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Abstract

Gutierrez, André F. M.; Valladão, Davi M. (Advisor). Goal-Based
Investments: A Dynamic Stochastic Programming Appro-
ach. Rio de Janeiro, 2024. 38p. Dissertação de Mestrado – Depar-
tamento de Engenharia Industrial, Pontifícia Universidade Católica
do Rio de Janeiro.

The aim of this study is to develop an investment policy that minimizes
the total contribution required to achieve a long-term financial objective.
To achieve this goal, we developed a multi-stage optimization problem that
integrates a Hidden Markov Model to capture the stochastic dynamics
of asset returns. Unlike conventional portfolio optimization models which
are based on unrealistic assumptions, our approach is based on the goal-
oriented investment framework which provides a more practical and effective
solution. In addition, by using the Hidden Markov Model in our optimization
process, we obtain a more accurate estimate of the dynamics of asset
returns, which translates into better investment decision-making. By using
our model, the contribution required to achieve a desired financial goal is
minimized through an investment policy that considers current levels of
wealth and prevailing economic conditions.

Keywords
Social Security; Linear Optimization; Hidden Markov Model; Si-

mulation; Goal Oriented Investment



Resumo

Gutierrez, André F. M.; Valladão, Davi M.. Política de Investi-
mento Orientada a Objetivo de Longo Prazo. Rio de Janeiro,
2024. 38p. Dissertação de Mestrado – Departamento de Engenharia
Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo deste estudo é desenvolver uma política de investimento
que minimize a contribuição total necessária para atingir um objetivo
financeiro a longo prazo. Para atingir este objetivo, desenvolvemos um
problema de otimização multi-estágios que integra um modelo de Markov
oculto para captar a dinâmica estocástica dos retornos dos ativos. Ao
contrário dos modelos convencionais de otimização de carteiras, que se
baseiam em pressupostos irrealistas, a nossa abordagem baseia-se no quadro
de investimentos orientado a objetivos, que proporciona uma solução mais
prática e eficaz. Além disso, ao utilizar o modelo de Markov oculto no nosso
processo de otimização, obtemos uma estimativa mais precisa da dinâmica
dos retornos dos ativos, o que se traduz numa melhor tomada de decisões
de investimento. Ao utilizar o nosso modelo, a contribuição necessária para
atingir um objetivo financeiro desejado é minimizada através de uma política
de investimento que tem em conta o estado atual da riqueza e as condições
economicas prevalecentes.

Palavras-chave
Previdência; Otimização Linear; Cadeia de Markov Escondidas;

Simulação; Modelo Financeiro Orientado a Objetivo de Longo Prazo;
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1
Introduction

In the realm of financial planning, a highly promising investment strat-
egy emerges in the form of goal-based investing. This innovative approach
harnesses the tools and techniques of financial engineering to deliver personal-
ized assistance on a broader scale, tailored to the unique needs and aspirations
of individual investors. At its essence, this strategy revolves around the pursuit
of any specific financial objectives, ranging from retirement savings to home
purchases and funding a child’s education. The investment plan is meticu-
lously crafted with these goals in mind, considering essential factors such as
time horizon, risk tolerance, and requisite savings.

With our model, we have a clear mission: to craft an investment policy
that provides actionable guidance, flexibly adjusting to the ever-changing
economic landscape and our evolving wealth status as we pursue our financial
goals. For example, in Table 1.1 we display the model output for three cases,
considering a 10-year time horizon: one for an individual who has reached 30%
of their financial goal, another for someone at 50%, and a third for an individual
at 80%. For each case, we reveal the allocation in the S&P500 according to
different possible economic states identified by our model, one representing
a crisis situation ("Bear Market"), one representing a stable period ("Neutral
Market"), and another representing a prosperous moment ("Bull Market").

Wealth Bear Market Neutral Market Bull Market
30 % of Goal 0% 100% 100%
50 % of Goal 0% 86% 100%
80 % of Goal 0% 54% 100%

Table 1.1: Model Outputs Across Various Scenarios

The present study offers a novel approach to personalized investment
policy that is tailored to individual objectives and financial resources. Specifi-
cally, for all t = 1, ..., T −1 we formulate an optimization problem that utilizes
a multi-stage stochastic optimization framework

Qt(Wt) = min
ct,xt∈X

ct + E[Qt+1(Wt+1(xt, rt+1))],
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where for the last stage (t = T ) we have QT (WT ) = ∥WT − G∥. The model
minimizes the contribution at time t, ct, required to achieve a pre-determined
financial goal G, while co-optimizing investment decisions xt and computing
the one step ahead wealth Wt+1(xt, rt+1) based on market returns simulations.
In Figure 1.1 we show how those variables interact at any stage t.

