
Fernando Antonio Dantas Gomes Pinto

Compliance Reasoning on Legal Norms: a
logic-based approach

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em In-
formática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências – Informática.

Advisor: Prof. Edward Hermann Haeusler

Rio de Janeiro
April 2024

Fernando Antonio Dantas Gomes Pinto

Compliance Reasoning on Legal Norms: a
logic-based approach

Thesis presented to the Programa de Pós–graduação em In-
formática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências – Informática. Approved by
the Examination Committee:

Prof. Edward Hermann Haeusler
Advisor

Departamento de Informática – PUC-Rio

Prof. Sérgio Lifschitz
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Profa. Fernanda Araujo Baião
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Prof. Altigran Soares da Silva
UFAM

Prof. Bruno Lopes Vieira
UFF

Rio de Janeiro, April 26th, 2024

All rights reserved.

Fernando Antonio Dantas Gomes Pinto

Has a Bachelor’s Degree in Informatics from Cesmac (Ala-
goas) and an MSc in Computational Knowledge Modeling at
the Federal University of Alagoas (UFAL) as well, specializ-
ing in Theory of Computation and Logic, more specifically in
SAT Solvers and description logic.

Bibliographic data
Pinto, Fernando Antonio Dantas Gomes

Compliance Reasoning on Legal Norms: a logic-based
approach / Fernando Antonio Dantas Gomes Pinto; advisor:
Edward Hermann Haeusler. – 2024.

116 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática – Teses. 2. Auditoria Legal. 3. Ló-
gica Descritiva. 4. iALC. 5. Raciocínio Legal. 6. SAT
Solver. I. Hermann Haeusler, Edward. II. Pontifícia Universid-
ade Católica do Rio de Janeiro. Departamento de Informática.
III. Título.

CDD: 004

Acknowledgments

I would like to express my deep gratitude to everyone who contributed
to completing this thesis.

Firstly, I thank my family. To my wife, Simone, and my children,
Fernando and Sofia, for their patience, understanding and unconditional love.
This was a difficult period, as I was away from you for some time, and I thank
you for all your support, even from a distance. To my mother, Mary Stella, and
my sisters, Aurelina and Juliana, for always believing in me and encouraging
me to move forward, even when my presence at family events was sacrificed in
favor of my dedication to my doctorate.

To my advisor, prof. Edward Hermann Haeusler, I express my immense
gratitude for all the teaching, patience and friendship. I am grateful for the
valuable moments we spent together, from the coffees where we exchanged
ideas to the crucial guidance fundamental to completing this work.

To my friends at TecMF, I would like to thank you for the good times we
shared in our weekly meetings. During this challenging journey, your company
and camaraderie were essential to maintaining motivation and balance.

To all of you, my sincere thanks.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001.

Abstract

Pinto, Fernando Antonio Dantas Gomes; Hermann Haeusler, Ed-
ward (Advisor). Compliance Reasoning on Legal Norms:
a logic-based approach. Rio de Janeiro, 2024. 116p. Doctoral
Thesis – Departamento of Informatics, Pontifícia Universidade
Católica do Rio de Janeiro.

Ensuring that a knowledge base with public administration acts contains
only facts in accordance with its legislation becomes a challenge for any
public manager. To achieve this, given the large volume of data generated by
public companies, it is necessary to apply technological resources that assist
in the process of analyzing the compliance of these acts. This work presents
a computational architecture capable of extracting information published in
official gazettes and then serializing it into two knowledge bases, RDF/XML
triples of facts and RDF/XML triples of rules formalized in iALC logic, an
intuitionistic description logic. To ensure the consistency of this knowledge
base, a SAT Solver for iALC was developed in the form of an intuitionistic
semantic tableau. An extension of the first-order intuitionist tableau presented
by Fitting (1960). This SAT Solver is part of a module that generates models
and counter-examples for rules formalized in iALC and generates a preliminary
query code in SPARQL. This approach allows infer and certify the quality of
the data available in the RDF/XML knowledge base of facts. To guarantee the
quality of our SAT Solver, we carry out the soundness proof of its rules. To
ensure the quality of our logical approach, we built a set of 21 Competency
Questions and applied our tool. The results of this case study showed our
approach’s effectiveness and efficiency.

Keywords
Legal auditing; Description Logic; iALC; Legal Reasoning; SAT Solver.

Resumo

Pinto, Fernando Antonio Dantas Gomes; Hermann Haeusler,
Edward. Raciocínio de Compliance sobre Normas Legais:
uma abordagem baseada em lógica. Rio de Janeiro, 2024. 116p.
Tese de Doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Garantir que uma base de conhecimento com atos da administração
pública contenha apenas fatos em conformidade com sua legislação torna-se
um desafio para qualquer gestor público. Para isso, dado o grande volume
de dados gerados por empresas públicas, faz-se necessário o emprego de
recursos tecnológicos que auxiliem o processo de análise de conformidade
destes atos. Este trabalho apresenta uma arquitetura computacional capaz de
extrair informações publicados dos diários oficiais e então serializá-los em duas
bases de conhecimento: triplas RDF/XML de fatos e triplas de RDF/XML de
regras formalizadas em lógica iALC, uma lógica de descrição intuicionista.
Para garantir a consistência desta base de conhecimento, foi desenvolvido
um SAT Solver para iALC em forma de tableau semântico intuicionista.
Uma extensão do tableau intuicionista de primeira ordem apresentado por
Fitting (1969). Este SAT Solver faz parte de um módulo que além de gerar
modelos e contra-exemplos para as regras formalizadas em iALC, também
gera um código preliminar de consultas em SPARQL. Esta abordagem permite
inferir e certificar a qualidade dos dados disponíveis na base de conhecimento
RDF/XML de fatos. Para garantir a qualidade do nosso SAT Solver, fizemos
a prova de soundness das suas regras. Para garantir a qualidade da nossa
abordagem lógica, construímos um conjunto de 21 Questões de Competência e
aplicamos à nossa ferramenta. Os resultados deste estudo de caso mostraram
a eficácia e eficiência da nossa abordagem.

Palavras-chave
Auditoria Legal; Lógica Descritiva; iALC; Raciocínio Legal; SAT

Solver.

Table of contents

1 Introduction 11
1.1 A framework vision 15
1.2 The Formal Definition of the Framework 16
1.3 Computational Complexity 18
1.4 Abstraction of nonconformity detection 18
1.5 Previous Results of Architecture 19
1.6 Organization of Chapters 20

2 Architectural Design for Reasoning 21
2.1 Related Works 21
2.2 Architectural Design 23

3 Legal Extraction and Normalization Module (ENM) 25
3.1 Well-Formatted Document 25
3.1.1 Syntactic structure of the law 27
3.2 Lexical and syntactic analysis 28
3.3 Related Works 28
3.4 Official Gazette Grammar 29
3.5 Official Gazette Patterns 31
3.6 ENM Modules 31
3.6.1 The Encoding Process 33
3.6.2 The Audit File 34
3.7 Evaluation and Results for ENM 35
3.7.1 Scope 35
3.7.2 Results 36
3.8 An Alternative with Machine Learning 38
3.8.1 Results 39

4 Formula Generator Module (FGM) 41
4.0.1 FGM Modules 43
4.1 From Law Text to ASTs 44

5 Knowledge Base Reasoner Module (KRM) 47
5.1 KRM Modules 47
5.2 Logical-base components 48
5.3 The Tableau System for iALC 52
5.3.1 Related works 56
5.3.2 iALC Tableau Rules 56
5.4 Main Properties 58
5.4.1 Soundness 58
5.5 Reasoning in iALC tableau calculus 62
5.6 The KRM Machine 63
5.6.1 The KRM Kernel 64
5.6.2 The Model and Counter-model Logs File 67

5.6.3 From Counter-model to SPARQL 68
5.6.4 The KRM Solver Application 73

6 Evaluation and Results 76
6.1 Reasoner Evaluation 76
6.1.1 Scoping 77
6.1.2 Planning 77
6.1.3 Operation 80
6.1.4 Analysis and Interpretation 88

7 Conclusion and Future Works 90

8 Appendix 103

List of tables

Table 3.1 Regular expression pattern for the employee “Nomear” act. 32
Table 3.2 Result between the two techniques. 39
Table 3.3 Preprocessing experiments time. 39

Table 5.1 Some general guidelines for transforming iALC to a
SPARQL query. 72

Table 6.1 Summary of correct and incorrect CQs. 88
Table 6.2 Query coverage summary. 88
Table 6.3 KRM SAT Solver Accuracy. 89
Table 6.4 KRM Query Coverage. 89

Truth is the daughter of time,
not of authority.

Francis Bacon, Novum Organum.

1
Introduction

Law, in Latin legere, means “that which is read”, is a set of legal rules
(also known as “legal norms”) constructed by a legislative entity. These legal
norms aim to impose a series of rules that guide our behavior in social,
economic or political activities. When this obligation is not practiced, the
company or citizen may have penalties or sanctions.

Within our legislation, there is a set of laws that regulate and control
public activity. Here, this concept of regulation and control can be interpreted
as a set of laws that govern public administration itself. Each federative entity
(municipal or state) has its own set of laws and this capacity for self-regulation
makes public companies environments of complex inspection. For the public
manager, the problem resides precisely in this complexity in supervising the
application of his acts, if they are in accordance with the law. Often, the
excess of laws and the large number of public acts make it difficult to comply
with legislation. But then, in an environment with so many laws and legal
relationships, how can non-compliance be monitored?

In this sense, we can say that effective public management requires the
implementation of public management computational mechanisms that help
the compliance of its processes. In this work, the concept of compliance is
directly linked to the aspects of complying with laws, and our objective is
to prevent the public manager from committing crimes against the public
administration. Consequences for non-compliance include fines, sanctions, and
lawsuits.

The auditing is an important activity that aims to help organizations
improve their internal processes. Unlike private companies, public auditing
is governed by legal instruments that try to minimize the impact of non-
compliance with legislation.

Based on what has been said, the government has been trying to
implement for new audit models in public companies. Unlike carrying out
the audit itself, it transfers this activity to society. An example of this is the
participation of society in government decisions based on the analysis of public
data available on the Internet. Social participation in accessing these data was
already foreseen since the 1988 constitution, but limited to the Information

Chapter 1. Introduction 12

Communication Technology (ICT) tools available at that epoch.
According to the Federative Constitution of Brazil [1], in its Art. 5,

item XXXIII, it is said that every public department is obliged to provide
information generated by its activities to the individual with particular or
collective interest. This law punishes the manager who does not comply with
such access within the deadlines required by this law.

Only in 2011, given the great social demand for public transparency, did
the federal government draft the Access to Information Law (LAI) [2], causing
debates on the treatment and how to make this information accessible on the
Web.

Even with all the government’s efforts to make information available, we
know that a large amount of information is not available for online access.
To minimize this limitation, many governments have published a large list
of official gazettes in digital format how another way to promote public
transparency.

Official Gazette is a legal document for use by the administration to
make its actions transparent to society, making its actions public. According to
Art. 37 of the Constitution, the Brazilian public administration is supported
by 5 legal principles: Legality - all public acts must be guided by the law.
Impersonality - personal interests cannot override the public interest, and
state power cannot be used for personal gain either. Morality - Public servants
and other State workers must follow ethical and moral standards. Publicity -
all acts of public administration must be done with the knowledge
of the population, that is, they must be publicized so that everyone is aware.
Public documents need to be accessible to everyone. Efficiency - the service
provided by the public administration needs to be efficient, having the best
result at the lowest possible cost and in the fastest way, always aiming at
quality.

Thus, given what has been presented, we chose the official gazette as the
main source of public data. All laws and legal statements are available across
the various sections of this document.

During our research, we observed that the official gazette consistently
exhibits a well-structured format across its various sections, adhering to a
consistent writing pattern. We found that this characteristic is supported
by a regulation that defines formatting rules for the construction of laws.
Indeed, a Brazilian normative text can be viewed as a well-formed structural
publication, akin to a template. This structure, which is evident, resembles
a formal syntactic structure. An attempt to standardize legal texts can be
seen in laws [3] and [4]. This standard mandates that public managers, when

Chapter 1. Introduction 13

publishing an act, must write the text following this template.
For this work, a Statement is any administrative act document from

any public authority, containing instructions regarding the application of laws
such as service execution standards, appointments, dismissals, punishments,
or any other determination within its competence. We will analyze its several
syntactic structures from a formal perspective. We will try to capture the
propositions present in the text of the law and its correct application in
accordance with the legal act. According to [5, p. 4], the legal norm works as an
interpretation scheme, that an act of human conduct, the result of a normative
interpretation, constitutes a legal act that can be valid or invalid.

To illustrate what is presented, Figs. 1.1 and 1.2 are cases extracted
from an official gazette (hypothetical example) where a legal statement does
not comply with the legal norm. In this case, a public servant could not
be in a commissioned position (“ASSESSOR III”) and a gratified function
(“ASSISTENTE II”) simultaneously. In this case, there was no exoneration
for these positions. Basically, the objective is to identify these cases of non-
compliance when they are published in the Official Gazette.

Figure 1.1: Legal statement for a commissioned position.

Figure 1.2: Legal statement for a gratified function.

When improperly holding multiple public positions, a public employee
faces not only disciplinary proceedings that may lead to dismissal but also
may be subject to judicial proceedings for administrative misconduct. Admin-
istrative misconduct entails illegal acts committed by public officials while
performing their duties within the Brazilian public administration.

Ensuring that a knowledge base with public administration acts only
contains acts in accordance with its legislation becomes a challenge for any

Chapter 1. Introduction 14

public manager. To achieve this, given the large volume of data, it is necessary
to employ technological resources that assist in this compliance process.

Hence, the objective of this research is to define a logical archi-
tecture capable of extracting legal representations from the Official
Gazette and describing them as formulas of the intuitionistic descrip-
tive logic (iALC), as well as making inferences capable of looking at
situations of non-compliance with the law, represented by the subset
of legal norms of interest.

This activity of inferring the validity of legal statements means verifying
their subordinate relationship with the laws that govern them. As presented
in the introduction, this type of analysis is not a trivial activity. In the more
traditional settings, the literature reports the use of deontic logic to formalize
the normative aspects of legal knowledge. In previous works [6], the authors
showed how iALC logic avoids some Contrary to Duty paradoxes, such as
Chisholm’s paradox, the good Samaritan, among others, when the law is
formalized in deontic logic.

An important concept in [6] is Valid Legal Statement (VLS) as a
single norm (regulate something). However, we recommend [7] for a better
explanation.

Figures 1.3 and 1.4 promote a general understanding of our proposed
architecture.

Figure 1.3: Overview of architecture propose.

Figure 1.3 shows the main object of this thesis. Basically, the audit unit
infer and validate the facts (the VLSs) in accordance with the legislation (law).

Figure 1.4: The execution flow of the inference process.

Chapter 1. Introduction 15

Figure 1.4 shows the functional flow of the audit process. An expert will
formalize the audit functions in the formula iALC. Therefore, this formula will
be available for a new tableau system developed for iALC. Then, based on
the hypothetical counter-examples generated in the tableau inference process,
SPARQL queries will be built to detect non-compliance in the real facts
knowledge base.

This architecture can now extract information from well-structured gov-
ernment acts in the official gazette, such as the acts shown in Figures 1.1
and 1.2. In addition to this resource, we will propose a mechanism that uses
attribute grammar to build basic formulas in iALC composed only of termi-
nological concepts from this logic. And finally, we will present our inference
system as an intuitionistic tableau for this logic. As stated before, its scope is
reduced to inference in formulas composed only of terminological concepts.

1.1
A framework vision

An important contribution of this thesis is the definition of a framework
capable of facilitating the audit process in different knowledge bases from
different domains. Its architecture can generalize communication between a
logical theory and its class of models (databases), 1.5, providing a formal
generic infrastructure for validation in information systems.

Figure 1.5: Class model framework.

Therefore, limiting the scope of the theory to just TBox results in a
significant gain in computational complexity by reducing the range of problems
to be solved to those that are verifiable in polynomial time. Focusing only
on NP-Complete problems simplifies the analysis and solution of problems,
ensuring that they are tractable in terms of execution time, even if they may be
difficult to solve. This restriction allows for more efficient use of computational

Chapter 1. Introduction 16

resources, as it avoids the need to consider problems that require polynomial
space, which can be more expensive in terms of memory usage.

As a Two-tiered KB Framework, we consider a Knowledge Base with a
Model representing Data, also named KB with Data, as a pair (A, Q) where A

is a theory presentation, i.e., a set A of formulas of some logic LT , representing
the theory CnLT

(A), and Q is a model in LM , where LM is the logic where the
models come from. Q is a model of A, i.e. Q ∈ Mod(A). Cn(A) is the usual
logical consequence operator.

We do not need to formally specify Cn since we consider the mappings
Mod and Th. To be more flexible, we might consider a mapping ϕ from non-
logical languages in LM to non-logical languages in LT and the condition
ϕΣ(Q) ∈ModΣ(A).

We also need a validation procedure PT that, whenever we give a Σ-
formula1 α from LT , PT verifies whether A ∈ Cn(Σ)(A) or not, providing the
counter-examples belonging to the set CET ,if A ̸∈ Cn(Σ)(A). CET is the set
of all counter-examples to formulas in LT .

To complete the formalization, we need a mapping qΣ from CET into
queries (formulas with free variables in LM) over Q, such that, for each
γ ∈ CET (A, α), qΣ(γ) ̸⊆ Q. The framework is then formed by ⟨(A, Q), PT , qΣ⟩
We formally describe in the Section 1.2.

1.2
The Formal Definition of the Framework

We might use a general or abstract concept of logic or logical systems.
This research subject starts with institutions introduced by in [8] to define the
notion of logical systems and other concepts such as abstract logic, as defined
by [9]. It strongly uses Category Theory. Due to this and to better clarify
our framework, we will consider the equivalent definition of the S-entailment2

frame, defined below in a distilled version. We refer to [10], theorem 4.6, to
verify that this notion is equivalent to other general and abstract logic notions
in the literature.

Definition 1.1 (S-Entailment Frame). An S-entailment frame L is the
5-tuple (Sign, T ,M, Mod, Th), such that Sign is the category of signatures or
non-logical languages, T is the pre-ordered set of theory presentations, ordered
by set inclusion, M is the pre-ordered set of L-models, ordered by the sub-
model relationship, such that, Mod : T −→ M and Th : M −→ T are
anti-monotone functions, for each i ∈ Sign, satisfying:

1Formulas written in the non-logical language of LT .
2The prefix S comes from the Set Theoretical Entailment Frame.

Chapter 1. Introduction 17

If ϕ : Σ1 −→ Σ2 is a map between signatures, then the following
diagram commutes.

Σ1

ϕ

��

M(Σ1) ⊥
T h(Σ1)

//

M(ϕ)
��

T (Σ1)
Mod(Σ1)oo

T (ϕ)
��

Σ2 M(Σ2) ⊥
T h(Σ2)

// T (Σ2)
Mod(Σ2)oo

The logical consequence operator is defined as Cn(Σ)(∆) =
T (Σ)(M(Σ)(∆)). A Σ-formula is any formula written in a non-logical language
Σ ∈ SignLT

.
We consider a pair of logics, or entailment frames as above, LT and LM

used to express the theoretical and the model-based parts of the KB with
data-model, and a logical mapping ϕ from LM to LT , between S-entailment
frames3, to link LT theories and LM models. Any pair (A, Q), where A ∈ T (Σ)
and Q ∈M(Σ) that satisfies property 1.2 for some Σ ∈ SignLT

is called a KB
with model data based on LT and LM .

Given an (A, Q) KB with model data, a validation procedure PT is
an algorithm that, if we give a Σ-formula α from LT , PT verifies whether
A ∈ Cn(Σ)(A) or not, providing some counter-examples belonging to the
set CET , the set of all counter-examples to formulas in LT . To complete the
picture, we have a mapping qΣ from CET into queries (formulas with free
variables in LM) over Q, such that, for each γ ∈ CET (A, α), qΣ(γ) ̸⊆ Q.

Given LT and LM , S-entailment frames, and a logical map ϕ from LM

to LT , we say that the pair (A, Q) satisfies the coupling Theory-Data in a
signature Σ ∈ SignLT

, iff, ϕΣ(Q) ∈ModΣ(A) holds.
The framework for KD with data models, i.e., KB with DM, is then

formed by ⟨(A, Q), PT , qΣ⟩, for some Σ ∈ SignLT
.

The first result within our framework for KB with DM is the theorem
below that ensures whenever we have that property 1.2 holds for every
signature Σ then the underlying function of the algorithm PT is correct, what
remains to have a framework is the effectiveness of this function. However, this
is not always the case since LT may not be decidable.

Theorem 1.1. Given a class of frameworks, ⟨(A, Q)Σ, (PT)Σ, qΣ)⟩Σ∈Sign, such
that, for each Σ ∈ Sign, ⟨(A, Q)Σ, (PT)Σ, qΣ)⟩ satisfies property 1.2, then for

3The S-specialized form of mapping of entailment frames, see [10].

Chapter 1. Introduction 18

each Σ ∈ Sign the underlying function of (PT)Σ, is correct, i.e., the mapping
qΣ maps counter-examples in LT to counter-examples in LM , via queries.

The whole toolbox defined in [10] can be used to detail4 the KB theory
with data models. However, this is out of the scope of this article, which aims
to present these concepts only to show the relevance of their instantiations.

1.3
Computational Complexity

Another important contribution is the decrease in the computational
complexity. Ontologies and OWL-based Semantic Web Technologies use TBox
to represent the theoretical assertions and formalization of the domain-specific
ontology. The model-based assertions are formalized using nominals in the
ABox. We know that the computational complexity of TBox reasoning in the
acyclic case is PSPACE-complete and, with the general case, is EXPTIME-
complete and hence intractable, see [11] for the details cited here. There is a
jungle of fragments of Description Logic with different complexities. Anyway,
when considering only the validation in the TBox, i.e., with theoretical
assertions only, the complexity is smaller than the overall complexity of
TBOX+ABOX, for obvious reasons5. So, as is almost always the case in the
practical validation of ontologies, this union-only way of integrating model-
based and theoretical assertions is not very efficient. Since 2013, the usual way
of dealing with ABox reasoning has been quite similar to FOL; the TBox is
instantiated with the elements in the ABox, producing a greater TBox, and the
validation goes on this new TBox. It is pretty much like checking satisfiability
in first-order logic.

1.4
Abstraction of nonconformity detection

In context of inferring logical formulas and analyzing compliance with
norms, it is essential not only to infer conclusions from these formulas but
also to identify counter-examples on the database of facts that contradict
these conclusions. Mapping these counter-examples into SPARQL queries by
this framework is a crucial step for the analysis and validation of represented
knowledge. Formally, this mapping can be defined by the function,

Mapping : C → Q

4This is the aim of a forthcoming article.
5The size of the TBox+ABox is strictly higher than the TBox only

Chapter 1. Introduction 19

where Mapping(C) is a function that maps the counter-model resulting from
the inference process C into SPARQL queries Q.

Finally, the framework is capable of extracting real cases of nonconfor-
mity in the fact database. Formally, this audit mechanism can be defined as
the function,

Auditing : Q× F → R

where Auditing(Q, F) is a function that, given the SPARQL queries Q

and the knowledge base of facts F , extracts information R that contradicts
the rules defined by the logical formulas.

This mapping to SPARQL, which can extract inconsistencies in an RDF
fact base, is one of the basic features of this framework. By implementing this
process, from a business audit perspective, we can detect and try to correct
inconsistencies, standards violations, or compliance issues in systems based
on formalized knowledge, thus contributing to more effective governance and
informed decision-making.

Thus, this proposed framework has potential applications, including:

– General application for other data models and considering other theories
and knowledge bases that could allow other interesting studies inferences.

– Specific verification of legal compliance in corporate governance systems.

– Specific detection of security breaches in information systems.

– Risk analysis in industrial and operational processes.

1.5
Previous Results of Architecture

During the research, four articles were produced in trying to explain
our approach. Firstly, in [12], we introduced the extraction information on
the official gazette with regular expression patterns. The second paper [13]
presented a combined approach with regular expressions and PEGs. In the
third paper [14], we extended the scope to the auditing process on other 5
cities, and finally, the fourth article [15] showed a benchmarking of public
information extractions between Machine Learning and Regular Language. In
this work, we compare machine learning (ML) and rule-based approaches to the
task of recognizing legal entities in the official gazette. We built an annotated
dataset with 100 examples of legal documents and submitted this model to an
evaluation in IBM Watson Knowledge Studio (WKS) [16]. In a scenario where

Chapter 1. Introduction 20

documents follow a formal structure, we show that rules-based information
extraction systems still present themselves as low-cost, more uncomplicated,
and more efficient solutions.

1.6
Organization of Chapters

This document is organized as follows. Chapter 1, this introduction
presents our research motivation as well as the challenges of developing this
architecture. Chapter 2 shows the architecture for reasoning on legal norms,
detailing the functionality of the components and their interactions. Chapter 3
shows the Legal Extraction and Normalization Module (ENM), a component
capable of reading VLSs in the Official Gazette and serializing them into RDF
triples. Chapter 4 shows the Formula Generator Module (FGM), a component
capable of recognizing the constituent terms of legal norms and generating
iALC formulas. Chapter 5, the major contribution of theses. We show our
tableau system of iALC how engine for reasoning on legal norms. Still in
this chapter, we show the solidity properties as proof of the quality of our
SAT solver for iALC. Chapter 6, the evaluation and results, we carried out an
experiment on the KRM module to evaluate two metrics: accuracy and query
coverage. To achieve this, we built a set of competency questions with legally
based iALC formulas. We discussed the results. Finally, Chapter 7 summarizes
our contribution and discusses future work. We also produced an appendix with
a) competency questions; b) the grammar (ANTLR) of the iALC language;
c) an algorithm that calculates the accuracy of the experiment; and d) the
soundness proof of the algorithm that implements the calculi system of the
iALC tableau. We can also see the detailed result of the experiment in the
document available in the Experiment Report link6. In this report, there are
for each competency question a)the proof tree images; b) the model or counter-
example; c) the reference proof tree (proof tree developed manually); d) the
SPARQL query generated by the tool. e) the RDF used in the experiment; f)
the result set of executing the query in the RDF database.

