
Marcelo de Carvalho

A Data Reference Architecture for Brazilian
Electrical Companies

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
May 2024

Marcelo de Carvalho

A Data Reference Architecture for Brazilian
Electrical Companies

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee:

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Prof. Luiz André Portes Paes Leme
UFF

Rio de Janeiro, May 2nd, 2024

All rights reserved.

Marcelo de Carvalho

Graduated in Computer Science by Centro Universitário Carioca

Bibliographic data
de Carvalho, Marcelo

A Data Reference Architecture for Brazilian Electrical
Companies / Marcelo de Carvalho; advisor: Marco Antonio
Casanova. – 2024.

104 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática – Teses. 2. Data Lake. 3. Azure Databricks.
4. Arquitetura de Dados. I. Casanova, Marco Antonio. II.
Pontifícia Universidade Católica do Rio de Janeiro. Departa-
mento de Informática. III. Título.

CDD: 004

To Mariangela Venas, who 25 years ago
accepted to share her life journey with me.

Acknowledgments

To my daughter Helena Venas, for your patience during many weekends
without the family trips that she enjoys so much.

To my advisor Professor Marco Antonio Casanova for the stimulus and
partnership to carry out this work, and professors Edward Hermann Haeusler
and Alex de Vasconcellos Garcia for their leadership in the ENSIGHTS project,
the main research source for this work.

The author thanks the team at PUC-Rio and Radix Engenharia e
Desenvolvimento de Software for their support in clarifying the technological
aspects of this work, especially Athos Barbosa, for sharing some of his vast
knowledge in data and cloud computing, and Gabriel Resende, to reveal all
the power of Python in the field of Data Science.

The author thanks colleagues from Eletrobras Furnas: Marcelo Piñeiro,
Ana Claudia Rodrigues, and Ana Cristina de Freitas Marotti, for their support
in coordinating the ENSIGHTS project.

The author thanks Felipe Lopes, fellow journey companion in the mas-
ter’s program, who, like me, experienced the challenges of balancing life be-
tween studies, family, and work.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Abstract

de Carvalho, Marcelo; Casanova, Marco Antonio (Advisor). A Data
Reference Architecture for Brazilian Electrical Companies. Rio
de Janeiro, 2024. 104p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

During the 1990s, the Brazilian electricity sector underwent profound
changes in its operational model. The Brazilian state began to assume a less
developmental and more regulatory role, leading to the creation of the National
Electric Energy Agency (ANEEL). One of the roles of ANEEL is to ensure the
quality of service provided by sector agents (energy generation, transmission,
and distribution companies). When an agent does not meet established stan-
dards, ANEEL can apply penalties. In this sense, the improvement of main-
tenance processes plays a crucial role in ensuring the reliability and efficiency
of electrical systems and consequently reducing penalties. Predictive mainte-
nance is being adopted, in addition to more traditional methodologies (reactive
and preventive). However, this methodology represents a fundamental change
compared to previous ones, as it seeks to anticipate failures based on data
and analysis. In this sense, the incorporation of predictive maintenance into
maintenance processes presupposes the availability of operating and mainte-
nance data of the equipment, as well as the technological resources that enable
the analysis of these data. This dissertation proposes a reference technological
architecture that enables the development of these analyzes, considering as-
pects of management, governance, and corporate compliance practiced by the
sector’s agents.

Keywords
Data Lake; Azure Databricks; Data Architecture.

Resumo

de Carvalho, Marcelo; Casanova, Marco Antonio. Uma arquitetura de
referência para dados de empresas do setor elétrico brasileiro.
Rio de Janeiro, 2024. 104p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Durante a década de 1990, o setor elétrico brasileiro passou por profundas
mudanças em seu modelo operacional. O Estado Brasileiro passou a assumir
um papel menos desenvolvimentista e mais regulatório, o que levou a criação
da Agência Nacional de Energia Elétrica (ANEEL). Um dos papéis da ANEEL
é assegurar a qualidade do serviço prestado pelos agentes do setor (empresas de
geração, transmissão e distribuição de energia). Quando um agente não cumpre
os padrões estabelecidos, a ANEEL pode aplicar penalidades. Nesse sentido, o
aprimoramento dos processos de manutenção desempenham um papel crucial
na garantia da confiabilidade e eficiência de sistemas elétricos e consequente
redução de penalidades. A manutenção preditiva passa a ser adotada, em com-
plemento às metodologias mais tradicionais (reativa e preventiva). Contudo,
essa metodologia representa uma mudança fundamental em relação às anteri-
ores, pois busca antecipar falhas com base em dados e análises. Nesse sentido,
a incorporação da manutenção preditiva nos processos de manutenção, pressu-
põe a disponibilidade de dados de operação e manutenção dos equipamentos,
bem como de recursos tecnológicos que viabilizem a análise desses dados. Essa
dissertação propõe uma arquitetura tecnológica de referência, que habilite o
desenvolvimento dessas análises, considerando aspectos de gestão, governança
e conformidade empresariais praticados pelos agentes do setor.

Palavras-chave
Data Lake; Azure Databricks; Arquitetura de Dados.

Table of contents

1 Introduction 13
1.1 Motivation 13
1.2 Service quality standards 19
1.3 Current maintenance practices 20
1.4 Data in electrical companies 22
1.5 Conclusion 24
1.6 Dissertation organization 25

2 Related Work 26
2.1 Introduction 26
2.2 Big Data 27
2.3 Cloud Computing 29
2.4 Data Architectures 31
2.5 Data Governance 34
2.6 Conclusion 37

3 The proposed Data Reference Architecture 38
3.1 Introduction 38
3.2 Data Reference Architecture 38
3.3 An Analysis of Implementation Alternatives 41
3.4 Azure Implementation Details 49
3.5 Conclusion 52

4 Results 53
4.1 Introduction 53
4.2 Azure Data Lake Storage 53
4.3 Data Extraction 55
4.4 Azure Synapse Analytics Pipelines 57
4.5 Azure Databricks 70
4.6 Azure Synapse Analytics SQL Pools 76
4.7 CosmosDB 77
4.8 Azure App Services 79
4.9 PowerBI 80
4.10 Azure Purview 80
4.11 Conclusion 81

5 Conclusions and future work 82

6 Bibliography 84

A Code Listings 87
A.1 Save Transactions script 87
A.2 Get All DGA Results script 92
A.3 NB Final script 101

List of figures

Figure 1.1 Maintenance Plans(RAN et al., 2019) 21
Figure 1.2 Maintenance Costs(RAN et al., 2019) 22

Figure 2.1 the NIST Big Data Reference Architecture (NIST, 2019). 28
Figure 2.2 High level design of a Data Reference Architecture (PÄÄKKÖ-
NEN; PAKKALA, 2015). 33
Figure 2.3 Data Reference Architecture with four layers (ZBURIVSKY;
PARTNER, 2021). 34
Figure 2.4 Data Governance Framework (DGI, 2024 (accessed in March
2024)). 36

Figure 3.1 Data Lake Structure. 39
Figure 3.2 Data Reference Architecture in Azure. 42
Figure 3.3 Data Reference Architecture in Amazon Web Services. 42
Figure 3.4 Data Reference Architecture in Google Cloud Platform. 43

Figure 4.1 Data Lake structure implemented in Azure 54
Figure 4.2 SAP pipelines in Synapse Analytics 59
Figure 4.3 Activities related to ingest SAP data for landing zone 59
Figure 4.4 Integration Dataset for Data lake landing zone 60
Figure 4.5 Integration Dataset for SAP Folder 60
Figure 4.6 Integration Dataset for SAP File 61
Figure 4.7 Activity related to copy SAP data for trusted zone 62
Figure 4.8 Pipeline to move SAP data from Landing Zone to Trusted zone 62
Figure 4.9 Activity related to copy SAP data for Refined zone 63
Figure 4.10 Pipeline to copy SAP data from Landing Zone to Refined zone 63
Figure 4.11 Data Lake Refined Zone for SAP Data 64
Figure 4.12 SAGE pipelines in Synapse Analytics 65
Figure 4.13 Activities related to ingesting SAGE data for landing zone 66
Figure 4.14 SAGE integration datasets 67
Figure 4.15 Pipeline to scan SAGE data files 67
Figure 4.16 Pipeline to copy SAGE data files to the landing zone. 68
Figure 4.17 Pipeline to move SAGE data from Landing Zone to Trusted
zone 68
Figure 4.18 SAP and SAGE correlation. 70
Figure 4.19 Architectural patterns to access ADLS from Databricks. 72
Figure 4.20 Architectural pattern to access ADLS using Service Principal. 73
Figure 4.21 Databricks File System. 75
Figure 4.22 Databricks Secure Access Pattern. 76
Figure 4.23 A SQL query running in a Synapse SQL Pool. 77
Figure 4.24 CosmosDB Collections. 78
Figure 4.25 CosmosDB Collection in detail. 78
Figure 4.26 Custom dashboard showing CAI and EFRI indicators. 79

List of tables

Table 2.1 Addressing the Big Data challenges with cloud computing for
a dust storm forecasting application. Adapted from (YANG et al., 2017) 30

Table 3.1 Cost comparison of cloud computing providers 46

Table 4.1 Hierarchical structure for mapping between fault categories,
defined by the categorization algorithm, and SAGE measurements. 71

List of Abreviations

ANEEL – Agência Nacional de Energia Elétrica.

ERP – Enterprise Resource Planning.

CRM - Customer Relationship Management.

DATA - Data Management Association.

DGI - Data Governance Institute.

RPA - Robotic Process Automation.

CSV - Comma Separated Values.

ENSIGHTS - Energy Insights.

CAI - Chromatographic Assay Indicator.

EFRI - Electrical Failure Risk Indicator.

ML - Machine Learning.

IR - Integration Runtime.

BI - Business Intelligence.

DBFS - Databricks File System.

AWS - Amazon Web Services.

GCP - Google Cloud Platform.

ETL - Extract, Transform and Load.

UNC - Unified Naming Convention.

"Data is not information, information is not
knowledge, knowledge is not understanding,

understanding is not wisdom."

Clifford Stoll, High-Tech Heretic: Reflections of a Computer Contrarian.

1
Introduction

1.1
Motivation

Before the 1990s, the Brazilian electrical sector was dominated by state-
owned companies. With an increasing demand for energy and the need for
significant investments in infrastructure, the Brazilian government began a
reform process to modernize the sector.

Restructuring the Brazilian electrical sector was a significant milestone
in the country’s energy history. This reform involved a series of regulatory
and structural changes aimed at increasing efficiency, attracting private in-
vestments, and improving service quality. One of the main events of this time
was the creation of the National Agency of Electric Energy (ANEEL), a fed-
eral regulatory agency responsible for regulating and overseeing the generation,
transmission, distribution, and commercialization of electric energy. ANEEL
was established to ensure transparency, fairness of tariffs, and competitive-
ness in the sector. The ANEEL functions include granting licenses for new
energy projects, regulating electricity tariffs, overseeing sector companies, and
resolving disputes between consumers and service providers.

ANEEL plays a fundamental role in ensuring the quality of service
in the Brazilian electrical sector. Through Normative Resolutions (ReN),
it sets quality standards that sector agents, technical term for companies
operating in generation, transmission, distribution, and commercialization,
must comply with. These standards include limits for the frequency and
duration of interruptions in the energy supply. When an agent does not meet
the established standards, ANEEL can impose penalties. However, incentives
can be offered to those who exceed quality expectations.

To ensure compliance with these quality standards, agents seek to im-
prove the maintenance processes of the energy transmission systems under
their responsibility, in order to minimize interruptions in their operation to
the maximum extent possible. It is important to note that ANEEL penal-
izes scheduled and unscheduled equipment shutdowns. However, unscheduled
shutdowns incur much higher penalties than scheduled ones. In this sense,
the maintenance of these systems aims primarily at preventing an unexpected
failure event.

Research on maintenance effectiveness indicates that one-third of all

Chapter 1. Introduction 14

maintenance costs are wasted as a result of unnecessary or improper main-
tenance (YACOUB; CUKIC; AMMAR, 2004). The main reason for this in-
effective maintenance management is the lack of factual data to quantify the
actual need for equipment repair (YACOUB; CUKIC; AMMAR, 2004). Tra-
ditional maintenance methods are reactive and preventive (MOBLEY, 2002).
The former is based on actual equipment failure and is the most expensive
method of failure management. The latter is based on statistical trends and
predetermined time intervals or operating hours to reduce the probability of
failure or performance loss. Predictive methods are at the forefront because
they determine maintenance actions scheduling adaptively and flexibly, ac-
cording to equipment needs, rather than at fixed intervals, as in preventive
maintenance.

Predictive maintenance uses direct monitoring of mechanical condition,
system efficiency, and other indicators to determine the actual MTTF (mean
time to failure) or loss of efficiency of each plant equipment. This predictive
method aims to ensure the maximum interval between maintenance services
and minimize the amount and cost of unplanned downtime caused by failures.
Monitoring can employ technologies such as the Internet of Things (IoT),
Cloud Computing, and Machine Learning (ML). In light of (LARIVIERE et
al., 2016), maintenance has been one of the areas with the highest number of
modern Predictive Analysis techniques applications. The Internet of Things
(IoT) allows real-time telemetry to provide data on the operation of the
system and equipment for analytical procedures to make their failures more
predictable.

In the context of the electrical sector, data of interest for applying
predictive maintenance techniques reside in databases of systems that support
the maintenance and operation processes of generation and transmission
equipment. These systems record data related to these equipment, such as:
maintenance events, real-time operating conditions, and interruption events,
among others. It is worth mentioning that, in many cases, these databases are
isolated and inaccessible throughout the organization.

To use these data, it is necessary to build integrations that allow
them to be brought into a common area, where they can be treated and
analyzed together. In this sense, this dissertation aims to propose a technology-
agnostic reference architecture that enables the use of these data, considering
management, governance, and corporate compliance requirements practiced by
agents in the electrical sector.

Chapter 1. Introduction 15

1.1.1
Motivation for restructuring the system

Before 1990s, the electricity sector in Brazil was structured with com-
panies that handled all aspects of the process, from generation to distribu-
tion. State-owned companies primarily managed distribution, while federal
and state entities were largely responsible for generation and transmission ac-
tivities(MELO; NEVES; PAZZINI, 2011). For considerable time, this public
monopoly in electricity generation, transmission, and distribution functioned
effectively, resulting in a significant increase in the capacity of electricity sup-
ply, which increased by 500% over the past 50 years. However, during the 1990s,
the performance of the system deteriorated significantly, prompting the federal
government to intervene in 1993 to prevent a system collapse. This intervention
involved assuming liabilities of US$ 26 billion in debts and increasing electricity
prices by 70% to stabilize the system and prevent bankruptcy(MENDONÇA;
DAHL, 1999).

Despite this initial intervention, the system continued to decline and, by
1995, the worsening transmission constraints, coupled with the government’s
inability to promote expansion, exacerbated a new cycle of utility defaults. This
situation led to a critical scenario with a high risk of electricity blackouts.

Several factors contributed to the crisis within the electrical system.
The decline in investment capacity began in the late 1970s, coinciding with
the international debt crisis. This was exacerbated by government tariff
policies that inflicted economic losses on the sector. Throughout the 1980s,
the government consistently reduced electricity tariffs in an attempt to control
inflation. During this period, pricing decisions were influenced by political
and economic factors, resulting in artificially low tariffs. Furthermore, the loss
of international credit further decreased investment resources in the electric
sector, falling from 71% in 1974 to 29% in 1988. In the 1990s, there was
widespread agreement that securing financing to expand the capacity of the
system remained the primary challenge.

At this time, Brazil embarked on restructuring its electricity regulatory
model, aiming to replace the previous vertically integrated system charac-
terized by monopoly and non-differentiation among various electricity-related
activities. This restructuring introduced a new system that emphasizes free
pricing, competition, and the separation of generation, transmission, distribu-
tion, and commercialization activities.

In 1993, with the backing of the Congress, the federal government
initiated a series of coordinated measures aimed at restructuring and setting
out the principles for the electricity sector. The primary aim of this reform

Chapter 1. Introduction 16

was to enable the government to concentrate on its functions as a policymaker
and regulator, while transferring the tasks of operations and investment to the
private sector.

In 1995, with the enactment of Law 9,074, marking the initial steps
toward regulatory reform. The new model introduced structural changes and
new functions that were intended to stimulate investment in expanding the
electrical system, improving the efficiency of concessionaire companies, and
improving the overall competitiveness and quality of services in the national
economy.

The reform addressed three main areas. First, it established a new
legal and regulatory framework, which included adjusting existing regulations
with respect to concessions, economically regulating natural monopolies, and
facilitating competition. Second, it defined new trade arrangements regarding
the purchase and sale of electricity in bulk, access to transmission and
distribution networks, and mechanisms for sector planning and expansion.
Third, it implemented institutional changes within the government and state
utilities to facilitate the adoption of the proposed trading arrangements and
regulatory framework. These institutional changes involved the creation of a
new independent regulator (ANEEL) and the review of the role of Eletrobras.
The reform also included a series of structural changes deemed necessary to
establish a competitive market in bulk electricity(MENDONÇA; DAHL, 1999).