Figure 1.1: One Stage Iteration

Unlike conventional investment models that focus on portfolio variance as
a measure of risk, the goal-based approach emphasizes risk as the probability of
not achieving the desired financial outcome. Specifically, in our optimization
model, we always want to reach the target but we search to minimize the
contribution needed. The proposed optimization model thus offers a novel and
effective tool for a personalized investment policy that aligns with individual
goals and resources.

This study presents a pioneering approach to investment modeling that
exploits machine learning techniques to enrich the accuracy of asset return
dynamics. To be precise, we incorporate Hidden Markov Models (HMMs) to
capture the empirical stylized facts of asset returns, including excess kurtosis
and clustered volatility, as well as different economic regimes such as bull and
bear markets. Through this method, the study develops a more nuanced and
precise understanding of asset return dynamics, enabling more accurate and
effective investment modeling.

The use of HMMs offers a sophisticated and flexible framework that
can adjust to changing market conditions and capture complex patterns in
asset return behavior. As an example, in Figure 1.2 we have a historical
series of the S&P500 where the HMM defines four different economic states,
according to market returns and volatility. By blending different distributions
according to the economic state, this framework can incorporate different
regimes and account for the inherent uncertainty in asset returns. Overall, this
study represents a significant advancement in goal -based investment modeling,
offering a powerful tool with simple and direct outputs for individuals seeking
to achieve their financial objectives.
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Figure 1.2: HMM States In the Historical S&P500

1.1
Relevant Literature

The renowned modern portfolio theory approaches risk as portfolio
variance or standard deviation, and looks to minimize it. The reward is defined
as the expected return, which is maximized accordingly. This approach is based
on the assumptions that investors are risk averse, and that there exists a
linkage between risk and returns. These concepts form the bedrock of the
mean-variance framework, as originally introduced by Markowitz [1], and have
since been the subject of considerable research.

Despite the substantial body of literature in this area, which we will
explore in further detail, it cannot be directly applied to the realm of goal-
based investing. In general, Mean-Variance (MV) framework application in
long-term investments is flawed thanks to one precarious assumption: it does
not consider a time horizon. Consequently, it does not incorporate inflation
risk in the treatment of financial wealth and it is harder to define an end goal.
Recent research has attempted to address this limitation by incorporating an
optimal investment strategy with protection against inflation. For instance, [2]
considers stochastic inflation and a broader model where all assets may entail
some degree of risk.

Various researchers have addressed the portfolio problem from different
perspectives while operating within the same framework. As an example, a
multi-period mean-variance model that accounts for stochastic income and
mortality risks is presented by [3]. In another study, [4] considers both security
returns and salaries as uncertain variables. Furthermore, recent literature has
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attempted to enhance the robustness of the MV framework by incorporating
ambiguity in the decision problem, such as manager ambiguity [5] or by
integrating ambiguity aversion and stochastic volatility and income into the
model [6].

Another significant criticism of the MV framework is its optimal pre-
commitment solution being inconsistent over time. To address this issue, some
researchers have aligned this criterion with the game-theoretic framework, as
in [7], [8], and [9], but have found suboptimal solutions. It is also essential
to note that the classical MV framework assumes a constant level of risk and
return in the financial market, which is not consistent with empirical evidence.
As [10] have pointed out, real returns in the next ten years are highest when
stocks have the lowest valuations relative to earnings or dividends and vice
versa. This observation, known as mean-reversion, has been incorporated into
some papers, such as [11] and [12].

Despite numerous attempts to enhance the Mean-Variance (MV) frame-
work and improve its applicability over time, it is adopted mainly by institu-
tional investors [13] and thus still overlooks the constraints faced by individual
investors who have specific financial requirements and liabilities to consider.
The goal-based framework was introduced to address these shortcomings, with
a primary focus on applying portfolio theory to individual investors and their
specific needs. In contrast to the MV framework, goal-based investors define
risk as the possibility of not achieving their desired goals, allowing risk to be
more precisely defined using mathematical models, as can be seen in [14].

