
 

Saulo Custodio de Aquino Ferreira 

 

 

Proposals for the use of reanalysis bases 
for wind energy modeling in Brazil  

 

 

 
Tese de Doutorado 

 

Thesis presented to the Programa de Pós-Graduação 
em Engenharia de Produção of PUC-Rio in partial 
fulfillment of the requirements for the degree of Doutor 
em Engenharia de Produção. 

 
Advisor: Prof. Fernando Luiz Cyrino Oliveira 

Co-advisor: Prof. Paula Medina Maçaira Louro 

 

 
Rio de Janeiro 

May 2024 



 
 

 

Saulo Custodio de Aquino Ferreira 

 

Proposals for the use of reanalysis bases 
for wind energy modeling in Brazil  

Thesis presented to the Programa de Pós-Graduação em 
Engenharia de Produção of PUC-Rio in partial fulfillment of 
the requirements for the degree of Doutor em Engenharia de 
Produção. Approved by the Examination Committee: 

 
Prof. Fernando Luiz Cyrino Oliveira 

Advisor 
Departamento de Engenharia Industrial - PUC-Rio 

 

Prof. Paula Medina Maçaira Louro 
Co-advisor 

Departamento de Engenharia Industrial - PUC-Rio 
 

Prof. Reinaldo Castro Souza 
Departamento de Engenharia Industrial - PUC-Rio 

 

Prof. José Francisco Moreira Pessanha  
UERJ  

 

Prof. André Luís Marques Marcato 
UFJF 

 

Prof. Leonardo Willer de Oliveira  
UFJF  

 

Prof. Victor Eduardo Leite de Almeida Duca  
UFF  

 

Rio de Janeiro, May 9th, 2024 



 
 

 All rights reserved. 
 
 

 Saulo Custodio de Aquino Ferreira 

 
Bachelor’s in Production Engineering (2014) at 
Universidade Federal de Juiz de Fora (UFJF). Master’s in 
Electrical Engineering with an emphasis on Power Systems 
(2017) at UFJF. During his PhD he worked on several 
consultancy and R&D projects for the electricity market.  
 
 

  
Bibliographic Data 

 Ferreira, Saulo Custodio de Aquino 
 
      Proposals for the use of reanalysis bases for wind 
energy modeling in Brazil / Saulo Custodio de Aquino 
Ferreira ; advisor: Fernando Luiz Cyrino Oliveira ; co-
advisor: Paula Medina Maçaira Louro. – 2024. 
      88 f. : il. color. ; 30 cm 
       
      Tese (doutorado)–Pontifícia Universidade Católica do 
Rio de Janeiro, Departamento de Engenharia Industrial, 
2024. 
      Inclui bibliografia 
        
      1. Engenharia Industrial – Teses. 2. Base de dados de 
reanálise. 3. Velocidade do vento. 4. Geração eólica. 5. 
Correção de viés. 6. Simulação. I. Oliveira, Fernando Luiz 
Cyrino. II. Louro, Paula Medina Maçaira. III. Pontifícia 
Universidade Católica do Rio de Janeiro. Departamento de 
Engenharia Industrial. IV. Título. 

CDD: 658.5 



 
 

Acknowledgments 

 

 

 
First, I would like to thank God for this achievement. Thank you for leading me on 

the path of good, for giving me strength and wisdom, and for helping me overcome 

all the obstacles I encountered during my PhD. 

I thank my entire family, especially my parents, Sandra Maria de Aquino Ferreira 

and Sebastião Custodio Ferreira Filho, and my sister, Sandra Carolina de Aquino 

Ferreira, who were always by my side, supporting me, encouraging me, and not 

letting me give up on times more difficult. 

I sincerely thank my supervisors, Prof. Fernando Luiz Cyrino Oliveira and Prof. 

Paula Medina Maçaira Louro, for their teachings and encouragement throughout 

my work. 

To anyone who in any way contributed to my journey. 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal 

de Nível Superior - Brasil (CAPES) - Finance Code 001. 

 

 

 
 
 
 
 
 



 
 

Abstract 
 
Ferreira, Saulo Custodio de Aquino; Oliveira, Fernando Luiz Cyrino (Advisor). 
Louro, Paula Medina Maçaira (Co-advisor). Proposals for the use of reanalysis 
bases for wind energy modeling in Brazil. Rio de Janeiro, 2024. 88p. Tese de 
Doutorado – Departamento de Engenharia Industrial, Pontifícia Universidade 
Católica do Rio de Janeiro. 

 

Brazil's energy landscape has historically relied heavily on renewable sources, 

notably hydropower, with wind energy emerging as a significant contributor in recent 

years. Understanding and harnessing the potential of wind energy necessitates robust 

modeling of its behavior. However, obtaining comprehensive wind speed and generation 

data, particularly in specific locations of interest, remains a challenge. In the absence of 

wind speed data, an alternative is to use data from a reanalysis database. They provide 

long histories of data on climatic and atmospheric variables for different parts of the world, 

free of charge. Therefore, the first contribution of this work focused on verifying the 

representativeness of wind speed data made available by MERRA-2 in Brazilian territory. 

Following literature recommendations, interpolation, extrapolation, and bias correction 

techniques were used to improve the adequacy of the speeds provided by the reanalysis 

based on those that occur at the height of the wind farm turbine rotors. In a second 

contribution, MERRA-2 data was combined with power measured in Brazilian wind farms 

to model in a stochastic and non-parametric way the relationship between speed and power 

in wind turbines. For this purpose, clustering, density curve estimation, and simulation 

techniques were used. Finally, the research culminates in the development of an 

application within the Shiny environment, offering a user-friendly platform to access and 

apply the methodologies devised in the preceding analyses. By making these 

methodologies readily accessible, the application facilitates broader engagement and 

utilization within the research community and industry practitioners alike. 

Keywords 
Reanalysis dataset; Wind speed; Wind power; Bias correction; Non-parametric 

estimation; Simulation. 

 



 
 

Resumo 
Ferreira, Saulo Custodio de Aquino; Oliveira, Fernando Luiz Cyrino (Orientador); 
Louro, Paula Medina Maçaira (Co-orientadora). Propostas do uso de bases de 
reanálise para modelagem de energia eólica no Brasil. Rio de Janeiro, 2024. 88p. 
Tese de Doutorado – Departamento de Engenharia Industrial, Pontifícia 
Universidade Católica do Rio de Janeiro. 
 

O Brasil sempre foi um país que teve sua matriz elétrica pautada majoritariamente 

em fontes renováveis, mais especificamente na hídrica. Com passar dos anos, esta tem se 

diversificado e demonstrado uma maior participação da fonte eólica. Para melhor explorá-

la, pesquisas visando modelar seu comportamento são essenciais. Entretanto, não é 

sempre que se tem dados de velocidade do vento e de geração eólica disponíveis em 

quantidade e nas localidades de interesse. Esses dados são primordiais para identificar 

potenciais locais de instalação de parques eólicos, melhorar o desempenho dos existentes 

e estimular pesquisas de previsão e simulação da geração eólica que são entradas para 

auxiliar na melhor performance do planejamento e da operação do setor elétrico 

brasileiro. Na carência de dados de velocidade do vento, uma alternativa é o uso de dados 

vindos de base de reanálises. Elas disponibilizam longos históricos de dados de variáveis 

climáticas e atmosféricas para diversos pontos do globo terrestre e de forma gratuita. 

Desta forma, a primeira contribuição deste trabalho teve como foco a verificação da 

representatividade dos dados de velocidade do vento, disponibilizados pelo MERRA-2, 

no território brasileiro. Seguindo as recomendações da literatura, utilizou-se técnicas de 

interpolação, extrapolação e correção de viés para melhorar a adequação as velocidades 

fornecidas pela base de reanalise as que acontecem na altura dos rotores das turbinas dos 

parques eólicos. Em uma segunda contribuição combinou-se os dados do MERRA-2 com 

os de potência medidas em parques eólicos brasileiros para modelar de modo estocástico 

e não paramétrico a relação existente entre a velocidade e potência nas turbinas eólicas.  

Para isto utilizou-se as técnicas de clusterização, estimação das curvas de densidade e 

simulação. Por fim, em uma terceira contribuição, desenvolveu-se um aplicativo, no 

ambiente shiny, para disponibilizar as metodologias desenvolvidas nas duas primeiras 

contribuições. 

Palavras-chave 
Dados de base de reanálise; Velocidade do vento; Geração eólica; Correção de viés; 

Estimação não paramétrica; Simulação. 
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1 
Introduction 
 
 
 

In recent decades, the impact of climate change caused by fossil fuels and 
growing concern about the limitations of these resources have motivated research 
into alternative energy sources. Energy from renewable sources has become an 
option that is not only ecologically correct but also economically viable to meet 
global energy demand (DE ASSIS TAVARES et al., 2020; DUCA; FONSECA; 
CYRINO OLIVEIRA, 2023; FREITAS et al., 2020). 

According to data from the International Renewable Energy Agency 
(IRENA, 2023), in 2021, 7,858.2 TWh were generated worldwide from renewable 
sources, an increase of 5.4% compared to the previous year, which generated 7,456. 
1 TWh. As shown in Table 1.1, this increase has occurred over time, mainly due to 
the expansion of the installed capacity of these sources. In the years evaluated, it 
was also noted that China, the United States, and Brazil are the countries with the 
largest installed capacities and renewable energy production, with Brazil being third 
on this scale.    

Table 1.1 Renewable energy scenario in recent years.  
Capacity installed (MW) 
 2019 2020 2021 2022 
World 2.543.377,9 2.813.159,2 3.077.238,3 3.371.792,6 
China 789.134,0 929.944,7 1.056.624,2 1.206.588,9 
United States 282.844,8 312.655,1 345.401,3 370.963,7 
Brazil 144.574,6 150.493,1 161.135,9 175.261,9 
Power (GWh) 
 2019 2020 2021 2022 
World 6.994.749,0 7.456.090,0 7.858.208,0 - 
China 2.017.941,2 2.183.034,4 2.444.538,0 - 
United States 787.805,9 848.459,9 886.891,6 - 
Brazil 515.479,5 522.981,6 507.666,6 - 

 
Brazil presents a growing investment and expansion of renewable sources 

in order to follow the global trend. The share of renewable energies (biomass, wind, 
hydro, solar, and undielectric) in the Brazilian electrical matrix is significantly more 
significant than the global matrix. While in Brazil, renewable sources represent 
83.68%, in the world, it is only 28.60% (EPE, 2023; SIGA ANEEL, 2023). After 
the 2001 energy crisis, Brazil had a great incentive to diversify its electrical matrix. 
The current composition of the Brazilian matrix is presented in Figure 1.1, where 
the growing contribution of wind, solar, and biomass generations is noted (EPE, 
2023; SIGA ANEEL, 2023).  
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Figure 1.1 Brazilian Electrical Matrix. 

Wind generation is produced through the passage of wind through turbines, 
and the amount of energy generated is proportional to wind speed, weather 
conditions, and the time of day and year. It has two production modes: onshore, 
which uses turbines installed on land, and offshore, where the turbines are installed 
on the high seas. Brazil has great potential for exploiting wind energy in both forms, 
mainly in the Northeast region. Another relevant point of this source about Brazil 
is that in periods of low reservoir levels, it has its maximum potential, thus enabling 
seasonal complementarity when combined with the water regime (DUCA; 
FONSECA; CYRINO OLIVEIRA, 2023; LINS et al., 2023). 

Figures 1.2 and 1.3 show the evolution of wind generation and its installed 
capacity, respectively, over the years and the leading nations exploiting this source. 
Brazil is the fourth largest producer of wind energy, rising two positions compared 
to the last two years. Regarding its installed capacity, we are the seventh largest 
nation, higher than in 2019 and 2020. This demonstrates Brazil's great potential for 
wind generation, as even with less installed capacity than other nations, we generate 
more wind energy (IRENA, 2023).    

 
Figure 1.2 Largest wind generations from 2019 to 2021. 
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Figure 1.3 Largest installed wind capacity from 2019 to 2022. 

The diversification of the electrical matrix combined with the incredible 
insertion of renewable sources imposes more significant challenges for the planning 
and operation of the electrical sector due to the natural variability of these sources. 
In an attempt to mitigate these challenges, studies on the stochastic characteristics 
of sources and their inputs in the territory are essential to allow an understanding of 
their variability and natural peculiarities, thus enabling reliable and realistic 
projections of renewable energy generation, which are extremely important for 
planning to meet demands and costs (MAÇAIRA et al., 2019; PERINI DE SOUZA 
et al., 2022a). 

Based on this scenario, this research attempts to minimize the challenges of 
wind generation by developing a methodology that improves wind power 
estimation from turbines. The main strategies adopted are deterministic and 
parametric; they do not consider that a particular wind speed value can generate 
different powers (CARRILLO et al., 2013). Whether at different times for the same 
turbine or the same instant in different turbines but of the same model and spatial 
region (AL‐QURAAN et al., 2022; DE AQUINO FERREIRA; CYRINO 
OLIVEIRA; MAÇAIRA, 2022).  

Extensive historical measurements of variables linked to intermittent 
sources are necessary to carry out these studies. However, the availability of these 
data is often insufficient, resulting in the need to search for alternatives, such as 
reanalysis data (ESTEVES et al., 2019).  

The availability and suitability of these variables at different temporal and 
spatial scales are essential for developing products that feed the various Brazilian 
energy optimization models, such as NEWAVE, DECOMP, and DESSEM 
(MAÇAIRA et al., 2019). 

Once these limitations are overcome, research involving the prediction and 
simulation of wind generation becomes viable. These products serve as the basis 
for correct management of the Brazilian electricity sector, guiding the best choices 
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for expanding and operating the existing structure (AL-DUAIS; AL-SHARPI, 
2023; AL‐QURAAN et al., 2022; WORTON, 1995).    

This work is divided into five chapters. This introduction describes our 
motivations for developing this study and explains the theme's relevance. The 
second section is the first product of this PhD, the paper article published in the 
Energy Journal that deals with validating the MERRA-2 wind speed time series for 
the territory of Brazil. The third section is the second essay research on developing 
a non-parametric methodology to estimate wind power from wind speed. It is also 
intended to be published in Energy Journal (currently submitted). The fourth 
chapter culminates in the development of an application within the Shiny 
environment, offering a user-friendly platform to access and apply the 
methodologies devised in the preceding analyses. Finally, the fifth section presents 
our final considerations.



2 
First Contribution: Validation of the representativeness of 
wind speed time series obtained from reanalysis data for 
Brazilian territory 

 

This chapter is based on the first contribution of this thesis, already published in the 
Energy journal. See  https://doi.org/10.1016/j.energy.2022.124746 

 

2.1 
Abstract 

In recent years, consideration of reanalysis data has gained space and 
importance globally as a promising alternative for climate studies that suffer from 
an absence or scarcity of data. Wind speed time series can be obtained from these 
bases for various purposes, such as inferring the potential of sites for wind power 
generation. These projections can be useful to analyze the feasibility of building 
new wind farms and the formation of historical series of wind power generation to 
enable better planning for existing facilities. Therefore, reliable wind speed time 
series is essential to obtain accurate projections. The reanalysis databases are 
characterized for having extended historical series. On the other hand, one of their 
drawbacks is the arrangement of data in a grid with low spatial resolution, so not 
cover all points on the Earth's surface. This study aims to verify whether the wind 
speed time series of the MERRA-2 dataset can represent the values at points in 
Brazilian territory. For this purpose, we examine the use of strategies for 
interpolation, extrapolation, and bias correction to overcome these limits and obtain 
time series that better approximate the most probable values, as suggested in the 
specialized literature. The results are compared with historic series recorded in 
Brazil to evaluate the method's applicability and indicate whether the data extracted 
from MERRA-2, after treatment, provide a relevant representation. This study 
contributes to the literature by (i) measuring the quality of MERRA-2 data to 
represent high spatial resolution locations in Brazil, (ii) evaluating the impacts of 
the natural variability of these wind speed series on the results, (iii) describing new 
bias correction approaches, (iv) verifying the impact of the temporal and spatial 
scales utilized on the results, and (v) assessing the results by comparing wind 
speeds. 

 

 

2.2 
Introduction 

In recent years, the Brazilian electricity mix has diversified, with increased 
participation of renewable sources. In particular, wind generation has grown 
significantly, especially in the Northeast region. Currently, it is responsible for 
10.7% of the installed capacity in the country, which represents 17.82 MW per 

https://doi.org/10.1016/j.energy.2022.124746
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month. In 2020, wind power amounted to 56.99 GWh, corresponding to 9.80% of 
Brazil's generation (ONS, 2021). 

This greater inclusion of renewable sources brings significant challenges for 
the planning and operation of the Brazilian electricity system due to the stochastic 
nature of the sources. In this sense, reliable time series of renewable energy 
generation is of great importance to determine the needs and costs of operation, 
since they allow understanding the variability and peculiarities of each source in 
each production unit (GONZÁLEZ-APARICIO et al., 2017; HAYES; STOCKS; 
BLAKERS, 2021). 

The generation time series comes from the data measured at power plants. 
However, these direct measurements are not always available for all locations. 
Furthermore, in many cases the length of the time series is limited, and the data are 
incomplete or contain measurement errors. Feasibility studies of new wind farms 
also require generation projections at candidate's sites based on reliable data. In 
their absence, they can be constructed synthetically from reanalysis data. 
Reanalysis databases have become a promising alternative for estimating 
generation due to data availability for almost the entire Earth surface, with a long 
data history. Among several available options, these data also include time series 
of wind speed, the primary input to estimate wind generation (GONZÁLEZ-
APARICIO et al., 2017; GRUBER et al., 2019). 

Currently, the main datasets are the Modern-Era Retrospective analysis for 
Research and Applications dataset version 2 (MERRA-2) (GELARO et al., 2017), 
an evolution of the Modern-Era Retrospective analysis for Research and 
Applications (MERRA) dataset provided by National Aeronautics and Space 
Administration (NASA), and ERA5, the fifth version of the European Centre for 
Medium-Range Weather Forecasts (ECMWF) dataset (GRUBER et al., 2019). 
MERRA-2 is one of the most widely used reanalysis datasets in the literature to 
obtain wind speed time series (GRUBER et al., 2019; OLAUSON; BERGKVIST, 
2015). However, it has some disadvantages that we intend to overcome in this study. 
Wind speed data are available at three different heights (2, 10, and 50 m), but the 
speed contributing to wind generation is at the turbine height, frequently at 100 m 
(GELARO et al., 2017). In these reanalysis databases, the data are only available in 
discrete intervals of space and time, with a spatial resolution of approximately 50 
km between the points, which can cause regional bias (GRUBER; SCHMIDT, 
2019). In general, the reanalysis data have two sources of errors: a systematic one, 
due to the nature of the physical assimilation model used; and a random one, arising 
from the local characteristics of the terrain (NEFABAS et al., 2021). To overcome 
these limitations, previous studies have combined strategies such as interpolation 
(BOSCH; STAFFELL; HAWKES, 2018; CRADDEN et al., 2017; GRUBER; 
SCHMIDT, 2019; NEFABAS et al., 2021; RYBERG et al., 2019; STAFFELL; 
GREEN, 2014; STAFFELL; PFENNINGER, 2016), extrapolation (GRUBER et 
al., 2019; GUALTIERI, 2021; NEFABAS et al., 2021; RYBERG et al., 2019) and 
bias correction (BOSCH; STAFFELL; HAWKES, 2018; GRUBER et al., 2019, 
2021; GRUBER; SCHMIDT, 2019; NEFABAS et al., 2021; RYBERG et al., 2019; 
STAFFELL; PFENNINGER, 2016). 

