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Abstract 

 

 

Pires Filho, Leyser Pacheco; Gonçalves, Paulo Batista (Advisor). Nonlinear 
Buckling and Vibration Analysis of Pultruded Angle Section Columns. 
Rio de Janeiro, 2024. 179p. Tese de Doutorado - Departamento de Engenharia 
Civil e Ambiental, Pontifícia Universidade Católica do Rio de Janeiro. 

 

Thin-walled elements with open cross sections have been widely employed 

in engineering applications. While conventional applications and design codes 

predominantly focus on steel members, a growing interest has emerged in exploring 

alternative materials, particularly composites. Among these, fiber reinforced 

polymer (FRP) has witnessed increased application owing to its advantageous 

properties. However, the orthotropic nature of FRP columns, produced through 

pultrusion, presents a challenge as conventional design prescriptions for structural 

steel cannot be directly applied. Thus, further research is essential to derive reliable 

design rules for FRP members. In the realm of traditional open section geometries, 

angle sections have been commonly employed. Despite their geometric simplicity, 

angles exhibit a complex structural buckling and dynamic behaviour which arises 

from the fact that such columns may undergo different deformation modes, 

according to their geometric and material properties, with modal interaction 

observed, particularly between flexural and torsional modes. This work focuses on 

investigating the buckling and vibration characteristics of pultruded FRP angle 

sections, encompassing both equal and unequal-leg sections, and spanning short to 

long columns. For this, reduced order models (ROMs) are developed based on the 

classical von Kármán nonlinear plate theory (CPT). The angle section is modelled 

as two plates, with continuity constraints considered at the common boundary. 

Utilizing GBTul software, a comprehensive investigation of modal participation in 

linear buckling and vibration modes is conducted. Based on this analysis, the plate 

displacement field for each ROM is approximated by suitable analytically derived 

interpolating functions, which are used to discretize the continuous system on the 

basis of the Ritz energy method. By application of Hamilton's principle, the 

eigenvalue problems and nonlinear equations of motion are derived. Parametric 

dimensional and nondimensional analyses are carried out, with critical loads and 



 

vibration frequencies compared favorably with GBTul results. Post-buckling paths 

are explored by solving the systems of nonlinear equilibrium equations for each 

ROM. The influence of geometric and material parameters on post-buckling 

stiffness is investigated, along with the sensitivity to initial geometrical 

imperfections. Finally, the stability of the columns under harmonic axial loading is 

assessed by numerically solving the nonlinear equations of motion using the fourth-

order Runge-Kutta method. Parametric instability regions are determined as a 

function of the frequency and magnitude of the harmonic excitation force, 

considering the influence of material, damping, and cross-sectional geometry. 

Bifurcation diagrams are obtained employing the brute force method and 

continuation techniques, clarifying the bifurcations associated to the parametric 

instability boundaries. The evolution of basins of attraction of coexisting solutions 

is investigated, providing an evaluation of dynamic integrity. The results 

demonstrate that the column may lose stability at load levels well below the static 

buckling loads and, therefore, designers must exercise caution when working with 

these structures subjected to time-varying axial loads. 
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Pires Filho, Leyser Pacheco; Gonçalves, Paulo Batista. Análise Não Linear 
de Flambagem e Vibrações de Perfis Pultrudados de Seção Cantoneira. 
Rio de Janeiro, 2024. 179p. Tese de Doutorado - Departamento de Engenharia 
Civil e Ambiental, Pontifícia Universidade Católica do Rio de Janeiro. 

 

Elementos de paredes finas com seções transversais abertas têm sido 

amplamente empregados em aplicações de engenharia. Embora as aplicações 

convencionais e os códigos de projeto se concentrem predominantemente em 

elementos de aço, observa-se um interesse crescente no uso de materiais 

alternativos, especialmente compósitos. Entre estes, polímeros reforçados com fibra 

(FRP) têm sido cada vez mais empregados devido às suas propriedades benéficas. 

No entanto, a natureza ortotrópica das colunas FRP, produzidas através de 

pultrusão, apresenta um desafio, uma vez que as prescrições convencionais de 

projeto para estruturas de aço não podem ser aplicadas diretamente. Assim, mais 

pesquisas são essenciais para fornecer normas de projeto confiáveis para membros 

estruturais em FRP. Entre as geometrias tradicionais de seção aberta, seções 

cantoneira têm sido comumente empregadas. Apesar de sua simplicidade 

geométrica, colunas com seção cantoneira apresentam uma flambagem estrutural e 

um comportamento dinâmico complexos, que decorre do fato de tais colunas 

apresentarem diferentes modos de deformação, função de suas propriedades 

geométricas e materiais, incluindo interação modal, principalmente entre os modos 

de flexão e torção. Este trabalho se concentra na investigação das características de 

flambagem e vibração de colunas pultrudadas FRP com seção cantoneira, 

abrangendo seções de abas iguais e desiguais, e abrangendo colunas curtas a longas. 

Para isso, são desenvolvidos modelos de dimensão reduzida (ROMs) baseados na 

teoria clássica não linear de placas (CPT) proposta por von Kármán. A seção 

cantoneira é modelada como duas placas, com restrições de continuidade imposta 

na ligação entre ambas. Utilizando o software GBTul, é conduzida uma 

investigação abrangente da participação modal nos modos de flambagem e 

vibração. Com base nesta análise, o campo de deslocamentos de cada placa para 

todos os ROMs é aproximado por funções de interpolação derivadas analiticamente, 



 

que são usadas para discretizar o sistema contínuo com base no método de Ritz. 

Pela aplicação do princípio de Hamilton, os problemas de autovalor e equações não 

lineares de movimento são derivados. São realizadas análises paramétricas 

dimensionais e adimensionais, com cargas críticas e frequências de vibração 

comparadas favoravelmente com os resultados do GBTul. Caminhos pós-

flambagem são explorados resolvendo-se os sistemas de equações de equilíbrio não 

lineares para cada ROM. A influência dos parâmetros geométricos e materiais na 

rigidez pós-flambagem é investigada, juntamente com a sensibilidade às 

imperfeições geométricas iniciais. Finalmente, a estabilidade de colunas sob 

carregamento axial harmônico é avaliada resolvendo-se numericamente as 

equações não lineares de movimento usando-se o método Runge-Kutta de quarta 

ordem. As regiões de instabilidade paramétrica são determinadas em função da 

frequência e magnitude da força de excitação harmônica, considerando a influência 

do material, do amortecimento e da geometria da seção transversal. Os diagramas 

de bifurcação são obtidos empregando-se o método da força bruta e técnicas de 

continuação, esclarecendo as bifurcações associadas aos limites de instabilidade 

paramétrica. A evolução das bacias de atração de soluções coexistentes é 

investigada, proporcionando uma avaliação da integridade dinâmica. Os resultados 

demonstram que a coluna pode perder estabilidade sob níveis de carga bem abaixo 

da carga estática de flambagem e, portanto, os projetistas devem ter cautela ao 

trabalhar com essas estruturas sujeitas a cargas axiais variáveis no tempo. 
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1  
Introduction 

In this chapter, a concise literature review covering topics of interest for the 

development of this research is provided. Additionally, the general and specific 

objectives are outlined, along with the contents of the subsequent chapters. 

1.1  
Initial considerations 

The essential role of a sound engineering design conception is to obtain an 

economically viable and at the same time safe structure. With the evolution of 

construction technology, engineers are designing structures that are progressively 

lighter, requiring increasingly accurate studies of their static and dynamic behavior 

to ensure stability and acceptable vibration levels. Within this context, the static and 

dynamic analysis of slender structures become indispensable for the development 

of viable structures. However, the behavior of these slender structures has becoming 

increasingly complex due to the increasing role played by geometric nonlinearities. 

Among these structures are metal (usually steel) bars with open thin-walled 

cross-sections, leading to lighter structures. In addition, due to advances in material 

sciences, some new materials have shown to be an economically viable alternative 

to steel, such as composites. The use of composites in engineering applications, as 

an increasingly favored alternative to metal structures, has shown significant 

growth in recent years (Maji et al., 1997; Kar, 2016). Among composite materials, 

fiber-reinforced polymer (FRP) thin-walled members have gained widespread 

acceptance across various sectors, including civil, aeronautical, naval, mechanical, 

and offshore engineering (Vedernikov et al., 2020). They offer several 

advantageous properties such as a high load-capacity to weight ratio, corrosion 

resistance, durability even in harsh environments, nonconductive attributes, 

extended fatigue life, design flexibility, and reasonable cost. They can thus be used 
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as substitutes to conventional materials, particularly in the construction industry. 

Apart from their use as secondary components such as handrails, floor gratings, 

cable trays, FRP profiles can also be employed in building structures, pedestrian 

bridges, communication towers, mining towers and cooling towers, as illustrated in 

Figure 1.1. Despite their advantages, FRP thin-walled members present certain 

limitations such as brittle and non-ductile behavior, poor long-term temperature 

resistance, aging phenomena, and low interlaminar shear strength. Efforts to 

address these limitations have been made in recent years, including the 

development of more resistant resins and coupling agents. 

 

(a) Eyecatcher building, Basel, 1998 
(Source: Correia et al., 2015). 

 

(b) Counterflow Cooling Tower (Source: 
ipfonline.com, accessed on Feb 16, 2024). 

Figure 1.1 - Applications of FRP profiles. 

Although FRP can be manufactured using different methods, pultrusion is the 

preferred method for manufacturing FRP due to its cost-effectiveness, energy 

efficiency, and minimal waste production (Volk et al., 2022; Minchenkov et al., 

2021). It is obtained by pulling resin-impregnated fibers through a heated die for 

continuous shape fabrication (Clarke, 2014). Pultruded FRP profiles exhibit 

orthotropic properties, with superior material characteristics along the fiber 

direction. Most thin-walled FRP columns have open cross-sections, offering 

versatility in shape due to ease of manufacturing and application. The pultrusion 

process will be explained in more detail in the following chapter. 

A drawback of open sections is their reduced torsional stiffness compared to 

closed sections, making them more prone to torsional buckling failure (Allen & 
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Bulson, 1980; Pignataro et al., 1991; Trahair, 1993; Alam et al., 2019). These 

structural members may exhibit qualitatively different buckling and vibration 

modes depending on their geometry and material. These modes can interact due to 

nonlinear modal coupling, resulting in complex nonlinear behavior, including 

interactive buckling, sensitivity to imperfections, and reduced load capacity 

(Gioncu, 1994; Hancock, 2018; Dubina & Ungureanu, 2023). Therefore, 

understanding the behavior of thin-walled open cross-section columns in response 

to potential failure modes and unwanted vibrations is essential for optimizing their 

use. 

Various theories have been employed to analyze the buckling behavior of 

thin-walled members. While many studies rely on classical Vlasov theory (Vlasov, 

1963) or its modified versions (Attard, 1986; Ambrosini et al., 2000; Piccardo at 

al., 2017; Mohri et al., 2001) to investigate global behavior, consistent results are 

also obtained by modeling profiles as assemblies of plates. This approach allows 

for the study of both local and global buckling modes using appropriate plate 

theories (Qiao et al., 2001; Coaquira et al., 2021). A powerful numerical tool for 

analyzing the structural behavior of thin-walled members is the Generalized Beam 

Theory (GBT) proposed by Schardt (1994). Building upon this theory, researchers 

at IST-Lisbon developed the GBTul software (Bebiano et al., 2018; Gonçalves et 

al., 2010; Bebiano et al., 2015; Gonçalves et al., 2023), which expresses cross-

section displacements as a combination of significant local and global deformation 

modes. The software conducts elastic buckling and vibration analyses, facilitating 

the identification of meaningful cross-section deformation modes through a modal 

participation analysis (Bebiano et al., 2018). Silvestre and Camotim (2002a, b) 

applied the GBT to analyze the structural behavior of thin-walled composite 

members, including FRP profiles. GBTul serves as an efficient alternative to other 

numerical methods like finite strip and shell finite element methods, and it is 

employed here as a benchmark for the proposed reduced-order models (ROM). 

Among open section profiles, angle sections are notable for their geometric 

simplicity and ease of fabrication, making them a common choice in many systems 

in the building industry. However, despite their simplicity, angles can exhibit 

complex structural behavior under compression forces. Slender cross-sections, in 

particular, are highly susceptible to various buckling modes, ranging from local to 
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global. Additionally, their behavior is influenced by the width of each leg, with 

current research typically focusing on the more common equal-leg sections. 

Although unequal-leg angles may offer greater efficiency in certain cases, their 

behavior has received considerably less attention compared to equal-leg angles (Liu 

& Chantel, 2011; Bai et al., 2018). Figure 1.2 shows angle section profiles made of 

pultruded FRP material applied as lateral bracing. 

 

Figure 1.2 - Application of pultruded FRP angle section profiles as lateral bracing (Source: 
fiberline.com/design-manual, accessed on Feb 20, 2024). 

1.2  
Brief literature review 

The linear and nonlinear buckling behavior of angle columns has been 

extensively studied, with research spanning numerical, experimental, and design 

aspects. Recent works provide comprehensive literature reviews on this topic 

(Zhang et al., 2021; Diniz et al., 2023; Laracuente, 2024). These contributions show 

that the buckling (or vibration) modes of angle columns can generally be described 

by a combination of local, flexural, and torsional modes. They underscore the 

significant role of torsional modes in members spanning from very short to 

intermediate lengths, while minor axis bending predominates for longer profiles. 

Equal-leg and unequal-leg sections exhibit distinct buckling behaviors, as 

shown hereafter. In the case of an unequal-leg angle member, the torsional 

component is characterized by the cross-section rotation about the shear center, 

which does not coincide with either of the principal bending axes (Ádány & Dávid, 

2012). Allen and Bulson (1980) demonstrated that weak and strong-axis flexural 

displacements may occur simultaneously with torsional displacements, resulting in 
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a flexural-torsional buckling mode with biaxial bending. Both scenarios are 

examined here, and the impact of the width ratio on the buckling and vibration 

behavior is investigated. 

While many of the aforementioned contributions focus on steel structures, 

recent years have seen increased attention given to the study of stainless-steel angle 

sections. This heightened interest is attributed to their superior corrosion resistance, 

durability, high material strength, and exceptional ductility (Gardner, 2019; Sun et 

al., 2019; Sarquis et al., 2020; Behzadi‐Sofiani (2023). Additionally, investigations 

into the buckling behavior of aluminum alloy columns have been undertaken 

(Zhang et al., 2021; Pham et al., 2021). One key aspect in these cases is the inherent 

material nonlinearity. However, comparatively less research has been conducted on 

composite elements, including FRP angle profiles. Silva et al. (2010) developed a 

GBT formulation for the buckling analysis of FRP composite open-section thin-

walled columns. In the realm of experimental studies, recent research on the 

buckling of pultruded FRP angle section profiles has shed light on significant 

aspects of their buckling behavior. Cardoso & Togashi (2018) conducted a detailed 

experimental investigation into the flexural-torsional buckling of pultruded GFRP 

angle columns. Their findings revealed that, for short to intermediate lengths, 

flexural-torsional buckling governs the behavior, with torsional participation 

decreasing and flexural participation about the major axis increasing as length 

increases. For longer members, buckling is primarily governed by flexure about the 

minor axis, with negligible transversal wall bending within the studied length range. 

Additionally, they observed the predominance of torsion about the shear center in 

the buckling behavior and noted a significant post-buckling reserve of strength, 

similar to that observed in a plate. Thumrongvut et al. (2020) studied experimentally 

the flexural-torsional buckling of pultruded angle beams under eccentric loading. 

Sirajudeen & Sekar (2020) also explored the vulnerability of pultruded GFRP angle 

sections to torsion-related buckling experimentally. Recently, Diniz et al. (2023) 

applied the direct strength approach to predict the strength of pultruded GFRP angle 

columns. 

A literature survey reveals a shortage of information on the post-buckling 

behavior of angle sections, particularly FRP pultruded profiles. Although linear 

analyses of these profiles have demonstrated complex behavior with coupled 
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flexural-torsional modes and abrupt changes in modal participation, there remains 

a gap in understanding their post-buckling characteristics. Dinis et al. (2012) 

conducted a comprehensive numerical investigation into the mechanics underlying 

the buckling and, predominantly, the post-buckling behavior of short-to-

intermediate equal-leg thin-walled angle steel columns with clamped and pinned 

ends, employing ABAQUS (Simulia, 2024) shell finite element analyses. Their 

findings revealed a variation in post-buckling strength reserve from relatively high 

(for shorter lengths) to considerably low (for longer lengths), with the magnitude 

of corner flexural displacements playing a pivotal role in distinguishing between 

different post-buckling behaviors. Later, Mesacasa et al. (2014) carried out an in-

depth numerical investigation on the effects of modal interaction and initial 

imperfections on the post-buckling behavior, ultimate strength, and failure mode of 

fixed-ended and pin-ended thin-walled equal-leg angle columns using ANSYS 

(Ansys, 2024) shell finite element analysis. Shifferaw & Schafer (2014) 

demonstrated, through a combination of existing experiments and elastic buckling 

analysis, that plain and lipped angles with fixed ends exhibit stable post-buckling 

behavior concerning torsional-flexural buckling modes, a phenomenon overlooked, 

according to the authors, in current design methods for cold-formed steel angles. 

Banat et al. (2016) explored the buckling and post-buckling behavior of Z-shaped 

and channel section thin-walled fiber metal laminate profiles subjected to axial 

loading, both demonstrating stable post-buckling behavior. Landesmann et al. 

(2017) conducted an experimental investigation and numerical simulations of short-

to-intermediate slender pin-ended cold-formed steel equal-leg angle columns. In 

addition, Sarquis et al. (2020) and Sirqueira et al. (2020), among others, conducted 

experimental and numerical investigations on hot-rolled stainless-steel equal-leg 

angles under compression. 

No analytical studies were found regarding the post-buckling behavior of FRP 

angle sections, though reliable experimental findings are available. Monteiro & 

Malite (2021) investigated the behavior of eccentrically loaded pultruded GFRP 

angle columns of varying lengths. They observed typical load vs. displacement 

curves demonstrating either flexural or flexural-torsional buckling modes. Some 

specimens exhibited loading paths characterized by significant displacements 

followed by relatively flat post-buckling behavior. Others displayed exceptional 

post-buckling strength reserve, consistent with findings by Cardoso & Togashi 
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(2018). Balagopal et al. (2020) experimentally examined concentrically loaded 

GFRP angle sections with bolted connections in communication towers. They 

determined material properties through compression and in-plane shear coupon 

tests and developed a mathematical model to predict buckling characteristics such 

as torsional-flexural, flexural, and pure torsion. The proposed formulation was 

validated using experimental tests across various slenderness ratios and numerical 

simulations with ANSYS finite element software, revealing stable post-buckling 

behavior. FRP columns with various cross-sections have been the subject of both 

experimental and numerical investigations. Barbero & Trovillion (1998) examined 

the post-buckling behavior of fiber-reinforced composite wide-flange I-section 

columns. Urbaniak et al. (2015) conducted experimental and numerical analyses to 

assess the influence of boundary conditions on the critical load, post-buckling 

behavior, and failure load of compressed composite channel-section columns. 

Rozylo et al. (2017) investigated the critical and post-buckling states of thin-walled 

carbon/epoxy laminate profiles with top-hat sections under compression, observing 

limited post-buckling strength. D’Aguiar & Parente Junior investigated the local 

buckling and post-critical behavior of thin-walled composite channel section 

columns, including geometric imperfections and material failure, as well as 

approximate analytical solutions based on the classical lamination theory. 

Additionally, Cintra et al. (2019) conducted numerical and experimental 

investigations into the parameters affecting the local buckling response of pultruded 

GFRP I-columns. These studies underscored the significant influence of material 

constitutive laws on buckling phenomena. Despite these efforts, the buckling 

behavior of angle section beams and columns continues to present challenges, with 

current design provisions in international standards known to have significant 

limitations, particularly in the case of pultruded FRP profiles (Dinis & Camotim, 

2015; Behzadi-Sofiani et al., 2021, 2022, 2023; CEN/TS 19101, 2022; CNR, 2008). 

This underlines the need for further research in this area. 

While angle sections are frequently subjected to dynamic loads in various 

applications such as transmission towers (Vayas et al., 2021; Hadane et al., 2023), 

pedestrian bridges (Szak et al., 1999; Wei et al., 2019), trusses, and bracing systems 

in buildings and bridges, their dynamic properties have received limited attention 

(Slater, 1969; Hasan & Barr, 1974; Krishnan & Singh, (1991), Bebiano et al., 

2008a; Bebiano et al., 2008b, Prokić, 2010), particularly in the case of FRP profiles 



Chapter 1. Introduction 35 

(Boscato & Russo, 2009; Gaspar & Cardoso, 2023). Evaluating their natural 

frequencies and mode shapes represents the initial step in dynamic design or 

verification procedures. Therefore, this study offers a comprehensive analysis of 

the natural frequencies and dominant vibration modes of FRP profiles, highlighting 

the potential coupling of different motions, notably the coupling of bending and 

torsional motions. In addition, the distinctions and similarities with buckling modes 

are elucidated. 

Numerous studies have investigated the dynamic instability of axially loaded 

metal and composite thin-walled columns under harmonic or pulse loads (Pavlović 

et al., 2007; Machado et al., 2007; Teter, 2010; Kubiak, 2011; Yadav et al., 2017). 

However, the majority of contributions, even in recent years, focus solely on 

determining critical excitation frequencies/loads that cause parametric instability, 

while only a few works are found regarding the nonlinear behavior of these 

structures (Mancilla et al., 2015; Coaquira et al., 2016; Carvalho et al., 2017). The 

nonlinear dynamic response and parametric instability of short to medium length 

FRP channel section columns under harmonic axial forcing are investigated by 

Coaquira et al. (2021). The authors demonstrate that the column can lose stability 

at load levels well below the static buckling load. Later, a parametric analysis 

conducted by Coaquira et al. (2022) has shown how the material characteristics and 

geometric properties of a long FRP column influence its nonlinear vibrations and 

dynamic instability. These works are among the few found in the literature that deal 

with nonlinear vibrations and bifurcations of FRP columns and, to the authors’ 

knowledge, no previous study has been conducted on the parametric instability of 

FRP pultruded angle columns subjected to axial excitation. 

In recent years, there has been a growing interest on deriving meaningful 

reduced-order models (ROMs), also known as low-dimensional models, for the 

analysis of buckling and vibration of structures (Wang et al., 2017; Liang et al., 

2020; Magisano & Garcea, 2022). These models are essential, particularly in 

nonlinear problems, as they enable the efficient use of numerical tools for nonlinear 

structural analysis (Coaquira et al., 2021; Coaquira, 2020; Mazzilli et al., 2022). 

