in the production of communications
and reports across governments and commissioned standardization bodies. As
they argue, current documents often lack an informed perspective of explain-
ability as a research object still nascent, novel, and complex, far from being a
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solved problem that would be ‘easily implementable’. Another important cau-
tionary remark involves the idea that policy trajectories could simply prioritize
innovation under a risk management lens.

Räuker et al. (2023) offer a detailed survey on how to explain the in-
ner structures of deep neural networks, arriving at a taxonomy that divides
interpretability techniques by what part of a network’s computational graph
they explain: weights, neurons, subnetworks, or latent representations. The
authors drive home the point that these interpretability techniques generate
hypotheses and not conclusions, and that producing merely-plausible explana-
tions is insufficient, since evaluating validity and uncertainty are both also key.
Their survey brings examples of cases where sometimes very plausible-seeming
explanations do not pass simple sanity checks or are very easy to find coun-
terexamples for, claiming for more care since many works in interpretability
fail to go beyond simply inspecting results.

As such, their contribution states that a focus on improving interpretabil-
ity techniques without commensurate increases in capabilities offers the best
chance of preventing advancements in artificial intelligence from outpacing our
ability for effective oversight. Based on that, the authors argue that improve-
ments in safety rather than capabilities should be the principal goal for future
work in interpretability, adding that adequate scaling requires efficient human
oversight, since many explanations obtained by state of the art interpretability
techniques have involved a degree of human experimentation and creativity in
the loop. Ideally, they conclude, humans should be used for screening inter-
pretations instead of generating them, with solutions including using active
learning, weak supervision, implicit supervision with proxy models or rigorous
statistical analysis of proxies, with a combination of techniques (and the study
of their interplay) possibly leading to better results.

Finally, Liu et al. (2023) also offer a survey, this time focusing on what
they call six of the most concerning dimensions that have been extensively
studied for trustworthy computational artificial intelligence, being: safety &
robustness, non-discrimination & fairness, explainability, privacy, auditability
& accountability, and environmental well-being. For each one of these dimen-
sions, the authors present an overview of related concepts, finishing with a
taxonomy to help understand how each dimension is studied, while also adding
a summary of representative technologies in each case.
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5.3
Definitions for key terms

The next subsections explore characterizations, definitions, and distinc-
tions between the terms explainability an interpretability.

5.3.1
Explainability characterizations

Before we dive into the definitions for explainability and other related
terms found in our systematic review, we would like to present a few charac-
terizations around the term to help contextualize it. First of all, some of the
texts mention that explainability is still a topic under recent and considerable
research, decidedly complex and around which there seems to be no reasonable
consensus yet (Liu and Zaharia, 2022; Nannini et al., 2023; Barredo Arrieta
et al., 2020). As such, attaining explainability involved dealing with a sig-
nificant barrier, a problem that is inherent of the latest artificial intelligence
techniques brought by sub-symbolism (such as ensembles or deep neural net-
works), that were actually not present in the previous wave of applications
(expert systems and rule-based models) (Barredo Arrieta et al., 2020).

Several of the reviewed works also assert that explainability is some-
thing plural, that can be provided in multiple ways depending on variables
such as the type problem tackled or the type of data used (and the relative
levels of complexity in both cases, which can include feature granularity, prove-
nance tracking, intrinsic characteristics and changes over time) (Bhattacharya,
2022b). In fact, Liu and Zaharia (2022) define eight distinct dimensions from
which the complexity of explainability can be understood, namely audience,
stage, scope, input format, output format, problem, objective, and method.

Explainability is also characterized as something that is contextual, since
it can be expected that the explanations put forth are adequately tailored to
specific purposes, target audiences and risk levels, according to distinct sets of
stakeholders, and taking into account a plethora of human factors, such as tech
literacy and cultural backgrounds (Nannini et al., 2023). There is also mention
of the possibility of self-explaining artificial intelligence systems, which entail
a strategy of supervising the creation of human understandable explanations
for model outputs computed from an model’s inner representations, which has
been attained for different tasks in computer vision and, natural language
processing, even though the extent to which these explanations accurately
explain the purported outcomes is still unclear (Räuker et al., 2023).

Another important distinction in how to characterize explainability has
to do with it being oriented to more technical or non-technical audiences. Under
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technical explainability we can list decisions for systems to be understandable
and traceable, including comprehending the purpose of each artifact in relation
to the design choices followed. Under lay explainability we can consider
emphasizing the kind of expertise that is assumed of the stakeholders involved,
if any, while not giving up performance metrics like prediction accuracy
(Nannini et al., 2023; Liu et al., 2023). One set of authors (Räuker et al.,
2023) offer a compelling analogy to help with the distinction between these two
explainability orientations, based on their work about understanding neural
networks: they indicate that most methods in the literature used for explaining
these kinds of models aim to help a human “open up” the network and study
parts of it, which would be similar to, if one wants to understand another
human’s reasoning, studying their brain directly. In most cases, they conclude,
simply asking another human for an explanation of what they are thinking is
much more effective; as such, endowing systems with the same self-explaining
capabilities would be a promising direction, according to the same source.

The last characterization we would like to address involves considering
explainability as a requirement, which is sometimes taken for granted in
the texts under review. A few of them, however, do note that achieving
explainability is a means and not an end unto itself, however vital, and that
it could be taken as a first-classs artifact along with other pillars in the full
life cycle of artificial intelligence systems development, along with data, code
and models, which would also end up helping to construct more meaningful
explanations target at more specific audiences (Barredo Arrieta et al., 2020;
Bhattacharya, 2022a; Liu and Zaharia, 2022).

5.3.2
Distinction between explainability and interpretability

One last distinction is important to keep in mind before talking about
the specific definitions given for key terms found during the review, and it
has to do with a difference, which not all texts under review espouse, between
explainability and interpretability, which were the two most common ways to
describe very similar concepts. While exactly half of the texts under review
make no mention of the possibility of distinguishing between both concepts,
the other half do, and address the distinction differently as well.

On the one hand, Bhattacharya (2022b); Zini and Awad (2022) and
Li et al. (2022) opt for using the terms explainability and interpretability
interchangeably, the last of these mentioning that existing differences are subtle
enough that justify that choice, in the process including the term ‘attribution’
in the same mix as well.
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On the other hand are the texts that indicate the existence and the
decision to maintain a distinction between the two terms, even when they
mention being aware that these differences can be subtle (Liu et al., 2023),
or the distinction loose (Nannini et al., 2023). Even when opting to work
with the distinction, a couple of texts also note that it is common to see
them used interchangeably in the literature due to lack of consensus even in
standards communities, with ambiguities encompassing subjects like the type
of explanation, the reason for the explanation, the purpose of the explanation,
and to whom the explanation is provided (Liu et al., 2023; Nannini et al.,
2023). One set of authors diagnose that the absence of a common point
of understanding is effectively hindered by the interchangeable misuse of
interpretability and explainability in the literature, arguing that there exist
notable differences among the concepts (Barredo Arrieta et al., 2020).

There is, however, remarkable consistency in how the texts that argue for
the distinction actually differentiate between the concepts (even though which
term is chosen for which concept varies slightly), which is something we will
keep in mind when presenting the definitions in the following subsections. For
now, it will suffice to present how they separate the terms. In the texts that
retain the distinction, we can summarize that explainability usually refers
to understanding the mechanisms and inner workings of artificial intelligence
systems and models, focusing on matters like how they operate and why they
arrive at specific conclusions, telling us how they behave, and are usually the
province of the designers and developers in charge of creating and maintaining
them. Interpretability, conversely, usually refers to understanding why these
systems’ and these models’ outputs and decisions matter, what do they
entail, what kind of response they are supplying, and what are the possible
repercussions involved in them, considering real-world practice, often being
of more direct interest to policymakers and other users generally interested
in artificial intelligence oversight (Barredo Arrieta et al., 2020; Bhattacharya,
2022a; Meador and Goldsmith, 2022; Simon and Barr, 2023; Nannini et al.,
2023).

It was slightly surprising to notice that 4 out of the 16 main texts under
review do not offer a definition of either explainability nor interpretability.
When considering a case for each term, however, more than half of the total
offer a specific definition of at least one of them on both accounts. Specific
results are listed in Table 5.3.
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Text contains a definition for... Amount

Neither explainability nor interpretability 4
Explainability and other concepts 9
Interpretability and other concepts 10
Only explainability 2
Only interpretability 3
Both explainability and interpretability 7

Table 5.3: Amount of texts that offer definitions for key terms

5.3.3
Explainability definition

Unlike the more contrastive definitions we have just seen, the texts that
offer more standalone definitions of explainability employ the term to refer to
occasionally distinct concepts, sometimes having to do with the inner workings
of systems and models, other times with communicating results and their
possible consequences to non-technical end users. Whatever the case, several
of the texts under review define explainability as an active, specific capability
of artificial intelligence systems, as we shall now detail.

Barredo Arrieta et al. (2020) define explainability as “an active charac-
teristic of a model, denoting any action or procedure taken by a model with
the intent of clarifying or detailing its internal functions”. Nannini et al. (2023)
define the term both as “[t]he ability of artificial intelligence (AI) systems to
explain their decision-making processes” and as “the communicative ability
to deliver insightful information regarding the inner functioning of complex
algorithmic architectures”. In turn, Liu and Zaharia (2022) define it as “pro-
viding selective human-understandable explanations for a decision provided
by an automated system”, as well as “the capability to provide an audience-
appropriate, human-understandable interpretation of why and how a model
provides certain predictions”.

Liu et al. (2023) cite and adopt definitions from two other works. In this
case, explainability is defined as either simply “the ability to explain or to
present in understandable terms to a human” (Doshi-Velez and Kim, 2017),
with no explicit reference as to what should be explained; or as a sort of metric,
“the degree to which a human can understand the cause of a decision” (Miller,
2019), with no further detailing as to what kind of knowledge this human is
expected to have beforehand in order to understand the explanations under
evaluation.
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There were another three, more indirect, definitions for explainability and
closely related terms discovered during the review. When talking about the
term, Barredo Arrieta et al. (2020) mention that explainability is “associated
with the notion of explanation as an interface between humans and a decision
maker that is, at the same time, both an accurate proxy of the decision maker
and comprehensible to humans”. Loh et al. (2022) define only the expression
explainable artificial intelligence, and simply as “the set of features that
explain how the AI model constructed its prediction”. Finally, Nannini et al.
(2023) make reference to the synonymous ‘explicability’, more widely used
in the European context, mentioning its definition as “a principle connected
to transparency, crucial to creating and maintaining users’ trust in the AI
system”, and corresponding to “the epistemic condition to comprehend and
challenge decisions of AI systems”.

Lastly, there are two important definitions of types of explainability that
will be important in the rest of this chapter as well, so we will take this
opportunity to present them as relayed by Bhattacharya (2022a). The first
pair involves the distinction between local and global explainability, and
it depends on whether it deals with “single local instances of the data to
understand how a certain range of values or specific categorical value can be
related to the final prediction” or if it is used “to explain the behavior of
the entire model or certain important features as a whole that contribute
toward a specific set of model outcomes”. The second pair differentiates
between intrinsic (also called ‘inherent’) and extrinsic (also called ‘post hoc’)
explainability: under the first case, we have models in which “we clearly
know the logic or the mathematical mapping of the input and output that
the algorithm applies”, while the second case “is about first training an ML
model on given data and then using certain model explainability techniques
separately to understand and interpret the model’s outcome”.

5.3.4
Interpretability definition

Interpretability is a term that revolves around an equally complex
problem that does not have a single problem space (Meador and Goldsmith,
2022). Some of the texts under review stress that there are no formal or well-
agreed upon definitions regarding the ways artificial intelligence models should
be interpreted, which gives rise to loose definitions about interpretations and
interpretability, with motivations around it being diverse and discordant, and
the term itself often lacking precise meanings or receiving circular definitions
(Li et al., 2022; Räuker et al., 2023).
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Whatever the case, here we have grouped some of the recurring, and
often disparate, definitions of interpretability, under three different guises. The
first of these is closely related to how the term interpretability was defined in
Subsection 5.3.2, in contrast with explainability. That means interpretability
as dealing more with comprehending the results of artificial intelligence
systems, for instance predictions, and what they mean by potential user
communities, than with the inner workings of models themselves. Examples
of these include the mention by Nannini et al. (2023), that interpretability
can revolve around “model-agnostic approaches that are based on observing
systems’ inputs and outputs”, and the assertion by Meador and Goldsmith
(2022) that interpretability is “what makes a good outcome sustainable”.

The same authors also state that an “[i]nterpretation is being able to
parse information to know why something happened”, exemplifying it with
an analogy of being able to interpret the error message from your browser to
understand that the Wi-Fi is down. One of the meanings given for interpreta-
tions by Li et al. (2022) reinforces the idea that, in this sense, interpretability
involves domain-specific knowledge, since it deals with discriminative features
used for model decisions or the importance of specific training samples as they
contribute for inference.