There is usually no coincidence between the point of the reanalysis grid and 
the location under study. Therefore, the interpolation strategy is a way to overcome 
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this problem. Among the main interpolation techniques applied are bilinear 
interpolation (BOSCH; STAFFELL; HAWKES, 2018; CRADDEN et al., 2017; 
NEFABAS et al., 2021; RYBERG et al., 2019), nearest-neighbor (BRUNE; 
KELLER; WAHL, 2021; GRUBER et al., 2021; GRUBER; SCHMIDT, 2019; 
SHERIDAN et al., 2022; STAFFELL; PFENNINGER, 2016), cubic-spline 
interpolation (MURCIA et al., 2022), distance weighting (SHERIDAN et al., 2022) 
and locally estimated scatterplot smoothing (LOESS) (STAFFELL; GREEN, 2014; 
STAFFELL; PFENNINGER, 2016). Gruber et al. (2019) investigated the possible 
impacts of different interpolation methods. They concluded that the results were 
similar and recommended using the nearest neighbor technique because it requires 
less computational effort. 

Extrapolation consists of adapting the value of wind speed to the value 
corresponding to the height of the wind turbine rotor. The Hellman power law is 
the wind speed extrapolation approach that has recently achieved the best results 
and greatest use (GRUBER et al., 2021; GUALTIERI, 2021; MURCIA et al., 2022; 
NEFABAS et al., 2021; SHERIDAN et al., 2022). 

Bias correction is an alternative to minimize the remaining deviation 
between real and estimated wind speeds. Previous studies have used other data 
sources that have higher spatial resolutions for correction, such as the Global Wind 
Atlas (GWA) (BOSCH; STAFFELL; HAWKES, 2018; GRUBER et al., 2019; 
RYBERG et al., 2019), local country databases (GRUBER et al., 2019), and 
historical data from power plants (STAFFELL; PFENNINGER, 2016). This bias 
correction can be achieved by applying a factor that corrects the mean of the time 
series (GRUBER; SCHMIDT, 2019; MURCIA et al., 2022) or by a statistical scale 
reduction (GONZÁLEZ-APARICIO et al., 2017; NEFABAS et al., 2021). 

Studies typically convert wind speed time series into wind generation series 
to measure capacity factors of regions (GUALTIERI, 2021; PRYOR; LETSON; 
BARTHELMIE, 2020; SHERIDAN et al., 2022), or to compare them with 
historical generation data, when available (GRUBER et al., 2019; NEFABAS et al., 
2021), to evaluate the quality of the wind speed time series of the reanalysis bases 
and the strategies applied to them. The wind speed to wind power conversion occurs 
through the application of generic curves (GRUBER et al., 2021; RYBERG et al., 
2019), or specific power curves of turbines in the wind farms under study 
(NEFABAS et al., 2021). In recent years, several studies have evaluated the wind 
speed time series of the reanalysis bases through comparison with measured data 
from meteorological stations (BRUNE; KELLER; WAHL, 2021; GUALTIERI, 
2021; MOLINA; GUTIÉRREZ; SÁNCHEZ, 2021; PRYOR; LETSON; 
BARTHELMIE, 2020; RABBANI; ZEESHAN, 2020; SHERIDAN et al., 2022) or 
for wind turbines (BRUNE; KELLER; WAHL, 2021; MURCIA et al., 2022). 
However, these works focus more on European countries (BRUNE; KELLER; 
WAHL, 2021; GUALTIERI, 2021; JOURDIER, 2020; MOLINA; GUTIÉRREZ; 
SÁNCHEZ, 2021; MURCIA et al., 2022), the United States of America (USA) 
(GUALTIERI, 2021; SHERIDAN et al., 2022), and other countries (JIANG et al., 
2021; RABBANI; ZEESHAN, 2020; REN et al., 2019) that have policies to 
encourage the measurement and availability of wind speed data, unlike Brazil. 

The main evaluation metrics used in these works comparing data are 
Pearson correlation (BRUNE; KELLER; WAHL, 2021; CRADDEN et al., 2017; 
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GRUBER et al., 2019; GUALTIERI, 2021; KHATIBI; KRAUTER, 2021), root 
mean squared error (RMSE) (BRUNE; KELLER; WAHL, 2021; CRADDEN et al., 
2017; KHATIBI; KRAUTER, 2021; NEFABAS et al., 2021; OLAUSON, 2018; 
RABBANI; ZEESHAN, 2020), mean bias error (MBE) (GRUBER et al., 2019; 
JIANG et al., 2021; MURCIA et al., 2022; RABBANI; ZEESHAN, 2020), mean 
absolute error (MAE) (KHATIBI; KRAUTER, 2021; NEFABAS et al., 2021; REN 
et al., 2019; SHERIDAN et al., 2022), descriptive statistics (GUALTIERI, 2021; 
MURCIA et al., 2022), curves (BRUNE; KELLER; WAHL, 2021; MURCIA et al., 
2022) and parameters of the Weibull distribution (RABBANI; ZEESHAN, 2020). 

There is a prevalence of studies that contemplate larger scales, both spatial 
(continents, countries, and regions) and temporal (year, quarter, month, and day) 
(OLAUSON; BERGKVIST, 2015; STAFFELL; PFENNINGER, 2016). Most 
studies have been carried out for the European continent or its countries (BRUNE; 
KELLER; WAHL, 2021; CRADDEN et al., 2017; GUALTIERI, 2021; 
JOURDIER, 2020; KHATIBI; KRAUTER, 2021; MOLINA; GUTIÉRREZ; 
SÁNCHEZ, 2021; MURCIA et al., 2022; OLAUSON, 2018; OLAUSON; 
BERGKVIST, 2015; RYBERG et al., 2019). There are also studies related to the 
USA (GUALTIERI, 2021; KHATIBI; KRAUTER, 2021; OLAUSON, 2018; 
PRYOR; LETSON; BARTHELMIE, 2020; SHERIDAN et al., 2022) and China 
(JIANG et al., 2021; REN et al., 2019), in addition to preliminary studies in Brazil 
(GRUBER et al., 2019), South Africa (GRUBER et al., 2021; GUALTIERI, 2021), 
New Zealand (GRUBER et al., 2021), Pakistan (RABBANI; ZEESHAN, 2020), 
Iran (GUALTIERI, 2021; KHATIBI; KRAUTER, 2021), Australia (GUALTIERI, 
2021; KHATIBI; KRAUTER, 2021) and Ethiopia (NEFABAS et al., 2021). Thus, 
there is an opportunity to expand these studies to other locations and explore smaller 
scales, both temporal and spatial. 

The present study is focused on Brazil, since we only identified preliminary 
works (GRUBER et al., 2019, 2021; GRUBER; SCHMIDT, 2019) evaluating the 
application of reanalysis data. The focus and conclusions of these articles mainly 
involve validation of the applicability of reanalysis data in places with a low spatial 
resolution (countries, regions, states). In this respect, Gruber & Schmidt (2019) 
evaluated the use of ERA5 data for Austria and Brazil, while Gruber et al. (2021) 
covered Brazil, USA, New Zealand, and South Africa. Gruber et al. (2019) was the 
only one using MERRA-2 data, exclusively evaluating Brazil, with the analyses 
and conclusions pertaining to the level of regions and states. In particular Gruber et 
al. (2021), began by evaluating data from MERRA-2 and ERA5, but when finding 
better performance of ERA5, the rest of the article relied only on data from that 
source. However, a considerable portion of the results indicated better performance 
of MERRA-2 data for Brazil (between 25% and 50%) as well as better performance 
of MERRA-2 in New Zealand in most cases. Brazil has a large landmass and great 
regional climate differences, which hampers reaching consensus conclusions about 
the country. Against this backdrop, the general aim of this article is to provide 
continuity to these previous studies and further exploring the MERRA-2 data. 

The main objective of this article is to verify if the MERRA-2 wind speed 
time series can satisfactorily represent the historical wind speed time series 
measured at points in Brazilian territory. This better adjustment of the time series 
is investigated using interpolation, extrapolation, and bias correction alternatives. 
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In addition, we analyze the consequences of these results in different temporal and 
spatial scales. 

The present study contributes to the literature by giving continuity to the 
process of validating the MERRA-2 data at greater spatial resolution (turbines and 
wind farms) in Brazil. In the Brazilian context, the article innovates by determining 
the quality of the reanalysis time series in Brazilian territory, by comparison with 
the wind speed time series. Most studies have measured the quality of the MERRA-
2 time series by comparing simulated generation and observed generation. The 
problem is that during this process of transforming wind speed into wind power, 
many sources of uncertainty are included due to the conversion method and its 
parameters. These facts impair the quality of the generation time series built and 
the results of evaluating the MERRA-2 data. Another innovation of this study is a 
more detailed analysis of the MERRA-2 wind speed time series’ variability. The 
historical time series of different turbines in the same wind farm can present 
different behaviors due to the stochastic nature of the random variable, wind speed. 
In this study, these time series are represented by the same wind speed time series 
obtained from the reanalysis data, thus making it possible to measure the deviation 
between the historical and MERRA-2 datasets and the natural variation of the 
process. This enables ascertaining how much the metrics for evaluation of 
MERRA-2 data can vary due to the natural randomness of wind speed data. 

We also make several other contributions. First, we present a new bias 
correction approach for time frames and analyze its performance. Second, we 
examine the impacts of the representativeness of the MERRA-2 reanalysis time 
series when they are temporally and spatially aggregated, comparing the findings 
with those using other data, a novel analysis. Finally, we propose an innovative 
methodological approach for aggregation. 

This first contribution is divided into five sections. The first part describes 
our motivations, explains the relevance, and summarizes the relevant literature. The 
second section details and supports the methodology for adapting the reanalysis 
data and the respective treatment possibilities. The third section reports the results 
obtained by evaluating the time series created through the metrics proposed in the 
methodology, and the fourth section discusses them. Finally, the fifth section 
presents our final considerations and proposals for future work. 

 

2.3 
Data and methodology 

As explained in the Introduction, the main objective of this study is to verify 
whether it is appropriate to use the wind speed time series from the MERRA-2 
database for Brazilian territory. The method applied to achieve this goal is shown 
in Figure 2.1 and has seven main steps. These steps are detailed in subsections 2.3.1 
to 2.3.7. The idea underpinning this method is for it to be sufficiently general to 
generate wind speed time series applicable anywhere in Brazilian territory, with the 
use of only data in the public domain, while guaranteeing its replicability. Our only 
use of private data was for validation of the method. 
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Figure 2.1 Overview of the methods used. 

2.3.1 
Obtaining reanalysis data 

This study uses MERRA-2, which is a global atmospheric reanalysis dataset 
produced by NASA, more specifically by the Global Modeling and Assimilation 
Office (GMAO), with historical data series produced with the Goddard Earth 
Observing System Model (GEOS), which is fed with information collected by 
NASA satellites. The GEOS model is composed of physical models that are flexibly 
related to represent several aspects related to earth sciences (GMAO, 2021). 

MERRA-2 provides free historical series of several climatic and 
atmospheric conditions, which can be downloaded directly from the NASA 
Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (GES 
DISC, 2021). However, the data are available in the NetCDF (Network Common 
Data Form) format, which requires specific software for manipulation. Alternative 
scripting programming languages, such as R and Python, available from several 
works on reanalysis data, allowed us to download and manipulate the data from 
MERRA-2. The R scripts used by us are the same ones used in Gruber et al. (2019) 
and are available at GitHub (Supplementary Material). 

The MERRA-2 dataset used was “MERRA-2 tavg1_2d_slv_Nx”, which 
consists of single-level diagnostics, assimilation, two-dimensional data, and hourly 
time-averaged data (GRUBER et al., 2019, 2021; OLAUSON, 2018). These data 
have been available since 1980 and are updated monthly with hourly resolution. 
The spatial resolution is approximately 50 km between the points since the data are 
available in a grid varying by 0.625° in longitude and 0.5° in latitude. The variables 
selected for this study were the latitudes and longitudes of the MERRA-2 grid 
points over Brazilian territory with their respective wind speed time series in u and 
v directions at two different heights (10 m and 50 m), as well as the displacement 
height (DISPH) (GMAO, 2021). 

All elements present on the earth's surface, whether natural or not, can cause 
some perturbation to the wind profile of these locations, and these terrain 
peculiarities are addressed in the physical model when the wind speed series at 
different heights are projected. To represent the impact of terrain conditions on the 
log wind profile, the MERRA-2 base provides for each point of the grid the DISPH 
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variable, which is an additive correction factor at heights of 2 and 10 m to be applied 
in the extrapolation process of the MERRA-2 wind speed series (GMAO, 2021). 

2.3.2 
Identifying wind turbines 
Brazil is a mainly tropical country with large territorial extension and a long 
coastline. It has a favorable climate, including steady trade winds (constant speed 
regimes, ideal for power generation), mainly in the Northeast region. All these 
characteristics serve as an incentive for exploring onshore and offshore wind 
generation (PERINI DE SOUZA et al., 2022b, 2022a). Currently, Brazil has 812 
wind farms in operation, of which 87.3% are located in the Northeast region. Bahia 
state (BA), with 227 wind farms, has the largest number, followed by Rio Grande 
do Norte (RN) with 216 wind farms. The installed wind generation capacity is 21.8 
GW, of which 90.2% is located in the Northeast region, 9.7% in the South region 
and the rest in the Southeast region. Figure 2.2 presents Brazil's geographic 
dispersion of installed capacity by state through the blue color scale. There is a 
greater concentration in RN (30.5%) followed closely by the BA (27.6%) (SIGA 
ANEEL, 2023). 

 
Figure 2.2 Brazilian territory and installed wind power capacity. 

To validate the wind speed time series based on reanalysis data, we 
compared them with wind speed data measured at turbines. Therefore, we needed 
to find wind farm operators willing to share such data, namely (i) the wind speed 
time series measured at turbines and their respective time horizon, (ii) the wind 
farms’ geographic locations, and (iii) height of the wind turbine rotor from the 
ground. 
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Through a confidentiality agreement, an operator of wind farms provided 
24 wind speed time series obtained from two wind farms in Bahia, 12 from each 
one. These referred to 2017, with measurements recorded every 10 min at a height 
of 99.5 m, corresponding to the height of the turbines (2017/01/01 00:00:00 to 
2017/12/31 23:50:00). 

2.3.3 
Data treatment 

We used wind speed time series from different bases, with the possibility of 
measurement errors and missing and/or inconsistent data. Therefore, it was 
necessary to carry out a step involving preprocessing and validation of these time 
series. 

All the datasets were evaluated for possible missing data and speeds below 
zero or above 25 m/s, which were disregarded. The MERRA-2 dataset has already 
been validated, so no treatment was necessary. The database used in the validation 
did not present any velocity values below zero but did contain 0.53% of values 
greater than 25 m/s and missing values of 1.98%. This base is formed by 24 time 
series with daily wind speed at 10-min intervals for a period of one year, in which 
the number of velocity readings faster than 25 m/s varied between 0.41% and 0.54% 
and the percentages of missing data ranged from 0.31% to 4.45%, except for one 
turbine, for which the figure was 12.53%. To build the validation time series with 
lower resolutions we calculated the average wind speeds among the readings 
available over the horizon examined, disregarding the invalid data. For example, 
each hourly time series was formed by taking the average of the six readings in the 
hour in question, or if there were invalid data, the average was calculated with the 
number of valid readings, and if all were absent, the situation was classified as 
missing data. 

Figure 2.3, Figure 2.4, Figure 2.5 present some of these wind speed time 
series measured at the turbines, where some variations can be noted even in the case 
of series belonging to the same region. Figure 2.3 presents three density curves 
plotted with data from different turbines: the first curve has three modes, the second 
has one mode, and the third curve has two modes. Besides this, the principal mode 
occurs with distinct values among the curves. 

 

 
Figure 2.3 Density curves of wind speed data measured at the turbines. 
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Figure 2.4 Monthly boxplot of wind speed data measured at the turbines. 

 
Figure 2.5 Hourly boxplot of wind speed data measured at the turbines. 

Figure 2.4, Figure 2.5 present the boxplots of the wind speed data measured 
at the turbines on a monthly and hourly basis, respectively. These graphs allow 
visualizing the dispersion of the data in different time frames and the seasonal 
movement according to the medians and quantiles. Comparison of the data from 
different turbines does not show large differences in the dispersion of the data for a 
single time frame, while it does show the repeated seasonal movement of the 
medians among the months. However, regarding the medians among the hours, 
some differences can be noted in the behavior, mainly among the readings at the 
hours 8, 9, 10, 21, 22, and 23. Based on this statistical description of the data from 
the turbines, we were able to map the different profiles present in this database and 
verify how this could impact the results. 

For bias correction, we used the GWA and the base of Brazil's National 
Institute of Meteorology (INMET). The GWA supplies mean wind speeds. All the 
readings were available and had values between 0 and 25 m/s. INMET makes 
available hourly wind speed time series for its anemometer stations, and no readings 
were below zero or above 25 m/s. However, there were some cases of missing data, 
which we disregarded in calculating the correction factors of the time series. 

2.3.4 
Interpolation 
In the interpolation step, the MERRA-2 grid points were associated with the 
turbines' geographic locations to build a history of the variables relevant to the 
study. The interpolation technique used was the nearest neighbor, as recommended 
by Gruber et al. (2019). It consists of associating the location of the wind turbine 
with the nearest point on the MERRA-2 grid, as demonstrated in Figure 2.6. 
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Figure 2.6 Nearest neighbor interpolation. 

2.3.5 
Extrapolation 
Wind speed is an atmospheric characteristic that varies according to altitude. The 
wind speed tends to increase with altitude for the same territory and under the same 
conditions (NEFABAS et al., 2021). Consequently, depending on the height of a 
wind turbines rotor, it will be subject to a different speed, which causes different 
energy generation levels. Therefore, it is crucial to identify the hub height of the 
studied turbines for the correct estimation of the wind speed (STAFFELL; 
PFENNINGER, 2016). 

The extrapolation adjusts the wind speeds provided in the MERRA-2 
dataset at heights of 10 and 50 m to the height of the turbine rotor. The increase in 
speed according to height is exponential rather than linear. Thus, this adjustment 
can be performed by the Hellman power law, which is expressed in Equation 1. The 
exponent α is dimensionless and represents the characteristics relevant to the 
environment (GRUBER et al., 2021). 

𝑉𝑉(ℎ1) = 𝑉𝑉(ℎ2). �
ℎ1
ℎ2
�
𝛼𝛼

 (1) 

 
Where: 

𝑉𝑉(ℎ𝑖𝑖) is the MERRA-2 wind speed at height ℎ𝑖𝑖,  
ℎ𝑖𝑖 is the height of MERRA-2 wind speed, and. 
α is the local power exponente. 