While general finite element software or specialized software for both open and 

closed section profiles (Bebiano et al., 2018; Schafer, 2020; Nguyen et al., 2015) 

can often be effective, ROMs serve as valuable tools for gaining deeper insights 
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into the influence of material and geometric parameters on structural behavior. 

Furthermore, they aid in the development of explicit formulas to support design 

rules and recommendations (Ascione et al., 2016; Cardoso et al., 2014; Cardoso et 

al., 2017). 

Depending on the fibers’ distribution, composite materials may display more 

than one stable equilibrium configuration without damage. This behavior has given 

rise to a new research area on multistable structural systems, with applications in 

vibration control, energy harvesting, microelectromechanical systems (MEMS), 

robotics, energy absorbers, morphing structures and programmable devices as well 

as metamaterials (Hu & Burgueño, 2015; Fang et al., 2022; de Castro et al., 2023; 

Mitura et al., 2024). 

In this work, reduced-order models (ROMs) based on the nonlinear von 

Kármán classical plate theory (CPT) are proposed for analyzing the linear and 

nonlinear buckling and vibration of equal and unequal-leg FRP pultruded angle 

section columns. These ROMs enable analysis across a range of defined parameters, 

elucidating the dominant regions for each buckling/vibration phenomenon. To 

achieve this, consistent expressions for in-plane and transverse displacements are 

geometrically derived for each plate of the angle. The two plates are assumed as 

simply supported at the two ends of the column. The Ritz method is applied to 

discretize the continuous system and a set of coupled ordinary equations of motion 

are obtained by means of the Hamilton’s principle, which are numerically solved 

by the Runge-Kutta fourth-order method. The eigenvalue problems allow for the 

determination of critical loads and natural frequencies of the FRP columns. The 

resulting eigenvalues and eigenvectors are compared with those obtained from 

GBTul (Bebiano et al., 2008a; Bebiano et al., 2008c; Bebiano et al., 2018), utilized 

here as a benchmark. Numerical results for the post-buckling paths, parametric 

instability regions, frequency-amplitude relations, bifurcation diagrams, and basins 

of attraction of FRP pultruded angle columns are presented, and the influence of 

geometric and material parameters is clarified by the proposed consistent ROMs. 
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1.3  
Motivation 

This thesis is part of the research line on Stability and Dynamics of Structures 

of the Department of Civil and Environmental Engineering, PUC-RIO, which 

analyzes the loss of static and dynamic stability and non-linear vibrations of slender 

structures. It is part of the research projects on thin-walled open-section bars and 

composite structures (Carvalho, 2013; Mancilla, 2014; Coaquira, 2016; Coaquira, 

2020). 

Angle section profiles find applications in various engineering fields. Despite 

being relatively simple and commonly used structural elements, the literature lacks 

studies on the buckling and vibrations of these elements, particularly when made of 

pultruded FRP materials. Therefore, this work aims to broaden our understanding 

of these elements in aspects that have not yet been explored. 

1.4  
Objectives 

The aim of this study is to offer a comprehensive understanding of the linear 

and nonlinear buckling and vibration behavior exhibited by pultruded FRP angle 

section columns, serving as a valuable reference point for future experimental and 

theoretical advancements, along with informing design considerations. 

Highlights of this work are: 

• Buckling and vibration analysis of composite FRP angles employing a 

nonlinear plate theory; 

• Identification of the modal participation in the buckling and vibration 

modes and possible modal interaction of FRP equal- and unequal-leg 

angle sections, covering short to long columns; 

• Derivation of reduced order models (ROMs) covering the typical 

buckling phenomena of FRP columns and expected modal interaction. For 

this the displacement field of the two plates are analytically derived, 

enabling the use of the Ritz method; 
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• Investigation, based on the developed ROMs, of the influence of 

geometric and material parameters on the nonlinear buckling and 

vibration response of angle section profiles, particularly on post-buckling 

paths, nonlinear dynamic response, and parametric instability boundaries. 

1.5  
Scope of the thesis 

This thesis is divided into eight chapters, as listed and described below: 

• Chapter 2 summarizes the characteristics of composite materials, 

specially pultruded materials, outlining the typical properties and 

constitutive relations of these materials. A standard pultruded material is 

selected for the analyses in the subsequent chapters, based on existing 

literature and experimental results; 

• Chapter 3 presents the von Kármán nonlinear classical plate theory (CPT) 

and derives the total potential energy functional of the angle profile 

considered as an assembly of two plates; 

• Chapter 4 presents the analytical development of the displacement fields 

for the predominant deformation modes of a general angle section profile, 

enabling the derivation of reduced-order models (ROMs) for buckling and 

vibration analysis by means of the Ritz method; 

• Chapter 5 focuses on the linear buckling and vibration analysis of 

pultruded FRP angle section profiles, clarifying the influence of 

geometric and material parameters on critical loads and natural 

frequencies; 

• Chapter 6 investigates the post-buckling behavior of axially loaded 

pultruded FRP angle section profiles. The nonlinear equilibrium 

equations for each ROM are solved to determine the post-buckling paths. 

Also, the sensitivity of the solutions to initial geometric imperfections is 

explored; 

• Chapter 7 presents the dynamic stability analysis of the pultruded column 

under harmonic axial loading. The parametric instability boundaries as a 

function of the frequency and magnitude of the excitation force are 
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determined. The bifurcations associated with these boundaries are 

explored and the evolution of the basins of attraction of coexisting 

solutions is analyzed; 

• Finally, in Chapter 8, conclusions and suggestions for future work are 

presented. 

 

 



 

2  
Pultruded Materials 

In this chapter, the characteristics of composite materials are addressed, with 

a focus on pultruded materials. The typical properties of these materials, as well as 

their constitutive relation, are presented. Finally, based on the literature, a standard 

pultruded material is adopted for the analyses to be carried out in the following 

chapters. 

2.1  
Types of composites 

The properties of composite materials are intricately linked to their 

constituent phases, the proportions of these phases, and the geometric attributes of 

the dispersed phase. This dispersion is defined by the shape and size of the 

reinforcing elements, their distribution and orientation within the composite 

structure. Figure 2.1 illustrates a comprehensive classification scheme for various 

types of composite materials, encompassing four primary divisions: particle-

reinforced, fiber-reinforced, structural, and nanocomposites (Callister & 

Rethwisch, 2013). 
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Figure 2.1 - Classification scheme for types of composites (Callister & Rethwisch, 2013). 

The dispersed phase in particle-reinforced composites is equiaxial, indicating 

that the particle dimensions are roughly equal in all directions. In this type of 

composite, the particles may assume a significant size, leading to an interaction 

between the particle and matrix that is better addressed through continuum 

mechanics rather than molecular considerations. This scenario is exemplified by 

materials like concrete. Alternatively, these particles can contribute to 

reinforcement through a uniform dispersion mechanism. 

In fiber-reinforced composites, the dispersed phase comprises elements with 

a fibrous geometry - thin and elongated structures characterized by a high length-

to-diameter ratio. As illustrated in Figure 2.1, these composites are further 

categorized into continuous, where fibers align seamlessly along the longitudinal 

direction without interruption, and discontinuous, where fibers are segmented (cut), 

with the possibility of being aligned or randomly oriented. The concentration and 

distribution of fibers within the continuous phase, along with their relative 

orientation, are pivotal factors that significantly influence the overall strength of 

composite materials. 

Structural composites represent multilayered materials characterized by their 

typically low density, designed for applications demanding both structural integrity 

and exceptional strength and stiffness against diverse stressors. The properties of 

these composites are influenced not only by the inherent characteristics of their 

constituent materials but also by the geometric arrangement of the different layers. 
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Laminated composites and sandwich panels stand out as the predominant types 

within the realm of structural composites. 

Nanocomposites, on the other hand, are composite materials wherein the 

dispersed phase is comprised of nanoscale particles (≤ 100 nm). Engineered with 

precision, these materials are designed to exhibit superior properties compared to 

conventional counterparts, including enhanced magnetic, optical, and thermal 

characteristics. 

2.2  
Pultruded profiles 

Pultrusion is an automated manufacturing process employed for the 

production of continuous fiber composite components featuring a consistent cross-

sectional profile. In this process, depicted schematically in Figure 2.2, reinforcing 

fibers are pulled from spools and directed into an impregnation tank, where they 

undergo partial or complete immersion in a thermosetting resin. Following this step, 

the component is drawn into an initial mold, where it is pre-shaped into the desired 

form, establishing the resin-to-fiber ratio. Subsequently, the component is subjected 

to a heated mold, initiating the resin curing process (hardening) and giving it its 

final, definitive shape (Callister & Rethwisch, 2013). 

 

Figure 2.2 - Schematic diagram showing the pultrusion process (Callister & Rethwisch, 
2013). 

The pultrusion technique boasts a notably high production rate, rendering the 

process both cost-effective and efficient. Key reinforcements employed in this 

method encompass glass, carbon and aramid fibers, typically at concentrations 

ranging from 40 to 70%. Due to their low cost, high mechanical strength and 

corrosion resistance, E-glass fibers are preferentially used in the manufacturing of 
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pultruded profiles (Barbero, 2017). Commonly used matrices include polyesters, 

vinyl esters, and epoxy resins. A major advantage of the pultrusion process lies in 

its versatility for crafting profiles. Figure 2.3 showcases examples of pultruded 

profiles, featuring sections commonly encountered in practical engineering 

applications. 

 

Figure 2.3 - Pultruded profiles (Source: 4peabody.com, accessed on Sep 14, 2020). 

Several companies in the market specialize in the fabrication of pultruded 

profiles, particularly for applications such as stairs, walkways, guardrails, floor 

grates, and cable trays. However, there has been a growing interest in their 

utilization as load-bearing elements in critical engineering structures like bridges, 

towers and walkways, as illustrated in Figure 1.1. 

2.3  
Mechanical properties 

For pultruded materials, it is possible to define a system of orthogonal axes 

compatible with the direction of the fibers, based on which mechanical properties 

are identified. Axis 1 is identified as the longitudinal axis in the direction of the 

fibers, associated with the length of the bar obtained in the pultrusion process. Axis 

2 is orthogonal to the fibers and within the plane of the bar walls, and finally, axis 

3 is orthogonal to the previous axes (Figure 2.4). In general, pultruded materials 

with unidirectional reinforcement are defined as orthotropic materials with 

transverse isotropy, due to the mechanical properties in directions 2 and 3 being 

similar. 



Chapter 2. Pultruded Materials 44 

 

Figure 2.4 - Axis system of the pultruded component (Ribeiro et al., 2008). 

The volumetric fraction of fibers represents the proportion of the total 

composite material volume occupied by fibers, playing a critical role in determining 

the mechanical properties of the composite. The formulation derived from the Rule 

of Mixtures allows for the calculation of the mechanical properties of the composite 

based on the properties of its components and their volumetric fractions (Jones, 

1998), as given by: 
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 (2.1) 

where E1 and E2 are the respective longitudinal and transversal Young’s moduli of 

the composite, Ef and Em are the respective elastic moduli of the fiber and matrix, 

both considered isotropic materials, v12 represents the Poisson's ratio in the 1-2 

direction of the composite, vf and vm are the respective Poisson's ratios of the matrix 

and fiber, and finally, Vf and Vm represent the volumetric fractions of fibers and 

matrix, respectively. Vm can be expressed as: 

1m fV V= −  (2.2) 

Many authors have investigated the mechanical properties of pultruded 

profiles. For most pultruded profiles, the ratio E1/E2 is close to 3.0 and values of 

E1/G12 are typically in the range of 5 to 10 (Hollaway et al., 2004). An extensive 

review of the mechanical properties of some commonly used pultruded materials in 

the literature is reported in Vedernikov et al. (2020). A summary of this review is 

provided in Table 2.1, Table 2.2 and Table 2.3, for typical matrix, fiber and 

pultruded element properties, respectively. It can be observed that the lower limit 



Chapter 2. Pultruded Materials 45 

for the tensile modulus of a pultruded element is in the range of 18-21 GPa, and the 

upper limit for their shear modulus approaches 5.0 GPa. 

The values observed in the literature highlight a significant variety of 

materials that can be employed as matrix and fibers, enabling many combinations 

for pultrusion process. The elements of the constituent phases interact 

synergistically, resulting in an enhanced combination of properties for the 

composite (Lopes, 2017). 
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Table 2.1 - Typical matrix properties (Vedernikov et al., 2020). 

Material 
Tensile 

Strength 
(MPa) 

Tensile 
Modulus 

(GPa) 

Flexural 
Strength 

(MPa) 

Flexural 
Modulus 

(GPa) 

Shear 
Strength 

(MPa) 

Shear 
Modulus 

(GPa) 
Density 
(kg/m³) 

Poisson’s 
ratio 

Epoxy 55-130 2.5-4.1 70-140 3.0 46-70 0.98-1.24 1100-1300 0.2-0.37 

Polyester 20-100 1.8-4.1 70-132 3.9-4.0 56-70 1.38-1.6 1100-1450 0.1-0.38 

Vinylester 70-87 3.0-5.1 149-156 3.2-3.5 - 1.43-1.6 1100-1300 0.3-0.4 

Acrylic 56-88 2.2-3.1 117-215 2.9-3.7 - - - - 

Fenol 35-60 1.2-1.4 48 - 43 - 1200-1400 - 

Polypropylene 34-37.2 0.7 34 1.2-1.5 - - 900 - 

ABS 28-45 1.5-2.4 63-76 2.1-2.2 62.1 1.06 1020-1050 - 

Table 2.2 - Typical reinforcement fiber properties (Vedernikov et al., 2020). 

Material 
Tensile 

Strength 
(MPa) 

Tensile 
Modulus 

(GPa) 

Shear 
Strength 

(MPa) 

Shear 
Modulus 

(GPa) 

Filament 
Diameter 

(µm) 
Density 
(kg/m³) 

Poisson’s 
ratio 

Basalt 2500-4800 85-110 - 21.7 7-17 2600-2800 0.2-0.26 

Carbon 3650-7000 207-600 1400 90 3-7 1700-1800 0.25-0.3 

E-glass 2500-4800 70-81.2 830 26-28.8 7-20 2540-2570 0.2-0.3 

S-glass 4200-4800 83-93 - 35-39 - 2485-2540 0.21-0.23 

Kevlar (Aramid) 2900-3400 70-152 280 2.9 12 1390-1467 0.35 
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Table 2.3 - Typical pultruded element properties (Vedernikov et al., 2020). 

Material 
Fiber volume 

fraction 
(%) 

Density 
(kg/m³) 

Tensile 
Strength 

(MPa) 

Tensile 
Modulus 

(GPa) 

Compressive 
Strength 

(MPa) 

Shear 
Strength 

(GPa) 

Shear 
Modulus 

(GPa) 

E-glass 
roving/polyester 46-80 1600-2000 307-1320 21-59 290-1240 27 3.5 

E-glass mat+ 

roving/polyester 
48-61 1750-1900 235-400 18-36 220-485 25-52 2.6-5.0 

E-glass 
roving/vinylester 62 1770 240 18-42 240 22 4.0 

E-glass 
roving/epoxy 52-53 - 414-790 32-40 - - 3.0-4.5 

E-glass roving/ 
polyurethane 

58 - 310-850 37-47 - - - 

Carbon 
roving/epoxy 65 1500-1600 1430-2200 130-180 985-1450 72 3.6-4.2 

Carbon 
roving/vinylester - 1600 2000 140-145 1400 - - 
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2.4  
Constitutive relations 

The constitutive law of orthotropic material with transverse isotropy, which 

relates deformation and stress through a flexibility matrix with respect to the 

coordinate system defined in Figure 2.4, contains five independent elastic constants 

(Jones, 1998): 
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 (2.3) 

where: 

εii = longitudinal strains in the direction i; 

γii = shear strains in the direction ij; 

σii = normal stresses in the direction i; 

τii = shear stresses in the direction ij; 

νii = Poisson's ratios (strain in the direction i caused by stress in the direction 

j); 

Ei = modulus of elasticity in the direction i; and 

Gij = shear modulus in the plane ij. 

 

Due to the symmetry of the flexibility matrix, one obtains: 
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Thus, the five elastic constants of the constitutive relation are: 

{ }1 2 12 12 23, , , ,E E G ν ν  (2.5) 

For a plane stress state, hypothesis commonly assumed for pultruded profiles, 

the following stresses are null: 
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simplifying the stiffness matrix of the orthotropic material, which yields: 
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In this work, as a reference to the analyses, the material properties were 

extracted from the experimental work conducted by Cintra et al. (2019) at the 

Structures and Materials Laboratory of the Civil and Environmental Engineering 

Department of PUC-Rio and are summarized in Table 2.4. Variations of these 

properties will be introduced to evaluate the influence of material properties on both 

linear and nonlinear results, observing the limits shown in Table 2.3. 
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Table 2.4 - Selected mechanical properties for pultruded profiles. 

E1 21.3 GPa 

E2 6.08 GPa 

G12 2.31 GPa 

ν12 0,23 

ν21 0,066 

ρ 1850 kg/m³ 

 

 



 

3  
Mathematical Formulation 

This chapter summarizes the formulation of the nonlinear von Kármán plate 

theory used in the instability and vibrations analysis of angle section profiles. The 

profile is modelled as two slender plates, as illustrated in Figure 3.1. The 

compatibility conditions at the connection between the plates are satisfied for each 

investigated deformation mode, which will be the subject of study in the following 

chapter. 

 

Figure 3.1 - Typical angle section profile 

3.1  
Classical Plate Theory 

In this work, the von Kármán classical nonlinear plate theory (CPT) is 

considered. The CPT is commonly adopted for thin plates, where shear 

deformations have negligible effects and can be disregarded (Wang et al., 2000). 

 

Figure 3.2 - Classical Plate Theory assumption. 
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The von Kármán classical plate theory is based on the Kirchhoff assumptions 

(Brush & Almroth, 1975): 

1 - Straight lines normal to the undeformed middle surface of the plate remain 

straight, normal, and inextensible after deformation (as illustrated in Figure 3.2), 

allowing the shear deformations γxz and γyz to be neglected; 

2 - The normal stress σz and the corresponding strain are negligible, and 

therefore, the transversal deflection of any point on the plate (x, y, z) is equal to the 

transversal deflection of the corresponding point on the mid-surface (x, y, 0). 

In general, plates are classified as thick plates when the minimum dimension 

to thickness ratio (b/t) is less than 10 and thin plates when the (b/t) ratio ranges from 

10 to about 100 (Chia, 1980; Musmar, 2022). The effect of shear may increase in 

thin composite plates. However, Coaquira (2020) compared through a systematic 

parametric analysis the effect of the first order shear plate theory on the linear and 

nonlinear buckling and vibration results of slender pultruded channel section 

profiles, and concluded that the CPT leads to reliable results for b/t ≥ 10, as 

confirmed by the present results. 

Consider a thin-walled column of length L with a slender unequal-leg angle 

section discretized as two plates. The longer leg is labeled plate 1, with width b1 

and thickness t1, and the shorter leg is labeled plate 2, with width b2 and thickness 

t2, as illustrated in Figure 3.3 (b1 ≥ b2 throughout this work), with the global 

coordinate system located at the geometric center (gc). Since most commercially 

available pultruded shapes have constant thickness, it is hereafter assumed that 

t1 = t2 =t. The column is axially loaded at the ends with a distributed load per unit 

length N along the edges (Figure 3.3a). Figure 3.3b shows a plate element together 

with the local coordinate system and the corresponding displacement field. The 

Kirchhoff assumptions imply that (Brush & Almroth, 1975): 

,
,

x
y

u u zw
v v zw
w w

= −
= −
=

 (3.1) 

where u  and v  are the in-plane displacement components in the x and y directions 

of the local coordinate system, respectively, and w  is the transversal displacement 

in the z direction of an arbitrary point of coordinates (x, y, z); u, v and w are the 
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corresponding displacements of the middle surface (z = 0). The subscripts after 

comma indicate derivatives with respect to the corresponding spatial variable. 

Figure 3.3c illustrates the cross-section of the angle profile, constituted by 

the union of two orthogonal plates. The local x-axis of each plate coincides with the 

common edge, passing through the section shear center (sc), whose distance from 

the geometric center (gc) is given by the coordinates (zgc, ygc), being parallel to the 

global axis X. Thus, the origin of the local axes y1 and y2 coincides with the shear 

center, being y1 and y2 parallel to the global Y and Z axes, respectively. 
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(a) profile geometry and global coordinate system 

 

(b) Plate element, local coordinate system and displacement field 

 

(c) cross section, global reference frame, and shear center coordinates 

Figure 3.3 - Angle section profile. 

For small strains and moderate rotations, considering the nonlinear terms of 

the von Kármán plate theory, the strain-displacement relations for of an arbitrary 

point of the plate are given by: 
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Substituting eq. (3.1) into eq. (3.2), the strain-displacement relations at any 

point of the plate can be written in terms of the middle surface quantities as: 
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 (3.3) 

where εx, εy and γxy are the normal and shear strain components in the plate middle 

surface; κx and κy are the curvatures in the x and y directions, respectively, and κxy 

is the twist. 

Therefore, the strain-displacement relations of the plate mid-surface and 

changes of curvature are: 
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 (3.4) 

The effect of initial geometric imperfections can be described by a function 

w0(x, y). By incorporating this function into the kinematic relations, one obtains: 
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 (3.5) 

The resultant forces per unit length in a plate element can be obtained by 

integrating the stresses along the plate thickness, as follows: 
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where 𝜎̄𝜎𝑥𝑥, 𝜎̄𝜎𝑦𝑦 and 𝜏̄𝜏𝑥𝑥𝑥𝑥 denote the normal and shear stress components, Nx, Ny and 

Nxy are the normal and shear in-plane force resultants per unit length, and Mx, My 

and Mxy are the flexural and torsional moment resultants per unit length, as 

illustrated in Figure 3.4. It is assumed that the Cauchy stress tensor components are 

linearly related to the strains by Hooke’s law. 

 

Figure 3.4 - Plate element and internal force resultants per unit length in the local 
coordinate system (positive directions). 

The pultrusion manufacturing process causes the FRP plates to exhibit well-

defined mechanical properties in two main directions defined by the fibers (see 

Figure 2.4). Considering the constitutive equations of a typical orthotropic material, 
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the expression relating the internal forces and moments to the mid-surface strain 

measures of the FRP plate element can be written as: 
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where Aij and Dij (i, j = 1, 2, 6) are the plate membrane and bending stiffness 

coefficients defined by the following integrals along the plate thickness: 
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The x direction coincides with the direction of the fibers along the column 

length, the y direction is perpendicular to the fibers along the plate width, and the z 

direction coincides with the normal to the plate surface. The quantities Qij are 

written in terms of the elastic constants of the material, as previously shown in 

eq (2.8). 