The second meaning for interpretability actually relates it more closely
to the way the term explainability was defined in Subsection 5.3.2, having
to do more closely with understanding an artificial intelligence system
or model’s mechanisms, rules, inside reasoning, inner workings and
internal structures and representations. This was the point of view most
prevalent for instance in the works of Barredo Arrieta et al. (2020); Bruce
and Fleming (2021b,a). The first set of authors indicate that interpretations
should provide features like “an understanding of the model mechanisms and
predictions, a visualization of the model’s discrimination rules, or hints on
what could perturb the model”, while the latter two texts focus on yielding
“a set of rules that define the predicted class of an outcome variable”, calling
these “the epitome of interpretability”, useful in diagnosing issues and helping
debug artificial intelligence systems and models.

In the same vein, Bhattacharya (2022b) asserts that interpretability
has to with addressing “the how questions”, and Meador and Goldsmith
(2022) remind their readers that it is possible to give an interpretation of
a hypothetical model even without being able to fully explain how it works.

Finally, Nannini et al. (2023) stress that when they talk about inter-
pretability they refer to the “inner relations” that artificial intelligence sys-
tems learn to arrive at their computation functions, which is an understanding
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shared by Räuker et al. (2023) when they mention that an interpretability
method is “any process by which an AI system’s computations can be charac-
terized in human-understandable terms”.

The third and last grouping of definitions of interpretability focuses
on it as a capability, characteristic or intrinsic property of a model,
optionally measuring how predictable or understandable its infer-
ences are (Li et al., 2022). This sort of definition frequently also has an
extensional quality, that is, it is applied to a certain family of models or algo-
rithms that are ascertained as inherently transparent in contrast with others
that are inherently opaque. This is where we find for instance a definition from
Barredo Arrieta et al. (2020), with interpretability refering to “a passive char-
acteristic of a model referring to the level at which a given model makes sense
for a human observer”.

Similarly, Bhattacharya (2022b) remarks that “[h]ighly interpretable
models, such as linear regression and decision trees, are primarily linear and
less complex”, while being restricted to “learning only linear or less-complex
patterns from the data”. Li et al. (2022) mention as examples of models that
are “fully interpretable without too much controversy: a set of limited number
of rules; a depth-limited decision tree; a sparse linear model”, Simon and Barr
(2023) cite “decision trees, rule-based algorithms, and linear regression models,
[as] intrinsically interpretable, simulatable, and decomposable”, while Liu et al.
(2023) mention as examples of intrinsically transparent and interpretable
models “decision trees and linear regression”.

5.3.5
Relevant additional terms

In this subsection we present definitions for important additional terms
inhabiting the semantic universe of explainability/interpretability that were
also found during the review, albeit with considerably less frequency than the
former two. We start with a set of terms defined in Barredo Arrieta et al.
(2020), the text that probably has the largest amount of definitions (and
probably the most well-thought as well), which is to be expected since, as
we already mentioned, that is part of the authors’ explicit objectives.

The first of these terms is transparency, which is considered the oppo-
site of black-boxness and defined as a quality of an artificial intelligence system
that, by itself, already supplies “a direct understanding of the mechanism by
which a model works”. The same authors subdivide transparent systems into
three categories, namely simulatable models, decomposable models, and algo-
rithmically transparent models, although diving into the specificities of each
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one is out of the scope of the present work.
The second import term from Barredo Arrieta et al. (2020) we would

like to retain is understandability (which the same text also equivalently
dubs ‘intelligibility’), which denotes the capacity of an artificial intelligence
system for enabling a human to understand its purpose “without any need for
explaining its internal structure or the algorithmic means by which the model
processes data internally”. It is also a way of measuring “the degree to which a
human can understand a decision made by a model”, and surfaces as “the most
essential concept in [Explainable Artificial Intelligence]”. Understandability
also depends upon the concept of audience, which is a way of taking into
account “the cognitive skills and pursued goal of the users of the model” jointly
with the term we will consider next.

The last term we would like to retain from the mentioned authors is
thus comprehensibility, which, in the context of machine learning models,
refers to “the ability of a learning algorithm to represent its learned knowledge
in a human understandable fashion[, ... resulting in] symbolic descriptions of
given entities, semantically and structurally similar to those a human expert
might produce observing the same entities”. It is a concept connected to
understandability since it also relies on the capability of specific audiences to
understand the knowledge contained in the model, but deals more directly
with the substantive information that the system is processing, by means
of single ‘chunks’ of information that should be “directly interpretable in
natural language, and should relate quantitative and qualitative concepts in
an integrated fashion”.

A trio of interesting and tightly related concepts arise from Bruce and
Fleming (2021a)’s proposal of using so-called ‘interpretability methods’ to
generate explanations for the predictions of underlying models. As the author
mentions, “[j]ust as models themselves can underfit or overfit their data, so,
too, can interpretability methods underfit or overfit their underlying models”.
Thus, what is known as bias (underfitting) and variance (overfitting) in the
relation between a model and the data it is trained on, finds as correlates here
the ideas of robustness and fidelity. Robustness is defined as “the sensitivity of
explanations generated by an interpretability method to varying characteristics
of the underlying model”, with highly robust explanations being less sensitive
to minor changes in a model’s characteristics as it is tweaked. Fidelity,
accordingly, is defined as “how well an explanation approximates the behavior
of the underlying model”, with high-fidelity explanations differing more easily
after the underlying model changes due to how closely they approximate it. The
same text also remarks on the trade-off between robustness and fidelity, with
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its ideal management resulting in an interpretability method’s reliability, to
which having a wide range of interpretability methods at disposal contributes.

The final term we would like to delve into here is trustworthiness,
starting with the way it appears in Li et al. (2022). Referred to as a ‘notion’,
trustworthiness is defined as the reliability or faithfulness of the interpretations
produced by algorithms compared to a model’s behavior. As the authors
say, “[a]n interpretation algorithm is trustworthy if it properly reveals the
underlying rationale of a model making decisions”. By that expression, the
authors have in mind “all categories of information that help to understand
the model”, adding that trustfully recovering the rationale of a model is
independent from the model’s correctness, being one of the ad hoc requirements
to help verify if “the information provided by the interpretation algorithm can
be trusted”.

The same term appears, with a slightly different connotation, in the
survey conducted by Liu et al. (2023), defined as “programs and systems
built to solve problems like a human, which bring benefits and convenience to
people with no threat or risk of harm”, with a focus on their transparency, by
which the authors mean being able to understand their internal mechanisms.
On their review focused on legislation, Nannini et al. (2023) mention that
artificial intelligence trustworthiness is composed of both explainability and
interpretability, adding that, especially when concerning European regulations
at the time of the study (which according to these authors employs only a
coarsely defined terminology), these concepts were actually weakened in favor
of “ensuring the traceability and oversight of high-risk AI systems rather than
empowering end-users’ explanation demands”.

5.4
Effects and ways of achieving explainability/interpretability

The next subsections describe the benefits of explainabil-
ity/interpretability, the risks of the lack thereof, and techniques for achieving
them. In accordance with the distinction between explainability and inter-
pretability that we adopted in the previous section, from now on we will
refer to each term with their specific meaning, even when the texts under
review use them more haphazardly. In the following subsections, that means
we will always attempt to present the benefits of explainability first, and then
the benefits of interpretability later. The only exceptions for the term usage
defined here will be direct citations, where we will retain the original terms
used by the authors whenever that does not risk comprehension, and indicate
necessary alterations otherwise.
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As a reminder of the definitions we will be working with, by explainability
we refer to ways of understanding the mechanisms and inner workings of
artificial intelligence systems and models, including how they operate and
why they arrive at specific conclusions, and are usually of more direct interest
to their developers. By interpretability, on the other hand, we refer to ways
of understanding what systems’ and models’ outputs are, what they mean
and why do they matter, including what kind of response they are supplying
and what do they entail in real-world practice, being of special concern to
policymakers and other stakeholders affected by them.

5.4.1
Benefits of explainability/interpretability

We have clustered the benefits of aiming for explainability into four over-
arching groups, roughly accordingly with the following themes: informativeness
or transparency, interactivity or accessibility, performance improvement, and
discovery making.

The first set of benefits of trying to improve the explainability of artificial
intelligence systems has to do with informativeness or transparency, an
objective that is very tightly coupled with the stated goal of the first concept
itself: having more information helps users in their decision-making processes,
supporting them in their activity of relating their choices with solutions given
by automated models (Barredo Arrieta et al., 2020). That is usually obtained
by having transparency, allowing the inspection of the internal workings of
models and architectures, including being able to understand how the model
might behave when introduced to new data (Chaudhari et al., 2021; Bruce and
Fleming, 2021a; Loh et al., 2022; Meador and Goldsmith, 2022). Informed users
gain higher situational awareness and end up being empowered to make better
decisions, so explainability helps to ensure that individuals have meaningful
information about the logic involved in predictions (Simon and Barr, 2023;
Nannini et al., 2023).

On a related note, some of reviewed texts argue that being able to
extract information about the inner relations of a model also improves the
overall mental model of the audience, allowing for more knowledge transference
(Barredo Arrieta et al., 2020). That includes some forms of mechanistic
comprehension as well, with the added benefits of being able to reverse engineer
successful models and supply counterfactual examples, both of which are
considered “ambitious but potentially very valuable goals” (Räuker et al.,
2023).

In addition, one of the texts also mentions how greater informativeness
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aids in system transferability, since it eases the task of elucidating the bound-
aries that might affect a specific model, supporting the reuse of acquired knowl-
edge in related types of problems, as well as in privacy awareness, since being
unable to understand what kind of information has been captured by the model
and stored in its internal representation may entail privacy breaches that could
otherwise be avoided (Barredo Arrieta et al., 2020).

A different set of benefits has to do more with interactivity or ac-
cessibility, more connected to the ways that end users, especially those with
less technical expertise, can get more involved in the process of dealing with
and possibly tinkering with existing models and algorithms that would seem
incomprehensible at first sight. Explainability then eases the burden that non-
technical users can feel when employing these systems, possibly becoming more
involved over time in their development and improvement (Barredo Arrieta
et al., 2020).

One of the major benefits of explainability, commented on by several of
the texts under review, involves improving the performance of artificial
intelligence systems and models. Later on we will see how aiming for explain-
ability can sometimes be at odds with achieving higher scores in metrics like
accuracy, but for now we will focus on the opposite case. As a considerable
number of the reviewed literature states, achieving greater explainability can
positively impact a system’s performance, enhance its development process,
and even shine light on opportunities for debugging, especially in deep neural
networks, thanks to being able to get closer to the root of incorrect predictions
when they happen (Barredo Arrieta et al., 2020; Bruce and Fleming, 2021b;
Loh et al., 2022; Bhattacharya, 2022a; Räuker et al., 2023).

More directly, when higher explainability allows developers to learn why
a model is performing poorly, that can give rise to better feature engineering,
hyperparameters fine-tuning, allow for better training strategies, investigate
failure cases to design better prompts in the case of generative systems, as well
as deal more swiftly and satisfactorily with model drift through appropriate
monitoring practices (Meador and Goldsmith, 2022; Li et al., 2022; Zini and
Awad, 2022; Liu and Zaharia, 2022; Räuker et al., 2023).

Not only that, explainability methods can also confer better insight into
additional quality features of a system or model, going beyond simple perfor-
mance metrics, and facilitating channeling human experience and intuition to
improve them, correcting their potential deficiencies, including detecting de-
ception when that is the case, which is a particularly hard task to do with
generative natural language applications, increasing the number of ways hu-
mans are able to evaluate artificial intelligence systems (Bruce and Fleming,
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2021a; Bhattacharya, 2022a; Simon and Barr, 2023; Räuker et al., 2023).
Lastly, and just as importantly, explainability is also a way of improving

discovery, whether that means eliciting new domain knowledge that involves a
specific task at hand, which is sometimes picked up automatically by artificial
intelligence systems and models, or learning fresh capacities, reaching new
findings and even understanding novel limitations about artificial intelligence
systems themselves, possibly giving rise to a plethora of scientific discoveries
in the process, eliciting latent knowledge and allowing for reverse engineering
more understandable or verifiable solutions (Bhattacharya, 2022a; Li et al.,
2022; Zini and Awad, 2022; Liu and Zaharia, 2022; Simon and Barr, 2023;
Räuker et al., 2023).

Directing our attention now to the benefits of aiming for interpretability,
these were also grouped according to the following four major themes: fairness
and impartiality, robustness, causality, and trustworthiness.

The first major kind of benefit interpretability can confer to artificial
intelligence systems involves fairness and impartiality, both with regard to
the input data and the predictions outputted. In this case, that usually means
detecting, highlighting, and consequently allowing the correction of different
types of hidden bias (usually defined from a social standpoint) in the training
data, in order to avoid unfair results and uses, and support more impartial
decision-making (Barredo Arrieta et al., 2020; Bruce and Fleming, 2021a; Liu
and Zaharia, 2022; Simon and Barr, 2023).