1.1.2
Restructuring Project of the Brazilian Electric Sector – RESEB

The Brazilian Electric Sector Restructuring Project, commonly referred
to as RESEB (Projeto de Reestruturação do Setor Elétrico Brasileiro), was a
significant initiative undertaken in Brazil to modernize and reorganize the
country’s electric power industry. It aimed to address challenges, promote
efficiency, and promote sustainable growth within the sector.

Initiated in the late 1990s and implemented through legislation such as
Law 9.427/96 and Law 10.848/04, RESEB encompassed various measures:

1. Market Liberalization: One of the central aspects of RESEB was the
liberalization of the electricity market. This involved the unbundling of
generation, transmission, and distribution activities, allowing for compe-
tition and private investment in previously state-dominated sectors.

2. Privatization: RESEB facilitated the privatization of state-owned util-
ities, particularly in the generation and distribution segments. This

Chapter 1. Introduction 17

change to private ownership was intended to improve efficiency, attract
investment, and improve service quality.

3. Regulatory Framework: The project established a robust regulatory
framework, overseen by the Agência Nacional de Energia Elétrica
(ANEEL), to govern the operations of the electric power sector. This
framework was designed to ensure fair competition, consumer protec-
tion, and sustainable development of energy resources.

4. Energy Auctions: RESEB introduced mechanisms such as energy auc-
tions to promote investment in new generation capacity. These auctions
provided long-term contracts and price guarantees, fostering the devel-
opment of renewable energy sources and fostering a diversified energy
mix.

5. Expansion of the Transmission Infrastructure: To support the growing
demand for electricity and facilitate the integration of renewable en-
ergy projects, RESEB emphasized the expansion and modernization of
Brazil’s transmission infrastructure. This involved investments in new
transmission lines, substations, and grid optimization technologies.

6. Social and Environmental Considerations: RESEB incorporated social
and environmental considerations into the planning and implementation
of energy projects. This included measures to mitigate the impacts of
energy development on local communities and ecosystems, as well as
initiatives to promote energy efficiency and conservation.

1.1.3
ANEEL - The Regulatory Agency

The "Agência Nacional de Energia Elétrica" (ANEEL), translated as the
National Agency for Electric Energy, is a regulatory agency responsible for the
oversight and regulation of the electric power sector. Established in 1996 by
Law 9.427, ANEEL plays a crucial role in ensuring the efficiency, reliability,
and sustainability of the country’s electricity industry. Here are some of its key
responsibilities:

1. Regulatory Oversight: ANEEL is tasked with regulating various aspects
of the electric power sector, including generation, transmission, distribu-
tion, and commercialization. Establish rules, standards, and policies to
govern the operations of companies operating within these segments.

Chapter 1. Introduction 18

2. Tariff Regulation: ANEEL is responsible for setting electricity tariffs and
ensuring that they are fair, transparent, and reflect the costs associated
with generating, transmitting, and distributing electricity. The agency
conducts periodic review and adjustments of tariffs to align prices with
market conditions and operating expenses.

3. Licensing and Authorization: ANEEL grants licenses and authorizations
to companies that want to operate in the electric power sector. This
includes generation plants, transmission lines, distribution networks,
and commercialization activities. The agency ensures that these entities
comply with technical, environmental, and legal requirements.

4. Market Monitoring and Competition Oversight: ANEEL monitors the
electricity market to promote competition, prevent anti-competitive
practices, and protect the interests of consumers. The agency investi-
gates complaints, monitors market dynamics, and enforces regulations
to maintain a level playing field for market participants.

5. Consumer protection: ANEEL is committed to protecting the rights and
interests of electricity consumers. The agency establishes standards for
service quality, reliability, and customer relations and oversees compli-
ance by utilities. ANEEL also handles consumer complaints and disputes,
mediated between consumers and service providers when necessary.

6. Renewable Energy Promotion: ANEEL promotes the development of re-
newable energy sources, such as wind, solar, biomass and small hydro-
electric plants. The agency implements incentive programs, sets goals for
the deployment of renewable energy, and facilitates the integration of
renewable energy projects into the national grid.

7. Infrastructure Planning and Expansion: ANEEL participates in the plan-
ning and expansion of Brazil’s electric power infrastructure, including
transmission lines, substations, and interconnections. The agency as-
sesses the need for new investments, approves infrastructure projects,
and supervises their execution to ensure that they meet technical and
regulatory requirements.

Chapter 1. Introduction 19

1.2
Service quality standards

Among other responsibilities, ANEEL establishes standards for quality
service to protect consumer rights. As an example, to ensure the reliability,
efficiency and safety of electricity transmission operations, ANEEL set some
key standards for service quality, including:

1. Transmission System Availability: sets requirements for the availability of
transmission lines and associated equipment to ensure the continuous and
reliable transmission of electricity. Transmission companies must meet
the minimum availability targets established by ANEEL to maintain the
integrity and reliability of the transmission grid.

2. Voltage Regulation: Establishes standards for voltage regulation within
the transmission system to ensure that electricity is transmitted at
specified voltage levels and within allowed variations. These standards
help maintain the stability of the transmission network and protect
electrical equipment from damage caused by voltage fluctuations.

3. Fault Response Time: Mandates requirements for the response time of
transmission companies to faults and disturbances in the transmission
system. Transmission operators must promptly identify and rectify faults
to minimize electrical supply interruptions and prevent cascading failures
within the network.

4. Maintenance and Inspection Standards: Set standards for the mainte-
nance and inspection of transmission infrastructure, including transmis-
sion lines, substations, and associated equipment. Transmission compa-
nies must adhere to these standards to ensure the reliability and safety
of the transmission system and to prevent equipment failures.

5. Reliability Standards: Establishes reliability standards for the transmis-
sion system, including criteria to assess the reliability and adequacy of
the transmission infrastructure. These standards help identify potential
risks to system reliability and ensure that transmission companies take
appropriate measures to maintain system stability and integrity.

6. Emergency Response and Restoration Procedures: Mandates procedures
for emergency response and system restoration in the event of transmis-
sion system failures or disruptions. Transmission operators must have
emergency plans in place to quickly restore service and minimize the
impact of outages on electricity consumers.

Chapter 1. Introduction 20

7. Data Reporting and Monitoring Requirements: Requires transmission
companies to regularly report operational data and performance metrics
related to service quality. The agency monitors compliance with estab-
lished standards and takes enforcement actions against companies that
do not meet the requirements.

1.3
Current maintenance practices

Maintenance is a critical factor in the industrial sector, affecting costs
and reliability and, therefore, influencing the competitiveness of a company.
Unforeseen equipment failures can disrupt operations, leading to penalties and
damage to the company’s reputation. Detecting and addressing equipment
faults is crucial to avoiding production interruptions.

Maintenance practices can be classified into three types:

1. Reactive maintenance involves fixing failures as they occur.

2. Preventive maintenance follows a schedule to prevent breakdowns.

3. Predictive maintenance uses tools and data to anticipate failures and
intervene before they occur.

Advancements in technologies such as IoT, sensing, and AI have changed
maintenance strategies from reactive and preventive to predictive. Reactive
maintenance restores the equipment after failure, leading to delays and high
downtime costs. Preventive maintenance aims to prevent breakdowns but
can result in unnecessary costs. Predictive maintenance strikes a balance by
identifying potential failures in real time and intervening before they occur,
minimizing both reactive and preventive maintenance costs(RAN et al., 2019).

Predictive maintenance encompasses four stages of development. At the
highest tier, it incorporates data analytics and real-time equipment monitoring.
Analytical methods, such as machine learning algorithms, are employed to re-
veal obscured correlations and discern significant patterns within vast and intri-
cate datasets, particularly in challenging industrial environments (PACHECO
VAGNER PAES; MAROTTI, 2023).

In the context of the electrical sector, predictive maintenance brings a
series of advantages to the management of equipment comprising large-scale
energy generation and transmission systems, where reliability is crucial due to
the widespread implications of failures. The following benefits stand out:

Chapter 1. Introduction 21

Figure 1.1: Maintenance Plans(RAN et al., 2019)

1. Improvement in service quality: Anticipating faults, Predictive Mainte-
nance helps prevent unplanned downtime, ensuring continuous electric-
ity supply, especially in critical sectors like hospitals and industries. This
contributes to a better quality of life and economic efficiency.

2. Cost reduction: By anticipating faults, companies can plan maintenance
activities more efficiently, avoiding unplanned downtime, emergency re-
pairs, and unnecessary equipment replacements. This reduces associated
costs and optimizes resource use.

3. Accurate fault prediction: Machine learning applications enable an accu-
rate prediction of when electrical equipment might fail, allowing proactive
interventions before serious damage occurs.

4. Extension of the lifetime of the equipment: Proactive intervention
through AI-based Predictive Maintenance helps prolong the lifespan of
electrical equipment, reducing replacement costs, and improving the re-
turn on investment.

Chapter 1. Introduction 22

Figure 1.2: Maintenance Costs(RAN et al., 2019)

1.4
Data in electrical companies

According to (ZHU et al., 2015), in the context of electrical companies,
there are different utility information systems used to support its operations,
such as:

1. AMI - Advanced Metering Infrastructure: A system that allows for
two-way communication between a utility and its customers’ meters.
AMI enables the collection of detailed consumption data and supports
functions such as remote meter reading, outage detection, and demand
response.

2. SCADA - Supervisory Control and Data Acquisition: A control system
architecture that uses computers, networked data communications, and
graphical user interfaces for high-level process supervision management.
SCADA systems are used to monitor and control industrial processes,
such as those in electrical power systems.

3. GIS - Geographic Information System: A system designed to capture,
store, manipulate, analyze, manage, and present spatial or geographic

Chapter 1. Introduction 23

data. In the context of electrical companies, GIS is used to manage and
analyze geographic information related to infrastructure, such as power
lines, transformers, and substations.

4. WMS - Workforce Management System: A system used to manage the
scheduling, dispatch, and tracking of field service workers. In the context
of electrical companies, WMS helps optimize the allocation of resources
for tasks such as maintenance, repairs, and installations.

5. DMS - Distribution Management System: A system that helps to mon-
itor and control the distribution of electricity in a utility’s grid. DMS
includes functions such as outage management, fault detection, and load
balancing to ensure efficient and reliable operation of the distribution
network.

6. CIS - Customer Information System: A system used to manage customer-
related information, such as billing, account management, and customer
service interactions. In the context of electrical companies, CIS helps
manage customer accounts, billing, and communication with customers.

In the context of the Brazilian electrical sector, some systems stand out,
which are used by most companies involved in power generation, transmission,
distribution, and trading.

1. SAGE: is a large-scale and high-performance SCADA/EMS system, de-
veloped and continuously updated by CEPEL. Its modular architecture
allows for proper customization, enabling it to be used as a communi-
cation gateway, a data concentrator for a distribution system, a local or
regional supervisory system, an operation center for a system, or even
a ‘multisite’ system composed of multiple redundant and synchronized
control centers (PEREIRA et al., 2014).

2. SAP Plant Maintenance (SAP PM): SAP is an Enterprise Resource
Planning (ERP) system widely used by electrical companies in Brazil.
Its modular architecture has several specialized modules to support the
business processes of an entire organization. The Plant Maintenance
module is used to register maintenance data on equipment such as power
transformers, capacity banks, and power lines.

3. SATRA: System that supports monitoring activities of operation, main-
tenance tracking, and system performance statistics, and its function is
to automate, in a decentralized and coordinated manner, the procedures

Chapter 1. Introduction 24

to determine shutdowns and temporary operational restrictions in the
transmission functions of networks (ONS, 2020).

4. AMSE: Monthly transmission services and charge settlement system.
AMSE calculates the financial amounts related to a specific settlement
month. These amounts are allocated to services provided by transmission
concessionaires and ONS; to the use of the transmission system by users,
and to sectorial charges (ONS, 2020).

The wide variety of data that these systems handle poses additional
challenges in achieving system interoperability. Utility information systems,
usually structured as separate business entities, depict power systems and
their operations from different business viewpoints. This leads to a multitude
of overlapping and occasionally contradictory information models stored in
numerous incompatible formats. (ZHU et al., 2015).

1.5
Conclusion

The deep transformations in the Brazilian electrical sector, driven by the
federal government in the late 1990s, resulted in an increase in the capacity and
reliability of the generation and transmission system. This increase is directly
related to the regulatory role of ANEEL, which encouraged companies in the
sector to improve the quality of their services through tax incentives or the
application of penalties.

In order to reduce failures and unavailability of their equipment, compa-
nies started to improve their maintenance processes by incorporating predictive
maintenance techniques, based on the analysis of data from these equipment
available in their internal systems and/or from sensors attached to these equip-
ment. However, performing this analysis presupposes the existence of a techno-
logical environment that allows the acquisition of these data, their processing,
and their display in specific tools.

In a more specific context, with the use of Data Science techniques and
maintenance and operation databases of transmission assets from a substation,
it is possible to build predictive models that allow for the enhancement of
maintenance plans for these equipment. To achieve this, historical data from
these databases should be centralized in a common data environment, where
analytical models will be available for data analysis and presentation of results
on dashboards. The analytical models developed will complement existing
predictive methods, with the objective of improving maintenance planning.
To do so, technologies such as cloud computing, data structuring in data lakes

Chapter 1. Introduction 25

(Big Data), and the application of artificial intelligence techniques (Machine
Learning) should be used.

The motivation of this work is to propose a data reference architecture
capable of supporting a common data environment to the development of
data science projects capable of building predictive models that can improve
maintenance processes of electric company’s assets.

1.6
Dissertation organization

This document is structured as follows. In Chapter 2 we investigate
the literature on the most important topics of this work: Big Data, Cloud
Computing, Data Architectures, and Data Governance. Each topic highlights
the main concepts that guide the development of this dissertation. In Chapter 3
we present a data reference architecture suitable for data analysis and data
science projects, considering aspects of data governance in the context of a
Brazilian energy company. In Chapter 4 we show some results obtained from
the implementation of the presented data architecture in the context of a R&D
project developed for Eletrobras Furnas. Finally, in Chapter 5 we present our
conclusions and future perspectives about data, analytics, and governance.

2
Related Work

2.1
Introduction

In the era of rapid digital transformation, data access, management,
and analysis have become key factors driving organizational success. From
enterprises to academia, there has been a concerted effort to understand
and refine data architectures and governance practices to harness the full
potential of data assets. This chapter delves into academic research and
industry practices that have shaped understanding of data architectures and
data governance over the years.

The evolution of data architectures begins in the early days of hierarchi-
cal and relational databases until the contemporary landscape characterized by
distributed computing paradigms such as cloud computing and edge comput-
ing. Academic research has played a crucial role in elucidating the principles,
methodologies, and technologies that underlie these architectures. The litera-
ture abounds with insights into the design, implementation, and optimization
of data architectures tailored to diverse organizational needs.

In parallel, the discourse on data governance has gained prominence
as organizations grapple with regulatory compliance, data privacy concerns,
and the imperative to ensure data quality and integrity. Researchers have
examined the multifaceted dimensions of data governance, including legal and
ethical considerations, organizational structures, policies, and technologies.
The interdisciplinary nature of data governance has encouraged collaborations
between researchers in fields as diverse as computer science, law, management,
and ethics, leading to a myriad of theoretical frameworks, best practices, and
case studies.

Furthermore, the convergence of data architectures and governance has
given rise to novel paradigms such as DataOps and Data Governance 2.0, which
seek to integrate agile principles, automation, and collaboration into the fabric
of data management practices. By synthesizing insights from academia, indus-
try, and regulatory bodies, researchers go toward data-driven organizations
characterized by agility, transparency, and accountability.

This chapter outlines what the literature says about the most important
topics in the context of this study, namely: Big Data, Cloud Computing, Data
Architectures, and Data Governance.

Chapter 2. Related Work 27

2.2
Big Data

When one thinks about the amount of information produced and con-
sumed on the world, the term "Big Data" quickly comes to mind. But what
exactly is Big Data?

According to (WARD; BARKER, 2013), the term Big Data has become
ubiquitous. Due to a shared origin among academia, industry, and the media,
there is no single definition, and various stakeholders provide diverse and
often contradictory definitions. The lack of a consistent definition introduces
ambiguity and complicates the understanding of this term.

Perhaps the first mention of Big Data dates back to the early 1990s, with
an article by (GULLBERG, 1991) associating the term with cultural aspects
(e.g., language) of society and the ability to extract knowledge from these
aspects. However, the term Big Data began to be defined more closely to what
we know today in the late 1990s. (MASHEY, 1999) cited Big Data associated
with the increase in data volume and the limitations of the technological
infrastructure to support this increase in volume.

Interestingly, in the literature, one of the most cited definitions on this
topic is from a Meta (now Gartner) report from 2001 (LANEY et al., 2001) in
which the term Big Data is not mentioned. However, this report proposes
a vision that encompasses the "three Vs" - Volume, Velocity, and Variety,
based on significant growth trends observed at the time with respect to the
quantity of data produced, the rate at which it was produced, and the range of
formats and representations employed. In this sense, although not immediately
associated with the term Big Data, over time, the three Vs have come to
establish a framework for the concepts that underpin this term.