3.2  
Variational formulation 

The strain energy, U, is given by the volume integral: 

( )1
2 x x y y xy xy

V

U dVσ ε σ ε τ γ= + +∫∫∫  (3.9) 

Considering eqs. (3.3) to (3.6), eq. (3.9) becomes: 
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Introducing the expressions for internal forces and moments, eq. (3.7), into 

eq (3.10) yields: 
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The potential energy of the applied loads, V, for a plate under uniform axial 

compression, is written as (Brush & Almroth, 1975): 

,

0 0

b L

x xV N u dx dy= − ∫ ∫  (3.12) 

where Nx is the applied axial load per unit length at x = 0 and x = L, as shown in 

Figure 3.3a. 

Disregarding rotational inertia, a commonly adopted assumption for thin 

plates, the kinetic energy T of the plate is given by: 

( )2 2 2

2
A

tT u v w dx dyρ
= + +∫∫     (3.13) 

where the superscript (·) denotes the derivative with respect to time, t̄, and ρ is the 

material density. 

The introduction of damping into the energy functional is achieved by 

considering the non-conservative work done by a frictional force, as shown: 

( )2 2 21
2nc

A

W c u v w dx dy= + +∫∫     (3.14) 

where c is the damping coefficient, given by: 
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02c tρ ω= Ξ  (3.15) 

where Ξ is the linear viscous damping parameter and ω0 is the natural frequency of 

the system. 

The Lagragian of the system, Lg, considering the two plates of the angle 

profile, is given by: 

2

1
2

1

i
i

i i
i

gL T

U V

=

=

= − Π

Π = +

∑

∑  (3.16) 

where Π is the total potential energy of the system. 

Consider, following the variational methodology adopted in Brush & Almroth 

(1975) and the Lagrange-Dirichlet theorem, that the fundamental static equilibrium 

configuration is described by the displacement field U0 (usually the plate membrane 

solution under the in-plane loads) and an incremental displacement field, U1. Then 

the variation of the total potential energy between the two states is given by 

∆Π = Π(U0+U1)-Π(U0). Considering the nonlinear strain-displacement relations, 

eq. (3.4), the variation of the total potential energy can be written as: 

0 0
0 0

2 3 41 1 1
2! 3! 4!U UU U

δ δ δ δ∆ = Π + Π +Π Π + Π  (3.17) 

Where δnΠ is the n-th variation of the functional. Since U0 is an equilibrium 

configuration, δΠ|U0 = 0 and, according to the Trefftz criterion, δ (δ2Π) = 0, which 

leads to the criticality condition that will be used herein to obtain the buckling 

eigenvalue problem. The kinetic energy is given in terms of the incremental time 

dependent displacements only and the equations of motion are obtained using 

Hamilton’s principle (δLg = 0). 

The explicit equations of motion of the pre-loaded plate are given by: 
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3.3  
Ritz method 

The Ritz method is a common variational method used to discretize an energy 

functional (Leissa, 2005). It is an effective tool for solving linear and nonlinear 

problems when the resulting differential equations from the physical model are 

complex, but approximation functions can be easily derived for the specified 

boundary conditions. The method involves solving the system of differential 

equations in weak form, generating approximate solutions. 

In the Ritz method, the exact solution for the displacement fields u, v and w 

is replaced by approximate solutions, υn, given by the linear combination of 

admissible functions that satisfy the essential boundary conditions of the problem, 

typically trigonometric or polynomial functions. This solution is usually expressed 

as: 

1

dn

n n Xn Yn
n

Cυ υ υ
=

= ∑  (3.21) 

where Cn are the modal amplitudes, υXn and υYn are the admissible functions 

adopted for the plate in the x and y coordinates, respectively, and nd represents the 

number of terms used in the modal expansion. 
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The number of terms used represents a crucial factor in the accuracy of 

numerical results. A higher number of modes leads to an approximate solution that 

is closer to the analytical solution. For the buckling and vibrations analyses using 

the CPT, the displacement fields related to the predominant deformation modes will 

be analytically deduced. The accuracy of linear results will be examined through 

comparisons with outcomes provided by GBTul software (Bebiano et al., 2008a; 

Bebiano et al., 2018). 

 



 

4  
Reduced-Order Models 

In this chapter, reduced-order models (ROMs) are derived for the 

displacement fields associated with the predominant deformation modes of a 

general angle section profile, based on the nonlinear equations of motion. Initially, 

a brief introduction to the GBTuL program is provided. The GBTuL program is 

then used to explore the influence of geometric and physical parameters on modal 

participation. Finally, based on the modal participation analyses, the displacement 

fields of the two plates of the angle section profile are analytically derived for each 

of the predominant deformation modes, enabling the development of coupled and 

uncoupled consistent reduced-order models. 

4.1  
GBTuL 

The GBTuL program is a free-access software developed at the Technical 

University of Lisbon (UTL) based on the Generalized Beam Theory (GBT). The 

software performs elastic buckling and vibration analyses of open and closed thin-

walled section profiles (Bebiano et al., 2008a; Bebiano et al., 2008c). 

The software considers as approximation function a linear combination of 

deformation modes, which represent the deformed shapes of the profile cross-

section and calculates the participation of each mode in the buckling and vibration 

modes (Bebiano et al., 2008a). The main distinctive feature of GBT is the 

approximation of the cross-section displacement field by a linear combination of 

deformation modes with a clear structural meaning. The deformation modes are 

obtained through a set of displacement fields associated with the constituent plates 

of the profile, where the fields for each plate are described by a set of polynomial 

functions. Thus, the displacement components in the axial, transverse, and normal 

directions can be expressed as: 
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where uk(s), vk(s) and wk(s) are the modal displacement defined along the cross-

section mid-line for mode k, and ϕk(x) are the longitudinal functions (the summation 

convention applies to subscript k). 

For given material properties and cross-section geometry, the cross-section 

analysis leads to the identification of its deformation modes and the evaluation of 

the corresponding modal mechanical properties. The GBT elastic strain energy, U, 

takes into account the stiffness matrices associated with several cross-section 

properties, namely primary/secondary warping, transverse extension/flexure, wall 

shear distortion/torsion and membrane/flexural Poisson effects. For the simply 

supported condition, the interpolating function can be defined as: 

( ) ( )sink k
m xx C t

L
πϕ  =  

 
 (4.2) 

The contribution of a given cross-section deformation mode in a member 

deformed configuration (buckling or vibration mode) consists of determining its 

modal participation factor Pk, on the basis of its contribution to the total strain 

energy of the system. It is defined as: 

1

d

k
k n

ii

UP
U

=

=

∑  (4.3) 

where nd is the total number of deformation modes included in the analysis. 

The member analysis yields the solution of the buckling or vibration 

eigenvalue problem, namely the corresponding eigenvalues (buckling loads or 

natural frequencies) and eigenvectors (buckling or vibration mode shapes). 

Illustrative examples, the fundamentals as well as instructions on the use of the 

GBTuL program, can be found in Bebiano et al. (2018). 

The results obtained from the proposed linear analyses using the classical 

plate theory are compared in Chapter 5 and validated against the results obtained 

from GBTuL. Although GBTuL has been chosen as a comparison benchmark for 

this work, other approaches could also be used, such as programs based on the finite 

strip method (Schafer, 2020). 
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4.2  
Modal participation 

For the development of the ROMs, first the buckling and vibration modes of 

the FRP angle profile are investigated using the GBTuL software, which allows to 

identify the dominant buckling and vibration modes as a function of material and 

geometric parameters and compute their modal content (Bebiano at al., 2018). The 

buckling behavior of an angle section member under axial compression can be 

described by one or more of the local or global (torsional, major-axis flexural and 

minor-axis flexural) displacement patterns illustrated in Figure 4.1 (Dinis et al., 

2010; Behzadi-Sofiani et al., 2021). The major and minor principal axes of the cross 

section are represented by z’ and y’, respectively. The major-axis flexural 

displacement pattern involves the corner moving in the direction of the minor axis, 

while the opposite occurs for the minor-axis flexural displacement pattern, where 

the corner shifts in the direction of the major axis. Torsion takes the form of a rigid-

body rotation of the cross-section around the shear center and may occur in 

combination with major-axis flexure, mainly in equal-leg angle section columns of 

short-to-intermediate length, or with minor-axis flexure, mostly in unequal-leg 

cases, as will be shown hereafter. The local plate buckling displacement profiles 

essentially resemble the rotation of the entire cross-section about its shear center. 

This assumes that the angle of rotation is identical for both plate elements when 

they buckle simultaneously with the deformation pattern along the plate width 

satisfying the continuity condition at the plate’s connection and the opposite free 

boundary, as illustrated in Figure 4.1a. 

In this work, the profile walls are assumed to be simply supported (SS) at the 

loaded ends (end sections globally pinned and free to warp) but the axial rotation is 

restricted at the supports to prevent rigid body rotation around the X axis (He et al., 

2024). Compatibility at the junction between the plates (legs) is ensured on the 

deformation modes. The other two edges of the two plates are assumed to be free. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.1 - Cross-section displacement patterns for angle columns under axial 
compression, showing: (a) local, (b) torsional, (c) major axis flexural, and (d) minor axis 
flexural modes. Dashed profile: initial undeformed configuration. Continuous profile: 
deformed configuration. 

Based on the geometry of the angle section, see Figure 3.3, the cross sections 

are labelled as L b1xb2xt, with dimensions in millimeters. Furthermore, the aspect 

ratio for the angle section legs is defined as: 

2

1

b
b

β =  (4.4) 

where β = 1,0 denote equal-leg sections and β = 0 means that the profile is reduced 

to a single plate, as b2 becomes zero. 

A detailed parametric analysis was performed to study the dominant modes 

as a function of the profile geometry. In order to illustrate the influence of the 

parameter β on the modal participation, two angle section profiles are adopted, one 

having equal-legs (L 150x150x5; β = 1.0), and the other one having unequal-legs 

(L 150x75x5; β = 0.5), both with the same thicknesses (t = 5 mm) as illustrated in 

Figure 4.2. As mentioned in the preceding chapter, the material properties, unless 

stated otherwise, are summarized in Table 2.4. 
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(a) Equal-leg section 

(L 150x150x5, β = 1.0, b2/t=30) 

 

(b) Unequal-leg section 

(L 150x75x5, β = 0.5, b2/t=15) 

Figure 4.2 - Angle section profiles. 

Figure 4.3 shows the variation of the modal participation in the buckling and 

vibration fundamental mode of both sections as a function of the column length, L. 

For the equal-leg section (β = 1.0), the torsional mode is dominant while the 

bending mode around the major axis has a low participation, reaching a maximum 

of 2.0% when L = 4 m. On the other hand, for the unequal-leg section (β = 0.5), 

although torsion is predominant for all lengths up to L = 4 m, both torsion and minor 

axis bending modes are equally important, with the modal participation of the 

torsional mode decreasing and the modal participation of the minor axis bending 

mode increasing as the profile length increases. There is a critical length, function 

of the material and geometric parameters, where the blue and green curves intercept 

and the influence of minor axis bending becomes dominant. This critical length 

decreases as the thickness and shear modulus increases within the present 

constraints. Figure 4.4 shows the results for a thicker profile (L 150x75x7; β = 0.5; 

t=7mm). In this case, minor axis bending becomes dominant for L > 3.03 m. 

Furthermore, a neglected participation of the local-plate mode can be observed in 

the unequal-leg case for short lengths (L < 1 m). 
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(a) L 150x150x5 (β = 1.0). 

 

(b) L 150x75x5 (β = 0.5). 

Figure 4.3 - Variation of the modal participation in the first buckling and vibration mode for 
the angle profiles as a function of the column length. 

 

Figure 4.4 - Variation of the modal participation in the first buckling and vibration mode for 
the angle L 150x75x7 (β = 0.5) as a function of the column length. 

These results show that the parameter β = b2/b1 has an important influence on the 

modal participation, differentiating the behavior of equal-leg and unequal-leg 

profiles, a topic not explored in the technical literature. Figure 4.5a shows the 

variation of the modal participation for a column with intermediate length, 

L = 2.5 m, with the shorter leg width b2 varying from 50 mm to 150 mm, keeping 

b1 = 150 mm and t = 5 mm. The corresponding range of β is shown by the upper 

horizontal axis. It is observed that the participation of the torsional mode increases 

steadily approaching 1, while the participation of the minor axis bending mode 

decreases to zero. In parallel, the participation of major axis bending mode, 

although rather small, increases slowly, in agreement with Figure 4.3a. Decreasing 

the longer leg to b1 = 75 mm and keeping t = 5 mm and the same column length, 
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L = 2.5 m, Figure 4.5b shows the variation of the modal participation with the 

shorter leg width b2 varying from 25 mm to 75 mm (the same range of parameter 

β = b2/b1). The modal participation is strongly altered by the leg-asymmetry when 

compared with Figure 4.5a. The minor axis bending mode is dominant and the 

relevance of the torsional mode decreases throughout the studied range. As the leg-

asymmetry decreases, the contribution of the minor axis bending decreases while 

the torsional mode participation increases up to β = 0.8, inverting their contribution 

subsequently and the influence of torsion cease to exist for the symmetric profile 

(β = 1). A very small contribution of the major axis bending mode is also detected. 

 

(a) L 150xb2x5 (β = 1.0). 

 

(a) L 75xb2x5 (β = 0.5). 

Figure 4.5 - Modal participation as a function of the shorter length b2 in the first buckling 
and vibration mode for the unequal-leg angle profiles (L = 2.5 m). 

It is known that in equal-leg section columns, minor-axis flexural buckling 

predominates in long angle profiles, while flexural-torsional buckling occurs in 

shorter columns (Behzadi-Sofiani et al., 2021). This phenomenon can be observed 

as the leg’s width decreases, keeping the thickness constant. In order to illustrate 

this, Figure 4.6 presents the modal participation for the equal-leg angles L 75x75x5 

and L 50x50x5. Here, the wider plate aspect ratio of a general angle section profile 

is defined as: 

1b
L

ϕ =  (4.5) 

where b1 is the wider plate’s width (according to Figure 3.3a). The parameter is 

given on the upper x-axis of Figure 4.6 as ϕ = b/L, since b1 = b2 = b in equal-leg 
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profiles. In both cases, a sudden discontinuous transition can be observed in the 

modal participation at a certain length, which is a function of the material and 

geometric parameters. For the L 75x75x5 section the transition length is Lt = 2.30 m 

(ϕ = 0.032) while for the L 50x50x5 section it decreases to Lt = 1.02 m (ϕ = 0.049). 

The results confirm that, the coupling between torsion and major axis bending 

governs the response for shorter lengths, while for longer profiles, minor axis 

bending becomes fully responsible for the linear behavior. For the slender cross 

section L 150x150x5 no transition was observed (see Figure 4.3a). These examples 

illustrate the predominant modes in the buckling and vibration analysis of angle 

section columns. 

 

(a) L 75x75x5 (β = 1.0, bi/t=15) 

 

(a) L 50x50x5 (β = 1.0, bi/t=10) 

Figure 4.6 - Variation of the modal participation in the first buckling and vibration mode for 
the angle profiles as a function of the column length. 

The influence of the material properties on the modal participation of angle 

section profiles is also studied. Four distinct materials are considered, as shown in 

Table 4.1. The materials are denoted as M1, M2, M3 and M4, with the first three 

being typical pultruded materials (Cintra et al., 2019), and the last one being an 

isotropic material, where E1 = 2G12(1-ν). For all materials, ν12 = 0.23 is assumed. 

Observe that the material M2 was the same considered in the previous analyses. 

Here, the nondimensional material parameter ψ is defined as: 
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( )12 12 21

1

1G
E
ν ν

ψ
−

=  (4.6) 

One can observe that the isotropic material has the highest material parameter 

(ψ = 0.3850), given that the relationship E1 = 2G12(1-ν) results in a high value for 

the shear modulus, deviating from the typical E1/G12 ratio for pultruded materials 

that lies between 5 to 10. Substituting the isotropic relationship into eq. (4.6), the 

material parameter equation for isotropic materials can be simplified to ψ = (1-ν)/2. 

Table 4.1 - Pultruded and isotropic materials. 

Material E1 E2 G12 ν12 ν21 ψ 

M1 36.8 6.08 3.12 0.23 0.04 0.0835 

M2 21.3 6.08 2.31 0.23 0.07 0.1068 

M3 17.2 5.50 3.10 0.23 0.07 0.1775 

M4 21.3 21.3 8.66 0.23 0.23 0.3850 

Figure 4.7 shows the variation of the modal participation in the buckling and 

vibration fundamental mode of the angle L 75x75x5 for each of the materials in 

Table 4.1. It is observed that the abrupt transition between the major-axis flexural-

torsional mode and pure minor-axis bending occurs for shorter profile lengths as 

the material parameter ψ increases. This indicates that a material profile with a 

higher ψ value is more prone to pure bending for a wider range of profile lengths, 

in agreement with existing results for steel sections. As will be shown in later 

chapters, the transition point between modal participations exhibits a sudden change 

in post-critical stiffness and nonlinear vibration amplitudes.  
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(a) M1 (ψ = 0.0835) 

 

(b) M2 (ψ = 0.1068) 

 

(b) M3 (ψ = 0.1775) 

 

(d) M4 (ψ = 0.3850) 

 

Figure 4.7 - Variation of the modal participation in the first buckling and vibration mode for 
the angle L 75x75x5 (β = 1.0) as a function of the column length, considering the materials 
of Table 4.1. 

4.3  
Reduced-order models 

Based on the previous parametric analyses, the ROMs for the buckling and 

vibration analysis of angle-sections are here proposed, including: (1) pure minor 

axis bending, (2) pure torsion, (3) torsion plus minor axis bending and (4) torsion 

plus major axis bending. In order to discretize the Lagragian, appropriate shape 

functions for the displacement field of the angle plates need to be derived in each 

case. It is shown in the following chapters that rather low-dimensional ROMs 
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considering properly selected modes can describe with good accuracy the response 

of the slender angle section pultruded profiles for a large range of geometries. 

The displacements of a single mode are separated into the products of a time 

function and two spatial functions. For each constituent plate, the set of admissible 

functions for the displacement components (u, v, w) takes the form: 

( ) ( )0, , ( )i t
k kx y t C e g x f yωζ =  (4.7) 

in which ω0 is the free vibration frequency, ζk represents one of the displacement 

components (u, v, w), Ck is the modal amplitude, and g(x) and f(y) are the shape 

functions in the x and y directions, respectively, where g(x) must satisfy the plate 

boundary conditions at x = [0, L] and f(y) depends on the continuity conditions 

along the connection of the two plates and the opposite free boundary. Here, the 

columns are assumed to be simply supported and allowed to rotate about their two 

principal axes. 

4.3.1  
Minor axis bending mode 

The global coordinate system (X, Y, Z) and the local coordinate system of 

each plate (x, y, z) used here are shown in Figure 3.3. In order to derive the required 

shape functions, the local coordinates axes (y1, y2), located at the shear center (sc) 

of the section and parallel to the legs, is used to identify the in-plane axes along the 

width of plates 1 and 2, respectively (see cross-section in Figure 3.3c). The 

orientation of the major and minor principal axes of the cross section located at the 

geometric center (gc), z’ and y’, is defined by the angle α. When subjected to 

bending, the two plates displace in axial, transversal and normal directions, except 

at the supports, where the section is only free to rotate, since simply supported 

conditions are imposed. Figure 4.8 shows the angle section and the adopted 

reference systems. 
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Figure 4.8 - Angle section in minor axis bending mode. 

Bending about the minor axis promotes different in-plane displacements in 

each plate. In the absence of local plate buckling and considering the local 

coordinate system of each plate and the compatibility constraints, the in-plane 

displacement, v, in the y direction in one of the plates is equal to the transversal 

displacement, w, in the other plate. Thus, for a simply-supported column the 

variation of the transversal displacement w and in-plane displacements v in the x 

direction can be written as: 

( ) ( ) ( )
( ) ( ) ( )

(1) (2)

(2) (1)

sin cos

sin sin
kmb mb

kmb mb

w x v x C x L

w x v x C x L

π α

π α

= =

= =
 (4.8) 

in which the subscript mb designates minor axis bending, the superscript denotes 

the plate and the angle α is given by: 

( )
21 arctan

2
yz

y z

I

I I
α

 
 = −
 − 

 (4.9) 

where Iy and Iz are the moments of inertia about the Y and Z global axes and Iyz is 

the respective product of inertia. For a simply-supported plate the higher buckling 

and vibration modes can be obtained considering g(x) = sin(mπx/L), where m 

indicates the number of axial half-waves. 

The axial displacements along the minor principal axis y’ are zero and 

constant along any other parallel axis, as illustrated in Figure 4.9. Thus, it is a linear 

function of the major axis coordinate z’. Based on the classical plate theory 

hypotheses, the axial displacements take the form: 
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( ) ( ), ' cos 'mb ju x z C x L zπ= −  (4.10) 

 

Figure 4.9 - Axial displacements due to minor axis bending. 

In order to obtain the axial displacements in terms of the local coordinates of 

plates 1 and 2, y1 and y2, an auxiliary axis 𝑧𝑧̅ parallel to the major principal axis z’ 

and passing through the shear center (sc) is adopted, as illustrated in Figure 4.10. 

The distance between the geometric and shear centers in the 𝑧𝑧̅ direction is given by: 

( ) ( )cos tan sinz gc gc gcd z y zα α α= + −  (4.11) 

in which zgc and ygc are the geometric center coordinates (see Figure 3.3c). 

 

(a) 

 

(b) 

Figure 4.10 - (a) Auxiliary axes 𝑦𝑦� and 𝑧𝑧̅ on the shear center. (b) Local axial displacement 
components. 
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Hence, the axial displacements can be written in terms of the coordinate 𝑧𝑧̅ as: 

( ) ( )( ), cosmb j zu x z C x L z dπ= − −  (4.12) 

Thus, the axial displacements in each plate can be written in terms of the local 

coordinate reference system (y1, y2), taking into account the relations y1 = 𝑧𝑧̅/sinα 

and y2 = 𝑧𝑧̅/cosα (see Figure 4.10b), as: 

( ) ( )( )
( ) ( )( )

(1)
1 1

(2)
2 2

, cos sin

, cos cos
j zmb

j zmb

u x y C x L y d

u x y C x L y d

π α

π α

= −

= −
 (4.13) 

Finally, from eqs. (4.8), (4.11) and (4.13), the resulting shape functions for 

the displacement field of plates 1 and 2 due to minor axis bending, denoted 

respectively by (1)
mbζ  and (2)

mbζ , are written as: 
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 (4.14) 

Thus, a 2dof ROM is obtained where C1 and C2 are the modal amplitudes. 

Here, to render the in-plane amplitudes C2 dimensionless, they are multiplied by the 

thickness of the plates (t). 

4.3.2  
Major axis bending mode 

Considering major axis bending, see Figure 4.11, the variation of the 

transversal displacement w and in-plane displacement v in the x direction can be 

written as: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(1) (2)

(2) (1)

sin sin sin

cos sin cos
kMb Mb

kMb Mb

w x v x w x C x L

w x v x w x C x L

α π α

α π α

= = =

= = =
 (4.15) 

in which the subscript Mb means major axis bending. 