Several of the texts under review mention that aiming for fair results not
only helps a model perform better, but is also an important ethical consid-
eration, especially when dealing with applications that influence human lives,
with potentially severe consequences, and which becomes an even more cru-
cial endeavor when people, particularly from disadvantaged groups, who may
be the most adversely affected by these technologies, are involved (Chaudhari
et al., 2021; Liu and Zaharia, 2022; Räuker et al., 2023; Barredo Arrieta et al.,
2020)

Another benefit mentioned has to do with robustness, which involves
how stable and reliable results are, especially in the context of adversarial
perturbations. The relationship between interpretability and robustness can go
lots of different ways: while designing more interpretable models helps combat
vulnerabilities against adversarial perturbations, investing in more robust
systems also helps them become more interpretable as well, which becomes
especially relevant when confidence in general, conceived as a generalization of
both robustness and stability, is expected from a reliable critical application.
Another case involves creating more adversarial examples that can challenge,



Chapter 5. Discussion 53

help validate, and improve an existing system, since interpretability tools are
particularly well-suited to creating adversaries (Barredo Arrieta et al., 2020;
Li et al., 2022; Simon and Barr, 2023; Liu et al., 2023; Räuker et al., 2023).

Interpretability thus helps with another aspect of robustness: dealing
with drifting, which includes monitoring data, including outliers, and tracking
how both data and models can drift not only during development but also after
deployment. That involves comprehending not just surface issues with data,
but also its deeper characteristics and how datasets that are used in offline
model training differ from the ones encountered in online operation (Liu and
Zaharia, 2022; Meador and Goldsmith, 2022).

Finding causality among data variables is another considerable benefit
of reaching for interpretability, even more so in the context of machine learning
applications that only discover correlations among the data they learn from,
which is not sufficient for unveiling cause-effect relationships. However, since
even if correlation does not imply causation, the former is involved in the
latter, so interpretable models are more apt at validating results provided
by causality inference techniques or providing a first intuition of possible
causal relationships within the available data. As such, interpretability can
help guarantee truthful reasoning, acting as insurance that only meaningful
variables are responsible for inferring an output (Barredo Arrieta et al., 2020;
Liu and Zaharia, 2022).

Lastly, and just as relevantly, interpretability helps with improving
trustworthiness, a benefit that has several different and related meanings
in the texts under review, and which was by far the one that was more
consistently mentioned by them. As one set of authors mentions, the search
for trustworthiness is probably the primary aim of interpretability in artificial
intelligence systems, and can be “considered as the confidence of whether a
model will act as intended when facing a given problem” (Barredo Arrieta
et al., 2020). Before detailing the term further, we should mention three
other important characteristics related to it: it is not an easy property to
quantify, not every trustworthy model can be considered interpretable on its
own, and it is just as necessary to allow humans to know when a model may
be untrustworthy (Barredo Arrieta et al., 2020; Räuker et al., 2023). We will
come back to this last point soon.

Interpretability in artificial intelligence systems helps with combating
mistrust from distinct audiences, which can include even people from inside
the organization deploying them, including but not limited to their direct users,
clients or operators, but also auditors, which can support increased adoption
rates (Barredo Arrieta et al., 2020; Bruce and Fleming, 2021b,a; Bhattacharya,
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2022a; Loh et al., 2022; Zini and Awad, 2022; Liu and Zaharia, 2022; Simon
and Barr, 2023; Liu et al., 2023). In that process, understanding and contex-
tualizing individual stakeholder needs are essential actions to cultivate trust
in artificial intelligence systems (Simon and Barr, 2023).

A couple of texts under review mentioned that trustworthiness can
also be a direct source of increasing an application’s ability to generate
value, predominantly because, since interpretations are artifacts derived from
artificial intelligence systems that can guide users in deciding what to do next
based on model output, it has been discovered in research that that users
informed on both model results and reasoning generally take a shorter decision
time than those who are only given the model results (Meador and Goldsmith,
2022; Simon and Barr, 2023).

Finally, having more trustworthiness also entails being able to better
defend a system or model in a legal context, for example with regulators,
legislators, or civil litigators, meeting regulatory requirements, algorithmic
transparency guidelines, evidencing risk mitigation strategies and fallback
plans. That is increasingly more crucial, since regulations have empowered
individuals with the right to demand trustworthy clarifications regarding
decisions that can affect them and were based on automated systems (Bruce
and Fleming, 2021b; Bhattacharya, 2022a). Here we come back to how essential
it is to be able to also adequately elucidate wrong predictions and determine
proper accountability for them, establishing responsibility in the case of misuse
or deployment failures (Räuker et al., 2023).

5.4.2
Risks of non-explainability/non-interpretability

In this subsection, we deal with explicit mentions in the review of the
risks associated with employing systems without aiming for explainability and
interpretability. While several risks can be inferred from simply not putting to
use the benefits detailed in the previous subsection, we found it nonetheless
relevant to specify here the issues that received special interest in the texts
under review. They can be grouped into four categories: low acceptance, biased
predictors, inscrutable predictions, and harmful outputs.

We begin with the risk of artificial intelligence systems or models getting
less acceptance than they otherwise could if they were more explainable
and interpretable. This is particularly the case with less technically savvy
users, and even more importantly in domains that already rely (or should
rely) on evidence-based practices to guide decision-making, like healthcare,
justice, and autonomous driving, to name a few. As the research under review
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shows, predictions with low explainability and interpretability often have their
credibility under question, which is even more significant when they are not
forthright with their capabilities and above all their limitations, so the negative
public perception can lead directly to lower acceptance of potentially useful
technology (Loh et al., 2022; Li et al., 2022; Zini and Awad, 2022; Nannini
et al., 2023; Liu et al., 2023)

Next we encounter the risk of basing decisions on unjustifiable
predictors. Without explainability and interpretability, it becomes impossible
to tell if biased or otherwise inappropriate predictors have been included as
part of the system or model, especially when recourse is made to a voluminous
amount of low-level predictors, like pixel values or language tokens. The risk of
employing, even inadvertently, ‘red-flag’ predictors (for instance, using race for
evaluating loan-approvals), that ignore algorithmic fairness guidelines, involves
dealing with an insurmountable ethical issue (Bruce and Fleming, 2021a).
Failing to detect undue human bias, particularly in high-stake domains, risks
not only generating unfair predictions but also perpetuating, engendering
and amplifying said biases. Developing and utilizing systems and models
that do not account for those possibilities (and for how explainability and
interpretability can help tackle these issues), pose a major risk, which can be
alleviated by remembering that these are human-produced artifacts that very
possibly reflect prior sociotechnical challenges in the choices that inform their
design, and acting on this sort of reflection (Bhattacharya, 2022b; Zini and
Awad, 2022; Simon and Barr, 2023; Nannini et al., 2023).

A different, even if closely related risk, is that of, whether they are ac-
curate or not, using predictions that cannot be justified. As we have
already seen, these can lead to severe issues of deployment, communication,
error-correction, completeness, knowledge acquisition, and legitimate usage, all
of which can be avoided or at least mitigated with recourse to explainability
and interpretability methods that help unlock information that would other-
wise be hidden inside opaque systems or models (Barredo Arrieta et al., 2020;
Bruce and Fleming, 2021a,b).

Just as importantly, some of the texts under review explicitly mention a
risk closely associated with the previous two, which involves systems lacking
in explainability and interpretability actively causing harm through their
predictions. That has led to the creation of far-reaching regulatory efforts
aimed at ensuring that no decision is made solely on the basis of data
processing (Barredo Arrieta et al., 2020). Faulty and biased model outputs
evidently can have prejudicial consequences at times, but even when they are
working as intended, unchecked artificial intelligence systems, when deployed
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with the goal of reinforcing user engagement based on profiling, can also be
responsible for fostering hate communities, leading to social unrest, for instance
based on gender or race discrimination. That is a risk that explainability
and interpretability methods can help combat, making sure that algorithms
are not blindly operated on auto-pilot without taking into consideration
their potentially damaging unintended side-effects (Bruce and Fleming, 2021a;
Bhattacharya, 2022b).

5.4.3
Techniques for explainability/interpretability

There were several taxonomies for explainability or interpretability meth-
ods found during the systematic review, and since none of them conflicted with
one another, we will present here a potentially unified version that allows for
each specific technique to be properly distinguished as needed. In other words,
the different criteria that can be used to categorize the methods, except when
explicitly noted, are orthogonal to one another.

5.4.3.1
Model or algorithm type

The first and probably most significant distinction between systems,
models and algorithms that aim for explainability and interpretability has
to do with their specific type, and was significantly prevalent in the literature
under review. On the one hand, we have systems that are considered to be
transparent, while on the other we find the so-called black-boxes. We’ll devote
our attention here to one type at a time.

Transparent systems or models, also called intrinsically or inherently
interpretable, or having ante-hoc explainability, are those that, by their own
characteristics, are considered easier to study, and to generate explanations
and interpretations from. They generally have simpler structures than their
counterparts, and mainly consist of systems that are based on either rules,
regression analysis, or decision trees (Barredo Arrieta et al., 2020; Zini and
Awad, 2022; Liu and Zaharia, 2022).

Black-box systems or models, also called extrinsically or externally
interpretable, or having post-hoc explainability, conversely, are those that
can only be adequately comprehended ‘after the fact’, through attempting to
dissect layers of hidden knowledge using both syntactic and semantic lenses,
through the use of additional specific techniques that can produce explanations
or interpretations that might not be reliable or can even be misleading. At the
same time, there is practically no other way to go about it, since the systems
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and models to which these methods are applied are by themselves, and almost
by design, too complicated for any human to fully understand (Barredo Arrieta
et al., 2020; Meador and Goldsmith, 2022; Zini and Awad, 2022; Liu et al.,
2023).

We think it is necessary to stress that this distinction does not concern
a lack of technical knowledge from the audience interested in comprehending
these systems or models, since even the experts that conceive them consider
that parts of them are, at least to the best of currently available knowledge,
inherently opaque. There are specific guidelines that attempt to provide
explainability or interpretability for these systems and models ‘by design’,
making them ‘self-explaining/self-interpretable’. However, that is usually done
through two means: either a model’s outputs are explained or interpreted with
supervision by human experts, and some processing is done to relate those
understandings to the model’s workings, or one generates a transparent model
based on the results achieved by a black-box model and proceeds to explain or
interpret the former instead of the latter (Liu and Zaharia, 2022; Räuker et al.,
2023). We will revisit these ideas over subsequent parts of this subsection.

5.4.3.2
Comprehension subject

The following division is very closely tied with the distinction we ac-
company in this work between explainability and interpretability, as defined
in subsection 5.3.2. It deals with what the main subject of understanding for
a specific technique is, or in other words, what is being targeted for explana-
tion or interpretation: the inner workings of a system or model, or its ‘outer’
elements, as we shall now see.

When a system or model aims at explaining their internal structures
and representations, the method employed to do so can be considered an
inner explainability technique. These deal chiefly with understanding how
different parts of a model work, for instance its architecture, or the attention
weights of a transformer, or the possibly latent knowledge representations in a
machine learning artifact. Here we could group any method used to generate
explanations that aim to help humans ‘open up’ black-boxes and study their
constituent parts (Bhattacharya, 2022a; Zini and Awad, 2022; Räuker et al.,
2023).

On the other end we have outer1 interpretability techniques, those
that deal primarily with giving interpretations for a system or model’s func-

1This adjective was not found directly in the literature under review, but is proposed
here as a parallel to the preceding one.
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tion based on their inputs and outputs, data and predictions, or even the
computational artifact as a whole, abstracting at least a good part of its inner-
most mechanisms. These are techniques that focus on highlighting the evidence
pertaining to a system’s so-called ‘decisions’, giving interpretations on what
supports them. To use an analogy found in the literature under review, while
inner explainability techniques would be akin to, in order to understand a hu-
man’s reasoning, studying their brain directly, outer interpretability techniques
would be more similar to simply asking the person what they are thinking and
receiving an adequate response (Zini and Awad, 2022; Räuker et al., 2023).

5.4.3.3
Model specificity

Not all explainability or interpretability techniques can be used for all
kinds of systems or models, so they can be divided according to how they deal
with model specificity. On the one hand we have model-specific techniques,
which are usually but not always tied to aforementioned intrinsically compre-
hensible models or algorithms, like the already cited linear/logistic regressions,
decision trees, and rule-based models, but also to others like Generalized Ad-
ditive Models, and Bayesian networks (Bhattacharya, 2022a; Zini and Awad,
2022).

On the other hand, model-agnostic techniques, which tend to be
preferred over over model-dependent approaches, as with the former even
complex machine learning algorithms can be explained, to some degree, in
principle can work no matter what type of system is attempting to be explained
or interpreted. More often than not, these are aimed at dealing with individual
predictions instead of systems as a whole, making them more adequate to deal
with complex, differentiable architectures like the ones involved in artificial
neural networks (Liu et al., 2023).

5.4.3.4
Input data conformation

When taking into account the type of input that an artificial intelligence
system works with, their conformation is also something that can deeply affect
what kind of explainability or interpretability technique can be employed. Data
is usually categorized as being either structured or unstructured, with some
typologies also including semi-structured as a third kind or as a subset of
structured data.

The most typical example of structured data are tabular datasets
which store relational elements, although graph-based databases are also fairly



Chapter 5. Discussion 59

common. These were initially the bread and butter of input data for artificial
intelligence systems of all kinds, and are still fairly prevalent. Structured data
is usually very machine actionable, due to, among other reasons, fairly often
being purely quantitative (Bhattacharya, 2022a).