Numerous studies have delved into the goal-based framework. For in-
stance, [15] sets a target rate of return tailored to investors’ goals and contribu-
tions, dynamically adjusting it across various scenarios. Additionally, [16] and
[17] aim to fulfill multiple financial objectives by hierarchizing them. Lastly,
[13] introduces considerations of both present and future cash flows alongside
prioritized financial goals.

A goal-based investing plan serves as a valuable tool for tackling concrete
challenges in investment management, offering flexibility to set any desired
objective. One particularly significant application lies in pension scheme man-
agement, which has encountered formidable obstacles globally. Historically,
many pension schemes adhered to a defined benefit (DB) structure, guarantee-
ing predetermined payments to employees based on earnings-related formulas.
However, sustaining these schemes has proven arduous for numerous emerging
and developed nations, prompting calls for reform [?].

Currently, a defined contribution approach appears promising for ad-
dressing these challenges. Despite hurdles such as the imperative for enhanced
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market design and regulatory infrastructure [19], goal-based investing plans
emerge as a practical solution by establishing retirement savings targets. This
framework facilitates the development of cost-effective, personalized invest-
ment strategies which are crucial for pension scheme sustainability.



2
Proposed Model

2.1
Optimization Model

Our investment problem revolves around minimizing future contributions
while addressing numerous uncertainties stemming from factors like market
returns and future wealth levels across multiple stages. As we will discuss
further in Section 3.1, solving multi-stage problems presents a considerable
challenge, and there is no straightforward approach.

Broadly speaking, our methodology entails approximating the objective
function in the final stage through a first-order Taylor approximation. Subse-
quently, we utilize this approximation to construct the future cost function for
the preceding stage. This iterative process continues until we reach the first
stage, enabling us to optimize the overall problem in a simplified fashion.

Beginning with the last stage (T) we have a particular optimization
problem given by Equation 2-1, with the following variables:

1. c+
T : non-negative contribution at stage T , a decision variable.

2. c−
T : non-negative withdrawal at stage T , a decision variable.

3. G: Goal to be achieved in the last stage T , given as an input to the
model.

4. WT : initial wealth at stage T , given as an input to the model at this
particular stage.

QT (WT ) = min
c+

T ,c−
T ≥0

λ1 c+
T − λ2 (1− d) c−

T

s.t. G = WT + c+
T − c−

T

(2-1)

The optimization problem defined is a straightforward linear program
that can be efficiently solved using standard optimization techniques. Our
constraint ensures that the goal G is met by contributing the necessary amount
in the final stage. Additionally, in this last stage, we do not need to estimate
returns or consider the state of the economy.
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As revealed by Equation 2-1, our objective is to minimize the non-
negative contributions, subject to a penalty factor λ1, minus the non-negative
withdrawals, subject to λ2, while attaining the financial goal. Additionally, we
account for a tax rate of d, which applies when cashing out from our portfolio.

The choice of penalty values holds paramount significance. In most cases,
we want a model geared toward averting underachievement, preventing a
massive contribution in the last stage, even if it means the possibility of
contributing excessively along the way. Accordingly, we want to strike a balance
between the penalties λ1, and λ2 to ensure that the costs incurred from non-
negative contributions outweigh the potential benefits of withdrawals. This is
done by fixing λ1 = 1 and constrain λ2 within the interval ]−1/(1−d), 1/(1−d)[.
In Figure 2.1 we represent the range of possible objective functions considering
such a set.

Figure 2.1: Objective Functions Set that Prevents Underachievement

Conversely, when we keep λ1 = 1 while setting λ2 lower than −1/(1−d),
we aim to circumvent overachievement at the cost of potentially contributing a
great deal in the last stage. A possible function in this set is depicted in Figure
2.2, which assigns a higher cost to withdrawals compared to contributions.
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Figure 2.2: Objective Function that Prevents Overachievement

Lastly, if λ2 surpasses 1/(1 − d) with λ1 remaining positive and below
one, it signifies an incorrect penalty choice, as our objective function would
prioritize overachieving the target to an extreme extent. In other words, the
model would maximize the wealth generation at any cost trying to withdraw
the most in the last stage. This case is visually represented by Figure 2.3.

Figure 2.3: Objective Function with Wrong Calibration

After estimating stage T, we have the future cost function of stage T-1.
Since our objective is to minimize the expected cost required for the entire
investment journey, we take a backward approach: the optimization process
begins in the intermediate stages.