Thus, the steps of the extrapolation stage are: 

1 – Calculate effective wind speeds at 10 and 50 m from their respective 
components in u and v direction (REN et al., 2019). 

2 – Calculate the exponents α through Equation 1 using the height of 50 m and its 
corresponding effective speed and the height of 10 m plus the DISPH and the 
associated effective speed. In the MERRA-2 reanalysis data, the wind speeds that 
correspond to the heights of 2 and 10 m refer to these heights plus the DISPH. This 
is necessary to correct the log wind profile, which changes at lower heights due to 
the peculiarities of the relief of each region (GMAO, 2021). 
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3 – Calculate extrapolated wind speeds for the turbine rotor height through Equation 
1, using the calculated α exponents and the height of 50 m and their respective 
effective speeds. 

2.3.6 
Bias correction 

This study uses two datasets as an alternative to correct bias. The approach 
adopted is correction based on the time series average (GRUBER et al., 2019), 
described below. 

2.3.6.1 
The Global Wind Atlas 

The GWA is a free web-based application. It is designed to help 
policymakers, planners, and investors to identify areas suitable for wind power 
generation virtually anywhere globally. It is the result of a partnership between the 
Department of Wind Energy of the Technical University of Denmark (DTU Wind 
Energy) and the World Bank Group (the World Bank and the International Finance 
Corporation - IFC) (GWA, 2021). 

The GWA provides the average wind speeds at five heights (10, 50, 100, 
150, and 200 m) for each point, located 250 m apart. Our choice of this information 
for bias correction was due to its wide use in the literature (BOSCH; STAFFELL; 
HAWKES, 2018; GRUBER et al., 2019, 2021; NEFABAS et al., 2021; 
OLAUSON, 2018; RYBERG et al., 2019) and its high spatial resolution. 

The GWA data are available in a grid (by latitude and longitude), as are the 
data in MERRA-2. Therefore, the nearest neighbor technique was used again to 
identify the GWA grid point closest to the wind turbine. Then, the MERRA-2 grid 
point with the closest distance to the GWA grid's selected point was chosen to 
calculate the bias correction factor. Figure 2.7 outlines this step in the process. 

 

 
Figure 2.7 Selection of data for FCGWA calculation. 

The correction factor is the ratio between the averages. The numerator is the 
average of the wind speed of the GWA that would represent the turbine, and the 
denominator is the calculated average of the effective wind speeds from MERRA-
2 to the MERRA-2 point closest to the GWA point. Since the average supplied by 
the GWA utilizes wind speed data between 2008 and 2017, we used this time 
horizon to select the data from MERRA-2. GWA and MERRA-2 data must be at 
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the same height, in this case, both at 50 m. Equation 2 represents the calculation of 
the bias correction factor by the GWA, and Equation 3 denotes the correction of the 
extrapolated MERRA-2 wind speed time series representing the wind turbine. 

𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(50𝑚𝑚)𝐺𝐺𝐺𝐺𝐺𝐺→𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

∑𝑉𝑉(50𝑚𝑚)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺2→𝐺𝐺𝐺𝐺𝐺𝐺
𝑛𝑛

 (2) 

 
𝑉𝑉𝑚𝑚𝑒𝑒𝑒𝑒_𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉𝑚𝑚𝑒𝑒𝑒𝑒 .𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 (3) 

 
Where: 

𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 is the bias correction factor according to the GWA, 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(50𝑚𝑚)𝐺𝐺𝐺𝐺𝐺𝐺→𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹is the GWA mean wind speed at 50 m height at one location, 
𝑉𝑉(50𝑚𝑚)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺2→𝐺𝐺𝐺𝐺𝐺𝐺 is the MERRA-2 wind speed at 50 m height at one location, 
n is the total number of times periods, 
𝑉𝑉𝑚𝑚𝑒𝑒𝑒𝑒_𝐺𝐺𝐺𝐺𝐺𝐺 is the MERRA-2 wind speed extrapolated and corrected by the GWA bias 
correction fator, and. 
 𝑉𝑉𝑚𝑚𝑒𝑒𝑒𝑒 is the MERRA-2 wind speed extrapolated to hub height at one location. 

2.3.6.2 
INMET 

The INMET is a Brazilian federal agency whose purpose is to provide 
meteorological information through monitoring, analysis, and forecasting of the 
weather and climate. It makes meteorological information available free of charge 
at its website. INMET has 478 meteorological stations spread across Brazil, which 
provide hourly wind speed data recorded at 10 m from the ground (INMET, 2021). 
The INMET wind speed data were selected for bias correction because they are 
measured data, which can better portray the peculiarities of Brazilian territory, in 
addition to being freely available, as also described by Gruber et al. (2019). 

As indicated in Figure 2.8, once again we used the nearest neighbor method 
to choose the INMET station and the MERRA-2 data to calculate the bias correction 
factors according to the INMET dataset (FCINMET). The time horizon adopted for 
both time series was 2008–2017, as was the case of FCGWA. 

 
Figure 2.8 Selection of data for FCINMET calculation. 

For the FCINMET calculation, we analyzed whether there were any missing 
data in any of the time series. If there were, the respective time frame was 
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eliminated from both time series to preserve the equal sizes of the wind speed time 
series. Next, FCINMET was calculated by using the means of the treated time 
series, as indicated in Equation 4. 

𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐼𝐼 =
∑𝑉𝑉(10𝑚𝑚)𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐼𝐼→𝐹𝐹𝑚𝑚𝐹𝐹𝑚𝑚

𝑛𝑛
∑𝑉𝑉(10𝑚𝑚)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺2→𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐼𝐼

𝑛𝑛

 (4) 

 
Where: 

𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐼𝐼 is the bias correction factor determined by INMET, 
𝑉𝑉(10𝑚𝑚)𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐼𝐼→𝐹𝐹𝑚𝑚𝐹𝐹𝑚𝑚 is the INMET wind speed at 10 m height at one measurement 
station, 
𝑉𝑉(10𝑚𝑚)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺2→𝐺𝐺𝐺𝐺𝐺𝐺 is the MERRA-2 wind speed at 10 m height at one location, 
and. 
n is the total number of times periods. 

As reported by Gruber et al. (2019), if an INMET station is very far from 
the wind turbine evaluated, the bias correction for its wind speed data may not 
represent the real situation of the site in question. Therefore, we adopted the same 
constraint applied by Gruber et al. (2019), only correcting the bias of the INMET 
data when the distance between the station and the site evaluated was less than 40 
km. 

To explore all the advantages of the INMET wind speed historical time 
series, we used four types of bias correction factors for INMET: 

1 – General (FCINMET-G): A single factor is calculated, and it is used to multiply 
all the extrapolated wind speed time series values of MERRA-2 representing the 
turbine in question. 

2 – Monthly (FCINMET-M):12 factors are calculated (one for each month). In the 
calculation of each factor, only data from its respective month is used. The bias 
correction of the time series extrapolated from the MERRA-2 values is carried out 
by ranges, multiplying the factor by the time series values belonging to the same 
month. 

3 – Hourly (FCINMET-H): 24 factors, one for each hour, are applied in the part of 
the time series extrapolated from its respective hour. 

4 – Monthly and Hourly (FCINMET-M/H): 288 factors, one for each hour of each 
month, with each applied in the part of the extrapolated time series of its respective 
month and hour. 

2.3.7 
Evaluation 

Several accuracy measures were used to compare the corrected wind speed 
time series obtained from MERRA-2 with the observed time series from each wind 
turbine in this study: Pearson correlation coefficients, RMSE, MBE, MAE, and the 
difference between time series variances (Variances diff.). They were selected 
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based on the main literature sources (GRUBER et al., 2019; NEFABAS et al., 2021; 
OLAUSON, 2018; RYBERG et al., 2019; STAFFELL; PFENNINGER, 2016). 

 

2.4 
Results 

This section presents the main results reached, divided into three parts. The 
first subsection introduces results of the hourly wind speed time series of wind 
turbine analysis generated by the different methods described in the Methodology 
section. The second and third subsections complement the study under different 
temporal and spatial approaches, respectively, but with the same steps used in the 
method of the first section. We used the R software, version 3.5.1, to tally the data 
from the various bases, treat them and generate the results (R CORE TEAM, 2018). 

We first identified the geographic coordinates of Brazilian territory for 
which MERRA-2 provides data and extracted the wind speed time series for these 
sites. In possession of the coordinates of the turbines of the wind farms, we began 
the interpolation step using the nearest neighbor method, which indicated the same 
point of MERRA-2 to represent all wind turbines. This fact was expected and is 
explained by the large spacing between the points of the MERRA-2 grid. This 
indicates that a single MERRA-2 time series represents innumerable real historical 
time series. The locations of the turbines are not identified here because of the 
confidentiality agreement with the wind farms’ operator. 

In the next step, extrapolation by the Hellman power law, the MERRA-2 
time series representing the turbines was adjusted to 99.5 m, which corresponds to 
the height of the rotor of each turbine. 

The GWA grid has high spatial resolution, so when associating the location 
of the turbines with the grid points, different points were chosen between them, 
resulting in different time series in the GWA bias correction step. Meanwhile, when 
correcting the bias using INMET data, all turbines were associated with the same 
meteorological station, which had an average distance of 35.54 km from them. 
Therefore, the wind speed time series of the selected INMET station was treated 
and used jointly with the MERRA-2 time series to construct the general, monthly, 
hourly, and monthly/hourly correction factors, which were later applied to the bias 
treatment. 

The time series of the MERRA-2 data and the INMET station employed for 
bias correction covered the period from 2008 to 2017. However, the time series 
from MERRA-2 after extrapolation and bias correction, which are proposed as 
historic for the turbines, are only projected for 2017 since the historic dataset 
measured at the turbines for validation only presents information for that year. 

For validation of the method, we treated all the time series measured at the 
turbines of the wind farms. For each time series measured, six treated time series 
were generated, as presented in Table 2.1. The comparisons between the time series 
were made using the five metrics (Pearson correlation, RMSE, MBE, MAE, and 
Variances diff.) and the results obtained are shown in Figure 2.9, Figure 2.10, 
Figure 2.11, Figure 2.12, Figure 2.13. 



32 
 

Table 2.1 Treatment of the MERRA-2 time series. 
Identification Treatments 
EXT Interpolation and Extrapolation 
GWA Interpolation, Extrapolation and Bias Correction by GWA 

INMET-G Interpolation, Extrapolation and Bias Correction by INMET – 
General 

INMET-M Interpolation, Extrapolation and Bias Correction by INMET – 
Monthly 

INMET-H Interpolation, Extrapolation and Bias Correction by INMET – 
Hourly 

INMET-M/H Interpolation, Extrapolation and Bias Correction by INMET – 
Monthly/Hourly 

 
 
 

 
Figure 2.9 Correlation boxplots of the measured hourly history of the turbines with the 

treated reanalysis time series. 

 

 
Figure 2.10 RMSE boxplots of the measured hourly history of the turbines with the 

treated reanalysis time series. 
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Figure 2.11 MBE boxplots of the measured hourly history of the turbines with the treated 

reanalysis time series. 

 

 
Figure 2.12 MAE boxplots of the measured hourly history of the turbines with the treated 

reanalysis time series. 

 

 
Figure 2.13 Boxplots of Variances diff. of the measured hourly history of the turbines with 

the treated reanalysis time series. 

The Pearson correlation coefficient was the only metric used here that is 
limited between −1 and 1, with 1 indicating strong direct correlation between the 
data, 0 no correlation, and −1 high inverse correlation, so the closer to 1, the better 
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was the treatment performance from the point of view of the correlation metric. The 
other indices measure the difference between the time series, so the closer to zero 
the metric was, the better the performance of the treated time series. As the 
performance of each treatment strategy was measured 24 times per metric, a boxplot 
of these results was generated to demonstrate their dispersion for each treatment 
method. The median was used to compare the performance between the strategies 
of each metric. 

2.4.1 
Hourly results 

Figure 2.9 compares the treatments under the correlation metrics and shows 
better performance of the INMET-H approach, followed by EXT, GWA, and 
INMET-G, all tied. The dispersion of the results of the correlations for each 
approach remained similar, with amplitude varying from 0.074 (EXT, GWA, and 
INMET-G) to 0.091 (INMET-M/H). 

Figure 2.10, Figure 2.12 show the RMSE and MAE, respectively, with the 
best performance generated by INMET-H, followed by EXT. Figure 2.11 shows 
the MBE with a reversal of positions so that the best performer was EXT followed 
by INMET-H. Figures. Figure 2.10, Figure 2.11, Figure 2.12, Figure 2.13 
demonstrate the worst performance of the GWA. In Figure 2.10, Figure 2.11, Figure 
2.12, the GWA has considerably more dispersion of results than in the other 
methods, mainly when comparing its first and third quartiles with others. Finally, 
Figure 2.13 demonstrates Variances diff., where INMET-H achieved the best 
performance, and the second best was INMET-M/H. Another relevant point is that 
when analyzing the MBE results, the GWA treatment was the only one that 
presented negative indices, demonstrating it overestimated the wind speeds. 

Table 2.2 summarizes the results found for the treatment strategies 
according to each metric. The best approaches are in blue and the worst in red. The 
INMET-H treatment was best ranked more often, and the GWA had the worst 
overall ranking. 

Table 2.2 Medians of treatment strategies per metric. 

Strategies 
Metrics 

Correlation RMSE MBE MAE Var diff.  

EXT 0.6718 2.3660 0.5584 1.8626 1.8679  

GWA 0.6718 3.3024 -1.9596 2.7514 -2.7232  

INMET-G 0.6718 2.3907 0.6965 1.8691 2.1217  

INMET-M 0.6565 2.4316 0.7127 1.9140 2.3353  

INMET-H 0.6903 2.3399 0.6458 1.8316 1.5068  

INMET-M/H 0.6671 2.4223 0.6752 1.9007 1.6540  
 

Table 2.3 shows the range of variation of the results between the first and 
third quartiles per metric. The dispersion of results was maintained for all 
treatments except for GWA. For it, the dispersion increased with all metrics except 
for Variances diff., in which it decreased. For most treatments and all metrics, there 
was small dispersion between the first and third quartiles, showing that the 
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comparison between the medians is an adequate approach to decide which treatment 
to choose for the MERRA-2 data. 

Table 2.3 The range between the first and third quartiles of results of treatment strategies 
per metric. 

Strategies 
Metrics 

Correlation RMSE MBE MAE Var diff.  

EXT 0.0144 0.1999 0.2819 0.1849 1.6710  

GWA 0.0144 0.7274 0.9229 0.6458 1.4909  

INMET-G 0.0144 0.1782 0.2820 0.1658 1.6710  

INMET-M 0.0148 0.1888 0.2822 0.1673 1.6710  

INMET-H 0.0146 0.2064 0.2815 0.1825 1.6710  

INMET-M/H 0.0155 0.1806 0.2818 0.1643 1.6710  

 
Table 2.4 presents the amplitude of the treatment results according to each 

metric, showing that depending on the metric and the historical time series of 
measured wind speed used, the performance of the treatment strategy changed 
considerably. The impacts were lower for the correlation metrics RMSE and the 
MAE, where the variation reached maximums of 14% (INMET-M/H), 30% (GWA) 
and 36% (GWA), respectively, concerning their medians. The MBE and Variances 
diff. metrics were most impacted by choice of the measured wind speed time series: 
the first varied up to 397% (EXT) and the second 310% (INMET-H). These results 
demonstrate the importance of choosing the appropriate evaluation metric and the 
extent of variability within the historical time series measured for speed of the same 
wind farm or between neighboring wind farms. 

Table 2.4 Range of results of treatment strategies by metric. 

Strategies 
Metrics 

Correlation RMSE MBE MAE Var diff.  

EXT 0.0739 0.4747 2.2142 0.4221 4.6670  

GWA 0.0739 0.9960 2.2107 0.9971 4.7347  

INMET-G 0.0739 0.5231 2.2145 0.4755 4.6670  

INMET-M 0.0772 0.5242 2.2136 0.4731 4.6670  

INMET-H 0.0888 0.4714 2.2155 0.4144 4.6670  

INMET-M/H 0.0911 0.4706 2.2148 0.4353 4.6670  
 

Figure 2.14 presents the relationship between the measured data of the wind 
farm turbines and their respective treated MERRA-2 data, through a combination 
of scatter plots and histograms. These visualizations allow better understanding of 
the scale of the deviations between the measurements and their estimates, and where 
the greatest concentration of data is. Each graph that composes Figure 2.14 refers 
to one of the treatment strategies adopted in this study. In order to analyze the 
quality of the estimates made by the MERRA-2 treatment strategies through these 
graphs, it is necessary to verify which strategies present the best adjustment of the 
points to the diagonal of the graph, mainly in the regions that have greater 
concentrations of data, for which the data are complemented by the histograms. 
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Figure 2.14 MERRA-2 data versus measured data scatter plots and histograms. 
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The worst performance was from the GWA strategy, since it overestimated 
wind speeds. This can be noticed from the high concentration of data above the 
diagonal and comparison of the histograms, especially in the final region, where 
there is a higher density of data in the histogram of the estimates than in the 
histogram of the measured data. The data coming from MERRA-2 for the studied 
region are underestimated, as can be seen in the EXT strategy graph, where there is 
a high concentration of data below the diagonal. Bias correction strategies seek to 
correct this and the INMET-H strategy presented the best performance. This shows 
the importance of finding an effective bias correction method, to help control the 
dispersion and order of magnitude of the data. 

The adequacy of the estimates to the measured data can also be analyzed by 
comparing the shape of the data distribution provided by the histogram. However, 
the distributions of wind speed data between the turbines already have different 
shapes, as highlighted in subsection 2.3.3, and in Figure 2.4 the distribution of 
measured data presented is the joint speed data recorded in all turbines. Comparison 
of the histograms indicates better adequacy of the histogram pertaining to the 
INMET-H strategies, followed by the EXT strategy, while the worst adequacy is 
generated by the GWA strategy. In the Supplementary Material, we provide more 
graphs to facilitate the comparison of these histograms and the dispersion of these 
distributions (boxplots). 

2.4.2 
Effects of the use of different time scales 

The specialized literature on validation of reanalysis data contains studies 
with various time scales. This occurs because depending on the reanalysis dataset 
or validation method utilized, the data employed are available for different time 
scales. Therefore, we investigated whether these different time scales could 
influence the results of the evaluation metrics, and thus the judgment of the quality 
of the representativeness of the historic series measured by MERRA-2 data. 

For this purpose, we temporally aggregated all the wind speed time series 
used as inputs in our method (the MERRA-2 series, the measured series at the 
turbines and the INMET series). Therefore, we carried out all the steps of the 
method in different time scales, including the evaluation through comparison of the 
wind speeds. 

The temporal aggregation of the time series was carried out by calculating 
the average over each time frame. For example, to convert hourly time series to 
monthly, we calculated the average wind speed within the hours contained in the 
month. 

All the methods developed and presented above for hourly time series were 
replicated using daily and monthly data. Table 2.5 shows the medians obtained from 
the boxplot graphs of each treatment per metric in their respective temporal study. 
Graphs like those shown in Figure 2.9, Figure 2.10, Figure 2.11, Figure 2.12, Figure 
2.13, Figure 2.14 were generated for the daily and monthly studies and their 
medians are shown in Table 2.5. These graphs can be accessed at Supplementary 
Material. 
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Table 2.5 Medians of treatment strategy results. 