On the opposite end of the spectrum we have unstructured data, such
as images and text, which are usually harder for machine learning systems to
explain or interpret, since they usually try to identify granular-level features
that are not straightforwardly intelligible to humans. Different input data
modalities are thus specifically taken into account when choosing particular
explainability or interpretability techniques, according to their suitability to
the task at hand (Bhattacharya, 2022a; Zini and Awad, 2022; Simon and Barr,
2023)

5.4.3.5
Scope

Another majorly present distinction for explainability or interpretability
techniques has to do with the scope of what they target, which generates at
least two possibilities: local or global methods, depending on whether they are
aimed at single instances of data, on one hand, or systems or models considered
as wholes, on the other.

Techniques with a local scope work by segmenting the solution space
for the task to which their models are applied, and provide explanations or
interpretations for specific output instances, like predictions, simplifying the
problem in less complex subspaces that can be more readily comprehended. As
such, they tackle how individual model predictions are locally influenced by
their individual feature values and weights, describing how each contributes
(positively, negatively, or negligibly) to the model’s outcome for a singular
observation of interest (Barredo Arrieta et al., 2020; Bruce and Fleming, 2021b;
Liu et al., 2023; Nannini et al., 2023; Simon and Barr, 2023).

For example, one could learn that the prediction of a high value for a
particular home was due primarily to its view in a particular direction (a
feature that might operate similarly for certain other homes but not generally
to all homes). These methods tend to have higher fidelity and lower robustness,
since they are closer to a specific way of functioning that is ideally but not
necessarily successfully generalized to new data (Bruce and Fleming, 2021b).

Examples of specific local methods found in the literature review with
more than one mention include ConceptSHAP, SHapley Additive exPlana-
tions, Local Interpretable Model-agnostic Explanations, Layer-wise relevance
propagation, Saliency Map, Guided Backpropagation, and GradCAM, while
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methods with a single mention include Case-based reasoning, Fuzzy classifier,
Explainable Boosting Machine, Testing with Concept Activation Vectors, and
Visual Attention Maps (see Figures 5.2 and 5.3).

Figure 5.1: Depiction of a ConceptSHAP output for a convolutional neural
network classification task. Each series of thumbnails shows the ‘concepts’
most associated with certain image classes. Source: Yeh et al. (2022)

Figure 5.2: An example of using Visual Attention Maps, images that give an
interpretation of the most relevant areas in an automated caption generation
task by illuminating them. Source: Bhattacharya (2022b)

When techniques are aimed at explaining or interpreting more than a
single result of an artificial intelligence system, but are still not aimed at
explaining it as a whole, the literature suggests the term cohort scope.
That is the case when what is to be comprehended is a particular batch
of data instances, grouped according to some specific criteria, to try and
understand whether, for instance, predictions are being skewed according to
some predetermined bias (Bhattacharya, 2022a; Liu and Zaharia, 2022).

On the opposite end we find techniques directed at explaining or inter-
preting artificial intelligence systems as wholes, in which case we talk about
them having a global scope. They can do so in various manners, like measur-
ing how individual features impact predictions globally (on average) across the
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Figure 5.3: A different presentation of Visual Attention Maps, underlining the
word that corresponds to the illuminated image. Source: Xu et al. (2015)

model, giving an overall vision of how it assigns weights to each one, usually
based on employing local methods and (differently) aggregating their results.
As such, global methods provide a holistic view of how a system or model
behaves, possibly also including in its summary the choice of data and algo-
rithms, being the closest analog in the case of black-box systems and models
to the coefficients and decision rules provided by intrinsically intelligible ones
(Bruce and Fleming, 2021b; Liu et al., 2023; Simon and Barr, 2023).

Examples of specific global methods found in the literature review with
more than one mention include Permutation Feature Importance, Partial
Dependence Plots, Individual Conditional Expectation plots, SHAP (which
can also work in a local scope), and SmoothGrad, while the only global method
the only received a single mention were Representation-Based Explanations.

5.4.3.6
Method of analysis

There are a few different methods used in explainability or interpretabil-
ity techniques to analyze the most relevant attributes of the data and the
parameters used in specific artificial intelligence systems. There were four such
methods found during the systematic review: perturbation-based, gradient-
based, proxy models and relevance propagation.

The idea behind perturbation-based methods is considered relatively
simple: to investigate important features in the data, a straightforward way
is to measure how a model’s outcome changes as random perturbations are
applied to different parts of the input, since larger changes would be observed
for more important features. In other words, perturbation-based methods
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leverage artificial variation on individual instances to construct comprehensible
local approximations using linear models to explain resulting predictions or
behavior. By far the two most popular perturbation-based methods include
Local Interpretable Model-Agnostic Explanations (abbreviated as LIME, see
Figure 5.4) and SHapley Additive exPlanations (SHAP, see Figure 5.5) (Li
et al., 2022; Liu and Zaharia, 2022).

Figure 5.4: LIME showing the rationale behind a wrong prediction, with a
husky misclassified as a wolf due to snow present in the background. Source:
Ribeiro et al. (2016)

There are lots of ways that perturbations can be applied on a feature
level, for instance replacing certain values with zero or random instances; pick-
ing one or a group of pixels (super-pixels) for an image explanation; blurring,
shifting, or masking operations. In artificial neural network architectures, this
can help characterize even the role of individual neurons, using datasets to com-
prehend which types of inputs they respond to or are maximally excited by,
much like an electroencephalography does to human brain activity. Artificial
neurons can equivalently be ablated, or even parts of the network dissected to
try and establish causal rather than simply correlational relationship between
the activations and the overall behavior and outcomes of the neural network
(Liu et al., 2023; Räuker et al., 2023).

Gradient-based methods, in turn, employ partial derivatives on input
instances to differently attribute importance to features in the data. A gradient
is a concept from multivariable calculus that constitutes of a vector field – a
function that can give the direction and the rate of fastest change at any given
point in the problem space under consideration. Gradients can be applied to
different modalities of data, with images and text being particularly relevant
due to their usually high dimensionality (see Figure 5.6). Gradient-based
methods tend to generate robust results, though risking model fidelity when
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Figure 5.5: A simple diagram illustrating the main idea behind Shapley Values.
Player 2 is the most impactful overall. Source: Meador and Goldsmith (2022)

doing so. The literature also indicates that recent work has started to unify
these with perturbation-based approaches (Liu et al., 2023; Liu and Zaharia,
2022; Simon and Barr, 2023).

Proxy models, sometimes also called surrogate explainers in machine
learning, are methods that work by simplifying the original computational
artifact to be interpreted, and they work by rebuilding a whole new system
based on the trained model under analysis. The new construct usually attempts
to optimize its resemblance to its antecedent’s functioning, while reducing
its complexity and keeping a similar performance score. The simpler model
chosen is invariably an intrinsically understandable one, easy to interpret while
attempting to approximate the predictions of the original model as closely as
possible (Barredo Arrieta et al., 2020; Bhattacharya, 2022a).

Popular choices for specific interpretable algorithms are linear regres-
sions, decision trees and rule-based systems, and each one usually attempts to
analyze three types of relationships between input features and target outcome:
linearity (whether and how strongly each input feature is straightforwardly re-
lated to the predicted result), monotonicity (whether an overall increase to
input feature values leads to an unequivocally directed change in the target
outcome), and interaction (to try and gauge how individual features interact
with each other to impact a model’s conclusions) (Bhattacharya, 2022b).

Lastly we have relevance propagation, most often found in its version
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Figure 5.6: An example of Grad-CAM in a captioning task. The overlaid
heatmaps indicate the most relevant areas for interpreting what influenced
the generated text. Source: Selvaraju et al. (2017)

Figure 5.7: Another gradient-based example, this time in a classification task.
Here, CAM’s heatmap shows the areas relevant for the predicted class. Source:
Zhou et al. (2016)

applied to artificial neural networks across model layers in image classification
tasks, called Layer-wise Relevance Propagation, though it can also be applied
to Support Vector Machine models. This method recursively computes a
relevance score for each layer of computations, proceeding backwards from the
last one, to try and understand the contribution of each feature (for instance,
each pixel on an image, or word tokens in text) to the prediction function that
classifies an input, generating for instance a heatmap superimposed on the
original image, or differently coloring and weighted underlining the original
text, that highlights the critical regions that most affected the prediction (Li
et al., 2022; Loh et al., 2022; Bhattacharya, 2022b).
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5.4.3.7
Output type

The output type refers to what is generally considered to be the explana-
tion or interpretation effectively produced by explainability or interpretability
techniques. There were four primary types found in the literature review, be-
ing: feature importance, example-based, model rationale, and dataset impact.

Feature importance, also variously known as feature relevance,
influence-based outcomes, or sensitivity analysis, is the result of computing
a relevance score for each variable managed by a model, which quantifies the
relative effect a feature has on its outputs, indirectly explaining the model
and interpreting its predictions. It is an attempt at showcasing direct associ-
ations between the input and output of an artificial intelligence system. This
is most often done through some variation of permutation feature importance,
which is a perturbation-based method that compares how much the model er-
ror increases when all the values of a feature are randomized, ranking them in
descending order of importance according to the increase in error (Barredo Ar-
rieta et al., 2020; Nannini et al., 2023; Bruce and Fleming, 2021a).

In other words, feature importance is a way to identify the dominant
features in the data used to train a model or calibrate a system, and analyzing
their effect on the predictions comparing the outcomes with known scenarios or
exemplary situations. Feature importance is probably the most popular choice
for root cause analysis that helps with detecting failures, understanding and
debugging machine learning systems, and other than permutation importance
scores there are also statistical correlation scores, decision tree-base scores,
and others. It is a method often also employed for feature selection and
dimensionality reduction steps in machine learning performance improving
pipelines, though in those cases domain expert validation is always crucial
before drawing any conclusions (Bhattacharya, 2022b).

Additionally, feature importance is an explainability or interpretability
result from the analysis of structured datasets, where the features are clearly
defined, being less relevant for unstructured data like text or images as the
features or patterns used by the models in those cases can be significantly
more complex and a lot less intelligible, if at all, to humans (Bhattacharya,
2022b).

Example-based responses work similar to one of the ways through
which humans try to explain a new concept someone else: often, we try to
make use of examples that our audience can relate to. What example-based
explainability and interpretability techniques do is attempt to select certain
instances of the original data to explain the behavior of the system, assuming
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that observing similarities between the current observation and a historic one
can be used to explain black-box models. This tends to be more challenging to
do with high-dimensional structured data since, for these approaches, not all
the features can be included to explain the model, so applying some feature
selection method in advance helps (Bhattacharya, 2022b).

The generated example-based outcomes should ideally be user-centered,
which here means comparing the result with end users’ predictions based
on assumed knowledge. Supposing the model forecasting does not match the
user community’s prediction, a good example should function to justify what
changes could have happened in the input observations to get a different
outcome, comparing system outcomes with known scenarios or situations
(Bhattacharya, 2022a). Example-based methods’ outcomes can be of three
different subtypes: prototype examples, counterfactual examples, or adversarial
examples.

Prototypes, in the context of example-based explanations or interpreta-
tions, are supposed to be the typical exemplars of their categories, for instance
unequivocal classes in classification tasks, or extreme values in regression tasks.
Since they exemplify paramount instances of the available data used for learn-
ing, they tend to be effectively and directly understood by humans, which helps
in understanding the type of prediction a system makes. To create this set of
exemplary data points, that allow explaining or interpreting a model’s result
by how the target data resembles one of them, activation maximization is one
of the employed techniques, since prototypes can be found or even generated
through an optimization process (Li et al., 2022; Räuker et al., 2023).

Counterfactuals, in turn, which are the most popular example-based ex-
plainability or interpretability output types, tend to indicate to what extent a
particular feature has to change to significantly change the predicted outcome.
Counterfactual examples work by supplying ‘what if’ scenarios, answering hy-
pothetical questions about an instance of data through contrasting it with
different, possibly existing, observations. For classification tasks, counterfactu-
als are generated by trying to predict the opposite class for a binary problem,
or the most similar class for a multiclass problem. For regression tasks, the
counterfactual is generated with recourse to different parts of the response
spectrum, usually symmetrical to the targeted input, or close to the ends if
the original observation is close to the average (Bhattacharya, 2022b; Liu et al.,
2023).

Especially in critical applications where human elements are directly
involved, it is crucial to provide concrete insights and recommendations that
people can act upon if they wish to be classed otherwise (supposing, of course,
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that they are in accordance with how the classification system works in the
first place): for that reason, the counterfactual examples should have changes
in the input that are as small as possible, but that would still significantly
alter the prediction made by the model. Additional care must be taken to
not only generate actionable counterfactuals, but to also avoid the so-called
Rashomon Effect, since for any real-world problem it is possible to find multiple
counterfactual examples that can contradict each other, creating confusion
instead of comprehension. As usual, human intervention and the application of
domain knowledge to pick up the most relevant example can help in mitigating
this hardship (Li et al., 2022; Bhattacharya, 2022b).