In this context, it is worth noting that the National Institute of Stan-
dards and Technology (NIST), through the Big Data Public Working Group
(NBD-PWG), developed several definitions related to Big Data, in addition
to the term itself, from an initiative that established, together with industry,
academia, and government, an extensible Big Data Interoperability Frame-
work (NBDIF) independent of technology and infrastructure from technology
vendors. It allows stakeholders in Big Data (e.g., data scientists, researchers,
etc.) to use the best available analysis tools to process and gain knowledge
through the use of standard interfaces between interchangeable architecture
components. NIST conceptualizes Big Data as extensive datasets, primarily
characterized by volume, velocity, variety, and/or variability, that require a
scalable architecture for efficiency, storage, manipulation, and analysis(NIST,
2019).

Chapter 2. Related Work 28

Figure 2.1: the NIST Big Data Reference Architecture (NIST, 2019).

The growing interest in Big Data has driven the market to increasingly
appropriate this buzzword, resulting in a wide spectrum of concepts that
further complicate the understanding of the term and its ability to precisely
define something. In this sense, in their 2015 article, (MAURO; GRECO;
GRIMALDI, 2015) propose a consensual definition of the term Big Data:

"Big Data represents information assets characterized by high volume,
velocity, and variety that require specific Technology and Analytical Methods

for their transformation into value."

This may be one of the first definitions of "Big Data" to establish a
clear relationship between information and value. And to obtain value from
this information, we need specific technology and analytical methods. It is the
combination of these two elements that produces results that will underpin
decision-making. So, we can say that the value obtained from information is
directly related to the ability to make decisions based on that information.

Another important aspect related to the value of information is men-
tioned by (ANDERSON, 2017), referring to one of the seven principles of the
"hacker ethic," published in the book "Hackers: Heroes of Computer Revolu-
tion" by Steven Levy in 1984. The principle that "All information should be
free" could be interpreted as "at no cost" or "free," since the word "free" in

Chapter 2. Related Work 29

English can take on one meaning or the other depending on the context of the
sentence. In developing the theme in his book, Anderson proposes the following
understanding:

“Commoditized information (everyone gets the same version) wants to be
free. Customized information (you get something unique that makes sense to

you) is valuable.”

Thus, we can say that customized information is nothing more than
commodity information that goes through specific analytical methods and
produces a unique result that makes sense within a specific context, supporting
decision-making.

A clear example of the relationship between information, value, and
decision making can be seen in the Waze application. This application’s main
function is to determine the best traffic route between a pre-informed origin and
destination. For this, Waze analyzes a series of information (road map of the
geographical region between origin and destination, real-time traffic conditions
of each street comprising one of the selected route options, which route(s) have
tolls, etc.). In other words, from a series of commodity information (road map,
general traffic conditions), Waze generates customized information (best route
between origin and destination and estimated arrival time) that is only relevant
to you for your decision-making (do I drive or opt for another transportation
solution - subway, bicycle, etc.). This information has intrinsic value for those
who need to take that route at that moment.

2.3
Cloud Computing

According to (YANG et al., 2017), the adoption of Big Data in industry
and government expanded the meaning of this concept, including technologies
and expertise to obtain value from data.

When it comes to technology, cloud computing represents a framework
that facilitates widespread, easy, and immediate access to a communal reservoir
of adaptable computing assets (such as networks, servers, storage, applications,
and services) through the Internet. These assets can be quickly deployed and
ready to use with minimal supervision or involvement of service providers
(MELL; GRANCE et al., 2011).

Some features make this kind of technology the best option for supporting
complex data analysis applications. Some of these features are as follows:

– Elasticity: The ability to adjust resources as needed, either automatically
or manually, allows for quick and flexible scaling up or down based

Chapter 2. Related Work 30

on demand. Consumers may perceive the available capabilities to be
limitless and accessible at any time.

– Pooled: The provider combines their computing resources to serve multi-
ple users in a multi-tenant structure, where physical and virtual resources
are allocated and reallocated based on consumer needs. Customers do not
have direct control over the specific location of the resources but may
be able to specify a general location (such as country or datacenter).
Resources can include storage, processing power, memory, and network
connectivity.

– On demand: Computing resources can be immediately adjusted to sup-
port workload variations.

– Self-service: A consumer can autonomously allocate computing resources
without having to interact with individual service providers.

– Pay-as-you-go: Computing resources are billed only for the time they are
used.

As proposed by (YANG et al., 2017), Big Data challenges can be
addressed by cloud computing features for a given application, such as:

Table 2.1: Addressing the Big Data challenges with cloud computing for a dust
storm forecasting application. Adapted from (YANG et al., 2017)

Big Data/Cloud
computing Elasticity Pooled On-

demand
Self-
service

Pay-as-
you-go

Volume X X
Velocity X X
Variety X X X
Veracity X X
Value X X X

When it comes to the industry, Cloud computing offers several financial
advantages for organizations, particularly in terms of capital expenditure
(CapEx) and operational expenditure (OpEx)(RAFIQUE et al., 2011):

– Reduced Capital Expenditure (CapEx): Traditional on-premises infras-
tructure requires significant upfront investment in hardware, software
licenses, data centers, and other infrastructure components. This expen-
diture is classified as capital expenditure (CapEx) and represents a sub-
stantial financial commitment. With cloud computing, organizations can
eliminate or significantly reduce these upfront capital expenditures. In-
stead of purchasing and maintaining physical hardware, they can leverage

Chapter 2. Related Work 31

the infrastructure provided by cloud service providers on a pay-as-you-
go basis. This shift from CapEx to operating expenditure (OpEx) allows
organizations to conserve capital and allocate financial resources more
effectively.

– Predictable Operational Expenditure (OpEx): Cloud computing oper-
ates on a subscription-based model, where organizations pay for the
computing resources and services they consume recurring. This expen-
diture is classified as operational expenditure (OpEx) and is typically
more predictable and manageable than the upfront costs associated with
on-premises infrastructure. By paying only for the resources they use,
organizations can better align their costs with their actual usage and de-
mand. This helps to optimize cost efficiency and avoid over-provisioning
or under-utilization of resources, leading to potential cost savings over
time.

– Scalable Cost Structure: Cloud computing offers elastic scalability, al-
lowing organizations to scale their computing resources up or down in
response to changes in demand or workload. This scalability extends to
cost, as organizations only pay for the resources they consume, whether
it is an increase in capacity during peak periods or a decrease during off-
peak times. This scalable cost structure enables organizations to avoid
the need for costly over-provisioning of infrastructure to accommodate
peak loads, reducing wastage, and optimizing cost efficiency.

– Lower Total Cost of Ownership (TCO): Cloud computing can contribute
to a lower total cost of ownership (TCO) compared to traditional on-
premises infrastructure. While the subscription-based pricing model of
cloud services may result in higher ongoing operational costs, it often
eliminates or reduces many of the hidden costs associated with maintain-
ing on-premises infrastructure, such as hardware depreciation, mainte-
nance, upgrades, and staffing. Additionally, cloud service providers ben-
efit from economies of scale, allowing them to achieve efficiencies and
cost savings that may be difficult for individual organizations to repli-
cate with on-premises infrastructure.

2.4
Data Architectures

A data reference architecture serves as a blueprint or framework that
guides the design, implementation, and management of an organization’s data
infrastructure and systems. Here are some key activities and benefits associated
with using a data reference architecture.

Chapter 2. Related Work 32

– Standardization: A data reference architecture provides standardized
guidelines, principles, and best practices for organizing and structuring
data assets within an organization. Promote consistency and coherence
in data management practices across different departments, projects, and
systems.

– Interoperability: By defining common data standards, formats, and in-
terfaces, a data reference architecture facilitates interoperability between
disparate systems and data sources. This interoperability enables seam-
less data exchange, integration, and collaboration throughout the orga-
nization.

– Data Governance: A data reference architecture includes governance
policies, processes, and controls to ensure data quality, integrity, security,
and compliance. It helps organizations establish clear accountability
and responsibilities for managing data assets and enforcing data-related
policies.

– Data Integration: A data reference architecture provides guidelines for
integrating and harmonizing data from diverse sources, formats, and sys-
tems. It defines standardized data integration patterns, techniques, and
tools to streamline the process of aggregating, cleansing, transforming,
and loading data into target systems.

– Data Storage and Management: A data reference architecture outlines
strategies for storing, organizing and managing data repositories, such
as data warehouses, data lakes, and databases. It helps organizations op-
timize data storage, retrieval, and access patterns to meet performance,
scalability, and cost requirements.

– Analytics and Insights: A data reference architecture supports the im-
plementation of analytics and business intelligence solutions by defining
data modeling, querying, and analysis techniques. It enables organiza-
tions to derive meaningful insights, trends, and patterns from their data
assets to support decision-making and strategic planning.

– Data Life-cycle Management: A data reference architecture encompasses
the entire data life-cycle, from data acquisition and ingestion to archival
and disposal. Provides guidelines for managing data throughout its
life-cycle, including data retention policies, data lineage tracking, and
metadata management.

– Adaptability and Flexibility: A data reference architecture is designed
to be flexible and adaptable to accommodate evolving business require-
ments, technological advancements, and regulatory changes. It allows

Chapter 2. Related Work 33

organizations to iteratively refine and extend their data infrastructure
and systems to meet emerging needs and challenges.

Data architectures are also a powerful tool for understanding data flows
and facilitate the selection of technologies to implement a corporate big data
system. (PÄÄKKÖNEN; PAKKALA, 2015) propose a framework for the
design and analysis of data reference architectures, representing data stores,
functionalities, and data flows in a comprehensive diagram, independent of
technology.

Figure 2.2: High level design of a Data Reference Architecture (PÄÄKKÖNEN;
PAKKALA, 2015).

(ZBURIVSKY; PARTNER, 2021) propose a reference architecture with
four layers, which is widely used in industry. Although these logical layers
are suitable for describing architectures of different levels of complexity, they
are populated and adapted with the minimum components necessary for the
objectives of this proposal. The Ingestion layer is responsible for obtaining data
from the original sources and loading them into the cloud data platform. Once
loaded into the platform, the data is ingested into a Data Lake, a repository
of data in its raw form. Automated processes for data cleaning and treatment
perform the necessary transformations to feed a Structured Data Repository
(which here can be implemented as a Data Warehouse, a relational database, or
NoSQL). These two components form the storage layer. In the Processing layer,
the data are used for exploratory analysis and for training and testing Machine

Chapter 2. Related Work 34

Learning models. Finally, in the Service layer, the data feeds dashboards and
visualization applications.

Figure 2.3: Data Reference Architecture with four layers (ZBURIVSKY;
PARTNER, 2021).

2.5
Data Governance

Data governance is a set of processes, policies, standards, and controls
that ensure the effective and secure management of an organization’s data
assets throughout their life-cycle. It encompasses the planning, supervision,
and enforcement of data-related activities to ensure that data are accurate,
consistent, secure, and compliant with regulatory requirements.

Key components of data governance include the following.

– Data Quality Management: Ensure that the data is accurate, complete,
consistent, and reliable. This involves the establishment of standards and
processes for data validation, cleaning, and enrichment.

– Data Security: Protect sensitive data from unauthorized access, disclo-
sure, or alteration. This includes implementing access controls, encryp-
tion, authentication, and monitoring mechanisms to protect data confi-
dentiality, integrity, and availability.

– Data Privacy: Ensure that data are handled in compliance with privacy
regulations and policies, such as LGPD, GDPR, CCPA, and HIPAA.
This involves defining data privacy rules, obtaining consent for data
processing, and implementing measures to anonymize or pseudonymize
personally identifiable information (PII).

– Data Compliance: Ensure that data management practices comply with
relevant regulatory requirements, industry standards, and organizational
policies. This includes conducting audits, assessments, and risk analyzes
to identify and mitigate compliance risks.

Chapter 2. Related Work 35

– Data Stewardship: Assigning accountability and responsibility for man-
aging specific data assets to designated individuals or teams. Data stew-
ards are responsible for defining data requirements, resolving data issues,
and ensuring data quality and integrity.

– Data Life-cycle Management: Managing data throughout its life-cycle,
from creation and acquisition to archival or disposal. This involves
defining policies and procedures for data retention, archival, backup, and
deletion to optimize storage resources and ensure regulatory compliance.

– Metadata Management: Managing metadata, which provides contextual
information about data assets, such as their structure, lineage, usage,
and ownership. Effective metadata management enables data discovery,
lineage tracing, and impact analysis.

– Data Governance Framework: Establish a governance framework that
defines the roles, responsibilities, processes, and tools to manage data
governance activities. This framework provides a structured approach
to implementing and maintaining data governance initiatives within an
organization.

By the early 1990s, business decisions and processes started to be driven
by data and data analysis. Data governance emerged to handle the growing
volume, velocity, and variety of data in corporate systems such as ERP and
CRM, as well as data warehouses and other repositories. DAMA defines data
governance as "the exercise of authority, control, and shared decision making
(planning, monitoring, and enforcement) over the management of data assets".
In other words, according to DAMA, data governance complements data
management, not replaces it (AL-RUITHE; BENKHELIFA; HAMEED, 2019).

The Data Governance Institute, an organization that provides resources,
guidance, and best practices to implement effective data governance programs,
proposes a framework for data governance, which is a comprehensive model
to understand and implement data governance within organizations. This
framework consists of these key components (DGI, 2024 (accessed in March
2024)):

– Data Governance Objectives and Scope: Defines the goals, objectives,
and scope of the data governance program. Clarifies the purpose of
data governance and identifies the key stakeholders, data domains, and
business processes that will be included in the governance initiative.

– Data Governance Roles and Responsibilities: Defines the roles and re-
sponsibilities of the individuals and groups involved in the data gover-
nance program. This includes executive sponsors, data stewards, data

Chapter 2. Related Work 36

Figure 2.4: Data Governance Framework (DGI, 2024 (accessed in March
2024)).

owners, data custodians, and other stakeholders who play a role in the
management and governance of data assets.

– Data Governance Policies and Standards: Establishes the policies, stan-
dards, and guidelines that govern how data is managed, accessed, and
used within the organization. Covers aspects such as data quality, data
security, data privacy, data classification, and data life-cycle manage-
ment.

– Data Governance Processes and Procedures: Outlines the processes and
procedures for implementing and executing data governance activities.
This includes processes for data management, data issue management,
data quality management, metadata management, and compliance mon-
itoring.

– Data Governance Tools and Technologies: Includes recommendations for
tools and technologies that support data governance activities. This
could include data governance software platforms, metadata manage-
ment tools, data quality tools, and other solutions that facilitate data
governance implementation.

– Data Governance Metrics and Monitoring: Defines the metrics and key
performance indicators (KPIs) used to measure the effectiveness of the
data governance program. It includes monitoring mechanisms to track
compliance, data quality, data usage, and other relevant metrics to ensure
that data governance objectives are met.

Chapter 2. Related Work 37

– Data Governance Communication and Training: Addresses communica-
tion and training initiatives to ensure that stakeholders understand the
importance of data governance and their roles in the governance process.
It includes strategies to promote awareness, participation, and adoption
of data governance practices throughout the organization.

2.6
Conclusion

Strategic data management has emerged as a critical driver of organiza-
tional success. The evolution of data architectures and governance, from early
hierarchical and relational databases to contemporary paradigms like cloud and
edge computing, plays a key role in this new era of big data analytics. Academic
research has been instrumental in elucidating the principles and technologies
underlying these architectures, providing insights into design, implementation,
and optimization tailored to organizational needs.

Simultaneously, the discourse on data governance has gained prominence,
addressing regulatory compliance, privacy concerns, and the imperative to
ensure data quality and integrity. Researchers have explored legal, ethical,
and organizational dimensions, fostering interdisciplinary collaborations and
producing theoretical frameworks, best practices, and case studies.

By synthesizing insights from academia, industry, and regulatory bodies,
researchers have paved the way for data-driven organizations characterized by
agility, transparency, and accountability. Big Data, Cloud Computing, Data
Architectures, and Data Governance are the key topics in this scenario.

In the next chapter, there is a proposal for a data architecture suitable for
Brazilian electric companies and designed to support big data analytics and
data science projects. This architecture also addresses the data governance
requirements expected for this kind of organization.

3
The proposed Data Reference Architecture

3.1
Introduction

In this chapter, there is a detailed proposal for a data architecture
designed to support big data analytics and data science projects in the context
of a Brazilian electricity company. The proposed architecture also addresses
the data governance requirements expected for this kind of organization.

3.2
Data Reference Architecture

3.2.1
Overview

The data reference architecture presented in this work is part of a research
and development project, called ENSIGHTS, carried out by a large company
in the electrical sector during the years 2021 and 2024.

The research and development project aimed to develop an operational
prototype of a computational platform in the cloud, which would assist in
optimizing the predictive maintenance process of power transformers using
machine learning techniques.

In terms of prototype definition, the platform is expected to:

– Build Analytical Models: Machine learning algorithms capable of predict-
ing the probability of failures or other relevant equipment events within
the scope of the project.

– Data Structure and Integration: a system capable of autonomously and
dynamically:

– Accessing data from the company’s systems.
– Processing the data in an ETL layer with a cloud-scalable architec-

ture.
– Access predictive algorithms and apply them to the data.
– The algorithm results are loaded into the system’s data lake.

– User-friendly Dashboard: where maintenance analysts from the company
can consume the algorithm results to aid in decision making relevant to
scheduling activities.