6https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-
V1rMzcjX/view?usp=drivelinke

https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke

2
Architectural Design for Reasoning

Currently, given advances in information management technologies, au-
diting systems are representatives in the most diverse business domains. A
simple search on the Internet, for terms such as “auditing” or even “audit-
ing systems”, shows us how common it is to use these systems to evaluate
processes, checking whether the performance of routine functions is in accor-
dance with the objectives, policies institutions, legislation, norms and required
standards.

There are several applications of formal logical theories to the representa-
tion of legal rules, where the emphasis is on the representation and the (legal)
conclusions arise from this representation through a process of deduction. For
example: application of legal rules in unforeseen scenarios, interpretative rea-
soning according to the facts of a legal case, evidentiary reasoning to establish
the facts of a case, formal models of legal procedures and multi-agent interac-
tion in legal proceedings [17].

In this chapter, we will show the proposed architectural component
system for our public data knowledge base auditing tool. The purpose of
a system architecture is to create a conceptual structure that provides an
overview of the system’s functionalities before the construction process begins.
This is a crucial element in software development, in which a model is
established, defining the system components and their interactions [18, p. 253].

In this sense, this architectural project is the first step in the process
of developing our tool, being the link between the project and the technical
specifications that identify the main structural components. Therefore, this
architectural project aims to present how the main processing units (compo-
nents) are organized and their integrations.

2.1
Related Works

As presented in the previous chapter, there are different approaches used
in audit systems. In this section, we will emphasize works involving automatic
reasoning using knowledge representation language for business process audit
tasks. Thus, we use the phrases “architectures for Knowledge Represen-

Chapter 2. Architectural Design for Reasoning 22

tation and Reasoning (KRR) 1 on legal norms”, “Legal Knowledge
Based Systems” and “Legal Knowledge Information Systems” as keys
in the search process for related works. According to [20], the idea of knowl-
edge representation, in the context of artificial intelligence (AI), is the ability
to write representations of a world, in such a way that a machine can reach
new conclusions about this world, manipulating these symbolic representa-
tions. Therefore, in the next works presented, we will find the application of
some technique that uses some logical language as an inference mechanism
(reasoning) on these knowledge representations.

We were unable to obtain more details about these tools because they
are commercial industry products. Consequently, their investigation became
restricted.

ClauseMatch: This system is capable of automatically comparing clauses
and provisions in legal documents (contracts), identifying discrepancies
and ensuring that they comply with current legislation. As it is a private
property system, we did not have access to the theories applied to its
solution.

Compliance.ai: Compliance.ai is a platform that uses artificial intelligence
to monitor and analyze regulatory changes. Among some functions, this
tool maintains a database of regulations, laws and standards, to facilitate
research and cross-referencing. It also has a mechanism that generates
compliance reports. As it is a private property system, we did not have
access to the theories applied to its solution.

LogicGate: This is a risk and compliance management platform that uses
automation and workflows to ensure compliance with regulations (legal
standards) and internal policies (corporate rules). As it is a private
property system, we did not have access to the theories applied to its
solution.

During the research, we found other tools with purposes similar to those
presented. But, as they are also private, we are unable to obtain details of their
operation. We prefer not to present them.

1KRR is the area of Artificial Intelligence concerned with how knowledge can be
represented symbolically and manipulated in an automated way by reasoning programs. [19]

Chapter 2. Architectural Design for Reasoning 23

2.2
Architectural Design

This project has been developed over the last 3 years. During this time, we
used an approach where we divided the main problem into small sub-problems.
Each of these had its own time for research development and testing. The result
was the implementation of a modular solution.

Basically, there are 3 cores that try to cover functionality in our approach,
as shown in figure 2.1.

– Legal Extraction and Normalization Module (ENM);

– Formula Generator Module (FGM);

– Knowledge Base Reasoner Module (KRM);

Figure 2.1: Architectural context diagram.

– ENM - It is responsible for automatically retrieving the Official Gazettes
(OG) in PDF format and using regular expressions from its grammar
to retrieve public acts. Then, they are serialized into RDF triples,
composing a knowledge base for SPARQL queries. More details of this
module will be presented in chapter 3.

– FGM - It is responsible for obtaining the entities extracted in the ENM
module and converting them into iALC formulas. Specifically, given the
complex nature of formalizing texts in natural language, we are unable to
obtain formulas that express the intention (Objective) of what we want
to audit. Therefore, it is necessary to formalize it in a semi-automatic
(expert) way. These features, as well as the details of this module, will
be presented in chapter 4.

Chapter 2. Architectural Design for Reasoning 24

– KRM - It is the main architectural module. It is responsible for applying
the rules (iALC formulas that model the norm) established by ENM and
solving them through a SAT solver built for iALC logic. As a result, a
model (counter-example models) is created for SPARQL queries in our
RDF knowledge base. The chapter 5 will present in detail the logical
theory involved in this module. Also, in this chapter, we will present
the system of rules for the SAT solver and the formalism that transforms
counter-examples of this solver to SPARQL queries. Furthermore, we will
show some formal quality aspects of the SAT solver rules, as well as the
details of their implementation.

3
Legal Extraction and Normalization Module (ENM)

As seen in the previous chapter, our proposed architecture is basically
composed of 3 large modules: The Legal Extraction and Normalization Module
(ENM); Formula Generator Module (FGM) and Knowledge Base Reasoner
Module (KRM).

In this chapter we will show ENM, a component of our architecture
responsible for extracting, classifying and serializing data contained in Official
Gazettes, for an RDF knowledge base.

During our research, we observed that the official gazette texts could be
classified as semi-structured data. Some sections of the text present a regularity
in the disposition of the data, while others appear in a poorly structured way.
For example, legal statements that distribute public office are published in well-
formatted (structured) sections. The more general information in the official
gazette is treated in an unstructured way. In [21], the authors present an
ML approach to segmentation in an attempt to minimize the complexity of
identification and extraction in semi-structured documents. In section 3.5 we
present our approach with regular expressions.

As the official gazette is a semi-structured document, we question
whether the Regular Expression (RE) and Parsing Expression Grammar
(PEG) approaches are viable alternatives when compared to an ML approach
in the tasks of recognizing entities contained in the official gazette.

3.1
Well-Formatted Document

Our objective has always been motivated by the ability of these well-
formatted documents, containing formatted legal texts, to reflect a formalism
that allows us to apply techniques that map their grammar to rule-based
extraction systems.

A clear example of this category of documents is the official gazettes.
Generally, these documents do not have a formal organization of sections. Each
official gazette, published daily, discloses the most diverse categories of public
administration acts. However, even though these documents seem to lack any

Chapter 3. Legal Extraction and Normalization Module (ENM) 26

formalism, some sections, such as those dealing with hiring people for dear
audiences, follow some legal rules of publication as highlighted in Figure 3.1.

Figure 3.1: Example of a public act published in the Official Gazettes.

Figure 3.1 shows the kind of legal act available in the official gazettes.
Therefore, these characteristics (structure) motivate us to question whether
ML is a viable and efficient solution for such extraction tasks.

Chapter 3. Legal Extraction and Normalization Module (ENM) 27

3.1.1
Syntactic structure of the law

In the context of the syntactic structure of Laws, legal norms are formally
expressed in the form of propositions and may appear in documents of the legal
system in the form of statements from which facts are verified. For example,
according to [5, p. 81], the legal norm to which theft should be punished is often
formulated by the legislator in the following proposition: “Theft is punished
with imprisonment;”. On the other hand, a norm that grants the Head of State
competence to conclude a treaty takes the form: “The Head of State concludes
an international treaty.”.

Basically, a Brazilian normative text follows a well-formed struct pub-
lication, a template. This struct, which can be seen, looks like a syntactic
structure. An attempt is made to standardize legal instruments in [3] and [4].

Thus, this normative gives rise to the structure:

1. Preliminary Part

(a) Epigraph - The title of the legal norm.

(b) Ementa - The purpose of the legal norm (object).

(c) Preamble - Institution for the practice of the act and its legal basis.

2. Normative Part

(a) Substantive provisions. Area intended for provisions pertaining to
the measures necessary for the implementation of the rules (sub-
stantive content).

3. Final Part

(a) Implementation - Area intended for the provisions (dispositions)
pertaining to the actions necessary for the implementation of sub-
stantive content legal norms.

(b) Transitory part - Area intended for the transitory provisions (when
they exist).

(c) Validity - The laws have a period of validity that can be determined
or undetermined. In its syntactic form, the laws that determine a
period (“vacancy”) should use the wording [4]: “[...] Esta lei entra
em vigor após decorridos [the number of] dias de sua publicação
oficial”.

(d) Revocations - when a law cites a “revocation”. It must expressly list
the laws or legal provisions revoked (when exist) [4].

Chapter 3. Legal Extraction and Normalization Module (ENM) 28

3.2
Lexical and syntactic analysis

In this section, we address the importance of lexical and syntactic analysis
in the context of regular grammar, highlighting the crucial role of regular
expressions in this process. We begin by discussing the theoretical foundations
behind lexical and syntactic analysis before exploring how regular grammar
and regular expressions are applied for this purpose.

Lexical and syntactic analysis is a fundamental step in the process of
understanding and processing formal languages. Our lexical analysis is focused
on dividing the official gazette text into tokens that represent entities of a legal
domain. For example, the registration number, the name of an official, and the
date of a law. e.g. An example of these legal entities can be seen in Table 3.1.
As for our syntactic analysis, we are concerned with the grammatical structure
of publications in official journals in accordance with official rules. In practice,
the combination of regular grammar and regular expressions is an essential
activity to perform quick and efficient analysis of publications.

Here, it is interesting to remember that Regular Expression (RE) is a
notation for specifying lexical patterns. Its syntactic construction is composed
of atomic symbols (characters), union, concatenation, and Kleene closure of
other regular expressions. Readers unfamiliar with the concept or terminology
can refer to the book [22].

3.3
Related Works

We found four articles discussing information retrieval in a similar
context. The first three deal with the processing of official gazettes, and the
last one shows a survey between industry and academia examining the choice
of each technique. We discuss them below.

In the [23] uses NLP techniques, based on [24] to recognize Named
Entities in appointment ordinance on Official Gazette. They use the resources
available on the Natural Language Toolkit (NLTK) [25] platform for steps of
the tokenization process until the entity recognition. A limitation of this work
is that the authors present a tool that recognizes only the names of public
agents (public employees) in appointment ordinances. In this experiment,
it was possible to observe an accuracy of 92% in the extraction of names.
Moreover, the details of which ML algorithms are used in this article are not
reported in detail.

The [26] uses data mining techniques for information retrieval in the
official gazette of the Government of Pernambuco, Brazil. This work reports

Chapter 3. Legal Extraction and Normalization Module (ENM) 29

the application of the Random Tree algorithm with a hit rate of 80%. The
authors agree that “if the department wants an algorithm with better results,
it is necessary to carry out a minimum standardization of the Official Gazette
so that the extraction is more efficient”. This highlights the complexity of the
treatment of data contained in the official gazette. In this case, a study of other
information retrieval strategies is necessary.

In [14], the authors use regular expressions to retrieve information that
has been triplicated to an RDF format and can be further queried SPARQL
against a triple storage database such as AllegroGraph [27]. Extracting acts
from gazettes to a knowledge base is part of a broader project to create a
KB for public documents in the context of electronic governance auditing and
compliance.

The article [28] makes a case for the importance of the use of rules-based
extraction systems for industry. It presents a research plan with the potential
to bridge the gap between academic research and industry practice.

Finally, the article [15] shows a comparison of machine learning (ML)
and rule-based approaches in the task of recognizing legal entities in the official
gazette. In that work, the use of regular expressions was presented as a simple
and efficient solution. It was observed that the ML preparation activities had
a higher cost (time) than the preparation of rules in a regular expression. In
that experiment, the process of extracting examples for annotation was a time-
consuming activity. Even for a team carrying out this activity, the problem
would be another issue: reliability and cost with workers.

3.4
Official Gazette Grammar

A central theory used for this module (ENM) was the mapping of
the Official Gazette into a well-known formalism in the field of compilers.
Parsing Expression Grammar (PEG) is a formalism that describes language
recognizers and is a simpler alternative to presenting the syntactic formation
rule (grammar) of certain languages. PEGs are stylistically similar to Context-
Free Grammars (CFGs) [29] with RE-like features added, much like Extended
Backus-Naur Form (EBNF) notation.

Here, we present an example of the PEG, Listing 1, identified in the
Official Gazette. In this case, it seems reasonable that the Official Gazette
becomes one of the primary sources of information for public administration,
and its extraction becomes almost a necessity. Figure 3.2 shows examples of
public acts that create a technical committee.

From the PEGs, it is possible to perform a direct translation into regular

Chapter 3. Legal Extraction and Normalization Module (ENM) 30

Figure 3.2: Example of a public government act published in the Official
Gazettes.

Chapter 3. Legal Extraction and Normalization Module (ENM) 31

Listing 1 Official Gazette grammar PEG.

⟨publicAct⟩ |= ⟨top⟩⟨segment⟩
⟨top⟩ |= DECRETO "P" No.⟨port⟩ DE ⟨per⟩
⟨per⟩ |= ⟨day⟩ DE ⟨month⟩ DE ⟨year⟩

⟨segment⟩ |= ⟨segment1⟩⟨segment2⟩, símbolo⟨symbol⟩
⟨segment1⟩ |= RESOLVE ⟨act⟩⟨name⟩, matrícula⟨mat⟩,
⟨segment2⟩ |= ⟨compl⟩Cargo em Comissão de⟨publicfunc⟩

⟨act⟩ |= Nomear|Exonerar
⟨name⟩ |= [A-Z]+

⟨port⟩ |= [0-9]+

⟨day⟩ |= [0-9]+

⟨month⟩ |= [A-Z]+

⟨year⟩ |= [0-9]+

⟨mat⟩ |= [0-9/.-]+

⟨compl⟩ |= [A-Za-z0-9,-]+

⟨publicfunc⟩ |= [A-Z0-9]+

⟨symbol⟩ |= [A-Z0-9.-]+

expressions that represent the rules for extracting information. Due to the lack
of space, we prefer to omit some development examples, but they can be easily
seen in the project repository1. We believe that this formalism, present in the
official gazette, makes this research quite reasonable.

3.5
Official Gazette Patterns

Table 3.1, shows the groups of regular expression where the act was
“Nomear” (appoint) public servant in a job. We can observe the information
to be retrieved: Ato (the public act), Nome (name), Matrícula (enrollment
code), C. Efetivo (effective position), Dia (day), Mês (month), Ano (year), C
Comis. (commissioned position), Símbolo (symbol).

3.6
ENM Modules

Finally, Fig. 3.3 shows the high-level ENM module.
1https://github.com/fernandoantoniodantas/COMISSOES2RDF

Chapter 3. Legal Extraction and Normalization Module (ENM) 32

Entities Patterns for Appointing Employee
Ato RESOLVE[,|\s]*Nomear\s+
Nome (?P<nome>[A-ZÉÁÍÓÚÇÃÊÔÕÀÜ\s]+)
Matrícula (?P<matricula>[0-9\./-]+)
C. Efetivo (?P<cargoEfetivo>[A-ZÉÁÍÓÚÇÃÊÔÕÀÜa-záêéóíçãâôú\-\s]+)
Dia (?P<dia>[0-9]+)
Mês (?P<mes>[J | j]aneiro | [F | f]evereiro | [...] | [D | d]ezembro)
Ano (?P<ano>[0-9]+)
C. Comis. (?P<cargo>[A-ZÉÁÍÓÚÇÃÊÔÕÀÜa-záêéóíçãâôú\-\s]+)
Símbolo (?P<simbolo>[A-Z\-0-9\/\s]+)

Table 3.1: Regular expression pattern for the employee “Nomear” act.

Figure 3.3: Integration among ENM components.

The modules are represented as follows:

– Crawling Module - It is responsible for retrieving the official gazette
files automatically.

– OG File - Set of Official Gazette in PDF format.

– Audit File - File with the information extracted to facilitate the
calibration process (accuracy) of the PEG production rules.

– Regular Expression Patterns - Regular expression patterns mapped
from the official gazette PEG.

– Regular Expression Segmenter - Module for partitioning the Official
Gazette to separate the target publications from the others. Providing the
Regular Expression Patterns module with a segment with the detected
grammar.

– RDF/XML Encoding - Module that transforms the extracted infor-
mation into RDF/XML triples [30].

– RDF/XML - Serialization file with RDF/XML triples.

– KB RDF - Graph database for SPARQL queries containing RDF triples.

Chapter 3. Legal Extraction and Normalization Module (ENM) 33

3.6.1
The Encoding Process

With the information extracted and matching it with regular expression
patterns, we started the process of triplifying the information to an RDF
format. The RDFLIb [31] library for Python was used for this step. The library
has interfaces that simplify and facilitate the implementation of RDF nodes.
Optionally includes parsers for RDF/XML, N3, NTriples, N-Quads, Turtle,
TriX, RDFa, and Microdata. It implements a Graph interface in which we can
store graph information in memory or persistent storage. It is also possible to
run queries and updates in the SPARQL language. In this work, we chose to
serialize the data in RDF/XML format.

An essential step in the project was the ontology to give meaning to the
contents of the Official Gazette. In such a case, as a basic proof of concept,
we chose to define an adapted and generic ontology (Listing 2) in “Friend of
a Friend” (FOAF) [32]. This ontology enabled queries in our knowledge base
stored in AllegroGraph [33]. This Listing 2 shows the serialization process that
translates data objects into RDF type.

Listing 2 Serialization process in RDF/XML
for row in comissoes_records:

seqa+=1
idP = seqa
idP = BNode()
store.add((idP, RDF.type, FOAF.Function))
store.add((idP, FOAF.acao, Literal(row[0].strip())))
store.add((idP, FOAF.dataPublic, Literal(row[1])))
store.add((idP, FOAF.tipoCargo, Literal(row[2])))
store.add((idP, FOAF.simbolo, Literal(row[3].strip())))
store.add((idP, FOAF.dataEfeito, Literal(row[4])))
store.add((idP, FOAF.matricula, Literal(row[5].strip())))
store.add((idP, FOAF.cargo, Literal(row[6].strip()))
store.add((idP, FOAF.nome, Literal(row[7].strip())))
Serialize the store as RDF/XML to the file DO2RDF.rdf.
store.serialize("RDF/DO2RDF.rdf", format="pretty-xml", max_depth=3)
print('RDF Serializations:', seqa, 'De', size)

For example, in the serialization process, we make the RDF triples file
(DO2RDF.rdf) containing records of some government acts. The Listing 3 is a
portion of this DO2RDF.rdf file, which shows the result serialization process
with RDFLib. This file is used to deploy into AllegroGraph.

Chapter 3. Legal Extraction and Normalization Module (ENM) 34

Listing 3 Serialization in RDF/XML.
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/
22-rdf-syntax-ns#">
<foaf:Function rdf:nodeID="N7654fa3584ea89c0ade">

<foaf:acao>NOMEAR</foaf:acao>
<foaf:dataPublic>2017-01-19</foaf:dataPublic>
<foaf:tipoCargo>CC</foaf:tipoCargo>
<foaf:simbolo>DAS-06</foaf:simbolo>
<foaf:dataEfeito>2017-01-01</foaf:dataEfeito>
<foaf:matricula>60/210917-1</foaf:matricula>
<foaf:cargo>ASSISTENTE I</foaf:cargo>
<foaf:nome>MARIA DOS SANTOS BASTOS</foaf:nome>

</foaf:Function>

3.6.2
The Audit File

The result of implementing the RE was the extraction of information
contained in 24,745 public acts. To facilitate the data analysis process, the
tool generates an audit file (Fig.3.4) with the main information retrieved. This
record, which presents data grouped by publication date, contains acts such
as “Nomear” (recruit public employee), “Exonerar” (dismiss public employee).
For example, as highlighted in the image, there was the publication of two acts
for the public employee Antonio Barbosa: a dismissal from the commissioned
position of Advisor II (DAS-08) and his recruitment to the commissioned
position of Advisor I (DAS-09). Both on 01 Nov. 2013.

Figure 3.4: Audit file fragment with information retrieved from the official
gazette.

Chapter 3. Legal Extraction and Normalization Module (ENM) 35

3.7
Evaluation and Results for ENM

As presented, this module extracts data and serializes it to create a
knowledge base of public acts. For its proper evaluation, an experiment was
designed focusing on SPARQL queries to this knowledge base. This way is
interesting because, in future work, there will be integration of the module
responsible for searching for cases of non-compliance (KRM) with standards
stored in this KB, thus demonstrating its effectiveness.

3.7.1
Scope

The first challenge was to capture official gazettes for a period. To make
this module, the language Python, version 3, was used as a backend of the
production tool and generation of the RDF triples of public acts published in
the Official Gazettes.

In order to highlight the contributions, we will restrict ourselves here to
the City of Rio de Janeiro2, Maceió3, Palmas4, Recife5, and Florianópolis6.
The scope was restricted to publications involving appointments, dismissals,
and appointments to commissioned positions.

As presented, the Python module was developed, as seen in Fig. 3.3 in
order to automate the download of the official gazettes used in the project. In
total, 1,126 official gazettes were recovered and treated. With these documents,
the second step was to build the extractor of information contained in each
official gazette. In this process, we used the RE7 library from Python and
a set of regular expression patterns to compose a set of rules based on the
grammar (Listing 4) of acts published on special commissions. An example of
this publication was seen in Figure 3.2.

To exemplify the use of our tool, we decided to treat a subset of human
resources information, such as public jobs that do not require a contest
for admission. Based on this scope, pattern extractors were developed using
regular expression techniques applied to the grammar of the acts targeted in
this research. Naturally, regular expression algorithms tend to be greedy and
identifying the grammar of posts and mapping them to their corresponding
regular expressions made this stage of the process very efficient.

2https://doweb.rio.rj.gov.br/
3https://www.diariomunicipal.com.br/maceio/
4http://diariooficial.palmas.to.gov.br/
5https://dome.recife.pe.gov.br/dome/
6https://www.pmf.sc.gov.br/governo/index.php?pagina=govdiariooficial
7https://docs.python.org/3/library/re.html

Chapter 3. Legal Extraction and Normalization Module (ENM) 36

Listing 4 Piece of Official Gazette grammar to special commissions act.

⟨publicAct⟩ |= ⟨top⟩⟨segment⟩
⟨top⟩ |= RESOLUÇÃO SMS No.⟨port⟩ DE ⟨per⟩
⟨per⟩ |= ⟨day⟩ DE ⟨month⟩ DE ⟨year⟩

⟨segment⟩ |= ⟨segment1⟩⟨segment2⟩
⟨segment1⟩ |= Designa os membros da ⟨cta⟩ do Contrato de Gestão n°⟨contrato⟩
⟨segment2⟩ |= referente ao processo instrutivo n°⟨numProcesso⟩⟨descContrato⟩

⟨cta⟩ |= Comissão Técnica de Acomapanhamento⟨tpoComissao⟩
⟨port⟩ |= [0-9]+

⟨day⟩ |= [0-9]+

⟨month⟩ |= [A-Z]+

⟨year⟩ |= [0-9]+

⟨contrato⟩ |= [0-9/]+

⟨numProcesso⟩ |= [0-9/.]+

⟨descContrato⟩ |= [A-Z0-9/.-]+

⟨tpoComissao⟩ |= (CTA)

3.7.2
Results

We present in this section the results obtained after extracting the
information contained in the gazettes and the triplifying step in RDF/XML
data to be executed in SPARQL query language environment. Just to illustrate
the use of our approach, we executed some SPARQL queries in this RDF graph
environment.

The Listing 5, a simple SPARQL query that identifies the frequency of
the same employee in the database. Our objective is to identify the employees
with more than 1 participation in public committees.

Listing 5 SPARQL queries for committee history.

SELECT (COUNT(?Matricula) as ?count) ?Matricula ?Nome
where{
?person foaf:nome ?Nome .
?person foaf:matricula ?Matricula .

} group by ?Matricula ?Nome HAVING (?count > 1)
order by DESC(?count)

As shown in this Figure(3.5), the result of this SPARQL query retrieves
some interesting cases for analysis. In the first line, employee Marcos [...] Santos
participated in 151 committees. For more details about this case, the SPARQL
query, Listing 23, retrieves some data: date of publication in the official

Chapter 3. Legal Extraction and Normalization Module (ENM) 37

gazette, ordinance, process number, and the contract and its description for
this employee, Figure 3.6.

Figure 3.5: Number of participations in committees per employee.

Listing 6 SPARQL query for a specific employee.

SELECT ?Data_Publica ?Portaria ?Numero_Processo
?Numero_Contrato ?Descricao_Contrato ?Matricula ?Nome
where{
?person foaf:nome ?Nome .
?person foaf:matricula ?Matricula .
?person foaf:dataPub ?Data_Publica .
?person foaf:portaria ?Portaria .
?person foaf:numContrato ?Numero_Contrato .
?person foaf:numProcesso ?Numero_Processo .
?person foaf:descContrato ?Descricao_Contrato .
FILTER (?Matricula='11/131.404-6') .

} order by ASC(?Data_Publica)

Figure 3.6: Piece of history of participation in committees.

Finally, our last query (Listing 7) aims to retrieve information relating
to employees and their participation in committees, as well as the period in
which they participated or participated in these committees.

The results of this query are shown in Figure 3.7, where the employee
Marcos [...] Santos participated or participated for eight years in committees.

Chapter 3. Legal Extraction and Normalization Module (ENM) 38

Listing 7 SPARQL queries for time in the committees.

select (COUNT(?Matricula) as ?count) ?Matricula ?Nome
(min(?Data_Publica) AS ?min) (max(?Data_Publica) AS ?max)
(year(?max)-year(?min)AS ?anos)
where {

?person foaf:nome ?Nome .
?person foaf:dataPub ?Data_Publica .
?person foaf:matricula ?Matricula .