Adversarials, lastly, are examples very closely related to counterfactual
ones, generated with similar optimization methods, but with the additional
requirement of altering data inputs in ways that are usually imperceptible
to humans: for instance, changing the value of a single specific pixel (or set
of pixels) in an image that results in it being labeled with a different class
altogether, misleading the prediction. Adversarial examples are often used to
reveal vulnerabilities in deep models and even to attack artificial intelligence
systems, so their analysis can help understand the machine learning process
and improve the robustness of the trained model (Li et al., 2022).

A different type of output from explainability and interpretability tech-
niques involves attempting to give intelligibility to the system’s rationale,
for instance supplying information about the data or the model through au-
tomated knowledge extraction methods. This becomes especially relevant in
deep models, since their full reasoning process is incredibly complex due to
their nonlinearity and the enormous amount of computations involved in their
creation and usage. To give the underlying system rationale human intelligi-
ble semantics, this process can be approximated with the use of graph models
or decision trees, using the aforementioned proxy models. These rule-based
systems can then, for instance, be queried or otherwise analyzed to gener-
ate semantically adequate explanations or interpretations to stand in for the
original system’s rationale (Bhattacharya, 2022b; Li et al., 2022).

Finally, one more possible output of explainability or interpretability
techniques is analyzing and displaying the dataset impact, which deals with
how specific sets affect machine learning dynamics, including a system’s design.
Here we find data-centric approaches like the ubiquitous Exploratory Data
Analysis (whose importance, we would like to add, cannot be overstated), used
to understand whether the data is consistent, well curated, and well suited
for solving the underlying problem, as well as data profiling, which can help
detect data and concept drifts, for instance. These are ways of extracting key
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insights from the input data (and also from a model’s predictions) that result
in detailed reports that increase a system’s explainability or interpretability
(Bhattacharya, 2022a,b).

5.4.3.8
Output format

The results of explainability and interpretability techniques can not only
be of various types, as we have just seen, but these can also come in different
formats or modalities. The most prevalent are images, but textual accounts
are just as important, with the more direct tabular resources also making an
appearance. All of these formats can be coupled with each other to produce
more complete responses, but we keep them separated here to focus on the
specificities of each mode of presentation.

Visual results are usually the preferred outputs of several explainability
and interpretability methods, since they are considered to be information-rich
and more readily intelligible. They are considered the most suitable way to
introduce complex interactions within the variables involved in a system or
model to users not necessarily acquainted with machine learning modeling,
and feature selection as well as dimensionality reduction can be employed
to help produce visualizations, though the latter tends to incur a loss in
comprehensibility (Barredo Arrieta et al., 2020; Bhattacharya, 2022b; Zini and
Awad, 2022).

To visualize results like ranges of feature values, or the relative impor-
tance of some of a model’s attributes, bar charts and diagnostic plots are
the most common choices. To look at parameters like attention weights or
pixel relevance, formats like saliency maps and highlight overlays and usually
employed, indicating the spatial support of particular classes or how regions
differently contributed to a specific prediction. Colors and intensities can also
be used to indicate how each feature or area is associated with the system or
model’s outcome Bruce and Fleming (2021b); Chaudhari et al. (2021); Liu and
Zaharia (2022).

Textual results are less prevalent than visual ones, and include every
method that generates symbols that explain the functioning of a system
or model or that help interpret the associations between their data and
predictions. Textual outputs for explainability or interpretability techniques
can be natural language sentences that convey how a model works internally,
in general or for a specific prediction, or how different training data is related
to a classification or regression result, in both cases ideally in ways that are
understandable to the appropriate audiences. This kind of result can even
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attempt to be automatically generated if explainability or interpretability are
baked in the system by design, for instance using specific large language models
for this task (Barredo Arrieta et al., 2020; Liu and Zaharia, 2022).

One last distinct format that merits attention are data instances,
which can be almost purely numerical, but also visual, textual or even a
combination of all of these. These output formats are usually tied to example-
based interpretability techniques, since they involve providing pure instances of
data as part of (or even as the entirety of) the explanations or interpretations
for the system or model under consideration. These data instances can be
real observations that come from training or testing datasets (if no privileged
information will be leaked this way), or even synthetic constructions that help
to make the system or model more intelligible by comparison (Barredo Arrieta
et al., 2020).

Additionally, all of the previously mentioned outputs, regardless of
format, can also be made interactive, with options that help the techniques’
user communities further explore the explanations or interpretations supplied
with additional information that can once again be of different format and
levels of detail (Liu and Zaharia, 2022).

5.4.3.9
Choosing a technique

The choice of which technique to use not only has to consider whether
the main goal involves explainability or interpretability, but is also heavily
predicated on what the key problem under consideration is: the precise nature
of the task and its domain, the complexity of the questions being asked or the
behaviors being analyzed, the desired broadness of applicability, the architec-
tures of both the hardware and the software involved, and above all the type
of audience for which explainability or interpretability is important, including
their presumed knowledge, specific requirements, and intents (Barredo Arrieta
et al., 2020; Bhattacharya, 2022b; Zini and Awad, 2022; Nannini et al., 2023).

5.5
Key takeaways for additional exploration

5.5.1
Important references (for backward snowballing)

Several references piqued our curiosity during the reading in full of the
texts selected for the systematic literature review. While all of them seemed
relevant for our interests, their adequate appreciation falls beyond the scope
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of the present endeavor. That activity constitutes a possibly fruitful avenue
for future work, and might help to improve on the findings discussed in this
chapter. They are listed in full in Appendix B.

5.5.2
Interdisciplinarity

The importance of interdisciplinarity for the consideration of explainabil-
ity and interpretability in artificial intelligence systems was another topic that
ended up drawing our attention during the literature review. We cannot be sure
how much the author of this work’s previous background in the social sciences
contributed to that specific outlook, but we believe the subject was mentioned
often enough in the texts, as either inter or multidisciplinarity (Barredo Arrieta
et al., 2020; Simon and Barr, 2023; Nannini et al., 2023; Räuker et al., 2023),
for it to possibly warrant the attention of any researcher studying the themes
that we have been discussing here. Specific disciplines other than computer
science and engineering mentioned in the review included psychology, ethics,
law, as well as the social sciences in general.

Psychology, especially its cognitive strand, was one of the main disci-
plines mentioned in the literature concerning explainability and interpretabil-
ity. Experiments in the field are said to be able to help in reducing subjectivity
when assessing the creation of convincing intelligibility arguments, taking into
consideration the cognitive skills, capacities and limitations of the individual
human and their mental models. Concepts of this field can help to draw in-
sights about convincing a person and measuring whether something has been
understood or put clearly (Barredo Arrieta et al., 2020; Simon and Barr, 2023).

Philosophy is another discipline that also appeared as relevant in the
review, especially the subfield of ethics. Considering ethical restrictions is
said to be paramount in order to create human-centered applications and to
specifically model the artificial intelligence components of a system. The ethi-
cal implications of predictions and decisions taken based on them gain special
significance as machine learning, and especially deep learning, models are em-
ployed to address increasingly sophisticated problem solving, which necessitate
reflecting on ethical explanations and interpretations (Barredo Arrieta et al.,
2020; Simon and Barr, 2023; Nannini et al., 2023).

On a closely related note, the study of law appears as an equally relevant
related disciplinary field that should be taken into account in interdisciplinary
research about explainability and interpretability. The development and the
results of these methods can have considerable impact due to regulations and
policies, such as in the case of the European Union General Data Protection
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Regulation’s right for explanation. The question of a computerized system’s
legal liability is also an open and relevant one that is closely related to their
intelligibility, and the idea of making laws that require organizations to reveal
a certain level of understandability seems to be spreading, such that it might
become an unavoidable requirement in the future (Barredo Arrieta et al., 2020;
Loh et al., 2022; Meador and Goldsmith, 2022; Nannini et al., 2023).

Other disciplines in the humanities, aside from the previous two, were
also found to be relevant to researching and developing systems considering
explainability and interpretability as possible requirements, like the study of
languages to help in collaborative sense-making, for instance by sharing the
context producing their findings, wherein context refers to sets of narrative
stories surrounding ways of understanding artificial intelligence systems; and
even the arts, since there is a measure of creativity involved not only in dealing
with data but also in choosing the best combination of explainability and
interpretability techniques to be utilized for dealing with these technologies
(Barredo Arrieta et al., 2020; Bruce and Fleming, 2021b).

The most prevalent mention to other traditions when interdisciplinarity
was the word of the day in the review revolved around the social sciences
in general, with occasional mentions to sociology in particular. Looking at
the social aspect, or the social ties of people involved in the development and
deployment of artificial intelligence explainable and interpretable systems are
said to be crucial activities that are still in progress, with plenty of room and
interest for collaboration. The distinct sociotechnical impacts of these com-
putational artifacts is also a theme that appeared central to interdisciplinary
considerations (Barredo Arrieta et al., 2020; Correia and Lindley, 2022; Li
et al., 2022; Simon and Barr, 2023; Nannini et al., 2023).

The social sciences were also mentioned as disciplines that can help
analyze the complexities of evaluating what counts as good explanations and
interpretations, by producing more sophisticated accounts of how to assess
a system’s performance that is not simply restricted to metrics like model
accuracy. The diversity of outcomes, for instance, is thought to be an example
of a significant indicator of the quality of both the data used for machine
learning and of the distinct types of results that can be expected from
applications themselves and associated intelligibility techniques, for instance
producing diverse and nuanced suggestions rather than highly-scoring yet
similar results in a recommendation task. Another example involves sampling
techniques developed as a part of basic methods in the social sciences, a
technique that can help to gauge variability or bias in the estimates of a
system, and which involves replicating existing observations and resampling
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in order to derive multiple estimates and see whether they correspond to what
is known about the original population (Barredo Arrieta et al., 2020; Bruce
and Fleming, 2021a).

Another important aspect that the social sciences are said to aid in is
the choice of evaluation questions and the adequate characterization of the
audience for which explanations and interpretations should be delivered, since
they should be differently accessible to complex sets of stakeholders. That
involves determining the right level of abstraction and the content of the
results that are conveyed, which in turn depends on the kind of understanding
each community within a specific audience is supposed to possess. To deal
with the difficulties that can arise in adequately generalizing explanations
and interpretations, principles of user-centric design and studies on Human-
Computer Interaction are invaluable allies, together with the social context
in which these technologies are adopted. A considerable amount of human
experimentation and creativity in the loop are also routinely called for in
improving explainability and interpretability (Barredo Arrieta et al., 2020;
Bhattacharya, 2022b; Liu and Zaharia, 2022; Nannini et al., 2023; Räuker
et al., 2023).

One final topic should be mentioned as part of the contribution the social
sciences can make for the consideration of explainability and interpretability,
and that has to do with ways to ensure fairness and avoid undue bias not only
in data but also in the development and functioning of artificial intelligence
systems and models. Protected attributes such as gender or race that in most
cases should not be encoded as part of a problem’s dimensions can be removed
from an architecture, and that can be ensured with recourse to adequate
explainability and interpretability techniques. And care should always be taken
in order to avoid creating systems and models that irresponsibly reflect prior
sociotechnical disparities and harmful prejudices, which is something that
frequently can be predicated on choices informing the design of applications
(Zini and Awad, 2022; Nannini et al., 2023; Räuker et al., 2023).

5.5.3
Assessment and metrics

The results of artificial intelligence systems and models are often reduced
to specific metrics, accuracy being chief among them but far from the only
one. However, as the texts under review point out, there are lots of different
ways of assessing performance, and explainability and interpretability related
measurements can be just as important as the ones dealing with exactly how
precise an application is expected to produce predictions. Test accuracy alone
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can be an especially misleading metric, since that does not imply that the
learned solution is sufficiently adequate or general, to use a couple of examples.
Fixating on best-case scenarios for metrics can be equally illusory, which might
end up overestimating the value of a proposed solution. (Barredo Arrieta et al.,
2020; Li et al., 2022; Räuker et al., 2023).

All of the above considerations are equally important when it comes to
taking into account the explainability and interpretability of a system or model
as well. Even though assessing the quality of techniques that are responsible
for improving systems’ understandability is something challenging, also in
part due to their considerable diversity in methodologies and varying levels
of complexity, it is a crucial activity to undertake (Barredo Arrieta et al.,
2020; Li et al., 2022; Loh et al., 2022).

Assessment of explanations and interpretations can be done through
several different means, lots of them being quantifiable. The literature claims
for not only objective but also specifically numeric metrics, in order to
support the use of measurement procedures and tools for evaluating the
explainability and interpretability of distinct systems or models. The texts
under review agree that, at least so far, there exist few ways of doing so,
especially in straightforward, quantitative manners, since most methods supply
visualizations or natural language outputs, which are often notoriously difficult
to quantify (Barredo Arrieta et al., 2020; Bhattacharya, 2022b; Li et al., 2022).