 

Figure 4.11 - Angle section in major axis bending mode. 

The axial displacements due to major axis bending are obtained as a function 

of the coordinate y’ of the minor principal axis, similar to eq. (4.10). Figure 4.10a 

also shows the auxiliary axis 𝑦𝑦� parallel to the minor principal axis y’ and passing 

through the shear center (sc), which can be used to provide the axial displacements 

in terms of the local coordinates of plates 1 and 2, y1 and y2. The distance between 

the geometric and shear centers projected on the 𝑦𝑦� axis is given by: 

( )tan cosy gc gcd y z α α= −  (4.16) 

In this case, the axial displacements are null along the principal major axis 

(z') and constant along any other parallel axis. Similar to the previous case, any 

axial displacement at a specific coordinate 𝑦𝑦� is equivalent to the corresponding 

displacements at y1 and y2. Considering the relations y1 = 𝑦𝑦�/cosα and y2 = 𝑦𝑦�/sinα, 

one obtains: 

( ) ( )( )
( ) ( )( )

(1)
1 1

(2)
2 2

, cos cos

, cos sin

j yMb

j yMb

u x y C x L y d

u x y C x L y d

π α

π α

= −

= −
 (4.17) 

Hence, by combining eqs. (4.15), (4.16), and (4.17), the resulting shape 

functions for the displacement field of the two plates due to major axis bending are 

written as follows: 
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 (4.18) 

where (1)
Mbζ  and (2)

Mbζ  denote the displacement fields of plates 1 and 2, respectively. 

Thus, again, a 2dof ROM is obtained where C3 and C4 are the modal amplitudes. 

Again, the in-plane amplitude C4 is nondimensionalized with respect to the plates’ 

thickness. 

4.3.3  
Torsional mode 

 

Figure 4.12 - Angle section in torsional mode. 

Figure 4.12 shows the angle section after the torsional deformation with 

respect to the coordinate system (y1, y2). Both legs rotate with equal angular 

amplitudes. Considering small rotation, the in-plane displacement v is neglected (𝑣𝑣 

∝ (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)) and the transversal displacement field due to torsion is linear in y1 

and y2. Thus, in the linear analyses, the displacement field of each plate, (1)
tζ  and 

(2)
tζ , takes the form: 
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 (4.19) 

where the subscript t denotes torsion, and C5 is the torsional amplitude. The yi 

coordinate is normalized by the respective plate width bi, such that 0 ≤ (yi/bi) ≤ 1. 

If the local plate mode is to be considered, the linear functions yi should be substitute 

by polynomials similar to those in Figure 4.1a. Usually a cubic polynomial can 

describe with precision the deformed shape in each leg (Bebiano et al., 2018; 

Gonçalves et al., 2010; Bebiano et al., 2015; Gonçalves et al., 2023), with the 

coefficients dependent on the section geometry, leading again to a sdof ROM. 

In the nonlinear analyses, non-zero displacements u and v are considered for 

the torsional model to consider the nonlinear relation between the in-plane 

displacements and the quadratic terms involving the transversal displacement, w, as 

shown in eq. (3.18) and (3.19). The compatibility is guaranteed by assuming twice 

the number of longitudinal half-waves for the harmonic functions in u and v. From 

the transverse displacements (wt) and eq. (3.18) and (3.19), the nonlinear torsional 

ROM results in (Coaquira, 2020): 
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 (4.20) 

Since the displacement fields were deduced with regard to the local 

coordinate system, the expressions for plates 1 and 2 satisfy the compatibility at the 

common boundary for each mode, resulting in low-dimensional models for the 

minor axis bending mode ζmb (x, y), the major axis bending mode ζMb (x, y) and the 

torsional mode ζt (x, y). The ROMs incorporating flexural-torsional deformations 
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are obtained by considering the sum of the corresponding shape functions. Thus, 

the minor-axis flexural-torsional ROM will be designated as ζmb (x, y) + ζt (x, y) and 

the major-axis flexural-torsional ROM as ζMb (x, y) + ζt (x, y). Introducing the 

displacement fields into eq. (3.17) and employing the Ritz method, a system of up 

to five coupled nonlinear ordinary equations of motion is obtained. 

 

 



 

5  
Critical Loads and Natural Frequencies 

In this chapter, the reduced-order models (ROMs) developed in Chapter 4 are 

employed to carry out the linear analyses for pultruded angle section profiles. The 

influence of geometric and physical properties on critical loads and natural 

frequencies is investigated, considering the appropriate modal participation in each 

case. 

For equal-leg short-to-intermediate lengths angle section profiles, despite 

their stability being guided by the major-axis flexural-torsional ROM (ζMb+ζt), 

linear results are also obtained for the pure torsional ROM (ζt), since the torsional 

mode plays a predominant role in the first buckling and vibration mode of these 

profiles. This allows to assess situations in which the uncoupled ROM provides a 

good approximation, leading to a reduction in computational effort in nonlinear 

analyses. On the other hand, unequal-leg profiles exhibit significant participation 

of the minor-axis flexural-torsional mode, requiring the use of the coupled ROM 

(ζmb+ζt). The pure bending ROM (ζmb) is found to play an important role in very 

long angle profiles. 

5.1  
Eigenvalue problem 

Substituting the harmonic function 𝑒𝑒𝑖𝑖𝑖𝑖0𝑡𝑡 into the linearized equations of 

motion, a system of homogeneous algebraic equations is obtained, resulting in the 

desired eigenvalue problem. In this section, the linear eigenvalue problem for 

buckling and vibration analysis is presented for each ROM. In order to obtain the 

critical loads per unit length (Ncr) and natural frequencies (ω0), the following 

eigenvalue problem is solved: 
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2
0 0crN ω − − = GK K Μ C  (5.1) 

where K and KG are the stiffness and geometric matrices, respectively, M is the mass 

matrix and C is the displacement vector which contains the modal amplitudes. The 

critical load is given by: 

( )1 2cr crP N b b= +  (5.2) 

5.1.1  
Torsional mode 

Considering only the torsional mode ζt, eq. (4.1) reduces to a single-degree-

of-freedom (sdof) system and the vector C is equal to the torsional amplitude C5. 

The stiffness, geometric and mass coefficients are given by: 

( ) ( )
4 2

3 3
1 2 11 1 2 663

2
6tK b b D b b D

LL
π π

= + + +  (5.3) 

( )
2

3 3
1 26GtK b b

L
π

= +  (5.4) 

( )3 3
1 26t

tLM b bρ
= +  (5.5) 

Thus, the critical load and fundamental frequency are given respectively by: 

( )
( )

2 3 3
1

122 2 2 3
12 21

1
12(1 ) 1

cr
E t tN G

L L
βπ

ν ν ϕ β

+
= +

− +  (5.6) 

( )
( )

4 2 2 2
2 1
0 124 4 2 3

12 21

1
12(1 ) 1

E t t G
L L

βπ πω
ν ν ρ ρ ϕ β

+
= +

− +  (5.7) 

These analytical expressions show clearly the influence of material and 

geometric parameters on the buckling and vibration of pultruded angle section 

profiles. They also show that there is a linear relation between the applied load, Nx, 

and the square of the fundamental frequency, ω0, with the fundamental frequency 

decreasing with the compressive load and becoming zero at Nx = Ncr. It was 

observed that the modal participation of the vibration mode is not affected by the 

compressive load level. 
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5.1.2  
Minor axis bending mode 

A 2dof ROM is obtained. The vector C is given by [C1, C2]T, and the 

symmetric stiffness, geometric and mass matrices are given in eqs. (5.8), (5.9) and 

(5.10), respectively. 

For the particular case of minor axis bending, considering the plane section 

hypothesis of the classical plate theory, the constraint C1 = -(C2π/L) between the 

modal amplitudes can be imposed reducing the model to a sdof ROM. 

The critical load and fundamental frequency for the minor axis bending mode, 

considering equal-leg profiles (b1 = b2 = b) can be written respectively as: 

( )
( )
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2
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21
12 1cr

E tb t b
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π

ν ν
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 (5.8) 
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where c and s denote cos(α) and sin(α), respectively. 
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5.1.3  
Flexural-torsional mode considering minor axis bending 

Considering the coupling between torsion and minor axis bending (ζmb+ζt), 

one obtains a 3dof ROM, in which the vector C is given by [C1, C2, C5]T. The 

symmetric stiffness, geometric and mass matrices are given by eqs. (5.13), (5.14) 

and (5.15), respectively. 

It can be observed that most coefficients are similar to those obtained from 

pure torsional and pure minor axis bending eigenvalue problems, as previously 

specified, with the exception being the presence of coupling coefficients in the 

matrix elements with subindex 23. 

5.1.4  
Flexural-torsional mode considering major axis bending 

Finally, considering the coupling of torsion with major axis bending (ζMb+ζt), 

also results in a 3dof ROM, with C = [C3, C4, C5]T. The stiffness, geometric and 

mass matrices are given by eqs. (5.16), (5.17) and (5.18), respectively. 

By using the above ROMs, the influence of geometric and physical 

parameters on critical loads and natural frequencies can now be studied and the 

results compared to those from the GBTul software. 
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where Kt, KGt and Mt are the torsional coefficients defined in eqs. (5.3), (5.4) and (5.5). 



Chapter 5. Critical Loads and Natural Frequencies 86 

( ) ( )

( ) ( ) ( ) ( )

( )

2 3 2 3 32
2 2 2 2 2 2 2 22 1 2

1 2 1 2 11 2 1 66 2 1 66

2 4 4
2 2 2 2 2 2 2 2

2 1 66 2 1 66 1 2 11 1 2 113 3

4
2 2
1 2 113

0
2 3 3 3 2 2

2 2 2 4

0
4

y y y y
c b c b b Lb d b d cb d sb d A b s b c A b s b c A

L

b s b c A b s b c A b s b c D sb cb D
L L L

sb cb D Kt
L

π π

π π π π

π

+

  
− + + + + − − + + +     

 
 = + + + + +
 
 
 +
 

Mb tK





 (5.16) 

( ) ( )

( )

2 2
2 2 2 2

1 2 1 2

2
2 2
1 2

0 0 0

0
2 4

0
4 Gt

b s b c sb cb
L L

sb cb K
L

π π

π

+

 
 
 
 = + + 
 
 +  

GMb tK
 (5.17) 

 

( ) ( )
( )

2 2 2 3 2 3 2 2 3
1 2 1 2 2 1 2

2 2
1 2 1 2

2 2
1 2

1 1 1 0 0
2 3 3 3

0
2 4

0
4

y y y y

t

tL cb d sb d c b c b b d b d b

tL tLb b sb cb

tL sb cb M

ρ

ρ ρ

ρ

+

  − − + − + + +    
 

= + + 
 
 + 
 

Mb tM

 (5.18) 
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5.2  
Dimensional results 

Figure 5.1 shows the variation of the critical loads as a function of the column 

length for the angle sections L 150x150x5 (β = 1.0) and L 150x75x5 (β = 0.5), for 

which the modal participations are shown in Figure 4.3. For the equal-leg section 

(β = 1.0), the results from the coupled ROM (ζΜb+ζt) yield the same outcomes as 

GBTul. Due to the low contribution of the major axis bending mode in this case, as 

observed in Figure 4.3a, the results considering the pure torsional (ζt) ROM are 

close to the ones provided by the coupled ROM for short columns but leads to 

higher critical loads for long columns, with the difference increasing with the 

column length, also in agreement with Figure 4.3a, where a small increase in the 

participation of the major axis bending mode is observed as L increases. 

On the other hand, for the unequal-leg profile (β = 0.5), the (ζmb+ζt) ROM 

considering torsion plus minor axis bending can adequately describe the solution 

provided by GBTul. The pure torsional ROM and the flexural-torsional ROM 

considering major axis bending present the same behavior as in the previous case, 

but overestimates the critical load and the difference increases with L due to the 

increasing contribution of the minor axis bending mode as the profile length 

increases, in agreement with Figure 4.3b. The variation of the fundamental 

frequency as a function of the column length is shown in Figure 5.2 considering the 

same profiles. For the equal-leg section (β = 1.0), both the torsional and the 

torsional plus major axis bending ROMs show excellent agreement with the GBTul 

results for any value of L, thus eq. (4.7) can be used successfully. For the unequal-

leg section (β = 0.5), the flexural-torsional ROM considering minor axis bending 

(ζmb+ζt) agrees quite well with the GBTul results, while the other ROMs lead to 

slightly higher frequency values. These results show the importance of considering 

the adequate ROM when determining the linear response of the system. For both 

sections, the frequency displays a hyperbolic variation with the column length. 

Comparing Figure 5.1b and Figure 5.2b, although the modal participation is the 

same in both cases, it is observed that the flexural-torsional coupling considering 
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minor axis bending (ζmb+ζt) is much stronger in the buckling case, leading to much 

lower critical loads. 

 

(a) L 150x150x5 (β = 1.0) 

 

(b) L 150x75x5 (β = 0.5) 

Figure 5.1 - Critical loads as a function of the column length for the angle sections. 

 

(a) L 150x150x5 (β = 1.0) 

 

(b) L 150x75x5 (β = 0.5) 

Figure 5.2 - Natural frequencies as a function of the column length for the angle sections. 

Usually only the lowest bifurcation load (critical load) is necessary for design, 

unless coincident or nearly coincident buckling loads are observed. However, in 

dynamic analyses higher modes may be necessary to identify the higher resonance 

regions. As stated previously, for a simply-supported plate, the higher buckling and 

vibration modes can be obtained considering g(x) = sin(mπx/L), where m is the 

number of axial half-waves. 
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(a) L 150x150x5 (β = 1.0) 

 

(b) L 150x75x5 (β = 0.5) 

Figure 5.3 - The three lowest natural frequencies as a function of the column length for the 
angle sections. 

The variation of the three lowest natural frequencies as a function of the 

column length is shown in Figure 5.3a for the L 150x150x5 section and in Figure 

5.3b for the L 150x75x5 section. The modal participation of each mode is shown in 

Figure 5.4 for the L 150x150x5 section and in Figure 5.5 for the L 150x75x5 

section. The difference between the frequencies increases as L decreases, thus being 

the resonant peaks well separated. In both cases the change in modal participation 

increases in complexity as the mode number increase. For the equal-leg 

L 150x150x5 profile, the first mode, as shown previously, is dominated by the 

torsional mode with a small percentage of the major axis bending mode for all 

values of L. The second mode already presents a modal participation transition at 

Lt = 0.75 m. For short columns the local plate mode is dominant but a small 

participation of the minor axis bending mode is observed. For L > 0.75 m the modal 

participation is the same observed for the 1st mode, with ωo2≈2ω01. The third mode, 

on the other hand, display several discontinuities in modal content. Initially, for 

short columns (L < 0.75m), the torsional mode is dominant but a negligible 

participation of the major axis bending mode is observed. For intermediate 

columns, in the interval 0.75m < L < 1.26 m, the dominant local plate mode 

decreases with L, while the minor axis bending mode increases up to the next 

transition point at Lt = 2.52 m. For intermediate columns, in the interval 

1.26 m < L < 2.52 m, a purely torsional mode is observed. However, for 

L > 2.52 m, the minor axis bending mode dominance increases from 93% with L 
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while the small participation of the local mode decreases. This change in modal 

composition is observed as a kink in the green curve, Figure 5.3. As observed, the 

frequencies decrease exponentially with L. So, for short profiles it is expected that 

these modes will be excited by usual environmental or human induced loads. For 

the unequal-leg profile, a similar scenario with increasing changes in modal 

participation with mode number is also observed, as shown in Figure 5.5. However, 

the dominant modes in each interval are quite distinct from the equal-leg case, 

emphasizing again the importance of the geometric parameter β = b2/b1 on the 

results. 

 

(a) 1st vibration mode 

 

(b) 2nd vibration mode 

 

(c) 3rd vibration mode 

Figure 5.4 - Variation of the Modal participation for the first three vibration modes of the 
angle section L 150x150x5 (β = 1.0). 
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(a) 1st vibration mode 

 

(b) 2nd vibration mode 

 

(c) 3rd vibration mode 

Figure 5.5 - Variation of the Modal participation for the first three vibration modes of the 
angle section L 150x75x5 (β = 0.5). 

As shown in Figure 4.5 and corroborated by the previous results, the 

geometric parameter β = b2/b1 has an important influence on the modal 

participation. Figure 5.6 shows the GBTul results from 3 ROMs as a function of the 

leg width b2 for a column with intermediate length, L = 2.5 m, with the shorter leg 

varying between 50 mm and 150 mm (b2/t ≥ 10), keeping b1 = 150 mm and 

t = 5 mm. It is observed in both cases that the flexural-torsional model considering 

minor axis bending leads to a lower bound of the results, in agreement with Figure 

5.1b and Figure 5.2b for β = 0.5, while the flexural-torsional model considering 

major axis bending (which agrees with torsional ROM in this case) leads to an upper 

bound of the results. As β increases the GBTul results moves continuously from the 
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lower bound towards the upper bound, in agreement with Figure 4.5a. Also, the 

upper and lower bounds approach each other as β→1. 

 

(a) Critical loads 

 

(b) Natural frequencies 

Figure 5.6 - Influence of the geometrical parameter β = b2/b1 on the linear results for the 
angle section L 150xb2x5 (L = 2.5 m). 

Some equal-leg angle section profiles can exhibit abrupt transitions regarding 

the contribution of deformation modes, particularly less slender sections. Figure 5.7 

presents the results for the equal-leg angle section L 75x75x5 as a function of the 

column length. As shown in Figure 4.6a, the discontinuity occurs at Lt = 2.32 m, 

ϕt = 0.032. For L < Lt, the (ζMb+ζt) ROM compare quite well with the outcomes 

from GBTul software for both the critical load and fundamental frequency. On the 

other hand, after the transition length (L > Lt), the model considering purely minor 

axis bending (ζmb) agrees with the GBTul results up to L = 4 m. This change occurs 

when the curve obtained by the (ζMb+ζt) ROM depicted in green intercepts the 

characteristic Euler hyperbola in black. The purely torsional ROM leads to reliable 

results for short columns (L < 0.5 m) but results in higher values for longer profiles. 

The influence of the modal content is particularly important in the evaluation of the 

critical loads, where the difference between different ROMs is substantial. The 

transition length where the change in modal content occurs decreases as the 

thickness to leg thickness to width ratio, ξ = t/b, increases, reaching the transition 

value of Lt = 1.02 m for the L 50x50x5 section, as illustrated in Figure 5.8. Thus, 

for a compact section, the critical load and natural frequency of intermediate to long 
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columns is expected to be governed mainly by the minor axis bending mode, as 

described by eqs. (5.11) and (5.12), which gives practically the same results as the 

global formulation for these profiles (Timoshenko & Gere, 2009). Although the 

modal participation displays a sudden change, the variation of the critical load and 

fundamental frequency is rather smooth around the transition point as shown by the 

signature curves. 

 

(a) Critical loads 

 

(b) Natural frequencies 

Figure 5.7 - Linear results as a function of the column length for the angle section 
L 75x75x5 (β = 1.0). 

 

(a) Critical loads 

 

(b) Natural frequencies 

Figure 5.8 - Linear results as a function of the column length for the angle section 
L 50x50x5 (β = 1.0).  

The previous results for equal-leg angle profiles show that the thickness to 

leg width ratio ξ has a strong influence on the results. This can be observed in Figure 

5.9, where the critical load and fundamental frequency are presented for equal-leg 
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angle sections as a function of the leg width, which varies from 35 mm to 200 mm 

(b = b1 = b2), assuming L = 4 m and maintaining t = 5 mm, (ξ = 5/b). As observed, 

equal-leg angle section profiles exhibit a distinctive behavior when b varies, 

considering all other parameters constant. As the leg width increases, the GBTul 

results increase until reaching a peak, where the curve slope abruptly changes sign, 

leading to a subsequent decrease in results as b continues to increase. This point 

coincides with the change from the ζmb mode to the (ζMb+ζt) mode. Both the critical 

loads and natural frequencies can be obtained with accuracy using these ROMs. 

Thus, for a given set of parameters, there is an optimal critical leg width where the 

critical load and natural frequency attains a maximum value. Here both the 

maximum critical load and natural frequency occur for bt = 100 mm. Before the 

peak value the minor axis bending mode is dominant. It is interesting to notice that 

for b < 100 mm, the critical load exhibits a quadratic variation but the variation of 

the fundamental frequency is linear. This is due to the linear relation between the 

applied load and the square of the frequency parameter, as mentioned previously. 

After the peak load, as ξ decreases, the desired value can be obtained with precision 

using the (ζMb+ζt) ROM. The results considering the torsional ROM converge to 

those obtained with the (ζMb+ζt) ROM as b increases beyond bt. It should be pointed 

out that these modes may interact near the peak due to nonlinear modal coupling 

leading to imperfection sensitivity and decreasing the profile load capacity in the 

vicinity of the transition point (Gioncu, 1994; Hancock, 2018). 

 

(a) Critical loads 

 

(b) Natural frequencies 

Figure 5.9 - Linear results as a function of the leg width for equal-leg angle sections 
(b = b1 = b2, L = 4 m, t = 5 mm). 



Chapter 5. Critical Loads and Natural Frequencies 95 

5.3  
Nondimensional results 

Although the dimensional analysis is able to shed light on the buckling and 

vibration of angle section profiles, it is worthwhile, given the number of variables, 

to understand the range of validity of each ROM. Aiming at clarifying these points, 

the eigenvalue problem stated in eq. (5.1) is rewritten in a dimensionless form in 

terms of geometric and physical nondimensional parameters. The previous analyses 

show that the leg width ratio (β = b2/b1 ≤ 1), the wider plate dimensions ratio 

(ϕ = b1/L), and the slenderness of the shorter plate given as the thickness to shorter 

width ratio (ξ = t/b2 ≤ 1/10) can describe completely the profile geometry. 

Alternatively, the parameter τ = ϕβξ = t/L, which also represents a measure of the 

column slenderness can be used. Thus, three geometric nondimensional parameters 

can be used to define the entire geometry of any angle profile, being ϕ and τ 

slenderness measures. 

With regard to the physical properties of the pultruded material, the 

nondimensional physical parameter is adopted as in eq. (4.6). For the material 

properties in Table 2.4, one obtains ψ = 0.1068, which will be used in all further 

analysis unless the influence of changes in the material parameter is investigated. 

Substituting the defined dimensionless parameters into the stiffness, 

geometric and mass matrices, the following parameters are obtained for the 

nondimensional critical load and fundamental frequency parameter: 

( )12 21
2 2

1

1–cr
cr

P
E L
ν ν

π
Γ =  (5.19) 

( )2 2
0 12 212

0 2
1

–1L
E

ω ρ ν ν
π

Ω =  (5.20) 

For the torsional mode, the nondimensional parameters are given by: 
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where the material parameter and three geometrical parameters are observed. The 

relation τ = ϕβξ can also be used to simplify the above equations. 