We simulate returns for each stage using a Hidden Markov Model, which
generates diverse samples based on different states. These states are modeled
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to correspond with different possible economic conditions and offer a significant
advantage by introducing a time dependency to our problem. The HMM
methodology will be explained in detail in Section 2.2.

Consequently, for the intermediate stages, we estimate a cost function
denoted as Qj

t(Wt). This function is dependent on the initial wealth in the
stage, represented by Wt, as well as the Hidden Markov Model (HMM) state
(j) and the stage (t). As exemplified in Figure 2.4, given a function Qj

t(Wt),
we simulate a sample of returns (Sk) for each possible state k of the n possible
Markov states.

Figure 2.4: Stochastic Iteration Between Stages

As we can see at Formulation 2-2, we minimize the objective function
by determining optimal values for the variables c+

t , c−
t , and for the wealth

allocated to each asset, given by the array xt. The problem constraints ensure
the balance of the contributions and withdrawals with the initial wealth Wt

and the amount invested in each financial asset within the set I. Furthermore,
they also limit the value of ct to a maximum value M . However, solving such
a problem is not an easy task since calculating the expected value of future
cost functions is not straightforward. As explained in Section 3.1, we have a
particular methodology do so.

Qj
t(Wt) = min

c+
t ,c−

t ≥0,xt

ct +
∑

k

E[Qk
t+1(

∑
I

xi,t(1 + ri,t+1(sk))) | Kt+1 = k] ∗ pj,k)]

s.t
∑

I

xi,t − (c+
t − c−

t ) = Wt

ct = c+
t − (1− d) c−

t

ct ≤M

(2-2)
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2.2
Uncertainty Characterization

Given the nature of the uncertainty modeled in our problem, it is
paramount to consider the "stylized facts" associated with asset returns.
These are fundamental traits that have been consistently observed across
various independent studies in the field, and the Hidden Markov Model has
demonstrated promising outcomes in modeling them. As stated in [24], the
prevailing observations of financial asset returns include:

1. Daily asset returns generally do not exhibit significant autocorrelation,
but longer time intervals such as weeks or months may show some degree
of autocorrelation.

2. The unconditional distribution of asset returns often displays a heavy
tail. This implies that extreme events like market crashes or booms occur
more frequently than predicted by a normal distribution. To deal with
this, we use a normal log-return variable in our modeling.

3. High-volatility events tend to cluster over time, and volatility shows
positive autocorrelation over a certain period. Therefore, financial returns
lack independence. The HMMs effectively introduce time dependency
into our model and can handle the complex volatility patterns in financial
data by utilizing a mixture of distributions.

The Hidden Markov Model is a well-established probabilistic framework
that can be effectively utilized for generating observations from a specific
distribution, contingent upon the underlying state of an unobserved process.
The process is typically represented by a Markov chain, with a discrete, first-
order Markov chain being the focus of our discussion. In this regard, the
likelihood of a state at any given time step depends solely on the immediately
preceding state within the chain. Considering qt and the state S that we are
at a moment t, the stochastic process is represented in Equation 2-3.

Pr(qt+1 = Sj|qt = Si, ..., q1 = Su) = Pr(qt+1 = Sj|qt = Si) (2-3)

Given that the probability of a particular state within a Markov chain
is solely contingent upon the preceding state, we can represent the state
transitions using a state transition probability ai,j. This parameter denotes
the probability of transitioning from a state i to another state j, as outlined
in Equation 2-4.
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ai,j = Pr(qt = Sj|qt−1 = Si) (2-4)

As an illustrative example, suppose we consider an economy with three
distinct states, denoted as S1 representing a bull market, S2 denoting a bear
market, and S3 signifying a neutral market. Considering the state transition
matrix A, we can gain insight into the underlying Markov process between
these states, as elucidated in Figure 2.5.

Figure 2.5: Stochastic Process Between States

As we are operating within the context of a Hidden Markov Model, it is
important to note that two distinct stochastic processes are at play. The first
process pertains to the underlying, unobserved states, as discussed above, and
the second process pertains to the observations made given a specific state. We
can represent this bivariate stochastic process as (St, Xt), where Xt represents
the observation generated at time t given a state St. In the context of our
concrete example, St would denote the state of the economy, and Xt would
signify the generated asset’s returns. This process is succinctly described in
Equation 2-5 and exemplified in Figure 2.6.

bt(j) = Pr(Xt|Xt−1, qt = Sj) = Pr(Xt|qt = Sj) (2-5)
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Figure 2.6: Distribution Conditional to States

To summarize, in a Hidden Markov Model (HMM), the transition prob-
abilities between states are described by a transition matrix denoted by A.
This matrix is determined by the probabilities of transitioning from one
state i to another state j at each time step t, denoted by ai,j. The condi-
tional probability distribution of the observations for each state j is given by
bt(j) = Pr(Xt|qt = Sj), which represents the likelihood of observing an output
Xt given that the system is in state j at time t. Additionally, a complete HMM
will be defined if the initial distribution πi = Pr(q1 = Si) is specified, which
provides the first state of the sequence.