Metrics Time 
Scale 

Treatment Strategies 
EXT GWA INMET-G INMET-M INMET-H INMET-M/H 

Correlation 
Hourly 0.6718 0.6718 0.6718 0.6565 0.6903 0.6671 

Daily 0.9108 0.9108 0.9108 0.8947 - - 

Monthly 0.9765 0.9765 0.9765 0.9185 - - 

RMSE 
Hourly 2.3660 3.3024 2.3907 2.4316 2.3399 2.4223 

Daily 1.1846 2.1474 1.2257 1.3078 - - 

Monthly 0.7418 1.8497 0.8734 0.9959 - - 

MBE 
Hourly 0.5584 -1.9596 0.6965 0.7127 0.6458 0.6752 

Daily 0.6471 -1.8327 0.7621 0.7861 - - 

Monthly 0.6162 -1.8060 0.7706 0.7855 - - 

MAE 
Hourly 1.8626 2.7514 1.8691 1.9140 1.8316 1.9007 

Daily 0.9195 1.9248 0.9827 1.0403 - - 

Monthly 0.6665 1.8060 0.7992 0.8219 - - 

Variances 
diff. 

Hourly 1.8679 -2.7232 2.1217 2.3353 1.5068 1.6540 

Daily 1.6478 -0.3537 1.7621 2.0314 - - 

Monthly 0.3675 -0.5095 0.4294 0.7196 - - 
 

It can be seen from Table 2.5 that the temporal aggregation of the time series 
improved the metrics’ indices. The MERRA-2 time series best represented the 
measured time series. All correlation coefficients increased with temporal 
aggregation for all treatments, and all RMSE and MAE indices decreased. In 
Variances diff., this trend of decreasing indices with increasing temporal scales was 
repeated with only one exception in the GWA monthly treatment. The MBE also 
fell, although to a lesser extent. 

2.4.3 
Impact of different spatial scales 

Another point that can impact the results is the spatial scale used in the 
analyses. Therefore, we examined whether a MERRA-2 wind speed time series 
representing larger areas could perform better in the metrics. In Gruber et al. (2019), 
where performance was measured by comparing the generation time series, the 
spatial aggregation occurred through the sum of the wind generation of all turbines 
and wind farms in the evaluated region, before comparing the measured and 
simulated data (GRUBER et al., 2019). Since we used wind speed data, the spatial 
aggregation took place by calculating the average wind speed time series using all 
the time series contained in the analyzed region. 

For this investigation, we compared the MERRA-2 time series corrected 
with (i) the 12 time series measured in the turbines of one of the wind farms (Wind 
Farm 1 – WF 1), with (ii) the average wind speed time series calculated from the 
12 time series of Wind Farm 1's turbines, and with (iii) the average wind speed time 
series calculated with the time series of all 24 turbines. In (i), the performance of 
the 12 turbines is given by the median of their results in the metrics. Table 2.6 (first 



39 
 

analysis) compares the WF1 data with the Merra-2 data corrected under different 
metrics. This same analysis was performed with data from the other wind farm 
(Wind Farm 2 - WF 2) and is shown in Table 2.7. 

Table 2.6 Metric results for different spatial aggregations (Analysis 1). 

Metrics Spatial 
Scale 

Treatment Strategies 
EXT GWA INMET-G INMET-M INMET-H INMET-M/H 

Correlation 
Turbines F1 0.6779 0.6779 0.6779 0.6604 0.6903 0.6671 

WF 1 0.6870 0.6870 0.6870 0.6700 0.7010 0.6764 
Aggregate 0.6847 0.6847 0.6847 0.6678 0.7008 0.6772 

RMSE 
Turbines F1 2.4198 3.4250 2.4418 2.4963 2.4150 2.4966 

WF 1 2.3590 3.3669 2.3872 2.4386 2.3507 2.4371 
Aggregate 2.2421 2.9101 2.2567 2.3040 2.2245 2.3036 

MBE 
Turbines F1 0.5728 -2.0879 0.7113 0.7333 0.6582 0.6909 

WF 1 0.5985 -2.0613 0.7366 0.7519 0.6859 0.7146 
Aggregate 0.3950 -1.5056 0.5330 0.5483 0.4828 0.5113 

MAE 
Turbines F1 1.9296 2.8456 1.9447 1.9947 1.9029 1.9756 

WF 1 1.8613 2.8102 1.8835 1.9317 1.8366 1.9178 
Aggregate 1.7569 2.4034 1.7670 1.8164 1.7310 1.8028 

Variances 
diff. 

Turbines F1 2.6278 -3.1697 2.8816 3,0952 2.2667 2.4139 
WF 1 2.2473 -3.5503 2.5011 2.7147 1.8862 2.0333 

Aggregate 1.2796 -2.6889 1.5334 1.7470 0.9185 1.0656 
 

Table 2.7 Metric results for different spatial aggregations (Analysis 2) 

Metrics Spatial 
Scale 

Treatment Strategies 
EXT GWA INMET-G INMET-M INMET-H INMET-M/H 

Correlation 
Turbines F2 0.6694 0.6694 0.6694 0.6542 0.6907 0.6682 

WF 2 0.6739 0.6739 0.6739 0.6576 0.6921 0.6700 
Aggregate 0.6847 0.6847 0.6847 0.6678 0.7008 0.6772 

RMSE 
Turbines F2 2.2998 2.7017 2.2904 2.3330 2.2771 2.3403 

WF 2 2.1975 2.7552 2.1970 2.2382 2.1697 2.2386 
Aggregate 2.2421 2.9101 2.2567 2.3040 2.2245 2.3036 

MBE 
Turbines F2 0.3231 -1,1745 0.4615 0.4774 0.4108 0.4399 

WF 2 0.1862 -1.3079 0.3242 0.3395 0.2739 0.3025 
Aggregate 0.3950 -1.5056 0.5330 0.5483 0.4828 0.5113 

MAE 
Turbines F2 1.8077 2.2083 1.8100 1.8470 1.7820 1.8449 

WF 2 1.7159 2.2674 1.7117 1.7567 1.6855 1.7433 
Aggregate 1.7569 2.4034 1.7670 1.8164 1.7310 1.8028 

Variances 
diff. 

Turbines F2 1.1485 -1.8971 1.4023 1.6159 0.7874 0.9345 
WF 2 0.6277 -2.4178 0.8815 1.0951 0.2666 0.4138 

Aggregate 1.2796 -2.6889 1.5334 1.7470 0.9185 1.0656 
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From the correlation metric in Table 2.7 and the RMSE, MAE, and 
Variances diff. metrics in Table 2.6, it can be stated that spatial aggregation also 
contributed to improving the representativeness of the MERRA-2 time series 
concerning the measured time series, since there was improvement of the indices 
with increasing spatial scale in all of them. In the case of the Pearson correlation 
coefficient (Table 2.7), it increased with the increase of the represented area, and in 
the RMSE, MAE, and Variances diff. it decreased as the area covered increased. 
However, in the other cases, as shown in both Table 2.6, Table 2.7, the inference of 
improvement with spatial aggregation was not substantial. 

 

2.5 
Discussion 

The studies found in the literature have used time series in different scales, 
such as hourly (CANNON et al., 2015; GONZÁLEZ-APARICIO et al., 2017; 
NEFABAS et al., 2021), daily (GRUBER et al., 2019, 2021; GRUBER; 
SCHMIDT, 2019), and monthly (CRADDEN et al., 2017; STAFFELL; 
PFENNINGER, 2016). These variations are due to the measured data used for 
comparison in the metrics, which are only available for a specific temporal scale. 
This study generated results in hourly, daily, and monthly scales and indicated that 
the choice of the temporal scale impacts the results found in the metrics. By 
increasing the temporal aggregation of the compared time series, the indices 
improved for most of the metrics. 

However, regardless of the time scale used, the results demonstrated that the 
corrected MERRA-2 time series can satisfactorily represent the wind speed time 
series measured at the turbines of wind farms. This was mainly the case when 
comparing the results obtained here with those of Gruber et al. (2019, 2021), Gruber 
& Schmidt (2019), Nefabas et al. (2021) and Staffell & Pfenninger (2016), although 
those results applied to generation comparison while we used comparison of wind 
speeds. Some studies have evaluated the representativeness of the MERRA-2 data 
by comparison of the wind speeds (BRUNE; KELLER; WAHL, 2021; JIANG et 
al., 2021; JOURDIER, 2020; KHATIBI; KRAUTER, 2021; MOLINA; 
GUTIÉRREZ; SÁNCHEZ, 2021; RABBANI; ZEESHAN, 2020), but none of these 
works are applied in Brazilian territory. Gruber et al. (2019), who analyzed Brazil 
using time series on a daily scale, an average correlation of 0.6 was obtained 
between data from MERRA-2 and data measured at the spatial level of wind farms. 
In contrast, we achieved a correlation of 0.9 for wind farms and turbines. This 
shows how promising the results of this work are, and that corrected MERRA-2 
data are suitably representative. 

Among the different treatment options for the MERRA-2 data, focusing 
primarily on the hourly time series, the INMET-H strategy was best overall. It had 
the best performance in four of them and was second ranked in the other. After 
INMET-H came EXT, which was the MERRA-2 time series only interpolated and 
extrapolated. It performed best in one metric and was second in three. All strategies 
performed well in treating the MERRA-2 time series, but GWA was the least 
recommended because it had the worst performance in four metrics. Due to the 
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negative result for MBE, there was overestimation of wind speeds by the GWA 
treatment. 

Analysis of the treatments of the daily and monthly time series of MERRA-
2 showed that the EXT strategy was best, followed by the INMET-G in four metrics 
for the daily time series and in all the monthly series. For the RMSE, MBE and 
MAE metrics, the GWA always performed the worst. 

Many studies have used GWA data for bias correction (BOSCH; STAFFELL; 
HAWKES, 2018; GRUBER et al., 2019, 2021; GRUBER; SCHMIDT, 2019; 
NEFABAS et al., 2021; RYBERG et al., 2019), but this GWA result is contrary to 
the recommendation of Gruber et al. (2019), who suggested the use of GWA instead 
of INMET data for correction of wind farm data. Some hypotheses can be suggested 
to explain these divergences. In Gruber et al. (2019), there are some divergent 
results within the metrics, which can be explained by several factors, such as: the 
heterogeneity of the topography of Brazil and its great extension; use of inconsistent 
INMET time series or stations located very far from the assessed wind farm; use of 
inconsistent generation time series estimated by ONS (National Electrical System 
Operator) for comparison with simulated wind farm generation; and the use of some 
inconsistent geographic locations of the wind farms due to not using the best source 
to obtain this information (GRUBER et al., 2021). Also reported that the data of the 
GWA were updated in October 2019, and the quality of the corresponding 
treatments applied on the ERA5 data for the set of countries considered (South 
Africa, Brazil, United States and New Zealand) decreased in comparison with the 
same treatment with the old GWA data. However, the analyses of the use of the 
MERRA-2 data with bias correction for these two versions of the GWA for Brazil 
are only presented in the appendix of Gruber et al. (2021), and the best 
performances were achieved with the new GWA version, unlike our results. 

The measured historical time series can have inconsistencies, which can 
compromise the quality of the results. For example, the measured wind speed time 
series used had high values, above 25 m/s, which were disregarded in the analysis 
to overcome inconsistencies. Furthermore, significant variability was found among 
the measured historical time series, even when pertaining to the same wind farm or 
neighboring farms. Thus, the result changed significantly depending on the metric 
used and the selected measurement time series, as shown in Table 2.4. One of the 
possible reasons for this variability between wind speed time series is the wake 
effect, which corresponds to the decrease in wind speed after passing through 
previous turbine blades. We did not consider this wake loss here, but it is described 
in Murcia et al. (2022) and Nefabas et al. (2021). Thus, one cannot blame only the 
models of the reanalysis data for the differences found between the MERRA-2 time 
series and the measured time series. There are many more factors that can cause 
these differences. Despite all these limitations, we believe the treated MERRA-2 
time series represent the measured wind speed time series adequately, so we 
recommend applying the INMET-H treatment strategy to the MERRA-2 hourly 
time series and the EXT for the other temporal scales. 

Gruber et al. (2021) employed ERA5 data corrected by the old GWA data 
to evaluate the impacts of spatial and temporal aggregation through the Pearson 
correlation and RMSE metrics. Although their approach was to evaluate a set of 
countries (low spatial resolution) and we examined sites in Brazilian territory (high 
spatial resolution), both studies concluded that temporal and spatial aggregation 
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improved the representativeness of the historic series measured by the series 
generated by the reanalysis data. However, we also reached this conclusion for the 
MERRA-2 data, using five bias correction approaches and five different metrics to 
compare velocities (Gruber et al. (2021) compared energy generation) and applied 
a different aggregation approach. In contrast Gruber et al. (2021), used hourly time 
series aggregation resulting from their method while we aggregated the input data. 

MERRA-2 data underestimated the variability of wind speed when 
presenting data with low spatial resolution, especially in areas with complex terrain, 
as is the case of most Brazilian wind farm sites (CRADDEN et al., 2017; 
OLAUSON; BERGKVIST, 2015; STAFFELL; PFENNINGER, 2016). Hence 
there is a need to treat time series to overcome this problem. Studies such as  have 
suggested using spatial aggregation to circumvent the problem and reduce bias. The 
treatments under the MERRA-2 time series reconciled with spatial aggregation led 
to even better results. Thus, we used the treatments of the MERRA-2 time series 
and created measured time series that would represent larger areas to seek better 
results. As shown in 2.4.3.1, 2.4.3.2, the results were satisfactory for the correlation 
in analysis 2 (Wind Farm 2) and the RMSE, MAE, and Variances diff. were all 
satisfactory in analysis 1 (Wind Farm 1). 

 

2.6 
Conclusions 

Based on the results of this study, the treatment strategies were satisfactory 
for the MERRA-2 wind speed time series to represent the actual wind speed time 
series measured at the turbines. The INMET-H treatment is recommended for 
hourly MERRA-2 time series and the EXT when using other temporal scales. This 
study's interpolation and extrapolation methods are efficient due to the good results 
achieved by the time series with the EXT treatment in all metrics. This did not 
present any type of bias correction based on another data source. 

Among the treated time series that received bias correction, we highlight the 
contribution of databases with measured data to improve the quality of the 
reanalysis data time series. Bias correction by INMET data filtered on an hourly 
basis achieved the best values of most metrics. It best represented the historical data 
of the turbines according to the correlation metrics RMSE, MAE, and Variances 
diff. Most other articles have suggested using the GWA database to correct the bias 
of the reanalysis time series. However, its correction of most metrics (RMSE, MBE, 
MAE, and Variance diff.) presented the worst performance in this study. 

The temporal aggregation to apply the method had positive effects, based 
on the correlation metrics RMSE, MAE and Variances diff., because the results 
improved as the time series were more temporally aggregated. Spatial aggregation 
also had satisfactory results but needs to be better evaluated in larger areas. 

The results of this study indicate the good potential of the MERRA-2 
reanalysis dataset, and show that it is possible to obtain accurate wind speed data 
for Brazilian territory after applying the strategies presented. These data can 
represent what happens in turbines, wind farms, regions, states and countries, in 
order to fill gaps in measured data and facilitate studies. Good primary data can be 
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used in forecasts and simulations, both of wind speeds and generation, which serve 
as inputs for feasibility studies of wind farms and energy dispatch models. In the 
final analysis, this enables improvement of the country's energy planning and 
stimulates the development and growth of wind generation. 

Regarding future work, we suggest applying more bias correction methods, 
seeking to obtain better performance, applying this method in other locations in 
Brazil, and using other wind speed data from reanalysis, such as the ERA5 data. 
The GWA also provides Weibull wind speed distributions, which could also be 
investigated as an alternative to validate the results. We also recommend using the 
method presented here in feasibility studies of new wind farms. Finally, we suggest 
complementing the analyses through the conversion of corrected MERRA-2 wind 
speed time series into simulated wind generation for comparison with the observed 
wind generation of turbines. Thus, it will be feasible to measure the dimension of 
the variability inserted by the generation simulation model. 
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3 
Second Contribution: Joint modeling of wind speed and 
power via a nonparametric approach 

 

3.1 
Abstract 

The energy generated by wind farms depends on the wind speed, air density, 
turbine rotor height and blade area, among many other technical and climatic 
characteristics. To simplify the calculations, power curves are used to estimate how 
the power output varies with the wind speed. However, this approximation is one 
of the sources of uncertainty in wind energy forecasting models because it assumes 
that the wind speed is distributed in fixed intervals and that a given wind speed will 
always generate the same power. Therefore, this contribution proposes a new 
nonparametric method to model better the relationship between wind speed and the 
corresponding power generated. The steps of this proposal consist of using the K-
means clustering technique to estimate the wind speed intervals, the kernel density 
estimation (KDE) method to define the probability density function (PDF) for each 
interval, and Monte Carlo simulation to infer the power output based on the PDF. 
We conducted tests of the proposed method through four approaches (single period, 
monthly, hourly, monthly-hourly) to ascertain its performance. The data came from 
the MERRA-2 database and five wind farms in northeast Brazil. The proposed 
method had superior performance than the conventional estimation technique. This 
study contributes to the literature by (i) proposing a new non-parametric method for 
modeling the relationship between wind speed and power, (ii) highlighting how 
probabilistic modeling better represents the natural variability of wind generation 
when compared to deterministic modeling, (iii) demonstrate how the temporal 
segregation of data for applying methodologies, to respect the annual and daily 
seasonality of wind generation, can lead to better method performance, (iv) 
demonstrate that even within the same region, wind farms can have different 
generation profiles due to environmental and technical conditions, and (v) evidence 
of the importance and quality of wind speed data made available by the MERRA-2 
reanalysis database.   

 

3.2 
Introduction  

The growing demand for energy from renewable sources has led to the 
construction of many wind farms in Brazil and other countries. However, two main 
factors can hamper the development of the wind power industry: the stochastic 
nature of wind speed and the uncertainty involving its production (AYODELE; 
OGUNJUYIGBE, 2015; IPAKCHI; ALBUYEH, 2009). These factors require 
precise and reliable models that replicate the behavior of local wind generation to 
support the planning, monitoring and operational management of the power grid 
and increase the reliability of the electrical network (FANG; WANG, 2017; HAN; 
YANG; LIU, 2007; REZVANI et al., 2019; THAPAR; AGNIHOTRI; SETHI, 
2011). 



45 
 

For the correct dimensioning of generation, it is necessary to understand the 
functioning of wind turbine generators (AYODELE; OGUNJUYIGBE, 2015). It is 
well-established that the power from a wind turbine varies in function with the wind 
speed, air density and turbine blade parameters (size, design, tip speed and pitch 
angle ratio) (CARRILLO et al., 2013). The manufacturers usually supply a power 
curve for their models, which is typically generic and related only to the wind speed 
at the power generated (AL‐QURAAN et al., 2022). Nevertheless, this information 
serves as a parameter for initial monitoring of the performance of a wind farm’s 
turbines (SHETTY; SATHYABHAMA; PAI, 2020). 