For the minor axis bending mode in equal-leg profiles (β = 1.0), the 

nondimensional parameters are given as follows: 

( )4 21 2 1
12cr ϕ ξ ξΓ = +  (5.23) 

( )2 2 2
2
0 2 2

1

24

π ϕ ξ

π ϕ

+
Ω =

+
 (5.24) 

As one can see, in this case, there is no dependency on the material parameter; 

rather, it depends only on the geometric parameters. For the flexural-torsional 

ROMs, these expressions are lengthy and will not be shown herein, but can be easily 

calculated using symbolic algebra softwares and the explicit matrices given at the 

beginning of this chapter. 

Figure 5.10 presents the nondimensional critical load and fundamental 

frequency parameters as a function of the wider plate aspect ratio ϕ = b/L in the 

range of usual applications, first considering an equal-leg angle section (β = 1,0) 

and ξ = t/b = 1/30 (corresponding to the L 150x150x5 section case). The critical 

load decreases sharply as ϕ decreases from 0.1 (long leg/short column) to 0.02 

(short leg/long column), while the fundamental frequency remains almost constant, 

decreasing slightly. In both cases the (ζMb+ζt) ROM agrees with the GBTul results. 

Within the considered order of magnitude for the dimensionless parameters, the 

pure torsional ROM leads to reliable results for the critical loads but overestimate 

slightly the values of the fundamental frequency as ϕ decreases. These results agree 

with the modal participation in Figure 4.3a. 
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(a) Critical loads 

 

(b) Fundamental frequencies 

Figure 5.10 - Nondimensional parameters as a function of the aspect ratio ϕ (β = 1.0, 
ξ = 1/30). 

It was observed in Figure 4.6, for the equal-leg angle section, that, depending 

on the geometric parameters, there is a sharp transition in the modal participation. 

Figure 5.11 presents the results for ξ = t/b = 1/15 (equivalent to the L 75x75x5 

section case). The transition corresponds to the crossing of the green and black 

curves at ϕ = 0.0322. For ϕ < 0.0322 the flexural-torsional model considering 

major axis bending, (ζMb+ζt) ROM, gives consistent results for both the critical load 

and fundamental frequency. For ϕ > 0.0322, after the transition point, there is a 

complete agreement between the minor axis bending mode (eqs. (5.23) and (5.24)) 

and the GBTul results. In both cases, the purely torsional ROM leads to higher 

values. As in previous results, there is a perceptible difference in the variation of 

critical load and fundamental frequency. 
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(a) Critical loads 

 

(b) Fundamental frequencies 

Figure 5.11 - Nondimensional parameters as a function of the aspect ratio ϕ (β = 1.0, 
ξ = 1/15). 

Considering this modal transition and its dependence on ξ, Figure 5.12 and 

Figure 5.13 show, respectively, the variation of the critical load and fundamental 

frequency parameters with ϕ, for three selected values of ξ. Both sets of results 

show that as ξ increases, the transition value ϕt also increases (see dashed lines) and 

the minor axis flexural results can be applied to a wider range of ϕ (eqs. (5.23) and 

(5.24) can be applied to ϕ ≥ ϕt). Considering the relation τ = ϕβξ = t/L and β = 1.0, 

the slenderness ratio 𝜏𝜏 decreases (here from 0.00337 to 0.00121) as ξ and ϕt 

decreases. Considering the transition points in Figure 5.13, the fundamental 

frequency parameter can be accurately approximated after the transition points by 

the function Ω0 = 0.349ϕ1.95 for all value of ξ. The relation between ϕt and ξ is 

linear, being given by ϕt = 0.489ξ − 0.0003 (parabolic variation of τt). 
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Figure 5.12 - Nondimensional critical load as a function of the aspect ratio ϕ. Influence of 
the parameter ξ on the critical aspect ratios ϕt where the sudden modal participation 
transitions occur. (β = 1.0). 

 

Figure 5.13 - Nondimensional fundamental frequency as a function of the aspect ratio ϕ. 
Influence of the parameter ξ on the critical aspect ratios ϕt where the sudden modal 
participation transitions occur. (β = 1.0). 

In unequal-leg sections, the coupling of the minor axis bending mode with 

the torsional mode is expected. This can be observed in Figure 5.14, which presents 

the nondimensional critical load and fundamental frequency parameters as a 

function of the aspect ratio ϕ, considering β = 0.5 and ξ = 1/15 (values compatible 

with the L 150x75x5 section). Both sets of results show that the (ζmb+ζt) ROM 

agrees with the GBTul results in the range 0.02 < ϕ < 0.1, similar to what was 

observed in the dimensional analysis. The major axis flexural-torsional and pure 

torsional ROMs lead to higher results, being the difference more pronounced for 

the fundamental frequency (Figure 5.14b). Also, as the aspect ratio ϕ decreases, 

increasing the profiles slenderness, the minor axis bending (ζmb) ROM naturally 
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tend to converge to the GBTul results. The results agree with Figure 4.3b and Figure 

4.4. 

 

(a) Critical loads 

 

(b) Fundamental frequencies 

Figure 5.14 - Nondimensional parameters as a function of the aspect ratio ϕ (β = 0.5, 
ξ = 1/15). 

Figure 5.15 shows the variation of the nondimensional critical load (first 

column) and fundamental frequency (second column) parameters as a function of 

the aspect ratio β for ϕ = 0.06 and selected values of the slenderness parameter 

τ. Taking into account the relation between the geometric parameters, in each case 

ξ = τ/(0.06β). In all cases the (ζmb+ζt) ROM provides a lower bound while the ζt 

ROM provides an upper bound of the GBTul results, which moves slowly from the 

lower bound to the upper bound as β increases from 0.2 to 1. For an unequal-leg 

section with β ≤ 0.5 the (ζmb+ζt) ROM gives excellent results, while for β ≥ 0.8, the 

ζt ROM can be safely used. As 𝜏𝜏 decreases (the slenderness increases) the critical 

load and fundamental frequency parameters decrease and the difference between 

the two ROMs decrease for β > 0.5, being the difference very small for equal-leg 

sections. In the region where the results move from the (ζmb+ζt) coupled ROM to 

the ζt ROM, a small participation of the major axis bending mode is observed and 

the results can be obtained with precision using the (ζMb+ζmb+ζt) ROM (not shown 

explicitly here).  
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τ = t/L = 1/400, ξ = 1/(24β) 

  

τ = t/L = 1/500, ξ = 1/(30β) 

   

τ = t/L = 1/600, ξ = 1/(36β) 

Figure 5.15 - Nondimensional load and frequency parameters as a function of the aspect 
ratio β for ϕ = 0.06 and selected values of τ. First column: critical loads. Second column: 
fundamental frequencies. 
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Figure 5.16 shows the variation in the modal participation in the first buckling 

and vibration mode as a function of β for the case related to the second row in Figure 

5.15 (ϕ = 0.06, 𝜏𝜏 = t/L = 1/500, ξ = 1/(30β)), where it is possible to observe an 

interval of simultaneous influence of all the three deformation modes 

(0.5 < β < 0.8), which explains the need to consider more than two modes in order 

to obtain consistent results with the GBTul outcomes in this range of β. 

 

Figure 5.16 - Variation of the modal participation in the first buckling and vibration mode for 
angle section profiles as a function of β (ϕ = 0.06, τ = t/L = 1/500, ξ = 1/(30β)). 

To better understand the influence of β, Figure 5.17 shows the variation of 

the nondimensional critical load (first column) and fundamental frequency (second 

column) parameters as a function of the aspect ratio β for τ = t/L = 1/500 and 

selected values of the parameter ϕ (0.06, 0.08). Now, ξ = τ/(βϕ). It is observed that 

as β increases from 0.2 to 1, the lower bound and upper bound approach each other, 

being the difference very small for ϕ = 0.08, becoming the flexural contribution 

negligible in this case for β > 0.5. 
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ϕ = 0.06, ξ = 1/(30β) 

  

ϕ = 0.08, ξ = 1/(40β) 

Figure 5.17 - Nondimensional load and frequency parameters as a function of the aspect 
ratio β for selected values of ϕ (τ = t/L = 1/500). First column: critical loads. Second column: 
fundamental frequencies. 

Finally, the influence of the material properties is investigated. The critical 

load and fundamental frequency parameters are shown in Figure 5.18 as a function 

of the aspect ratio ϕ considering the same values of ψ shown in Table 4.1. As 

observed in Figure 4.7, in equal-leg profiles (β = 1.0), the transition point at which 

the abrupt change in modal participation occurs is also influenced by the material 

parameter ψ. In order to investigate this effect on the linear results, Figure 5.18 

presents the nondimensional critical load and natural frequency parameters for a 

section equivalent to the L 75x75x5 profile (β = 1.0; ξ = 1/15) as a function of ϕ 

for the same values of ψ considered in the modal participation analysis (see Table 

4.1). As it can be observed, there is no variation in the results with the material 
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parameter when the pure bending ROM (ζmb) is considered, which agrees with eqs. 

(5.23) and (5.24). Before the transition point, the results are governed by the 

flexural-torsional(ζMb+ζt) ROM, in agreement with Figure 4.7, where the modal 

participation before the abrupt change was observed due to torsional and major-axis 

bending coupling. Additionally, as ϕ decreases, the curves for the critical load 

parameter approach each other, converging to the pure bending ROM. All transition 

parameters ϕt are in agreement with the respective transition profile lengths shown 

in Figure 4.7 (ϕt = b/Lt). One should have in mind that the respective dimensional 

results should be obtained by inverting eqs. (5.19) and (5.20), being the critical load 

directly proportional to E1 and the fundamental frequency proportional to �𝐸𝐸1 , and 

both inversely proportional to (1-ν12ν21) (plate effect). 

 

 

(a) Critical loads 

 

(b) Fundamental frequencies 

Figure 5.18 - Nondimensional parameters as a function of the aspect ratio ϕ. Influence of 
the parameter ψ on the critical aspect ratios ϕt where the sudden modal participation 
transitions occur. (β = 1.0; ξ = 1/15). 

Figure 5.19 shows the nondimensional critical load and fundamental 

frequency parameters as a function of the material parameter ψ. The curve in green 

refers to an equal-leg angle section equivalent to the L 150x150x5 section (β = 1.0), 

while the blue curve refers to an unequal-leg angle section equivalent to the 

L 150x50x5 section (β = 0.33), both with ϕ = 0.06 (compatible with the 

intermediate length L = 2.5 m). For the equal-leg section, torsion is dominant for 

all values of ψ and the load and frequency parameters increase linearly with the 
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material parameter ψ. This is expected because the load and frequency are directly 

proportional to the material parameter when considering pure torsion, as shown 

previously in eqs. (5.21) and (5.22). On the other hand, for the unequal-leg profile, 

although torsion is initially dominant, the influence of the minor axis bending mode 

increases with ψ, and both the load and frequency parameters increase more slowly 

approaching an upper bound. In the latter case, the participation of the minor axis 

bending mode increases from 21.64%, for ψ = 0.05, to 86.06%, for ψ = 0.50, 

considering ϕ = 0.06. In both cases, a linear relation is observed between the 

applied load Γ and Ω02, the expected load-frequency relation in columns, with 

Ω02 = 0 at Γ = Γcr. 

 

(a) Critical loads 

 

(b) Fundamental frequencies 

Figure 5.19 - Nondimensional parameters as a function of the material parameter ψ 
(ϕ = 0.06). 

 

 



 

6  
Post-buckling Behaviour of FRP Angle Section Profiles 

Based on the previous parametric analyses for identification of modal 

participation, calculation of critical load and comparison with the GBTuL software, 

this chapter presents an investigation on the post-buckling behavior of axially 

loaded pultruded angle section profiles. By solving the system of nonlinear 

equilibrium equations for each reduced-order model (ROM), post-buckling paths 

are determined, and a detailed parametric analysis of the influence of the 

dimensionless parameters on post-buckling strength is conducted. Finally, the 

sensitivity of the solutions to initial geometric imperfections is investigated. 

6.1  
Nonlinear equilibrium equations 

The energy functionals for thin-walled profiles, based on the von Kármán 

nonlinear plate theory and considering initial geometric imperfections, were 

derived in Chapter 3. The ROM’s deduced in Chapter 4 are used to discretize the 

functionals by means of the Ritz method. The resulting algebraic nonlinear 

equations are solved using the Newton-Raphson method and continuation 

techniques in order to obtain the post-buckling equilibrium paths. The variables are 

the nondimensional amplitudes C1 and C3, related to axial shortening, C2 and C4, 

related to bending, and C5, C6 and C7 related to torsion. 

In addition to the nondimensional parameters previously defined, an 

additional parameter is introduced in the nonlinear analysis; the usual 

nondimensional axial load parameter defined as: 

cr cr

P
P

λ Γ
= =

Γ
 (6.1) 

where: 
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( )1 2xP N b b= +  and ( )12 21
2 2

1

–1P
E L
ν ν

π
Γ =  (6.2) 

The coefficients A12, A22 e D12 arising from the constitutive relation (eq. (3.7)) 

appear in the nonlinear terms of the equilibrium equations. Thus, the modulus of 

elasticity E2, not present in the linear eigenvalue problems, appears explicitly in the 

nonlinear equilibrium equations. Hence, the ratio of the transversal and longitudinal 

Young’s moduli of the orthotropic material is introduced as a new variable: 

2

1

E
E

η =  (6.3) 

Initially, the post-buckling behavior of the perfect structure is studied. First, 

the influence of the nondimensional geometric parameters reported in Chapter 5 is 

investigated while keeping constant the material's physical properties (ψ = 0.1068, 

η = 0.3, see Table 2.4). Then, the influence of the pultruded material is investigated 

for a fixed geometry. Finally, the sensitivity of the nonlinear solutions to initial 

geometric imperfections is examined, an important step in stability analysis. 

6.2  
Post-buckling behaviour 

The cases analyzed here follow the same sequence as those for the critical 

load in Chapter 5. Figure 6.1a illustrates the three-dimensional post-buckling path 

of an equal-leg angle profile (β = 1.0) with ϕ = b/L = 0.04 and ξ = t/b = 1/30 

together with the projections into two planes, Figure 6.1b and Figure 6.1c. As 

shown in Figure 5.10, the buckling is governed in this case by the flexural-torsional 

model considering major axis bending, the (ζMb+ζt) ROM. Thus, the post-buckling 

path is a function of the modal amplitudes C4 and C5. For both amplitudes, the 

structure exhibits a stable symmetric pitchfork bifurcation. For the considered 

profile, it is observed that the amplitudes are small even for high values of λ  

( λ>>1), indicating a fairly high post-buckling strength reserve, similar to that 

exhibited by individual plates, in agreement with known experimental results 

(Cardoso & Togashi, 2018). The transversal displacement due to bending at mid-

length of the profile is given by Wmax = C4tsinα (eq. (4.18)), where t is the plates’ 

thickness, and α is the angle that define the principal axes of inertia (Figure 4.11), 
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here α = 45º. The amplitude C5, in turn, represents the rotation of the legs due to 

torsion. 

 

(a) 3D view (solid line in green) and projections (dashed lines) 

 

(b) λ x C4 

 

(c) λ x C5 

Figure 6.1 - post-buckling paths of an equal-leg angle section profile (β = 1.0, ϕ = 0.04, 
ξ = 1/30). 

6.2.1  
Effect of the wider plate width-to-length aspect ratio, ϕ, in equal-leg 
profiles 

As shown in preceding chapters through the modal participation analysis (see 

Figure 4.3), for equal-leg angle sections, as the aspect ratio (ϕ = b/L) decreases 

(shorter leg width or longer profiles), the influence of the torsional mode, initially 

dominant, decreases as the contribution of major axis bending increases up to a 
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certain critical value where an abrupt change in modal participation is observed 

(Figure 4.6). Consequently, the post-buckling flexural stiffness decreases as ϕ  

decreases, given their increasing susceptibility to bending. The effect of this trend 

is shown in Figure 6.2a and b, which depicts the post-buckling paths for equal-leg 

profiles, considering the (ζMb+ζt) ROM and two distinct values of the plate aspect 

ratio ϕ, namely ϕ = 0.04 and ϕ = 0.02. In both cases, a stable symmetric pitchfork 

bifurcation is observed. However, the modal contribution is different in each case. 

Figure 6.2c shows the projections of the post critical paths presented in Figure 6.2a 

and b onto the plane C5 x C4. First, the column rotates almost without bending, 

being this effect more pronounced for higher values of ϕ. As C5 increases, the 

bending displacement C4 increases more rapidly, tending C5 to an upper bound, 

being advanced post-buckling configurations dominated by bending. Indeed, as 

seen in previous chapters, for very slender profiles, the contribution of torsional 

mode approaches zero (Figure 4.6), and the profile becomes susceptible to pure 

minor-axis bending instability. 
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(a) λ x C4 

 

(b) λ x C5 

 

(c) C5 x C4 

Figure 6.2 - Post-buckling paths for equal-leg angle section profiles with varying plate 
aspect ratio ϕ (β = 1.0, ξ = 1/30). 

Although the major-axis flexural-torsional mode is predominant for short-to-

intermediate length angle profiles, the bending contribution is very low. As shown 

in Figure 5.10, the pure torsional ζt ROM and the coupled (ζMb+ζt) ROM result in 

practically the same critical load, being both in agreement with the GBTuL results. 

Figure 6.3 compares the post-buckling paths obtained with both ROMs. The same 

post-buckling behavior is observed with the curves becoming increasingly closer as 

ϕ increases, reiterating the increasing importance of the torsional contribution with 

ϕ. For ϕ < 0.02, although still very close, the curves diverge as λ increases, being 

the post-buckling strength obtained with the ζt ROM higher than that of the flexural-
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torsional mode. These results show that the post-buckling stiffness is mainly due to 

torsion. 

 

Figure 6.3 - Comparison of post-buckling paths for equal-leg angle section profiles 
considering pure torsional (ζt) and flexural-torsional (ζMb+ζt) ROMs (β = 1.0, ξ = 1/30). 

6.2.2  

Effect of the wider plate width-to-length aspect ratio, ϕ, in unequal-leg 
profiles 

For the unequal-leg profiles, it was observed that, for low values of ϕ, the 

critical load is associated with the minor axis bending mode with a transition to the 

torsional-flexural mode with minor axis bending as ϕ increases. Figure 6.4 shows 

the post-buckling response of unequal-leg profiles with β = 0.5 and ξ = 1/15, 

considering ϕ = 0.04 and ϕ = 0.02. Both the (ζmb+ζt) ROM and the ζmb ROM are 

considered. A stable symmetric pitchfork bifurcation is obtained in both cases. For 

ϕ = 0.04, the critical load is given by the torsional-flexural mode with minor axis 

bending (see Figure 5.14a). The participation of torsion in the critical mode results 

in a relatively high post-buckling strength (Figure 6.4a), increasing the profile load-

carrying capacity, but it is comparatively much lower than that of the equal-leg 

profile when governed by major-axis flexure-torsion. However, the effective 

stiffness (tangent to the path) decreases approaching a maximum value (limit point) 

for large deflections, a behavior detected in some previous analyses (Dinis et al., 

2012; Monteiro & Malite, 2021). As ϕ decreases, the contribution of torsion 

decreases (Figure 4.3b), and, consequently, the post-buckling stiffness approaches 

that of a Euler column with an almost horizontal post-buckling path, characterized 
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by significant bending displacements for a very small increase in the load level. For 

ϕ = 0.02 both ROMs leads to practically the same critical load (see Figure 5.14a) 

and the equilibrium paths depicted in Figure 6.4b exhibit practically the same 

behavior. This shows that the torsional contribution to the post-buckling stiffness is 

also a key factor for unequal-leg angle profiles. 

 

(a) ϕ = 0.04 

 

(b) ϕ = 0.02 

Figure 6.4 - Post-buckling paths of unequal-leg angle section profiles with β = 0.5 and 
ξ = 1/15, considering pure bending (ζmb) and flexural-torsional (ζmb+ζt) ROMs. 

Figure 6.5 depicts the effect of the variation of ϕ on the torsional amplitude 

(C5) of the coupled solution. In Figure 6.5a, both curves were plotted until they 

reached the same bending amplitude near the limit point (C2 = 0.05). It is observed 

that, for the highest value of ϕ (ϕ = 0.04), the torsional component reaches a much 

higher amplitude (C5 = 0.147), given that for higher values of ϕ, the torsional mode 

has a larger contribution. The same can be observed in Figure 6.5b, which illustrates 

the projection of the post-critical paths onto the plane C5 x C2. It is observed that 

for the same flexural amplitude, the torsional amplitude is much higher when 

ϕ = 0.04. 
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(a) λ x C5 

 

(b) C5 x C2 

Figure 6.5 - Post-buckling paths for the unequal-leg angle section profiles. Influence of ϕ 
on the torsional amplitudes (β = 0.5, ξ = 1/15 and varying ϕ). 

6.2.3  

Effect of the aspect ratio β on the post-buckling response 

Flexural-torsional instability in angle section profiles encompasses both 

minor and major axis bending. Minor axis bending is evident in the flexural-

torsional response of unequal-leg profiles as well as in the flexural response of 

slender equal-leg profiles. On the other hand, major axis bending is observed in 

short and intermediate-length equal-leg profiles. This underscores the significance 

of investigating the influence of the ratio of the leg widths, β = b2/b1, on the post-

buckling response (see Figure 5.6). 

Figure 6.6 compares the post-buckling paths for an equal-leg profile (β = 1.0) 

and two unequal-leg profiles (β = 0.5 and β = 0.8), both considering the same wider 

plate aspect ratio (ϕ = 0.04). In order to investigate the influence of β, the 

slenderness of the shorter plate (ξ = t/b2) must vary for each profile, so that the 

thickness of the plates remains the same. Here, the equal-leg section is equivalent 

to the L 150x150x5 profile (ξ = 1/30), and the unequal-leg sections to the profiles 

L 150x75x5 (ξ = 1/15) and L 150x120x5 (ξ = 1/24). As bending occurs along 

different principal axes for each considered aspect ratio, each post-buckling path in 

Figure 6.6 is obtained by considering the appropriate ROM (see Figure 5.5). The x-

axis in Figure 6.6a and c are given in terms of the flexural amplitudes C2 or C4, 

since both coupled ROMs are considered. As observed, the equal-leg profile 
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exhibits significantly higher post-buckling stiffness than the unequal-leg profiles, 

with λ increasing quickly with the modal amplitudes. The unequal-leg profile with 

β = 0.5 exhibits lower post-buckling flexural stiffness due to the contribution of 

minor axis bending, being the effective stiffness almost constant, leading to very 

large bending displacements for a small increase in the load level. The influence of 

the torsional component is illustrated in Figure 6.6b. For the unequal-leg profile 

with β = 0.8, the post-critical flexural stiffness shows an intermediate value but 

always increase with λ, being close to that of the equal-leg angle profile (β = 1.0), 

indicating a similar post-buckling load-carrying capacity. Finally, Figure 6.6c 

shows the projections onto the amplitudes plane. It is observed that, indeed, for the 

same flexural amplitude, the torsional amplitudes increase with β, reaching its 

maximum value for the equal-leg angle profile. 
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(a) λ x C2/C4 

 

(b) λ x C5 

 

(c) C5 x C2/C4 

Figure 6.6 - Post-buckling paths for angle section profiles with varying aspect ratio for the 
angle legs β (ϕ = 0.04). 