In this work, we will use a log-normal distribution with varying scale
and mean according to the state that we are in. However, determining the
appropriate number of states to use in the HMM is a critical decision. As our
study does not primarily focus on developing a methodology for determining
the number of states, we employ a well-established approach known as the
Markov Test.

Given a market return at time t, denoted as rt, and a specified coverage
rate denoted as p, such that Prt−1(rt ≤ −V aR(p)) = p, we establish a
sequence of violations using a binary variable, It, defined as follows: It = 1
if rt ≤ −V aRt(p) and It = 0 otherwise. Consequently, we introduce a variable
πl,j with l = It−1 and j = It, representing the probability associated with
a particular sequence of violations. As an example, π1,1 would represent the
probability of two consecutive violations in the sequence.

The Markov test then considers the null hypothesis π0,1 = π1,1 = p,
meaning that the probability of a violation equals the coverage rate and that
they are independent of each other. If the null hypothesis is rejected, then the
HMM is not well fitted.



3
Solution Methodology

3.1
Solution Methodology

A commonly used modeling approach to represent multi-stage program-
ming is the discrete event tree, which captures the decision variables at each
stage, the different possible realizations of uncertainty, and the resulting sce-
narios. As discussed in [21], the tree reveals the optimal decision to be made
at each stage for all scenarios. Thus it provides a comprehensive framework
for analyzing the decision-making process considering uncertainty and the de-
velopment of effective strategies. In other words, in our case, it contains a
developed investment policy.

As is well-known, when tackling large multistage problems, discretizing
the decision variable into a set of values, and solving the following-stage
problem for each of these values is not a viable approach. As pointed out in [22],
this method leads to an exponential increase in the number of combinations,
even for a small number of variables. This is easy to grasp when we think about
the tree structure being developed.

Furthermore, as the number of stages increases, approximating the fu-
ture cost function becomes increasingly challenging and necessitates advanced
techniques. This challenge is commonly referred to as the "curse of dimension-
ality", a hurdle often surmounted by making approximations and assuming the
independence of the stochastic process for each stage, as proposed by [22].

However, our multi-stage problem does not assume stage-wise indepen-
dence. Instead, it assumes Markov Dependence. In such a case, the probability
of a scenario occurring adjusts according to the state given by the HMM, and,
since we are working with a first-order Markov Process, the probability of
those states occurring remains constant. Therefore, all the scenarios are ac-
cessible and depend only on the previous state. In any case, we still need to
approximate the future cost function.

To make this estimate, we can represent Qj
t(Wt) through a first-order

Taylor approximation since the last stage problem, like the intermediate one,
is convex. Therefore, we need solutions to the problem at specific points
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(i.e. initial wealth, Wt) and their respective duals. The estimation precision
improves progressively as we increase the number of points used. In theory,
if we did not have computational limits, we would use an infinite number of
points, achieving an exact representation of the function.

For an accurate approximation of the future cost function, selecting the
appropriate set of points to construct the cuts is crucial. The most relevant
ones are the initial wealth (Wt) that gives different decision variables solutions.
Since our problem is convex, we can use the strong duality theorem to perform
a sensitivity analysis, providing precisely those values. Considering all those
points for constructing the problem cuts would yield an exact representation
of the future cost function, once they contain all the possible new solutions to
the problem. However, we only utilize a subset of these values due to potential
computational constraints.

As an example in Figure 3.1, we illustrate a first-order Taylor approx-
imation to the cost function for a particular stage, represented in red. The
estimation is made by selecting the maximum among several linear functions.