} group by ?Matricula ?Nome ?idade HAVING (?count > 1)
order by DESC(?count)

Figure 3.7: Piece of history of participation in committees per year.

We presented how extracting information from PDF documents can
help in the process of continuous auditing of public acts available in the
Official Gazettes. Due to the characteristics of the Official Gazette, the use
of regular expressions was presented as a simple and efficient solution. One of
the challenges of implementing was the use of the RDFLib. This lib showed
little flexibility for defining new ontologies. Nevertheless, the solution was to
adapt the FOAF ontologies to the characteristics of this research. Finally, the
serialization in RDF/XML format became efficient for research purposes and
SPARQL queries were performed to demonstrate the reasonableness of the
tool.

3.8
An Alternative with Machine Learning

During this research, we question whether this technique is the best
solution for extracting information from documents. We compare machine
learning (ML) and rule-based approaches in the task of recognizing legal
entities in the official gazette. For this, We built an annotated dataset with
100 examples of legal documents and submitted this model to an evaluation
in IBM Watson Knowledge Studio (WKS). We show that, in a scenario
where documents follow a formal structure, rules-based information extraction

Chapter 3. Legal Extraction and Normalization Module (ENM) 39

systems still present themselves as low-cost, more uncomplicated, and more
efficient solutions. The next section shows these results.

3.8.1
Results

An important aspect is the definition of the scope of this research.
Traditionally, the industry makes its benchmarking of techniques based on
these five criteria: Data Capacity, Training Speed, Model Precision, and
Inference Speed. In this research, we adopted the Model Precision and a
new task, the Development Time for both approaches (rules-based vs ML).

For this benchmarking, our experiment reproduced the same scenario
and techniques presented in subsections 3.5 and 3.6.2. The only difference is
that now we train a model (by Machine Learning) and apply it to the process
of extracting named entities from the official gazette.

As a result, all the examples used in the training set of our NLP
machine were recognized by our rule-based system. The machine learning
model obtained an accuracy of 0.99. The Table 3.2 summarizes these results.

Approach Examples Accuracy
ML-based 100 0.99
Rule-based 100 1.00

Table 3.2: Result between the two techniques.

The time of preparation of the experiment was also analyzed. We only
compare the phase that precedes the execution of the extraction algorithms.
Therefore, we did not evaluate the machine processing time of both approaches.
Four essential steps were observed: time to select examples, time to annotate
the examples, develop rules, and review.

We can see in Table 3.3 that the Machine Learning-based approach
for this task is more costly than the rule-based one. We emphasize that the
preprocessing of the experiments was carried out by one person.

Approach Task Time
ML-Based Selection of examples for annotation 360 min.
ML-Based Annotation process 240 min.
ML-Based Review 120 min.
Rules-Based Rules development 240 min.
Rules-Based Review 120 min.

Table 3.3: Preprocessing experiments time.

Chapter 3. Legal Extraction and Normalization Module (ENM) 40

In addition, the black-box aspect of the process inherent to statistical
approaches makes it necessary, many times, to have a new treatment of the
training set or adjustments to the model’s hyperparameters. We are leading
to more costs during extraction preparation. In this project, 12 hours were
consumed to prepare the training set. It took 6 hours to prepare the extraction
rules. Table 3.3 presents the details of time measurement.

Based on the presented, we have to conclude that rule-based extraction
techniques can easily replace this ML practice. In scenarios where documents
have a well-defined grammar (some structure), rules-based information extrac-
tion systems still present themselves as low-cost, simpler, and more efficient
solutions.

One of the contributions of this project was the annotation of these
100 examples (made by specialists). This dataset is available for use in
other experimental research. Our idea is to add new examples, types, and
relationships to this base. More details about this research can be found in [15].

4
Formula Generator Module (FGM)

As seen in the previous chapter, the data extracted by ENM are entities
that have some semantic meaning. In that extraction process, the entities
contained in the official gazette are duly recognized and labeled. We start
from the idea that the matching of syntactic patterns in the official gazette
follows from some deterministic choice of a previously defined dataset of regular
grammars.

This chapter is intended to show the component of our architecture
that converts (semi-automatically) natural Portuguese law texts into iALC
formulas via a series of structural representations. The central idea is to present
a proposal for a mechanism that uses pattern recognition techniques (lexical
and syntactic) from the grammar of legal norms. Basically, the FGM module
uses the entities extracted in ENM module and converts them into iALC
formulas. To do this, we use Attribute Grammar, a classic compiler technique
used to generate new information during the compilation process.

The attribute grammar is a method applied in formal language theory
to delineate the grammatical structure of an artificial language. It delves into
the relationship between words and sentence structures, assigning properties
and values to each element within the sentence.

The algorithm applied to attribute grammar defines the linguistic prop-
erties that can be assigned to a non-terminal symbol. These attributes en-
capsulate values expressing specific information about the symbol, calculated
through rules establishing relationships between symbols and their attributes.
Essentially, the aim is to confer meaning to strings in a language, representing
this meaning as “attributes” to the symbols in an Abstract Syntax Tree (AST)
of that string [34].

A distinguishing characteristic of attribute grammar lies in its capacity
to analyze more intricate syntax, considering not only the sentence’s structure
but also the properties and traits of its constituent elements. This enables a
more precise and detailed depiction of linguistic structures. In parsing with
attribute grammar, a set of rules needs to be established to delineate the
properties and values attributed to each non-terminal symbol. These rules can
be articulated in a formal language, such as attribute definition language.

Chapter 4. Formula Generator Module (FGM) 42

This grammatical approach finds utility across various domains in linguis-
tics and computer science [35], facilitating both the analysis and description
of natural languages and the development of natural language processing sys-
tems. In [36] elucidates how this process unfolds concerning attributes that are
“synthesized”, when defined solely in terms of attributes of the corresponding
non-terminal symbol’s descendants and attributes that are “inherited”, when
defined based on attributes of the non-terminal symbol’s ancestors.

During this research, a morphological approach was experimented with
using machine learning. Coreference Resolution [37] is a technique that consists
of identifying the different forms and relationships between named entities in
a given text written in natural language. In practice, its algorithm identifies
terms (entities) and expressions (via anaphors and cataphors) and tries to
find the relationships between the entities, which are distributed in different
parts of a text. Coreference Resolution serves as a vital component for various
advanced NLP tasks, including document summarization, question answering,
and Information Extraction (IE). The task of extracting data (entities) from
the laws contained in the official gazette and finding their relationships to
formalize them in a language of description proved to be, at first, quite
promising.

We found a fundamental problem for its application in this research: the
lack of a trained model, with laws, for the Portuguese language.

Building a golden dataset for coreference resolution can be a challenging
and arduous task [38]. There are several reasons for this, as main examples:
Manual annotation requires team expertise - Manually annotating coreference
chains in a text requires linguistic knowledge and an understanding of the nu-
ances of reference and textual cohesion. This often requires trained annotators
or linguistic experts. Review and quality assurance - Ensuring the consistency
and quality of annotations is essential to building a reliable reference dataset.
This often requires careful review and multiple annotation iterations.

To minimize this effort, we tried to adapt a Portuguese coreference model
(Corref-PT [39]) and Summ-it++ [40] to the format used in Conference on
Computational Natural Language Learning (CoNLL) competitions. We use the
NeuralCoref2 1 multi-language training suite. In [42] we can see an application
of this technology for the Chinese. The result was not what was expected. We
noticed in a visual inspection the low quality of the annotations in corref-pt, as
well as the great difficulty in adapting the suite to the model training processes.

After this long journey in an attempt to create a coreference model for
1NeuralCoref is a pipeline extension for spaCy [41] which annotates and resolves coref-

erence clusters using a neural network with multi-language extension options.

Chapter 4. Formula Generator Module (FGM) 43

Laws, we chose to continue with an approach analyzing legal texts from a
formal perspective. As presented in chapter 3, we can associate each law with
a formal grammar that interprets it. Therefore, we defined that for each law an
associated attribute grammar would be sufficient to generate iALC formulas
at the time of their syntactic analysis by an iALC compiler. For practical
reasons, this step is a theoretical presentation of the Formula Generation
Module (FGM).

4.0.1
FGM Modules

In this section, we present the main components of FGM Modules. The
purpose of these integration components is to provide a support structure
for the construction of formulas in iALC. To achieve this, we present the
architecture at a high level by integrating its modules Fig. 4.1.

Figure 4.1: Integration among FGM components.

The modules are represented as follows:

– Official Gazettes - Set of Official Gazette files in PDF format.

– Regular Expression Segmenter - Module for partitioning the Official
Gazette, separating the target publications from the other publications.
Providing the Regular Expression Patterns module with a segment with
the detected grammar.

– Regular Expression Patterns - Regular expression patterns mapped
from the official gazette PEG for laws. Similar to the applied in ENM
Module.

– Formal Grammar - Alphabet, terminal and non-terminal symbols,
production rules that specify how a valid legal statement is formed.

– Attribute Grammar - An extension of formal grammar associating
attributes with grammar productions. These attributes are computed
values that can be assigned to non-terminal or terminal symbols in that
grammar. We chose to perform the AST analysis and code generation
(formula) using the synthesized attributes technique. This technique
consists in assigning values to the attributes of the AST nodes from

Chapter 4. Formula Generator Module (FGM) 44

their leaves toward the root. The next chapter will present a practical
example of this technique.

– RDFiALC - Graphical database for containing RDF triples with formulas
extracted from the laws. These formulas represent a formal description
of the legal rule. Basically, they are our Knowledge Representation Base
(KRB).

4.1
From Law Text to ASTs

As shown, for each law, its grammar is associated with semantic rules to
assist in the construction of formulas. In this subsection, we will present the
basic component of this module, the formal grammar, and the semantic rules
of a state law that regulates the taxation of taxes on products and services.

We start with the mapping by presenting in Figure 4.2 where on the
left side are the Production Rules and, for each line there is an associated
Semantic Rule (right side). Basically, each semantic rule has parts of formula
code in the iALC language. In practice, when an AST analyzer starts its visit
from the leaves, for each production rule used a part of the iALC formula is
constructed. This process is done recursively up to the root of the AST.

Production Rules Semantic Rules
S → NORMA {Imp1.v := CM.v ⊔ PS3.v}
NORMA→ CM ϵ
NORMA→ PS ϵ
CM → ”mercad1” {CM.v := mercad1:CM2}
CM → ”mercad2” {CM.v := mercad2:CM2}
CM → ”mercadn” {CM.v := mercadn:CM2}
PS → T |COM {PS3.v := T.v ⊔ Com5.v}
T → Te|Tm {T.v := TranspA:Te ⊔ TranspB:Tm}
Te→ ”TranspA” {Te.v := TranspA:Te}
Tm→ ”TranspB” {Tm.v := TranspB:Tm}
Com→ ”ComA” {Com.v := ComA:Com}
STR→ [a− ZA− Z]∗ ϵ

Figure 4.2: Attribute Grammar Tables.

Chapter4.
Form

ula
GeneratorM

odule
(FGM

)
45

Imp1

PS3

Com5

ComA

⊔T

Tm

TranspB

⊔Te

TranspA

⊔CM2

Mercad1

{Imp1.v := CM.v ⊔ PS3.v}

{CM.v := mercad1:CM2}

{Te.v := TranspA:Te} {Tm.v := TranspB:Tm}

{T.v := TranspA:Te ⊔ TranspB:Tm}

{Com.v := ComA:Com}

{PS3.v := T.v ⊔ Com5.v}

Figure 4.3: Abstract Syntax Tree (AST) of the attribute grammar of a state tax law.

Chapter 4. Formula Generator Module (FGM) 46

The AST Figure 4.3 shows this process in detail. Note that from the leaf
to the root the attributes are associated with generating the formula CM⊔PS

(at the root), it is a conjunction between the Concepts “CM” (circulação de
mercadorias) and “PS” (produtos e serviços) in the law.

This was just a presentation of a formula generator proposal. It presents
how entities from a legal domain, in the context of a specific law, must be
combined and transformed into basic iALC formulas. This module deserves
more details on some practical points such as which binary logical symbol
of iALC will be applied in the composition of the formulas. Note that they
appear in the AST leafs, but we do not actually discuss how to extract such
grammatical information from the legal text. A deep dive into the grammatical
structures of law may be necessary to identify these logical connectives between
legal entities. Furthermore, we are also not concerned with the Roles definition
of iALC concepts. These topics are for future work.

5
Knowledge Base Reasoner Module (KRM)

As seen in the previous chapter, the purpose of FGM module is to build
formulas based on the grammar of the official gazette. The choice of grammar
among a set of grammars depends on the degree of similarity between the
entities extracted in the ENM module and the terminals of a regular grammar
(g ∈ G) in the FGM module.

In this chapter, we will show the component of our architecture that,
given an iALC formula, which represents the audit objective, finds models
(counter-example) for inference in a knowledge base containing public acts.
Thereby maintaining some level of public compliance.

The Knowledge Base Reasoner Module (KRM) is an essential tool for per-
forming logical inferences on a Knowledge Representation Base (KRB) written
in iALC formulas. This module uses an iALC tableau calculi system to ver-
ify the validity of the rules present in this Knowledge Representation Base,
seeking to identify possible counter-examples. Then, a parser transforms these
counter-examples into SPARQL queries, aiming to detect nonconformities with
the legal norms within the knowledge base of facts. This efficient and auto-
mated approach makes KRM an indispensable tool for ensuring consistency
and compliance of information within a knowledge base. The KRM modules
will be shown in the next section.

5.1
KRM Modules

In this section, we will show the main elements that compound the
KRM. To facilitate the understanding of how these components interact, we
present Figure 5.1, an abstraction of the architecture of this module and its
structural design. This module integrates 4 major components: auditing unit,
query handling unit, compliance specifications, and facts unit. The last two
are implemented by ENM and FGM modules.

– The Auditing Unit - This unit implements the inference engine
for formulas written in iALC. The SAT solver is a tableau system
that extends the first-order intuitionistic tableau presented by Fitting
(1960) [43]. Basically, this solver searches for models and counter-models.

Chapter 5. Knowledge Base Reasoner Module (KRM) 48

Figure 5.1: Integration among KRM components.

The last is the basis for generating preliminary query code in SPARQL.
Details of its implementation will be presented in sections 5.4 to 5.6.

– Queries Handling Unit - Its operation involves receiving the transla-
tion generated by the transpiler, which converts the counter-model gram-
mar extracted from SAT Solver to queries in SPARQL, a query language
used in environments linked to ontologies and data semantics. Once these
steps are completed, the module can then forward the resulting query
to the semantic data query platform, ensuring harmonious integration
between the different systems (Logical Rules to Graph Database) and
allowing the extraction of significant information for the process audit.
Details of its implementation will be presented in subsection 5.6.3.

– Compliance Specifications - Unit that stores the formulas (by FGM
module) that will be input for reasoning in the iALC tableau. It is a
Knowledge Representation Base (KRB).

– Facts Unit - Unit that contains the RDF triples of facts extracted from
official gazettes (by ENM module).

5.2
Logical-base components

Before presenting iALC, the logic behind our inference mechanism, we
will present the main concepts of description logic.

Description Logics (DL) is a formal language used for knowledge rep-
resentations and reasoning about it [11]. Essentially, DL has three components:
Individuals (constants) that represent entities in a domain; Concepts (unary
predicates) that are properties given to Individuals; Roles (binary predicates),
which are the relationships between Individuals [44]. This language is based on

Chapter 5. Knowledge Base Reasoner Module (KRM) 49

first-order logic and its objective is to provide a precise and semantic formal
language to represents knowledge in a domain. For this, we show a piece of the
alphabet of a DL consisting of:

– Set of names of Individuals, Concepts1 and Roles.

– ⊔ represents the conjunction of Concepts.

– ⊓ represents the disjunction of Concepts. The operation C⊓D is used to
restrict the set of individuals under consideration to those that belong
to both C and D.

– ⊑ represents the inclusion of Concepts. The operation C ⊑ D indicates
that Concept C is included in Concept D.

– ∀ represents the universal restriction of Concepts. Thus, ∀R.C represents
the universal restriction of the Concept C under Role R. This operation
requires that all the individuals that are in the relationship R with the
concept being described belong to the concept C. In short, all individuals
who stand in relation R to an individual described by the concept in
question are also describable as Cs [11].

– ∃ represents the existential restriction of Concepts using Roles. Similar to
universal restriction, ∃R.C is an operation that requires that at least one
individual that is in the relationship R with the concept being described
belongs to the concept C.

– ¬ represents the complement of Concepts.

– : an assertion operator of type a : C (Concept assertions) and (a, b) : R

(Roles assertions). Where C (Concept), R (Role), a and b (Individuals),
these operations indicate that the Individuals apply the Concept or Role
to which they refer.

As an example, let us suppose that Employee, Public, and Private

are atomic concepts. Using the operators ⊔ and ⊓ and ¬ of concepts, we can
describe the concept of “Employees that are not public employees” in a Public
Governance domain by the expression:

Employee ⊓ ¬Public

Similarly, we can describe “Public and Private” by the expression:

Public ⊔ ¬Private

Lastly, we can describe that “All employees have an ID” by the expression:
1In ontologies, concepts are classes that represent sets of individuals [45].

Chapter 5. Knowledge Base Reasoner Module (KRM) 50

∀hasID.Employee

A Knowledge Base in a DL contains two parts: TBox (terminology part)
and ABox (assertional part). The TBox contains sentences that describe con-
cepts and hierarchies (i.e. relationships between concepts). The ABox are asser-
tions on individual objects (instance assertions) [46]. A typical assertion in the
ABox is the one stating that an individual is an instance of a certain concept
(fernando:Man) or assertions between individuals (hasSon(alderic,
mary)).

A common reasoning task in DL ontologies is consistency detection [47].
For example, a standard approach to testing whether fernando is a mem-
ber of the concept Man requires testing whether adding the statement
(fernando: ¬Man) makes the ABox inconsistent.

iALC is a language based on descriptive logic that uses Atomic con-
cepts, Logical connectives, and Complement operators to represent and rea-
soning about ontologies in norm systems. Basically, iALC is the intuitionistic
variation of ALC2.

Until the development of this thesis, some work involving iALC was
developed. In the paper [48] the authors present essays on the use of logical
deductions as a kind of intermediate structure to assist in the task of explaining
legal sentences based on legal systems in Civil Law states. In this article, the
objective was to present the applicability of iALC in legal reasoning processes.
The authors present two practical applications: first, they use a natural
deduction system for iALC [7], based on the sequent calculus introduced in [6].
In this case, they show a way of formalizing and reasoning in order to answer
the question of the Brazilian OAB Exam. The second shows another way of
formalizing the usage of iALC, making more explicit the legal individualization
of the question itself via Kripke semantics. The iALC semantics does not just
use function over truth values, it makes use of model theory that can be given
through Kripke semantics. The application of this semantics is similar to the
application of world semantics in modal logic3.

Another important paper for this thesis is [50], where the authors
discuss Jurisprudence and Intuitionism for investigating a logical basis for
representing Legal Reasoning (LR) in the context of AI. They suggest the
way in which Legal Reasoning can be conveyed is strongly related to how
laws (or “the law”) are represented in terms of their Representation of

2ALC is an extension of AL language[11].
3Modal Logics are classical propositional logics augmented with modalities for necessity,

possibility, obligations, provability, belief [49]

Chapter 5. Knowledge Base Reasoner Module (KRM) 51

Legal Knowledge. Thus, Legal Reasoning is strongly interconnected with the
Representation of Legal Knowledge. That is, with the chosen Legal Ontology,
in the broadest sense of the term Ontology. In this case, the authors realized
that Legal Reasoning cannot be based only on logic but can also be based
on ontological commitments. This ontological commitment of Legal Reasoning
should be guided by the underlying jurisprudence theory (e.g., the Kelsean
jurisprudence) or by judicial practice, but not by both. Therefore, iALC adopts
legal philosophy and jurisprudence, in the tradition of Hans Kelsen’s Legal
Positivism where the legal system must be analyzed as a unitary and systematic
entirety, constituted in a staggered manner, in which the lower norm will
remove the basis of validity of an immediately higher norm. For more details
on Hans Kelsen’s positivism see this source [51].

For the language of iALC, let α and β be concepts, A be an atomic
concept, R be an atomic role, δ be any formula, and x be a nominal. We
describe iALC formulas by the following grammar:

δ ::= α | x : α

where the concepts α, β are given by the following grammar:

α,β ::= A | ⊥ | ⊤ | ¬α | α ⊓ β | α ⊔ β | α β | ∃R.α | ∀R.α

A constructive interpretation of iALC is a structure I = ⟨∆I , ·I ,⪯⟩
consisting of a non-empty set ∆I of entities in which each entity represents
a legal individual (a valid legal statement); a refinement pre-ordering ⪯ on
∆I , i.e. a reflexive and transitive relation (a pre-order), and an interpretation
function ·I mapping each role name R ∈ NR to a binary relation RI ⊆ ∆I×∆I

and atomic concept A ∈ NC to a set AI ⊆ ∆I which is closed under refinement,
i.e. w ∈ AI and w ⪯ w′ implies w′ ∈ AI . We will also refer to this last property
as the heredity rule, as it applies to any concept, not only the atomic ones.

The interpretation I is lifted from atomic concepts to arbitrary concepts
as follows:

Chapter 5. Knowledge Base Reasoner Module (KRM) 52

⊤I = ∆I

⊥I = ∅

(α ⊓ β)I = αI ∩ βI

(α ⊔ β)I = αI ∪ βI

(¬α)I = {x ∈ ∆I | ∀y, x ⪯ y ⇒ y ̸∈ αI}

(∀R.α)I = {x ∈ ∆I | ∀y(x ⪯ y ⇒ ∀z((y, z) ∈ RI ⇒ z ∈ αI))}
(∃R.α)I = {x ∈ ∆I | ∀y(x ⪯ y ⇒ ∃z((y, z) ∈ RI ∧ z ∈ αI))}

(α β)I = {x ∈ ∆I | ∀y, (x ⪯ y ∧ y ∈ αI ⇒ y ∈ βI)}

The logic follows the semantics of IK [52], where the structures I are
models for iALC if they satisfy two frame conditions (let R be a role, and w1

and w2, worlds):

F1 if w1 ⪯ w′
1 and w1Rw2 then ∃w′

2.w
′
1Rw′

2 and w2 ⪯ w′
2; and

F2 if w2 ⪯ w′
2 and w1Rw2 then ∃w′

1.w
′
1Rw′

2 and w1 ⪯ w′
1.

We can see them as conditions for completing the following diagrams,
respectively:

w1 w′
1

w2 w′
2

w1 w′
1

w2 w′
2

⪯

R R

⪯

⪯

R R

⪯

5.3
The Tableau System for iALC

In this section, the concept of semantic tableaux will be presented, its
characteristics and functioning, as well as its importance in the inference
process in the area of mathematical logic. The objective is to understand how
this method can help in analyzing and verifying the validity of arguments and
propositions. In this work, these propositions are constructions that combine
to form a Knowledge Representation Base.

The semantic tableaux, also known as the tableau method, was devised
independently by Evert Willem Beth (1955), Hintikka (1955), and Schütte
(1956) and later developed by Smullyan (1968) [53]. Essentially, this important
method is dual to Gentzen’s natural deduction (1934).

Chapter 5. Knowledge Base Reasoner Module (KRM) 53

It consists of building a tree of possibilities that represents all the different
possible interpretations of a set of formulas for a given logic. The process of
deriving a tableau comprises a set of inference rules that guide the construction
of this tree of possibilities. Each node in the tree corresponds to a formula or
set of formulas, and the branches represent the different interpretations of these
formulas based on these rules. The objective is to check whether it is possible
to close all branches of the tree consistently, that is, without generating a
contradiction. In short, the tableau structure (tree) is used to explore different
possibilities and determine whether a given formula is valid, satisfiable, or
unsatisfiable.

To facilitate understanding of the method and specifically our reasoning
method (iALC tableau), we will initially present the classical propositional
logic (CPL) method. This form of presentation is viable because our tableau
system for iALC will be built from elements and rules for CPL, plus some new
operator-specific rules for iALC.

The Tableau method for classical logic is similar to the resolution method
in the sense that a Tableau proof is a proof by reduction to absurdity,
determining satisfiability for finite sets of formulas. The main idea of any
deduction system is its calculi. In the case of semantic tableaux, their calculus
is composed of a set of rules that define the transformation steps of a formula
into its respective subformulas. A classic way is to represent this process as a
tree structure where each node (sub-formula) has its own parent (the formula).
As said before, at the end of this process, we have the ability to determine the
satisfiability of a formula.

Definition 5.1 (Alpha and Beta Rules). The semantic tableau inference rules
are grouped by Alpha type rules, where there is no branch bifurcation in the
derivation of the formula into subformulas, and Beta type rules, where there is
branch bifurcation in the derivation of the formula into subformulas. Let α and
β be two formulas of Classic Propositional Logic, the CPL calculus is shown
in rules R1 to R9.

To clarify the application of these rules, we will prove the formula
(P → Q) → (¬Q → ¬P) (an instance of the contraposition law). The first
step is to negation of the formula: ¬((P → Q)→ (¬Q→ ¬P)), Fig. 5.2.

As we can see, each node in a tree represents a subformula of the formula
at the origin, thus respecting the subformula property. Furthermore, for an
easy treatment, we added some meta-information in each subformula. On the
left side, there is a formula index between parenthesis, on the right side there
are two extra-information labeled i : Rn, where i connects this sub-formula
with the ancestral formula, and the Rn which represents the index of rule

Chapter 5. Knowledge Base Reasoner Module (KRM) 54

α ∧ β

α

β

R1 - Alpha rule to con-
junctive formula.

¬(α→ β)

α

¬β

R2 - Alpha rule to im-
plication negation for-
mula.

¬(α ∨ β)

¬α

¬β

R3 - Alpha rule to dis-
junctive negation for-
mula.

¬(α ∧ β)

α β

R4 - Beta rule to con-
junctive negative for-
mula.

α→ β

¬α β

R5 - Beta rule to impli-
cation formula.

α ∨ β

α β

R6 - Beta rule to dis-
junctive formula.