For managers of wind farms and power systems, it is not advisable to apply 
the manufacturer’s power curve directly since the real working conditions of a 
turbine can be very different. The power curve made available by the manufacturer 
is projected for the functioning of a single wind turbine operating under ideal 
conditions. It does not consider the various types of interference they generate with 
each other within a wind farm. Hence, a need exists to develop models to estimate 
wind power in specific generation locations (CARTA; RAMÍREZ; VELÁZQUEZ, 
2009; SHETTY; SATHYABHAMA; PAI, 2020). 

Researchers have described various deterministic or probabilistic strategies 
to create reliable estimation models. These power curve models are also subdivided 
into parametric and nonparametric techniques (CARRILLO et al., 2013; 
SHOKRZADEH; JAFARI JOZANI; BIBEAU, 2014; SOHONI; GUPTA; NEMA, 
2016). The parametric methods are based on mathematical formulations, such as 
the linearized segmented model, polynomial power curves (GIORSETTO; 
UTSUROGI, 1983; WEN; ZHENG; DONGHAN, 2009), exponential (MATHEW, 
2006), cubic (CARRILLO et al., 2013), maximum principle method, least squares 
method (SHOKRZADEH; JAFARI JOZANI; BIBEAU, 2014), cubic spline 
interpolation, dynamic power curve, and models based on probabilistic distributions 
(SHOKRZADEH; JAFARI JOZANI; BIBEAU, 2014; THAPAR; AGNIHOTRI; 
SETHI, 2011), among others. In general, they are methods that are easy to apply 
and calculate the parameters, need little historical data, and have precise 
adjustments. Their drawbacks are poor accuracy, the need for comprehensive data 
from the manufacturer and the local conditions, and failure to consider the 
variability of this data (ESTEVES et al., 2019; KHODABUX et al., 2022).    

The nonparametric models include copulas (GILL; STEPHEN; 
GALLOWAY, 2012; WANG et al., 2014), kernel density estimation, artificial 
neural networks (MURALIDHARAN et al., 2023), fuzzy logic systems, support 
vector machines, response surface methodology and data mining algorithms (such 
as random forest and clusterization) (MURALIDHARAN et al., 2023), among 
many others (KUSIAK; ZHENG; SONG, 2009; LYDIA et al., 2014; 
MARVUGLIA; MESSINEO, 2012; SHETTY; SATHYABHAMA; PAI, 2020; 
ÜSTÜNTAŞ; ŞAHIN, 2008). These do not impose any model specified in advance, 
are more precise, contemplate the variance of the data and estimate the power curve 
as closely as possible with the available data subject to smoothing of the fit. 
However, these methods require long historical data series and are complex to 
implement (DUCA; FONSECA; CYRINO OLIVEIRA, 2022; SOHONI; GUPTA; 
NEMA, 2016).  

In Muralidharan et al. (2023), the authors used machine learning, artificial 
neural networks (ANN), decision trees (DT) and random forests (RF) to infer the 
best alternative to represent the outputs of a wind turbine. The same evaluation is 
described in Duca et al. (2022) via three dynamic Bayesian models considering 
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wind speed and power. In turn, Gill et al. (2012) and Wang et al. (2014) proposed 
the use of copula functions to model this relationship through the measured data, 
while Gill et al. (2012) also used a probabilistic method to exclude outliers. The 
article by Lázaro et al. (2022) evaluated the performance of multivariate models 
based on the Gaussian mixture copula model (GMCM), artificial neural networks 
and Bayesian artificial neural networks (BANN) to characterize the power curve 
and estimated power.  

Many other studies have also used wind speed distribution as a basis to 
model the relationship between wind speed and power output. Most of these have 
recommended using a two-parameter Weibull distribution (WACKER; SEEBASS; 
SCHLÜTER, 2020). More recent studies have suggested modifications of the 
Weibull distribution (MILAD et al., 2023), and the use of a four-parameter Kappa 
probability distribution or five-parameter Wakeby probability distribution to obtain 
better results (JUNG; SCHINDLER, 2019). 

In Carrillo et al. (2013), it described the fitting of polynomial, exponential 
and cubic equations to represent the power curves of turbines. The authors found 
the polynomial and cubic approaches to be most precise. Still, the polynomial 
approach required complex equations, making it hard to find a general expression, 
leading to the recommendation of the cubic, which only depends on the parameters 
provided by the manufacturer. Esteves et al. (2019) warned that these mathematical 
models should only be used for initial evaluation of the power output, because they 
do not precisely consider the inflection point of the power curve and can result in 
large forecasting errors. They serve to evaluate new undertakings, dimensioning 
and optimization of costs. Khodabux et al. (2022) suggested using sigmoid, logistic 
and Hill functions, while shokrzadeh et al. (2014) proposed the spline regression 
method to obtain better performance and overcome the problems of determining the 
curve’s inflection point. However, although these mathematical expressions are 
widely used, there is little evidence that these curves fit the data pertaining to real 
wind power turbines (GIORSETTO; UTSUROGI, 1983; MATHEW, 2006; WEN; 
ZHENG; DONGHAN, 2009). 

For this reason, this study aims to describe a model that more accurately 
represents this relationship, requiring only historical data on wind speed and 
generation. Although the method uses only these two data, we believe it can 
incorporate the complexity inherent to the random nature of the various data sources 
that also influence the resulting wind energy.  

In this context, we present a method to segment the wind speed ranges 
through clusterization of data by K-means, mapping of possible wind power outputs 
associated with each range and constructing the probability density function of the 
power data by the kernel density estimation method. Finally, we apply Monte Carlo 
simulation to make the model flexible regarding wind power generation. 

Through these methods, we aim to offer a robust and effective way to model 
the relationship between wind speed and wind power generation, permitting a 
deeper and more precise understanding of the performance of wind turbines in the 
field. Once the model is implemented, one only needs wind speed projections to 
estimate wind power. 

This article is divided into five sections including this introduction. In the 
second section, we present the method used to model the relationship between wind 
speed and power; in the third section we present the data used in the tests; in the 
fourth section, we describe and discuss the results; and in the fifth section presents 
our conclusions and some recommendations for future research. 
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3.3 
Proposed Method  

The purpose of this article is to describe a method that can model the 
nonlinear relationship between the speed of the wind that passes through wind 
turbines and the power generated by them, thus enabling us to explore the 
peculiarities of the source and place and depict the probability distribution of 
generation for a given wind speed value. The steps used in this study to attain this 
goal are presented in Figure 3.1. 

 

 
Figure 3.1 Steps of the method. 

Section 3.3.1 presents the locations used to test the proposed method. 
Section 3.3.2 shows the steps employed in our previous contribution (DE AQUINO 
FERREIRA; CYRINO OLIVEIRA; MAÇAIRA, 2022), covering how to obtain 
and treat the wind speed reanalysis data from MERRA-2 for points in Brazilian 
territory, to have data that represent local reality and overcome the shortage of 
measured data points. We describe the main contributions of this article in sections 
3.3.3.1 to 3.3.3.3, regarding the wind power modelling and forecasting method. 
Section 3.3.4 presents a simple and widely adopted method to compare our proposal 
here against other methods used to relate wind speed and wind power generation. 
Finally, section 3.3.5 offers the metrics adopted to evaluate the method. 

3.3.1 
Wind farm data  

To test the method presented in this article, we used information from five 
wind farms located in the same state in Brazil’s Northeast region, three along the 
coast and the other two in the interior of the state. The information the wind farm 
managers provided included the geographic locations, installed capacities and 
generation time series, which cannot be disclosed due to a secrecy agreement.  
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The other information necessary to apply the method, such as the technical 
characteristics of the turbines used by the wind farms, was obtained from the 
Electric Sector Georeferenced Information System of Brazil’s National Electric 
Energy Agency (SIGEL/ANEEL) (SIGEL ANEEL, 2023) and The Wind Power 
database (PIERROT EI, 2024). 

These wind farms were chosen due to the convenience of measured data 
availability and their location in the Northeast region, where installed wind capacity 
is expanding strongly due to favorable conditions (DE AQUINO FERREIRA; 
CYRINO OLIVEIRA; MAÇAIRA, 2022; DOS SANTOS et al., 2024; DUCA; 
FONSECA; CYRINO OLIVEIRA, 2022; GRUBER et al., 2019). 

3.3.2 
Wind speed data  

The wind farms chosen for testing do not have any wind speed history, only 
historical generation data. However, the power generated by these turbines is 
directly related to the wind speed at the height of the corresponding rotor, and 
modeling this relationship is the purpose of this article. 

To overcome this limitation, we used reanalysis data from MERRA-2 
(GMAO, 2021). It provides a free historical series on climate variables and 
atmospheric data since 1980, available at grid points covering the Earth’s entire 
land surface. The MERRA-2 databases used most often are "MERRA-2 
tavg1_2d_slv_Nx" and "MERRA-2 inst1_2d_asm_Nx" to obtain historic wind 
speed data. The main difference between them is that the wind speed data are hourly 
averages in the former, and in the second, the data are collected instantaneously. 
We adopted the first database for this study because it presented the best results in 
preliminary tests and the wind power data were also hourly averages (GMAO, 
2021). 

To adjust the wind speed time series of MERRA-2 to the natural conditions 
of the turbines in question, we used interpolation, extrapolation and bias correction 
(DE AQUINO FERREIRA; CYRINO OLIVEIRA; MAÇAIRA, 2022). The 
interpolation adopted was based on the nearest neighbor technique, which consists 
of obtaining the data from the point on the MERRA-2 grid closest to the geographic 
location of the wind farm to represent the speeds that occurred at that point. In turn, 
we used the power law as the extrapolation technique, to adjust the historic wind 
speed data of MERRA-2 to the values that occurred at the height of the rotors 
(GRUBER et al., 2019). Finally, the bias correction involved applying an average 
hourly correction factor using data from the nearest National Meteorology Institute 
(INMET) station. This technique consists of calculating the hourly wind speed 
averages of the MERRA-2 and INMET datasets at the same height (in this case, 10 
meters), and calculating the ratio between them each hour, to generate an hourly 
correction factor to be applied to the extrapolated wind speed time series to adjust 
it to the real winds measured in Brazilian territory and contemplate the local 
particularities (GIORSETTO; UTSUROGI, 1983; ÜSTÜNTAŞ; ŞAHIN, 2008). 
This method is suggested by De Aquino Ferreira et al (2022) to obtain data from 
MERRA-2 for Brazil.     
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3.3.3 
Modeling the speed versus power relationship  

A particular wind speed value can generate different power values from the 
same turbine at distinct moments. A combination of factors, such as variations in 
wind direction, relative air humidity, atmospheric pressure and other climatic and 
atmospheric variables can explain this. However, mapping all these wind 
generation variations in the function of such variables would make the model highly 
complex and still would not assure identifying all the factors that can impact the 
generation (CARRILLO et al., 2013).      

Thus, our objective here is to simplify the modeling of wind generation, to 
enable projecting it in function of a single variable, the wind speed, striving to create 
a model that explains all the randomness arising from the various data sources 
solely according to wind speed. To materialize the idea, we segmented the wind 
speeds that can occur in a wind farm, mapped each range's generation possibilities, 
and dimensioned the generation based on the speeds we believe will happen. The 
techniques used to materialize this method are presented in sections 3.3.3.1 to 
3.3.3.3. 

3.3.3.1 
Clustering of wind speeds   

We used the K-means clustering technique to identify the wind speed ranges 
(CELEBI; KINGRAVI; VELA, 2013; MARVUGLIA; MESSINEO, 2012). It 
groups the wind speed data into K clusters (speed range groups), where each data 
point is assigned to the cluster with more similar data.  

The technique’s algorithm starts by randomly defining K centroids (centers 
of clusters). Then the distance is calculated between each data point and the initial 
K centroids, and the value is attributed to the nearest cluster. Next, new centroids 
are defined, each being the average of all the data composing the respective cluster. 
This process is repeated until the centroids remain fixed after multiple iterations 
(LYDIA et al., 2014).  

The K-means method has a premise consisting of the number of clusters, K, 
to be adopted. Hence, to find the most suitable number of clusters, the elbow 
method is used, which is applied by gradually increasing the number of clusters, 
and with each addition verifying whether on average, the standard deviation of the 
clusters is reduced, such that the accuracy of the centroid reflecting the historic data 
is increased. Thus, the number of clusters is defined when the variations of the 
standard deviation become negligible when including another cluster (ESTEVES et 
al., 2019).   

3.3.3.2 
Density curve estimation       

Since power generation is a continuous variable and we want to understand 
the frequency of its values for each cluster of velocities, we estimated the 
probability density function (PDF) for the generation of each cluster. This 
association is possible because each wind speed value is associated in time with a 
historic occurrence of wind farm generation.  
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The technique used to estimate the probability density functions is kernel 
density estimation (KDE), a nonparametric estimation approach. Its main advantage 
is that it is not necessary to assume the distribution of the sample data in advance, 
thus avoiding the introduction of subjective previous information (LI et al., 2023; 
WAHBAH et al., 2019).  

Since the KDE involves fitting the density function concerning the data, this 
process is more precise and robust compared to parametric approaches (LI et al., 
2023). If 𝑥𝑥 denotes the sample dataset, 𝑓𝑓(𝑥𝑥) can be expressed as in Equation 1, 

𝑓𝑓(𝑥𝑥) = 𝐹𝐹′(𝑥𝑥) =
𝐹𝐹(𝑥𝑥 + ℎ) − 𝐹𝐹(𝑥𝑥 − ℎ)

2ℎ
 

 
(1) 

where ℎ is a non-negative constant, called the bandwidth, and 𝐹𝐹(𝑥𝑥) represents the 
empirical distribution of the power data that compose the sample.  

To assure a better fit of the probability distribution, the sample size is 
allowed to tend to infinity (𝑛𝑛 → ∞) and the bandwidth to zero (ℎ → 0) (LI et al., 
2023; WAHBAH et al., 2019). Hence, the expression for the estimator of 𝑓𝑓(𝑥𝑥) can 
be defined as in Equation 2, 

𝑓𝑓 � (𝑥𝑥) =
1
𝑛𝑛ℎ

�𝐾𝐾 �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
ℎ

�
𝑚𝑚

𝑖𝑖=1

 (2) 

 
where 𝐾𝐾(. ) is the kernel function. Based on Equation 2, note that the determination 
of the estimates, 𝑓𝑓 � (𝑥𝑥), mainly depends on ℎ and 𝐾𝐾(. ) (CELEBI; KINGRAVI; 
VELA, 2013). 

3.3.3.3 
Simulation 

We used Monte Carlo simulation to guarantee the variability of the wind 
power generation in function of the wind speed (WORTON, 1995).  

According to the previous steps, each speed range from a cluster has an 
associated probability density function, for which the cumulative density function 
is calculated. This randomly generates a value from a uniform [0,1] distribution, 
which is used in the cumulative function to find the power value that produces the 
corresponding cumulative probability (SHOKRZADEH; JAFARI JOZANI; 
BIBEAU, 2014; THAPAR; AGNIHOTRI; SETHI, 2011; VAN RAVENZWAAIJ; 
CASSEY; BROWN, 2018; WORTON, 1995). 

To obtain the following power values, it is necessary to know to what cluster 
the next wind speed value belongs to find the corresponding cumulative function. 
Next, a new random probability value is generated for the cumulative function. This 
procedure is repeated until the finalization of the sequence of wind power 
generation estimates (WAHBAH et al., 2019).   
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3.3.4 
Power curve 

The conventional deterministic approach to obtain the available power of 
the wind that passes through a turbine’s rotors is expressed in Equation 3 
(CARRILLO et al., 2013; MACQUEEN, 1967). 

𝑃𝑃𝑒𝑒(𝑣𝑣) =  
1
2
𝐴𝐴.𝜌𝜌. 𝑣𝑣³ (3) 

where 𝑃𝑃𝑒𝑒(𝑣𝑣) is the theoretical power generated in watts when the wind speed 𝑣𝑣 in 
m/s passes through a turbine with rotor area 𝐴𝐴, in m², and 𝜌𝜌 is the air density. 

However, the real power generated, 𝑃𝑃𝐹𝐹(𝑣𝑣), is lower than 𝑃𝑃𝑒𝑒(𝑣𝑣) due to 
mechanical and electrical losses and aerodynamic factors of the blades. The ratio 
between the powers generates the power coefficient, 𝐹𝐹𝑝𝑝, which is typically available 
from the turbine manufacturer. The theoretical maximum value of the power 
coefficient is 0.593, the Betz limit, but in practice this value is not attained in the 
turbines, with the maximum value being 0.5 (CARRILLO et al., 2013; THAPAR; 
AGNIHOTRI; SETHI, 2011). 

Figure 3.2 represents the theoretical format of the power curve, the real 
relationship between wind speed and power (ESTEVES et al., 2019). Equation 4 
represents this mathematically.    

 
Figure 3.2 Theoretical wind power curve. 

 

𝑃𝑃(𝑣𝑣) =  �

0,             𝑣𝑣 < 𝑉𝑉𝐶𝐶𝑖𝑖
𝑃𝑃∗(𝑣𝑣),   𝑉𝑉𝐶𝐶𝑖𝑖 ≤ 𝑣𝑣 < 𝑉𝑉𝐹𝐹 
𝑃𝑃𝐹𝐹 ,     𝑉𝑉𝐹𝐹 ≤ 𝑣𝑣 ≤ 𝑉𝑉𝑐𝑐𝑐𝑐
0,             𝑣𝑣 > 𝑉𝑉𝑐𝑐𝑐𝑐

 

 

(4) 

where 𝑃𝑃(𝑣𝑣) is the electric power generated, 𝑉𝑉𝐶𝐶𝑖𝑖 is the initial cutoff wind speed, 𝑉𝑉𝐹𝐹 
is the nominal wind speed, 𝑉𝑉𝑐𝑐𝑐𝑐 is the final cutoff wind speed, 𝑃𝑃𝐹𝐹 is the nominal 
power and 𝑃𝑃∗(𝑣𝑣) is the power related nonlinearly with the wind speed. 
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The format of the nonlinear part of Equation 4 is related to the strategy of 
controlling the maximum power extraction from the wind, which is normally 
moderated by a cubic power curve, as expressed in Equation 5, where 𝑟𝑟 is the rotor 
radius (CARRILLO et al., 2013). 

𝑃𝑃∗(𝑣𝑣) =  
1
2
𝜋𝜋. 𝑟𝑟2.𝐹𝐹𝑝𝑝.𝜌𝜌. 𝑣𝑣³ (5) 

The regions identified in Figure 3.2 are not clearly demarcated in the 
operation of the wind turbines. The corresponding wind speeds that delimit the 
regions are found from averages of repeated measurements. This is another 
limitation of this approach (CARRILLO et al., 2013; DUCA; FONSECA; CYRINO 
OLIVEIRA, 2022). 