Figure 3.1: Future Cost Function Estimation

Hence, we can compute our future cost function as the expected value
of a variable θ which is dependent on scenarios denoted as s drawn from a
sample set Sk according to the Markov Model state k. This state k follows
from a prior state j with a probability denoted as pj,k. This is calculated by∑

K

( ∑
Sk

psθs

1+q

)
× pj,k where we incorporate the term 1 + q to represent the

adjustment of the future cost to its present value.
The θs value is used in the first-order Taylor approximation, so we ensure

it remains above the cutoffs that represent the linear functions corresponding
to the cost function for each possible HMM state (k). In those restriction
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we consider a grid (Dk), that provides a solution (Qk
t+1(W̄t+1(d))) and its

associated dual variable, denoted as πk
t+1,W̄t+1(d), from the next stage problem at

the selected point W̄t+1(d). It is important to note that this grid is constructed
with the sensibility analysis made in the following stage and it gives the cutoffs
used in the estimation. Finally, we also compute the future wealth given by
Wt+1(s) according to our allocation and the return rt+1(s) simulated. Given
our methodology, we arrive at the following formulation for intermediate states
described at the Problem 3-1.

Qj
t(Wt) = min

c+
t ,c−

t ,xt,θs

ct + ∑
K

( ∑
Sk

psθs

1+q

)
× pj,k

s.t

Wt+1(s) =
∑

I

xi,t(1 + ri,t+1(s)) ∀s ∈ Sk,∀k ∈ K

θs ≥ Qk
t+1(W̄t+1(d)) + πk

t+1,W̄t+1(d)(Wt+1(s)− W̄t+1(d)),
∀s ∈ Sk,∀d ∈ Dk,∀k ∈ K

θs ≥ 0, ∀s ∈ Sk, ∀k ∈ K∑
i∈I xi,t − (c+

t − c−
t ) = Wt

ct = c+
t − (1− d) c−

t

ct ≤M

c+
t , c−

t ≥ 0

(3-1)

In conclusion, our approach can be encapsulated within Algorithm 1. This
algorithm has the desired financial goal, the maximum allowable contribution
per stage, the number of stages remaining until retirement, and the fitted
Hidden Markov Model (HMM) as inputs. By following our previously described
backward approach, which involves both our intermediary and final stage
models, we construct stage-specific cost functions based on the initial wealth
available at each respective stage. By employing these cost functions, we
determine the investment policy, specifying the contributions and allocations
required at a given moment.
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Algorithm 1 Financial Planning Algorithm

Input: Goal, Contribution Upper limit, Number of stages, Fitted HMM
Output: Investment Policy

for t ← T to 1 do
if t == T then

Run Last Stage problem for each selected point, start with WT = 0.
Store cuts from stage T (solutions and respective duals at those

points).
Store model’s optimized variables for each selected point.

else
for j ← 1 to K do

Simulate returns from HMM distribution in state j.
Run intermediate problem for each selected point, starting with

Wt = 0 (use all cuts from stage t + 1 and the returns simulated).
Store cuts from stage t with HMM j

Store model’s optimized variables for each selected point.
end for

end if
end for
return The decision variables optimized for each state, stage, and selected
point.
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Empirical study

4.1
Case Study Set Up

This case study aims to demonstrate the model’s capabilities by employ-
ing it to craft a pension plan. We want to formulate a policy that will enable
individuals making monthly contributions to secure sufficient funds for retire-
ment. The allocation considers two investment options: the S&P500 and a
monthly LIBOR rate, a safety-focused interest rate measure.

To achieve this, our HMM is estimated based on the historical perfor-
mance of the asset’s real returns since 1986. In this way, we account for infla-
tion, ensuring planned safeguards against rising prices.

The model’s parameters are calibrated using a real-world scenario. We
factor in a tax rate (d) of 15% on withdrawals and opt for a conservative ap-
proach, prioritizing a higher likelihood of withdrawing funds over contributing
more in later stages. As our preference is to surpass the target rather than fall
short of it, we assign values of λ1 = 10000 and λ2 = 1/(1− d).

Our individual, aged 25, plans to retire at 65, entailing 480 monthly
contributions and allocations. We limit these contributions at $3000 and set
the goal as the amount needed to ensure a consistent monthly payout of 70%
of their pre-retirement income (assumed to be $15000) until they reach the
average life expectancy in Brazil.

Determining the goal involves calculating the present value (PV) at the
retirement date of the required pension payments, as shown in Equation 4-
1. Here, PMT represents the payment made in each period, q denotes the
discount rate (calculated as the historical LIBOR average), and n signifies the
number of stages.