¬(α↔ β)

¬α ∧ β α ∧ ¬β

R7 - Beta rule to
bi-implication negative
formula.

α↔ β

α ∧ β ¬α ∧ ¬β

R8 - Beta rule to bi-
implication formula.

¬¬α

α

R9 - Alpha rule to dou-
ble negation formula.

(1)¬((P → Q)→ (¬Q→ ¬P))

(2)P → Q(1 : R2)

(3)¬(¬Q→ ¬P)(1 : R2)

(4)¬Q(3 : R2)

(5)¬¬P (3 : R2)

(6)P (5 : R9)

(7)¬P (2 : R5) (8)Q(2 : R5)

Figure 5.2: The proof tree example.

Chapter 5. Knowledge Base Reasoner Module (KRM) 55

applied to the formula. This tableau is an example of the satisfiability of a
formula, as the branch on the left side presents a direct contradiction (7)¬P

and (6)P , and similarly, there is a contradiction between (8)Q and (4)¬Q.
Nowadays, it is common to represent tableaux in the Smullyan style,

shown in 1968 [54]. In addition to the traditional tree format45, Smullyan
represented nodes with signs (True or False). Conceptually, inference rules
are very similar to general rules.

For this work, our method was inspired by the intuitionist tableau
proposed by Fitting [43]. But, before presenting our method, we define some
basic concepts for the tableau calculation procedure for iALC.

Definition 5.2 (Annotated Formula). An annotated formula δ is a pair
T (w : α) or F(w : α), such as {λ1(w1 : α1), λ2(w2 : α2), · · · , λn−1(wn−1 :
αn−1), λn(wn : αn)}, where wi ∈ W . W is a nonempty set (worlds in Kripke
semantics)6 partially ordered by ⪯. αi is an iALC concept and λi is a signal of
formula, λi ∈ {T ,F}. An interpretation function I over the signal of formula
δ, such that I(T) = true and I(F) = false.

Definition 5.3 (Relation (R) between worlds). In the tableau, this is a binary
relationship between possible worlds that captures the notion of accessibility or
connection between them. The pre-order is a reflexive and transitive relation
in a set of possible worlds.

Definition 5.4 (Pre-order Relation (⪯)). A In the tableau, this is a binary
relationship between possible worlds that captures the notion of order between
them.

Definition 5.5 (A Tableau). A tableau is a finite sequence of annotated
formulas (δ1, δ2, . . . , δn). If Υ is a tableau, δ ∈ Υ, and δ derivate δ′ when
applying one of the tableau expansion rules (5.3.2), δ′ ∈ Υ′, then Υ′ is also a
tableau.

Definition 5.6 (A Branch). A branch is said as closed when, given a formula
φi, both φi and its negation ¬φi are contained in the same branch. The closing
of the branch will be signaled with (×) close. Otherwise, the branch is said to
be open and signaled with (✓).

Definition 5.7 (Closed Tableau). A tableau is sad closed if all of its branches
are closed.

4A general approach to proof based on a graphical representation of branches to explore
different interpretations

5There is disagreement as to who first created this graphic method, Hintikka or
Smullyan [55].

6In our domain of legal norms they are VLSs.

Chapter 5. Knowledge Base Reasoner Module (KRM) 56

Definition 5.8. Let an annotated formula T (w : φ) or F(w : φ), If S is a
set of annotated formulas and H is a single annotated formula, we will write
S ∪ {H} simply as {S, H}.

Definition 5.9 (Realizable Formula). We call a set of annotated formulas
realizable if there is some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I such that
Γ |= δ1, . . . , Γ |= δn, and Γ ⊭ β1, . . . , Γ ⊭ βm, where δ1..n are annotated
formulas with T and, so either, β1..n are annotated formulas with F

5.3.1
Related works

In the next section, we will introduce the original element of this work,
a new tableau system for the logic iALC. This tableau system is a modified
version of a proof system built by Fitting [43], and this one was originally due
to Beth.

Natural Deduction is a type of deduction system that aims to represent
the structure of the operators of the language with its rules. Jaśkowski [56]
and Gentzen [57] developed two systems for natural deduction, which have
differences in the presentation of rules but are equivalent in expressiveness:
Gentzen’s has tree-shaped derivations whereas Jaśkowski’s produces linear
derivations. In this work, we follow Gentzen’s approach due to the history
of iALC with tree-like derivations produced with Sequent Calculus.

From the initial works in tableaux, systems for different kinds of logic
were created [58, 59, 60]. This section presents the related works to the system
described in this chapter.

The Pellet, (written in Java and open source), is the first sound and com-
plete reasoner for OWL-DL [61]. The authors mention that Pellet implements
several state-of-the-art optimization techniques found in the Descriptive Logic
literature. These include normalization, simplification, absorption, semantic
branching, Backjumping, Caching Satisfiability Status, Top-Bottom Search for
Classification, and Model Merging.

The FaCT++ [62], is a reasoner for SHOIQ (and so OWL DL). FaCT++
uses a tableau-based calculi system too. The authors show that its architecture
implements some optimizations that will be discussed in Section (5.6.1).

5.3.2
iALC Tableau Rules

Each of the rules below operates on two parts of the tableau. The top part
represents the formulas that are being analyzed in the tableau construction
process. Initially, the top part consists of the original formula that is being

Chapter 5. Knowledge Base Reasoner Module (KRM) 57

tested for validity. During the process of applying the transition rules, the
top part is modified as the formulas are decomposed, expanded, or solved.
The bottom part of the tableau is where information about the analysis of
the formulas is recorded. If a branch is closed due to a contradiction, this is
indicated at the bottom.

S, T (w : (A B)) [T]
S, (w ≺ w), F(w : A) | S, (w ≺ w), T (w : B)

Figure 5.3: (T) Implication (intuitionistic) rule.

S, F(w : (A B)) [F]
S, (w ≺ w′), T (w′ : A) , F(w′ : B)

Figure 5.4: (F) Implication (intuitionistic) rule, where
w′ is new.

S, T (w : (A ⊔B)) [T ⊔]
S, T (w : A) | S, T (w : B)

Figure 5.5: [T ⊔] rule.

S, F(w : (A ⊔B)) [F ⊔]
S, F(w : A), F(w : B)

Figure 5.6: [F ⊔] rule.

S, T (w : (A ⊓B)) [T ⊓]
S, T (w : A), T (w : B)

Figure 5.7: [T ⊓] rule.

S, F(w : (A ⊓B)) [F ⊓]
S, F(w : A) | S, F(w : B)

Figure 5.8: [F ⊓] rule.

S, T (w : (∃R.C)) [T ∃R]
S, T (wRw′), T (w′ : C)

Figure 5.9: [T ∃R] rule, where w′ is
new.

S, F(w : (∃R.C)) [F ∃R]
S, F(wRw), F(w : C)

Figure 5.10: [F ∃R] rule.

S, T (w : (∀R.C)) [T ∀R]
S, T (wRw), T (w : C)

Figure 5.11: [T ∀R] rule.

S, F(w : (∀R.C)) [F ∀R]
S, F(wRw′), F(w′ : C)

Figure 5.12: [F ∀R] rule, where w′ is
new.

Chapter 5. Knowledge Base Reasoner Module (KRM) 58

S, T ((w : ¬X)) [T ¬]
S, F(w ≺ w), F(w : X)

Figure 5.13: [T ¬] rule.

S, F((w : ¬X)) [F ¬]
S, T (w ≺ w′), T (w′ : X)

Figure 5.14: [F ¬] rule, where w′ is new.

S, T (w : α) [T α]
S, w : T (α)

Figure 5.15: [T α] rule.

S,F(w : α) [F α]
S, w : F(α)

Figure 5.16: [F α] rule.

(i, j) [Heredity]
j

Figure 5.17: Heredity rule.

[Reflexivity](i, i)

Figure 5.18: Reflexivity rule.

(i, j)(j, k) [Transitivity]
i, k

Figure 5.19: Transitivity rule.

The rules presented are made up of basic rules about how the formulas at
the top of the board are derived to the bottom. Basically, there are two main
rules: Formulas of type α: The consequences of formulas of type α are direct
consequences, that is, they remain in the same branch and do not generate
forks. Formulas of type β: in this case, formulas of type β are not direct and,
therefore, bifurcate into two distinct branches, each of which is a possibility of
analyzing the given formula. As we can see (Figures: 5.3, 5.5 and 5.8), the
rules for β (fork) formulas show their left and derived from the right-hand side
and separated by a "|". This S, present in the rules, corresponds to the set of
formulas that have yet to be derived (top part) and the set of formulas already
derived (bottom part).

5.4
Main Properties

In this Section, we show that essential properties expected of tableaux
systems hold in the system proposed for iALC.

5.4.1
Soundness

To reason about the various legal acts and legal rules, we need our
fundamental logical inductive system to be correct, which provides us with

Chapter 5. Knowledge Base Reasoner Module (KRM) 59

a criterion of logical validity of legal reasoning. Therefore, this section is
responsible for presenting the soundness of our SAT solver.

Before proving soundness itself, we first provide some useful lemmas.

Theorem 5.1. Let δ1, δ2, · · · , δn, is an iALC tableau. If δ1 is realizable, so is
δ1+1.

Lemma 5.1 (S, T (w : (α ⊔ β))). Let α and β be iALC formulas, w ∈ W , and
δi is {. . . , {S, T (w : (α ⊔ β))}, . . . } and δi+1 is {. . . , {S, T (w : α)}, {S, T (w :
β)}, . . . }.
Proof Since δi is realizable, some element of it is realizable. If that element is
not {S, T (w : (α ⊔ β))}, the same element of δi+1 is realizable. If that element
is {S, T (w : (α ⊔ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I, Γ
realizes {S, T (w : (α ⊔ β))}. Consequently, Γ realizes S and Γ |= w : (α⊔ β).
Then Γ |= (w : α) or Γ |= (w : β), so either Γ realizes {S, T (w : α)} or
{S, T (w : β)}. In either case, δi+1 is realizable.

Lemma 5.2 (S,F(w : (α ⊔ β))). Let α and β be iALC formulas, w ∈ W ,
and δi is {. . . , {S,F(w : (α ⊔ β))}, . . . } and δi+1 is {. . . , {S,F(w : α),F(w :
β)}, . . . }.
Proof Since δi is realizable, some element of it is realizable. If that element is
not {S,F(w : (α ⊔ β))}, the same element of δi+1 is realizable. If that element
is {S,F(w : (α ⊔ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I, Γ
realizes {S,F(w : (α ⊔ β))}. Consequently, Γ realizes S and Γ ⊭ w : (α ⊔ β).
Then Γ ⊭ (w : α) and Γ ⊭ (w : β), so either Γ realizes {S,F(w : α)} or
{S,F(w : β)}. In either case, δi+1 is realizable.

Lemma 5.3 (S, T (w : (α ⊓ β))). Let α and β be iALC formulas, w ∈ W ,
and δi is {. . . , {S, T (w : (α ⊓ β))}, . . . } and δi+1 is {. . . , {S, T (w : α), T (w :
β)}, . . . }.
Proof Since δi is realizable, some element of it is realizable. If that element is
not {S, T (w : (α ⊓ β))}, the same element of δi+1 is realizable. If that element
is {S, T (w : (α ⊓ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I, Γ
realizes {S, T (w : (α ⊓ β))}. Consequently, Γ realizes S and Γ |= w : (α ⊓ β).
Then Γ |= (w : α) and Γ |= (w : β), so either Γ realizes {S, T (w : α)} and
{S, T (w : β)}. In either case, δi+1 is realizable.

Lemma 5.4 (S,F(w : (α ⊓ β))). Let α and β be iALC formulas, w ∈ W , and
δi is {. . . , {S,F(w : (α ⊓ β))}, . . . } and δi+1 is {. . . , {S,F(w : α)}, {S,F(w :
β)}, . . . }.
Proof Since δi is realizable, some element of it is realizable. If that element is
not {S,F(w : (α ⊓ β))}, the same element of δi+1 is realizable. If that element

Chapter 5. Knowledge Base Reasoner Module (KRM) 60

is {S,F(w : (α ⊓ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I, Γ
realizes {S,F(w : (α ⊓ β))}. Consequently, Γ realizes S and Γ ⊭ w : (α ⊓ β).
Then Γ ⊭ (w : α) and Γ ⊭ (w : β), so either Γ realizes {S,F(w : α)} and
{S,F(w : β)}. In either case, δi+1 is realizable.

Lemma 5.5 (S, F(w : ¬α)). Let α an iALC formula, w ∈ W , and δi is
{. . . , {S, F(w : ¬α)}, . . . } and δi+1 is {. . . , {S, T (w′ : α)}, . . . }.
Proof Since δi is realizable, and it suffices to consider the case that {S, F(w :
¬α)} is the realizable element. Then there is a model ⟨∆I , ·I ,⪯⟩ and a Γ ∈ ∆I

such that Γ realizes S and Γ ⊭ (w : ¬α). Since Γ ⊭ (w : ¬α), for some Γ ∈ ∆I,
Γ |= δ. But clearly, if Γ realizes S, Γ∗ (all Γ) realizes w′ (for a new w) and
[w ≺ w′] by definition (5.4). Hence Γ∗ realizes {S, [T (w ≺ w′)], T (w′ : α)}
and δi+1 is realizable.

Lemma 5.6 (S, T (w : ¬α)). Let α an iALC formula, w ∈ W , and δi is
{. . . , {S, T (w : ¬α)}, . . . } and δi+1 is {. . . , {S, F(w′ : α)}, . . . }.
Proof Since δi is realizable, and it suffices to consider the case that {S, T (w :
¬α)} is the realizable element. Then there is a model ⟨∆I , ·I ,⪯⟩ and a Γ ∈ ∆I

such that Γ realizes S and Γ |= (w : ¬α). Since Γ |= (w : ¬α), for some
Γ ∈ ∆I, Γ |= δ. But clearly, if Γ realizes S, Γ∗ (all Γ) realizes w′ and [w ≺ w′],
by definition (5.4), then Γ∗ realizes {S, [F(w ≺ w′)], F(w′ : α)}, that is, δi+1

is realizable.

Lemma 5.7 (S, T (w : α)). Let α an iALC formula, w ∈ W , and δi is
{. . . , {S, T (w : α)}, . . . } and δi+1 is {. . . , {S, T (α)}, . . . }.
Proof Since δi is realizable, and it suffices to consider the case that {S, T (w :
α)} is the realizable element. Then there is a model ⟨∆I , ·I ,⪯⟩ and a Γ ∈ ∆I

such that Γ realizes S and Γ |= α. In either case, δi+1 is realizable.

Lemma 5.8 (S, F(w : α)). Let α an iALC formula, w ∈ W , and δi is
{. . . , {S, F(w : α)}, . . . } and δi+1 is {. . . , {S, F(α)}, . . . }.
Proof Since δi is realizable, and it suffices to consider the case that {S, F(w :
α)} is the realizable element. Then there is a model ⟨∆I , ·I ,⪯⟩ and a Γ ∈ ∆I

such that Γ realizes S and Γ ⊭ α. In either case, δi+1 is realizable.

Lemma 5.9 (S, T (w : (α β))). Let α and β be iALC formulas, w ∈ W , and
δi is {. . . , {S, T (w : (α β))}, . . . } and δi+1 is {. . . , {S,F(w : α)}, {S, T (w :
β)}, . . . }.
Proof Since δi is realizable, some element of it is realizable. If that element is
not S, T (w : (α β)), the same element of δi+1 is realizable. If that element
is S, T (w : (α β)), then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I, Γ
realizes S, T (w : (α β)). Consequently, Γ realizes S and Γ |= w : (α β).

Chapter 5. Knowledge Base Reasoner Module (KRM) 61

Then Γ ⊭ (w : α) and Γ |= (w : β), so either Γ realizes {S,F(w : α)} and
{S, T (w : β)}. In either case, δi+1 is realizable. Where w ⪯ w, for some w in
the branch (w ∈ W occur in S).

Lemma 5.10 (S, F(w : (α β))). Let α and β be iALC formulas, w ∈ W ,
and δi is {. . . , {S,F(w : (α β))}, . . . } and δi+1 is {. . . , {S, T (w′ : α),F(w′ :
β)}, . . . }.
Proof Since δi is realizable, some element of it is realizable. If that element is
not S, F(w : (α β)), the same element of δi+1 is realizable. If that element
is S, F(w : (α β)), then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I, Γ
realizes S, F(w : (α β)). Consequently, Γ realizes S and Γ ⊭ w : (α β).
Then Γ |= (w′ : α) and Γ ⊭ (w′ : β), so either Γ realizes {S, T (w′ : α)} and
{S,F(w′ : β)}. In either case, δi+1 is realizable. Where w ⪯ w′, for new w in
the branch (w′ ∈ W does not occur in S).

Lemma 5.11 (S, T (w : (∃R.C))). Let w ∈ W , how defined in (5.2).
Proof if S, T (w : (∃R.C)) is realizable, and if w′, w′ ∈ W does not occur in
S, then S, T (w′ : C) is realizable.

Lemma 5.12 (S, F(w : (∃R.C))). Let w ∈ W , how defined in (5.2).
Proof if S, F(w : (∃R.C)) is realizable, and if w′, w′ ∈ W occur in S, then
S, F(w′ : C) is realizable.

Lemma 5.13 (S, T (w : (∀R.C))). Let w ∈ W , how defined in (5.2).
Proof if S, T (w : (∀R.C)) is realizable, and if w′, w′ ∈ W occur in S, then
S, T (w′ : C) is realizable. Similar to lemma 5.12.

Lemma 5.14 (S, F(w : (∀R.C))). Let w ∈ W , how defined in (5.2).
Proof if S, F(w : (∀R.C)) is realizable, and if w′, w′ ∈ W does not occur in
S, then S, F(w′ : C) is realizable. Similar to lemma 5.11.

Theorem 5.2 (Soundness). Let δ be a valid formula of iALC, Γ a set of iALC
formulas, and all branches of the tableaux are closed. Then, Γ ⊢tab δ implies
Γ |=tab δ.

Proof If δ is derived from some rule in the iALC tableau, then δ is true
in all possible models.

Chapter 5. Knowledge Base Reasoner Module (KRM) 62

5.5
Reasoning in iALC tableau calculus

Figure 5.20 shows the derivation tree with the sequence of expansions
of the rules present in the iALC table calculus. For this example, we want
reasoning about the formula ⊢iALC (∀hasRole.CC) ((∃hasRole.CC) ∧
¬(∃hasRole.FG)).
The idea is that a Law determines that a public servant cannot assume
a “Funcao Gratificada” at the same time that he already has a “Cargo
Commissionado”. For reasons of readability, we define the concepts “Cargo
Commissionado” and “Funcao Gratividade” by their respective acronyms:
“CC” and “FG”.

⊢iALC (∀hasRole.CC) ((∃hasRole.CC) ⊓ ¬(∃hasRole.FG))
F{w0 : (∀hasRole.CC) ((∃hasRole.CC) ⊓ ¬(∃hasRole.FG))}

T {w1 : (∀hasRole.CC)} (w0Rw1)

F{w1 : (∃hasRole.CC) ⊓ ¬(∃hasRole.FG)} (w0Rw1)

T {w1 : CC} (w1 ≺ w1)

F{w1 : (∃hasRole.CC)} (w1 ≺ w1)

F{w1 : CC} (w1 ≺ w1)

×

F{w1 : ¬(∃hasRole.FG)} (w1 ≺ w1)

T {w2 : (∃hasRole.FG)} (w1Rw2)

T {w3 : FG} (w2Rw3)

✓

Figure 5.20: Proof tree by iALC tableau.

As we can see, the left branch is a model (closed branch), it contains the
formula T {w1 : CC}, and its negation F{w1 : CC}, a contradiction.

The branch on the right side is a counter-model (opened branch). From
this, we can extract the atomic formulas,T {w3 : FG} and T {w1 : CC}, by
walking a path from the leaf to the root of the tree.

Chapter 5. Knowledge Base Reasoner Module (KRM) 63

5.6
The KRM Machine

The kernel of this unit was developed in Java language. This choice is
the ease of implementing computational algorithms capable of representing
graph [63] structures, as well as the main graph search engines. LinkedList
structures available in the environment facilitated the development of struc-
tural representations of our tableau [64]. We represent the tableau formulas
as nodes in a graph and their adjacency was made easier with the representa-
tion of this linked list. Building Java objects with the representations present
in iALC formulas. For example, id_node, formula sign, type of rule to apply
(alpha or beta), the world of the formula, order relations, main connective, etc.

For the lexical and syntactic analyzer of the iALC logical language,
a grammar (Fig. 5.21) and its parser with the ANLTR4 (ANother Tool for
Language Recognition) [65] version 4 were developed.

Here are some reasons why we adopted ANTLR4 in this project:

– Java code: the analyzers are generated in Java language. The same
language we used to build Tableau iALC, thus allowing full integration
with the project. In practice, the parser was integrated as a package into
the project.

– Ease of use: ANTLR provides an intuitive and easy-to-learn grammar
syntax based on Extended Backus–Naur Form [66], which makes defining
language grammars more accessible.

– Active community support: Due to its simplicity, ANTLR has an active
community of developers. Providing an abundance of tutorials available
to support projects.

We take advantage of this grammar and extend it to an attribute
grammar, see Appendix A. The idea was to assign semantic meaning to the
nodes of the Abstract Syntactic Tree (AST) generated by this parser. In this
case, our interest was in identifying the main symbol of a subformula in the
tableau calculi (main element of KRM). With this, given a formula, alpha or
beta type rule, and a visit mechanism implemented as an interface in ANLTR,
We can divide a formula into subformulas through its main symbol identified
in the visit (path in this AST) of its root node, the main symbol of the formula.

Chapter 5. Knowledge Base Reasoner Module (KRM) 64

⟨S⟩ |= <Formula>

⟨Formula⟩ |= <LPAREN><CHARACTER><RPAREN>

⟨Formula⟩ |= <Formula><binConnective><Formula>

⟨Formula⟩ |= <LPAREN><Formula><RPAREN>

⟨Formula⟩ |= <NOT><Formula>

⟨Formula⟩ |= <FORALL><ROLE>"."<LPAREN><CHARACTER><binConnective><CHARACTER>

<RPAREN>

⟨Formula⟩ |= <EXISTS><ROLE>"."<LPAREN><CHARACTER><binConnective><CHARACTER>

<RPAREN>

⟨Formula⟩ |= <MODAL>

⟨ROLE⟩ |= <CHARACTER>

⟨LPARAN⟩ |= "("

⟨RPARAN⟩ |= ")"

⟨MODAL⟩ |= <FORALL> | <EXISTS>

⟨FORALL⟩ |= "∀"
⟨EXISTS⟩ |= "∃"

⟨binConnective⟩ |= <CONJ> | <DISJ> | <iIMPL>

⟨CONJ⟩ |= "⊓"
⟨DISJ⟩ |= "⊔"
⟨iIMP⟩ |= " "

⟨NOT⟩ |= "¬"
⟨CHARACTER⟩ |= [0-9a-zA-Z]

⟨ENDLINE⟩ |= (\r | \n)+
⟨WHITESPACE⟩ |= (" " | \t)+

Figure 5.21: eBNF for iALC

5.6.1
The KRM Kernel

In this section, we will present the main algorithms of our solver. As seen
in the previous section, the KRM kernel was developed in Java language and
some abstractions that will be shown here (Algotithm 1) have their respective
implementation in structures already discussed in Section (5.6).

The precondition to start the process is a formula iALC that represents
the auditing criteria. In the (Algorithm 1), line 1 is a constructor for main
structures. Remember that we represent formulas by node objects. Thus, a
LinkedList<Node> was fundamental for this implementation, this structure
allowed us to create connections between nodes automatically. In line 2, there
is an assignment to mainLinkedList with the new formula derivate of the
original formula. In practice, this new formula is the original formula with
world, signal, and check flag7 increments. Initially, this formula starts with a
false check flag value; The algorithm’s stopping criterion is a full set of checked

7The check flag is a boolean Node type attribute. The formulas that had to be visited
are checked with true values. Conversely, new and unvisited formulas are marked as false;

Chapter 5. Knowledge Base Reasoner Module (KRM) 65

derived formulas in the main structure, lines 3-4. Line 5, shows the parser tree
visitor over the LocalFormula, a formula that was chosen to analyze. In this
step, an abstract syntax tree (AST) [65] was used to highlight the main symbol
of the formula. Line 6 adds this formula to the sheet structure list. This list
will help in the process of inserting derived formulas as children of the original
formula into a specific branch. A depth-first search (DFS) [67] is used to search
for these leaves of the node being analyzed. Line 7, recover if the formula is α or
β. If the formula is α-type, it starts a loop (size of leavesList) that creates
new formulas by applying rules. In line 10, the original formula is split into two
new formulas. For these, all Node type attributes were applied (lines 11-15).
An interesting point is the definition of the world of this new formula (line 11).
The process here involves choosing a world (current or new) according to the
criteria presented in the formulas shown in Section (5.3.2). If the reader wants
to understand this process, the Algorithm 2 shows this important step.
Lines 17-24 are similar to lines (9-15) already presented.
Finally, 26-30 are decidability instructions.
This algorithm is just a high-level view to demonstrate the processes involved
in implementing our SAT solver. If the reader wishes to see the implementation
of this algorithm, it is available in the GitHub Link.

The reader can see the soundness proof of this algorithm in Appendix D.

The algorithm that decides what world is applied:

Change of world rules is used in modal tableaux to explore different
scenarios (possible worlds) in relation to the modal relationships specified in
the problem. In an intuitionist tableau shown by Fitting [43], the rules of F →,
F¬, F∀, and T ∃, to exclude all formulas (signed F) in that branch8. In our
iALC rules, we create new worlds (not yet present in the tableau). Thus, for
our tableau, the world change rules allow the construction of possible states
of the world, checking and validating the formula in different scenarios. This
is important in relation to the hierarchical system of legal norms, as it allows
us to examine how relationships between worlds (laws) behave in different
contexts.

Before explaining how the algorithm decides which world will be applied,
it is necessary to define the concept of the complement of the formula.