Having precise ways of assessing different explainability or interpretabil-
ity approaches also allows for comparison methodologies contrasting them, and
opens the possibility or creating rigorous benchmarks similar to the ones that
enabled considerable improvement of artificial intelligence systems. However,
the texts under review point out that there is no unified criteria for doing so,
despite how relevant their creation appears to be, including the establishment
of unique and well designed testing frameworks. (Barredo Arrieta et al., 2020;
Li et al., 2022; Zini and Awad, 2022; Simon and Barr, 2023; Räuker et al.,
2023)

At the same time, the importance of qualitative approaches is not under-
stated in the literature, since trying to gauge simply how understandable to a
human explanations or interpretations are unavoidably involves their subjec-
tivity. The entire process is already largely predicated on human assessment to
begin with, since for instance supervised learning already involves annotated
data. Since user communities’ subjective perceptions are crucial to this kind
of assessment, and they can include personality traits, individual experiences,
subject matter knowledge, beliefs, and cultural influence, Human-Computer
Interaction expertise and knowledge from the social sciences is once again crit-
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ical (Barredo Arrieta et al., 2020; Bhattacharya, 2022b; Li et al., 2022; Zini
and Awad, 2022; Simon and Barr, 2023; Nannini et al., 2023; Liu et al., 2023).
We would like to add that doing so helps not to conflate the presence of sub-
jectivity with lack of preciseness.

The texts in the review mention several possible key criteria for assessing
the intelligibility of specific systems or models. They revolve around how
satisfactory, useful, educational, reliable, costly and customizable the outcomes
of explainability and interpretability techniques are. Let us go over each one
in turn.

The outcomes of explainability and interpretability techniques can be
assessed according to how satisfactory they are to their user communities.
Satisfaction here can involve how coherent they are with previous knowledge,
addressing existing beliefs surrounding the problem at hand (even if the
result can end up questioning prior assumptions), but also conciseness, the
right amount of simplification or detailing. At the same time, explanations or
interpretations that involve non-obvious outcomes are just as important for
satisfactory responses, including spelling out causal links whenever possible,
and allowing users to contribute to satisfaction scales (Barredo Arrieta et al.,
2020; Bhattacharya, 2022a).

Another way of assessing how good explanations or interpretations are
has to deal with how useful they are deemed to be. That means they should be
actionable, taking into account the specific needs of distinct user communities.
Contrastive outcomes tend to be particularly relevant in this case, for instance
including different predictions for what-if scenarios that are actually within
reach of a person being affected by a system’s prediction. These are usually
very application-dependent since they require not only points of comparison
but adequate knowledge of the domain in question to know which features can
be the subject of changes and within which ranges (Barredo Arrieta et al.,
2020; Bhattacharya, 2022a).

How educational the results of explainability and interpretability
techniques are is another form of assessing their quality, since ideally those
outcomes should be able to induce the improvement of the mental models the
audience works with. It is perfectly reasonable to expect that good explanations
and interpretations should enrich users’ conceptualizations and knowledge
about the domain in question, even if that is not supposed to be their primary
function (Barredo Arrieta et al., 2020).

One more important aspect for explainability and interpretability assess-
ment is how reliable or trustworthy their outcomes are. Good explanations
and interpretations are expected to be consistent and demonstrate high fidelity
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to their underlying systems or models, being adequately free of undue bias. In
addition, it is very advisable to pair techniques’ outcomes with confidence
estimates, for instance quantifying the amount of uncertainty involved in a
prediction (Barredo Arrieta et al., 2020; Bhattacharya, 2022a; Räuker et al.,
2023).

It is also important to consider how costly explainability and inter-
pretability are to implement, not only because it might be difficult to maintain
a model’s accuracy if it also needs to be adequately understandable (a topic
to which we will return in the next subsection), but because even straight up
designing and developing good explanations and interpretations, as well as the
means to assess them, usually depends on human participation, due to the
lack of univocal ground truths and the relevance of subjective understandings.
Those end up being more resource-intensive goals, that can even end up giving
more investment return, but the associated costs also need to be taken into ac-
count (Barredo Arrieta et al., 2020; Bruce and Fleming, 2021a; Bhattacharya,
2022a; Liu et al., 2023).

Finally, how customizable explanations and interpretations are is also
something relevant for their quality, revolving around how much the expertise
and assumed knowledge of the audience can be involved in the process.
Intelligibility can be gained through an adequate amount of simplification or
detailing, depending on each use case, bringing about the need for employing
different typologies. Not only the purpose of understandability outcomes can
vary across tasks and stakeholders, but also their complexity, completeness,
interactivity, or format. And in case providing personalized outputs is on the
table, ensuring compliance with data privacy can be even more important than
usual (Barredo Arrieta et al., 2020; Bhattacharya, 2022a; Nannini et al., 2023;
Simon and Barr, 2023).

There are myriad ways that explainability and interpretability can be
effectively assessed and evaluated, including checklists, scales, measuring the
size of outcomes, the complexity of the features involved, the cognitive process-
ing time required to understand and successfully act upon an explanation or
interpretation, as well as retraining machine learning models according to al-
terations based on the comprehension achieved and comparing how it behaves
then, measuring the degradation of its new performance, employing adversar-
ial samples, or even randomizing a system’s hyperparameters or data samples
before doing the same (Barredo Arrieta et al., 2020; Bhattacharya, 2022a; Li
et al., 2022; Räuker et al., 2023).

In addition to those, several of the methods for assessing the quality of the
explainability and interpretability of an artificial intelligence system or model
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necessarily involve deeper human participation, with real tasks being evalu-
ated. Those can vary in type from application-grounded evaluations, which
involve including the comprehensibility technique to be assessed by domain
experts in a real environment through an almost-finished product (a time-
consuming and high cost experiment), to functionality-grounded evaluations,
which does not involve direct human experimentation, instead dealing with
proxy tasks to evaluate the quality of explanations or interpretations: these
are not only the less expensive and usually faster to implement tests, and even
though their results might also be less promising, they are particularly useful
as alternative approaches in use cases where human subject experiments are
restricted and unethical (Bhattacharya, 2022a).

Figure 5.8: Different levels of evaluation for the quality of the explainability
or interpretability of an artificial intelligence system. Source: Bhattacharya
(2022a)

In the middle ground there are also the so called human-grounded evalua-
tions (see Figure 5.8), which employ non-expert users on more straightforward
tasks in comparison (which are faster and less expensive than the ones be-
longing to the first type, but tend to yield less definite results), using methods
like A/B testing, counterfactual or forward simulations. A/B testing provides
different explanations or interpretations to users, who are asked to select the
best one and generate an aggregated score based on the voting, as well as other
possibly relevant metrics such as click-through rate, screen hovering time, and
time to task completion. In counterfactual simulations the participants are
presented with the input and output of the model as well as explanations or
interpretations for a certain number of data samples, and are asked to pro-
vide certain changes to the input features in order to change the model’s final
outcome to a specific range of values or a specific category. Lastly, in for-
ward simulations, participants are provided with the model inputs and their
corresponding explainability or interpretability techniques, and then asked to
simulate the model prediction without looking at the ground-truth values, con-
tributing to the generation of an error metric used to find the difference be-
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tween human-predicted outcomes with the ground-truth labels (Bhattacharya,
2022a).

5.5.4
Future challenges and possible drawbacks

This subsection is dedicated to the challenges and the possible drawbacks
that are involved in explainability and interpretability, as reported in the
literature. Future research avenues are addressed in the next chapter.

The first challenge has a very straightforward connection with our initial
objective, since it involves reaching consensual definitions, not only for the
concepts of explainability and interpretability, but also for how they should
be employed. Agreement on the vocabulary and the meanings of the terms
used in the field is considered an imperative, since there are numerous cases
where there is no consistency on what is being taken into account. One of
the reasons for that is the field having a relatively young quality, without
a standardized terminology, which the texts consider is achievable, reducing
ambiguities. In the same vein, attempting to define what constitutes good
outcomes for explainability and interpretability techniques, and how to best
utilize them, are active research subjects. At the same time, that should
be done without forgetting that even the definitions, quality indicators and
proposed usages must be tailored to a diverse community of stakeholders and
a manifold of purposes (Barredo Arrieta et al., 2020; Meador and Goldsmith,
2022; Nannini et al., 2023; Zini and Awad, 2022).

The second challenge is closely related to the first, since it deals with
creating benchmarks for adequately measuring explainability and inter-
pretability. The derivation of general metrics to assess the quality of these
requirements remains an open issue, and these are important to allow mean-
ingful evaluations and comparisons between different methods that produce
useful insights about a system or model. The costs involved in creating these
metrics and benchmarks is far from negligible, especially since in several cases
their validation necessitates human interaction in real environments. However,
the potential for these benchmarks to improve not only the outcomes of ex-
plainability and interpretability techniques, but also the original applications
themselves is significant (Barredo Arrieta et al., 2020; Liu and Zaharia, 2022;
Nannini et al., 2023; Räuker et al., 2023).

Next we find the relation between accuracy and intelligibility,
sometimes also called the performance versus transparency trade-off, when the
latter is not considered as part of the former. While some texts indicate that
these are necessarily opposite to each other, thinking that an exclusive focus
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on performance leads to systems being increasingly opaque, the literature also
mentions that this is a statement filled with misconceptions. As others texts
under review indicate, explainability or interpretability, on one hand, and ac-
curacy or privacy preservation, on the other, are not necessarily contradictory
measures, as they can be improved simultaneously and even causally (see Fig-
ure 5.9). The relationship between these terms is thus a complex, intricate,
and contextual one, and others factors like cost increases, growth of undue
bias, higher computing demands, and loss in usability, all have to be consid-
ered in order to adequately assess how performance, in a more encompassing
definition, is affected when explainability and interpretability are part of the
equation (Barredo Arrieta et al., 2020; Bhattacharya, 2022a; Li et al., 2022;
Nannini et al., 2023; Räuker et al., 2023).

Figure 5.9: An abstract representation of the trade-off between explainabil-
ity/interpretability and accuracy, and the potential improvement techniques
could bring about. Source: Barredo Arrieta et al. (2020)

Another crucial challenge described by the literature is including con-
fidence measures as part of explainability and interpretability outputs and
assessments. That also means dealing openly with uncertainty and doing your
best to inform your audience about the approximation dilemma, that is, the
fact that simplifications are usually needed to convey explanations and inter-
pretations about complex systems, while losing fidelity in the process. Users
should then be informed about the share of epistemic uncertainty (namely, the
uncertainty due to lack of knowledge) involved in an outcome, which becomes
particularly relevant for instance in the utilization of large language models,
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since their outputs might not reflect factual information. And while more com-
plex models might enjoy more flexibility than their simpler counterparts, it is
not necessarily true that they are inherently more accurate. In that vein, also
estimating the confidence of the explanations or interpretations themselves is
thus still important work to be done (Barredo Arrieta et al., 2020; Bruce and
Fleming, 2021b; Nannini et al., 2023; Räuker et al., 2023).

A different challenge around explainability and interpretability revolves
around arriving at the reasoning behind a system or model’s outcomes.
That is even more important when harmful predictions are made by appli-
cations, since simply recognizing them is not enough if one does not arrive
at how they are made in the first place. Since even when there are no true
relationships to be found within the data, models can produce seemingly rea-
sonable correlations based on it, identifying the exact root causes that lead to
a prediction becomes paramount. Additionally, systems that can demonstrate
their reasoning also become more resilient to adversarial attacks (Bruce and
Fleming, 2021b; Liu et al., 2023; Simon and Barr, 2023).

One more specific challenge indicated by the reviewed texts is using
attention weights as proxies for explainability or interpretability. That is
a popular choice that is still an area of active research, since there is still
contention as to how much these weights can work as noisy predictors or
relative importance of specific regions of the input data. While attention
weights are more inherently understandable than the parameters of general
deep networks, they become less intelligible in the deeper layers as compared
to the outer ones, which brings unique difficulties in using them as justifications
for a system or model’s decisions (Chaudhari et al., 2021; Zini and Awad, 2022).

Finally, one equally important avenue for continued investigation has
to do with the ethical implications of explainability and interpretability,
since their providers are directly part of the resolution of complex problems
with a large gamut of impacts. As explanations and interpretations become
ever more critical for oversight purposes, opportunities arise both for the
creation of metrics and standards, on one hand, and of ethics-washing and
responsibility avoidance, on the other. In order to prevent the latter, policies
like accountability measures should be clearly implemented, which can only
happen within clear regulatory baselines and mechanisms designed for legal
recourse and public scrutiny, which research can help come about. While the
current focus seems to be on providing guidance to the industry and promoting
innovation, a more balanced approach would leverage commercial interests
with human rights, to the benefit of a broader community of stakeholders
(Simon and Barr, 2023; Nannini et al., 2023).



6
Conclusion

This work was dedicated to answering the question of how ‘explainability’
is defined in the domain of foundation models, through a systematic literature
review. We arrived at this question after an initial exploratory contact with the
topic, which was relayed in Chapter 2, and explained how we would tackle the
question in Chapter 3. An overview of our findings was given in Chapter 4, and
they were further detailed in Chapter 5. The question had to be refined over
the course of the work due to our results: interpretability joined center stage
as another equally important term for consideration, while the scope had to be
broadened from foundation models to machine learning more generally. That
happened because not only was the literature considering foundation models
a lot more scarce, but also because comparisons with other types of artificial
intelligence systems or models ended up being crucial for understanding the
definitions of the terms in question.