Chapter 3. The proposed Data Reference Architecture 39

In addition to the functional requirements, there were two important
non-functional requirements: (1) the architecture must have the lowest cost in
terms of storage and processing, and (2) data storage and processing must be
done in the Brazilian territory, to be compliant with legislation for brazilian
state companies.

To meet these requirements, the proposed data reference architecture, in
terms of the structure of the data lake, is summarized in Figure 3.1.

Figure 3.1: Data Lake Structure.

In a macro-view, SAP and SAGE data files are ingested from the
company’s on-premises environment to the cloud. Upon arrival in the cloud
through pipelines configured for data ingestion from each system, these data
files are sent to the Landing Zone of the Data Lake and then processed by
specific data pipelines.

After being properly processed, the original replicas of the data present
in the Landing Zone are transferred to the Raw Data Zone for backup, while
the preprocessed data are sent to the Trusted Data Zone.

The Landing and Raw Data Zones are represented in Figure 3.1 by the
Ingestion Zone. Upon arrival in the Trusted Data Zone, the data may still
undergo further processing to more promptly serve specific services such as
feeding indicators and dashboards. For this purpose, there is the Refined Data
Zone, which acts as a Data Mart, specifically to store data related to a specific
business domain, providing processed data sources for specific purposes.

Lastly, there is the Testing Zone, whose objective is to act as a data
sandbox for conducting tests, primarily aiming at the development of new

Chapter 3. The proposed Data Reference Architecture 40

machine learning models and other data science experiments. Arrows indicate
data flows between components.

3.2.2
Data Reference Architecture Details

In Data Sources layer, all data sources of interest to the company are
identified. According to (PÄÄKKÖNEN; PAKKALA, 2015), data sources
should be classified along two dimensions: mobility and structure:

– Mobility: whether the data is in situ, which refers to data that exists at
its original location, such as files stored on a local system or data residing
in a database or streaming which refers to continuous flows of data
generated in real-time, often from sources like social media platforms,
sensors, or IoT devices.

– Structure: whether the data is structured (e.g., a database table),
semistructured (e.g., XML or JSON files), or unstructured (e.g., images,
videos, audio, etc.).

Data extraction from in situ and streaming data sources involves retrieval
of raw data from these sources for further processing and analysis.

Extracting in situ data typically involves accessing and copying files or
querying databases to retrieve the required data. This process may involve
reading text files, executing SQL queries, or using APIs provided by the data
source to fetch the data. For example, extracting data from a text file stored
on a server involves reading the file directly from its location and transferring
its contents to the processing environment.

Extracting streaming data involves capturing and processing data as it is
generated, usually without initially storing it in a persistent storage medium.
This process requires establishing connections to the streaming source and
continuously receiving and processing data in near-real-time. For example,
extracting streaming data from a social media platform involves subscribing
to relevant data streams provided by the platform’s API, receiving real-time
updates, and processing them as they arrive.

In Ingestion layer, the raw data obtained from the data extraction
are sent to the Data Lake landing zone. This operation is performed using
pipelines.

In the Storage layer, the storage services planned for use in the proposed
architecture are configured.

In the Processing Layer, the services chosen to process the data are
configured.

Chapter 3. The proposed Data Reference Architecture 41

In the Presentation Layer, services and applications are planned to
consume data available in the refined and test data zones of Data Lake, as
well as in available databases, and display the results of the analysis through
dashboards, reports, or data science projects.

In the Cloud Monitoring, Data Management, and Governance layer are
the services available operational monitoring of cloud-enabled services, as well
as services for managing and governing data in this environment.

3.3
An Analysis of Implementation Alternatives

3.3.1
Implementation Alternatives

To choose the best cloud solution to implement the prototype require-
ments, a technology and cost evaluation was conducted with three cloud com-
puting providers: Microsoft, Google and Amazon. These providers were chosen
because they are considered hyperscaler cloud providers, due to the size of the
computational infrastructure they possess, which ensures the delivery of virtu-
ally unlimited processing and storage capacity to their customers (DIGITAL-
OCEAN, 2024 (accessed in April 2024)).

Below is an outline of the architecture considering the environments of
Microsoft (Figure 3.2), Amazon (Figure 3.3) and Google (Figure 3.4).

Chapter 3. The proposed Data Reference Architecture 42

Figure 3.2: Data Reference Architecture in Azure.

Figure 3.3: Data Reference Architecture in Amazon Web Services.

It is noticeable from the above figures that the architectures, regardless
of the platform, have very similar topologies, with only the services used
being different. The components of the ingestion layer are responsible for

Chapter 3. The proposed Data Reference Architecture 43

Figure 3.4: Data Reference Architecture in Google Cloud Platform.

integrating the various data sources, either batch or streaming, and performing
ETL processes. The storage layer consists of the data lake, which will be
the main repository of the data needed for the solution’s intelligence, and
other databases (transactional and analytical) to store internal application
information and post-processed hot data. The processing layer is where all
the intelligence of the solution should be developed with tools that allow for
the creation of algorithms and data science analyses. The presentation layer
has components for hosting dashboards and applications with access to stored
data, which can be used to create customized reports. Finally, the monitoring
layer consists of governance and data security components that span the entire
application.

It is important to note that it is a simplified diagram; additional auxiliary
services may be necessary to integrate between components depending on the
provider.

3.3.2
Technology analysis

Although very similar, there are small differences that can lead to
choosing one provider over another.

In terms of regions, all three providers have extensive coverage, with

Chapter 3. The proposed Data Reference Architecture 44

servers in North America, South America, Europe, and Asia. In Brazil, all
the required services can be instantiated, eliminating the need to host them
outside the national territory. An exception is highlighted for one of the services
provided by GCP (Cloud Spanner), which should be replaced by another
service.

Among the three providers, AWS serves the largest number of customers
(VISUAL-CAPITALIST, (accessed in April 2024)), offering resources for the
vast majority of industry use cases, with a complete solution stack. As it
represents about 16% of its holding’s revenue (CRN, (accessed in April 2024)),
AWS support is guaranteed. In recent years, some issues have arisen regarding
the company’s view of open source software, which impacts the usability
and integration of its resources. Furthermore, the constant emergence of new
services that replicate the functionalities of existing services disrupts the
cohesion in integration (GARTNER, 2021 (accessed in July 2022)).

GCP is the smallest of the three providers. The cloud services offered
still represent a very small portion of the company’s revenue, raising ques-
tions about the longevity of the support provided (VISUAL-CAPITALIST,
(accessed in April 2024)). It is also the provider that suffers the most from
outages and instability, especially in the last year (HARMONY, (accessed in
April 2021)). It has the least integration with third-party services, mainly due
to a lack of partnerships.

In terms of integration, Azure has the most comprehensive solution, with
partnerships with SAP, Oracle, among others, and is openly participative in
the open-source software scene. It also has the most complete services, with
various functionalities included in some products. Of the three, it has the most
expensive specialized support and the least coverage of regions; however, these
points do not impact the project since the support service is not planned and
the region chosen for architecture implementation is offered by the provider.
As observed in the diagrams from the previous section, in general, the required
functionalities can be implemented in any of the three providers. It should be
noted that Azure typically bundles many functionalities into single services,
causing the need for two or more services from other providers to replicate
the total functionality of a single service in Azure. However, often due to
the concentration of functions, many of them are not used, despite being
included in the service’s value. Especially in GCP, the integration between
components often requires the use of managed services, which complicates
their configuration, maintenance, and introduces more failure points.

Databricks, present in Azure’s architecture, is one of the most compre-
hensive solutions for creating machine learning models, large-scale data trans-

Chapter 3. The proposed Data Reference Architecture 45

formation, and analytics, among others, being an optimized version of Spark,
with performance improved up to 50 times faster (DATABRICKS, (accessed in
April 2024)). Additionally, the use of Delta Lake, an optimized version of Par-
quet for Databricks, ensures greater performance in read and write operations
and the history of table changes. Databricks can be used in conjunction with
AWS and GCP services. However, in Azure, integration is complete with other
services, while in AWS, external configurations are required, and in GCP, it is
completely separate from its platform. Azure and AWS also offer more security
features, utilizing security tools integrated into the platforms and facilitating
integration with data ingestion and processing services.

In terms of databases, Azure’s Cosmos DB is the only multimodel
database platform that supports OLTP and OLAP. This is advantageous be-
cause it can be used both as a transactional application and as a data ware-
house model. Additionally, despite being a proprietary database, it predom-
inantly uses open source drivers, facilitating a possible component or archi-
tecture change, unlike, for example, AWS Dynamo, which uses a proprietary
driver and is only document-oriented. For example, depending on the data
model chosen in Cosmos DB, it is possible to use the native core (SQL) API,
MongoDB API, Cassandra API, Gremlin API, and Table API (COSMOSDB,
(accessed in April 2024)). In the case of AWS, it would also be necessary
to use Redshift in conjunction with Dynamo to meet the need for analytical
data. Redshift may have auto-scaling functionality depending on the type of
machine used. By aggregating various types of data model, Cosmos DB consol-
idates the functionalities of two separate services in other providers. Because
it encompasses various functionalities, it has a proportionally higher value.

Additionally, cloud providers offer an on-premise solution if there is
no desire to store or transfer a large amount of data to the cloud, which
can be advantageous if you want to turn the solution into a product. It
should be noted that Azure’s on-premise solution has more components
compared to its competitors, making it possible to transform most of the
architecture into a local solution. Azure’s presentation solution, Power BI,
is the most common business intelligence tool on the market, with extensive
documentation and easy usability, and it is the company’s choice to develop
reports from BI analysis. Its competitors, Looker and Quicksight, although less
used, also provide complete dashboarding solutions and integrations with key
data services.

Regarding the documentation of all services, Azure also excels in com-
pleteness with manuals and diagrams of all publicly disclosed services. GCP
does not publicly disclose the complete documentation of its services. AWS,

Chapter 3. The proposed Data Reference Architecture 46

although also publicly presenting its documentation, is a bit less organized and
more challenging to navigate.

3.3.3
Cost analysis

For the price estimation, the calculators of each provider were used. Each
of them has a different pricing method. Details are shown in Table 3.1. The
estimates were made based on the already known aspects of the project and
experiences from other projects.

Table 3.1: Cost comparison of cloud computing providers

Layers\Cloud
Providers Azure GCP AWS

Ingestion Data Factory,
Service Bus

Cloud Dataflow,
Cloud Pub/Sub

Glue,
SQS

Storage Datalake Storage,
Cosmos DB

Cloud Storage,
Cloud Spanner,
BigQuery

S3,
Dynamo DB,
Redshift

Processing Databricks Cloud Datalab,
CloudDataproc

EMR ou Databricks
with specific contract

Presentation PowerBI,
App Services

Looker,
App Engine

Quicksight,
Elastic Beanstalk,
Lightsail

Total cost esti-
mated 3649,62 USD 4426,42 USD 4038,00 USD

3.3.3.1
Azure

The data factory is priced based on the type of agent for collecting data
from the source, the number of activities executed in the workflows created
within it, the use of data flows, and the quantity of read, write, and monitoring
operations. In the estimate, it was considered that the data would be extracted
from the four data sources five times per hour, using the agent installed locally
(self-hosted Integration Runtime) and without the use of data flows. The other
agent option would be for public endpoints, which is not the case for the
project.

Estimates for storage and operation of the data lake and service bus were
inferred from company’s experience with projects that used the same type of
architecture. A reasonable value of 5TB of storage was considered for the data
lake and ten million operations for the service bus.

Chapter 3. The proposed Data Reference Architecture 47

Cosmos DB is priced through its own processing unit (RU/s) and storage
capacity. Azure capacity calculator was used for the value of 400 RU/s,
and 2000GB of transactional storage and 2000GB of analytical storage were
inferred.

For Databricks, both the machine configuration and the number of
machines were defined based on the amount of data expected to be processed
simultaneously and on past project experiences. For presentation, in the app
service, two instances were considered, one for the front-end and another for
the back-end, using Linux as the operating system and the basic level of app
with a single-core instance with 1.75GB of RAM. The free version of Power BI
meets the project’s development demands, and hence does not add extra cost
to the estimate.

Finally, Azure allows some services to be reserved in advance, which
guarantees discounts of up to 60%.

3.3.3.2
AWS

Data Glue is priced by its own processing unit (DPU), the duration of the
jobs executed, the provision of development endpoints, and Databrew sessions.
The quantity of DPUs was estimated by equivalence with 8 vCPUs and 32GB
of memory, a value inferred from experience. Two development endpoints were
considered to meet demand, along with 5 interactive Databrew sessions.

SQS is priced by queue requests and data transfer. 5 million standard
queue requests and 5 million FIFO queue requests were considered, totaling
10 million operations. For data transfer, a volume of 1TB input and 50GB
output per month was inferred.

For storage components, 5TB of storage for S3 was estimated, with a data
transfer rate of 1TB for both input and output. For DynamoDB, a capacity of
2000GB was inferred, along with Redshift also having 2000GB of storage and
autoscaling functionality.

Similarly to Databricks, EMR configurations were defined on the basis
of experiences from projects where similar amounts and characteristics of data
were processed.

Presentation through QuickSight is charged based on the number of
readers, authors, and SPICE capacity. An estimate of 50 readers with the
company’s name was raised, with 2 authors considered and 10GB of SPICE
capacity.

Chapter 3. The proposed Data Reference Architecture 48

3.3.3.3
GCP

Cloud Dataflow is priced based on the type of job, its duration, and
its worker nodes. The execution of batch jobs throughout the month using
1 worker node of the type equivalent to 8 vCPUs and 30GB of memory was
considered.

For storage, Cloud Storage with a capacity of 5TB was considered as the
data lake, for analytics, BigQuery with 2000GB of storage and a volume of
1TB of consumed queries, and an additional 2000GB from Cloud Spanner.

Cloud Pub/Sub considers the volume of data and backlog storage for
its pricing. A data volume of 1TB was inferred, 10GB for the retained
acknowledged backlog, and an additional 10GB for snapshot backlog.

Similarly to Databricks, Cloud Dataproc configurations were defined
based on experiences from projects where similar amounts and characteristics
of data were processed. For presentation, two instances of the App Engine of
type F4_1G were considered, which equates to a memory limit of 2GB and
2.4GHz CPU with compatible automatic scaling types.

The price estimates were made based on the information already pre-
sented in the project and may change as understanding of the databases
and systems presented, as well as their integration methods and data vol-
ume, progresses. Additionally, the pricing methods of the services differ among
providers. For example, a database may be priced based on storage space with
one provider and on processing time and access quantity with another. This
means that it may not be possible to exactly replicate configurations between
providers, leading to some differences in prices.

3.3.4
Conclusion

Given the considerations outlined in the previous sections, it is under-
stood that Microsoft Azure is the most suitable provider to meet the require-
ments necessary for the execution of the project. In addition to being widely
used on the market, it is the solution that requires the fewest components and
offers the greatest simplicity in integration, maintenance, and monitoring. Ad-
ditionally, the solution used in the presentation layer, Power BI, is the most
well known and well documented among the three providers, making it easier
for nontechnical users to use. Any potential drawbacks, such as availability in
certain regions, do not affect the project requirements. Despite being smaller
than the others, Azure still has extensive coverage.

Chapter 3. The proposed Data Reference Architecture 49

Finally, it is important to note that this analysis was performed in 2021
when the Azure Synapse Analytics service was not yet available. With the
release of this service, the decision was made to replace Data Factory, as
Synapse offers slightly lower costs and incorporates a larger set of features.

3.4
Azure Implementation Details

3.4.1
Ingestion Layer

As mentioned above, in this logical layer, the raw data obtained from
the data extraction are sent to the Data Lake landing zone. This operation is
performed using pipelines implemented in Azure Synapse Analytics.

Azure Synapse Analytics Pipelines is a cloud-based service that enables
users to orchestrate and automate data integration workflows within the Azure
Synapse Analytics environment. These pipelines streamline the movement and
transformation of data across various data sources and destinations, facilitating
data processing, analytics, and reporting tasks.

3.4.2
Storage Layer

As mentioned above, in this logical layer, the storage services planned to
be used in the proposed architecture are configured.

Azure Data Lake Storage is a scalable and secure cloud-based storage
solution, designed to handle massive amounts of data in various formats,
including structured, semi-structured, and unstructured data. The data lake
structure in Figure 3.1 is implemented using this service.

Azure Cosmos DB is a globally distributed, multi-model database service,
designed to support highly responsive and scalable applications with low-
latency access to data.

3.4.3
Processing Layer

As mentioned above, in this logical layer, the services chosen to process
the data are configured.

Azure Synapse Analytics SQL Pools, formerly known as SQL Data
Warehouse, is a cloud-based data warehouse service designed to store and
analyze large volumes of structured and semistructured data for business
intelligence and analytics purposes.

Chapter 3. The proposed Data Reference Architecture 50

Azure Databricks is a cloud-based analytics platform built on top of
Apache Spark. It offers a unified analytics workspace for data engineers, data
scientists, and machine learning practitioners to collaborate and work on big
data and AI projects efficiently.

All data processing is executed through pipelines and/or Python scripts
from Azure Databricks. The output of Azure Databricks can be stored in one
of the data lake zones or in the Cosmos DB database.