Definition 5.10 (Complement of formula). The complement of a formula
is any formula that is syntactically the same but with a different annotation

8To maintain coherence with the more restricted view of negation in intuitionism

https://github.com/fernandoantoniodantas/Tableau_iALC

Chapter 5. Knowledge Base Reasoner Module (KRM) 66

Algorithm 1 The tableau-based satisfiability algorithm for iALC
Require: formula

1: mainLinkedList :: LinkedList<Node>
2: mainLinkedList<node>[Formula, AssignFormula(Formula)]
3: while (unchecked) do
4: LocalFormula← searchUnchecked(mainLinkedList)
5: mainBinToken← (parseTreeV isitor(LocalFormula))
6: leavesList← DFSLeafList(LocalFormula)
7: AlphaBeta← SAlphaBeta(LocalFormula)
8: if AlphaBeta == “Alpha” then
9: for l = 0 to leavesList.size()− 1 do

10: NewFormula′, NewFormula′′ ← SplitAlpha(LocalFormula)
11: objN.world(NewFormula′, NewFormula′′) ←

rules(LocalFormula)
12: objN.sign(NewFormula′, NewFormula′′) ←

rules(LocalFormula)
13: mainLinkedList.update← check(LocalFormula)
14:
15: ... ▷ Other definitions for the Node object (objN).
16: end for
17: else if AlphaBeta == “Beta” then
18: for l = 0 to leavesList.size()− 1 do
19: NewFormula′, NewFormula′′ ← SplitBeta(LocalFormula)
20: objN.world(NewFormula′, NewFormula′′) ←

rules(LocalFormula)
21: objN.sign(NewFormula′, NewFormula′′) ←

rules(LocalFormula)
22: mainLinkedList.update← check(LocalFormula)
23: ... ▷ Other definitions for the Node object (objN).
24: end for
25: end if
26: if findUnchecked() then
27: unchecked = true
28: else
29: unchecked = false
30: end if
31: end while

Chapter 5. Knowledge Base Reasoner Module (KRM) 67

(signal), as shown in Definition (5.2).

Algorithm 2 World definition algorithm
1: procedure WrlDefinition(node) ▷ The node visited in the graph.
2: branch← (SBranch(node))
3: cNode← (SComp(node, branch))
4: if (cNode.world == node.world) then
5: CloseBranch(node);
6: else if (cNode.world != Node.world) then
7: w ← (SRelation(node.world, cNode.world, branch))
8: if (w) then
9: applyWorld(node);

10: CloseBranch(node);
11: end if
12: end if
13: end procedure

The Algorithm (2) is a procedure with a node parameter (line 1). The
node is a formula that is being visited in the tableau graph. In line 3, the
complement of node is found in the same branch (cNode).

If the world of the complement node and the world of the current node
are different (line 6), then the next line is available. Thus, line 7 searches for a
relation between the current world of node, the world of its complement, and
the branch. If the return is true, then the world will be applied definitively to
the node, and the branch will be closed.

We emphasize that for this thesis, our algorithm does not address issues
related to complexity in tableaux. In the literature [11], we find two main
sources of complexity in tableaux calculi: or-branching and and-branching. We
suggest reading this paper [68] where the authors present a hybrid system
of hypertableau and resolution, for description logic, which deals with these
complexities.

5.6.2
The Model and Counter-model Logs File

Remember, an iALC model is an interpretation that satisfies all formulas
in the tableau branch, taking into account the rules of iALC tableau. In other
words, a model is a structure that assigns true or false values to the formula,
according to the restrictions imposed by iALC tableau calculi, and makes all
formulas in the branch true. In a complementary way, an iALC counter-model
is an interpretation that satisfies all of the formulas present in the branch,
except one. This means that there is a formula in the branch that is not true
under the interpretation given by the counter-model.

Chapter 5. Knowledge Base Reasoner Module (KRM) 68

⟨S⟩ |= <Log>

⟨Log⟩ |= <LEFTC>"==>:"<RIGHTC>

⟨LEFTC⟩ |= <LPAREN><ID><RPAREN><WORLD><SIGN><CONCEPT>

⟨RIGHTC⟩ |= <LPAREN><ID><RPAREN><WORLD><SIGN><CONCEPT>

⟨LPARAN⟩ |= "("

⟨RPARAN⟩ |= ")"

⟨WORLD⟩ |= "w"[’]*

⟨ID⟩ |= [0-9]+

⟨SIGN⟩ |= "T" | "F"

⟨CONCEPT⟩ |= [0-9a-zA-Z]+

Figure 5.22: eBNF for counter-model log file.

The log file is the result of the process of extracting models and counter-
models present in the branches. As a result, this counter-model file is used as
input to a transpiler9 contained in the KRM Module. To understand how this
log file is used for the transpiler, we show in Fig 5.22 a grammar for this. In
the next section, we will detail this step of transforming the counter-model
into SPARQL query.

5.6.3
From Counter-model to SPARQL

The last activity of the KRM module is to obtain the counter-models
inferred from the KRM Machine and transform them into SPARQL queries.
For this process, an iALC analyzer will perform this transformation through
a process that maps the atomic concepts and roles of iALC, available in
the counter-model, and transforms them into query structures in SPARQL
language.

Our interest is in identifying possible situations of non-conformity in the
knowledge base. We look at the result of the SPARQL query to see if such
a property is found. In fact, as we are executing a query transformed from a
counter-model, the following condition must be analyzed:

If the query result returns some value, then we find a non-
conformity situation. Otherwise, for this domain (law), the base is
in compliance.

In cases where there is compliance for all domains (laws), we can assign
a quality certificate to this knowledge base.

9It is a generic term used to describe the process of converting code from one language
to another [69].

Chapter 5. Knowledge Base Reasoner Module (KRM) 69

For a better understanding, let’s start by remembering the basic concepts
of an RDF structure and SPARQL language.

The RDF (Resource Description Framework) is a data model (metadata)
used to represent information to facilitate the search for resources on the
web [70].

According to [71, 72], the RDF increment the structure of links of the
web when using URIs to appoint the relationship between the web features,
available in the form of a triple element <subject>, <predicate> and <object>.
Consequently, this model RDF forms a graph (RDF graph) directed and
labeled where the most external nodes represent resources (subject or object)
that are related by a predicate (edge) [73]. Resources can be seen as any
information, such as a document, a person, etc. In this case, each feature
is assigned an identifier element IRI (Internationalized Resource Identifier).
Figure 5.23 represents the RDF model primitives and will be used to present
the necessary mapping in constructing SPARQL queries on an RDF knowledge
base.

Figure 5.23: RDF Model Primitives.

To exemplify, we present two figures that represent instances of our
KBRDF . In these cases, both the code listings 8 and 9 serialize a sin-
gle employee. Technically, in terms of XML/RDF standards10, the Resource
(identified by the rdf:nodeID attribute) is the one given by the identifier
(N7654fa3513984ea89c0ade256a971939). The Predicate, the properties of the
RDF, are identified by the elements within the RDF node: FOAF:cpf,
FOAF:tipoCargo, FOAF:simbolo, eg. Finally, the Value, which are the val-
ues associated with each property. In this case, for the property FOAF:nome:
FERNANDO ANTONIO DANTAS GOMES PINTO.

Listing 5.1 shows how we can define a SPARQL query that extracts
information about this XML/RDF file.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 SELECT ?nome ?matricula ?portaria

3 WHERE {

10For more general examples, the reader can consult the XML/RDF specification at [74].

Chapter 5. Knowledge Base Reasoner Module (KRM) 70

Listing 8 RDF/XML data for Commissioned Position.
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>
<foaf:Funcionario rdf:nodeID="N7654fa3513984ea89c0ade256a971939">

<foaf:cpf>922.355.544-12</foaf:cpf>
<foaf:tipoCargo>CC</foaf:tipoCargo>
<foaf:simbolo>DAS-06</foaf:simbolo>
<foaf:dataEfeito>2017-01-01</foaf:dataEfeito>
<foaf:matricula>60/210917-1</foaf:matricula>
<foaf:cargo>ASSISTENTE I</foaf:cargo>
<foaf:nome>FERNANDO ANTONIO DANTAS GOMES PINTO</foaf:nome>

</foaf:Funcionario>

Listing 9 RDF/XML data for Função Gratificada.
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>
<foaf:Funcionario rdf:nodeID="N7654fa3584ea89c0ade">

<foaf:cpf>922.355.544-12</foaf:cpf>
<foaf:tipoCargo>FG</foaf:tipoCargo>
<foaf:simbolo>FG-01</foaf:simbolo>
<foaf:dataEfeito>2018-02-01</foaf:dataEfeito>
<foaf:matricula>60/210917-1</foaf:matricula>
<foaf:cargo>FUNCAO AUX I</foaf:cargo>
<foaf:nome>FERNANDO ANTONIO DANTAS GOMES PINTO</foaf:nome>

</foaf:Funcionario>

4 [rdf:nodeID="N7654fa3584ea89c0ade"] foaf:nome ?nome ;

5 foaf:matricula ?matricula ;

6 foaf:portaria ?portaria .

7 }

Code Listing 5.1: Query for the specific instance (Listing 9).

In this query, PREFIX foaf: <http://xmlns.com/foaf/0.1/>

defines the namespace foaf with the aim of simplifying refer-
ences in properties. SELECT ?nome ?matricula ?portaria spec-
ifies that we are interested in the values of properties foaf:nome,
foaf:matricula and foaf:portaria (projection variables). The
[rdf:nodeID="N7654fa3584ea89c0ade"], selects the subject for
the node with the specified identifier. Finally, the foaf:nome ?nome ;

foaf:matricula ?matricula ; foaf:portaria ?portaria ex-
tracts the corresponding values of properties for the specified subject. This
query returns the nome, matrícula, and portaria values for the subject identi-

Chapter 5. Knowledge Base Reasoner Module (KRM) 71

fied by the node with the identifier to the subject identified by node with id
N7654fa3584ea89c0ade.

The mapping:

Finally, we present Table 5.1 that shows the rules for mapping the
information extracted from the counter-model file. As seen, we are concerned
with treating only the concepts and roles extracted from the formulas and
directly building them as elements RDF. The transpiler uses the grammar of
the counter-model file and, based on these mapping rules, transforms it into
SPARQL query.

In practice, the iALC roles can be mapped to RDF properties, and iALC
nominal “concepts” to RDF object “values”. Then, from RDF to SPARQL is
also a direct transformation.

An observation about the Role mapping rule is that it is performed by
an indirect extraction by the counter-model file. In this, from the node “ID”
(see the grammar in Figure. 5.22) we can look for the branch until it reaches
its ancestor that contains the information about its role (Listing 10). This task
is performed as a subprocess associated with the transpiler.

Listing 10 Looking for role in formula.
private static String getRole(Node token) {
String predicate=null;
int idNo = token.getIndice();
for (Node tokensMainList : PrincipalNew.mainList) {
if (tokensMainList.getIndice() == idNo){

String idPai = tokensMainList.getIndicePai();
for (Node paiMainList : PrincipalNew.mainList) {

if (paiMainList.getIndice() == Integer.parseInt(idPai)){
String regex = "[|]+([a-zA-Z]+)";
Pattern pattern = Pattern.compile(regex, Pattern.DOTALL);
Matcher matcher = pattern.matcher(paiMainList.getFormula());
while (matcher.find()) {
predicate = matcher.group(1);

}
}

}
}

} return predicate;
}

Chapter5.
Knowledge

Base
ReasonerM

odule
(KRM

)
72

Table 5.1: Some general guidelines for transforming iALC to a SPARQL query.

Mapping Rules Example

Maps iALC
(from)

RDF Primitives
(to) iALC Formula Mapping Parser RDF

Concepts Atomic Concepts RDF Object (value) XEmployeeAt.Sempma Sempma 7→ Sempma

Roles Roles RDF Properties XEmployeeAt.Sempma EmployeeAt 7→ EmployeeAT

Chapter 5. Knowledge Base Reasoner Module (KRM) 73

The SPARQL query templates:

At this stage of the research, we used three basic templates that helped
construct SPARQL queries. The first template is applied according to the
number of open branches in the tableau. To do this, we start the construction
process by associating each branch with a single complete SPARQL structure
(SELECT clause, projection variables and WHERE clause). For example, if there
are two counter-examples generated by Tableau, then this template will be used
twice. In other words, we will have a query for each open branch.

The second template is applied where the counter-model only presents
signed with T , then the query is constructed by applying these variables to
each WHERE clause of the subset of queries presented in the first template.

Finally, the third template is for cases where the counter-model presents
variables signed with F , so the query is built using the FILTER NOT EXISTS

in the parameters of the WHERE clause. Then, this template is associated with
the rules of the first and second templates.

Here, it is worth mentioning that, for simplicity reasons, we are defining
the “name” projection variable as the default.

5.6.4
The KRM Solver Application

In this subsection, we will present a small sample of the ability of our
SAT Solver to present the formula solution tree in iALC as well as the LOG
files containing information about models and counter-models of this process.
Furthermore, we will present the Log file containing the generated SPARQL
query. For this, we will use the tableau presented in subsection 5.5, for the
formula:

⊢iALC ∀temCargo.CC (∃temCargo.CC ∧ ¬∃temCargo.FG).
As we can see in the figure, this table contains some meta information.

On the left side of each formula there is an index that uniquely identifies each
derived subformula. On the right side, there is the index that points to the
parent formula of this subformula. On this same side (rightmost), there are
indicators of precedence relationship derived between worlds (wm ≼ wn) and
relations between worlds (wmRwn). The last information is about the closed
branch. In the left branch, there is an X(5) representing that formula (8) has
its complement with formula (5), thus closing this branch.

The Log File in Listing 11 showed that the concept CC is T (true) in
node five (5) and F (false) in node eight (8). closing the leftmost branch

Chapter 5. Knowledge Base Reasoner Module (KRM) 74

Figure 5.24: Proof tree generated by KRM SAT Solver.

of the tableau. They are both in the same world (w’). Therefore, the
[Relation==>] information, in this case, doesn’t show any additional
information about the relationships.

Listing 11 Model Log generated by KRM SAT solver.
(5) w' T CC ==>: (8) w' F CC [Relation==>]

The Log File in Listing 12 showed that the rightmost branch is the
counter-model. For it, the Node ten (10) contains the formula FG signed with
T (true), in the world (w”’) and the Node (5) five contains the formula CC

signed with T (true), in the world (w’).

Listing 12 Counter-model Log generated by KRM SAT solver.
(10) w''' T FG ==>: (5) w' T CC

Finally, we show the Listing 13, the Log file that contains the query
generated by KRM SAT solver correspondent the counter-model.

Chapter 5. Knowledge Base Reasoner Module (KRM) 75

Listing 13 SPARQL query generated by KRM SAT Solver.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

{
SELECT ?name
WHERE {
?x foaf:temCargo 'FG' .
?x foaf:name ?name .

}
} {

SELECT ?name
WHERE {
?x foaf:temCargo 'CC' .
?x foaf:name ?name .

}
}}

6
Evaluation and Results

In this chapter, we evaluate and present results that demonstrate the
efficiency of our approach. To do this, we carried out different queries (CQs1

in iALC language) to an RDF knowledge base with the aim of verifying the
ability of our architecture to support the certification process of this KB.
Our evaluation criteria followed the approach used in the CQ inference and
validation process for the CoreACQ2 tool.

Using Competency Questions as an ontology engineering process plays
a fundamental role in the ontology development life cycle. It serves as the
bedrock for identifying and defining requirements. By formulating and an-
swering CQs, ontology developers can gain a comprehensive understanding of
the domain, its concepts, relationships, and constraints, which in turn guides
the ontology modeling process [77].

We can define the CQ as ⟨C, σ⟩ such that C is a question expressed in
iALC language and σ is an answer to this question expressed counterexamples
from the iALC tableau. Roughly speaking, the process of obtaining the CQs
dataset was through consultations with experts and modeling based on laws
published in official gazettes. We defined a set of questions focused specifically
on the terminological part (TBox). This dataset can be as a gold standard for
testing and benchmarking, research into logic, and tool development for iALC.

6.1
Reasoner Evaluation

For this activity, we used the approach shown in[78]. In this book, the
authors define some phases of experimentation in software engineering:

– Scoping phase.

– Planning phase.

– Operation phase.

– Analysis and Interpretation phase.

1Competency Questions are used in methodologies for validating ontology functional
requirements[75].

2A computational framework to validate competence questions by automatic reasoning
on the SUMO ontology [76]

Chapter 6. Evaluation and Results 77

6.1.1
Scoping

For this case study, the Goal Question Metric paradigm (GQM) was
adopted. The GQM is a paradigm that defines a software quality measurement
model based on three levels: the conceptual level (Goal), the operational level
(Question), and the quantitative level (Metric) [79].

In the next three subsections we formulate the objective of the case study,
the questions to be answered (CQs), and the essential measures to produce the
answers. The three aspects of evaluation are described below.

Goal:
Evaluate the performance of the KRM SAT solver in solving intuitionistic

logic (iALC) problems in terms of accuracy and query coverage.
Questions:
Q1 = Does KRM perform CQs validations by showing counter-examples

through our tableau system’s (automatic reasoning) on logical formulas in
iALC?

Q2 = Does KRM perform CQs validations into the relative number of
SPARQL queries generated by counter-models?

Metrics: The engineering process uses some observable characteristics
to define software quality. Some examples are cited in [79]: time, number of
defects, defect severity, complexity, lines of code, coding effort, and productiv-
ity.

For this work, we defined two metrics (M1, M2):
M1. Accuracy: it is the measure of dividing the number of counter-

examples (complement of iALC models) correctly inferred by the total number
of CQs.

M2. Query coverage: it is the measure of dividing the number of counter-
examples (defined by specialists) by the total number of queries generated
correctly by KRM. Many times we will have a number of counter-models
greater than the number of SPARQL queries. This is justified because we
decided on just one more complete counter-model (greater number of terms
among the counter-models) for its transformation into a query.

6.1.2
Planning

The planning prepares for how the experiment is conducted. For it, the
planning phase of an experiment can be divided into seven steps:

– Context Selection: In this phase, we select the environment in which
the experiment will be executed. The objective of the experiment is to

Chapter 6. Evaluation and Results 78

analyze the technical feasibility of our KRM SAT Solver. To achieve
this, we defined a set of CQs extracted from various laws (municipal,
state, and federal) together with business specialists from the city of
Maceió. These CQs are formulas in iALC that represent the legislation’s
compliance rules over real problems. Basically, these rules define what
should be valid in a knowledge base in terms of its TBox, the domain of
interpretation.

To run the experiment, examples of the RDFog knowledge base were
built to execute each competency question. The complexity and diversity
of the laws addressed in the competency questions required a detailed
and systematic analysis strategy, which can be facilitated by the avail-
ability of small concrete examples of official gazette data. In practice, for
each CQ, examples of RDF instances were created with information in
compliance and information about non-compliance with the legislation.

Furthermore, by using examples of compliance and non-compliance in
the RDF, the experimentation process of this research can ensure a more
objective and consistent evaluation of our solution responses since the
evaluation criteria can be aligned with the data available in the examples.
In this way, the construction of these examples, aligned with the CQs,
not only facilitates understanding and analysis but also facilitates a more
effective evaluation of our solution.

An important point, when defining the scope of this research, our tool
does not perform a conjunctive ABox query on the RDF graph. In the
Listing 14 is an example of a SPARQL query that makes a query ABox
conjunctiva in specific class instances where um Person is filtered with
age >= 18.

Listing 14 Conjunctive ABox query.
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ex: <http://example.org/>

SELECT ?subject
WHERE {

?subject rdf:type ex:Person .
?subject ex:hasAge ?age .
FILTER (?age >= 18)

}

This query would return the subjects (instances) that would meet the
specified criteria.

Chapter 6. Evaluation and Results 79

– Hypothesis Formulation: A hypothesis is formally stated, and the
data collected during the experiment is utilized, if possible, to reject
the hypothesis. If the hypothesis can be rejected, conclusions can then
be drawn based on hypothesis testing [78]. The Null Hypothesis (H0),
is the hypothesis that the experimenter wants to reject with as high
significance as possible. The Alternative Hypothesis (H1), is a proposition
that contrasts with the null hypothesis.

We defined the following statistical values µ (populational average) for
Null Hypothesis and Alternative Hypothesis:

Hypothesis Testing for Accuracy

– H0 : Accuracy < 1
– H1 : Accuracy = 1

Hypothesis Testing for Query Coverage

– H0 : QueryCoverage < 1
– H1 : QueryCoverage = 1

– Variables Selection

Independent Variables: In a hypothesis test, the independent variable
is the one that you experimentally manipulate or control, which can affect
the dependent variable, which is the one you are trying to measure or
evaluate (in this case, the accuracy and query coverage metrics).

Therefore, the independent variable in this experiment refers to the 21
competency questions to be analyzed individually in the KRM SAT
Solver.

Dependents Variable:

In a hypothesis test, the dependent variable is the one you are trying
to understand or explain in relation to variations in the independent
variables.

Accuracy: Accuracy is a performance measure that indicates the propor-
tion of correctly inferred counter-examples to the total number of inferred
counter-examples.

Query Coverage: Query coverage is another performance measure that
indicates the proportion of counterexamples (generated by CQs) to the
total number of queries generated by KRM.

Chapter 6. Evaluation and Results 80

– Selection of Competency Questions as Study Subjects: The
appropriate selection of Competency Questions (CQs) is essential to
ensure the validity and relevance of a study. In this section, we will
describe the selection process of CQs written by experts based on
different laws, who will serve as the subjects of study in our research.

Definition of CQs: Initially, we carefully reviewed the 20 expert-designed
CQs, which were formulated based on various laws relevant to the public
service domain. Our objective was to clearly identify and describe the
issues addressed by each CQ and assess their relevance to the objectives of
this research. The selected CQs must be able to provide valuable insights
on how to identify nonconformities in the RDF database of public acts.

6.1.3
Operation

In this section, we detail the procedures used to carry out the proposed
experiment. Remember that the objective of this experiment is to evaluate
the performance of the KRM SAT solver by determining whether a given
competency question (in iALC logic and respective counter-model) applied to
this solver produces the same reference counter-model. Secondly, whether the
SPARQL query is retrieving non-conformity information, in coherence with
the counter-model. These evaluations will be in terms of accuracy and query
coverage. For the reference counterexamples present in the CQs, manual proofs
(iALC tableau) were carried out with the help of two students from the higher
education course at IFAL (Instituto Federal de Alagoas). This evidence is
stored in the experiment report.

Execution:
Thus, the 21 CQs presented in Appendix A of this thesis were applied

individually to this experiment as input to the KRM SAT solver. After
execution, the counter-examples and SPARQL queries generated were stored
in a log file for this experiment. Furthermore, each query was applied to
AllegroGraph, which stores some counter-model examples in RDF format.
Then, the result of this consultation was carefully recorded.

In order not to consume space in this thesis document, we will demon-
strate this entire process of executing the competency questions in our tool,
generating the proof trees and all the models and SPARQL query results,
only for competence question numbers 1, 4, and 5. However, the result of the
complete execution of this experiment was recorded and available in the Ex-

https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke
https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke
https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke

Chapter 6. Evaluation and Results 81

periment Report Link3.
Thus, in Figure 6.1, we present the sample of the solution tree for CQ

number 1. The Listing 15 shows the Log file with the generated counter-model
and Listing 16, the Log file with the generated SPARQL query. Remember
that KRM SAT Solver is also capable of generating a log file with the model,
when it is the case.

Case study: CQ1

Let us start our experiment with CQ1. Law N0 7.713 of December 22,
1988, it establishes that retired employees and employees with severe diseases
are exempt from income tax deductions [80]. Then, model this legal rule with
the following specification in iALC :
⊢iALC (w : (∀tipoFunc.APOSENT ⊓ ∀tipoDoenca.INCAPAC)

¬(∀temDesconto.IRPF))

Figure 6.1: Proof tree of CQ1.

As we can see, this proof tree presents on node 1 the original formula
of our modeling. The iALC tableau calculation process begins by applying
the first rule: the negation of the formula (Id node 2). Remembering that
this tree has, in addition to the subformulas derived from the application
of our calculation rules (Section 5.3.2), some meta-information. On the right
side, there is the index of the original formula of this current subformula,

3https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-
V1rMzcjX/view?usp=drivelinke

https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke
https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke
https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke
https://drive.google.com/file/d/1JdjhgctuAcuaq8EdS3wPibz-V1rMzcjX/view?usp=drive_linke

Chapter 6. Evaluation and Results 82

in addition to information on the order between worlds and the relationship
between worlds. This tableau, which is not closed, has a counter-example with
three atomic subformulas (Listing 15). The wRw′, w′Rw′′ and w′′Rw′′′ relations
guarantee the relationship between the worlds of these formulas. In practice,
these relationships guarantee the existence of accessibility permission between
these legal individuals (represented by these worlds).

Listing 15 Counter-example Log generated to CQ1 by KRM SAT solve.
(10) w''' T IRPF (9) w' T INCAPAC (8) w' T APOSENT

The Listing 15 shows three atomics nominal which represents a generated
counter-example. This instance is then used as configuration parameters for a
SPARQL query. By relating the detection of counter-examples through tableau
with the parameters used in the SPARQL query (Listing 16), it is possible
to establish a comprehensive approach to identify and correct errors in the
knowledge base, as we will see below.

Listing 16 SPARQL query generated to CQ1 by KRM SAT Solver.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

{
SELECT ?name
WHERE {
?x foaf:temDesconto 'IRPF' .
?x foaf:name ?name .

}
} {

SELECT ?name
WHERE {
?x foaf:tipoDoenca 'INCAPAC' .
?x foaf:name ?name .

}
} {

SELECT ?name
WHERE {
?x foaf:tipoFunc 'APOSENT' .
?x foaf:name ?name .

}
}}

In Listing 17 we can see that the RDF of experiment CQ1 contains four
instances that represent the IRPF discount rule for four employees. Among
these, two are in a situation of non-compliance with the law that defines the
rule for exemption from the IRPF discount. The law, which can be seen in
Appendix A, says that the non-deduction situation is for cases where the
employee is retired and has a serious disease.