PV = PMT ∗ [(1− 1/(1 + q)n)/q] (4-1)
For estimating the number of states in the HMM, we utilize the Markov

test, discussed in Section 2.2. The model is fitted on 80% of the dataset, gen-
erating a probabilistic prediction with a coverage ratio of 10%. Subsequently,
we validate this prediction using the remaining 20% of historical returns. As a
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result, we obtain the P-value from the Markov test for three HMMs considering
different states as follows:

Number of states Three Four Five

P-value 1.70 % 7.96 % 23.4 %

Table 4.1: Markov Text P-Values

We use a P-value below 0.05 to determine statistical significance, indi-
cating rejection of the null hypothesis. As a result, we cannot conclude that
the Hidden Markov Model with three states fits well. However, the four-state
model successfully passes the test and emerges as the most parsimonious op-
tion. This is the model with fewer parameters, which suggests that it is less
susceptible to overfitting, and it passes the test, justifying its selection.

Considering the fitted HMM, Table 4.2 provides the transition matrix
among the economy states. Furthermore, Table 4.3 presents the expected value
and variance resulting from the fitting of each log-normal distribution for each
economic state. This reveals a pattern of two states characterized by negative
expected returns, indicative of moments of crisis, and two states exhibiting
positive expected returns.

- State 1 State 2 State 3 State 4

State 1 73.4 % 0 % 0 % 26.6 %
State 2 3.6 % 9 % 82.7 % 4.6 %
State 3 8 % 22 % 70% 0 %
State 4 25.3 % 8.3 % 61 % 5.1 %

Table 4.2: HMM Transition Matrix

- State 1 State 2 State 3 State 4
Expected Return -0.0273 -0.030 0.0183 0.0670

Variance 0.0192 0.0202 0.0124 0.0584

Table 4.3: Parameters of Log-Normal Distribution by State
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4.2
Case Study Results

The exponential compounding effects of returns maximize the signifi-
cance of early contributions to wealth accumulation. This phenomenon is elu-
cidated by the model’s results, depicted in Figure 4.1. It becomes apparent
that the optimal point—i.e., the minimum in the cost function—can be reached
with considerably less wealth in the early stages. Consequently, the model pro-
vides valuable guidance, encouraging users to commence saving at the earliest
opportunity. This advice is particularly pertinent given the model’s precise
recommendations regarding the contribution amount. While many individuals
recognize the importance of saving, determining the appropriate amount often
remains unclear.

Figure 4.1: Costs Function per Stage

Furthermore, the model provides a clear allocation policy according to
the present state that we are in. The heatmaps below illustrate recommended
allocations to the S&P500 for each of the four economic states at every stage
of the financial plan. Considering that the red line represents the goal, we can
see how the portfolio changes as we get close to our target and as we go to
different market conditions:

– State 1: According to the HMM transition matrix, we have a high
probability of staying in the same state, with negative returns for
S&P500. Thanks to that, in this case, the model will always allocate
100% to fixed income.
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Figure 4.2: Allocation Policy - State = 1

– State 2: In this state, we have a probability of 82% of going to the
third state, which has positive returns for the S&P500. Consequently,
the model allocates 100% to the S&P500.

Figure 4.3: Allocation Policy - State = 2

– State 3: Now we have a probability of 30% of going to first or second
state, which implies a negative return for stocks, and a probability of
70% of staying in the same state, with positive returns for the S&P500.
We tend to allocate less to the fixed income, but this varies according to
our level of wealth.
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Figure 4.4: Allocation Policy - State = 3

– State 4: This state is similar to the third one although it has a probability
of 66% of going to states with positive returns for stocks, a little less than
the previous case. We can see that the model tends to allocate a little
more to fixed income when compared to the policy in the third state.

Figure 4.5: Allocation Policy - State = 4

4.3
Sensitivity Analysis

As previously explained, in all intermediary stages we have an upper limit
to contributions, and in the final stage we contribute what is needed to reach
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our goal. Therefore, it is necessary to control our risk tolerance of contributing
too much in the last stage, in the case of falling short of the goal or contributing
in excess in the intermediary stages, in the case of exceeding the goal in the
last stage. In our model, λ1 and λ2 are the parameters responsible for such
control. A sensitivity analysis to see how these factors interact follows.

An analysis is made by conducting a 10-year simulation, generating 500
market return trajectories based on our fitted Hidden Markov Model. By
varying the λ1 parameter, while keeping λ2 constant, four different models
construct an investment policy that is tested in each scenario.