3.4.4
Presentation Layer

As mentioned above, in this logical layer, services and applications are
planned to consume data available in the refined and test data zones of Data
Lake, as well as in Cosmos DB, and display the results of the analysis through
dashboards, reports, or data science projects.

Azure App Service is a fully managed platform-as-a-service (PaaS),
designed to build, deploy, and scale web applications and APIs quickly and
easily.

Power BI is a business analytics application that enables users to visualize
and analyze data quickly and easily.

3.4.5
Cloud Monitoring, Data Management and Governance

In this logical layer are the services available in Azure for operational
monitoring of cloud-enabled services, as well as services for managing and
governing data in this environment.

Azure Purview is a unified data governance service designed to help
discover, govern, and analyze data assets across on-premises, multicloud, and
Software as a Service (SaaS) environments. Here are some key features and
characteristics of Azure Purview:

– Unified Data Governance: Azure Purview provides a centralized platform
for managing data governance activities, including data discovery, classi-
fication, lineage, and policy enforcement. enabling organizations to gain
visibility into their data assets and ensure compliance with regulatory
requirements.

– Data Discovery and Cataloging: Azure Purview automatically discovers
and catalogs data assets across various data sources, including databases,
data lakes, file shares, and SaaS applications. Create a comprehensive
inventory of data assets and metadata, making it easy for users to search,
explore, and understand their data landscape.

Chapter 3. The proposed Data Reference Architecture 51

– Data Classification and Sensitivity Labeling: Azure Purview allows orga-
nizations to classify and label their data based on sensitivity, regulatory
requirements, or business policies. It supports automated classification
using machine learning algorithms and integration with Microsoft Infor-
mation Protection (MIP) to apply sensitivity labels.

– Data Lineage and Impact Analysis: Azure Purview provides visibility
into the lineage of data, showing how data flows through systems and
processes from source to destination. It enables users to track the lineage
of the data, understand the dependencies of the data, and perform an
impact analysis to assess the potential impact of changes on downstream
systems and processes.

– Data Governance Policies: Azure Purview enables organizations to define
and enforce data governance policies to ensure data compliance, security,
and privacy. Supports policy definition for data classification, access
control, data retention, data masking, and data lineage tracking.

– Integration with Azure Services: Azure Purview integrates seamlessly
with other Azure services, including Azure Data Lake Storage, Azure
SQL Database, Azure Synapse Analytics, Azure Blob Storage, and Azure
Key Vault. Using Azure’s built-in security, compliance, and management
capabilities, it provides a secure and scalable data governance solution.

– Collaboration and insights Azure Purview facilitates collaboration
among data stewards, data owners, and data consumers through a cen-
tralized data catalog and collaboration features. Provides insights into
data usage, access patterns, and data quality metrics to drive data-driven
decision making and improve data governance practices.

– Scalability and performance: Azure Purview is a fully managed service
that automatically scales to handle large volumes of data and metadata.
It offers high availability, reliability, and performance to support mission-
critical data governance and analytics workloads.

Azure Advisor is a custom cloud consultant. It offers best practices,
recommendations, and actionable insights to help optimize Azure resources,
improve security, enhance performance, and reduce costs.

Azure Monitor is a comprehensive monitoring and management service
that monitors the performance, availability, and health of applications, infras-
tructure, and resources running in Azure and on-premise environments.

Chapter 3. The proposed Data Reference Architecture 52

3.5
Conclusion

The proposed architecture addresses the requirements defined by the
company within the scope of the ENSIGHTS project. It is possible to imple-
ment this architecture on the three main cloud computing providers: Microsoft,
Amazon, and Google.

The architecture consists of a set of technology components with strong
integration among them, as well as a storage framework in zones within the
company’s Data Lake. This architecture includes tools for monitoring cloud
resources, as well as data management and governance.

The components of the architecture are responsible for ingesting data
from the company’s on-premises systems into the cloud environment, process-
ing the data for each zone of the Data Lake, and managing the flow of data
between these different zones.

The next chapter presents the results obtained from the deployment of
the proposed architecture, aiming to address the business case studied within
the scope of the ENSIGHTS project.

4
Results

4.1
Introduction

During the development of the R&D project ENSIGHTS, the data ar-
chitecture presented in this document was implemented in an experimental
environment distinct from the company’s production environment. After im-
plementation, data flows from the SAP and SAGE systems were created, along
with pipelines for data ingestion, storage, processing, and presentation. This
chapter presents the results of the experiment and the results of using the
cloud monitoring and the data management and governance tools proposed in
the reference architecture.

The chapter mentions two predictive indicators for ML, the chromato-
graphic assay indicator (CAI) and the Electrical Failure Risk Indicator (EFRI),
which use chromatographic and sensor data from power transformers, respec-
tively. These models were developed and trained with SAP and SAGE data
for this kind of equipment. CAI evaluation showed a significant improvement
in predicting failures compared to classical methods used in the maintenance
of this kind of equipment, while the EFRI tests showed that it can be useful in
helping maintenance teams identify potential defects that can lead to equip-
ment failure. However, the development of these two indicators is outside the
scope of this work.

4.2
Azure Data Lake Storage

4.2.1
Key Features

Azure Data Lake Storage (ADLS) is a highly scalable and secure cloud-
based storage service provided by Microsoft Azure. It is designed to handle
large volumes of data in various formats, including structured, semi-structured,
and unstructured data. ADLS is optimized for big data analytics and Data
Lake scenarios, offering features such as high throughput, low latency, and
built-in integration with Azure services like Azure Data Lake Analytics, Azure
Databricks, and Azure HDInsight.

Key features of ADLS (ADLS, (accessed in April 2024)) include:

Chapter 4. Results 54

– Scalability: ADLS can handle massive amounts of data, scaling up or
down as needed to accommodate changing data storage requirements.

– Performance: provides high throughput and low latency for data access,
enabling fast data ingestion, processing, and analytics.

– Security: ADLS offers robust security features to protect data at rest and
in transit, including encryption, access control, and role-based security
policies.

– Integration: It seamlessly integrates with other Azure services such
as Azure Data Factory, Azure Synapse Analytics, and Azure Machine
Learning, enabling organizations to build end-to-end data pipelines and
analytics solutions.

– Analytics: Azure Data Lake Storage supports a wide range of analytics
and data processing tools, including Apache Spark, Hadoop, and machine
learning frameworks.

The Data Lake structure was implemented following the structure pro-
posed in Figure 3.1, as shown in Figure 4.1.

Figure 4.1: Data Lake structure implemented in Azure

4.2.2
Delta Lake

Data are stored on Data Lake in Delta Lake format. Delta Lake is an
open source storage layer that provides reliability to data lakes. Databricks
developed it to address some of the challenges faced by organizations when
dealing with big data in cloud storage environments. Delta Lake builds on top

Chapter 4. Results 55

of Apache Spark and expands its capabilities to provide ACID transactions,
schema enforcement, and time travel capabilities to data stored in cloud storage
systems like Amazon S3, Microsoft Azure Blob Storage, and Google Cloud
Storage.

One of the key features of Delta Lake is its ACID (Atomicity, Consistency,
Isolation, Durability) transaction support, which ensures that data operations
are atomic and consistent, even when multiple users are accessing the data
concurrently. This helps prevent issues such as data corruption or inconsistent
reads that can occur in distributed data processing environments.

Schema enforcement is another important feature of Delta Lake. It
ensures that the data ingested into the lake comply with a predefined schema,
thus improving data quality and making downstream data processing more
reliable. Delta Lake also supports schema evolution, allowing for the evolution
of schemas over time without breaking existing pipelines or requiring manual
intervention.

Time travel is perhaps one of the most powerful features of Delta Lake.
It allows users to query data at different points in time, providing a historical
view of the data, and enabling easy rollback to previous versions if necessary.
This feature is particularly useful for debugging data quality issues, auditing
changes, and recovering from errors.

Delta Lake has gained popularity among organizations looking to build
reliable and scalable data lakes in the cloud. Its integration with Apache Spark
makes it easy to use for data engineers and data scientists familiar with Spark,
while its support for ACID transactions, schema enforcement, and time travel
makes it a robust choice for building production-grade data pipelines. As
organizations continue to deal with increasingly large volumes of data, Delta
Lake offers a promising solution to manage and analyze data on a scale.

4.3
Data Extraction

4.3.1
Overview

In the proposed architecture, the two main data sources within the scope
of the project stand out:

– SAP PM: This SAP module helps to manage equipment inspections,
repairs, and preventive activities. The SAP PM (Plant Maintenance)
module can also plan material and labor activities, record costs, and even
control automatic repairs and maintenance requests. At the company,

Chapter 4. Results 56

SAP PM is mainly used by the maintenance sector to administer the
company’s technical database. More specifically, the following data,
which were relevant to the objective of the project, are stored in the
database of this module:

1. Technical information for equipment identification, such as instal-
lation location, classes, and their electrical characteristics.

2. Historical records of equipment management since its conception
(installation and energization).

3. Information regarding maintenance notes for each equipment, as
well as their respective executions (maintenance orders).

– SAGE: This system records data from sensors and operation terminals
present in substation equipment, such as power transformers and reac-
tors. These include data such as current, voltage, power, temperature,
among others, collected in real time.

These systems were deployed in the company’s on-premises infrastructure
and operated in a production environment. Therefore, to obtain the project’s
relevant data, it was necessary to build integrations between each of the
systems and the prototype’s cloud environment.

For each system, a specific method of making its data available in files
was developed, and these files were saved in specific folders on a server in the
company’s on-premises environment. However, the integration process followed
a common logic for both systems, where the cloud components would be
responsible for accessing these files and ingesting them into the prototype
environment in Azure.

When it comes to transfer data from on-premises to cloud, Microsoft
recommends Integration Runtime (IR). IR is a component of Azure Synapse
Analytics, a cloud-based data integration service that facilitates the movement
and transformation of data between different data stores, both on-premises and
in the cloud.

4.3.2
SAP PM data extraction

The data extraction of Orders and Maintenance Notes of Power Trans-
formers and Reactors data from SAP PM was performed through an RPA that
extracts the data from each of the project’s substations of interest and makes
it available in XLSX files in a folder on the company’s on-premises server
environment.

Chapter 4. Results 57

Using IR for integrating the on-premises environment with the cloud
environment, the generated files can be imported into Azure using the following
parameters:

– Host - path of the server’s file folder;

– User Name - login of a user with access to the server;

– Password - password of the user with access to the server.

4.3.3
SAGE data extraction

Data extraction from SAGE is performed through an automated scripted
routine that periodically accesses the historical database in PostgreSQL and
transfers the necessary files to the server with the IR installed.

The historical base of SAGE is continuously updated with gathered data
in real-time, and the process of updating these data in the Data Lake is done
daily.

4.4
Azure Synapse Analytics Pipelines

4.4.1
Overview

Upon reaching the cloud through preconfigured processes in the IR, SAP
and SAGE data are sent to the Data Lake Landing Zone and then processed
by specific pipelines implemented in the Azure Synapse Analytics component.
Once properly processed, the original replicas of the data in the Landing Zone
are transferred to the Raw Data Zone for backup, while the preprocessed data
are sent to the Trusted Data Zone. The landing zone and the raw data zone
are represented by the Ingestion Zone (figure 3.1).

After reaching the Trusted Data Zone, the data can still undergo further
processing to more promptly meet specific services, such as feed indicators
and dashboards developed via Power BI. For this purpose, there is the Refined
Data Zone, which acts as a Data Mart, providing processed data sources for
specific purposes. Lastly, there is the Test Zone, whose objective is to act as a
data sandbox for conducting tests, mainly aiming at the development of new
ML models.

All data processing is executed through pipelines or Python scripts from
Azure Databricks. Azure Databricks utilizes the Apache Spark engine, geared
toward distributed processing of large amounts of data (Big Data). The output

Chapter 4. Results 58

of Azure Databricks can be stored in one of the Data Lake zones or in the
CosmosDB database. CosmosDB is a universally distributed, highly available
database that offers relational features as well as a wide range of NoSQL
features, from document-based to graph-based modeling. Initially in this
project, its goal is to serve as a database focused on serving a Web application
hosted on the Azure App Services component; however, its versatility will
provide future evolution in the architecture prototype and dashboard being
developed throughout the project without significant impacts.

Regarding data flows in the Data Lake, they can theoretically be divided
into three parts for each system. In practice, there is no clear identification of
where each flow begins and ends. The flows are:

– Ingestion Flow: responsible for transporting data from the server to the
Landing Zone of the Data Lake;

– Cleaning and Standardization Flow: responsible for processing the re-
ceived file in the Landing Zone and treating this data to be stored in the
Trusted Data Zone, and subsequently storing the original form in the
Raw Data Zone;

– Refinement Flow: responsible for refining the treated files present in the
Trusted Data Zone and storing them in the Refined Data Zone, where
data visualization options will typically retrieve them.

The next sections provide a detailed description of what has been built
involving each of these flows for each of the systems mentioned above. It is
important to note that any validation failure in the pipelines will result in
an email notification sent to a defined group of specific individuals so that
necessary actions can be taken to correct the issue.

4.4.2
SAP Pipelines

SAP data flows between the data lake zones are implemented in four
pipelines, as shown in Figure 4.2.

Chapter 4. Results 59

Figure 4.2: SAP pipelines in Synapse Analytics

Processing begins in pipeline “IEC_SAP_ServertoADLS_P_ScanFolder”.
This is the main pipeline, which calls the others in a logical sequence of activ-
ities.

4.4.2.1
SAP data to landing zone

The first three activities are responsible for the ingestion of data to the
Data Lake landing zone. Processing starts by searching for files in the UNC
path of the company’s on-premises server, where, in the case of SAP, there
should be XLSX files in this folder with the transaction name appended to
them, such as “2023-10-23_Transformers_IH08.xlsx”. The rest of the name
does not need to adhere to any other specific pattern.

Figure 4.3: Activities related to ingest SAP data for landing zone

The access to the Data lake landing zone and the SAP folder and file

Chapter 4. Results 60

data is implemented as integration datasets, as shown in Figures 4.4, 4.5 and
4.6. Integration datasets are a feature in Synapse Analytics that allows you to
create and manage datasets that can be used in various parts of the Synapse
environment. These datasets serve as centralized definitions of data that can
be accessed and utilized by different components within Synapse, such as SQL
scripts, Spark jobs, and Power BI reports.

With integration datasets, you can define schema-on-read datasets, which
means that the data schema is defined at the time of querying rather than being
enforced at data ingestion. This provides flexibility to work with different types
of data sources and formats.

Integration datasets help streamline data management and access within
Azure Synapse Analytics by providing a unified way to define, organize, and
consume data across different analytical workflows.

Figure 4.4: Integration Dataset for Data lake landing zone

Figure 4.5: Integration Dataset for SAP Folder

Chapter 4. Results 61

Figure 4.6: Integration Dataset for SAP File

The XLSX files in the folder will contain the transaction history for
all SAP company substations that were used in the extraction. The IH08
transaction will return the master data for all the company’s equipment, while
other transactions will be limited only to transformers and reactors.

The second activity validates whether the files meet the requirements
described above. After validation, the third activity implements a foreach loop
and invokes pipeline “IEC_SAP_ServertoADLS_S_CopyFile” for copy each
file to the Data Lake Landing Zone, thus completing the data ingestion flow
of SAP transactions.

The landing data in Data Lake are saved in “landing/sap/transactions/-
transaction/date: year-month-day”, where the transaction represents the code
of the processed transaction, while the date indicates when the pipeline per-
sisted in the file. Files that were successfully copied to the cloud can be deleted
by the pipeline itself. The components involved in this flow include only Azure
Synapse Analytics and Data Lake.

4.4.2.2
SAP data to trusted zone

With the files in the Landing Zone, the fourth activity invokes pipeline
IEC_SAP_ServerToADLS_S_DataProcessingTrusted.

The main activity of this pipeline is to invoke the script
/Dev/preprocessing/SAP/transmissao-transacoes/save_transaction stored
in a Azure Databricks notebook to process the data. In the case of SAP
transactions, special characters present in column names were removed to
avoid errors during queries on these data. After the script finishes processing,
the data is saved in Delta format in the Trusted Data Zone of the Data Lake,
while the original files that were in the Landing Zone are moved to the Raw

Chapter 4. Results 62

Figure 4.7: Activity related to copy SAP data for trusted zone

Figure 4.8: Pipeline to move SAP data from Landing Zone to Trusted zone

Data Zone, where they are available for auditing if necessary. This code is in
Section A.1. Due to confidentiality reasons, SAP data have been hidden in the
code presented.

Data in the trusted data zone are saved in “trusted/sap/transaction-
s/transaction”, where the transaction represents the code of the transaction
that is saved in this zone of the Data Lake. Note that the data in the Raw
Data Zone are saved in the same pattern as in the Landing Zone, for exam-
ple, “raw/sap/transactions/transaction/date: year-month-day”. At this point,
the cleaning and standardization flow is concluded, where, in addition to the
previously used components, Azure Databricks is included in the orchestration
performed by the pipeline.

Chapter 4. Results 63

4.4.2.3
SAP Data to refined zone

After the files persist in the Trusted Data Zone without errors, the
pipeline continues its flow, with the fifth activity invoking the pipeline
IEC_SAP_ServerToADLS_S_DataProcessingRefined.