Chapter 6. Evaluation and Results 83

Listing 17 RDF to CQ1.
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<foaf:Faixas rdf:nodeID="Nf1002b3c57c841a9bc83f3225c88f6cd">
<foaf:tipoFunc>APOSENT</foaf:tipoFunc>
<foaf:name>MARCELO SOUTO AIRES</foaf:name>
<foaf:tipoDoenca>INCAPAC</foaf:tipoDoenca>
<foaf:temDesconto>IRPF</foaf:temDesconto>

</foaf:Faixas>
<foaf:Faixas rdf:nodeID="Nf1002b3c57c841a9bc83f3225c88f6c5">

<foaf:tipoFunc>APOSENT</foaf:tipoFunc>
<foaf:name>EDUARDO LIMA NOVAES</foaf:name>
<foaf:tipoDoenca>INCAPAC</foaf:tipoDoenca>
<foaf:temDesconto>IRPF</foaf:temDesconto>

</foaf:Faixas>
<foaf:Faixas rdf:nodeID="N22e140cbdf804107b26cb49b537834b1">

<foaf:tipoFunc>ATIVO</foaf:tipoFunc>
<foaf:name>FERNANDO ANTONIO PINTO</foaf:name>
<foaf:tipoDoenca>INCAPAC</foaf:tipoDoenca>
<foaf:temDesconto>IRPF</foaf:temDesconto>

</foaf:Faixas>
<foaf:Faixas rdf:nodeID="N6388d7508deb49e585c9b699d9ad03b8">

<foaf:tipoFunc>APOSENT</foaf:tipoFunc>
<foaf:name>JOAO NOGUEIRA DA SILVA</foaf:name>
<foaf:tipoDoenca>COMUM</foaf:tipoDoenca>
<foaf:temDesconto>IRPF</foaf:temDesconto>

</foaf:Faixas>
</rdf:RDF>

The result of executing the query, Figure 6.2, proves that our query
is covering the situations imposed in the modeling of the iALC for-
mula (If the employee is retired and has a serious disease, then can-
not deduct income tax). The first case (in the result set) is Marcelo
Souto Aires, who is retired (<foaf:tipoFunc>APOSENT), has a severe
disease (<foaf:tipoDoenca>INCAPAC) and deducts it from the IRPF
(<foaf:temDesconto>IRPF). The second case, Eduardo Lima Novaes, is simi-
lar to the first case.

Figure 6.2: Result query generated to CQ1 by AllegroGraph.

Chapter 6. Evaluation and Results 84

Case study: CQ4

The second experimenter is the CQ4 interpretation. According to Law
No. 8,647 of April 13, 1993. Provides for the connection of a civil public
employee, occupying a position on a commission without an effective link with
the Federal Public Administration, to the RGPS (General Social Security
Regime) [81]. The second interpretation involves the law No. 9,717 of Novem-
ber 27, 1998. Provides general rules for the organization and operation of social
security systems for public employees of the Union, States, the Federal District
and municipality, military personnel of the States, and the Federal District
and provides other measures. Art. 1 - Art. 1 The specific social security rules
(RPPS) for public employees in the Union, the States, the Federal District,
and municipality[...] must be organized[...] [82].
(∀tipoFunc.SERV IDOR ⊓ ¬(∀temV inculo.EST)) (∃temV inculo.CEL ⊓

(∃temPrev.RGPS))

Figure 6.3: Proof tree of CQ4.

The proof tree of CQ4 (Figure 6.3), not a closed tableau, has a counter-
model with two counter-examples, represented for two branches. The left
branch contains the counter-example of nodes 15, 13, and 9 IDs. The right,
counter-example of nodes 16, 14, and 10.

Listing 18 Counter-model Log generated to CQ4 by KRM SAT solver.
(15) w'' F EST (13) w' F CEL (9) w' T SERVIDOR
(16) w'' F EST (14) w' F RGPS (10) w' T SERVIDOR

Chapter 6. Evaluation and Results 85

In cases where there is more than one counter-example, our transpiler
generates a SPARQL query for each counter-example. As we can see List 19
(left branch) and List 20 (right branch).

In cases where the counter-example contains the “F” (false signal) of a
nominal (nodes 15, 13,16, and 14), our transpiler decides a template with a
non-existence filter. The FILTER NOT EXISTS allows to filter results based
on whether certain triple patterns do not exist in an RDF graph [83]. This
is useful for queries where we want to find entities that do not have certain
relationships or properties in common with other entities.

Listing 19 SPARQL query generated to CQ4 (left branch) by KRM SAT
Solver.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

{
SELECT ?name
WHERE {
?x foaf:tipoFunc 'SERVIDOR' .
FILTER NOT EXISTS {?x foaf:temVinculo 'EST'}
?x foaf:name ?name .

}
} {

SELECT ?name
WHERE {
?x foaf:tipoFunc 'SERVIDOR' .
FILTER NOT EXISTS {?x foaf:temVinculo 'CEL'}
?x foaf:name ?name .

}
}

}

Listing 21 shows the RDF file with four instances of functional rela-
tionships. The cases of non-compliance are MARCELO SOUTO AIRES and
RONALDO NAZARIO DOS SANTOS where the values of the predicates for
<foaf:temVinculo> and <foaf:temPrev> are not compatible. Futhermore, the
formula is looking for cases where employee not is “EST” (Estatutario) and
“RGPS”. Therefore, only “RONALDO NAZARIO DOS SANTOS” (Figure 6.4)
is retrieved by the query. The Experimenter CQ5 will show this complement.

Figure 6.4: Result query generated to CQ4 by AllegroGraph.

Chapter 6. Evaluation and Results 86

Listing 20 SPARQL query generated to CQ4 (right branch) by KRM SAT
Solver.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

{
SELECT ?name
WHERE {
?x foaf:tipoFunc 'SERVIDOR' .
FILTER NOT EXISTS {?x foaf:temVinculo 'EST'}
?x foaf:name ?name .

}
} {

SELECT ?name
WHERE {
?x foaf:tipoFunc 'SERVIDOR' .
FILTER NOT EXISTS {?x foaf:temPrev 'RGPS'}
?x foaf:name ?name .

}
}

}

Listing 21 RDF to CQ4.
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<foaf:Vinculos rdf:nodeID="Nf1002b3c57c841a9bc83f3225c88f6XX">
<foaf:name>MARCELO SOUTO AIRES</foaf:name>
<foaf:tipoFunc>SERVIDOR</foaf:tipoFunc>
<foaf:temVinculo>EST</foaf:temVinculo>

<foaf:temPrev>RGPS</foaf:temPrev>
</foaf:Vinculos>

<foaf:Vinculos rdf:nodeID="N22e140cbdf804107b26cb49b537834YY">
<foaf:name>FERNANDO ANTONIO DANTAS</foaf:name>
<foaf:tipoFunc>SERVIDOR</foaf:tipoFunc>
<foaf:temVinculo>EST</foaf:temVinculo>

<foaf:temPrev>RPPS</foaf:temPrev>
</foaf:Vinculos>

<foaf:Vinculos rdf:nodeID="N6388d7508deb49e585c9b699d9ad03DD">
<foaf:name>RONALDO NAZARIO DOS SANTOS</foaf:name>
<foaf:tipoFunc>SERVIDOR</foaf:tipoFunc>
<foaf:temVinculo>CEL</foaf:temVinculo>

<foaf:temPrev>RPPS</foaf:temPrev>
</foaf:Vinculos>

</rdf:RDF>

Case study: CQ5

This experiment is complementary to experiment CQ4. Now we are
interested in cases that do not meet this rule:

Chapter 6. Evaluation and Results 87

(∀tipoFunc.SERV IDOR ⊓ ¬(∀temV inculo.CEL))

(∃temV inculo.EST ⊓ (∃temPrev.RPPS))

Figure 6.5: Proof tree of CQ5.

Listing 22 Counter-model Log generated to CQ5 by KRM SAT solver.
(15) w'' F CEL (13) w' F EST (9) w' T SERVIDOR
(16) w'' F CEL (14) w' F RPPS (10) w' T SERVIDOR

Figure 6.6 shows the result of executing the SPARQL query on an
example RDF base.

Figure 6.6: Result query generated to CQ5 by AllegroGraph.

Chapter 6. Evaluation and Results 88

Data Collection:
We present, in Table 6.1 below, the number of CQs validated according

to the correctly generated counter-models.

Table 6.1: Summary of correct and incorrect CQs.

Quantity of CQs Correct CQs Incorrect CQs
21 21 0

Table 6.2 presents a summary of the results obtained from a close
inspection of SPARQL queries in our RDFog knowledge base. The main metric
analyzed is the coverage of the SPARQL query, which indicates whether the
query correctly returns the counter-model data.

The coverage of a SPARQL query is a crucial indicator of the effectiveness
of our RDFog KB and the accuracy of the queries performed. Successful
coverage confirms that the queries return the expected results, while poor
coverage may indicate flaws in the query logic or problems in the RDFog

structure.
To facilitate the traceability of this experiment, a set of RDF triples

was constructed with fictitious information (compliance and non-compliance
cases). 21 RDF bases were built, specialized for each legal norm. These RDFs
are available in the experiment report.

Table 6.2: Query coverage summary.

CQ index Correct coverage Incorrect coverage Observations
CQ1−21 21 0

This table is divided into four informative columns that provide a detailed
view of the inspection results. The lines represent a summary of SPARQL
queries, including information such as CQ index, correct coverage and incorrect
coverage obtained, and additional observations (when applicable). This table
provides a comprehensive view of the performance of our SPARQL queries with
respect to data coverage. Based on this information, we can identify areas for
improvement and implement strategies to optimize our SPARQL queries or
improvements in the RDFog KB.

6.1.4
Analysis and Interpretation

After running each CQ in our SAT Solver, the results were grouped to
calculate the accuracy (M1) and the query coverage (M2) metrics of the CQ
validations performed by KRM.

Chapter 6. Evaluation and Results 89

Evaluating the SAT Solver generating correct counter-
examples:

The table 6.3 indicates the accuracy of the SAT Solver. It is the number
of counter-examples generated by the KRM divided by the number of reference
counter-examples in each competency question (see Appendix B). In fact,
we’re going to be a little more precise. We will consider not only the correct
counter-examples, but also the correct nominal contained in each counter-
example. The accuracy calculation program can be seen in Appendix C. This
R program calculates the difference between the reference answers (obtained
in the experiment) and the answers of the KRM. The execution result can be
seen in Figure 6.7

Table 6.3: KRM SAT Solver Accuracy.

M1 - Acurracy 1.00

Figure 6.7: Accuracy calculated by the R program.

Evaluating the KRM SAT solver generating queries that an-
swering correctly:

Table 6.4 indicates the coverage of queries generated by KRM SAT solver.
It is the number of correct information retrieved from the RDFog KB divided
by the number of non-conformity examples present in these knowledge bases.
This verification and validation of query coverage can be seen in the experiment
report.

Table 6.4: KRM Query Coverage.

M2 - Query coverage 1.00

7
Conclusion and Future Works

This work presented a logical approach to verify compliance with public
acts. To achieve this, an architecture capable of carrying out all the operations
necessary for a good audit was developed. It starts with a mechanism for
extracting information contained in the official gazette and organizing it in
the format of RDF graph nodes. Next, a proposed Knowledge Representation
Base construction mechanism was proposed using the diary grammar and
abstract production rules for this construction. And finally, a module that
checks whether the public acts present in our knowledge base comply with
legal standards.

To demonstrate the execution capacity of our approach, we carried out
an experiment with some competence questions (KRB examples) modeled by
experts in the financial, environmental, and public human resources areas. In
the end, we verified that the accuracy of our proposal was 100% for the metric
of a number of examples correctly inferred by KRM and 100% coverage for the
metric of queries generated by KRM.

As noted, the KRB construction module still faces some challenges, given
the very nature of the problem of formalizing and extracting information from
sources in context-sensitive grammar. We realized that when the grammar of
the official diary is well-defined, this extraction process becomes viable.

In conclusion, the use of semantic tableau to analyze formulas in legal
logic proved to be an interesting tool in detecting non-compliance in public
knowledge bases. As we have seen, a counter-example generated by a semantic
tableau reveals an instance in which the logical rules are not satisfied, thus
highlighting possible scenarios of failures in the application of legislation. By
relating the detection of counter-examples through semantic tables with the
parameters used in SPARQL queries, it is possible to establish a comprehensive
approach to identify and correct failures, thus contributing to ensuring the
integrity and consistency of information.

For future work, we can list some work necessary for the evolution of this
approach:

– The construction of a plugin for the Eclipse IDE [84], for example, where
the user could carry out this entire process with the help of graphic

Chapter 7. Conclusion and Future Works 91

resources that every IDE presents.

– Development of the Formula Generator Module (FGM). It involves a
practical way of reading the law and implementing its attribute grammar.

– iALC tableau improvements with known optimization techniques found
in the Descriptive Logic literature (normalization, simplification, absorp-
tion, semantic branching, Backjumping, Caching Satisfiability Status,
Top-Bottom Search for Classification and Model Merging) [85] and [11].

– A study and implementation of new templates for more complex
SPARQL queries.

– A helper for constructing iALC formulas for cases where their construc-
tion by FGM is impossible. This builder would be part of the plugin
features in Eclipse.

– Application our architecture for other data models and considering other
theories and knowledge bases that could allow other interesting studies
inferences.

Bibliography

[1] Brasil, Emenda Constitucional nº 9, de 9 de novembro de 1995, Diário
Oficial [da] República Federativa do Brasil 59 (1995) 1966.

[2] Brasil, Lei nº. 12.527. Lei de Acesso à Informação., Diário Oficial [da]
República Federativa do Brasil (2011).

[3] Brasil, Lei complementar nº 95, de 26 de fevereiro de 1998, Diário Oficial
[da] República Federativa do Brasil (1998).
URL http://www.planalto.gov.br/ccivil_03/leis/lcp/

lcp95.htm

[4] Brasil, Lei complementar nº 107, de 26 de abril de 2001, Diário Oficial
[da] República Federativa do Brasil (2001).
URL http://www.planalto.gov.br/ccivil_03/leis/lcp/

lcp107.htm

[5] H. Kelsen, Teoria pura do direito, 8th Edition, WMF Martins Fontes, São
Paulo, 2009, iSBN: 83-336-0836-5.

[6] E. H. Haeusler, A. Rademaker, On How Kelsenian Jurisprudence and
Intuitionistic Logic help to avoid Contrary-to-Duty paradoxes in Legal
Ontologies, in: Lógica no Avião Seminars, Vol. 1, Univeristy of Brasília,
2019, pp. 44–59.
URL http://doi.org/c768

[7] E. H. Haeusler, V. De Paiva, A. Rademaker, Intuitionistic Logic and Legal
Ontologies, in: Legal Knowledge and Information Systems - JURIX 2010,
Vol. 223 of Frontiers in Artificial Intelligence and Applications, IOS Press,
2010, pp. 155–158.
URL https://doi.org/10.3233/978-1-60750-682-9-155

[8] J. A. Goguen, R. M. Burstall, Introducing institutions, in: E. Clarke,
D. Kozen (Eds.), Logics of Programs, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1984, pp. 221–256.

[9] K. J. Barwise, Axioms for abstract model theory, Annals of Mathemat-
ical Logic 7 (2-3) (1974) 221–265. doi:10.1016/0003-4843(74)

90016-3.

http://www.planalto.gov.br/ccivil_03/leis/lcp/lcp95.htm
http://www.planalto.gov.br/ccivil_03/leis/lcp/lcp95.htm
http://www.planalto.gov.br/ccivil_03/leis/lcp/lcp95.htm
http://www.planalto.gov.br/ccivil_03/leis/lcp/lcp107.htm
http://www.planalto.gov.br/ccivil_03/leis/lcp/lcp107.htm
http://www.planalto.gov.br/ccivil_03/leis/lcp/lcp107.htm
http://doi.org/c768
http://doi.org/c768
http://doi.org/c768
http://doi.org/c768
https://doi.org/10.3233/978-1-60750-682-9-155
https://doi.org/10.3233/978-1-60750-682-9-155
https://doi.org/10.3233/978-1-60750-682-9-155
https://doi.org/10.1016/0003-4843(74)90016-3
https://doi.org/10.1016/0003-4843(74)90016-3

Bibliography 93

[10] A. Martini, U. Wolter, E. H. Haeusler, Fibred and Indexed Categories
for Abstract Model Theory, Logic Journal of the IGPL 15 (5-6) (2007)
707–739. doi:10.1093/jigpal/jzm045.
URL https://doi.org/10.1093/jigpal/jzm045

[11] F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, P. Patel-Schneider,
The Description Logic Handbook: Theory, Implementation, and Applica-
tions. ISBN: 978-0-521-15011-8, Cambridge University Press; 2nd Edition,
2007.

[12] F. A. Pinto, E. Haeusler, S. Lifschitz, Transparência pública automati-
zada a partir da gramática do diário oficial, in: Anais do IX Workshop de
Computação Aplicada em Governo Eletrônico, SBC, Porto Alegre, RS,
Brasil, 2021, pp. 59–70. doi:10.5753/wcge.2021.15977.
URL https://sol.sbc.org.br/index.php/wcge/article/

view/15977

[13] F. A. D. G. Pinto, S. Lifschitz, E. H. Haeusler, A knowledge base of
public acts based on the grammar of the official gazette, in: 2022 In-
ternational Conference on Digital Government Technology and Innova-
tion (DGTi-CON), 2022, pp. 24–29. doi:10.1109/DGTi-CON53875.
2022.9849196.

[14] F. Pinto, S. Lifschitz, E. Haeusler, A graph knowledge-base for auditing
human resources public management, in: Anais do X Workshop de
Computação Aplicada em Governo Eletrônico, SBC, Porto Alegre, RS,
Brasil, 2022, pp. 61–72. doi:10.5753/wcge.2022.223273.
URL https://sol.sbc.org.br/index.php/wcge/article/

view/20711

[15] F. Pinto, J. Santos, S. Lifschitz, E. Haeusler, A benchmarking
for public information by machine learning and regular language,
in: Anais do XI Workshop de Computação Aplicada em Gov-
erno Eletrônico, SBC, Porto Alegre, RS, Brasil, 2023, pp. 60–71.
doi:10.5753/wcge.2023.229975.
URL https://sol.sbc.org.br/index.php/wcge/article/

view/24865

[16] IBM, IBM Watson Discovery, https://www.ibm.com/br-pt/

products/watson-discovery, [Online; accessed 2023-03-03] (2023).

[17] H. Prakken, G. Sartor, Law and logic: A review from an argu-
mentation perspective, Artificial Intelligence 227 (2015) 214–245.

https://doi.org/10.1093/jigpal/jzm045
https://doi.org/10.1093/jigpal/jzm045
https://doi.org/10.1093/jigpal/jzm045
https://doi.org/10.1093/jigpal/jzm045
https://sol.sbc.org.br/index.php/wcge/article/view/15977
https://sol.sbc.org.br/index.php/wcge/article/view/15977
https://doi.org/10.5753/wcge.2021.15977
https://sol.sbc.org.br/index.php/wcge/article/view/15977
https://sol.sbc.org.br/index.php/wcge/article/view/15977
https://doi.org/10.1109/DGTi-CON53875.2022.9849196
https://doi.org/10.1109/DGTi-CON53875.2022.9849196
https://sol.sbc.org.br/index.php/wcge/article/view/20711
https://sol.sbc.org.br/index.php/wcge/article/view/20711
https://doi.org/10.5753/wcge.2022.223273
https://sol.sbc.org.br/index.php/wcge/article/view/20711
https://sol.sbc.org.br/index.php/wcge/article/view/20711
https://sol.sbc.org.br/index.php/wcge/article/view/24865
https://sol.sbc.org.br/index.php/wcge/article/view/24865
https://doi.org/10.5753/wcge.2023.229975
https://sol.sbc.org.br/index.php/wcge/article/view/24865
https://sol.sbc.org.br/index.php/wcge/article/view/24865
https://www.ibm.com/br-pt/products/watson-discovery
https://www.ibm.com/br-pt/products/watson-discovery
https://linkinghub.elsevier.com/retrieve/pii/S0004370215000910
https://linkinghub.elsevier.com/retrieve/pii/S0004370215000910

Bibliography 94

doi:10.1016/j.artint.2015.06.005.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0004370215000910

[18] R. Pressman, B. Maxim, Engenharia De Software: UMA ABORDAGEM
PROFISSIONAL, MCGRAW HILL - ARTMED, 2016.

[19] R. Brachman, H. Levesque, Knowledge Representation and Reasoning,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[20] H. J. Levesque, Knowledge representation and reasoning, An-
nual Review of Computer Science 1 (1) (1986) 255–287. arXiv:

https://doi.org/10.1146/annurev.cs.01.060186.001351,
doi:10.1146/annurev.cs.01.060186.001351.
URL https://doi.org/10.1146/annurev.cs.01.060186.

001351

[21] K. Constantino, V. A. L. Cruz, O. M. M. Zucheratto, C. França, M. Car-
valho, T. H. P. Silva, A. H. F. Laender, M. A. Gonçalves, Segmentação e
classificação semântica de trechos de diários oficiais usando aprendizado
ativo, in: Anais do XXXVII Simpósio Brasileiro de Banco de Dados
(SBBD 2022), Sociedade Brasileira de Computação - SBC, 2022, pp.
304–316. doi:10.5753/sbbd.2022.224656.
URL https://sol.sbc.org.br/index.php/sbbd/article/

view/21815

[22] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition), Addison-Wesley Longman Publish-
ing Co., Inc., USA, 2006.

[23] Rodríguez, M., Dantas Bezerra, B, Processamento de linguagem natural
para reconhecimento de entidades nomeadas em textos jurídicos de atos
administrativos (portarias), Revista de Engenharia e Pesquisa Aplicada
5 (1) (2019) 67–77.

[24] C. Friedman, T. C. Rindflesch, M. Corn, Natural language pro-
cessing: State of the art and prospects for significant progress, a
workshop sponsored by the national library of medicine, Journal
of Biomedical Informatics 46 (5) (2013) 765–773. doi:https:

//doi.org/10.1016/j.jbi.2013.06.004.
URL https://www.sciencedirect.com/science/article/

pii/S1532046413000798

https://doi.org/10.1016/j.artint.2015.06.005
https://linkinghub.elsevier.com/retrieve/pii/S0004370215000910
https://linkinghub.elsevier.com/retrieve/pii/S0004370215000910
https://doi.org/10.1146/annurev.cs.01.060186.001351
http://arxiv.org/abs/https://doi.org/10.1146/annurev.cs.01.060186.001351
http://arxiv.org/abs/https://doi.org/10.1146/annurev.cs.01.060186.001351
https://doi.org/10.1146/annurev.cs.01.060186.001351
https://doi.org/10.1146/annurev.cs.01.060186.001351
https://doi.org/10.1146/annurev.cs.01.060186.001351
https://sol.sbc.org.br/index.php/sbbd/article/view/21815
https://sol.sbc.org.br/index.php/sbbd/article/view/21815
https://sol.sbc.org.br/index.php/sbbd/article/view/21815
https://doi.org/10.5753/sbbd.2022.224656
https://sol.sbc.org.br/index.php/sbbd/article/view/21815
https://sol.sbc.org.br/index.php/sbbd/article/view/21815
https://www.sciencedirect.com/science/article/pii/S1532046413000798
https://www.sciencedirect.com/science/article/pii/S1532046413000798
https://www.sciencedirect.com/science/article/pii/S1532046413000798
https://doi.org/https://doi.org/10.1016/j.jbi.2013.06.004
https://doi.org/https://doi.org/10.1016/j.jbi.2013.06.004
https://www.sciencedirect.com/science/article/pii/S1532046413000798
https://www.sciencedirect.com/science/article/pii/S1532046413000798

Bibliography 95

[25] E. Loper, S. Bird, Nltk: The natural language toolkit, in: In Proceedings
of the ACL Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics. Philadel-
phia: Association for Computational Linguistics, 2002, p. 8.

[26] R. Junior, W. Melo, R. Fagundes, A. Maciel, Extração de informação e
mineração de dados no diário oficial de pernambuco, Revista de Engen-
haria e Pesquisa Aplicada 3 (08 2018). doi:10.25286/repa.v3i3.

892.

[27] C. Buil-Aranda, A. Hogan, J. Umbrich, P.-Y. Vandenbussche, Sparql
web-querying infrastructure: Ready for action?, in: H. Alani, L. Kagal,
A. Fokoue, P. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. Noy,
C. Welty, K. Janowicz (Eds.), The Semantic Web – ISWC 2013, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 277–293.

[28] L. Chiticariu, Y. Li, F. R. Reiss, Rule-based information extraction is
dead! long live rule-based information extraction systems!, in: Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, Seattle, Washing-
ton, USA, 2013, pp. 827–832.
URL https://aclanthology.org/D13-1079

[29] B. Ford, Parsing expression grammars: a recognition-based syntactic
foundation, SIGPLAN Not. 39 (1) (2004) 111–122. doi:10.1145/

982962.964011.
URL https://doi.org/10.1145/982962.964011

[30] D. Beckett, Rdf/xml syntax specification (revised) w3c recommenda-
tion 10 february 2004, http://www. w3. org/TR/2004/REC-rdf-syntax-
grammar-20040210/ (2007).