Our endeavor has specific limitations that future work can mitigate,
possibly using our results as a basis. We did not dive into the workings of
specific explainability or interpretability techniques, although we mentioned all
the ones that were found during the review. Another fruitful avenue of further
research could involve choosing one particular application among the ones
mentioned as part of our results to see how the definitions that we concerned
ourselves with can vary according to distinct use contexts. We also did not
engage in forward snowballing, which could be done by looking at the texts
that cited the work found in the current review: that could show how the
definitions have changed or persisted over time from their inception. Finally,
it would be possible to simply repeat our same queries after some time has
elapsed: the mere passage of time can help in answering the original research
question, as more texts about explainability and interpretability centered
around foundation models get published.

In conclusion, and following what part of the texts under review do,
we found out it was useful to keep a distinction between the definitions
of the terms explainability and interpretability. Explainability can thus
be defined as the capacity of an artificial intelligence system to make their
mechanisms and inner workings understandable, focusing on matters like their
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algorithmic operation, and are usually the province of the developers and
designers in charge of creating and maintaining them. Interpretability, in
a complementary manner, can be defined as the capability of an artificial
intelligence system to make their inputs, outputs and the relationships between
them, understandable, and what are the possible repercussions involved in
them in practice, often being of more direct interest to stakeholders like
policymakers and people directly affected by decisions based on these outputs.

In our review, we explored a vast range of possible solutions that can help
systems achieve greater explainability and interpretability, and we contributed
with an expanded vocabulary that can help classifying distinct techniques and
approaches to do so. These methods can inform the creation of specific com-
putational artifacts, or the improvement of currently existing ones, but these,
as well as the insights they generate, are complex sociotechnical constructs
themselves. As such, they are just as subject to similar technical limitations,
human preferences and cultural inclinations as any other applications of our
collective ingenuity. We hope that the themes that received consideration in
this work can help build, evaluate, and improve artificial intelligence systems
that are not only technically more sound but also socially responsible, making
it so that the trust that we deposit in them can be rightfully earned.
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A
Constructing the SLR Protocol

This appendix supplies the Systematic Literature Reviews Protocol in
full (in Table A.1) and describes in detail how it was followed to completion.
Different choices along the way would have led to consequently distinct results,
and readers are welcome to experiment with them.

Table A.1: Protocol for SLR
Topic Response
Introductory

Title SLR about AI Explainability

Introduction and
background

See Chapter 2 for the background.

Objectives See Chapter 1 for the objectives.

Methodology

Continued on next page
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Table A.1: Protocol for SLR (Continued)

PICOC Criteria:
Keywords and Synonyms

Population: Foundation Models (Foundation
Models, Large Language Models, LLM, Trans-
formers, Neural Networks, Deep Learning, Ar-
tificial Intelligence)
Intervention: Explainability (Explainability,
Explicability, Interpretability, Explainable
Artificial Intelligence, XAI)
Comparison: Black boxes (Black Box, In-
scrutable, Opaque, Bias, Biased)
Outcome: Explanations (Explanation, Explica-
tion, Trust, Trustworthiness, Fairness, Trans-
parency, Reliability, Responsibility)
Context: Definition (Definition, Taxonomy) |
Emergent Capabilities (Emergent Capabilities,
Emergent Abilities, Emergent Properties) |
Obligations (Obligation, User Experience, UX,
Regulation, Legislation) | Performance | Non
Functional Requirement

Research questions RQ1. How is ‘explainability’ defined in the do-
main of foundation models?

RQ2. What are the current efforts to explain
emergent capabilites in AI?

RQ3. To whom are AI explanations owed, and
what does that figuration entail?

RQ4. How does trying to achieve explainability
affect a model’s performance?

RQ5. What does considering explainability a
(non-functional) requirement involve?

Digital library sources • ACM Digital Library
• IEEE Digital Library
• Scopus
• Web of Science

Continued on next page

https://dl.acm.org/
http://ieeexplore.ieee.org/
https://www.scopus.com/
https://www.webofscience.com/
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Table A.1: Protocol for SLR (Continued)

Inclusion and exclusion
criteria

Period: No restriction.
Language: Excluding texts not in English.
Type of literature: Excluding gray literature
(reports, policy, working papers, newsletters,
government). | No exclusion.
Type of source: Including articles from journals.
| Including articles from journals and confer-
ences.
Impact source: No exclusion. | Including articles
from Q1 sources.
Access: Excluding sources to which we do not
have access.
Relevant to research questions: Excluding texts
not relevant to at least 1 of our first 2 research
questions.

A.1
Building the search string

Each of the PICOC criteria and their synonyms gave rise to one or more
sets of keywords which were used as experimental building blocks for the
searches. The results derived from their combinations led the research process,
as further detailed in the next section. In the case of the Population criterion,
the different sets indicated how broadly or narrowly we would be able to define
the technologies under consideration, as far as explainability was concerned.
In the case of the Context criterion, the sets had to do with each particular
Research Question we were interested in addressing. The possible mix and
match building blocks for each criterion (in Extended Backus-Naur Form
notation, where the square brackets denote optional parts and the vertical
bars are syntax for alternatives) were then as follows:

Population
"Foundation Model" OR "Foundation Models"[ OR "Large Language
Model" OR "Large Language Models" OR "LLM" OR "LLMs" OR "LLM’s"
OR "Transformers"[ OR "Neural Network" OR "Neural Networks" OR
"Deep Learning"[ OR "Artificial Intelligence"]]]
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Intervention
"Explainability" OR "Explicability" OR "Interpretability" OR
"Explainable Artificial Intelligence" OR "XAI"

Comparison
"Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque" OR
"Bias" OR "Biased"

Outcome
"Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair" OR
"Fairness" OR "Transparent" OR "Transparency" OR "Reliable" OR
"Reliability" OR "Responsible"

Context
("Define" OR "Definition" OR "Definitions" OR "Taxonomy" OR
"Taxonomies")
|
("Emergent Capability" OR "Emergent Capabilities" OR "Emergent
Ability" OR "Emergent Abilities" OR "Emergent Property" OR
"Emergent Properties")
|
("Regulation" OR "Regulations" OR "Regulatory" OR "Legislation"
OR "Legislative" OR "Law" OR "Laws" OR "User Experience" OR
"UX" OR "Audience")
|
("Performance")
|
("Non Functional Requirement")

A.2
Comments on the exploratory mid-protocol search processes

We started a first batch of searches while still constructing the research
protocol to see how exactly each repository would behave and what parameters
we could tweak. Some terms were discovered and added during this stage,
including nouns but mainly the adjective forms of the terms already chosen,
after we noticed that the results which used wildcards did not seem consistent
with our expectations (there was much more variation than imagined at first).
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Initial searches in the ACM Library and IEEE Xplore seemed successful,
and their results were organized as Zotero subcollections and briefly compared
to further refine the search process, along with the respective search strings
and search options used on each platform. Scopus and Web of Science searches
were not successful, and neither was the use of Harzig’s Publish or Perish
software. Details on each one follow.

Scopus does not have an option that includes searching the full texts, so
we opted for the most comprehensively relevant search in this case, which was
“Title+Abstract+Keywords”. Unfortunately, the platform limits the search
of keywords for known English words, so it did not recognize the terms
“Explainability”, “Explicability” or “Interpretability”, for instance, as valid
keywords. After removing them, the search string was accepted, but there
were no results. We removed all terms related to the Intervention criterion,
but there were still no results.

We proceeded inputting only one set of keywords at a time, starting with
the set for the Population criterion, and then added the set for the Context
criterion, and came up with 680 documents, just to make sure the search was
taking into account multiple sets of keywords using the syntax provided. After
that we added a modified set for the Intervention criterion, consisting of only
the keyword "Explainable", and the results came down to only 3 documents,
none of which dealt with our Research Questions. Harzig’s Publish or Perish
software was then considered as an alternative, but we found out that it does
not support searching in the Abstracts like Scopus’ site does. That ended up
restricting the results even more than the the website search. Because of all of
these factors, Scopus was eliminated as a possible database for our review.

Since we did not have access to Web of Science (it is a paid platform and
none of the institutions to which I belong currently subscribe to it), it was also
discarded as a possible source for the review.

A.3
Most promising candidate queries

These were all given a descriptive alias to help discuss them during the
search process and to indicate what are the most significant differences in each
one. The results were aggregated in Zotero subcollections and titles, keywords
and abstracts skimmed over whenever applicable to give a feel of how to refine
further search options and strings. The final searches were run on July 7, 2023.
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A.3.1
Most promising candidate queries for RQ1 and RQ2 at ACM

1. Alias: Reduced Population terms to just FM’s, RQ1 Context
Database: ACM Digital Library
Collection: The ACM Guide to Computing Literature
‘Search Within’ option used: “Anywhere” for all fields
Publication Date: All dates
Filters: None
Results: 34

Search string:

("Foundation Model" OR "Foundation Models")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")

2. Alias: Reduced Intervention scope for just Keywords, RQ1
Context
Database: ACM Digital Library
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Collection: The ACM Guide to Computing Literature
‘Search Within’ option used: “Author Keyword” for Intervention criteria,
“Anywhere” for all other fields
Publication Date: All dates
Filters: None
Results: 53

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")

3. Alias: Reduced Intervention scope for just Abstracts, RQ1 Con-
text
Database: ACM Digital Library
Collection: The ACM Guide to Computing Literature
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‘Search Within’ option used: “Abstract” for Intervention criteria, “Any-
where” for all other fields
Publication Date: All dates
Filters: None
Results: 97

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")

4. Alias: RQ2 Context, no further restrictions
Database: ACM Digital Library
Collection: The ACM Guide to Computing Literature
‘Search Within’ option used: “Anywhere” for all fields
Publication Date: All dates
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Filters: None
Results: 12

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Emergent Capability" OR "Emergent Capabilities" OR
"Emergent Ability" OR "Emergent Abilities" OR "Emergent
Property" OR "Emergent Properties")

A.3.2
Most promising candidate queries for RQ1 and RQ2 at IEEE

1. Alias: Reduced Population terms to just FM’s, RQ1 Context
Database: IEEE Xplore
Search ‘in’ option used: “Full Text & Metadata” for all fields
Publication Date: All dates
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Filters: None
Results: 24

Search string:

("Foundation Model" OR "Foundation Models")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")

2. Alias: Reduced Intervention scope for just Keywords, RQ1
Context
Database: IEEE Xplore
Search ‘in’ option used: “Author Keywords” for Intervention criteria,
“Full Text & Metadata” for all other fields
Publication Date: All dates
Filters: None
Results: 47

Search string:
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("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")

3. Alias: Reduced Intervention scope for just Keywords, RQ1
Context
Database: IEEE Xplore
Search ‘in’ option used: “Abstract” for Intervention criteria, “Full Text
& Metadata” for all other fields
Publication Date: All dates
Filters: None
Results: 118

Search string:
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("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")

4. Alias: RQ2 Context, no further restrictions
Database: IEEE Xplore
Search ‘in’ option used: “Full Text & Metadata” for all fields
Publication Date: All dates
Filters: None
Results: 3

Search string:
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("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Emergent Capability" OR "Emergent Capabilities" OR
"Emergent Ability" OR "Emergent Abilities" OR "Emergent
Property" OR "Emergent Properties")

A.4
Final search strings and options

Based on the number of results found in each case and on an initial
perusal of the titles of the search results, these were the options deemed most
promising to be subsequently subjected to the inclusion and exclusion criteria
and to the qualitative assessment, if needed, before the information extraction.
These options are recorded here in full since they were used to effectively and
efficiently run the searches on each platform.



Appendix A. Constructing the SLR Protocol 104

A.4.1
Final search strings and options for RQ1

• Database: ACM Digital Library
Collection: The ACM Guide to Computing Literature
‘Search Within’ option used: “Abstract” for Intervention criteria, “Any-
where” for all other fields
Publication Date: All dates
Filters: None
Results: 97

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")
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• Database: IEEE Xplore
Search ‘in’ option used: “Abstract” for Intervention criteria, “Full Text
& Metadata” for all other fields
Publication Date: All dates
Filters: None
Results: 118

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Define" OR "Definition" OR "Definitions" OR "Taxonomy"
OR "Taxonomies")
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A.4.2
Final search strings and options for RQ2

• Database: ACM Digital Library
Collection: The ACM Guide to Computing Literature
‘Search Within’ option used: “Anywhere” for all fields
Publication Date: All dates
Filters: None
Results: 12

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Emergent Capability" OR "Emergent Capabilities" OR
"Emergent Ability" OR "Emergent Abilities" OR "Emergent
Property" OR "Emergent Properties")
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• Database: IEEE Xplore
Search ‘in’ option used: “Full Text & Metadata” for all fields
Publication Date: All dates
Filters: None
Results: 3

Search string:

("Foundation Model" OR "Foundation Models" OR "Large
Language Model" OR "Large Language Models" OR "LLM" OR
"LLMs" OR "LLM’s" OR "Transformers")

AND

("Explainability" OR "Explicability" OR "Interpretability"
OR "Explainable Artificial Intelligence" OR "XAI")

AND

("Black Box" OR "Black Boxes" OR "Inscrutable" OR "Opaque"
OR "Bias" OR "Biased")

AND

("Explanation" OR "Explanations" OR "Explication" OR
"Explications" OR "Trust" OR "Trustworthiness" OR "Fair"
OR "Fairness" OR "Transparent" OR "Transparency" OR
"Reliable" OR "Reliability" OR "Responsible")

AND

("Emergent Capability" OR "Emergent Capabilities" OR
"Emergent Ability" OR "Emergent Abilities" OR "Emergent
Property" OR "Emergent Properties")
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A.5
Notes on enacting inclusion and exclusion criteria

We started by exporting the final Zotero subcollection (with 213 unique
entries) to a .csv file (encoding: UTF-8, without Byte Order Mark) and man-
ually imported it to an inclusion and exclusion criteria spreadsheet (publicly
available as a Google Sheet).