Figure 4.9: Activity related to copy SAP data for Refined zone

The main activity of this pipeline is to invoke the script /Dev/model-
s/iec/get_all_dga_results stored in a Azure Databricks notebook that will
refine the data to feed, mainly, the dashboard developed for the project. This
code is in Section A.2. Due to confidentiality reasons, SAP data have been
hidden in the code presented.

Figure 4.10: Pipeline to copy SAP data from Landing Zone to Refined zone

Chapter 4. Results 64

At this stage, four datasets are created and persisted in the Refined Data
Zone of the Data Lake:

– dga: dataset created from chromatographic data originating from the
SAP IK17 transaction. Feeds the Chromatographic Indicators area
(Chromatographic Test Indicator, other chromatographic diagnostics,
and Duval Triangle) of the dashboard’s indicators tab.

– idade-equipamento: dataset created from data from the SAP IH08 trans-
action. Provides equipment age information.

– lista-equipamento: data set created from data from the IH08 transaction
with results of analyses using the IK17 transaction. Feeds the equipment
list table and the alert counter in the indicator tab.

– oleos-processados: data set created from data from the IK17 transaction,
feeding the Chromatographic Indicators area (Gas Concentration and
Test History) of the dashboard’s indicators tab.

Figure 4.11: Data Lake Refined Zone for SAP Data

Chapter 4. Results 65

The scripts use the trained CAI (Chromatographic Assay Indicator)
model saved in the Data Lake Refined Data Zone, specifically in refined/sap/-
models/iec_model.sav. All the forementioned datasets are saved in refined/s-
ap/dashboard, also in Delta format, just like the data in the Trusted Data
Zone. The backend application, developed for the project, can directly access
these data through the Serverless SQL Pools functionality of Azure Synapse
Analytics. The source code related to the application backend is hosted on the
Azure App Services component.

After all processing steps are executed, the refinement flow is completed,
and the pipeline execution is finished.

It should be noted that, up to this point, pipeline processing activities
have traversed the flow among all components listed in the Ingestion, Storage,
Processing, and Presentation layers, illustrated in Figure 3.2, with the latter
responsible for housing the Azure App Services component, which manages
both the backend of the solution, which provides data to the frontend,
responsible for visualizing these data through a dashboard.

4.4.3
SAGE Pipelines

SAGE data flows between the data lake zones are implemented in four
pipelines, as shown in Figure 4.12.

Figure 4.12: SAGE pipelines in Synapse Analytics

Processing begins in pipeline “IEC_SAGE_ServertoADLS_P_ScanFolders”.
This is the main pipeline, and it calls the others in a logical sequence of activ-
ities.

Chapter 4. Results 66

4.4.3.1
SAGE data to landing zone

The first three activities are responsible for the ingestion of data to the
landing zone of the data lake. Processing starts with data retrieval from the
company’s on-premises server. It is worth noting that, specifically for SAGE,
the .pas, .alr, and .sde data files are brought to the server through a routine
that accesses a network address on-premises daily, referring to the historical
SAGE database. In this folder, there should be files in the formats pas, alr, and
sde, separated by folders corresponding to the substations. All file extensions
must follow the naming pattern mmmddyy.ext, where mmm = jan, feb, ...,
dec, dd = 01, 02, ..., 31, yy = ... 14, 15, 16, ..., and ext = .pas, .alr, .sde. For
example, the file “ago2419.pas” can be cited. Since the files in this case are
provided automatically, the pipeline is configured for daily execution at 8 a.m.
It is worth mentioning that files generated after midnight on the same day are
filtered out.

Figure 4.13: Activities related to ingesting SAGE data for landing zone

Similarly to the SAP pipelines, access to the data lake landing zone and
the SAP folder and file data is implemented as integration datasets, as shown
in Figure 4.14.

Chapter 4. Results 67

Figure 4.14: SAGE integration datasets

The second activity selects only the substations folders, and
the next activity implements a foreach loop and invokes pipeline
“IRDE_SAGE_ServertoADLS_S_ScanFiles”. This pipeline verifies the exis-
tence of the files to be ingested and confirms their naming format, as shown
in Figure 4.15.

Figure 4.15: Pipeline to scan SAGE data files

After verification, the pipeline proceeds to the last activity, invoking
pipeline “IRDE_SAGE_ServertoADLS_S_CopyFiles”, which copies the files
to the Data Lake Landing Zone, thus completing the data ingestion flow from
SAGE to the Azure cloud architecture.

Data in the Data Lake is saved in the location “landing/sage/substa-
tion/year/month”, where the substation represents the code of the processed

Chapter 4. Results 68

Figure 4.16: Pipeline to copy SAGE data files to the landing zone.

substation, while the year and month indicate the year and month when the
pipeline persisted in the file.

4.4.3.2
SAGE data to trusted zone

With the files in the Landing Zone, the last activity of the pipeline in Fig-
ure 4.13 is invoking pipeline “IEC_SAP_ServerToADLS_S_DataProcessingTrusted”,
as shown in Figure 4.17.

Figure 4.17: Pipeline to move SAGE data from Landing Zone to Trusted zone

The main activity of this pipeline is to invoke the script /Dev/preprocess-
ing/SAGE/mover_trusted/nb_final stored in an Azure Databricks notebook

Chapter 4. Results 69

to process the data, except for the sde files, which are not used as data sources
in the project. For this reason, .sde files are transferred directly to the Raw
Data Zone. On the other hand, files with pas and alr extensions, as they are
semi-structured files, need to undergo specific processing before being saved in
the Trusted Data Zone, in a tabular format. This code is in Section A.3. Due
to confidentiality reasons, SAGE data have been hidden in the code presented.

After the script finishes processing, the data is saved in Delta format in
the Trusted Data Zone of the Data Lake, while the original files, which were
present in the Landing Zone, are moved to the Raw Data Zone, where they
are available for audit if necessary.

In the Trusted Data Zone, the data are saved in the location “trust-
ed/sage/substation/file”, where the substation represents the substation code
and the file represents the.alr and.pas extensions. In the Raw Data Zone, the
files are saved in “raw/sage/substation/year/month”. The.pas files are parti-
tioned by year, whereas the alr files do not have partitions because they are
very small. Logs of problems arising from the processing of alr and pas files
are saved in Delta format in “trusted/sage/error_processing_logs’. Files that
showed any abnormality during pipeline execution are moved to the Raw Data
Zone immediately after notifying the users of interest about the problem. These
logs may eventually be part of a dashboard area under development.

At this point, the cleaning and standardization flow is concluded, where,
in addition to the previously used components, the Azure Databricks compo-
nent is included in the orchestration performed by the pipeline.

4.4.3.3
SAGE data to refined zone

Once the files are saved in the Trusted Data Zone without errors, the
pipeline continues its execution to run another Azure Databricks script, which
will refine the data to meet the needs of the dashboard developed for the project
primarily. In the case of SAGE, the datasets that will make up this zone are still
under discussion, but it is certain that, as in the case of the CAI indicator, there
will be a folder saved with the EFRI (Electrical Failure Risk Indicator) model
in “refined/sage/models”. The results of the EFRI predictions will be saved in
The “sap/refined/dashboard/equipment-list” table, despite being located in
the SAP area, it displays the equipment list present in the dashboard, showing
the results of both indicators from the indicators tab.

After all processing steps are executed, the refinement flow is completed,
and the SAGE pipeline execution is finished. It should be noted that, up
to this point, the pipeline processing steps have traversed the flow between

Chapter 4. Results 70

all components listed in the Ingestion, Storage, Processing, and Presentation
layers, illustrated in Figure 3.2. The latter is responsible for housing the
Azure App Services component, which manages both the backend of the
solution responsible for data provisioning and the frontend responsible for data
visualization through a dashboard.

4.5
Azure Databricks

4.5.1
SAP and SAGE Correlation

As mentioned earlier, during the execution of Azure Synapse Analytics
pipelines for SAP and SAGE data, Azure Databricks notebooks are activated
in some of the data processing steps. Although steps such as data cleansing
and transformation can be performed in Synapse Analytics, Azure Databricks
offers greater flexibility and lower processing costs for the same operations.

To build the data set used in the EFRI model, one of the most important
operations that involved SAP and SAGE data was the correlation between
these two data sources for a given asset. SAP and SAGE identifiers differ in
type and format, which prevents a direct relationship between the equipment
records contained in both systems, as shown in Figure 4.18. In the case of power
transformers, SAP uses an 8-digit format identifier to distinguish equipment,
while in SAGE, this identification is made by combining the transformer’s
location identifier with its phase. From this unified identifier it is possible to
access the analog measurements of that equipment.

Figure 4.18: SAP and SAGE correlation.

To solve this problem and thus fill the measurement columns with the
respective measurement values of each equipment, it was necessary to proceed
in three steps:

Chapter 4. Results 71

1. Extraction of transformer location data and phase from the columns
Denominação 1, Denominação 2 and Descrição, present in the file Notas
de Manutenção - Trafos.xlsx, originating from SAP PM.

2. Definition of a mapping structure between fault categories and measure-
ments. For this purpose, a hierarchical structure similar to that repre-
sented by Table 4.1 was created.

3. Execution of a query using regular expressions in the file containing
the analog moving averages calculated from one of the file-restructuring
procedures in the PAS format. The SAGE measurement variables are
typically formed by (1) the substation acronym (e.g., STSB or SB),
(2) the transformer, (3) the measurement, represented by one of the
numerous acronyms in quotations present in the Measures column of
Table 4.1, and (4) the phase. To find the variables corresponding to the
chosen fault categories for each of the seven correspondences, regular
expressions were used.

Table 4.1: Hierarchical structure for mapping between fault categories, defined
by the categorization algorithm, and SAGE measurements.

Failure cat-
egory

Measurement
type Measuments

Cooling Current “AT_I”, “BT_I”, “TE_I”
Temperature “AT_TMP”, “BT_TMP”, “TE_TMP”

Termometer Temperature “AT_TMP”, “BT_TMP”, “TE_TMP”

Electric

Current “AT_I”, “BT_I”, “TE_I”

Frequency “AT_HZ”, “BT_HZ”, “AT_DIF_HZ”,
“BT_DI_HZ”

Power

“AT_MR”, “BT_MR”, “AT_MVA”,
“BT_MVA”, “AT_MVAP”,
“BT_MVAP”, “AT_MVAR”,
“BT_MVAR”, “AT_MW”, “BT_MW”,
“AT_PF”, “BT_PF”

Voltage
“AT_KV_ANT”, “AT_KV_POS”,
“BT_KV_ANT”, “BT_KV_POS”,
“AT_KV_AVG”, “BT_KV_AVG”

Chapter 4. Results 72

4.5.2
Databricks Security

4.5.2.1
Overview

As part of this research, an architectural pattern has been developed to
enable secure access to data stored in Azure Data Lake Storage (ADLS) by
notebooks developed in Azure Databricks. This pattern is aligned with the
proposed data architecture, as it integrates databricks with the Azure key
vault, a service that provides a secure store and management of passwords
used to access resources from Azure.

The implementation of this architectural pattern uses a service principal
as a mediator of access, allowing data access using a mount point syntax,
without exposing sensitive information from the Azure environment in the
notebooks, which can be accessed by multiple developers in a team. The
solution is intended for data engineers and data scientists who use the Azure
Databricks platform for their data science projects and need to access data
from an ADLS.

It should be noted that due to the rapid development of Azure
Databricks, it is estimated that other solutions, such as Unity Catalog, may
replace the architecture presented in this project in the coming years, as an
alternative for secure data access control.

4.5.2.2
Implementation

There are some architectural patterns to enable access to ADLS from
Databricks, as shown in Figure 4.19.

Figure 4.19: Architectural patterns to access ADLS from Databricks.

Chapter 4. Results 73

Of all available patterns, the one that ensures the highest security in ac-
cess is the use of the Service Principal. A Service Principal is a resource very
similar to a user account in Azure. It is registered in the Azure Active Direc-
tory and is associated with access permissions to resources within an Azure
subscription through RBAC (Role Based Access Control). It is the recom-
mended method to be used in Azure Databricks jobs and processing pipelines,
as it provides greater security and traceability. In a good architecture, each
application should have its own Service Principal, and each Service Principal
should only have the necessary permissions for the application it is linked to.

Figure 4.20: Architectural pattern to access ADLS using Service Principal.

To implement a Service Principal in the proposed architecture, the
following steps are necessary:

1. Register the service principal (or application) in Azure Active Directory.

2. Generate a secret for the application.

3. Configure Spark with the Client ID, Tenant ID, and the secret.

4. Associate the “Storage Blob Data Contributor or Reader” role with the
Data Lake, so that the Service Principal can access the data lake blobs.

Chapter 4. Results 74

4.5.2.3
Databricks File System and Databricks Mounts

The Databricks File System is an abstraction layer that simplifies access
to object storage, providing a file-system-like experience for Databricks users
and applications. It plays a key role in the integration of Azure Databricks
with the available storage frameworks in Azure, such as Data Lake Storage.
Its main characteristics include:

– Through DBFS, users and applications can interact with stored data as
if they were working with a local file system or HDFS. This simplifies
reading and writing data to object storage.

– DBFS stores data in Azure Blob Storage, which offers durability and
cost-effectiveness. DBFS makes this interaction transparent to the user.

– You can “mount” Azure Blob Storage containers or directories onto
specific points in DBFS. This allows you to access your data in Azure
Blob Storage through paths in DBFS.

– Since DBFS is built on Azure Blob Storage, it inherits its durability and
availability characteristics. Additionally, DBFS ensures read-after-write
consistency, which is essential for data analysis workloads.

– DBFS is optimized to support streaming and large data analysis work-
loads. It can handle large volumes of data and supports parallel read and
write operations.

– DBFS works well with tools and frameworks from the Hadoop/Spark
ecosystem. The data in DBFS can be read directly by Apache Spark
applications, facilitating processing and analysis.

Although DBFS can store data, it is not recommended for storing
organizational data because if the workspace is deactivated, the data is lost.
In this sense, Databricks allows mounting a storage account as a mount point
in DBFS (Databrick mount). Access credentials are provided at the time of
mounting. Once done, everyone with access to the workspace will have access
to the data from the mounted storage account as shown in Figure 4.21. Access
to the data is done through a file and folder semantics, different from long
URLs. The main benefits of this approach are:

– Access to data without need for credentials.

– Access to files using a folder semantics instead of URLs (e.g., /mnt/stor-
age1).

– Stores files in Blob Storage objects.

Chapter 4. Results 75

Figure 4.21: Databricks File System.

Note that the “Unity Catalog” feature has been adopted as the standard
for data access management in the most recent projects. Unity Catalog is
Databricks’ data governance solution that offers the ability to manage the
availability, usability, integrity, and security of data within an organization.
Since this product was launched at the end of 2022, its adoption is not yet
widespread, and the architectural patterns presented in Figure 4.19 are still
the most commonly used in projects involving the use of ADLS and Azure
Databricks.

With the use of Service Principal and DBFS, it is possible to implement
data access in a simple and secure manner, as shown in Figure 4.22. Data
stored in blob containers in Azure Data Lake Gen2 are made available through
mount points in DBFS. The access control mediation is ensured by the Service
Principal. Notebooks gain access to the data through mount points in DBFS,
without needing to expose sensitive tenant data in plain text within the
notebooks.

Chapter 4. Results 76

Figure 4.22: Databricks Secure Access Pattern.

4.6
Azure Synapse Analytics SQL Pools

As mentioned earlier, the backend application, developed for the project,
can directly access these data through the Serverless SQL Pools functionality
of Azure Synapse Analytics.

Figure 4.23 shows one of the queries built in the back-end code to list
the ages of the equipments grouped by the company departments responsible
for their maintenance. Data are from SAP transaction IH08.

The request to perform the query is made through an Synapse’s endpoint.

Chapter 4. Results 77

Figure 4.23: A SQL query running in a Synapse SQL Pool.

4.7
CosmosDB

CosmosDB is the main database of the proposed architecture, and it is
used by applications in the presentation layer. It has a copy of the data in the
refined zone, in a more suitable format than in the data lake zones, when it
comes to use in reports, dashboards, or machine learning models.

CosmosDB can also be used to perform direct analysis, utilizing the built-
in analytical capabilities of the service along with its supported APIs and query
languages. You can choose one of the APIs based on the data model (e.g. SQL,
MongoDB, Cassandra or Gremlin) and write analytical queries using the query
language associated with the chosen API. The built-in functions and operators
can be used in queries for various tasks such as filtering, aggregation, sorting,
and data transformation.

Although data analysis operations can be performed in Synapse Analyt-
ics, carrying them out in Cosmos DB presents a significantly lower cost, which
was a premise of the project and guided the development of the proposed
architecture.

In the context of the project, the data are stored as collections and
accessed via a MongoDB API, as shown in Figure 4.24.

Chapter 4. Results 78

Figure 4.24: CosmosDB Collections.

MongoDB is a document-oriented NoSQL system. This means that a
MongoDB record is a document which, in turn, is a data structure composed
of field-value pairs. MongoDB documents are similar to JSON objects. The
field values can include other documents, arrays, and arrays of documents
(MONGODB, (accessed in September 2022)), as shown in Figure 4.25.