[31] R. Team, RDFLib, https://rdflib.readthedocs.io/en/

stable/#, acessado: 13-11-2019 (2013).
URL https://rdflib.readthedocs.io/en/stable/#

[32] D. Brickley, L. Miller, FOAF Vocabulary Specification 0.99, http:

//www.foaf-project.org/, acessado: 03-12-2019 (2014).
URL http://www.foaf-project.org/

[33] AllegroGraph, Allegrograph - The Enterprise Knowledge Graph, https:
//allegrograph.com, acessado: 11-12-2019 (2019).

https://doi.org/10.25286/repa.v3i3.892
https://doi.org/10.25286/repa.v3i3.892
https://aclanthology.org/D13-1079
https://aclanthology.org/D13-1079
https://aclanthology.org/D13-1079
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/#
https://rdflib.readthedocs.io/en/stable/#
https://rdflib.readthedocs.io/en/stable/#
http://www.foaf-project.org/
http://www.foaf-project.org/
http://www.foaf-project.org/
http://www.foaf-project.org/
https://allegrograph.com
https://allegrograph.com

Bibliography 96

[34] D. E. Knuth, Semantics of context-free languages, Mathematical systems
theory 2 (1968) 127–145.
URL https://link.springer.com/article/10.1007/

BF01692511

[35] K. Koskimies, K.-J. Räihä, M. Sarjakoski, Compiler construction using
attribute grammars, in: Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, SIGPLAN ’82, Association for Computing
Machinery, New York, NY, USA, 1982, p. 153–159. doi:10.1145/

800230.806991.
URL https://doi.org/10.1145/800230.806991

[36] A. Aho, R. Sethi, M. Lam, J. Ullman, Compiladores: Princípios, Técnicas
e Ferramentas, Pearson Universidades, 2007.

[37] H.-L. Trieu, A.-K. Duong Nguyen, N. Nguyen, M. Miwa, H. Takamura,
S. Ananiadou, Coreference resolution in full text articles with BERT and
syntax-based mention filtering, in: K. Jin-Dong, N. Claire, B. Robert,
D. Louise (Eds.), Proceedings of the 5th Workshop on BioNLP Open
Shared Tasks, Association for Computational Linguistics, Hong Kong,
China, 2019, pp. 196–205. doi:10.18653/v1/D19-5727.
URL https://aclanthology.org/D19-5727

[38] B. Z. Li, G. Stanovsky, L. Zettlemoyer, Active learning for coreference
resolution using discrete annotation (2020). arXiv:2004.13671.

[39] R. Vieira, A. Mendes, P. Quaresma, E. B. da Fonseca, S. Collovini,
S. Antunes, Corref-pt: A semi-automatic annotated portuguese corefer-
ence corpus, Computación y Sistemas 22 (2018).
URL https://api.semanticscholar.org/CorpusID:

59523789

[40] E. Fonseca, A. Antonitsch, S. Collovini, D. Amaral, R. Vieira, A. Figueira,
Summ-it++: an enriched version of the summ-it corpus, in: N. Calzolari,
K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mar-
iani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of
the Tenth International Conference on Language Resources and Evalu-
ation (LREC’16), European Language Resources Association (ELRA),
Portorož, Slovenia, 2016, pp. 2047–2051.
URL https://aclanthology.org/L16-1324

https://link.springer.com/article/10.1007/BF01692511
https://link.springer.com/article/10.1007/BF01692511
https://link.springer.com/article/10.1007/BF01692511
https://doi.org/10.1145/800230.806991
https://doi.org/10.1145/800230.806991
https://doi.org/10.1145/800230.806991
https://doi.org/10.1145/800230.806991
https://doi.org/10.1145/800230.806991
https://aclanthology.org/D19-5727
https://aclanthology.org/D19-5727
https://doi.org/10.18653/v1/D19-5727
https://aclanthology.org/D19-5727
http://arxiv.org/abs/2004.13671
https://api.semanticscholar.org/CorpusID:59523789
https://api.semanticscholar.org/CorpusID:59523789
https://api.semanticscholar.org/CorpusID:59523789
https://api.semanticscholar.org/CorpusID:59523789
https://aclanthology.org/L16-1324
https://aclanthology.org/L16-1324

Bibliography 97

[41] S. Group, Industrial-strength. natural language processing, https://
spacy.io/, accessed: 06-06-2021 (2020).
URL https://spacy.io/

[42] A. Tsvetkova, Anaphora resolution in chinese for analysis of medical q&a
platforms, in: Natural Language Processing and Chinese Computing: 9th
CCF International Conference, NLPCC 2020, Zhengzhou, China, October
14–18, 2020, Proceedings, Part II 9, Springer, 2020, pp. 490–497.

[43] M. C. Fitting, Intuitionistic logic model theory and forcing, North-Holland
Publishing, Amsterdam, Netherlands, 1969.

[44] F. Baader, I. Horrocks, U. Sattler, Chapter 3 description log-
ics, in: F. van Harmelen, V. Lifschitz, B. Porter (Eds.), Hand-
book of Knowledge Representation, Vol. 3 of Foundations of Ar-
tificial Intelligence, Elsevier, 2008, pp. 135–179. doi:https:

//doi.org/10.1016/S1574-6526(07)03003-9.
URL https://www.sciencedirect.com/science/article/

pii/S1574652607030039

[45] W3C, OWL web ontology language reference, https://www.w3.org/
TR/owl-ref/, accessed: 09/11/2023 (2004).
URL https://www.w3.org/TR/owl-ref/

[46] G. De Giacomo, M. Lenzerini, et al., Tbox and abox reasoning in expres-
sive description logics., KR 96 (316-327) (1996) 10.

[47] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, K. Srinivas, The
summary abox: Cutting ontologies down to size, in: I. Cruz, S. Decker,
D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, L. M. Aroyo
(Eds.), The Semantic Web - ISWC 2006, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 343–356.

[48] B. Alkmim, E. H. Haeusler, A. Rademaker, Utilizing ialc to formalize the
brazilian OAB exam, in: G. J. Nalepa, M. Atzmueller, M. Araszkiewicz,
P. Novais (Eds.), Proceedings of the EXplainable AI in Law Workshop
co-located with the 31st International Conference on Legal Knowledge
and Information Systems, XAILA@JURIX 2018, Groningen, The Nether-
lands, December 12, 2018, Vol. 2381 of CEUR Workshop Proceedings,
CEUR-WS.org, 2018, pp. 42–50.
URL https://ceur-ws.org/Vol-2381/xaila2018_paper_2.

pdf

https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://www.sciencedirect.com/science/article/pii/S1574652607030039
https://www.sciencedirect.com/science/article/pii/S1574652607030039
https://doi.org/https://doi.org/10.1016/S1574-6526(07)03003-9
https://doi.org/https://doi.org/10.1016/S1574-6526(07)03003-9
https://www.sciencedirect.com/science/article/pii/S1574652607030039
https://www.sciencedirect.com/science/article/pii/S1574652607030039
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://ceur-ws.org/Vol-2381/xaila2018_paper_2.pdf
https://ceur-ws.org/Vol-2381/xaila2018_paper_2.pdf
https://ceur-ws.org/Vol-2381/xaila2018_paper_2.pdf
https://ceur-ws.org/Vol-2381/xaila2018_paper_2.pdf

Bibliography 98

[49] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, no. 53 in Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press,
Cambridge, UK, 2001.

[50] E. H. Haeusler, V. d. Paiva, A. Rademaker, Intuitionistic description logic
and legal reasoning, in: 2011 22nd International Workshop on Database
and Expert Systems Applications, 2011, pp. 345–349. doi:10.1109/

DEXA.2011.46.

[51] H. Kelsen, Pure Theory of Law. ISBN: 9781584775782, Lawbook Ex-
change, 2005.

[52] G. D. Plotkin, C. Stirling, A framework for intuitionistic modal logics, in:
Proceedings of the 1st Conference on Theoretical Aspects of Reasoning
about Knowledge, Monterey, CA, USA, March 1986, 1986, pp. 399–406.

[53] G. T. Bagni, The first century of the international comission on mathemat-
ical instruction (1908-2008), https://www.icmihistory.unito.

it/portrait/beth.php, accessed: 22-12-2023 (2020).
URL https://www.icmihistory.unito.it/portrait/beth.

php

[54] M. D’Agostino, D. M. Gabbay, R. Hahnle, J. Posegga, Handbook of
Tableau Methods, Springer Dordrecht, 1999.

[55] I. Anellis, From semantic tableaux to smullyan trees: A history of the
development of the falsifiability tree method, The Review of Modern Logic
1 (06 1990).

[56] S. Jaśkowski, On the Rules of Suppositions in Formal Logic, Studia Logica
1 (1934) 5–32, (reprinted in: Storrs McCall (ed.), Polish Logic 1920–1939,
Oxford University Press, 1967 pp. 232–258).
URL https://www.logik.ch/daten/jaskowski.pdf

[57] G. Gentzen, Investigations into logical deduction, American Philosophical
Quarterly 1 (4) (1964) 288–306.

[58] A. K. Simpson, The proof theory and semantics of intuitionistic modal
logic, Ph.D. thesis, University of Edinburgh, UK (1994).
URL http://hdl.handle.net/1842/407

[59] M. D. P. N. Medeiros, A New S4 Classical Modal Logic in Natural
Deduction, The Journal of Symbolic Logic 71 (3) (2006) 799–809.
URL http://www.jstor.org/stable/27588483

https://doi.org/10.1109/DEXA.2011.46
https://doi.org/10.1109/DEXA.2011.46
https://www.icmihistory.unito.it/portrait/beth.php
https://www.icmihistory.unito.it/portrait/beth.php
https://www.icmihistory.unito.it/portrait/beth.php
https://www.icmihistory.unito.it/portrait/beth.php
https://www.icmihistory.unito.it/portrait/beth.php
https://www.icmihistory.unito.it/portrait/beth.php
https://www.logik.ch/daten/jaskowski.pdf
https://www.logik.ch/daten/jaskowski.pdf
http://hdl.handle.net/1842/407
http://hdl.handle.net/1842/407
http://hdl.handle.net/1842/407
http://www.jstor.org/stable/27588483
http://www.jstor.org/stable/27588483
http://www.jstor.org/stable/27588483

Bibliography 99

[60] A. Rademaker, A Proof Theory for Description Logics, Springer Publish-
ing Company, Incorporated, 2012.

[61] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A prac-
tical OWL-DL reasoner, Journal of Web Semantics 5 (2) (2007) 51–53.
doi:https://doi.org/10.1016/j.websem.2007.03.004.
URL https://www.sciencedirect.com/science/article/

pii/S1570826807000169

[62] D. Tsarkov, I. Horrocks, Fact++ description logic reasoner: system de-
scription, in: Proceedings of the Third International Joint Conference
on Automated Reasoning, IJCAR’06, Springer-Verlag, Berlin, Heidelberg,
2006, p. 292–297. doi:10.1007/11814771_26.
URL https://doi.org/10.1007/11814771_26

[63] J. Bondy, U. Murty, Graph Theory, 1st Edition, Springer Publishing
Company, Incorporated, 2008.
URL https://dl.acm.org/doi/10.5555/1481153

[64] H.-D. A. Hiep, O. Maathuis, J. Bian, F. S. de Boer, M. van Eekelen,
S. de Gouw, Verifying openjdk’s linkedlist using key (2019). arXiv:

1911.04195.

[65] T. Parr, The Definitive ANTLR 4 Reference, 2nd Edition, Pragmatic
Bookshelf, Raleigh, NC, 2013.
URL https://www.safaribooksonline.com/library/view/

the-definitive-antlr/9781941222621/

[66] S. Perugini, Programming Languages: Concepts and Implementation,
Jones & Bartlett Learning, 2021.

[67] S. Dasgupta, C. H. Papadimitriou, U. Vazirani, Algorithms, 1st Edition,
McGraw-Hill, Inc., USA, 2006.

[68] B. Motik, R. D. C. Shearer, I. Horrocks, Hypertableau reasoning for
description logics, J. Artif. Intell. Res. 36 (2009) 165–228. doi:10.

1613/JAIR.2811.
URL https://doi.org/10.1613/jair.2811

[69] L. T. Keith D. Cooper, Engineering a Compiler , 2nd Edition, Elsevier,
2011.

[70] S. Powers, Practical RDF: Solving Problems with the Resource Descrip-
tion Framework, O’Reilly, Beijing, 2003.

https://www.sciencedirect.com/science/article/pii/S1570826807000169
https://www.sciencedirect.com/science/article/pii/S1570826807000169
https://doi.org/https://doi.org/10.1016/j.websem.2007.03.004
https://www.sciencedirect.com/science/article/pii/S1570826807000169
https://www.sciencedirect.com/science/article/pii/S1570826807000169
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/11814771_26
https://dl.acm.org/doi/10.5555/1481153
https://dl.acm.org/doi/10.5555/1481153
http://arxiv.org/abs/1911.04195
http://arxiv.org/abs/1911.04195
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://doi.org/10.1613/jair.2811
https://doi.org/10.1613/jair.2811
https://doi.org/10.1613/JAIR.2811
https://doi.org/10.1613/JAIR.2811
https://doi.org/10.1613/jair.2811
https://www.safaribooksonline.com/library/view/practical-rdf/0596002637/
https://www.safaribooksonline.com/library/view/practical-rdf/0596002637/

Bibliography 100

URL https://www.safaribooksonline.com/library/view/

practical-rdf/0596002637/

[71] R. W. Group, Resource Description Framework (RDF), https://www.
w3.org/RDF/, acessado: 11-10-2019 (2014).
URL https://www.w3.org/RDF/

[72] G. Barzdins, D. Gosko, P. F. Barzdins, U. Lavrinovics, G. Bernans,
E. Celms, Rdf* graph database as interlingua for the textworld challenge,
in: 2019 IEEE Conference on Games (CoG), 2019, pp. 1–2. doi:

10.1109/CIG.2019.8848012.

[73] S. Isotani, I. Bittencourt, Dados Abertos Conectados: em Busca da Web
do Conhecimento, Novatec, 2015. doi:10.13140/RG.2.1.4355.

6329.

[74] G. Kellogg, P.-A. Champin, O. Hartig, A. Seaborne, RDF
1.2 concepts and abstract syntax, W3C working draft, W3C,
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240121/ (Jan.
2024).

[75] M. Gruninger, Methodology for the design and evaluation of ontologies,
in: International Joint Conference on Artificial Intelligence, 1995, p. 10.
URL https://api.semanticscholar.org/CorpusID:

16641142

[76] D. E. Oliveira, Coreacq: um framework computacional para validar
questões de competência por raciocínio automático sobre a ontologia
sumo, Master’s thesis, Universidade Federal de Pernumbuco, Recife
(2019).
URL https://repositorio.ufpe.br/handle/123456789/

33693

[77] C. Bezerra, F. Freitas, F. Santana, Evaluating ontologies with competency
questions, in: 2013 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Vol. 3,
2013, pp. 284–285. doi:10.1109/WI-IAT.2013.199.

[78] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, A. Wessln,
Experimentation in Software Engineering, Springer Publishing Company,
Incorporated, 2012.

[79] V. R. Basili, G. Caldiera, H. D. Rombach, The Goal Question Metric
Approach (1994).

https://www.safaribooksonline.com/library/view/practical-rdf/0596002637/
https://www.safaribooksonline.com/library/view/practical-rdf/0596002637/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://doi.org/10.1109/CIG.2019.8848012
https://doi.org/10.1109/CIG.2019.8848012
https://doi.org/10.13140/RG.2.1.4355.6329
https://doi.org/10.13140/RG.2.1.4355.6329
https://api.semanticscholar.org/CorpusID:16641142
https://api.semanticscholar.org/CorpusID:16641142
https://api.semanticscholar.org/CorpusID:16641142
https://repositorio.ufpe.br/handle/123456789/33693
https://repositorio.ufpe.br/handle/123456789/33693
https://repositorio.ufpe.br/handle/123456789/33693
https://repositorio.ufpe.br/handle/123456789/33693
https://repositorio.ufpe.br/handle/123456789/33693
https://doi.org/10.1109/WI-IAT.2013.199
https://api.semanticscholar.org/CorpusID:13884048
https://api.semanticscholar.org/CorpusID:13884048

Bibliography 101

URL https://api.semanticscholar.org/CorpusID:

13884048

[80] Brasil, Lei nº 7.713, de 22 de dezembro de 1988, Diário Oficial [da]
República Federativa do Brasil (1988).
URL https://www.planalto.gov.br/ccivil_03/leis/

l7713compilada.htm

[81] Brasil, Lei nº 8.647, de 13 de abril de 1993, Diário Oficial [da] República
Federativa do Brasil (1993).
URL https://www.planalto.gov.br/ccivil_03/leis/

L8647.htm

[82] Brasil, Lei nº 9.717, de 27 novembro de 1998, Diário Oficial [da] República
Federativa do Brasil (1998).
URL https://www.planalto.gov.br/ccivil_03/leis/

l9717.htm

[83] B. DuCharme, Learning SPARQL: Querying and Updating with SPARQL
1.1, 2nd Edition, O’Reilly, Beijing, 2013.

[84] Eclipse Fundation, PDE UI, https://eclipse.dev/pde/pde-ui/,
[Online; accessed 2024-04-04] (2024).

[85] U. Hustadt, R. A. Schmidt, Simplification and Backjumping in Modal
Tableau, in: H. de Swart (Ed.), Automated Reasoning with Analytic
Tableaux and Related Methods, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1998, pp. 187–201.

[86] BRASIL, Constituição da República Federativa do Brasil de 1988,
Brasília, DF: Presidência da República (1988, accessed on 09/07/2023).
URL https://www2.senado.leg.br/bdsf/bitstream/

handle/id/518231/CF88_Livro_EC91_2016.pdf

[87] Brasil, Lei complementar nº 8112, de 11 de dezembro de 1990, Diário
Oficial [da] República Federativa do Brasil (1990).
URL https://www.planalto.gov.br/ccivil_03/leis/

l8112cons.htm

[88] Brasil, Lei nº 13.303, de 30 de junho de 2016, Diário Oficial [da] República
Federativa do Brasil (2016).
URL https://www.planalto.gov.br/ccivil_03/

_ato2015-2018/2016/lei/l13303.htm

https://api.semanticscholar.org/CorpusID:13884048
https://api.semanticscholar.org/CorpusID:13884048
https://www.planalto.gov.br/ccivil_03/leis/l7713compilada.htm
https://www.planalto.gov.br/ccivil_03/leis/l7713compilada.htm
https://www.planalto.gov.br/ccivil_03/leis/l7713compilada.htm
https://www.planalto.gov.br/ccivil_03/leis/L8647.htm
https://www.planalto.gov.br/ccivil_03/leis/L8647.htm
https://www.planalto.gov.br/ccivil_03/leis/L8647.htm
https://www.planalto.gov.br/ccivil_03/leis/l9717.htm
https://www.planalto.gov.br/ccivil_03/leis/l9717.htm
https://www.planalto.gov.br/ccivil_03/leis/l9717.htm
https://eclipse.dev/pde/pde-ui/
https://www2.senado.leg.br/bdsf/bitstream/handle/id/518231/CF88_Livro_EC91_2016.pdf
https://www2.senado.leg.br/bdsf/bitstream/handle/id/518231/CF88_Livro_EC91_2016.pdf
https://www2.senado.leg.br/bdsf/bitstream/handle/id/518231/CF88_Livro_EC91_2016.pdf
https://www2.senado.leg.br/bdsf/bitstream/handle/id/518231/CF88_Livro_EC91_2016.pdf
https://www.planalto.gov.br/ccivil_03/leis/l8112cons.htm
https://www.planalto.gov.br/ccivil_03/leis/l8112cons.htm
https://www.planalto.gov.br/ccivil_03/leis/l8112cons.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/l13303.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/l13303.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/l13303.htm

Bibliography 102

[89] Maceió, Lei nº 6.987, de 11 de maio de 2020 (2020).
URL https://www.maceio.al.leg.br/documentos/docs/

doc.php?filepath=leis&id=6676

[90] Maceió, Lei nº 6.685, de 18 de agosto de 2017 (2017).
URL https://www.maceio.al.leg.br/documentos/docs/

doc.php?filepath=leis&id=6394

[91] TCE-Paraná, Acórdão nº 3561/23 - vedação à percepção de função
gratificada por ocupante de cargo comissionado (nov 2023).
URL https://www.mpc.pr.gov.br/wp-content/uploads/

2023/11/CORNELIO-PROCOPIO-ACO-3561_23-STP.pdf

https://www.maceio.al.leg.br/documentos/docs/doc.php?filepath=leis&id=6676
https://www.maceio.al.leg.br/documentos/docs/doc.php?filepath=leis&id=6676
https://www.maceio.al.leg.br/documentos/docs/doc.php?filepath=leis&id=6676
https://www.maceio.al.leg.br/documentos/docs/doc.php?filepath=leis&id=6394
https://www.maceio.al.leg.br/documentos/docs/doc.php?filepath=leis&id=6394
https://www.maceio.al.leg.br/documentos/docs/doc.php?filepath=leis&id=6394
https://www.mpc.pr.gov.br/wp-content/uploads/2023/11/CORNELIO-PROCOPIO-ACO-3561_23-STP.pdf
https://www.mpc.pr.gov.br/wp-content/uploads/2023/11/CORNELIO-PROCOPIO-ACO-3561_23-STP.pdf
https://www.mpc.pr.gov.br/wp-content/uploads/2023/11/CORNELIO-PROCOPIO-ACO-3561_23-STP.pdf
https://www.mpc.pr.gov.br/wp-content/uploads/2023/11/CORNELIO-PROCOPIO-ACO-3561_23-STP.pdf

8
Appendix

This appendix is divided into four parts. Part “A” contains the legally
formulated Competence Questions. To put it differently, we cite the legal
basis (the law) for each Competency Question. Furthermore, we present the
modeling of this law in iALC and its respective expected counterexample.
Remembering that each Competency Question was duly formulated by a
specialist, and confirmed by the legislation described. Part “B” of this appendix
contains the grammar of the iALC language in ANLTR4, as well as attribute
labels that assist in the walking process through the parsing tree. In Appendix
“C”, an R program that calculates the accuracy of our experiment. Finally, in
Appendix “D”, shows the soundness proof of the algorithm that implements
the calculi system of the iALC tableau, Listing (1).

Appendix A

Competency Questions

(Lei N0 7.713 DE 22/12/1988).Modify the legislation about Income Tax
(similar to Federal Income Tax in the USA) and takes other measures.
Art. 10 Income and capital gains received from January 1, 1989, by individuals
resident or domiciled in Brazil, will be taxed by income tax in accordance with
current legislation.
XIV – Retirement benefits and those with active tuberculosis, mental illness,
multiple sclerosis, malignant neoplasia, blindness, leprosy, irreversible and dis-
abling paralysis, severe heart disease, Parkinson’s disease, advanced stages
of Paget’s disease, radiation contamination, immunodeficiency syndrome ac-
quired, based on the conclusion of specialized medicine, even if the disease was
contracted after retirement[...] [80]
⊢iALC (w : (∀tipoFunc.APOSENT ⊓ ∀tipoDoenca.INCAPAC)
¬(∀temDesconto.IRPF))

Chapter 8. Appendix 104

CQ1 - Counterexample:
w′′′ : T IRPF ; w′ : T INCAPC ; w′ : T APOSENT

(Lei N0 8.647 DE 13/04/1993). Provides for the connection of a civil public
employee, occupying a position on a commission without an effective link with the
Federal Public Administration, to the RGPS (General Social Security Rule).
Art. 10 The civil public employee occupying a commission position, without an
effective link with the Union, [...] is obligatorily linked to the RGPS (General Social
Security Rule) referred to in Law N0. 8,213 of July 24, 1991 [81].
⊢iALC (w : (∀tipoFunc.SERV IDOR ⊓ ∀temCargo.COMISSIONADO)
¬(∃temPrev.RPPS))
CQ2 - Counterexample:
w′ : T SERVIDOR ; w′ : T COMISSIONADO ; w′′′ : T RPPS

(Lei N0 9.717 DE 27/11/1998). Provides general rules for the organization and
operation of social security systems for public employees of the Union, States, the
Federal District and municipality, military personnel of the States, and the Federal
District and provides other measures.

Art. 1 - Art. 1 The specific social security rules (RPPS) for public employees
in the Union, the States, the Federal District, and municipality[...] must be orga-
nized[...] [82].
⊢iALC (w : (∀tipoFunc.SERV IDOR ⊓ ¬(∀temV inculo.EST))
(∃temPrev.RGPS)))
CQ3 - Counterexample:
w′′ : F EST ; w′ : T SERVIDOR ; w′ : F RGPS

⊢iALC (w : (∀tipoFunc.SERV IDOR ⊓ ¬(∀temV inculo.EST))
(∃temV inculo.CEL ⊓ ∃temPrev.RGPS))
CQ4 - Counterexample:
a)w′′ : F EST ; w′ : F CEL ; w′ : T SERVIDOR
b)w′′ : F EST ; w′ : F RGPS ; w′ : T SERVIDOR

⊢iALC (w : (∀tipoFunc.SERV IDOR ⊓ ¬(∀temV inculo.CEL))
(∃temV inculo.EST ⊓ ∃temPrev.RPPS))
CQ5 - Counterexample:
a)w′′ : F CEL ; w′ : F EST ; w′ : T SERVIDOR

Chapter 8. Appendix 105

b)w′′ : F CEL ; w′ : F RPPS ; w′ : T SERVIDOR

- Accumulation of public positions:

Constitution of the Federative Republic of Brazil of 1988. Constitutional
Amendment N0 19, of 1998. [86]

XVI - the prohibited accumulation of public positions, except when there is
compatibility of schedules, observing in any case the provisions of item XI:

a) Two teacher positions; b) A teacher position with another technical or
scientific; c) Two positions or jobs exclusive to health professionals, with regulated
professions;

⊢iALC (w : (∀temClasse.TECNICOA ⊓ ∀temParecer.ACUMULAR)
(∀temClasse.TECNICOA ⊓ ¬∀temClasse.TECNICOB))
CQ6 - Counterexample:
w′′ : T TECNICOB ; w′ : T ACUMULAR ; w′ : T TECNICOA

⊢iALC (w : (∀temClasse.TECNICOA ⊓ ∀temClasse.TECNICOB)
¬(∀temParecer.ACUMULAR))
CQ7 - Counterexample:
w′′ : T ACUMULAR ; w′ : T TECNICOB ; w′ : T TECNICOA

⊢iALC (w : (∀temClasse.MAGISTERIOA ⊓ ∀temClasse.TECNICOA)
(∃temParecer.ACUMULAR))
CQ8 - Counterexample:
w′ : T TECNICOA ; w′ : T MAGISTERIO ; w′ : F ACUMULAR

- Become effective:

(Lei N0 8,112 DE 11/12/1990). Art. 21. The public employee qualified in a
public examination and in a permanent position will acquire stability in the public
service upon completing 2 (two) years of effective exercise [87].
⊢iALC (w : (∀frmIngresso.CONCURSADO ⊓ ∀temTempo.MENOR2ANOS)
(¬∃temSituacao.EFETIV O))

Chapter 8. Appendix 106

CQ9 - Counterexample:
w′′′ : T EFETIVO ; w′ : T MENOR2ANOS ; w′ : T CONCURSADO

(Lei N0 13,303, of June 30, 2016). Provides for the legal status of public
companies, within the scope of the Union, the States, the Federal District and the
Municipalities.