In Figure 4.6, we depict the first quartile, median, and third quartile of
contributions made at each stage across these 500 trajectories. In other words,
we expose scenarios where the model had to contribute a small amount, an
average amount, and a big amount. While the median of those trajectories
exhibits minimal differences, a notable observation emerges in the first and
third quartiles.

Figure 4.6: Contribution Sensitivity to λ1

The first quartile corresponds to scenarios with favorable returns and as
we increase λ1, the model withdraws less in intermediate stages. Conversely, in
the third quartile, where we encounter scenarios requiring more contributions
due to unfavorable outcomes, models with higher λ1 values initiate contribu-
tions faster than the others as they approach the last stage. As expected, in
both cases, it becomes evident that with higher λ1, the model is more cautious,
prioritizing a lower probability of falling short of the target in the final stage.

In Figure 4.7, we present the mean, the first quartile, and the third
quartile of the wealth in those trajectories from only two models, one with
λ1 = 10 and the other with λ1 = 100000. As we can see, the model with the
highest λ1 has a smaller interval between the quartiles, which means the model
has a more defensive approach along the way.
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Figure 4.7: Wealth Trajectory Sensitivity to λ1

Finally, in Figure 4.8, a new analysis is presented concerning a model
tailored to mitigate the risk of surpassing our financial goal. In this scenario,
the parameters are configured as λ1 = 1 and λ2 = −10/0.85. The left plot
of the figure illustrates the wealth trajectory, while the right plot depicts the
contributions made at each stage.

As depicted in the graph on the left side, there are instances in the
intermediate stages where our wealth appears to decrease. However, upon
closer examination of the contribution trajectory on the right side, it becomes
evident that these declines are attributable to planned withdrawals. The model
adopts a less conservative approach, which results in a reduced need for
contributions along the way.

Nevertheless, this approach may necessitate a higher level of contribu-
tions in the final stage, which may exceed the user’s available resources. In our
specific case, we exceeded the prescribed limit for intermediate-stage contribu-
tions at the last moment to successfully achieve our financial goal.
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Figure 4.8: Less Conservative Model

4.4
Benchmarking against Traditional Approaches

A crucial inquiry is whether the policy generated by the model outper-
forms traditional approaches in achieving long-term goals. This section com-
pares our model’s allocation policy, termed the HMM Policy, with another
common long-term investment strategy, the Fixed Policy, which allocates 60%
to stocks and 40% to fixed income.

To conduct this comparison, simulations of return trajectories by the
fitted HMM are utilized to evaluate the performance of our model, which
optimizes both contributions and allocations, against an alternative model
that exclusively optimizes contributions and employs the Fixed Policy for
allocation. Both models have parameters set to λ1 = 10000 and λ2 = 1/0.85,
aimed at mitigating the risk of underperformance in the final stage.

In Figure 4.9, several simulated trajectories of the funds for both the
HMM Policy and the Fixed Policy models are observed. Furthermore, Figure
4.10 displays the average contributions made in the simulations for each stage.

Notably, the Fixed Policy model surpasses the financial goal much faster
than our model at the cost of a higher overall contribution. The model lacks
adaptability in allocation, it cannot respond to market conditions. Therefore, it
enforces a margin of safety due to its consideration of potential negative stock
returns. It becomes evident that the Fixed Policy model requires substantially
more contributions: while total contributions across the years average around
$155, 499, the HMM Policy model averages a significantly lower value of
$77477.
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Figure 4.9: Comparative Funds Trajectories

Figure 4.10: Comparative Contributions



5
Conclusion

Our approach offers a practical and effective solution for investors,
addressing the limitations of traditional portfolio optimization methods while
incorporating the state of the economy for informed investment strategies.
However, some areas require further improvement.

The calibration of the Hidden Markov Model presented challenges.
Despite our study presenting a straightforward method for fitting it, the HMM
has several local minimums, making estimation harder. Exploring more efficient
techniques would undoubtedly enhance its performance.

Additionally, the long-term nature of our investment approach is con-
strained by the limited availability of data points, hampering the model’s
calibration. Therefore, it is crucial to employ data generation techniques to
enhance our out-of-sample tests and improve the reliability of our results.

With ongoing research and advancements, our approach has the potential
to become a valuable tool for investors seeking to optimize their portfolios and
achieve long-term financial goals.
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