Figure 4.25: CosmosDB Collection in detail.

In the context of the ENSIGHTS project, CosmosDB stores some of the
data (e.g. Equipments, Transmission Functions, Substations) to be presented in
a custom dashboard designed to help maintenance team’s decisions, as shown
in Figure 4.26:

Chapter 4. Results 79

Figure 4.26: Custom dashboard showing CAI and EFRI indicators.

4.8
Azure App Services

This component manages both the backend and the frontend of the
solution, responsible for publishing data in a custom dashboard, as shown
in Figure 4.26.

4.8.1
The frontend

This is the layer responsible for the user interface, namely the graphical
presentation of the dashboard. Through the front-end, requests are made to
the back-end of the solution, which returns the requested data for the correct
construction of its visualization.

For the development of the front-end, the React framework and the
TypeScript language were chosen. These technologies are widely used in similar
applications to be performant and have active communities that collaborate
in the evolution and support of their respective tools.

4.8.2
The backend

The back-end is the layer responsible for providing information from the
data sources used in the project to user requests via the front-end application,
securely.

For the development of the back-end, the .Net Core framework was cho-
sen, which, due to its robustness and scalability, proved to be a more attractive
option for the solution’s productization. Managed by Microsoft, it has exten-

Chapter 4. Results 80

sive documentation, strong community support, and high compatibility with
the technologies offered by the Azure platform.

Access to data sources by the back-end can be done through two
scenarios: (i) via Azure CosmosDB or (ii) via Azure Synapse Analytics,
depending on the storage strategy. A hybrid approach that adopts both
components may also be adopted according to the strategy defined after
receiving and validating the data.

The first scenario was conceptualized at the beginning of the project and
uses Azure CosmosDB as the data source. In this way, queries would be made
aiming to provide data to the front-end through the language’s own libraries,
created to facilitate communication and use of Azure CosmosDB in solution
development.

With the inclusion of Azure Synapse Analytics in the project architec-
ture, there is the option to query Data Lake data directly through this com-
ponent, without the need to transfer data to another base where such queries
can be executed.

4.9
PowerBI

PowerBI is part of the company’s strategy to implement a self-service
culture with the empowerment of people outside IT, to build their own reports
using this application.

Although nothing was developed with this tool in the context of the
project, the proposed architecture provides all the necessary resources to the
data citizens to explore, analyze, and present reports without IT support.

4.10
Azure Purview

Microsoft Purview is a comprehensive set of solutions that can help your
organization govern, protect, and manage data wherever it lives. Microsoft
Purview solutions provide integrated coverage and help address data fragmen-
tation between organizations, the lack of visibility that hampers data pro-
tection and governance, and the blurring of traditional IT management roles
(PURVIEW, (accessed in April 2024)).

The article “Microsoft Purview and Azure Synapse: Enabling End-to-
End Data Governance and Quality Management” (CHAUDHARY, (accessed
in April 2024)) explores the importance of data governance and quality
management in a data-driven world. Highlights how Azure Purview and Azure
Synapse can be used to achieve comprehensive data governance, including data

Chapter 4. Results 81

discovery, cataloging, classification, data lineage, and security. In addition, it
describes how Azure Synapse can be used to perform automated data quality
checks, integration, and team collaboration.

The article also presents the project phases for implementing data
governance and quality management, including the identification of crucial
attributes, classification of quality check components, and automation of the
quality check process. It emphasizes the importance of automating quality
checks and how it can enhance organizations’ consistency, accuracy, and
efficiency, as well as provide a simplified view of the process through Power BI
reports.

This project can be a good starting point for establishing data governance
practices considering the proposed architecture.

4.11
Conclusion

The implementation based on Microsoft Azure made it possible to
validate the proposed architecture with the development of ML models based
on SAP and SAGE data, which were collected, ingested, treated, and presented
in a custom dashboard.

Synapse Analytics’ pipelines were responsible for orchestrating the ac-
tivities and invoking Databricks, which played a key role in bringing the raw
data from the on-premise sources, processing, and saving the data in a struc-
tured data lake. Azure Databricks also performed all the data transformations
required to correlate SAP and SAGE data, which was necessary to run the
predictions of the CAI and EFRI machine learning models.

5
Conclusions and future work

The main contributions of this dissertation were:

– The definition of a data reference architecture for the electrical sector,
consisting of a set of technology components with a strong integration
among them, as well as a storage framework organized in zones within a
data lake.

– The description of an operational prototype of a computational platform
in the cloud, which would assist in optimizing the predictive maintenance
process of power transformers using Machine Learning techniques.

The prototype was developed within the scope of the ENSIGHTS Re-
search and Development project. Data storage, processing and presentation
flows were implemented and delivered the expected results.

The implementation of the proposed architecture made possible the
development and operation of the CAI and ERFI machine learning models,
due to the data integration flows between the SAP and SAGE databases and
the data lake. Prediction models need data to be updated on a regular basis
to improve the model’s accuracy.

During the development of the ERFI model, a limitation in the model’s
generalization capacity was observed, due to the different implementations of
SAGE for each substation considered in the project context. In future work,
it is suggested to investigate a possible alignment of schemes that allow for
expanding the data set used in the training of this model.

Before the R&D project began, Microsoft Azure was already chosen by
the company’s infrastructure department as cloud technology to preferably
adopt to develop new cloud-based solutions. The result of the evaluation,
indicating Microsoft as the best option, facilitates the onboarding of the
prototype into the company’s cloud infrastructure.

Although the project did not implement data management and gover-
nance practices, it was possible to describe some scenarios using the proposed
technologies to validate their use.

The article “on the use of machine learning for the predictive maintenance
of power transformers” (PACHECO VAGNER PAES; MAROTTI, 2023) pre-
sented the results of the Data Science project developed within the scope of
ENSIGHTS, using an implementation of the proposed architecture.

During the development of this dissertation, Microsoft released Fabric
(FABRIC, (accessed in April 2024)), an Azure cloud all-in-one analytics

Chapter 5. Conclusions and future work 83

solution designed for enterprises. It encompasses a wide range of services,
from data movement to Data Science, Real-Time Analytics, and Business
Intelligence. Data Lake, Data Engineering, and Data Integration are combined
in a single platform, eliminating the need to use multiple services from
different vendors. Power BI, Azure Synapse, and Azure Data Factory can be
used in a unified environment, providing a seamless user experience across
different analytics tasks. The service also offers centralized administration and
governance, where IT teams can centrally manage enterprise capabilities, and
permissions are automatically applied across all services. It is a promising
solution for future work considering the potential to simplify the proposed
architecture.

As mentioned earlier, Unity Catalog is Databricks’ data governance
solution, released in late 2022. Considering the proposed architecture, it is
also a promising solution, which can be explored in future work.

Finally, although the architecture proposal has focused on electricity
companies, it can be adapted for other industry sectors, with a preliminary
assessment of the requirements and typical data aspects of a company in the
sector under study. This assessment can be conducted with the support of
a framework, as proposed in (BRINCH, 2018). This preliminary study may
indicate, for example, the need to incorporate technologies for processing
streaming data flows into the proposed architecture. It is important to note
that the proof-of-concept study described in Section 3.2, conducted with two
other cloud computing providers, showed that the proposed architecture can
be deployed on technologies other than Microsoft, further expanding its usage
in the industry.

6
Bibliography

ADLS. ADLS Features. (accessed in April 2024). <https://azure.microsoft.com/
en-us/solutions/data-lake/>. Cited in page 53.

AL-RUITHE, M.; BENKHELIFA, E.; HAMEED, K. A systematic literature review
of data governance and cloud data governance. Personal and Ubiquitous
Computing, Springer, v. 23, p. 839–859, 2019. Cited in page 35.

ANDERSON, C. Free: grátis: o futuro dos preços. [S.l.]: Elsevier Brasil, 2017.
Cited in page 28.

BRINCH, M. Understanding the value of big data in supply chain management and
its business processes: Towards a conceptual framework. International Journal
of Operations & Production Management, Emerald Publishing Limited, v. 38,
n. 7, p. 1589–1614, 2018. Cited in page 83.

CHAUDHARY. Enabling End-to-End Data Governance and Quality
Management. (accessed in April 2024). <https://www.linkedin.com/pulse/
microsoft-purview-azure-synapse-enabling-end-to-end-data-chaudhary/>. Cited
in page 80.

COSMOSDB. Cosmos DB Features. (accessed in April 2024). <https://azure.
microsoft.com/pt-br/products/cosmos-db#features>. Cited in page 45.

CRN. AWS Revenues. (accessed in April
2024). <https://www.crn.com/news/cloud/2024/
amazon-ceo-aws-100b-run-rate-more-than-any-other-cloud-provider>. Cited in
page 44.

DATABRICKS. Azure Databricks. (accessed in April 2024). <https://www.
databricks.com/product/azure>. Cited in page 45.

DGI. Data Governance Framemork. 2024 (accessed in March 2024). <https:
//datagovernance.com/the-dgi-data-governance-framework/>. Cited 3 times in
pages 9, 35, and 36.

DIGITAL-OCEAN. Hyperscaler cloud. 2024 (accessed in April 2024). <https:
//www.digitalocean.com/resources/article/hyperscaler-cloud>. Cited in page 41.

FABRIC. Fabric Overview. (accessed in April 2024). <https://learn.microsoft.
com/en-us/fabric/get-started/microsoft-fabric-overview>. Cited in page 82.

GARTNER. Magic Quadrant for Cloud Infrastructure and Platform Ser-
vices. 2021 (accessed in July 2022). <https://www.gartner.com/doc/reprints?
id=1-1ZDZDMTF&ct=200703&st=sb>. Cited in page 44.

GULLBERG, A. Den samhälleliga självreflexionens möjligheter: Big data på 1980-
talet. Nordiska institutet för samhällsplanering, 1991. Cited in page 27.

https://azure.microsoft.com/en-us/solutions/data-lake/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://www.linkedin.com/pulse/microsoft-purview-azure-synapse-enabling-end-to-end-data-chaudhary/
https://www.linkedin.com/pulse/microsoft-purview-azure-synapse-enabling-end-to-end-data-chaudhary/
https://azure.microsoft.com/pt-br/products/cosmos-db##features
https://azure.microsoft.com/pt-br/products/cosmos-db##features
https://www.crn.com/news/cloud/2024/amazon-ceo-aws-100b-run-rate-more-than-any-other-cloud-provider
https://www.crn.com/news/cloud/2024/amazon-ceo-aws-100b-run-rate-more-than-any-other-cloud-provider
https://www.databricks.com/product/azure
https://www.databricks.com/product/azure
https://datagovernance.com/the-dgi-data-governance-framework/
https://datagovernance.com/the-dgi-data-governance-framework/
https://www.digitalocean.com/resources/article/hyperscaler-cloud
https://www.digitalocean.com/resources/article/hyperscaler-cloud
https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview
https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview
https://www.gartner.com/doc/reprints?id=1-1ZDZDMTF&ct=200703&st=sb
https://www.gartner.com/doc/reprints?id=1-1ZDZDMTF&ct=200703&st=sb

Chapter 6. Bibliography 85

HARMONY, C. Cloud Providers Outages. (accessed in April 2021). <https:
//cloudharmony.com>. Cited in page 44.

LANEY, D. et al. 3d data management: Controlling data volume, velocity and
variety. META group research note, Stanford, v. 6, n. 70, p. 1, 2001. Cited in
page 27.

LARIVIERE, J. et al. Where predictive analytics is having the biggest impact.
Harvard business review, v. 25, 2016. Cited in page 14.

MASHEY, J. R. Big data and the next wave of {InfraStress} problems, solutions,
opportunities. In: 1999 USENIX annual technical conference (USENIX ATC
99). [S.l.: s.n.], 1999. Cited in page 27.

MAURO, A. D.; GRECO, M.; GRIMALDI, M. What is big data? a consensual
definition and a review of key research topics. In: AMERICAN INSTITUTE OF
PHYSICS. AIP conference proceedings. [S.l.], 2015. v. 1644, n. 1, p. 97–104.
Cited in page 28.

MELL, P.; GRANCE, T. et al. The nist definition of cloud computing. Computer
Security Division, Information Technology Laboratory, National . . . , 2011. Cited
in page 29.

MELO, É.; NEVES, E. M. A.; PAZZINI, L. H. A. Brazilian electricity sector
restructuring: From privatization to the new governance structure. In: IEEE. 2011
8th International Conference on the European Energy Market (EEM).
[S.l.], 2011. p. 905–910. Cited in page 15.

MENDONÇA, A. F.; DAHL, C. The brazilian electrical system reform. Energy
Policy, Elsevier, v. 27, n. 2, p. 73–83, 1999. Cited 2 times in pages 15 and 16.

MOBLEY, R. K. An introduction to predictive maintenance. [S.l.]: Elsevier,
2002. Cited in page 14.

MONGODB. Introduction to MongoDB. (accessed in September 2022).
<https://www.mongodb.com/docs/manual/introduction/>. Cited in page 78.

NIST. Big Data at NIST. 2019. Https://www.nist.gov/itl/big-data-nist. Cited
3 times in pages 9, 27, and 28.

ONS. Submódulo 18.2 Relação dos sistemas e modelos computacionais.
2020. Https://www.ons.org.br/. Cited in page 24.

PÄÄKKÖNEN, P.; PAKKALA, D. Reference architecture and classification of
technologies, products and services for big data systems. Big data research,
Elsevier, v. 2, n. 4, p. 166–186, 2015. Cited 3 times in pages 9, 33, and 40.

PACHECO VAGNER PAES, M. d. C. F. L. G. M. A. G. E. N. J. S. E. H. C.;
MAROTTI, A. On the use of machine learning for predictive maintenance of power
transformers. In: SIMAS, E.; FERREIRA, D. D.; OLIVEIRA, L. R. (Ed.). Anais
do XVI Congresso Brasileiro de Inteligência Computacional (CBIC’2023).
Salvador, BA: SBIC, 2023. p. 1–8. Cited 2 times in pages 20 and 82.

https://cloudharmony.com
https://cloudharmony.com
https://www.mongodb.com/docs/manual/introduction/

Chapter 6. Bibliography 86

PEREIRA, L. A. et al. SAGE-Um Sistema Aberto para a Evolução. [S.l.]:
CEPEL, 2014. Cited in page 23.

PURVIEW. Learn about Microsoft Purview. (accessed in April 2024). <https:
//learn.microsoft.com/en-us/purview/purview>. Cited in page 80.

RAFIQUE, K. et al. Cloud computing economics opportunities and challenges. In:
IEEE. 2011 4th IEEE International Conference on Broadband Network and
Multimedia Technology. [S.l.], 2011. p. 401–406. Cited in page 30.

RAN, Y. et al. A survey of predictive maintenance: Systems, purposes and
approaches. arXiv preprint arXiv:1912.07383, 2019. Cited 4 times in pages 9,
20, 21, and 22.

VISUAL-CAPITALIST. Cloud Market Share. (accessed in April 2024). <https:
//www.visualcapitalist.com/worlds-biggest-cloud-computing-service-providers/>.
Cited in page 44.

WARD, J. S.; BARKER, A. Undefined by data: a survey of big data definitions.
arXiv preprint arXiv:1309.5821, 2013. Cited in page 27.

YACOUB, S.; CUKIC, B.; AMMAR, H. H. A scenario-based reliability analysis
approach for component-based software. IEEE transactions on reliability, v. 53,
n. 4, p. 465–480, 2004. Cited in page 14.

YANG, C. et al. Big data and cloud computing: innovation opportunities and
challenges. International Journal of Digital Earth, Taylor & Francis, v. 10,
n. 1, p. 13–53, 2017. Cited 3 times in pages 10, 29, and 30.

ZBURIVSKY, D.; PARTNER, L. Designing Cloud Data Platforms. [S.l.]: Simon
and Schuster, 2021. Cited 3 times in pages 9, 33, and 34.

ZHU, J. et al. A framework-based approach to utility big data analytics. IEEE
Transactions on Power Systems, IEEE, v. 31, n. 3, p. 2455–2462, 2015. Cited
2 times in pages 22 and 24.

https://learn.microsoft.com/en-us/purview/purview
https://learn.microsoft.com/en-us/purview/purview
https://www.visualcapitalist.com/worlds-biggest-cloud-computing-service-providers/
https://www.visualcapitalist.com/worlds-biggest-cloud-computing-service-providers/

A
Code Listings

A.1
Save Transactions script

22/04/2024, 18:28 save_transactions - Databricks

file:///C:/Users/marce/Downloads/save_transactions.html 1/4

(https://databricks.com)

save_transactions

Esse script lê os arquivos de excel da pasta landing e salva no trusted.

import pandas as pd
from datetime import datetime
import re
from pathlib import Path
from delta.tables import DeltaTable
from pyspark.sql.functions import lit, when, split, concat
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, TimestampType, FloatType
import numpy as np
import pyspark.pandas as ps
import unidecode
import re
import os
import shutil

from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

#CAMINHO_SAP_LANDING = '/dbfs/mnt/landing/sap/'
CAMINHO_SAP_LANDING = '/dbfs/mnt/landing/sap/transacoes'
CAMINHO_SAP_REFINED_EQUIPMENTS = "/dbfs/mnt/refined/sap/dashboard_teste/lista-equipamento"
CAMINHO_DELTA_ERROS = '/dbfs/mnt/refined/_logs'

dbutils.widgets.text("subestacao", "stsb")
dbutils.widgets.text("transacao", "iw29")

subestacao = dbutils.widgets.get('subestacao')
transacao = dbutils.widgets.get('transacao')

def limpar_nome_colunas(df):
 df.columns = [(lambda s: s[:-1] if s[-1] == "_" else s)(string) for string in [re.sub(r'[^\w]+', '_', string) for string in
 return df

def tratamento_IK17(df):

 df["Data"] = df["Data"].astype(str)
 df["Ordem"] = df["Ordem"].astype(float)
 df["ValMed_PosTCont"] = df["ValMed_PosTCont"].astype(float)
 df["Equipamento"] = df["Equipamento"].astype(str)
 df['Item_medicao'] = df['Item_medicao'].astype(str)
 df['Unid_med_doc'] = df['Unid_med_doc'].astype(str)
 df["Valor_medido"] = df["Valor_medido"].astype(float)

 return df

Show cell

DICIONARIO_SCHEMA = {'Loc.instalação': str, # 'Denominação': str, # 'Valor m ...