Art. 17. The members of the Board of Directors and those nominated for
the positions of director, including president, general director and chief executive
officer, will be chosen from among citizens with an unblemished reputation and
notable knowledge, and alternatively one of the requirements of paragraphs “a”, “b”
and “c” of section I and, cumulatively, the requirements of sections II and III:

I - have professional experience of at least:
a) 10 (ten) years, in the public or private sector, in the area of activity of the

public company or in an area related to that for which they are appointed as senior
management; or

b) 4 (four) years in one of the following positions: [...] 3 - teaching or researcher
position in areas of activity of the public company[...] [88].
⊢iALC ((w : (¬∀temExper.DEZANOS) ⊓ (¬∀trabalhouComo.PESQUISADOR))

(¬∃staAtividade.ATIV O))
CQ10 - Counterexample:
w′′′′′ : F PESQUISADOR ; w′′′′ : F DEZANOS ; w′′′ : T ATIVO

(Lei N0 13,303, of June 30, 2016). Provides for the legal status of public
companies, within the scope of the Union, the States, the Federal District and the
Municipalities.

Art. 22. The Board of Directors must be composed of at least 25% (twenty-five
percent) of independent members[...], in accordance with Art. 141 of Law No. 6,404,
of December 15, 1976.
III - not have maintained, in the last 3 (three) years, a relationship of any nature
with the public company[...] [88].
⊢iALC ((w : (∀trabalhouOnde.EMPPUBLICA) ⊓
(∀tempDecorrido.MENOS3ANOS)) (¬∃staAtividade.ATIV O))
CQ11 - Counterexample:
w′′′ : T ATIVO ; w′ : T MENOS3ANOS ; w′ : T EMPPUBLICA

⊢iALC ((w : (∀trabalhouOnde.EMPPUBLICA) ⊓ (∀staAtividade.ATIV O))
(¬∃tempDecorrido.MENOS3ANOS))

Chapter 8. Appendix 107

CQ12 - Counterexample:
w′′′ : T MENOS3ANOS ; w′ : T ATIVO ; w′ : T EMPPUBLICA

(Law N0 6987 DE 11/05/2020). This law provides for the electronic processing
of administrative processes in the Municipality of Maceió, supporting the protection
of users.
Art 6. (about peticionamento): This law says that an electronic process is considered
invalid if it has not a system date and time or has not the IP address of the station
that originated the process [89].

⊢iALC (w : (¬∀possuiUma.DATAHORA ⊔ ¬∀temIp.IPESTACAO)
(¬∃tipoProcesso.V ALIDO))
CQ13 - Counterexample:
a)w′′′′ : F DATAHORA ; w′′′ : T VALIDO
b)w′′′′′ : F IPESTACAO ; w′′′′ : T VALIDO

(Lei N0 5671 DE 28/12/2007). Gratificação de Produtividade Ambiental
(GPA).
Art. 1 - The Gratificação de Produtividade Ambiental (GPA) is hereby established,
which will be attributed to employees assigned to the Secretaria Municipal de
Proteção ao Meio Ambiente (SEMPMA), who contribute with effective and proven
participation in support and control activities, technical support, monitoring and
inspection of the environment.

§ 2 - The score referred to in this article will comply with the limit of 100 (one
hundred) points for employees classified in Group I, 60 (sixty) points for employees
classified in Group II and 30 (thirty) points for employees classified in Group III.
⊢iALC (w : ((∀emLotacao.SEMPMA) ⊓ (∀temGrupo.GI))
(¬(∃temScore.SCORE100) ⊓ ¬(∃temScore.SCORE60))
CQ14 - Counterexample:
a)w′′′ : T SCORE100 ; w′ : T GI ; w′ : T SEMPMA
b)w′′′ : T SCORE60 ; w′ : T GI ; w′ : T SEMPMA

⊢iALC (w : ((∀emLotacao.SEMPMA) ⊓ (¬∀temGrupo.GI))
((∃temScore.SCORE60) ⊓ (∃temScore.SCORE100))
CQ15 - Counterexample:
a)w′′ : F GI ; w′ : F SCORE60 ; w′ : T SEMPMA
b)w′′ : F GI ; w′ : F SCORE100 ; w′ : T SEMPMA

Chapter 8. Appendix 108

(Lei N0. 7249 DE 02/06/2011). Gratificação de Produtividade Secretaria de
Gestão (SEMGE).

Paragraph 10 - Scale D will be assigned a maximum value of 40 points obtained
from the sum of the evaluation factors, with a maximum value of 35 points for Scale
C, a maximum value of 30 points for Scale B, and a maximum value of 25 points for
Scale A.

⊢iALC (w : ((∀emLotacao.SEMGE) ⊓ (∀emEscala.ESCALAA))
((∃temScore.SCORE25)))
CQ16 - Counterexample:
w′ : T ESCALAA ; w′ : T SEMGE ; w′ : F SCORE25

(Lei N0. 6685 DE 18/08/2017). Law that establishes the Maceió Tax Code
(SEFAZ) Art. 30 The tributes that are part of the Municipal Tax Code are: I -
Taxes and II - Fees [90].
The Location License Fee (LLF) is the fee due for the municipal activity verifying
compliance with legislation regulating the use and occupation of urban ground.
Some LLF exemption rules:

- Legally constituted sports association:

⊢iALC (w : ((∀tipoEmpresa.ASSDESP) ⊓ (¬(∀temRegistro.LEGAL))
(¬(∃temBeneficio.ISENCAO))))
CQ17 - Counterexample:
w′′′′ : F LEGAL ; w′′′ : T ISENCAO ; w′ : T ASSDESP

Another approach to CQ17:
⊢iALC (w : ((∀tipoEmpresa.ASSDESP) ⊓ ((∀temRegistro.LEGAL))
((∃temBeneficio.ISENCAO))))
CQ18 - Counterexample:
w′ : T LEGAL ; w′ : T ASSDESP ; w′ : F ISENCAO

- Being social assistance, philanthropic or charitable entities:

⊢iALC (w : ((∀tipoEmpresa.ASSSOCIAL) ⊓(¬(∀temFinalidade.FILANTROPO)
⊓(¬(∀temFinalidade.BENEFICENTE)) (¬(∃temBeneficio.ISENCAO)))))
CQ19 - Counterexample:

Chapter 8. Appendix 109

w′′′ : F BENEFICENTE ; w′′ : F FILANTROPO ; w′′′ : T ISENCAO ; w′ : T
ASSSOCIAL

- The public entities of direct administration and their respective “autarquias”.

⊢iALC (w : ((∀tipoEmpresa.EMPPUBLICA) ⊓
(¬(∀estaOrganograma.ADMDIRETA)) ¬(∃temBeneficio.ISENCAO)))
CQ20 - Counterexample:
w′′′′ : F ADMDIRETA ; w′′′ : T ISENCAO ; w′ : T EMPPUBLICA

(Acordão N0 3561/23). Public agents perform essential functions. Require-
ments and qualifications expressly provided for by law, in accordance with this de-
cision. Prejudged N0 25-TCE/PR. It is prohibited for occupants of a commissioned
position to receive a bonus function (Função Gratificada)[...]
It is not possible to accumulate remuneration for a commission position with a bonus
function [...] N0 25 [91].
⊢iALC w : ((∀temCargo.CC) (∃temCargo.CC ⊓ ¬(∃temCargo.FG)))
CQ21 - Counterexample:
w′′′ : T FG ; w′ : T CC

Chapter 8. Appendix 110

Appendix B

In this appendix, we present a grammar of the ALC language using the syntax
of the ANTLR4 tool. In fact, this grammar extends to an attribute grammar. As we
can see, in line 16, the attribute grammar mechanism adds a layer of functionality,
allowing the association of semantic information (left=formula, op=binconnective,
right=formula) with the original grammar elements.

1 /*

2 * iALC written for Antlr4 by Fernando;Hermann

3 */

4 grammar iALCGrammar;

5 @header {

6 package iALC.grammar;

7 }

8
9 s : condition EOF;

10 condition

11 :formula (ENDLINE formula)* ENDLINE* EOF

12 ;

13
14 formula

15 : LPAREN* atom=CHARACTER RPAREN* #atomFormula

16 | left=formula op=bin_connective right=formula #opFormula

17 | LPAREN formula RPAREN #parenFormula

18 | NOT formula #notFormula

19 | FORALL ROLE'.'(LPAREN* CHARACTER bin_connective*

CHARACTER* RPAREN*) #forallFormula

20 | EXISTS ROLE'.'(LPAREN* CHARACTER bin_connective*

CHARACTER* RPAREN*) #existFormula

21 | modal #forallAtomico

22 ;

23
24 asser

25 : CHARACTER*'.'formula

26 ;

27
28 ROLE

29 :CHARACTER*

30 ;

31
32 LPAREN

Chapter 8. Appendix 111

33 :'('

34 ;

35 RPAREN

36 :')'

37 ;

38
39 modal

40 :FORALL

41 |EXISTS

42 ;

43
44
45 FORALL

46 :'\u2200'

47 ;

48 EXISTS

49 : '\u018E'

50 ;

51 bin_connective

52 : CONJ

53 | DISJ

54 | IMPL

55 ;

56
57 NOT

58 :'~'

59 ;

60
61 CONJ

62 : '\u2293'

63 ;

64
65 DISJ

66 :'\u2294'

67 ;

68 IMPL

69 : '\u226B'

70 ;

71
72 CHARACTER

73 :[0-9a-zA-Z]+

Chapter 8. Appendix 112

74 ;

75
76 ENDLINE

77 :('\r'|'\n')+

78 ;

79 WHITESPACE

80 :(' '|'\t')+->skip

81 ;

Code Listing 8.1: Exemplo de código ANTLR4

Chapter 8. Appendix 113

Appendix C

Listing 23 R program for calculating accuracy;

Vetor de respostas corretas
respostas_das_CQs <- list(c("T-IRPF", "T-INCAPAC", "T-APOSENT"),

c("T-RPPS", "T-COMISSIONADO", "T-SERVIDOR"),
c("F-EST", "T-SERVIDOR", "F-RGPS"),
c("F-EST", "F-CEL", "T-SERVIDOR", "F-EST", "F-RGPS", "T-SERVIDOR"),
c("F-CEL", "F-EST", "T-SERVIDOR", "F-CEL", "F-RPPS", "T-SERVIDOR"),
c("T-TECNICOB", "T-ACUMULAR", "T-TECNICOA"),
c("T-ACUMULAR", "T-TECNICOB", "T-TECNICOA"),
c("T-TECNICOA", "T-MAGISTERIO", "F-ACUMULAR"),
c("T-EFETIVO", "T-MENOR2ANOS", "T-CONCURSADO"),
c("F-PESQUISADOR", "F-DEZANOS", "T-ATIVO"),
c("T-ATIVO", "T-MENOS3ANOS", "T-EMPPUBLICA"),
c("T-MENOS3ANOS", "T-ATIVO", "T-EMPPUBLICA"),
c("F-DATAHORA", "T-VALIDO", "F-IPESTACAO", "T-VALIDO"),
c("T-SCORE100", "T-GI", "T-SEMPMA", "T-SCORE60", "T-GI", "T-SEMPMA"),
c("F-GI", "F-SCORE60", "T-SEMPMA", "F-GI", "F-SCORE100", "T-SEMPMA"),
c("T-ESCALAA", "T-SEMGE", "F-SCORE25"),
c("F-LEGAL", "T-ISENCAO", "T-ASSDESP"),
c("T-LEGAL", "T-ASSDESP", "F-ISENCAO"),
c("F-BENEFICENTE", "F-FILANTROPO", "T-ISENCAO", "T-ASSSOCIAL"),
c("F-ADMDIRETA", "T-ISENCAO", "T-EMPPUBLICA"),
c("T-FG", "T-CC"))

Vetor de respostas do KRM
respostas_do_SAT <- list(c("T-IRPF", "T-INCAPAC", "T-APOSENT"),

c("T-RPPS", "T-COMISSIONADO", "T-SERVIDOR"),
c("F-EST", "T-SERVIDOR", "F-RGPS"),
c("F-EST", "F-CEL", "T-SERVIDOR", "F-EST", "F-RGPS", "T-SERVIDOR"),
c("F-CEL", "F-EST", "T-SERVIDOR", "F-CEL", "F-RPPS", "T-SERVIDOR"),
c("T-TECNICOB", "T-ACUMULAR", "T-TECNICOA"),
c("T-ACUMULAR", "T-TECNICOB", "T-TECNICOA"),
c("T-TECNICOA", "T-MAGISTERIO", "F-ACUMULAR"),
c("T-EFETIVO", "T-MENOR2ANOS", "T-CONCURSADO"),
c("F-PESQUISADOR", "F-DEZANOS", "T-ATIVO"),
c("T-ATIVO", "T-MENOS3ANOS", "T-EMPPUBLICA"),
c("T-MENOS3ANOS", "T-ATIVO", "T-EMPPUBLICA"),
c("F-DATAHORA", "T-VALIDO", "F-IPESTACAO", "T-VALIDO"),
c("T-SCORE100", "T-GI", "T-SEMPMA", "T-SCORE60", "T-GI", "T-SEMPMA"),
c("F-GI", "F-SCORE60", "T-SEMPMA", "F-GI", "F-SCORE100", "T-SEMPMA"),
c("T-ESCALAA", "T-SEMGE", "F-SCORE25"),
c("F-LEGAL", "T-ISENCAO", "T-ASSDESP"),
c("T-LEGAL", "T-ASSDESP", "F-ISENCAO"),
c("F-BENEFICENTE", "F-FILANTROPO", "T-ISENCAO", "T-ASSSOCIAL"),
c("F-ADMDIRETA", "T-ISENCAO", "T-EMPPUBLICA"),
c("T-FG", "T-CC"))

Verificar se as respostas estão corretas
respostas_corretas <- unlist(respostas_das_CQs) == unlist(respostas_do_SAT)

Calcular a acurácia
acuracia <- sum(respostas_corretas) / length(respostas_corretas)

Exibir o resultado
print(paste("Acurácia:", acuracia))

Chapter 8. Appendix 114

Appendix D

This appendix shows the soundness proof of the algorithm that implements
the calculi system of the iALC tableau, Algorithm (1).

Definition 8.1 (A Complete Tableau). Let θ be a branch and α and β be iALC
formulas. A tableau Υ is Complete if for every α ∈ θ, both α1, α2 ∈ θ. Another way,
for every β ∈ θ, either β1 ∈ θ or β2 ∈ θ.

Theorem 8.1 (Soundness of iALC Algorithm). Let δ be a valid formula of iALC,
Γ a set of iALC formulas, and Γ ∈ Υ. Then, Γ ⊢tab δ.

Lemma 8.1 (Alpha-Type[F()] Formulas). Let θ be a branch and α and β be iALC
formulas, w ∈W and (α, β) ∈ θ. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof Since δi is realizable, some element of it is realizable. If that element is
not S, T (w : (α β)), the same element of δi+1 is realizable. If that element is
S, T (w : (α β)), then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I , Γ realizes
S, T (w : (α β)) for Γ ∈ θ. Consequently, Γ realizes S and Γ |= w : (α β). Then
Γ |= (w′ : α) and Γ ⊭ (w′ : β), so either Γ realizes {S, T (w′ : α)} and {S,F(w′ : β)}.
In either case, δi+1 is realizable. Where wRw′, Definition (5.3), for some (w, w′) ∈
θ (wi ∈W).

Lemma 8.2 (Beta-Type[T ()] Formulas). Let θ be a branch and α and β be iALC
formulas, w ∈W and α ∈ θ or β ∈ θ. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof Since δi is realizable, some element of it is realizable. If that element is
not S, T (w : (α β)), the same element of δi+1 is realizable. If that element
is S, T (w : (α β)), then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I , Γ
realizes S, T (w : (α β)). Consequently, Γ realizes S and Γ |= w : (α β). Then
Γ ⊭ (wL : α) with α ∈ θ and Γ |= (wR : β) with β ∈ θ′, so either Γ realizes
{S,F(w : α)} and {S, T (w : β)}. In either case, δi+1 is realizable. Where wL ⪯ wR,
for some wL ∈ θ and wR ∈ θ′ (ws ∈W).

Lemma 8.3 (Beta-Type[T (⊔)] Formulas). Let θ be a branch, α and β be iALC
formulas, w ∈ W , α ∈ θ or β ∈ θ, and δi is {. . . , {S, T (w : (α ⊔ β))}, . . . } and
δi+1 is {. . . , {S, T (w : α)}, {S, T (w : β)}, . . . }. If δ1 is realizable (Theorem 5.1), so
is δ1+1.
Proof Since δi is realizable, some element of it is realizable. If that element is
not {S, T (w : (α ⊔ β))}, the same element of δi+1 is realizable. If that element
is {S, T (w : (α ⊔ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I , Γ
realizes {S, T (w : (α ⊔ β))}. Consequently, Γ realizes S and Γ |= w : (α⊔ β). Then
Γ |= (wL : α) or Γ |= (wR : β), so either Γ realizes {S, T (wL : α)} or {S, T (wR : β)}.
In either case, δi+1 is realizable. Where wL ⪯ wR, for some wL ∈ θ and wR ∈ θ′

(ws ∈W).

Chapter 8. Appendix 115

Lemma 8.4 (Alpha-Type[F(⊔)] Formulas). Let θ be a branch, α and β be iALC
formulas, w ∈W and (α, β) ∈ θ, and δi is {. . . , {S,F(w : (α ⊔ β))}, . . . } and δi+1

is {. . . , {S,F(w : α),F(w : β)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof Since δi is realizable, some element of it is realizable. If that element is not
{S,F(w : (α ⊔ β))}, the same element of δi+1 is realizable. If that element is
{S,F(w : (α ⊔ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I , Γ realizes
{S,F(w : (α ⊔ β))}. Consequently, Γ realizes S and Γ ⊭ w : (α ⊔ β). Then
Γ ⊭ (w′ : α) and Γ ⊭ (w′ : β), so either Γ realizes {S,F(w′ : α)} or {S,F(w′ : β)}.
In either case, δi+1 is realizable. Where w ⪯ w′, for some (w, w′) ∈ θ (wi ∈W).

Lemma 8.5 (Alpha-Type[T (⊓)] Formulas). Let θ be a branch, α and β be iALC
formulas, w ∈W and (α, β) ∈ θ. For δi is {. . . , {S, T (w : (α ⊓ β))}, . . . } and δi+1

is {. . . , {S, T (w : α), T (w : β)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof Since δi is realizable, some element of it is realizable. If that element is not
{S, T (w : (α ⊓ β))}, the same element of δi+1 is realizable. If that element is
{S, T (w : (α ⊓ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I , Γ realizes
{S, T (w : (α ⊓ β))}. Consequently, Γ realizes S and Γ |= w : (α ⊓ β). Then
Γ |= (w : α) and Γ |= (w : β), so either Γ realizes {S, T (w′ : α)} and {S, T (w′ : β)}.
In either case, δi+1 is realizable. Where w ⪯ w′, for some (w, w′) ∈ θ (wi ∈W).

Lemma 8.6 (Beta-Type[F(⊓)] Formulas). Let θ be a branch, α and β be iALC
formulas, w ∈ W , α ∈ θ or β ∈ θ, and δi is {. . . , {S,F(w : (α ⊓ β))}, . . . } and
δi+1 is {. . . , {S,F(w : α)}, {S,F(w : β)}, . . . }. If δ1 is realizable (Theorem 5.1), so
is δ1+1.
Proof Since δi is realizable, some element of it is realizable. If that element is
not {S,F(w : (α ⊓ β))}, the same element of δi+1 is realizable. If that element
is {S,F(w : (α ⊓ β))}, then for some model ⟨∆I , ·I ,⪯⟩ and some Γ ∈ ∆I , Γ
realizes {S,F(w : (α ⊓ β))}. Consequently, Γ realizes S and Γ ⊭ w : (α ⊓ β).
Then Γ ⊭ (wL : α) and Γ ⊭ (wR : β), so either Γ realizes {S,F(wL : α)} and
{S,F(wR : β)}. In either case, δi+1 is realizable. Where wL ⪯ wR, for some wL ∈ θ

and wR ∈ θ′ (ws ∈W).

Lemma 8.7 (Alpha-Type[F(¬)] Formulas). Let θ be a branch, α an iALC formula,
w ∈ W , α ∈ θ and δi is {. . . , {S, F(w : ¬α)}, . . . } and δi+1 is {. . . , {S, T (w′ :
α)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof Since δi is realizable, and it suffices to consider the case that {S, F(w : ¬α)}
is the realizable element. Then there is a model ⟨∆I , ·I ,⪯⟩ and a Γ ∈ ∆I such that
Γ realizes S and Γ ⊭ (w : ¬α). Since Γ ⊭ (w : ¬α), for some Γ ∈ ∆I , Γ |= δ. But
clearly, if Γ realizes S, Γ∗ (all Γ) realizes w′ (for a new w) and [w ≺ w′] by definition
(5.4). Hence Γ∗ realizes {S, [T (w ≺ w′)], T (w′ : α)} and δi+1 is realizable. Where
wRw′, Definition (5.3), for some (w, w′) ∈ θ (wi ∈W).

Lemma 8.8 (Alpha-Type[T (¬)] Formulas). Let θ be a branch, α an iALC formula,
w ∈ W , α ∈ θ and δi is {. . . , {S, T (w : ¬α)}, . . . } and δi+1 is {. . . , {S, F(w′ :

Chapter 8. Appendix 116

α)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof Since δi is realizable, and it suffices to consider the case that {S, T (w : ¬α)}
is the realizable element. Then there is a model ⟨∆I , ·I ,⪯⟩ and a Γ ∈ ∆I such that
Γ realizes S and Γ |= (w : ¬α). Since Γ |= (w : ¬α), for some Γ ∈ ∆I , Γ |= δ. But
clearly, if Γ realizes S, Γ∗ (all Γ) realizes w′ and [w ≺ w′] by definition (5.4). Hence
Γ∗ realizes {S, [F(w ≺ w′)], F(w′ : α)} and δi+1 is realizable. Where w ⪯ w′, for
some (w, w′) ∈ θ (wi ∈W).

Lemma 8.9 (Alpha-Type[T (∃R.C)] Formulas). Let θ be a branch, α an iALC
formula, w ∈ W , α ∈ θ and δi is {. . . , {S, T (w : (∃R.C))}, . . . } and δi+1 is
{. . . , {S, T (w′ : C)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof if S, T (w : (∃R.C)) is realizable, and if w′, w′ ∈ W does not occur in S,
then S, T (w′ : C) is realizable. Where wRw′, Definition (5.3), for some (w, w′) ∈
θ (wi ∈W).

Lemma 8.10 (Alpha-Type[F (∃R.C)] Formulas). Let θ be a branch, α an iALC
formula, w ∈ W , α ∈ θ and δi is {. . . , {S, F(w : (∃R.C))}, . . . } and δi+1 is
{. . . , {S, F(w′ : C)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof if S, F(w : (∃R.C)) is realizable, and if w′, w′ ∈ W occur in S, then
S, F(w′ : C) is realizable. Where w ⪯ w′, for some (w, w′) ∈ θ (wi ∈W).

Lemma 8.11 (Alpha-Type[T (∀R.C)] Formulas). Let θ be a branch, α an iALC
formula, w ∈ W , α ∈ θ and δi is {. . . , {S, T (w : (∀R.C))}, . . . } and δi+1 is
{. . . , {S, T (w′ : C)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof if S, T (w : (∀R.C)) is realizable, and if w′, w′ ∈ W occur in S, then
S, T (w′ : C) is realizable. Where w ⪯ w′, for some (w, w′) ∈ θ (wi ∈W).

Lemma 8.12 (Alpha-Type[F (∀R.C)] Formulas). Let θ be a branch, α an iALC
formula, w ∈ W , α ∈ θ and δi is {. . . , {S, F(w : (∀R.C))}, . . . } and δi+1 is
{. . . , {S, F(w′ : C)}, . . . }. If δ1 is realizable (Theorem 5.1), so is δ1+1.
Proof if S, F(w : (∀R.C)) is realizable, and if w′, w′ ∈ W does not occur in S,
then S, F(w′ : C) is realizable. Where wRw′, Definition (5.3), for some (w, w′) ∈
θ (wi ∈W).

	Compliance Reasoning on Legal Norms: a logic-based approach
	Resumo
	Table of contents
	Introduction
	A framework vision
	The Formal Definition of the Framework
	Computational Complexity
	Abstraction of nonconformity detection
	Previous Results of Architecture
	Organization of Chapters

	Architectural Design for Reasoning
	Related Works
	Architectural Design

	Legal Extraction and Normalization Module (ENM)
	Well-Formatted Document
	Syntactic structure of the law

	Lexical and syntactic analysis
	Related Works
	Official Gazette Grammar
	Official Gazette Patterns
	ENM Modules
	The Encoding Process
	The Audit File

	Evaluation and Results for ENM
	Scope
	Results

	An Alternative with Machine Learning
	Results

	Formula Generator Module (FGM)
	FGM Modules
	From Law Text to ASTs

	Knowledge Base Reasoner Module (KRM)
	KRM Modules
	Logical-base components
	The Tableau System for iALC
	Related works
	iALC Tableau Rules

	Main Properties
	Soundness

	Reasoning in iALC tableau calculus
	The KRM Machine
	The KRM Kernel
	The Model and Counter-model Logs File
	From Counter-model to SPARQL
	The KRM Solver Application

	Evaluation and Results
	Reasoner Evaluation
	Scoping
	Planning
	Operation
	Analysis and Interpretation

	Conclusion and Future Works
	Appendix