6.2.4  
Effect of modal interaction 

Figure 5.9a shows that for equal-leg angle sections and small values of b, the 

critical load is obtained using the ζmb ROM, and it increases exponentially up to a 

maximum value. At this point, there is an abrupt change in modal participation, and 

the critical load is now given by the (ζMb+ζt) ROM, where the critical load decreases 

with the leg width b. Considering β = 1.0 and maintaining constant the profile 

length and thickness, the geometric parameters ϕ and ξ change accordingly with b. 
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Figure 6.7 shows the post-buckling paths for selected values of b in Figure 5.9a. 

For ϕ = 0.02 and ξ = 0.0625 (b = 80 mm), the critical load is associated with minor 

axis bending. For ϕ = 0.0248 and ξ = 0.0505 (b = 99 mm), the load reaches a 

maximum value and the ζmb and (ζΜb+ζt) ROMs lead to the same critical load. 

Finally, for ϕ = 0.03 and ξ = 0.0417 (b = 120 mm), the buckling is governed by the 

flexural-torsional mode considering major axis bending. The results agree with 

those in Figure 6.4, where for the ζmb ROM, the post buckling path is practically 

horizontal, leading to large flexural displacements. For the (ζΜb+ζt) ROM, the post-

buckling path exhibits a much higher stiffness. 

 

(a) λ x C2/C4 

 

(b) λ x C5 

Figure 6.7 - Post-critical paths for equal-leg angle section profiles with varying ϕ and ξ 
(β = 1.0). 
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As observed in Figure 4.6, equal-leg profiles may also undergo a sudden 

transition in modal participation as the wider plate aspect ratio ϕ decreases. At this 

point, distinct buckling modes exhibit the same critical load value, which may lead 

to interaction between different deformation modes (modal interaction) due to 

nonlinear modal coupling terms. For the parameters considered in Figure 5.11, 

where the transition point occurs at ϕt = 0.032, the influence of modal interaction 

on the post-buckling behaviour is investigated. Figure 6.8 shows the post-buckling 

paths for ϕ = 0.04, ϕ = ϕt= 0.032 and ϕ = 0.02. The (ζMb+ζt) and ζmb ROM are used 

for ϕ = 0.04 and ϕ = 0.02, respectively, based on the observed modal participation 

in Figure 5.11. For ϕ = ϕt, both models are used. As observed in Figure 6.8a, the 

post-buckling strength decreases as the plate aspect ratio decreases, agreeing with 

the result observed in Figure 6.2. The column with ϕ = 0.04 exhibit high post-

buckling strength, which is practically reduced to zero for ϕ = 0.02, when only 

minor axis bending occurs, similar to the classical Euler results (Levien, 2008), 

leading to large lateral bending deflections. It is important to note the difference in 

the post-buckling behavior for each ROM at the transition point (ϕt = 0.032). As in 

the previous example, the (ζMb+ζt) ROM exhibits at ϕ = ϕt a high post-buckling 

stiffness while the ζmb ROM results in almost neutral post-buckling behavior. The 

coupled (ζMb+ζt+ζmb) ROM, which considers all possible interactions, leads to an 

intermediate post-buckling strength, but also exhibits large bending deflections. 

Figure 6.8b shows the influence of the torsional mode on the column response, 

while Figure 6.8c shows the relation between the controlling amplitudes C5 and C4. 

These results confirm the decrease in post-buckling strength with ϕ and the 

increasing importance of the flexural displacement in the post-buckling range. 

Comparing the two curves for ϕt = 0.0323 in Figure 6.8b, considering two different 

ROMs, it is observed that the coupled (ζMb+ζt+ζmb) ROM leads to a different type 

of behavior with the response becoming progressively more flexible with the 

column tending to a limit point. 
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(a) λ x C2/C4 

 

(b) λ x C5 

 

(c) C5 x C4 

Figure 6.8 - Influence of modal interaction on the post-buckling paths for equal-leg angle 
section profiles with varying wider plate aspect ratio ϕ (β = 1.0, ξ = 1/15). 

6.2.5  
Effect of the material parameter 

In Figure 6.9, the influence of the nondimensional material parameter on the 

post-buckling paths of equal-leg angle section profiles (β = 1.0) is studied, while 

keeping the geometric parameters constant (ξ = 1/15, ϕ = 0.05). The same material 

parameters adopted in Figure 5.18 are here considered. It should be emphasized that 

the smallest material parameter (ψ = 0.0835) corresponds to the material with the 

highest longitudinal stiffness (eq. (4.6)), and the largest one (ψ = 0.3850) represents 

an isotropic material, considering ν12 = ν21 = 0.23 (ψ = (1-ν)/2). All paths were 

obtained using the (ζMb+ζt) ROM, except for the isotropic material, whose modal 
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participation is entirely governed by the pure minor-axis bending mode when 

ϕ = 0.05 (according to Figure 4.7 and Figure 5.18), requiring the use of the ζmb 

ROM. The red dashed curve represents what the post-buckling path for the isotropic 

material would be if the predominant mode continued to be flexural-torsional mode 

with major-axis bending. As shown in Figure 5.18a, the critical load in each case is 

necessarily different. For comparison purposes, Table 6.1 shows the critical load 

for the selected values of the material parameter ψ. 

As expected, the profile with the stiffer material in the longitudinal direction 

(ψ = 0.0835) shows the highest post-buckling strength reserve in both bending and 

torsion. It is observed that a high load ratio is needed to achieve even small flexural 

displacements, which does not occur for the isotropic material (ψ = 0.3850), where 

the post-buckling flexural stiffness gain is expressively lower (Figure 6.9a). As a 

reference, for a steel profile (E = 210GPa, ν = 0.3), ψ = 0.35. For torsional 

amplitudes, even though the stiffness gain decreases as the material parameter 

increases, the isotropic material suddenly does not experience these amplitudes 

(Figure 6.9b), due to its fundamental mode being governed by pure minor axis 

bending. This shows that, for the same geometric parameters, pultruded profiles 

exhibit higher post-buckling stiffness than isotropic profiles. Additionally, it is 

emphasized that isotropic profiles of intermediate to long lengths are prone to larger 

flexural amplitudes while pultruded profiles of short to intermediate length are 

liable to reduced amplitudes. The influence of the material on unequal-leg profiles 

is illustrated in Figure 6.10, considering β = 0.5, ξ = 1/15 and ϕ = 0.05. In all cases 

flexural-torsional buckling with minor axis bending is observed, which implies 

large bending amplitudes for small load values, even for the axially stiffer pultruded 

material (ψ = 0.0835), compared to equal-leg profiles. Furthermore, the influence 

of torsion on the post-buckling paths of the isotropic material leads to a positive 

strength reserve, unlike the flat path observed for the pure bending ROM. 



Chapter 6. Post-buckling Behavior of FRP Angle Section Profiles 120 

 

(a) λ x C2/C4 

 

(b) λ x C5 

Figure 6.9 - Post-buckling paths for equal-leg angle section profiles with varying material 
parameters ψ (β = 1.0, ξ = 1/15, ϕ = 0.05). 

Table 6.1 - Critical load parameters for selected values of ψ (β = 1.0, ξ = 1/15, ϕ = 0.05). 

ψ ROM Γcr (x10-9) 

0.0835 ζMb+ζt 12.39 

0.1068 ζMb+ζt 15.62 

0.1775 ζMb+ζt 25.05 

0.3850 ζMb+ζt 49.83 

0.3850 ζmb 34.69 
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(a) λ x C2/C4 

 

(b) λ x C5 

Figure 6.10 - Post-buckling paths for unequal-leg angle section profiles with varying 
material parameters ψ (β = 0.5, ξ = 1/15, ϕ = 0.05). 

6.3  
Sensitivity to imperfections 

The structural behaviour and resistances of thin-walled steel members are 

generally affected by initial geometric imperfections. For angle section columns, 

there are three important types of initial geometric imperfections (Behzadi-Sofiani 

et al., 2021): global imperfections about the major and minor principal axes, and 

torsional imperfections about the shear center. Zhang et al. (2021) obtained 

experimentally the initial geometric imperfections of pin-ended stainless steel angle 

section columns failing by flexural-torsional buckling. The tests and numerical data 

obtained in their work were used to assess the accuracy of relevant codified design 

https://www.sciencedirect.com/topics/engineering/structural-behavior
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methods. For FRP angle sections, geometric imperfections are inherently connected 

to the fabrication process described in Chapter 2. Figure 6.11 illustrates the three-

dimensional post-buckling path of an angle profile subjected to initial geometric 

imperfections, as a function of the modal amplitudes C4 and C5, generated by using 

the (ζMb+ζt) ROM. The typical post-buckling behavior of structures with initial 

imperfections is observed, represented by a curve asymptotic to the equilibrium 

path of the perfect structure. The imperfection destroys the symmetric bifurcation 

of the ideal perfect system, leading to a preferential path starting at the unloaded 

position and function of the imperfection shape and sign (Thompson & Hunt, 1973). 

 

Figure 6.11 - Post-buckling path of an angle profile subjected to initial geometric 
imperfections (β = 1.0, ϕ = 0.04, ξ = 1/30). Green curve: perfect structure, red curve: 
imperfect structure. 

The effect of initial geometric imperfections is incorporated into the system 

through a function w0(x), as shown in the strain-displacement relations of the plate 

mid-surface, eq. (3.5). It is generally agreed that the worst imperfection has the 

form of the transversal buckling mode. Thus, the imperfection function is defined 

as the product of the initial imperfection amplitudes (C20, C40, C50) and their 

correspondent displacement component. 

For the minor-axis flexural-torsional case, it yields: 
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where the superscripts (1) and (2) refer to the plates 1 and 2, respectively. 

For the major-axis flexural-torsional case, it assumes the form: 
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For the pure minor-axis bending case, the function is given simply as follows: 
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The sensitivity to geometric imperfections can be analyzed by considering 

these imperfections in the strain energy functionals and varying the imperfection 

shape and sign. Figure 6.12 shows the post-buckling paths for the perfect and 

imperfect equal-leg angle section profiles, with ξ = 1/15 and ϕ = 0.04, considering 

increasing values of imperfection in the form of the major-axis bending mode (C40). 

The curves were obtained through the (ζMb+ζt) ROM, as required by the considered 

geometric and material parameters. It is observed that the imperfect structure 

exhibits the same increase in the post-critical strength. As expected, the larger the 

initial imperfection, the greater the bending and torsional amplitudes for the same 

load ratio. The effects are particularly more substantial when the load approaches 

the critical value (λ = 1), where deflections grow more prominently, especially the 

torsional amplitudes. In Figure 6.13, it is shown that initial flexural imperfections 

do not affect the C5 x C4 relationship, indicating that, for the same bending 

amplitude, the torsional deflection remains the same, regardless of the imperfection 

level. 
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(a) λ x C4 

 

(b) λ x C5 

Figure 6.12 - Post-buckling paths for equal-leg angle section profiles with initial geometric 
imperfections in the form of the major-axis bending mode (C40 ≠ 0) (β = 1.0, ξ = 1/15, 
ϕ = 0.04). 

 

Figure 6.13 - Post-buckling path projections onto the plane C5 x C4 for equal-leg angle 
section profiles with initial geometric imperfections in the form of the major-axis bending 
mode (C40 ≠ 0) (β = 1.0, ξ = 1/15, ϕ = 0.04). 

Figure 6.14 presents the post-buckling paths for the same equal-leg angle 

section profiles as in Figure 6.12 considering now increasing values of initial 

imperfection in the form of the torsional mode (C50). It can be observed that the 

post-buckling flexural behaviour of the imperfect structure (Figure 6.14a) shows 

similarity to the case of flexural imperfection (Figure 6.12a). The curves exhibit the 

same increase in the post-critical strength as expected for a stable symmetric 

bifurcation. A distinct behaviour is observed for the torsional amplitudes (Figure 

6.14b). As the torsional imperfection increases, the structure exhibits an even 
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greater torsional stiffness with the paths crossing each other at approximately 

C5 = 0.05. For C50 = 0.03, the nonlinear path shows practically a linear behavior, 

indicating a stiffness gain proportional to the torsional amplitude. Figure 6.15 

shows that initial torsional imperfections, unlike flexural imperfection, Figure 6.13, 

affects the C5 x C4 relation. As the imperfection magnitude increases, the amplitude 

of the flexural mode increases more rapidly. 

 

(a) λ x C4 

 

(b) λ x C5 

Figure 6.14 - Post-buckling paths for equal-leg angle section profiles with initial geometric 
imperfections in the form of the torsional mode (C50 ≠ 0) (β = 1.0, ξ = 1/15, ϕ = 0.04). 

 

Figure 6.15 - Post-buckling path projections onto the plane C5 x C4 for equal-leg angle 
section profiles with initial geometric imperfections in the form of the torsional mode 
(C50 ≠ 0) (β = 1.0, ξ = 1/15, ϕ = 0.04). 

However, initial imperfections are unknown at the design stage, having 

generally components in all modes when the true imperfection is expanded in terms 

of the adopted interpolating functions. For plated structures subject to interaction 

between buckling modes, this topic was discussed in detail by Rasmussen & 
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Hancock (1988), who proposed an analytical technique for expanding a measured 

geometric imperfection surface in the buckling modes of a structure. It is generally 

accepted that in most stability problems the most deleterious imperfection has the 

form of the buckling mode (Thompson & Hunt, 1973). Both initial flexural and 

torsional geometric imperfections are considered in Figure 6.16, which is quite 

similar to that observed in Figure 6.14 and Figure 6.15, corroborating the 

predominant influence of torsion on the post-buckling strength. 

 

(a) λ x C4 

 

(b) λ x C5 

 

(c) C5 x C4 

 

Figure 6.16 - Post-buckling paths for equal-leg angle section profiles with initial geometric 
imperfections with both flexural and torsional components (C40 and C50 ≠ 0) (β = 1.0, 
ξ = 1/15, ϕ = 0.04). 
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It is observed that flexural amplitudes (Figure 6.16a) increase when both 

imperfections are considered simultaneously, since they have a similar effect on the 

nonlinear response. The torsional amplitudes (Figure 6.16b) exhibit the same 

behavior as that observed in Figure 6.15b, but also increases in magnitude. In the 

C5 x C4 projection, Figure 6.16c, exactly the same behavior as in Figure 6.15 is 

observed, reinforcing the characteristic of this relations for general imperfections. 

Figure 6.17 depicts the imperfect nonlinear paths for the case presented in 

Figure 6.8 (β = 1.0, ξ = 1/15) in which modal participation changes abruptly at 

ϕ = 0.032, considering the same values of ϕ. Different types of imperfection are 

considered. For the profiles governed by flexural-torsional buckling, the effect of 

the three types of imperfection is small and rather similar, converging 

asymptotically to the solution of the perfect response, displaying high strength 

reserve. For the profiles governed by minor axis bending, considering the ζmb ROM, 

the imperfection in the form of the bending mode leads to large deflections, but the 

response, as expected, is insensitive to purely torsional imperfections, since this 

effect is not captured by the ROM (Figure 6.17b). For at ϕt = 0.0323, the chosen 

ROM has a strong influence on the results. The response considering (ζMb+ζt) ROM 

leads to results similar to those for ϕ = 0.04, while the response considering the ζmb 

ROM is similar to that for ϕ = 0.02. To capture the effect of imperfections in this 

region, the coupled (ζMb+ζt+ζmb) ROM must be used. Results are shown in Figure 

6.18, where different types of imperfection lead to similar results, with that 

considering imperfection components in the three modes leading to the lowest 

results for small flexural amplitudes. 
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(a) Flexural imperfections (C20, C40 ≠ 0) 

 

(b) Torsional imperfections (C50 ≠ 0) 

 

(c) Flexural plus torsional imperfections (C20, C40, C50 ≠ 0) 

Figure 6.17 - Influence of initial geometric imperfections on the nonlinear response of equal-
leg angle section profiles (β = 1.0, ξ = 1/15) for selected values of ϕ (see Figure 6.8). 
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Figure 6.18 - Influence of initial geometric imperfections on the post-buckling paths for 
equal-leg angle section profiles at the modal transition point, considering the (ζMb+ζmb+ζt) 
ROM (β = 1.0, ϕ = 0.0323, ξ = 1/15). 

Similar to long equal-leg profiles, unequal-leg profiles exhibit significant 

bending amplitudes for small increases in load magnitude near the critical load, 

even for intermediate values of ϕ (see Figure 6.4). However, the characteristic 

model for unequal-leg profiles considers minor-axis flexural-torsional behavior, 

causing post-buckling paths to become sensitive to initial torsional geometric 

imperfections, unlike what is observed for the pure bending ROM. To illustrate 

these effects, Figure 6.19 presents the same post-buckling paths as in Figure 6.4 

(β = 0.5, ξ = 1/15 and two values of ϕ), considering the suitable (ζmb+ζt) ROM, but 

now subject to initial geometric imperfections in the form of the minor-axis bending 

mode. 
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(a) λ x C2 

 

(b) λ x C5 

Figure 6.19 - Post-buckling paths for unequal-leg angle section profiles with varying wider 
plate aspect ratio and initial geometric imperfections in the form of the minor-axis bending 
mode (C20 ≠ 0) (β = 0.5, ξ = 1/15). 

 

(a) λ x C2 

 

(b) λ x C5 

Figure 6.20 - Post-buckling paths for unequal-leg angle section profiles with varying wider 
plate aspect ratio and initial geometric imperfections in the form of the torsional mode 
(C50 ≠ 0) (β = 0.5, ξ = 1/15). 

As expected, the curves in Figure 6.19 exhibit the same behaviour as the 

(ζMb+ζt) ROM (Figure 6.12 and Figure 6.17), where all imperfect paths lead to 

increasing strength values. The effect of initial imperfections in the form of the 

torsional mode is presented in Figure 6.20. It is observed that torsional 

imperfections have a greater influence than those in the form of the bending mode. 

Comparing Figure 6.20a and Figure 6.21, where both imperfection components are 

considered, a similarity of results is observed. All responses converge 

asymptotically from below to the response of the perfect column, showing higher 
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sensitivity to torsional imperfections, with imperfections in both modes showing 

the most deleterious influence on the load capacity (Figure 6.21). Due to the 

influence of minor axis bending, large bending displacements are observed in all 

cases. 

 

Figure 6.21 - Post-buckling paths for unequal-leg angle section profiles with varying wider 
plate aspect ratio and initial geometric imperfections with both flexural and torsional 
components (C20 and C50 ≠ 0) (β = 1.0, ξ = 1/15). 

 

 



 

7  
Nonlinear Vibrations and Parametric Instability 

This chapter presents the results of the nonlinear vibration analysis of 

parametrically excited pultruded angle section profiles. First, the type of 

nonlinearity of the frequency-amplitude relation for each ROM is identified. 

Subsequently, the stability of the column under harmonic axial loading is 

investigated. Parametric instability regions are determined as a function of the 

frequency and magnitude of the harmonic excitation. The influence of material, 

damping, and cross-sectional geometry on the parametric instability boundaries is 

examined. Bifurcation diagrams are obtained using the brute force method (Parker 

and Chua, 2012) and continuation techniques (Seydel, 1988) to identify the 

bifurcations associated with the parametric instability boundaries in the force 

control space, as well as the existence of coexisting solutions. Complementing the 

analysis, basins of attraction of coexisting solutions are obtained to assess the 

dynamic integrity of the desired stable solution (trivial solution). 

7.1  
Frequency-amplitude relations 

The ROMs derived in Chapter 4 are now employed to determine the 

frequency-amplitude relation in each case. The amplitudes remain nondimensional, 

but now they are time dependent: amplitudes C2(τ) and C4(τ) are associated with 

bending and C5(τ) is related to torsion, where τ = ω0t̄ is a nondimensional time 

parameter and ω0 is the lowest natural linear frequency. Initially, the nonlinear 

equations of motion of the unloaded and undamped system are numerically solved 

using the fourth-order Runge-Kutta method together with the shooting method to 

obtain the frequency-amplitude relation (Seydel, 1988; Del Prado, 2001). The 

shooting method transforms the initial value problem into a two-point boundary 

value problem, for the periodicity condition, and then it finds the initial conditions 



Chapter 7. Nonlinear Vibrations and Parametric Instability 133 

which lead to periodic response for a given amplitude by employing the Newton-

Raphson’s method and continuation techniques, enabling the determination of 

frequency-amplitude relations. The free vibration frequency ratio is defined as: 

0

n
n

ωδ
ω

=  (7.1) 

where ωn is the nonlinear amplitude dependent frequency obtained by the shooting 

method. 

Figure 7.1 shows the nonlinear frequency–amplitude relation for the equal-

leg angle section profile, with ϕ = 0.04 and ξ = 1/30. The pure torsional ROM (ζt) 

and the major flexural-torsional ROM (ζMb+ζt) are considered, as both models 

exhibit good agreement with the linear results for the considered nondimensional 

parameters (Figure 5.10). It is observed that the equal-leg angle section column 

exhibits a nonlinear hardening behavior for both bending and torsional amplitudes, 

with increasing nonlinear stiffness as the vibration amplitudes increases. A slightly 

stronger hardening behavior is observed when only the torsional mode is 

considered, as shown in Figure 7.1b. This comparison shows that the torsion in the 

main responsible for the hardening effect. 

 

(a) C4(τ) x δn 

 

(b) C5(τ) x δn 

Figure 7.1 - Frequency–amplitude relations for an equal-leg angle section profile 
considering pure torsional and the coupled (ζMb+ζt) ROM (β = 1.0, ϕ = 0.04, ξ = 1/30). 