3.3.5 
Evaluation 

The evaluation metrics adopted in this study were root mean square error 
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and 
coefficient of determination (R²). These are the most commonly used and 
recommended in the literature (AL-DUAIS; AL-SHARPI, 2023; CARRILLO et al., 
2013; DUCA; FONSECA; CYRINO OLIVEIRA, 2023; ESTEVES et al., 2019; 
HAN; YANG; LIU, 2007; JUNG; SCHINDLER, 2019; LÁZARO; YÜRÜŞEN; 
MELERO, 2022; LI et al., 2023; MURALIDHARAN et al., 2023; WANG et al., 
2019; WORTON, 1995). They measure to what extent the real (observed) power 
values differ from those predicted by the techniques used, reproducing the degree 
of dispersion between the two metrics. The RMSE and MAE are expressed per unit 
(p.u.), while MAPE and R² are expressed in percentage. Equations 6 to 9 are the 
mathematical formulas of the evaluation indices, where 𝑥𝑥 denotes the historic time 
series of generation in the wind farm and 𝑦𝑦 is the time series produced by the 
technique chosen. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ��
(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑚𝑚

𝑖𝑖=1

 

 

(6) 

𝑅𝑅𝐴𝐴𝑅𝑅 =  
1
𝑛𝑛
�|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑚𝑚
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(7) 

𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅 =
1
𝑛𝑛
��

𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖

�
𝑚𝑚

𝑖𝑖=1

 

 

(8) 

𝑅𝑅2 = 1 −
∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝚤𝚤�)2𝑚𝑚
𝑖𝑖=1

 

 
(9) 

In the first three metrics, lower values are associated with better 
performance, while for R², higher values mean a better result. 
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3.4 
Data 

In this section, we present the data used in the study and their descriptive 
analyses. 

 

3.4.1 
Wind power data  

The historical time series from the wind farms are the hours of active power 
generation and did not need treatment. There were no missing data, power levels 
higher than installed capacity, or negative power values. There were differences in 
the historical dimensions of the wind farms due to their different startup dates. The 
farms located along the coast are the oldest and have been in operation for 9 years 
and 2 months (January 1, 2013 to February 28, 2022), while those located inland 
have only been operating for 4 years and 4 months) (November 1, 2017 to 
December 28, 2022). The other data necessary to apply the method, such as the 
technical characteristics of the turbines, were obtained from the SIGEL/ANEEL 
platform (SIGEL ANEEL, 2023) and are presented in Table 3.1. 

Table 3.1 Information about the wind farms. 

Wind 
Farm 

Location 
in the 
State 

Installed 
Capacity 

(KW) 

Number 
of 

Turbines 

Total 
Height 

(m) 

Rotor 
Diameter 

(m) 

Operating 
Period 

1 Interior 31.500 15 194,00 114,00 November 1, 
2017 to 
February 28, 
2022 

2 Interior 63.000 30 194,00 114,00 

3 Coast 10.200 13 98,85 48,00 January 1, 2013 
to  February 28, 
2022  

4 Coast 48.000 60 99,60 48,00 
5 Coast 4.500 3 123,50 77,00 

 
Figures 3.3 and 3.4 depict the characteristics of the historical data on the 

active power of the wind farms. From Figure 3.3, it can be noted that the density 
curves of each region are similar. The density curves of the wind farms on the coat 
are unimodal, with a top value near 10% of installed capacity. In contrast, the curves 
of the interior facilities are bimodal, with tops at the extremes. The data on the 
interior wind farms are more variable than those on the coast, as illustrated in the 
boxplots of Figure 3.3. 
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Figure 3.3 Density curve and boxplot of the wind farms’ power data. 

Figure 3.4 presents the boxplots that indicate the generation variability 
during the different hours and months of operation. The wind farms in the interior 
have the lowest generation during the afternoon, while those located along the coast 
have highest generation during that period. Nevertheless, from a monthly 
standpoint, all the wind farms had higher generation during the year's second half, 
with peaks in August and September. 
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Figure 3.4. Boxplot of the wind power data per hour and month. 

3.4.2 
Wind turbines  

The theoretical power curve, although having well-defined regions, has 
variations at the limits of those regions according to the manufacturer’s 



56 
 

specifications. The turbine models used by the wind farms examined in this study 
are identified in Table 3.2. This information was obtained from a previous study 
(CARRILLO et al., 2013) and The Wind Power database (PIERROT EI, 2024). 

Table 3.2 Turbine models at the wind farms. 
Wind 
Farm Manufacturer Model Diameter 

(m) 
𝑣𝑣𝑐𝑐𝑖𝑖 

(m/s) 
𝑣𝑣𝐹𝐹 

(m/s) 
𝑣𝑣𝑐𝑐𝑐𝑐 

(m/s) 𝐹𝐹𝑝𝑝,𝑚𝑚á𝑒𝑒. 

1 Gamesa G114/2100 114 3,5  10  25 0,45 
2 Gamesa G114/2100 114 3,5 10  25  0,45 
3 Enercon E48/800 48 3  14  25  0,50 
4 Enercon E48/800 48 3 14  25  0,50 
5 IMPSAr IV-77-1500 77 3 13  22 0,42 

 

3.5 
Results and Discussion  

In this section, we present the results reached in estimating the power based 
on the (i) cubic power curve, which is a traditional, deterministic and parametric 
method; and (ii) our proposed method, which is probabilistic and nonparametric. 
We present it in four versions: single period, monthly, hourly and monthly-hourly. 
The difference among them consists of segregating the data according to different 
temporal approaches to apply the three steps of the method separately. To compare 
the performance of the modeling and forecasting options, we used the metrics 
RMSE, MAE, MAPE and R², all with the R software, version 4.3.0 (R CORE 
TEAM, 2018). 

To test the proposed method, we used data from five wind farms in Brazil’s 
Northeast region. The wind farm administrators supplied the time series of the 
power outputs, while the historic wind speed time series were obtained from the 
MERRA-2 reanalysis database. To adjust the wind speeds from MERRA-2 to those 
at the height of the wind farms’ turbines, we used the method described in (DE 
AQUINO FERREIRA; CYRINO OLIVEIRA; MAÇAIRA, 2022), consisting of 
interpolation, extrapolation and bias correction. 

Table 3.3 presents some of the data used and calculated in adjusting the wind 
speed time series from MERRA-2 to each wind farm’s conditions. Gruber et al. 
(2019) recommend applying the bias correction step to MERRA-2 data only when 
the INMET station is 40 km from the wind farm. Otherwise, the bias correction is 
not advisable due to the considerable distance between the station and wind farm, 
such that the INMET data may not adequately represent the real local conditions of 
the wind farm. 

Table 3.3 Data from adjusting the wind speed data from MERRA-2.  

Wind Farms Rotor Height 
(m) 

Distance 
MERRA-2 – Wind 

Farm (km) 
INMET – Wind 

Farm (km) 
1 137,00 18,64 52,97 
2 137,00 14,95 54,65 
3 74,85 3,41 19,86 
4 75,60 9,01 17,92 
5 85,00 7,61 13,49 
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   In this study, some wind farms are located further than 40 km from an 
INMET station. Aiming to analyze the impact of using these data in the bias 
correction, we performed tests with the wind speed time series with and without 
bias correction. 

The other data, such as geographic coordinates of the nearest MERRA-2 grid points 
to the wind farms and INMET stations are not identified based on a confidentially 
agreement with the wind farm operator. 

With the wind speed data, we carried out the wind power estimations using different 
techniques and approaches. The theoretical power curve method used the 
information from the manufacturer presented in Table 3.2 to delineate the regions 
of zero, constant, and variable generation in terms of the wind speed, as depicted in 
Figure 3.2. 

The modeling of the nonlinear region was performed with the cubic power 
curve presented in Equation 5, with the parameter 𝜌𝜌 set to 1160 kg/m³, as 
recommended by Silva (2003), and the 𝐹𝐹𝑝𝑝 values were adjusted to enable the 
formation of a theoretical power curve based on the other parameters of the curve 
assumed to be known and true (SILVA, 2003). The power coefficient values used 
for each wind farm are reported in Table 3.4. We compared the power outputs 
generated by the curves based on the wind speed time series with the historical 
power time series through the evaluation metrics, and the results are listed in Tables 
3.6 to 3.8. 

Table 3.4 - Turbine models adopted in this study. 
Wind Farm 1 2 3 4 5 

𝐹𝐹𝑝𝑝 0,3547 0,3547 0,2724 0,2778 0,2528 
 

Our proposed methodological innovation seeks to better estimate the power 
generated by wind turbines compared to the traditional cubic power curve approach. 
Its steps involve clusterization of the wind speeds, estimation of the density curves 
of the power generated broken down into speed range, and simulation of the power 
estimation. These steps were tested in four approaches: single period, monthly, 
hourly and monthly-hourly. 

In the first step, we grouped the wind speed data of each farm using the K-
means technique, with clusterization being performed only once with all the data in 
the single-period approach. In the monthly approach, the clusterization was carried 
out 12 times, each with the wind speed data for the respective month, while this was 
24 times in the hourly approach and 288 times in the monthly-hourly case. In all 
cases, defining the number of clusters by the elbow method was first necessary. In 
the single period approach, the number of clusters varied from 20 to 22, in the 
monthly case it ranged from 17 to 22, in the hourly case from 12 to 20, and in the 
monthly-hourly case from 3 to 14. Table 3.5 details the number of clusters used in 
each test. Irrespective of the wind farm and the steps adopted to construct the wind 
speed time series, the number of clusters defined by the elbow method for the 
application of the clusterization was practically the same, only diminishing when 
increasing the segregation of the data to apply our proposed method.   
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Table 3.5 - Number of clusters obtained by each approach. 

Wind 
Farm 

Speed 
Treatment  

Approaches of the Proposed Method 

Singular Monthly Hourly Monthly-
hourly 

 
1 

EXT 23 18-22 12-20 3-12 
INMET 20 17-22 17-20 3-11 

 
2 

EXT 20 17-21 15-20 5-12 
INMET 20 18-22 16-20 5-12 

 
3 

EXT 21 18-22 14-20 6-12 
INMET 22 18-21 15-20 5-10 

 
4 

EXT 22 18-22 13-20 6-12 
INMET 21 17-22 13-19 5-12 

 
5 

EXT 22 18-22 12-19 5-12 
INMET 22 18-22 12-20 6-12 

 

 Figure 3.5 presents the result of applying the elbow method to Wind Farm 
5 using a single period with extrapolated speed data (single-EXT) and a dispersion 
graph of the speed and power data. In the second graph, the different blue shades 
indicate the different wind speed clusters, permitting visualization of the variability 
of power levels generated in each speed range. Corresponding graphs for the other 
farms and approaches are contained in the appendix. 

 

 

Figure 3.5 Result of clusterization (Wind Farm 5). 

We then applied KDE to estimate the probability density function of the 
power values for each cluster resulting from the previous step. Figure 3.6 contains 
the PDF resulting from this step for each wind speed interval of Wind Farm 5 by 
the single-EXT approach. Note that as the wind speed values of the intervals 
increase, the peak of the density curve shifts toward the end of the interval. This 
behavior was seen for all the wind farms and approaches, and was expected since 
faster wind speeds tend to generate more energy. The figures with the probability 
distributions of all the speed ranges for all the wind farms and approaches are shown 
in the appendix. 
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Figure 3.6 Wind power density curves (Wind Farm 5). 

 It is important to mention that the KDE technique adopted in this work, 
based on Li et al. (2023) and Wahbah et al. (2019), generates probability 
distributions that can infer negative power values. Therefore, we tested other 
methods, such as KDE Beta, but the results were worse, observed by visualizing 
the graphs and the evaluation metrics.    

To emulate the variability of the behavior of a turbine in operation, we 
performed Monte Carlo simulation, which requires the wind speed time series and 
the density functions of the clusters. In applying the simulation for a single period, 
only the PDF utilized varied based on the generating wind speed cluster. At the 
same time, in the approaches with temporal segmentation, the choice of the PDF 
changed due to wind speed and instant of time for estimating the wind power.    

To measure the quality of the results, we used the metrics RMSE, MAE, 
MAPE and R² comparing to the active, historical and estimated power time series. 
To construct the estimates by the method proposed here, we generated 100 power 
time series simulations and calculated each time point's average power. The number 
of scenarios adopted was found experimentally by ceasing to increase the number 
of scenarios when no further gains were obtained based on the evaluation metrics 
(only increase in computational cost). Table 3.6 depicts the results obtained by the 
different estimation strategies, with the best result of each test highlighted in 
boldface. Note that irrespective of the evaluation metric, wind farm analyzed or 
steps adopted to construct the wind speed time series employed in the test, our 
proposed method always performed better than the cubic power curve, and the 
monthly-hourly strategy was the best in all cases. 
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Table 3.6 – Results reached by the methods according to the evaluation metrics. 

Metrics Wind 
Farm 

Speed 
Treatment 

Methods 

Cubic 
Power 
Curve 

Proposals 

Singular Monthly Hourly Monthly-
Hourly 

RMSE 

1 
EXT 0,6012 0,2315 0,2210 0,2029 0,1772 

INMET 0,4489 0,2428 0,2310 0,2032 0,1771 

2 
EXT 0,5971 0,2009 0,1892 0,1775 0,1538 

INMET 0,3224 0,2103 0,1942 0,1778 0,1538 

3 
EXT 0,1624 0,1597 0,1546 0,1559 0,1454 

INMET 0,3439 0,1713 0,1640 0,1559 0,1455 

4 
EXT 0,1590 0,1444 0,1385 0,1372 0,1249 

INMET 0,2804 0,1482 0,1416 0,1373 0,1248 

5 
EXT 0,2590 0,1580 0,1537 0,1330 0,1245 

INMET 0,2767 0,1536 0,1494 0,1330 0,1247 

MAE 

1 EXT 0,4529 0,1883 0,1784 0,1578 0,1349 
INMET 0,3697 0,1998 0,1884 0,1581 0,1347 

2 
EXT 0,4449 0,1615 0,1509 0,1382 0,1179 

INMET 0,2554 0,1707 0,1557 0,1385 0,1180 

3 
EXT 0,1245 0,1245 0,1201 0,1206 0,1112 

INMET 0,2826 0,1343 0,1276 0,1206 0,1113 

4 
EXT 0,1209 0,1118 0,1060 0,1050 0,0930 

INMET 0,2226 0,1142 0,1074 0,1051 0,0930 

5 
EXT 0,2064 0,1230 0,1186 0,1018 0,0949 

INMET 0,2209 0,1177 0,1140 0,1019 0,0950 

MAPE 

1 EXT 0,4648 0,1932 0,1831 0,1620 0,1384 
INMET 0,3794 0,2050 0,1934 0,1623 0,1383 

2 
EXT 0,4669 0,1695 0,1584 0,1451 0,1238 

INMET 0,2681 0,1792 0,1634 0,1453 0,1239 

3 
EXT 0,1249 0,1249 0,1205 0,1210 0,1115 

INMET 0,2834 0,1347 0,1280 0,1210 0,1117 

4 
EXT 0,1279 0,1183 0,1122 0,1112 0,0984 

INMET 0,2356 0,1209 0,1137 0,1113 0,0984 

5 
EXT 0,2077 0,1238 0,1194 0,1025 0,0955 

INMET 0,2223 0,1184 0,1148 0,1025 0,0956 

R² 

1 EXT -2,8184 0,4338 0,4840 0,5650 0,6682 
INMET -1,1294 0,3769 0,4364 0,5637 0,6687 

2 
EXT -3,5560 0,4842 0,5426 0,5972 0,6979 

INMET -0,3280 0,4348 0,5183 0,5961 0,6978 

3 
EXT 0,4201 0,4387 0,4744 0,4657 0,5351 

INMET -1,6019 0,3542 0,4083 0,4651 0,5343 

4 
EXT 0,2889 0,4139 0,4603 0,4704 0,5616 

INMET -1,2102 0,3825 0,4365 0,4696 0,5619 

5 
EXT -0,8726 0,3029 0,3405 0,5063 0,5673 

INMET -1,1378 0,3416 0,3772 0,5061 0,5660 
  

With regard to our proposed method, as the segmentation of the data for 
application of the three techniques increased, the simulations based on the metrics 
indicated in Table 3.6 improved, with only one exception. In the test of Wind Farm 
3 using speed EXT data, the monthly approach had better performance than the 
hourly, as identified by the four evaluation metrics.  
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Tables 3.7 and 3.8 detail the results of Table 3.6, where it is possible to see 
the behavior of the RMSE metric by month and hour in each test, respectively, and 
verify whether a trend exists other than that observed in Table 3.6. Again, the best 
performance was achieved by the monthly-hourly approach in all the wind farms in 
all months and hours. Nevertheless, in a few isolated months and hours, the 
theoretical power curve method performed better than the proposed technique, with 
single period and monthly approaches being better than the hourly approach. We 
performed all these analyses with the metrics MAE, MAPE and R²; the respective 
tables are in the appendix. The conclusions were the same as those with the RMSE.   

Concerning the impact of the evaluation metric in function of the type of 
treatment applied to the wind speed, this factor did not influence the performance 
of the new strategies presented here. It mainly did not impair the identification of 
the best approach to estimate the wind power. Thus, as pointed out in our previous 
study (DE AQUINO FERREIRA; CYRINO OLIVEIRA; MAÇAIRA, 2022), the 
wind speed time series data that only underwent interpolation and extrapolation 
(EXT) also achieved good representation of the series measured at the farms, in 
some cases better than the series that underwent the third step, bias correction 
(INMET-H). This might have happened because the quality of the correction is 
directly related to the quality and quantity of measurements supplied by the INMET 
station and its distance from the wind farm. It is not always possible to satisfy these 
factors. For example, the EXT series produced better performance at wind farms 1 
and 2, where the maximum distance requirement between the farm and INMET 
station was not satisfied. At the other wind farms, the best performance between the 
two treatment options in the monthly case was alternated. 