We then proceeded to downloading all of the full text resources when
available using institutional access options (starting with PUC’s and then
IBM’s), or using other commonly employed methods known to academics when
there was no other alternative (including, but not limited to, buying books).

Whenever it was possible to dive into more specific applications, that
was the label chosen. For example: ‘Autonomous transportation’ was chosen
over ‘Image classification’, even if the former utilizes the latter.

We chose to differentiate ‘Information extraction’, as meaning from
among a large text, find passages that are of a certain type (for instance,
hate speech) and ‘Text classification’, which we took to be the activity of,
while analyzing a data entry that includes texts, predict a certain classifier for
that data entry.

The expression ‘Autonomous transportation’ was preferred to ‘Au-
tonomous driving’, since the former included other modes of transportation
relevant for some of the texts under review, such as by train or by boat, while
the latter is mostly concerned with road vehicles like cars and trucks.

When an item could be classified in two or more different types of
Applications, the most prevalent one was chosen, when evident. For instance,
if a task that aims at ‘Property prediction’ used ‘Information extraction’ as a
sub-step, the former was chosen. If there were no applications that stood out,
the item was classified as dealing with ‘Various’ applications.

We took ‘Information extraction’ to also include the task of information
retrieval: given an information as input, retrieve documents from a repository
that are related to that information. In turn, ‘Text generation’ also includes
the task of text translation.

A.6
Information extraction

This step constituted of reading through the selected texts integrally,
highlighting and annotating the most important parts, and creating an
information extraction form (publicly available as a Google Sheet).

The categories initially used in the information extraction form were as
follows, with change occurring along the writing process that gave rise to the

https://docs.google.com/spreadsheets/d/1pu1GFUddGm0myMolB0g1g433XKK2wmzYFO_UwOU9tMs
https://docs.google.com/spreadsheets/d/1PUn4rymRRLh5Y8NVrnf4emPw-zQQuytIcrPBEoFzz0M
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ones effectively used:

• Title

• Year

• Author(s)

• Item Type

• Keywords

• Initial context and motivation

• Explainability characterizations

• Distinction between explainability and interpretability

• Explainability definition

• Interpretability definition

• Additional terms (understandability, intelligibility, comprehensibility,
transparency)

• Benefits of explicability/interpretability

• Risks of non-explicability

• Techniques for explaining

• Application domains and specific applications mentioned

• Explainability assessment and metrics

• Important references (for backwards snowballing)

• Cited by (for forward snowballing)

• Main contribution summary

• Interdisciplinarity

• Future challenges and explainability drawbacks



B
Backward snowballing

This is the full list of interesting references on topic that were found
during the systematic literature review and that were not otherwise addressed
in the current work. Their reading can be a source of enrichment for the
arguments advanced here.

– A Historical Perspective of Explainable Artificial Intelligence (Con-
falonieri et al., 2021)

– A Multidisciplinary Survey and Framework for Design and Evaluation of
Explainable AI Systems (Mohseni et al., 2021b)

– A Quantitative Evaluation of Global, Rule-Based Explanations of Post-
Hoc, Model Agnostic Methods (Vilone and Longo, 2021)

– A Survey of the State of Explainable AI for Natural Language Processing
(Danilevsky et al., 2020)

– Attention is not Explanation (Jain and Wallace, 2019)

– Blueprint for an AI Bill of Rights | OSTP (USA, 2022)

– DARPA’s explainable AI (XAI) program: A retrospective (Gunning
et al., 2021)

– DARPA’s Explainable Artificial Intelligence (XAI) Program (Gunning
and Aha, 2019)

– Evaluating Saliency Map Explanations for Convolutional Neural Net-
works: A User Study (Alqaraawi et al., 2020)

– Explainability fact sheets: a framework for systematic assessment of
explainable approaches (Sokol and Flach, 2020)

– Explainable AI for Designers: A Human-Centered Perspective on Mixed-
Initiative Co-Creation (Zhu et al., 2018)

– Explainable Artificial Intelligence (XAI) (DARPA, 2016)

– Explaining decisions made with AI (Office and Institute, 2023)

– Explaining Explanations: An Overview of Interpretability of Machine
Learning (Gilpin et al., 2018)
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– Explanation and Justification in Machine Learning: a Survey (Biran and
Cotton, 2017)

– Explanation in artificial intelligence: Insights from the social sciences
(Miller, 2019)

– Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis
of Key Ideas and Publications, and Bibliography for Explainable AI
(Mueller et al., 2019)

– Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
Methods (Slack et al., 2020)

– How can Explainability Methods be Used to Support Bug Identification
in Computer Vision Models? (Balayn et al., 2022)

– “How do I fool you?”: Manipulating User Trust via Misleading Black Box
Explanations (Lakkaraju and Bastani, 2019)

– Interpretable Machine Learning (Molnar, 2019)

– Is Attention Interpretable? (Serrano and Smith, 2019)

– Making machine learning models interpretable (Vellido et al., 2012)

– Meaningful information and the right to explanation (Selbst and Powles,
2017)

– Methods for interpreting and understanding deep neural networks (Mon-
tavon et al., 2018)

– On Completeness-aware Concept-Based Explanations in Deep Neural
Networks (Yeh et al., 2022)

– Opportunities and Challenges in Explainable Artificial Intelligence
(XAI): A Survey (Das and Rad, 2020)

– Peeking Inside the Black-Box: A Survey on Explainable Artificial Intel-
ligence (XAI) (Adadi and Berrada, 2018)

– Quantitative Evaluation of Machine Learning Explanations: A Human-
Grounded Benchmark (Mohseni et al., 2021a)

– Stop Explaining Black Box Machine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead (Rudin, 2019)

– The Disagreement Problem in Explainable Machine Learning: A Practi-
tioner’s Perspective (Krishna et al., 2022)

– The Mythos of Model Interpretability: In machine learning, the concept
of interpretability is both important and slippery (Lipton, 2018)

– The Who in Explainable AI: How AI Background Shapes Perceptions of
AI Explanations (Ehsan et al., 2021)
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– Towards A Rigorous Science of Interpretable Machine Learning (Doshi-
Velez and Kim, 2017)

– Towards Robust Interpretability with Self-Explaining Neural Networks
(Alvarez-Melis and Jaakkola, 2018)

– Who needs to know what, when?: Broadening the Explainable AI
(XAI) Design Space by Looking at Explanations Across the AI Lifecycle
(Dhanorkar et al., 2021)

– “Why Should I Trust You?”: Explaining the Predictions of Any Classifier
(Ribeiro et al., 2016)



C
Learning Computer Science in Portuguese

Learning Computer Science in Brazil, as Portuguese speakers, entails
delightful challenges all on their own, since there are so many terms that
students and professors alike find hard to translate from English, from where
they usually originate. When taking into account the fact that there is even
outright dissent among university faculties on whether students should be even
allowed to write programs using Portuguese, it becomes clear this state of
things has probably more implications than people want to let on.

Over the years it has become a fun obsession for the author of this
work to discover (and even propose) Portuguese translations for those terms
whose meaning seem the hardest to convey from other languages, especially
English, and even more so those that appear to be particularly stubborn in
their supposed ‘untranslatability’. Needless to say, this is as much a geopolitical
stance as it is one of facilitating the accrual and transmission of knowledge;
of, at the end of the day and most of all, fostering understanding. And if it
were the case of taking a stand on the matter of preferring the usage of terms
in English or in Portuguese, evidently our position would be that one should
learn both and use whichever communicates best at each occasion.

To that end, readers will find below the biggest culprits and proposed
translations for the most used terms during Computer Science teaching (and
probably also in the industry, from what we can tell so far). This list does
not aim to be authoritative, and purports to be a living construct, to which
contributions are more than welcome.

Table C.1: Translations to Portuguese

Original term Portuguese Translation

Angle brackets (< >) Parênteses angulares | Colchetes angulares

Accuracy Exatidão (para evitar Precisão, de Precision)

Affordances Habilitadores | Capacitadores

API (Application Programming
Interface)

Interface para programação (da aplicação)

Continued on next page
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Table C.1: Translations to Portuguese (Continued)

Array Arranjo | Vetor | Coleção homogênea

Assert Assegurar | Garantir | Asseverar

Assertion
Caução | Garantia (é comum ouvir Asserção,
aqui preferida para se traduzir Statement)

Assume Admitir | Assumir | Considerar

Backend Traseira | Fundos | Posterior | Retaguarda | Ré

Batch Lote

Benchmark Nivelamento | Comparação de desempenho

Broker Atravessador | Intermediário | Corretor

Buffer Armazenamento provisório | Reserva

Cluster Agrupamento | Agregação

Commit (verb and noun) Empenhar (to commit) | Empenho (a commit)

Deadlock Impasse

Deployment Lançamento (como de um foguete)

Deprecated Descontinuado | Obsoleto | Ultrapassado

Dispatcher Emissor | Despachante

Driver Condutor

Endpoint (Dispositivo) Terminal

Exploit (noun) Vulnerabilidade

Feature Característica | Propriedade

Fetch Obter

Fitness Aptidão

Framework Arcabouço

Frontend
Dianteira | Frente | Anterior | Vanguarda |
Vante

Fuzzy logic Lógica gradativa | Lógica nebulosa

Guardrail Salvaguarda

GUI (Graphical User Interface) Interface gráfica (do usuário)

Hack Macete

Hardware | Firmware | Software Artigos rígidos | firmes | flexíveis

Continued on next page
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Table C.1: Translations to Portuguese (Continued)

Hash (noun) Suma | Picadinho

IDE (Integrated Development
Environment)

Ambiente (integrado de desenvolvimento)

Kernel Cerne

Linter Papa-fiapos | Filtro de cotão

Look-ahead (verb, noun) Antever, o antevisto

Outlier Anômalo | Discrepante

Overfit Superajustar

Overhead Custo ou carga adicional | Ônus de operação

Owner (as in Data owner or
Product owner)

Titular | Proprietário

Padding Enchimento

Parser Analisador sintático

Pipeline Linha condutora | Duto

Production, In
Na produção (evita o ambíguo ‘em produção’)
| Em funcionamento

Prompt (as in Command) Indicador | Aceno | Sinal

Prompt (in Large Language
Models)

Prenúncio | Comando

Raise (as in ‘Raise an exception’) Sinalizar

Scaling Dimensionamento

Scheduler Planejador | Escalonador | Agendador

Singleton Filho único | Conjunto unitário

Starvation Inanição | Espera indefinida

Statement Afirmação | Asserção

Stemming Truncagem

String Cadeia | Corrente

Support Apoio | Aceitação | Atendimento (prestar)

Tail Fecho | Cauda

Thread Tarefa | Trecho (de código)

Continued on next page
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Table C.1: Translations to Portuguese (Continued)

Toy (as in ‘Toy example’ or ‘Toy
model’)

Lúdico

Trade-off Oposição | Solução de compromisso | Dilema

Trap Captura(r) | Interceptar | Interceptação

Transparent Imperceptível | Invisível*

Turnaround Conclusão (tempo para)

Type casting Coerção | Conversão | Moldagem de tipos

Walkthrough Passeio guiado

Wrangle (data) Manejar (dados)

* The same ambiguity happens in English, derived from the meaning of Trans-
parency in an organization’s matters, which refers to being open to public scrutiny.
Coincidentally, this is remarked upon by one phenomenal book on Operating Sys-
tems (Arpaci-Dusseau and Arpaci-Dusseau, 2018, p. 133 note 2).



D
Paralipomena

I do not say that artists cannot be seers, inspired: that
the awen cannot come upon them, and the god speak through
them. Who would be an artist if they did not believe that
that happens? If they did not know it happens, because they
have felt the god within them use their tongue, their hands?
Maybe only once, once in their lives. But once is enough.

Nor would I say that the artist alone is so burdened and
so privileged. The scientist is another who prepares, who
makes ready, working day and night, sleeping and awake,
for inspiration. As Pythagoras knew, the god may speak in
the forms of geometry as well as in the shapes of dreams;
in the harmony of pure thought as well as in the harmony
of sounds; in numbers as well as in words.

But it is words that make the trouble and confusion.
We are asked now to consider words as useful in only one
way: as signs. Our philosophers, some of them, would have
us agree that a word (sentence, statement) has value only in
so far as it has one single meaning, points to one fact that
is comprehensible to the rational intellect, logically sound,
and—ideally—quantifiable.

[...]
The artist deals with what cannot be said in words.
The artist whose medium is fiction does this in words.

The novelist says in words what cannot be said in words.

Ursula K. Le Guin,
The Left Hand of Darkness (1969)
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