Figure 7.2 presents the frequency-amplitude relations for an equal-leg angle 

profile with ϕ = 0.02 and ξ = 1/15, considering both the pure bending, (ζmb) ROM, 

and the flexural-torsional model with minor axis bending, (ζmb+ζt) ROM, as the two 

models exhibit good agreement with GBTuL in the linear analysis when the wider 
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plate aspect ratio reaches ϕ = 0.02 (Figure 5.14). As observed, the asymmetric angle 

section profile also exhibits a hardening nonlinearity when the coupled ROM is 

considered (Figure 7.2a). However, the observed stiffness gain is small, even for 

large vibration amplitudes. When torsional effects are disregarded, (ζmb) ROM, the 

frequency-amplitude relation is nearly linear, indicating a low stiffness gain, which 

is typical of columns. The proximity of both models for φ = 0.02 is confirmed when 

observing low values of torsional amplitude for the coupled ROM compared to the 

values of bending amplitude (Figure 7.2b). These results agree with the results of 

the post-critical paths, where significant displacements were observed for small 

increases in loading levels in models involving minor axis bending and low values 

of ϕ (Figure 6.4). 

 

(a) C2(τ) x δn 

 

(b) C5(τ) x δn 

Figure 7.2 - Frequency–amplitude relation for an equal-leg angle section profile considering 
pure bending and the coupled (ζmb+ζt) ROM (β = 0.5, ϕ = 0.02, ξ = 1/15). 

7.2  
Dynamical systems 

Here basic concepts of nonlinear dynamical systems are summarized. 

Bifurcation diagrams of nonlinear dynamical systems illustrate how the fixed points 

of the Poincaré map evolve with a specific control parameter. Through a bifurcation 

diagram, one can identify equilibrium solutions, periodic orbits, quasi-periodic 

orbits, and chaotic solutions, as well as the values of the control parameter where 

qualitative changes in the system's behavior occur, known as bifurcation points. By 

varying one of the system's control parameters, a periodic solution may lose its 
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stability, and the type of the associated bifurcation depends on how the Floquet 

multipliers related to the fixed points of the Poincaré map leave the unit circle 

(Floquet, 1883; Teschl, 2012). 

Here, bifurcation diagrams are obtained through a brute force approach 

(Parker and Chua, 2012) increasing and decreasing the control parameter to identify 

the dynamic jumps between coexisting stable equilibrium branches. In the brute 

force approach the first 700 forcing periods are discarded as transient, and the 

subsequent 200 periods are utilized for the diagram. To understand the connection 

between these stable branches the bifurcation diagrams are obtained by 

continuation techniques (Seydel, 1988; Del Prado, 2001), employing the Newton-

Raphson method in conjunction with an arc-length continuation approach. This 

method enables to find both stable and unstable paths with low periodicity. The 

classification as stable or unstable is determined through the application of Floquet 

theory (Floquet, 1883; Teschl, 2012; Del Prado, 2001; Mailybaev, 2023). 

Thompson & Stewart (2002) present a comprehensive description of the Floquet 

theory. 

Considering only the cases found in the present study, periodic solutions can 

exhibit bifurcation through symmetry-breaking (pitchfork), cyclic fold (saddle-

node), and period-doubling bifurcation (flip). The pitchfork and saddle-node 

bifurcations occur when a real eigenvalue leaves the unit circle through the +1 point, 

as illustrated in Figure 7.3a. On the other hand, the flip bifurcation occurs when the 

real eigenvalue leaves the unit circle through the –1 point, as indicated in Figure 

7.3b. Finally, a Hopf bifurcation, associated with the emergence of quasi-periodic 

solutions, is identified when a pair of complex eigenvalues crosses the unit circle, 

as illustrated in Figure 7.3c.  



Chapter 7. Nonlinear Vibrations and Parametric Instability 136 

 

(a) +1 

 

(b) -1 

 

(c) Complex conjugate 

Figure 7.3 - The way Floquet multipliers can surpass the unit circle (stability region) (Del 
Prado, 2001). 

Both pitchfork and flip bifurcations can be divided into two groups: 

supercritical and subcritical (Figure 7.4). In either case, locally, there is a branch of 

stable fixed points (trivial solution in the parametrically excited system) that 

becomes unstable after the bifurcation point. In the supercritical case, after the 

bifurcation point, two branches of stable fixed points emerge in the pitchfork 

bifurcation, while in the flip bifurcation, only one branch of stable solutions arises, 

but with twice the period of the initial solution. In the subcritical case, there are 

locally two branches of unstable fixed points before the pitchfork bifurcation point 

and only one branch of unstable fixed points before the flip bifurcation, again with 

twice the period of the initial solution. Therefore, the pitchfork bifurcation, in both 

cases, gives rise to two distinct solutions and implies a symmetry-breaking in the 

response. Additionally, the supercritical bifurcation is characterized by being 

continuous, while the subcritical one is discontinuous or catastrophic (Thompson 

& Stewart, 2002). 

 

(a) Supercritical 

 

(a) Subcritical 

Figure 7.4 - Pitchfork and flip bifurcations. 
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For the saddle-node bifurcation, the branch of stable periodic solutions and 

the branch of unstable periodic solutions are created or annihilated simultaneously 

at the bifurcation point, as shown in Figure 7.5. 

 

Figure 7.5 - Saddle-node bifurcation. 

The bifurcation diagrams are obtained to investigate the type of bifurcation 

that occurs when the trivial solution becomes unstable and to identify regions where 

coexisting stable solutions arises. In such cases, basins of attraction are generated 

to clarify how the attractors of the stable solution evolve as the control parameter 

increases. They are obtained by employing the cell-to-cell method developed by 

Hsu (Hsu, 2013; Del Prado, 2001). Also, the bifurcation diagrams illustrate the 

sequence of bifurcations within the unstable region of the Ince-Strutt diagrams also 

called Mathieu stability charts (Bolotin, 1964; Xie, 2006). 

7.3  
Parametric instability analysis 

The dynamic stability of the column is analyzed considering a harmonic axial 

excitation in the form: 

( ) ( )cosN t N tω=  (7.2) 

where N is the magnitude of the forcing harmonic excitation and ω is the forcing 

frequency. Dividing the applied load by the static critical axial load, Ncr, and 

considering again the nondimensional time τ = ω0t̄, the nondimensional axial 

excitation takes the form: 

( ) ( )cosQ τ λ δτ=  (7.3) 

where λ is the nondimensional axial load parameter, as defined in eq. 6.1 and δ is 

the nondimensional frequency ratio, written as: 
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where Ω0 is the fundamental frequency parameter, as defined in eq. 5.20, and Ω is 

the nondimensional forcing frequency parameter, given by: 
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ω ρ ν ν
π

Ω =  (7.5) 

Thus, the forcing control space is defined as (λ, δ). Additionally, in the 

following analysis, Ξ is the dimensionless viscous damping parameter, adopted as 

Ξ = 1%, except when studying the influence of different values. 

This leads to differential equations of motion of the Mathieu-Hill type with 

time varying coefficients. The Mathieu equation has two types of solutions - stable 

and unstable, depending only on two parameters. In structural systems under 

periodic axial loads the initial membrane state, i.e., the trivial solution, becomes 

unstable, leading to flexural motions, the so-called parametric instability (Sugiyama 

et al., 2019). Each Mathieu instability region is constituted by two transition curves 

called a tongue for the undamped case with the minimum value corresponding to a 

critical load equal to zero. These minima occur at the natural frequency and its 

multiples and submultiples (nω0/m, n, m = 1, 2, 3…), being the most important 

region at 2ω0.  Kovacic et al. (2018) presented recently a detailed analysis of 

Mathieu's equation and its generalizations together with an overview of stability 

charts and their features. The parametric instability of axially loaded columns and 

plates has been for many years an important research topic in nonlinear dynamics 

(Xie, 2006; Nayfeh & Mook, 2008; Mailybaev, 2023). A stability chart of classical 

Mathieu’s equation can be analytically obtained by various perturbation methods 

or harmonic balancing or by using numerical integration in conjunction with 

Floquet theory. The latter approach is adopted here. 

The parametric stability boundary corresponds to the maximum axial load 

parameter where the trivial solution is stable, that is, after this point the column 

begins to exhibit nontrivial lateral vibrations. These boundaries are obtained by 

solving the nonlinear equations of motion for the damped system using the brute 

force method and continuation techniques across a wide range of frequency ratios. 

The time responses are obtained by the fourth-order Runge-Kutta method with a 
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constant time step and a time increment of 1/400 of the period of the harmonic 

force. The axial load parameter is gradually increased while maintaining constant 

the frequency ratio until non-trivial solutions emerge. 

Figure 7.6 shows the parametric stability boundary of the trivial solution in 

the forcing control space (λ, δ) for the equal-leg angle section profile, with 

ϕ = b/L = 0.02 and ξ = t/b = 1/30, using the adequate (ζMb+ζt) ROM. The chart 

exhibits two instability regions (valleys). The deeper valley, in the neighborhood of 

δ = 2.0, is associated with the principal parametric resonance region, while the 

second instability region is found to the left (δ = 1.0) and referred to as fundamental 

resonance region. These two regions are typically considered the most important in 

structural dynamics, as the other instability regions to the left correspond to higher-

order resonances (δ = 2/3, 1/2…). It is observed that in both instability regions that 

the boundary is well below λ = 1, indicating that the column becomes unstable 

under dynamic axial load magnitudes considerably lower than the static buckling 

load. Between the instability regions, on the other hand, the parametric instability 

loads can assume values reasonably higher than the static critical load. These results 

underscore the dangerous implications of parametric instability in structural 

systems with low levels of damping. 

 

Figure 7.6 - Parametric stability boundary in the forcing control space (λ, δ) for the equal-
leg angle section profile (β = 1.0, ξ = 1/30, ϕ = 0.02). 

Figure 7.7 shows the bifurcation diagrams of the Poincaré map for bending 

and torsional vibration amplitudes, having as control parameter the axial load 

parameter and considering the frequency ratio δ = 0.9. These bifurcation diagrams 

are associated with the left transition curve of the fundamental resonance region in 

the stability chart (Figure 7.6). As observed, the angle profile undergoes at λ = 0.71 
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a supercritical pitchfork bifurcation, giving rise to two stable new branches of 

solution with period one. Figure 7.8 shows the projections of phase-portraits for 

λ = 1, where it is possible to observe the two coexisting period one stable solutions. 

Both solutions are observed to lack symmetry. The dots indicate the fixed points of 

the Poincaré map, which are the same as those used to trace the bifurcation 

diagrams. The Poincaré map represents a mapping obtained by following 

intersections of the spatial dynamic response in a subspace defined by surfaces of 

section. Thus, closed orbits in the dynamical system correspond to fixed points in 

the Poincaré map. 

 

(a) C2(τ) x λ 

 

(b) C3(τ) x λ 

Figure 7.7 - Bifurcation diagrams for the frequency ratio δ = 0.9 (β = 1.0, ξ = 1/30, ϕ = 0.02). 

 

(a) Ċ4(τ) x C4(τ) 

 

(b) Ċ5(τ) x C5(τ) 

 

(c) C5(τ) x C4(τ) 

Figure 7.8 - Phase-plane projections and fixed points of the Poincaré map for δ = 0.9 and 
λ = 1.0. 

Figure 7.9 shows the bifurcation diagrams for bending and torsional vibration 

amplitudes, considering the frequency ratio δ = 1.05. Here, the trivial solution 

becomes unstable due to a subcritical pitchfork bifurcation at λ = 1.17, originating 

two unstable period one solutions that evolve, as the control parameter decreases, 
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up to a saddle-node bifurcation around λ = 0.34 (see the non-symmetry of the 

solution branches). After the saddle point, the two solutions become stable, thus 

two non-trivial solutions coexist with the stable trivial solution in the interval 

0.34 ≤ λ ≤ 1.17. Figure 7.10 shows the projections of the response for λ = 1, where 

it is observed the three coexisting stable solutions: the trivial solution and the two 

non-trivial period one solutions, a typical response of the right transition curve of 

the fundamental parametric resonance region. 

 

(a) C4(τ) x λ 

 

(b) C5(τ) x λ 

Figure 7.9 - Bifurcation diagrams for the frequency ratio δ = 1.05 (β = 1.0, ξ = 1/30, 
ϕ = 0.02). 

 

(a) Ċ4(τ) x C4(τ) 

 

(b) Ċ5(τ) x C5(τ) 

 

(c) C5(τ) x C4(τ) 

Figure 7.10 - Phase-plane projections and fixed points of the Poincaré map for δ = 1.05 
and λ = 1.0. 

Figure 7.11 shows the time response of the bending and torsional amplitudes 

corresponding to the black orbit in Figure 7.10 (δ = 1.05, λ = 1.0). The response 

considers the last four oscillations of the periodic solution in the steady-state regime 

(τ = ω0t > 1975). The period of the solution (Ts) is given by Ts = 2π/δ ≅ 6.0. 
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(a) C4(τ) x τ 

 

(b) C3(τ) x τ 

Figure 7.11 - Time response of bending and torsional amplitudes at δ = 1.05 and λ = 1.0 
(black orbit in Figure 7.10). 

Figure 7.12 shows the bifurcation diagrams considering the frequency ratio 

δ = 1.8. The trivial solution becomes unstable due to a supercritical flip (period 

doubling) bifurcation, that remains stable for increasing forcing magnitudes over a 

large region of the parameter λ. Figure 7.13 shows the projections of phase-portraits 

for λ = 1, depicting the 2T periodic stable solution that arise after the bifurcation 

point (in the present work the notation kT is adopted to label a periodic solution 

with a period equal to k times the forcing period). 

 

(a) C4(τ) x λ 

 

(b) C5(τ) x λ 

Figure 7.12 - Bifurcation diagrams for the frequency ratio δ = 1.8 (β = 1.0, ξ = 1/30, 
ϕ = 0.02). 
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(a) Ċ4(τ) x C4(τ) 

 

(b) Ċ5(τ) x C5(τ) 

 

(c) C5(τ) x C4(τ) 

Figure 7.13 - Phase-plane projections and fixed points of the Poincaré map for δ = 1.8 and 
λ = 1.0. 

For δ = 2.2 (Figure 7.14), corresponding to the right transition curve of the 

principal parametric resonance region, the trivial solution undergoes a subcritical 

flip bifurcation at λ = 0.41. The nontrivial stable solution starts at λ = 0.13, 

displaying a large number of fixed points of the Poincaré map. This solution 

undergoes a bifurcation at λ = 0.21, giving rise to a stable 2T solution. Figure 7.15a-

c shows the projections of phase-portraits for λ = 0.3, where it is possible to observe 

the two coexisting stable solutions: the trivial solution and the non-trivial 2T 

solution, a typical response in the principal parametric resonance region (2:1 

resonant response). 

 

(a) C2(τ) x λ 

 

(b) C5(τ) x λ 

Figure 7.14 - Bifurcation diagrams for the frequency ratio δ = 2.2 (β = 1.0, ξ = 1/30, 
ϕ = 0.02). 

For higher values of the load parameter λ, the emergence of a second non-

trivial 2T stable solution, with larger bending amplitudes and lower torsional 

amplitudes (Figure 7.14), is observed. This new solution is depicted in blue on the 
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phase-planes shown in Figure 7.15d-f, and its time steady response is illustrated in 

Figure 7.16. The period of the solution is given by Ts = 2π/δ ≅ 2.9. The time 

response displays four complete oscillation cycles, with two periods required to 

complete each cycle (2Ts), illustrating the period-doubling bifurcation.  

 

(a) Ċ4(τ) x C4(τ) 

(λ = 0.3) 

 

(b) Ċ5(τ) x C5(τ) 

(λ = 0.3) 

 

(c) C5(τ) x C4(τ) 

(λ = 0.3) 

 

(d) Ċ4(τ) x C4(τ) 

(λ = 0.8) 

 

(e) Ċ5(τ) x C5(τ) 

(λ = 0.8) 

 

(f) C5(τ) x C4(τ) 

(λ = 0.8) 

Figure 7.15 - Phase-plane projections and fixed points of the Poincaré map for δ = 2.2 and 
selected values of λ. 
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(a) C4(τ) x τ 

 

(b) C5(τ) x τ 

Figure 7.16 - Time response of bending and torsional amplitudes at δ = 2.2 and λ = 0.8 
(blue orbit in Figure 7.15d-f). 

In Figure 7.14, the Poincaré map is rather complex after λ = 0.13. In order to 

investigate this region, Figure 7.17a and c provide a zoom chart of the interval 

0.1 ≤ λ ≤ 0.2. Figure 7.17b and d display the phase-plane projections for λ = 0.16, 

where it is possible to observe that the fixed points of the Poincaré map is 

characteristic of a quasi-periodic solution. The phenomenon of quasi-periodicity in 

deterministic dynamical systems describes stationary solutions that neither exhibit 

a finite period length nor are chaotic. 
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(a) C4(τ) x λ 

 

(b) Ċ4(τ) x C4(τ) (λ = 0.16) 

 

(c) C5(τ) x λ 

 

(d) Ċ5(τ) x C5(τ) (λ = 0.16) 

Figure 7.17 - Quasi-periodic solutions in the bifurcation diagrams for the frequency ratio 
δ = 2.2 (0.1 ≤ λ ≤ 0.2). 

In Figure 7.18, the time responses of the bending and torsional amplitudes 

corresponding to the quasi-periodic solution at λ = 0.16 are shown. 
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(a) C5(τ) x τ 

 

(b) C5(τ) x τ 

Figure 7.18 - Time response for bending and torsional amplitudes at δ = 2.2 and λ = 0.16. 

In practical terms, information on stability boundaries alone is not sufficient 

for evaluating the safety of a given structure. To assess the safety of a structure, the 

behavior of the basins of attraction of coexisting solutions should be analyzed. 

Figure 7.19 shows cross-sections of the basins of attraction, considering two values 

of the load parameter (λ = 0.3, 0.8) and δ = 2.2 (associated with the bifurcation 

diagrams in Figure 7.14). The basins of attraction are obtained discretizing the 

phase-plane of interest in a mesh of 200 x 200 cells, using the cell-to-cell mapping 

approach (Hsu, 2013; Del Prado, 2001). 

In Figure 7.19a and c (load parameter equal to λ = 0.3), it is observed that the 

basin of attraction of the trivial stable solution (in gray) is much smaller than the 

basin of the 2T solution (in red). This means that although this load level is much 

smaller than the parametric instability load (λ = 0.41), small disturbances may lead 

to an escape to the non-trivial periodic solutions. The basin of the trivial solution 

decreases swiftly and is annihilated after the subcritical flip bifurcation point 

(λ = 0.41). This means that the profile in this region exhibits low dynamic integrity 

measures, a topic worth of investigation in future studies (Lenci et al., 2013; 

Thompson, 2019). 

For higher load parameters (λ = 0.8), there are two coexisting 2T attractors. 

The original periodic attractor (basin in red) and the new periodic attractor (basin 

in blue), associated with the blue orbit in Figure 7.15d-f. 
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(a) Ċ4(τ) x C4(τ) (λ = 0.3) 

 

(b) Ċ4(τ) x C4(τ) (λ = 0.8) 

 

(c) Ċ5(τ) x C5(τ) (λ = 0.3) 

 

(d) Ċ5(τ) x C5(τ) (λ = 0.8) 

Figure 7.19 - Evolution of the basins of attraction (cross-sections) of the coexisting solutions 
for selected values of load parameter and δ = 2.2. 

As observed, the results show that the principal parametric resonance region 

exhibits flip bifurcations, leading to period-doubling, while in the fundamental 

resonance region, pitchfork-type bifurcations are found, resulting in two distinct 

periodic solutions. These two bifurcation scenarios alternate as the frequency ratio 

δ increases, as shown in Figure 7.20. In each region the left-hand side transition 

curve is associated with a stable bifurcation of the trivial solution, while the right-

hand side transition curve is associated with an unstable bifurcation. These 

bifurcation sequences are typical of hardening nonlinear structural systems, 

agreeing with the frequency-amplitude relations (Figure 7.1 and Figure 7.2). 



Chapter 7. Nonlinear Vibrations and Parametric Instability 149 

 

Figure 7.20 - Flip and Pitchfork bifurcations on the parametric stability boundary for the 
equal-leg angle section profile (β = 1.0, ξ = 1/30, ϕ = 0.02). Stability boundary obtained by 
using numerical integration in conjunction with Floquet theory: dark gray region unstable, 
light gray region stable. 

The natural frequency results of the pure torsional and major-axis flexural-

torsional ROMs exhibit significant agreement over a wide range of the plate aspect 

ratios ϕ = b/L in equal-leg angle section profiles (Figure 5.10b). As previously 

discussed, this is explained by the dominant influence of torsion in the modal 

participation of short to intermediate-length equal-leg profiles. However, as ϕ 

decreases (for example, ϕ = 0.02), the pure torsional ROM leads to higher 

frequency values, given the increasing contribution of bending. To investigate the 

effects associated with bending in the nonlinear dynamic response of equal-leg 

section columns with low values of ϕ, Figure 7.21 depicts the parametric stability 

boundaries for both ROMs, pure torsional and major-axis flexural torsional, with 

ξ = 1/30 and ϕ = 0.02. It can be observed that, despite differences in linear results 

for the considered geometric parameters (Ω02 = 11.90e-5 and Ω02 = 11.06e-5 for 

(ζt) and (ζMb+ζt) ROMs, respectively), the nondimensional parametric instability 

boundaries are practically coincident. 
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Figure 7.21 - Parametric stability boundaries for an equal-leg angle section profile 
considering pure torsional and flexural-torsional ROMs (β = 1.0, ξ = 1/30, ϕ = 0.02). 

Figure 7.22 depicts the bifurcation diagrams for torsional amplitudes 

associated with the principal and fundamental resonance regions in Figure 7.21 

(β = 1.0, ξ = 1/30, ϕ = 0.02), considering both the torsional and flexural-torsional 

ROMs. For δ = 0.9 and δ = 1.05, both ROMs lead to a pitchfork bifurcation (Figure 

7.22a and b). They display a certain symmetry around the trivial solution. As the 

fixed points of the uncoupled ROM (ζt) are also the maximum amplitudes of their 

orbits, as shown in the phase-planes in Figure 7.23a-b, it can be observed that 

coupled vibration achieves slightly higher negative torsional amplitudes, while the 

uncoupled solution reaches greater positive amplitudes. These asymmetries are due 

to quadratic nonlinearities. The same is noted for δ = 1.8, where a stable flip 

bifurcation is observed. In contrast, the bifurcation diagram associated with the 

ascending branch of the right transition curve of the parametric resonance region 

(δ = 2.2, unstable flip bifurcation), shows a lack of agreement between the pure 

torsional ROM and the major-axis flexural-torsional ROM, despite the parametric 

stability curves of both ROMs being practically the same, see Figure 7.22d. First, it 

is observed that the saddle-node bifurcation of the uncoupled ROM occurs at a 

much lower value of axial load parameter (λ = 0.04 as opposed to λ = 0.13). This 

would lead to nontrivial solutions for the uncoupled ROM at very low load 

magnitudes. In addition, the coupled (ζMb+ζt) ROM exhibits rather different 

branches of non-trivial solutions with two coexisting 2T periodic solutions for 

λ ≥ 0.56, a phenomenon not observed in the pure torsional case. Additionally, the 

amplitudes of one of the attractors in the coupled ROM are always greater than the 

pure torsional amplitudes, as can be confirmed by comparing their respective phase-
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planes (Figure 7.15b and e, Figure 7.23c-d). It must be pointed out that the coupled 

model naturally takes into account the torsional mode. Thus, the results for purely 

torsional mode are not expected, clarifying the influence of the modal coupling on 

the results. 