Figures 3.7 and 3.8 compare the behavior of the historic data of the wind 
farms with the estimates resulting from the techniques. The blue dots and lines in 
the graphs refer to historical data, while the black ones denote the estimated values. 
Figure 3.7 presents the dispersion graphs, evidencing the behavior of the power 
variable in function of the wind speed variable. From these graphs, it is possible to 
infer that the strategies described in this study managed to better replicate the 
inherent generation variability for the same speed values, with the highlight on the 
monthly-hourly proposal, which best captured the existing stochasticity. Figure 3.8 
contains the frequency polygon graphs that estimate the density curve based on the 
frequencies of the power value intervals. Once again, it can be noted that the 
suggested strategies (single period, monthly, hourly and monthly-hourly) better 
replicate the power frequencies obtained from the historical data than the cubic 
power curve.   
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Table 3.7 - RMSE attained by the methods per month 

Wind 
Farm Method Speed 

Treatment 
Month 

Jan Feb Mar Apr May Jun Jul Aug Set Oct Nov Dec 

1 

Theoretical 
Curve 

EXT 0,5298 0,4716 0,4596 0,4721 0,5240 0,5509 0,5497 0,6939 0,7611 0,7447 0,7119 0,6194 
INMET 0,3777 0,3204 0,3133 0,3549 0,4359 0,5188 0,5472 0,5663 0,5303 0,4645 0,4522 0,4353 

Singular 
EXT 0,2376 0,2327 0,2439 0,2345 0,2206 0,2288 0,2212 0,2098 0,2087 0,2328 0,2518 0,2426 

INMET 0,2477 0,2405 0,2540 0,2391 0,2280 0,2369 0,2326 0,2261 0,2231 0,2476 0,2655 0,2586 

Monthly 
EXT 0,2305 0,2145 0,2238 0,2238 0,2177 0,2165 0,1975 0,1842 0,1999 0,2320 0,2498 0,2398 

INMET 0,2399 0,2211 0,2283 0,2272 0,2246 0,2259 0,2091 0,1974 0,2102 0,2467 0,2623 0,2548 

Hourly 
EXT 0,2152 0,2208 0,2360 0,2266 0,2104 0,2084 0,2026 0,1745 0,1582 0,1775 0,1917 0,1993 

INMET 0,2146 0,2215 0,2369 0,2270 0,2104 0,2081 0,2029 0,1755 0,1590 0,1775 0,1923 0,1998 
Monthly-
Hourly 

EXT 0,2027 0,1996 0,2028 0,2020 0,1938 0,1807 0,1608 0,1361 0,1382 0,1478 0,1602 0,1779 
INMET 0,2034 0,1985 0,2025 0,2027 0,1931 0,1809 0,1600 0,1361 0,1384 0,1463 0,1598 0,1785 

2 

Theoretical 
Curve 

EXT 0,5111 0,4643 0,4494 0,4743 0,5428 0,5540 0,5620 0,7154 0,7735 0,7322 0,6850 0,5895 
INMET 0,2857 0,2441 0,2382 0,2716 0,3149 0,3645 0,3792 0,3812 0,3561 0,3374 0,3368 0,3241 

Singular 
EXT 0,2023 0,2007 0,2150 0,2075 0,1971 0,1972 0,1950 0,2018 0,1882 0,1931 0,2084 0,2019 

INMET 0,2092 0,2182 0,2367 0,2283 0,2203 0,2133 0,2070 0,2076 0,1913 0,1924 0,2008 0,1998 

Monthly 
EXT 0,1972 0,1810 0,1877 0,1869 0,1900 0,1891 0,1764 0,1763 0,1775 0,1921 0,2059 0,1998 

INMET 0,2007 0,1881 0,1946 0,2002 0,2107 0,2064 0,1899 0,1731 0,1744 0,1886 0,1978 0,1992 

Hourly 
EXT 0,1817 0,1867 0,2045 0,1966 0,1897 0,1831 0,1818 0,1731 0,1488 0,1493 0,1606 0,1705 

INMET 0,1815 0,1880 0,2055 0,1974 0,1908 0,1824 0,1821 0,1726 0,1488 0,1501 0,1606 0,1699 
Monthly-
Hourly 

EXT 0,1742 0,1644 0,1725 0,1650 0,1676 0,1606 0,1486 0,1376 0,1290 0,1227 0,1366 0,1536 
INMET 0,1739 0,1648 0,1722 0,1654 0,1685 0,1608 0,1488 0,1375 0,1299 0,1233 0,1349 0,1533 

3 

Theoretical 
Curve 

EXT 0,1368 0,1344 0,1285 0,1438 0,1588 0,1933 0,2139 0,1981 0,1851 0,1568 0,1390 0,1327 
INMET 0,2974 0,2875 0,2444 0,2534 0,2588 0,3278 0,3736 0,4292 0,4522 0,4296 0,3635 0,3277 

Singular 
EXT 0,1352 0,1344 0,1287 0,1433 0,1595 0,1895 0,1987 0,1948 0,1834 0,1572 0,1385 0,1320 

INMET 0,1434 0,1430 0,1350 0,1464 0,1584 0,1884 0,1985 0,1975 0,2081 0,1912 0,1718 0,1560 

Monthly 
EXT 0,1335 0,1321 0,1284 0,1420 0,1504 0,1796 0,1901 0,1926 0,1803 0,1472 0,1299 0,1284 

INMET 0,1417 0,1411 0,1298 0,1406 0,1441 0,1816 0,1957 0,1900 0,1951 0,1777 0,1633 0,1506 

Hourly 
EXT 0,1296 0,1282 0,1198 0,1365 0,1527 0,1856 0,1950 0,1870 0,1808 0,1583 0,1421 0,1329 

INMET 0,1302 0,1278 0,1195 0,1361 0,1526 0,1857 0,1953 0,1868 0,1812 0,1588 0,1418 0,1334 
Monthly-
Hourly 

EXT 0,1254 0,1246 0,1179 0,1324 0,1369 0,1701 0,1819 0,1783 0,1754 0,1410 0,1186 0,1199 
INMET 0,1250 0,1247 0,1181 0,1336 0,1373 0,1695 0,1828 0,1787 0,1747 0,1413 0,1186 0,1199 
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4 

Theoretical 
Curve 

EXT 0,1206 0,1165 0,1170 0,1387 0,1640 0,2044 0,2350 0,2087 0,1767 0,1393 0,1139 0,1115 
INMET 0,2468 0,2352 0,1985 0,2008 0,2040 0,2573 0,2966 0,3551 0,3755 0,3557 0,2941 0,2683 

Singular 
EXT 0,1224 0,1183 0,1123 0,1269 0,1411 0,1686 0,1852 0,1834 0,1692 0,1439 0,1186 0,1155 

INMET 0,1247 0,1219 0,1126 0,1218 0,1321 0,1583 0,1724 0,1750 0,1838 0,1711 0,1477 0,1360 

Monthly 
EXT 0,1192 0,1149 0,1119 0,1255 0,1327 0,1573 0,1751 0,1809 0,1653 0,1337 0,1099 0,1101 

INMET 0,1233 0,1209 0,1101 0,1169 0,1198 0,1498 0,1673 0,1696 0,1744 0,1586 0,1397 0,1290 

Hourly 
EXT 0,1178 0,1121 0,1024 0,1157 0,1280 0,1561 0,1677 0,1625 0,1646 0,1492 0,1299 0,1213 

INMET 0,1177 0,1120 0,1023 0,1159 0,1284 0,1562 0,1687 0,1622 0,1645 0,1494 0,1297 0,1212 
Monthly-
Hourly 

EXT 0,1114 0,1081 0,1013 0,1116 0,1114 0,1362 0,1520 0,1525 0,1582 0,1298 0,1023 0,1045 
INMET 0,1116 0,1084 0,1012 0,1116 0,1113 0,1363 0,1513 0,1528 0,1577 0,1297 0,1027 0,1044 

5 

Theoretical 
Curve 

EXT 0,1956 0,1843 0,1849 0,2150 0,2515 0,3200 0,3568 0,3349 0,3237 0,2609 0,1957 0,1915 
INMET 0,2531 0,2460 0,2060 0,1990 0,2106 0,2541 0,2920 0,3539 0,3400 0,3365 0,2965 0,2707 

Singular 
EXT 0,1470 0,1425 0,1320 0,1358 0,1459 0,1650 0,1838 0,1959 0,1867 0,1663 0,1408 0,1359 

INMET 0,1361 0,1326 0,1239 0,1277 0,1384 0,1562 0,1724 0,1878 0,1813 0,1726 0,1536 0,1420 

Monthly 
EXT 0,1454 0,1397 0,1299 0,1324 0,1384 0,1576 0,1782 0,1928 0,1861 0,1609 0,1310 0,1316 

INMET 0,1352 0,1321 0,1210 0,1214 0,1286 0,1509 0,1702 0,1818 0,1791 0,1664 0,1474 0,1390 

Hourly 
EXT 0,1267 0,1190 0,1111 0,1136 0,1243 0,1451 0,1521 0,1477 0,1474 0,1410 0,1325 0,1261 

INMET 0,1272 0,1193 0,1113 0,1138 0,1241 0,1446 0,1521 0,1482 0,1473 0,1406 0,1322 0,1261 
Monthly-
Hourly 

EXT 0,1224 0,1159 0,1088 0,1077 0,1122 0,1316 0,1448 0,1388 0,1428 0,1300 0,1139 0,1160 
INMET 0,1229 0,1158 0,1087 0,1089 0,1125 0,1312 0,1445 0,1391 0,1433 0,1297 0,1142 0,1164 

 
 
 
 
 
 
 
 
 
 

 

 



65 
 

Table 3.8 - RMSE attained by the methods per hour 
Wind 
Farm Methods Speed 

Treatment 
Hours 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 

Theoretical 
Curve 

EXT 0,8585 0,7680 0,6671 0,5637 0,4918 0,4500 0,4154 0,3856 0,3657 0,5635 0,7824 0,7139 0,5953 0,4851 0,3998 0,3363 0,3079 0,3244 0,3817 0,4410 0,7188 0,8698 0,8972 0,8661 
INMET 0,4374 0,4393 0,4426 0,4511 0,4559 0,4554 0,4679 0,5026 0,4989 0,4709 0,3822 0,2862 0,2212 0,2001 0,2161 0,2578 0,3207 0,4025 0,5509 0,6563 0,6324 0,5978 0,5377 0,4630 

Singular EXT 0,2526 0,2448 0,2342 0,2249 0,2216 0,2178 0,2123 0,2201 0,2151 0,2073 0,2269 0,2340 0,2130 0,1861 0,1640 0,1522 0,1699 0,2133 0,3110 0,3477 0,2546 0,2450 0,2467 0,2501 
INMET 0,2622 0,2565 0,2440 0,2296 0,2242 0,2181 0,2098 0,2197 0,2167 0,2307 0,1703 0,1951 0,2354 0,2357 0,2132 0,1825 0,1708 0,2090 0,3194 0,3965 0,3024 0,2669 0,2483 0,2516 

Monthly EXT 0,2290 0,2216 0,2138 0,2089 0,2098 0,2059 0,2022 0,2065 0,2016 0,1933 0,2181 0,2347 0,2196 0,1981 0,1769 0,1623 0,1684 0,2055 0,2966 0,3355 0,2504 0,2254 0,2224 0,2246 
INMET 0,2300 0,2287 0,2212 0,2128 0,2127 0,2069 0,1998 0,2043 0,2012 0,2106 0,1682 0,2017 0,2406 0,2431 0,2260 0,1937 0,1782 0,2010 0,2981 0,3729 0,2909 0,2510 0,2291 0,2240 

Hourly EXT 0,2501 0,2435 0,2297 0,2218 0,2158 0,2128 0,2032 0,2021 0,1957 0,2044 0,1549 0,1319 0,1203 0,1167 0,1259 0,1401 0,1669 0,1958 0,2237 0,2371 0,2292 0,2398 0,2463 0,2471 
INMET 0,2495 0,2415 0,2302 0,2213 0,2170 0,2124 0,2034 0,2031 0,1968 0,2062 0,1553 0,1332 0,1188 0,1184 0,1265 0,1409 0,1676 0,1957 0,2252 0,2367 0,2312 0,2389 0,2461 0,2477 

Monthly-
Hourly 

EXT 0,2075 0,1999 0,1979 0,1948 0,1980 0,1960 0,1905 0,1836 0,1806 0,1635 0,1429 0,1270 0,1168 0,1135 0,1244 0,1369 0,1571 0,1783 0,1886 0,1808 0,1811 0,2020 0,2127 0,2130 
INMET 0,2064 0,1985 0,1975 0,1948 0,1984 0,1965 0,1904 0,1842 0,1787 0,1650 0,1411 0,1262 0,1166 0,1126 0,1227 0,1370 0,1593 0,1788 0,1896 0,1817 0,1826 0,2037 0,2114 0,2099 

2 

Theoretical 
Curve 

EXT 0,8431 0,7459 0,6414 0,5348 0,4559 0,4094 0,3861 0,3728 0,3606 0,5546 0,7666 0,6952 0,5766 0,4657 0,3856 0,3273 0,2976 0,3145 0,3642 0,4365 0,7875 0,9266 0,9239 0,8679 
INMET 0,2562 0,2419 0,2759 0,3181 0,3559 0,4008 0,4365 0,4770 0,4874 0,4540 0,3340 0,2397 0,1788 0,1509 0,1545 0,1973 0,2459 0,3041 0,3744 0,3911 0,2730 0,2798 0,2423 0,3135 

Singular EXT 0,1993 0,1923 0,1829 0,1781 0,1795 0,1839 0,1901 0,2091 0,2130 0,1986 0,2091 0,2208 0,2011 0,1742 0,1536 0,1499 0,1643 0,2034 0,2590 0,2690 0,2227 0,2143 0,2066 0,2006 
INMET 0,2187 0,2111 0,2001 0,1907 0,1875 0,1967 0,2152 0,2491 0,2651 0,2639 0,1755 0,1754 0,1906 0,1986 0,1906 0,1754 0,1734 0,1876 0,2233 0,2367 0,2234 0,2261 0,2131 0,2184 

Monthly EXT 0,1813 0,1765 0,1715 0,1670 0,1690 0,1724 0,1769 0,1956 0,2004 0,1973 0,2091 0,2224 0,2078 0,1843 0,1642 0,1524 0,1562 0,1848 0,2398 0,2521 0,1963 0,1779 0,1736 0,1738 
INMET 0,1899 0,1893 0,1824 0,1764 0,1716 0,1795 0,1969 0,2288 0,2452 0,2391 0,1720 0,1805 0,1989 0,2063 0,2002 0,1808 0,1699 0,1792 0,2115 0,2190 0,1816 0,1779 0,1746 0,1804 

Hourly EXT 0,1954 0,1869 0,1768 0,1711 0,1675 0,1715 0,1747 0,1863 0,1869 0,1967 0,1608 0,1378 0,1223 0,1175 0,1214 0,1434 0,1634 0,1852 0,2062 0,2143 0,2144 0,2087 0,2001 0,1939 
INMET 0,1942 0,1878 0,1776 0,1716 0,1677 0,1710 0,1754 0,1869 0,1882 0,1972 0,1605 0,1386 0,1220 0,1169 0,1211 0,1425 0,1628 0,1851 0,2074 0,2159 0,2141 0,2100 0,1996 0,1938 

Monthly-
Hourly 

EXT 0,1643 0,1578 0,1548 0,1541 0,1534 0,1587 0,1597 0,1710 0,1744 0,1684 0,1503 0,1334 0,1211 0,1148 0,1160 0,1336 0,1453 0,1587 0,1653 0,1573 0,1587 0,1666 0,1646 0,1650 
INMET 0,1627 0,1567 0,1557 0,1545 0,1519 0,1576 0,1610 0,1709 0,1739 0,1678 0,1500 0,1321 0,1218 0,1144 0,1172 0,1326 0,1467 0,1585 0,1663 0,1588 0,1586 0,1670 0,1664 0,1650 

3 

Theoretical 
Curve 

EXT 0,1558 0,1580 0,1623 0,1659 0,1677 0,1715 0,1757 0,1831 0,1702 0,1411 0,1300 0,1377 0,1474 0,1539 0,1624 0,1662 0,1687 0,1701 0,1686 0,1698 0,1679 0,1676 0,1638 0,1606 
INMET 0,3368 0,3288 0,3262 0,3269 0,3258 0,3268 0,3156 0,2998 0,3060 0,3193 0,3316 0,3375 0,3397 0,3434 0,3512 0,3568 0,3620 0,3678 0,3688 0,3788 0,3847 0,3820 0,3672 0,3502 

Singular EXT 0,1576 0,1597 0,1642 0,1666 0,1687 0,1723 0,1778 0,1854 0,1729 0,1438 0,1309 0,1341 0,1397 0,1458 0,1537 0,1580 0,1592 0,1605 0,1570 0,1622 0,1636 0,1654 0,1620 0,1605 
INMET 0,1657 0,1653 0,1697 0,1746 0,1755 0,1780 0,1756 0,1776 0,1716 0,1625 0,1553 0,1622 0,1652 0,1725 0,1790 0,1807 0,1790 0,1740 0,1658 0,1651 0,1731 0,1770 0,1744 0,1701 

Monthly EXT 0,1457 0,1508 0,1556 0,1596 0,1605 0,1649 0,1673 0,1719 0,1602 0,1403 0,1353 0,1381 0,1453 0,1497 0,1573 0,1606 0,1601 0,1604 0,1553 0,1567 0,1556 0,1543 0,1503 0,1482 
INMET 0,1539 0,1551 0,1602 0,1654 0,1658 0,1676 0,1651 0,1631 0,1570 0,1547 0,1532 0,1645 0,1676 0,1706 0,1727 0,1739 0,1712 0,1665 0,1592 0,1640 0,1736 0,1683 0,1621 0,1580 

Hourly EXT 0,1558 0,1582 0,1616 0,1653 0,1667 0,1704 0,1714 0,1712 0,1627 0,1390 0,1290 0,1332 0,1391 0,1455 0,1531 0,1557 0,1557 0,1548 0,1508 0,1535 0,1570 0,1596 0,1612 0,1605 
INMET 0,1562 0,1581 0,1622 0,1647 0,1666 0,1701 0,1714 0,1723 0,1638 0,1391 0,1289 0,1326 0,1401 0,1453 0,1525 0,1550 0,1549 0,1545 0,1508 0,1543 0,1575 0,1605 0,1614 0,1600 

Monthly-
Hourly 

EXT 0,1422 0,1447 0,1498 0,1556 0,1545 0,1596 0,1566 0,1513 0,1423 0,1329 0,1260 0,1302 0,1355 0,1413 0,1473 0,1508 0,1510 0,1494 0,1437 0,1441 0,1449 0,1439 0,1425 0,1436 
INMET 0,1436 0,1448 0,1503 0,1561 0,1552 0,1582 0,1576 0,1499 0,1429 0,1329 0,1262 0,1303 0,1370 0,1410 0,1476 0,1501 0,1503 0,1495 0,1441 0,1453 0,1444 0,1439 0,1417 0,1438 

4 

Theoretical 
Curve 

EXT 0,1582 0,1613 0,1655 0,1686 0,1727 0,1771 0,1879 0,1928 0,1638 0,1270 0,1235 0,1324 0,1432 0,1470 0,1535 0,1529 0,1571 0,1612 0,1645 0,1643 0,1570 0,1559 0,1547 0,1557 
INMET 0,2518 0,2406 0,2374 0,2348 0,2316 0,2310 0,2298 0,2342 0,2546 0,2856 0,3045 0,3102 0,3116 0,3111 0,3127 0,3139 0,3121 0,3081 0,2988 0,3017 0,3058 0,3035 0,2871 0,2678 

Singular EXT 0,1405 0,1410 0,1437 0,1453 0,1472 0,1503 0,1588 0,1632 0,1426 0,1274 0,1254 0,1270 0,1365 0,1403 0,1474 0,1495 0,1504 0,1494 0,1445 0,1477 0,1457 0,1483 0,1450 0,1419 
INMET 0,1380 0,1360 0,1384 0,1389 0,1383 0,1400 0,1456 0,1518 0,1446 0,1583 0,1559 0,1496 0,1478 0,1500 0,1552 0,1581 0,1587 0,1568 0,1499 0,1477 0,1476 0,1527 0,1495 0,1428 

Monthly EXT 0,1251 0,1271 0,1319 0,1349 0,1357 0,1381 0,1462 0,1490 0,1287 0,1275 0,1312 0,1339 0,1414 0,1458 0,1527 0,1538 0,1527 0,1494 0,1414 0,1422 0,1367 0,1360 0,1301 0,1268 
INMET 0,1257 0,1239 0,1258 0,1272 0,1267 0,1276 0,1318 0,1373 0,1301 0,1544 0,1557 0,1519 0,1516 0,1500 0,1529 0,1525 0,1543 0,1511 0,1470 0,1485 0,1476 0,1454 0,1371 0,1300 