 

(a) C5(τ) x λ 

δ = 0.9 

 

(b) C5(τ) x λ 

δ = 1.05 

 

(c) C5(τ) x λ 

δ = 1.8 

 

(d) C5(τ) x λ 

δ = 2.2 

Figure 7.22 - Bifurcation diagrams for selected values of frequency ratio, considering pure 
torsional and flexural-torsional ROMs (β = 1.0, ξ = 1/30, ϕ = 0.02). 
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(a) δ = 0.9, λ = 1.0 

 

(b) δ = 1.05, λ = 1.0 

 

(c) δ = 2.2, λ = 0.3 

 

(d) δ = 2.2, λ = 0.8 

Figure 7.23 - Phase-plane projections and fixed points of the Poincaré map for selected 
values of δ and λ, considering pure torsional ROM (ζt). 

Figure 7.24 shows the parametric stability boundaries for the equal-leg angle 

section profile, with ξ = 1/30, for selected values of plate aspect ratio, ϕ. The major-

axis flexural-torsional (ζMb+ζt) ROM is employed, consistent with the linear results 

for the considered geometric parameters (Figure 5.10b). One observes that 

significant differences are only observed in the vicinity of peaks where the dynamic 

buckling load attains a maximum much higher than the static buckling load. The 

transition curves are insensitive to the value of ϕ in the investigated range. 

 

Figure 7.24 - Influence of the wider plate aspect ratio on the parametric stability boundaries 
for equal-leg angle section profiles (β = 1.0, ξ = 1/30). 
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Figure 7.25 shows the bifurcation diagrams for bending and torsional 

vibration amplitudes, considering the frequency ratio δ = 2.2 and two values of 

wider plate aspect ratio (ϕ = 0.02, 0.08). One can observe the significant influence 

of the wider plate aspect ratio on the bifurcation diagrams of the angle section 

profiles. The bending vibration amplitudes for ϕ = 0.08 are much smaller than the 

amplitudes for ϕ = 0.02. The opposite is observed for torsional amplitudes, which 

are much greater when ϕ = 0.08 (the fixed points of the higher amplitude solution 

for ϕ = 0.02 are endpoints on the orbits, as shown in Figure 7.15b and e). This 

reinforces the fact that short and intermediate-length profiles are more prone to 

torsional effects, given their significant contribution to the modal participation of 

these profiles. It should be noted that for shorter profiles, the increase in torsional 

stiffness after the critical load is lower, favoring the emergence of higher torsional 

amplitudes, as shown in the post-critical results (Figure 6.2b). Furthermore, Figure 

7.25 shows that there are no coexisting non-trivial solutions for the shorter profile 

(ϕ = 0.08), as is the case for the longer profile, which is more sensitive to bending 

effects. It is worth highlighting that the saddle-node for the shorter profile occurs at 

lower values of the axial load parameter, indicating that the trivial solution may lose 

stability at lower load levels. 

 

(a) C4(τ) x λ 

 

(b) C5(τ) x λ 

Figure 7.25 - Bifurcation diagrams for the frequency ratio δ = 2.2, considering two values 
of the wider plate aspect ratio (ϕ = 0.02, 0.08). 

For unequal-leg profiles, the importance of the flexural-torsional ROM with 

minor-axis bending on the natural frequencies was observed (Figure 5.14b). For 

small values of ϕ (such as ϕ = 0.02, for example), torsional effects decrease 
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considerably, and the pure bending ROM (ζmb) results are quite close to the coupled 

model (ζmb+ζt). Figure 7.26 presents the parametric stability boundaries for both 

ROMs. A good agreement between the two boundaries can be observed, except in 

the region where the parametric instability loads reach their maximum values, 

leading to a significant discontinuity in the boundary of the coupled ROM, 

especially in the range 1.1 < λ < 1.3. Other than that, for high values of the 

frequency parameter (δ > 2.5), it is observed that the boundary of the coupled ROM 

stays slightly above the boundary of the uncoupled ROM. The principal and 

fundamental parametric resonance regions below the static critical load do not 

undergo significant changes from one model to another. 

 

Figure 7.26 - Parametric stability boundaries for the unequal-leg angle section profile 
considering pure bending and flexural-torsional ROMs (β = 0.5, ξ = 1/15, ϕ = 0.02). 

As observed in Figure 4.6 and Figure 5.11, there is an abrupt change in modal 

participation in equal-leg angle section profiles for a certain value of ϕ. For values 

of ϕ > ϕt, where ϕt is the transition aspect ratio, the torsional effects disappear, and 

the profile behavior is governed solely by the minor axis bending mode. To study 

the effects of the pure minor axis bending and major-axis flexural-torsional ROMs 

on nonlinear dynamic instability around the transition value, Figure 7.27 depicts the 

parametric stability boundaries of the trivial solutions for both ROMs, with ξ = 1/15 

and ϕ = 0.032, in accordance with Figure 5.11b. 

It is observed that the parameterized boundaries in Figure 7.27 are quite close, 

except for a distinct behavior in the region between the principal and fundamental 

resonance tongues. In this region, the pure bending (ζmb) ROM leads to higher the 

dynamic instability loads, while the flexural-torsional (ζMb+ζt) ROM exhibits a 
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discontinuity, resulting in two smaller peaks and a reduction in the dynamic 

instability load at δ = 1.18. Additionally, the ζmb stability boundary is slightly above 

the ζMb+ζt one along the ascending branch of the principal parametric resonance 

region. 

 

Figure 7.27 - Parametric stability boundaries at the transition value of modal participation, 
ϕt= 0.0322, considering pure bending and flexural-torsional ROMs (β = 1.0, ξ = 1/15). 

Figure 7.28 and Figure 7.30 show the bifurcation diagrams associated with 

the left and right transition curves of the principal parametric resonance region in 

Figure 7.27. The two models lead to distinct bifurcation diagrams in both cases. For 

the (ζMb+ζt) ROM, Figure 7.28a shows for δ = 1.8 that after the supercritical 

bifurcation, the flexural amplitudes reach a maximum at λ = 0.59, decrease to a 

minimum at λ = 0.69, and then continuously increase again. The amplitudes of the 

(ζmb) ROM, Figure 7.28b, do not exhibit this behavior but rather a continuous 

increase after the flip bifurcation point. As expected, the vibration amplitudes of 

the pure bending ROM are significantly higher, indicative of the behavior of a 

slender column subjected to bending only and consistent with its low stiffness gain 

observed in the post-critical path in Figure 6.7 and Figure 6.8. Figure 7.29 depicts 

the evolution of the period-two orbits corresponding to the stable nontrivial 

solutions in Figure 7.28. 
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(a) (ζMb+ζt) ROM 

 

(b) (ζmb) ROM 

Figure 7.28 - Bifurcation diagrams for the transition aspect ratio ϕt= 0.0322 for the 
frequency ratio δ = 1.8, considering the pure bending and flexural-torsional ROMs (β = 1.0, 
ξ = 1/15). 

 

(a) λ = 0.5 

(ζMb+ζt) ROM 

 

(b) λ = 0.69 

(ζMb+ζt) ROM 

 

(c) λ = 0.8 

(ζMb+ζt) ROM 

 

(a) λ = 0.5 

(ζmb) ROM 

 

(b) λ = 0.69 

(ζmb) ROM 

 

(c) λ = 0.8 

(ζmb) ROM 

Figure 7.29 - Phase-plane projections and fixed points of the Poincaré map for the transition 
aspect ratio ϕt = 0.0322, considering δ = 1.8 and selected values of λ. 

On the right transition curve of the principal parametric resonance region, 

both the pure bending and major-axis flexural-torsional ROMs exhibit a similar 

behavior, see Figure 7.30 for δ = 2.2. The flip bifurcation point and the saddle-node 
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are practically coincident. However, the vibration amplitudes of the uncoupled 

ROM (ζmb) continue to be significantly larger than those of the coupled mode. This 

demonstrates that the angle section profile can display considerable vibration 

amplitudes, as long as the wider plate aspect ratio exceeds the transition limit value 

(ϕ > ϕt), resulting in vibrations governed solely by the pure bending mode. 

 

(a) ζMb+ζt ROM 

 

(b) ζmb ROM 

Figure 7.30 - Bifurcation diagrams on the transition wider plate aspect ratio (ϕt = 0.0322) 
for the frequency ratio δ = 2.2, considering pure bending and flexural-torsional ROMs 
(β = 1.0, ξ = 1/15). 

In Figure 7.31, the influence of the nondimensional material parameter on the 

parametric stability boundaries of equal-leg angle section profiles is studied, while 

keeping the geometric parameters constant (ξ = 1/15, ϕ = 0.04). The material 

parameters considered are the same as those in Figure 5.18. It is observed that the 

boundaries are very close. Only for the material with intermediate parameter 

ψ = 0.1775, a distinct behavior is observed in the region between the principal and 

secondary parametric resonance valleys. However, the variation in the material 

parameter does not cause important effects on the transition curves of the principal 

and fundamental parametric resonance regions, although the natural frequencies for 

each case are quite different, as shown in Table 7.1, for comparison purposes. 

Furthermore, for the isotropic material profile (ψ = 0.3850), since its stability is 

governed by the minor-axis bending mode for the considered geometric parameters, 

its vibration amplitudes will be significantly higher compared to the other materials. 
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Figure 7.31 - Influence of the material parameter on the parametric stability boundaries for 
the equal-leg angle section profile (β = 1.0, ξ = 1/15, ϕ = 0.05). 

Table 7.1 - Fundamental frequency parameters for selected values of ψ (β = 1.0, ξ = 1/15, 
ϕ = 0.04). 

ψ ROM Ω02 (x10-5) 

0.0835 ζMb+ζt 35.54 

0.1068 ζMb+ζt 44.54 

0.1775 ζMb+ζt 69.82 

0.3850 ζmb 65.87 

There is a lack of information on the damping characteristics of FRP profiles. 

The influence of damping on the parametric stability boundaries is now analyzed. 

Figure 7.32 shows the parametric stability boundaries for selected values of the 

linear viscous damping, Ξ, within a range of values compatible with the pultruded 

material (Boscato & Russo, 2009). An equal-leg angle section profile is considered 

(β = 1.0), with ξ = 1/15 and ϕ = 0.04. The impact of damping is evident in rising 

the transition curves, consequently increasing the parametric instability loads and 

marginally reducing the width of the instability regions. The effect is particularly 

pronounced in the valley bottoms, around the points where δ = 2/n (n = 1, 2, 3...), 

as can be more clearly seen in the zoom charts 1, 2 and 3 in Figure 7.33. Beyond 

these points, the effect of damping practically vanishes.  
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Figure 7.32 - Influence of the linear viscous damping parameter on the parametric stability 
boundaries of the equal-leg angle section profiles (β = 1.0, ξ = 1/15, ϕ = 0.04). 

 

(a) Zoom chart 1 

 

(b) Zoom chart 2 

 

(c) Zoom chart 3 

Figure 7.33 - Zoom charts on the parametric stability boundaries with varying viscous 
damping parameter. 

The parametric instability loads are observed to be much lower than the 

critical static load (λ = 1) in the main resonance regions, around the points δ = 2/n 

(n = 1, 2, 3...), even when considering high damping values (Ξ = 5%). This is 

clearly shown in Table 7.2, which presents the minimum parametric instability 

loads for the selected damping parameters in the first three instability regions 

(δ = 2/3, 1, 2). In the parameterized form, the following functional relations can be 

established between the lowest parametric instability load and the damping 

parameter: λ = 1.6187Ξ0.2297, for δ ≅ 2/3, λ = 2.8589Ξ0.5096, for δ ≅ 1, and 

λ = 6.4588Ξ1.1687, for δ ≅ 2. These power functions clarify that very large and 

uncommon damping values would be necessary to reach the static critical load in 

these resonance regions. 
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Table 7.2 - Variation of the minimum parametric instability load as a function of the damping 
parameter in the first three regions of parametric instability. 

Ξ δ ≅ 2/3 δ ≅ 1 δ ≅ 2 

1% 0.57734 0.27578 0.02891 

2% 0.62891 0.38828 0.06953 

3% 0.72266 0.46953 0.10859 

5% 0.83047 0.63047 0.18984 

Figure 7.34 shows the bifurcation diagrams for bending and torsional 

vibration amplitudes, considering the frequency ratio δ = 2 and two values of 

damping parameter (Ξ = 1%, 5%). As expected, it is observed that the supercritical 

flip bifurcation occurs for higher axial load parameters when the damping increases. 

This shows that the damping effect is beneficial for the structure, postponing the 

onset of nontrivial solutions. 

 

(a) C4(τ) x λ 

 

(b) C5(τ) x λ 

Figure 7.34 - Bifurcation diagrams for the frequency ratio δ = 2 and selected values of 
damping parameter (β = 1.0, ξ = 1/15, ϕ = 0.04). 

 

 



 

8  
Conclusions and Future Directions 

8.1  
Conclusions 

The present study undertook a comprehensive investigation of the buckling 

and vibration of angle section FRP pultruded profiles, encompassing both equal and 

unequal-leg sections, and spanning from short to long columns. The angle section 

column was modeled as two individual orthotropic plates subjected to uniform axial 

in-plane loads. The plates were considered simply-supported at the loaded edges, 

with continuity conditions enforced along the common edge and the opposite edge 

left free. The simply supported columns were permitted to rotate about their 

principal axes. It is well-known that the critical buckling mode and fundamental 

vibration mode of angle sections are highly dependent upon geometric and material 

parameters, with flexural-torsional coupling being a common occurrence. In 

addressing this crucial aspect, reduced order models (ROMs) were initially derived 

based on the modal participation variation with the geometric and material 

parameters, identified through the utilization of GBTuL software. To achieve this, 

shape functions for in-plane and transversal plate displacements were analytically 

derived, encompassing major and minor axis bending as well as torsion. The 

examination of both uncoupled and coupled problems was conducted by employing 

the Ritz method and the von Kármán nonlinear plate theory. Hamilton’s principle 

was applied to derive the nonlinear equations of motion. The linear solution thereof 

provided critical loads, natural frequencies, respective modes, and load-frequency 

relations, which were validated by favorably comparing them with the GBTuL 

results, employed here as a benchmark. Dimensionless geometric and physical 

parameters were introduced to generalize the conclusions. Three independent 

geometric parameters can effectively describe the column's geometry: the ratio of 



Chapter 8. Conclusions and Future Directions 162 

shorter to longer leg width, the plate aspect ratio of the longer leg, and a slenderness 

parameter given by the thickness to the shorter leg width. 

The influence of the aspect ratio for the leg widths plays a crucial role in 

distinguishing the behavior of equal and unequal-leg profiles. As this ratio increases 

from zero (representing a single plate) to 1.0 (indicating equal-leg profiles), the 

participation of the torsional mode steadily increases, approaching unity for short-

to-intermediate length profiles, while the involvement of the minor axis bending 

mode diminishes to zero. Parallel, the participation of the major axis bending mode, 

although minimal, exhibits a gradual increase, potentially exerting a slight influence 

on long profiles. Consequently, the modal participation is markedly contingent on 

the aspect ratio of the angle section legs. Observations indicate that the flexural-

torsional ROM, incorporating minor-axis bending, results in a lower bound of the 

results, whereas the flexural-torsional model considering major axis bending (in 

alignment with the torsional model) results in an upper bound. As the ratio 

increases, the results transition from the lower to the upper bound. This 

phenomenon has been consistently verified across a broad spectrum of 

nondimensional parameters. 

In the case of equal-leg sections, it has been observed that for very slender 

sections - where the thickness to leg width ratio is small - the coupled flexural-

torsional mode, considering major axis bending, yields outcomes akin to those 

obtained through GBTul. With major axis bending mode contributing minimally, 

results from pure torsion analysis are close to those provided by the coupled ROM 

for short-to-intermediate columns. However, as this ratio increases (either due to 

increased thickness or decrease of leg width), a sudden and discontinuous change 

in modal participation becomes apparent at a specific transition length, contingent 

upon material and geometric parameters. Prior to this transition length, the interplay 

between torsion and major axis bending governs the response. In longer profiles, 

however, minor axis bending assumes full responsibility for the linear behavior. 

Despite the abrupt and discontinuous variation in modal participation, the critical 

load and fundamental frequency exhibit smooth changes around the transition point. 

Additionally, as the leg width increases while other parameters remain constant, 

linear results increases until reaching a peak, where the curve slope abruptly shifts, 

leading to a subsequent decrease in outcomes. Consequently, for a given set of 
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parameters, an optimal leg width exists where the critical load and natural frequency 

reach their maximum. Before reaching the optimal width, the ROM considering 

only minor axis bending yields excellent results. Conversely, beyond the optimal 

width, the coupled flexural-torsional mode, considering major axis bending, 

governs the response. In unequal-leg profiles, a coupling between minor axis 

flexural and torsional modes is evident, where the influence of the torsional mode 

decreases while that of the minor axis flexural mode increases with the column's 

slenderness. 

The material parameter also affects the transition point where the abrupt 

change in modal participation takes place. For the same section geometry, pultruded 

profiles have lower critical loads and natural frequencies, as well as a modal 

transition between the flexural-torsional and pure bending modes for longer profile 

lengths, compared to isotropic profiles, which are prone to pure minor axis bending 

at shorter lengths. The strong influence of nondimensional parameters for the 

pultruded orthotropic material on the outcomes, alongside its comparison with 

certain isotropic materials, underscores the importance of a precise FRP material 

characterization for ensuring reliable stability and vibration analyses. This 

highlights the necessity for continued research into FRP pultrude structural 

elements and other composite materials. 

After being favorably compared with the GBTul results, the ROMs were used 

to explore the nonlinear post-buckling behavior and imperfection sensitivity of 

slender equal-leg and unequal-leg FRP angle section columns. The nonlinear 

equilibrium paths of the perfect and imperfect columns were obtained by the 

Newton-Raphson method. 

The post-buckling response of equal-leg profiles is strongly influenced by 

modal participation. Columns of short-to-intermediate lengths demonstrate a 

significant reserve of post-buckling strength, akin to that of a plate. With major-

axis bending contributing minimally, the post-buckling behavior obtained from the 

pure torsional ROM exhibits remarkable consistency. However, as the influence of 

the torsional mode decreases, the post-buckling strength decreases, making the 

column more prone to bending-induced deflections, which become increasingly 

pronounced. Beyond the modal participation transition point, the post-buckling path 

of equal-leg profiles becomes nearly flat, leading to large deflections similar to the 
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almost neutral path of the Euler column. Similar to the equal-leg profiles, a decrease 

in the post-buckling strength reserve is observed for unequal-leg profiles as the 

influence of torsion decreases. As the minor axis flexural mode becomes dominant, 

significant amplification of the column deflections are observed. It is important to 

state that the nonlinear models provide qualitatively correct results; however, 

additional modes due to quadratic and cubic nonlinearities must be included in the 

displacement fields to obtain quantitatively comparable results with experiments. 

In all cases, a symmetric and stable pitchfork bifurcation is observed, with the 

nonlinear response of imperfect angles converging asymptotically to the perfect 

response at large modal amplitudes. However, imperfections in the form of 

torsional modes have a more significant influence on the nonlinear response, 

occasionally resulting in an increase in the strength reserve compared to the perfect 

case. 

Profiles made of a stiffer material in the longitudinal direction demonstrate 

greater post-buckling strength reserve. Pultruded profiles with identical geometric 

parameters exhibit lower critical loads but higher post-buckling stiffness compared 

to isotropic profiles. This is because isotropic profiles have higher values of G12/E1 

and are prone to minor-axis bending across a broader range of plate aspect ratios. 

The time response of the dynamic system was computed using the fourth-

order Runge-Kutta method. The parametric instability boundaries of the 

harmonically forced column in the forcing control space, along with their associated 

bifurcation diagrams, are determined by brute force and by continuation methods. 

The influence of material, damping, and cross-sectional geometry was examined, 

along with the identification of the types of bifurcation associated with different 

regions of the parametric instability boundaries. The frequency-amplitude relations 

demonstrate a hardening behavior, typical of structures such as columns and plates. 

In the principal parametric resonance region, transitions from the trivial 

equilibrium to periodic solutions occur due to a flip bifurcation (2:1 resonance), 

whereas in the fundamental resonance region, the shift from trivial to non-trivial 

solutions arises from a pitchfork bifurcation (1:1 resonance), resulting in two 

competing attractors. As a result of the hardening-type nonlinearity, the left-hand 

side of each tongue represents the locus of stable bifurcations (supercritical), while 

the right-hand side denotes the locus of unstable bifurcations (subcritical). The 
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dynamic buckling load in the principal parametric and fundamental resonance 

regions is much lower than the static buckling load. 

In equal-leg profiles, the wider plate aspect ratio has minimal influence on 

the parametric instability boundaries, unlike in bifurcation diagrams where lower 

aspect ratios correspond to higher torsional vibration amplitudes. This observation 

agrees with the increased contribution of torsion in modal participation as the 

column length becomes shorter. The pure torsional ROM offers a reasonable 

approximation for bifurcation diagrams, even for small wider plate aspect ratio 

values. In the modal transition point, the minor-axis bending model exhibits 

significant vibration amplitudes, contrasting with the coupled flexural-torsional 

model with major-axis bending, consistent with post-critical path results. Moreover, 

the material parameter demonstrates insignificant effects on the parametric 

instability boundaries, unlike variations in the damping ratio, where the tongues of 

each resonance region yield higher results for more damped systems. 

The proposed reduced-order models (ROM) combined with plate theory has 

proven to be an efficient analysis tool, reducing computational complexity while 

maintaining the necessary fidelity to the expected response. These time-efficient 

and accurate analyses are well-suited for structural design processes, enabling 

straightforward assessment of the impact of geometric and physical parameters on 

linear and nonlinear results. 

8.2  
Suggestions for future work 

Due to the complexity of the problem and the scarcity of nonlinear solutions 

available in the literature, the following topics are suggested for future work: 

• Nonlinear stability analysis of angle profiles under different boundary 

conditions. In particular, columns with clamped boundaries and clamped-

free columns fixed and free can provide, respectively, an upper and lower 

limit for buckling loads and natural frequencies. Additionally, the 

participation and transition of different deformation modes depend on the 

support conditions; 
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• Investigation of the linear and nonlinear behavior of angle section profiles 

made of other types of composites such as laminated and functionally 

graded materials; 

• Experimental analysis of the dynamic instability of pultruded FRP 

columns. No experimental results were found in the literature on the 

parametric instability of these structures. 
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