Hourly EXT 0,1360 0,1347 0,1369 0,1372 0,1376 0,1381 0,1441 0,1482 0,1367 0,1216 0,1195 0,1229 0,1311 0,1355 0,1407 0,1417 0,1422 0,1420 0,1378 0,1396 0,1400 0,1440 0,1422 0,1393 
INMET 0,1359 0,1345 0,1369 0,1376 0,1374 0,1383 0,1433 0,1478 0,1375 0,1223 0,1194 0,1234 0,1308 0,1349 0,1412 0,1406 0,1423 0,1422 0,1379 0,1401 0,1401 0,1444 0,1432 0,1397 

Monthly-
Hourly 

EXT 0,1169 0,1165 0,1194 0,1227 0,1205 0,1213 0,1255 0,1255 0,1187 0,1178 0,1162 0,1203 0,1273 0,1302 0,1351 0,1363 0,1371 0,1357 0,1284 0,1289 0,1257 0,1256 0,1216 0,1193 
INMET 0,1170 0,1159 0,1205 0,1224 0,1200 0,1216 0,1252 0,1265 0,1183 0,1168 0,1154 0,1207 0,1271 0,1299 0,1357 0,1359 0,1375 0,1362 0,1288 0,1290 0,1253 0,1244 0,1218 0,1193 

5 

Theoretical 
Curve 

EXT 0,2785 0,2799 0,2823 0,2850 0,2934 0,3019 0,3155 0,3085 0,2480 0,1740 0,1718 0,1869 0,1966 0,2023 0,2093 0,2177 0,2391 0,2772 0,2939 0,2866 0,2813 0,2689 0,2677 0,2706 
INMET 0,2036 0,1963 0,1951 0,1934 0,1902 0,1887 0,1941 0,2277 0,2922 0,3560 0,3822 0,3876 0,3869 0,3790 0,3668 0,3440 0,2932 0,2360 0,2177 0,2279 0,2408 0,2440 0,2301 0,2151 

Singular EXT 0,1297 0,1320 0,1357 0,1360 0,1398 0,1425 0,1541 0,1636 0,1560 0,1761 0,1864 0,1956 0,2055 0,2115 0,2098 0,1959 0,1622 0,1356 0,1296 0,1271 0,1253 0,1234 0,1220 0,1245 
INMET 0,1112 0,1123 0,1113 0,1094 0,1090 0,1114 0,1244 0,1455 0,1667 0,2182 0,2197 0,2017 0,1907 0,1837 0,1789 0,1712 0,1615 0,1682 0,1646 0,1469 0,1248 0,1173 0,1132 0,1122 

Monthly EXT 0,1229 0,1256 0,1310 0,1336 0,1356 0,1388 0,1475 0,1505 0,1434 0,1703 0,1844 0,1931 0,2024 0,2092 0,2065 0,1951 0,1587 0,1330 0,1280 0,1263 0,1231 0,1190 0,1157 0,1168 
INMET 0,1068 0,1087 0,1086 0,1071 0,1073 0,1093 0,1183 0,1329 0,1527 0,2105 0,2134 0,1972 0,1886 0,1823 0,1760 0,1673 0,1559 0,1619 0,1608 0,1483 0,1287 0,1161 0,1091 0,1074 

Hourly EXT 0,1077 0,1065 0,1084 0,1073 0,1066 0,1071 0,1190 0,1435 0,1551 0,1506 0,1467 0,1529 0,1588 0,1648 0,1674 0,1657 0,1508 0,1317 0,1201 0,1190 0,1170 0,1160 0,1118 0,1086 
INMET 0,1074 0,1067 0,1083 0,1070 0,1066 0,1071 0,1188 0,1438 0,1553 0,1499 0,1468 0,1535 0,1584 0,1649 0,1686 0,1652 0,1508 0,1321 0,1197 0,1187 0,1170 0,1164 0,1121 0,1084 

Monthly-
Hourly 

EXT 0,0999 0,1000 0,1028 0,1018 0,1007 0,1017 0,1065 0,1189 0,1296 0,1408 0,1419 0,1470 0,1523 0,1586 0,1601 0,1583 0,1427 0,1249 0,1139 0,1134 0,1100 0,1090 0,1040 0,1001 
INMET 0,1005 0,1001 0,1026 0,1024 0,1002 0,1014 0,1066 0,1192 0,1298 0,1410 0,1417 0,1475 0,1542 0,1587 0,1590 0,1590 0,1436 0,1248 0,1138 0,1127 0,1104 0,1087 0,1042 0,1011 
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Figure 3.7 Dispersion graphs of the historic versus estimated data (Wind Farm 5). 
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Figure 3.8 Polygon graphs of the estimated and historic frequency data (Wind Farm 5). 
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3.6 
Final Considerations  
 Due to the country's favourable conditions, the expanded use of renewable 
energy sources has led to the more significant insertion of wind power in Brazil. 
The greater exploitation of this energy source has posed challenges to the modeling 
and dimensioning of wind farms, because understanding the generation process is 
essential to the correct planning and operation of these facilities.  

Wind speed is the main, but not the only, input variable for wind generation, so 
modeling the relationship between wind speed and power output is essential for 
adequate provisioning. The method adopted most often is the power curve, 
especially the cubic approach. It pertains to the class of deterministic and parametric 
methods, and its widespread use is due to its simple application combined with good 
results. However, this method does not replicate the variability of the relationship 
between wind speed and power output, since in practice, a single wind speed value 
can generate more than one power value. Other drawbacks of this use are the need 
to know the air density at the wind farm and turbine height and the latter’s efficiency 
factor. These factors vary in time, and data are often absent. The theoretical power 
curve also is defined in regions other than where generation occurs, with the 
generation values being fixed and nonlinear, while in practice the regions where the 
wind passes are not well defined, and much less static. 

All these limitations motivated this work and the development of a method that can 
better replicate the variability of wind generation in function only of the wind speed, 
without the need for other data to modeling, such as climate conditions and 
technical specifications of the turbines. Our proposed method uses clusterization, 
estimation of the PDF and simulation so that it can be classified as a probabilistic 
and nonparametric technique. Its main advantage is the need only for historical data 
on wind power and speed. And even with lack of speed data, this problem can be 
overcome using MERRA-2 data. The data themselves express the variations due to 
technical factors of the wind farm and local climate conditions. The disadvantage 
is the need for measured wind generation data. In the case of new or recently 
concluded wind farms, these data are unavailable or sparse. This may not reflect 
what will happen throughout an entire year or in subsequent periods.           

To perform the tests in this study, we used information on five wind farms in 
Brazil’s Northeast region (three along the coast and two inland). The data used were 
the historical active wind power values, and since there were no specific data on 
wind speed, these values were obtained from the MERRA-2 reanalysis database. 
The results achieved are promising. According to the four evaluation metrics 
(RMSE, MAE, MAPE and R²) applied, the performance was best with the monthly-
hourly strategy, since it consistently presented the lowest values of RMSE, MAE 
and MAPE, and highest of R². In all the tests, the worst results were obtained with 
the traditional cubic power curve approach.   

Observation of the dispersion and frequency polygon graphs revealed that the new 
power estimation technique, by single period, monthly, hourly and monthly-hourly, 
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managed to replicate the generation variability pattern in relation to the wind speed, 
to enable users to properly dimension the real future conditions of their 
undertakings and the nuances of this alternative power source. In particular, the 
dispersion graphs indicated that the greater the segregation of the data used for 
application of the technique was, the better the technique managed to replicate the 
variability of the wind speed data, thus improving the results, according to all 
evaluation metrics. The polygon frequency graphs also demonstrated that the 
proposed technique replicated the probability distribution of the historic power 
series. Hence, this modeling managed to capture the profile of the wind power data 
and the stochastic behavior of the source. 

The need for measured wind speed data was one of the limitations of this study, but 
in their absence, we successfully used the MERRA-2 dataset as an excellent 
alternative. We employed two types of wind speed series from MERRA-2. The first 
was obtained from the steps of interpolation and extrapolation (EXT), while the 
second involved those two steps along with bias correction (INMET). Both types 
had good applicability in the four approaches considered. Whenever their 
performances were compared in the tests, they alternated in having the best result, 
and in some instances obtained the same result according to each evaluation metric. 
This was observed in all the tests, even when varying the evaluation metric (RMSE, 
MAE, MAPE and R²), the wind farms and the analysis details (general, per month 
and hour).     

The wind speed time series of the INMET type had low speed values so that it could 
have been underestimated after the bias correction step with data from the INMET 
station. This low estimate could be seen in all wind farms, including those where 
bias correction was recommended (farms 3, 4 and 5). This aspect could be noted 
when estimating the power by the power curve method, where in some cases we 
did not see the complete formation of the power curve and there was no maximum 
generation specified for the turbine. However, this fact did not affect the new 
method proposed in this article, since all the power possibilities are inferred from 
the wind speeds that occur. So, the method overcomes this speed underestimation 
by working with historic occurrence data.     

For future studies, we recommend evaluating this method with other renewable 
energy sources to test its efficacy, verify further clustering and PDF estimation 
approaches, and assess if there are better ways to segment the data for application 
of the new method. Considering a multivariate modeling approach, evaluate using 
other variables from MERRA-2 and wind speed to estimate wind generation. 

3.7 
Appendix A. Supplementary material 
Supplementary material (tables, graphs and codes) to this contribution can be found 
online at 
https://github.com/saulocustodio/Custodio_Cyrino_Macaira_Energy_2024_New
Method_WindSpeed_Vs_WindPower. 

 



4 
Third Contribution: Application to obtain wind speed and 
wind generation data for Brazil.   

 

4.1 
Introduction 

Brazil has a sizeable territorial extension that presents a diverse climate and 
different wind regimes. These are the primary renewable resources for wind 
generation, and their exploitation should be encouraged. To motivate financial 
incentives for the development of wind farms in Brazil, a correct measurement of 
wind generation over time is necessary for different points in the territory. For this, 
time series of wind speed and wind generation are needed. 

To encourage and assist in obtaining this data more realistically and 
appropriately for the Brazilian territory, this thesis worked on obtaining and 
validating wind speed reanalysis data and creating time series and wind generation 
scenarios representing the local conditions and peculiarities. The idea was to 
develop an application to expand and facilitate the use of the methodologies 
proposed in the first two contributions and enhance the initial objective of the thesis. 

The application was developed in Shiny, an R software package that enables 
the development of web applications.    

 

4.2 
Application 

The developed application has three tabs, as shown in Figure 4.1. The first 
tab presents the application and the material used as a base, and its content is shown 
in Figure 4.1. The second tab aims to create a time series of wind speeds based on 
the methods used in this thesis's first contribution. The third tab is intended to create 
wind generation scenarios based on the methodology developed in the second 
contribution of the thesis. 
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Figure 4.1 Application home screen. 

4.2.1 
Wind Speed 

The second tab of the "Wind Speed" application aims to provide a MERRA-
2 wind speed time series suitable for the conditions of wind farms in Brazil. The 
methodology steps for obtaining the time series consisted of interpolation and 
extrapolation, as well as the possibility or not of using bias correction. Figure 4.2 
shows the initial layout of the application in the "Wind Speed" tab.  

To perform the interpolation, the wind farm's latitude and longitude 
information is required, which must be inserted in the fields shown in Figure 4.2, 
followed by pressing the Interpolate button that identifies the MERRA-2 grid point 
closest to the geographic location of the wind farm. 
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Figure 4.2 The wind speed tab beginning. 

Figure 4.3 shows what the application screen looks like after interpolation. 
Note that the map indicates the location of the wind farm, MERRA-2 grid point, 
and the nearest INMET station, which may have its data used in the bias correction 
step. 

After identifying the historical basis for which the MERRA-2 grid point will 
be used, the period, time scale, and desired height of wind speed data measurements 
must be indicated. Figure 4.4 shows the fields where this information is included in 
the application.  

Figure 4.3 Interpolation result. 
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Figure 4.4 Extrapolation step. 

The MERRA-2 base only provides wind speed data at 2, 10, and 50 meters, 
so the extrapolation stage occurs through Hellman's power law that adjusts wind 
speeds for the reported height. The bias correction procedure using data from the 
INMET meteorological station closest to the wind farm is only carried out if the 
user chooses the option “Yes” for the question “Do you want to perform bias 
correction with INMET data?” (Figure 4.5). If you choose to perform it, you must 
also choose the type of correction by average, the default being hourly, as it is the 
one that had the best performance in the tests carried out in the first contribution 
(Figure 4.6).  

 
Figure 4.5 Bias correction step. 

 
Figure 4.6 Type of correction. 
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To apply the remaining steps of the methodology and visualize the wind 
speed time series that occurs in your wind farm, click the “Create Output” button, 
and to obtain the series in an Excel format file, simply click the “Download Output” 
button. Figure 4.7 shows the final layout that is exposed in the application. In 
addition to the graph of the evolution of the time series over time, the MERRA-2 
base used to create the output is also presented and made available for download 
via the “Download Full Dataset” button. 

  
Figure 4.7 Result from the wind speed tab. 

4.2.2 
Wind Power 

The second functionality of the application, located in the 'Wind Power' tab, 
is modeling the relationship between wind speed and the wind power of your 
turbine/wind farm, which makes it possible to project wind generation and possible 
scenarios. For its modeling, historical wind speed and power data are necessary; if 
there is no speed data, the speeds provided by MERRA-2 are used. The 
methodology adopted is the same as that presented in the second contribution: 
clustering of speed bands, estimation of power density functions, and simulation of 
wind power. 
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Figure 4.8 shows the initial screen of the third application tab, where you 
can initially load a CSV file with historical wind power data, as shown in the 
example image, and inform the capacity of the turbine/wind farm. After inserting 
the file with the historical information, it will appear next to the example image for 
the user to check the data format. The application also allows you to adjust the CSV 
file's data separator and decimal places. 

 
Figure 4.8 The wind power tab beginning. 

The user's next step is to inform whether there is a history of wind speeds 
that occurred at the turbine/wind farm, and the history must be from the same period 
as the wind energy supplied. Suppose the answer is positive in the application. In 
that case, a screen will appear, as shown in Figure 4.9, where the user must repeat 
the same procedure to include generation data, except for the wind farm's capacity. 
You will see a screen like Figure 4.10 if the answer is negative. It repeats the same 
steps in the "wind speed" tab to build the wind speed history. After the user provides 
the geographic coordinates of the wind farm, informs the height of the turbine rotor 
and whether bias correction will be used with data from the INMET station with its 
respective modality, he must click the "Create Output" button to create the wind 
speed time series of the same dimension and period as the generation data.    
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Figure 4.9 Input wind speed data. 

 
Figure 4.10 Building the wind speed data.   

With the speed and generation of data, the methodology is feasible. The user 
must select the segmentation to be adopted on the data to apply the modeling and 
press the “Apply Method” button. The data segmentation pattern is by month and 
hour, which was the best result in the work presented in the second contribution. 
This step in the application is represented in Figure 4.11, and in Figure 4.12 are the 
results achieved by applying clustering methods, density curve estimation, and 
simulation.  
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Figure 4.11 Application of the methodology. 

In Figure 4.12, you can see the number of clusters adopted in each data 
segmentation and how the data was dispersed by cluster, how the wind power 
density curve was estimated for each cluster and the comparison of the historical 
generation with generation estimates simulated through scatter plots and frequency 
polygons. 
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Figure 4.12 Result of modeling the relationship between wind speed and wind generation.  

To project wind generation and its possible scenarios, it is necessary to 
provide a wind speed projection that will be applied in the modeling developed. 
Figure 4.13 shows the location in the application where the wind speed projection 
must be inserted. As in Figure 4.9, the application shows an example of how the 
CSV file should be created to be inserted and allows it to be viewed after insertion, 
in addition to adjusting the formatting of data separation and decimal places. Once 
the data has been entered correctly, define the generation scenario number you want 
to create and click the “Create!” button. After the end of the process, a line graph 
will be presented with the scenarios and the future estimate of wind generation, 
which is the average of the scenarios (Figure 4.14). The app also allows you to 
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download this information; select the estimated items you want and click 
“Download!” an Excel file with these results will be downloaded. 

 

 
Figure 4.13 Final screen with scenarios and average estimated generation time series. 

Figure 4.14 Final screen with scenarios and average estimated generation time series. 
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4.3 
Conclusion 

The application was developed without any commercial purpose, solely to 
facilitate and encourage studies on wind generation in Brazil by companies, entities, 
and researchers. It also facilitates and expands access to MERRA-2 wind speed 
reanalysis data, as users often present some barriers to extracting and manipulating 
this data directly from the MERRA-2 base. In addition, it presents the advantage of 
providing processed data with a focus on the reality of the Brazilian territory. 

It provides easy access to the methodologies created in this thesis, enabling 
researchers to replicate these studies and apply them in their studies, thus enabling 
comparative work on methods and the continuation of studies. 
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5 
Summary of contributions and avenues for future research  

This thesis comprised three contributions involving the promotion of the 
exploration of wind generation in Brazil, which are found in Chapters 2, 3, and 4. 
The first study aimed to overcome the need for measured wind speed data for the 
Brazilian territory because it is the primary resource for estimating wind generation 
potential. As an alternative, reanalysis data was suggested; thus, the first work 
validated the MERRA-2 wind speed time series representativeness for points and 
areas in Brazil. Verifying that this adequacy increases as the MERRA-2 time series 
is used on larger temporal scales and to represent occurrences in larger areas. 

The second work sought to develop a model of the relationship between 
wind speed and output power in wind turbines. The premises of this modeling were 
that it should be adaptive to different wind regimes and present only the wind speed 
variable as input to have a robust but simplified model. The solution created met 
expectations with a non-parametric and non-deterministic model, which only 
requires historical wind speed and wind generation. 

The third contribution consisted of developing an application to make the 
methodologies developed in previous works available. The web application was 
created to facilitate and democratize access to tools that help entrepreneurs, 
institutions, and researchers. It helps obtain wind speed data and provides wind 
generation scenarios for locations of interest in the Brazilian territory. In addition 
to enabling researchers to develop their work and compare their results with those 
of the methodologies of this thesis. 

With all these contributions related to wind generation, it is expected that 
the products of this thesis can serve as an alternative to feed the Brazilian energy 
optimization models, NEWAVE, DECOMP, and DESSEM, that encourage more 
studies related to wind energy and imply greater efficient resource exploitation.  

In terms of future work, it is hoped that the thesis will encourage other 
researchers to develop similar studies for other sources of renewable resources. 
Develop a comparative study between the ERA5 and MERRA-2 reanalysis bases 
about the quality of representativeness of wind speed data and others in the 
Brazilian territory at different temporal and spatial scales to verify whether the same 
base is better in all conditions and locations and, if not, whether the shortest distance 
from the geographic coordinates of the measured data and the grid point of the 
reanalysis base leads to the best result. Investigar o uso de métodos não lineares 
e/ou não gaussianos para melhorar esta proposta e prever e simular dados de 
geração a partir da velocidade do vento ou de outras fontes.
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