22/04/2024, 18:28 save_transactions - Databricks

file:///C:/Users/marce/Downloads/save_transactions.html 2/4

def tratamento_IH08(df):
 df['Equipamento'] = df['Equipamento'].astype(int)
 df['Ano_construcao'] = df['Ano_construcao'].astype(int)
 df['Dt_entr_servico'] = df['Dt_entr_servico'].astype('datetime64[ns]')
 df['Grp_plnj_PM'] = df['Grp_plnj_PM'].astype(int)
 df['Tipo_de_objeto'] = df['Tipo_de_objeto'].astype(str)

 return df

def determine_dtype(col, nome_transacao):
 if nome_transacao == 'IH08':

 if col in ["Ano_construcao"]:
 return FloatType()
 elif col in ['Dt_entr_servico',]:
 return TimestampType()
 else:
 return StringType()

 elif nome_transacao == 'IK17':

 if col in ['Ordem', 'Valor_medido']:
 return FloatType()
 else:
 return StringType()

 else:
 return StringType()

def mover_para_raw(arquivo):

 caminho_arquivo = '/dbfs' + arquivo

 print((caminho_arquivo).replace('landing', 'raw'))
 print(caminho_arquivo)

 raw_path = '/'.join(((caminho_arquivo).replace('landing', 'raw')).split('/')[:-1])
 print('raw_path', raw_path)

 if not os.path.exists(raw_path):
 os.makedirs(raw_path)

 if not os.path.exists((caminho_arquivo).replace('landing', 'raw')):
 shutil.move(caminho_arquivo, (caminho_arquivo).replace('landing', 'raw'))
 #if not os.listdir(Path(caminho_arquivo).parent): os.rmdir(Path(caminho_arquivo).parent)

import os
import shutil

def delete_empty_subfolders(directory):
 # Walk through all subfolders in the given directory
 for root, dirs, files in os.walk(directory, topdown=False):
 # Check each subfolder from the deepest to the shallowest
 for name in dirs:
 dir_path = os.path.join(root, name)
 # Check if the subfolder is empty
 if not os.listdir(dir_path):
 # If empty, delete it
 shutil.rmtree(dir_path)
 print(f"Deleted empty folder: {dir_path}")

22/04/2024, 18:28 save_transactions - Databricks

file:///C:/Users/marce/Downloads/save_transactions.html 3/4

def tratamento_transacao(transacao):

 nome_transacao = transacao.split("/")[-1]

 CAMINHO_TRUSTED = f'/mnt/trusted/sap/transacoes/{nome_transacao}/'

 print('transacao', transacao)

 print(f'Processando transação {nome_transacao}')

 if len(os.listdir(transacao)) == 0:
 print(f'Transação {transacao} não contem nenhum arquivo no landing.')
 return

 arquivo = glob.glob(transacao + '/*')[0].replace('/dbfs', "")
 print(arquivo)

 try:

 dataframe_landing_pandaspyspark = ps.read_excel(arquivo, header = 0, dtype = str)#, dtype=DICIONARIO_SCHEMA)

 if nome_transacao == 'IK17': #essas funções (cast) são específicas para o Ik17
 dataframe_landing_pandaspyspark = tratamento_IK17(limpar_nome_colunas(dataframe_landing_pandaspyspark))

 elif nome_transacao == 'IH08':

 dataframe_landing_pandaspyspark = (limpar_nome_colunas(dataframe_landing_pandaspyspark))
 dataframe_landing_pandaspyspark = tratamento_IH08(dataframe_landing_pandaspyspark)

 else:
 dataframe_landing_pandaspyspark = (limpar_nome_colunas(dataframe_landing_pandaspyspark))

 except Exception as e:

 print(e)
 print()

 dt_string = datetime.now()
 #dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

 dicionario_erro = {'Erro':[str(e.args[0])], 'Data_execucao_erro': [dt_string], 'Sistema': "SAP",
'Nome_arquivo_erro':[str(arquivo).replace('landing', 'raw').replace('/dbfs/mnt/','').replace('dbfs:/mnt/', '')]}

 df_erros = ps.DataFrame(dicionario_erro)

 df_erros.to_delta(CAMINHO_DELTA_ERROS, mode = 'append')

 mover_para_raw(arquivo)

 dbutils.notebook.exit(e.args)

 if (DeltaTable.isDeltaTable(spark, CAMINHO_TRUSTED)):
 print("Delta Table já criado !")
 dataframe_pyspark_trusted = ps.read_delta(CAMINHO_TRUSTED)

 #Melhor ordenar essa parte para garantir que está vindo na mesma order.
 #dataframe_pyspark_trusted.columns = dataframe_landing_pandaspyspark.columns

 dataframes_diff = ps.concat([dataframe_landing_pandaspyspark, dataframe_pyspark_trusted,
dataframe_pyspark_trusted]).drop_duplicates(keep=False)

 if len(dataframes_diff):
 schema_string_nullable = StructType([StructField(col, determine_dtype(col, nome_transacao), nullable=True) for
col in dataframe_landing_pandaspyspark.columns])
 df_pandas = dataframes_diff.to_pandas()
 sdf = spark.createDataFrame(df_pandas, schema=schema_string_nullable)
 sdf.write.format("delta").option("mergeSchema", "true").mode("append").save(CAMINHO_TRUSTED)
 else:
 print(f'Nenhuma linha nova.')

22/04/2024, 18:28 save_transactions - Databricks

file:///C:/Users/marce/Downloads/save_transactions.html 4/4

 else:
 schema_string_nullable = StructType([StructField(col, determine_dtype(col, nome_transacao), nullable=True) for col
in dataframe_landing_pandaspyspark.columns])
 print(type(dataframe_landing_pandaspyspark))
 display(dataframe_landing_pandaspyspark)
 df_pandas = dataframe_landing_pandaspyspark.to_pandas()
 # df_pandas['Ano_construcao'] = df_pandas['Ano_construcao'].astype('Int64')
 sdf = spark.createDataFrame(df_pandas, schema=schema_string_nullable)
 sdf.write.format("delta").option("mergeSchema", "true").mode("append").save(CAMINHO_TRUSTED)

 mover_para_raw(arquivo)

Deleted empty folder: /dbfs/mnt/landing/sap/transacao

Appendix A. Code Listings 92

A.2
Get All DGA Results script

(https://databricks.com)

get_all_dga_results

from pyspark.sql.types import StructType, StructField, StringType, IntegerType, TimestampType, FloatType, DateType
from pyspark.sql.functions import lit, when, regexp_replace
from itertools import groupby
import datetime
from delta.tables import DeltaTable
import numpy as np
from pathlib import Path
import pyspark.pandas as ps
import itertools
import pickle
import pyspark.pandas as ps
import os
import sys
import shutil
from random import randint
import pandas as pd

import pymongo
from dotenv import load_dotenv

%run ./dga_methods

Show result

%run ../../preprocessing/SAP/estruturacao_planilha_oleos/estruturacao_IK17_from_trusted

Show result

%run /Dev/reprocessamento-sap/create-equipment-list

CAMINHO_SAP_REFINED_DGA = '/mnt/refined/sap/dashboard/dga/'
CAMINHO_SAP_REFINED_OLEOS = '/mnt/refined/sap/dashboard/oleos-processados/'
CAMINHO_SAP_REFINED_EQUIPAMENTOS = '/mnt/refined/sap/dashboard/lista-equipamento/'
CONNECTION_STRING =
'mongodb://cosmosmaindevsouthbr001:n5UzI5Gc96SudZj7Vl3Zij4qogg7RQYohMGWQxfxCFUA1qHDk76DjTmDd4NTAhLZrJ2B5Cig5miQACDbwbrhkw==
@cosmosmaindevsouthbr001.mongo.cosmos.azure.com:10255/?
ssl=true&replicaSet=globaldb&retrywrites=false&maxIdleTimeMS=120000&appName=@cosmosmaindevsouthbr001@'
CAMINHO_IH08 = '/mnt/trusted/sap/transacoes/IH08/'
CAMINHO_IDADE_EQUIPAMENTOS = '/mnt/refined/sap/dashboard/idade-equipamento'

Show result

df_oleos_processados = ps.read_delta(CAMINHO_SAP_REFINED_OLEOS)
df_oleos_processados.head()

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 1/8

Show result

np.seterr(divide='ignore', invalid='ignore')
data = []
erros_lista = []
erro=0
sucess1 = 0
for item in df_oleos_processados.to_numpy():
 gases = item[4:] #Do 4 para frente porque não tem mais a coluna UnidadeMedida
 equip = item[1]
 sub = item[2]
 data_medicao = item[0]

 for dga_type in DGAType:
 try:
 sucess1 +=1
 result = get_dga_diagnose(dga_type,gases)
 #print(f'Sucesso número {sucess1, dga_type,gases}', end='\r')
 except:
 erro += 1
 print(f'Erro número {erro, dga_type,gases}', end='\r')
 erros_lista.append((dga_type, gases, item))
 result = [-1, 'Não foi possível calcular']

 if(dga_type == DGAType.DGA_MODEL):
 result = result.tolist()
 pn = result[0][0]

 if pn >= 0.6:
 result.insert(0, 0)
 elif pn < 0.4:
 result.insert(0, 2)
 else:
 result.insert(0, 1)

 result.insert(0, dga_type.name)
 result.insert(1, equip)
 result.insert(2, sub)
 result.insert(3, data_medicao)

 data.append(result)

Salvar DGA

Show result

for row in data:
 if row[0] == 'DGA_MODEL':
 row[5] = str(row[5])
df_data = ps.DataFrame(data)
df_data.columns = ["Diagnostico_cromatografico", "Equipamento", "Loc_instalacao", "Data_medicao", "Codigo_diagnostico",
"Resultado"]

df_data.to_delta(CAMINHO_SAP_REFINED_DGA, mode="overwrite")

Show code

Show result

Processamento df_lista_equipamentos

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 2/8

Show result

df_data = df_data[df_data['Diagnostico_cromatografico'] == 'DGA_MODEL']
df_data.head()

Show result

df_data = df_data.sort_values(['Equipamento','Data_medicao'], ascending = False)
df_data = df_data.drop_duplicates(subset='Equipamento')[['Codigo_diagnostico', 'Data_medicao', 'Equipamento']]
df_data.head()

Show result

df_refined_equipamentos_ps = ps.read_delta(CAMINHO_SAP_REFINED_EQUIPAMENTOS)
df_merged = df_refined_equipamentos_ps.merge(df_data, on='Equipamento', how='left', suffixes=('', '_updated'))
df_merged.head()

Show result

df_merged['IEC'] = df_merged['Codigo_diagnostico']
df_merged['Data_medicao'] = df_merged['Data_medicao_updated']
df_merged.head()

Show result

df_merged = df_merged.drop(columns={'Codigo_diagnostico','Data_medicao_updated'})
df_merged.head()

df_merged.IEC = df_merged.IEC.astype('int32')

df_merged.to_delta(CAMINHO_SAP_REFINED_EQUIPAMENTOS, mode= 'overwrite')

Atualizar a flag IEC no Cosmos

Show result

df = ps.read_delta(CAMINHO_SAP_REFINED_EQUIPAMENTOS)
df.head()

Show result

lista_loc_instalacao = list(set(df.Loc_instalacao.to_list()))
lista_loc_instalacao

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 3/8

Show result

load_dotenv()

DB_NAME = "AppData"
COLLECTION_NAME = "Subestacoes"

client = pymongo.MongoClient(CONNECTION_STRING)

db = client[DB_NAME]
collection = db[COLLECTION_NAME]

documentos = list(collection.find({}))

for documento in documentos:
 if documento['LocInstalacao'] in lista_loc_instalacao:
 documento['IEC'] = True

for update in documentos:
 collection.update_one({"_id": update["_id"]}, {"$set": update})

Calcular idade dos equipamentos

Show result

import datetime

df_planilha = ps.read_delta(CAMINHO_IH08).to_pandas()
df_planilha.head()

Não há nenhum valor nulo em Dt_entr_servico

df_planilha.columns

Out[128]: Index(['Loc_instalacao', 'Denominacao', 'Ctg_equipamento', 'GrpAutorizacoes',
 'Equipamento', 'Denominacao_1', 'Tipo_de_objeto', 'No_serie',
 'Denom_do_tipo', 'Fabricante', 'Ano_construcao', 'Dt_entr_servico',
 'Pais_produtor', 'Perf_catalogo', 'Status_sistema', 'Status_usuario',
 'Area_operacion', 'Cen_manutencao', 'CenTrab_respon', 'Grp_plnj_PM',
 'Centro_trabalho', 'Centro_planej', 'Contrato_equipamento'],
 dtype='object')

Show result

df_planilha['Dt_entr_servico'] = df_planilha['Dt_entr_servico'].astype('datetime64[ns]').dt.year

df_planilha.loc[df_planilha['Ano_construcao'] == '', 'Ano_construcao'] = np.nan
df_planilha['Ano_construcao'].astype(float)

Show result

df_planilha[(df_planilha['Dt_entr_servico'].isna()) | (df_planilha['Dt_entr_servico'] == '')]

Show result

df_cosmos_sub = pd.DataFrame(data = collection.find({}))
df_cosmos_sub

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 4/8

df_planilha['locinst'] = df_planilha['Loc_instalacao'].str.slice(0,9)

df_merged = df_planilha.merge(df_cosmos_sub[['Nome', 'LocInstalacao', 'Departamento']], left_on = 'locinst', right_on=
'LocInstalacao', how = 'left').rename(columns = {'Nome':'Subestacao'})
df_merged.LocInstalacao.isna().sum()

Out[133]: 333

Show result

df_merged.head()

Filtro de anos 1959 - 2023:

df_merged['Ano_construcao'].isna().sum()

Out[135]: 2286

df_merged.loc[(df_merged['Ano_construcao'].isna()) | (~df_merged['Ano_construcao'].between(1956,2023, inclusive = 'both')),
'Ano_construcao'] = df_merged['Dt_entr_servico']
df_merged.loc[~df_merged['Ano_construcao'].between(1956,2023, inclusive = 'both'), 'Ano_construcao'].value_counts()

Out[136]: 1900.0 1082
Name: Ano_construcao, dtype: int64

df_merged = df_merged[df_merged['Ano_construcao'].between(1956,2023, inclusive = 'both')]

Groupby Departamento

Show result

df_grouped_dept = df_merged.groupby('Departamento')['Ano_construcao'].mean().reset_index()
df_grouped_dept['Nivel'] = 'Departamento'
df_grouped_dept['Idade_Equipamento'] = round(datetime.date.today().year - df_grouped_dept['Ano_construcao'])
df_grouped_dept = df_grouped_dept.rename(columns = {'Departamento': 'Nome'})
df_grouped_dept = df_grouped_dept.drop(columns = 'Ano_construcao')
df_grouped_dept

Agrupado por Subestacao

Show result

df_grouped_sub = df_merged.groupby('Subestacao')['Ano_construcao'].mean().reset_index()
df_grouped_sub['Nivel'] = 'Subestacao'
df_grouped_sub['Idade_Equipamento'] = round(datetime.date.today().year - df_grouped_sub['Ano_construcao'])
df_grouped_sub = df_grouped_sub.rename(columns = {'Subestacao': 'Nome'})
df_grouped_sub = df_grouped_sub.drop(columns = 'Ano_construcao')
df_grouped_sub

Agrupamento por Tipo

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 5/8

Filtro CE

Show result

df_ce = df_merged[((df_merged['Loc_instalacao'].str.upper().str.contains('-CE'))&
(df_merged['Loc_instalacao'].str.upper().str.contains('-MC')))|(df_merged['Tipo_de_objeto'] == 'COES')]
df_ce_grouped = df_ce.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_ce_grouped['Subestacao'] = 'CE_' + df_ce_grouped['Subestacao']
df_ce_grouped['Nivel'] = 'Tipo'
df_ce_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_ce_grouped['Ano_construcao'],1)
df_ce_grouped = df_ce_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_ce_grouped

Filtro BC

Show result

df_bc = df_merged[df_merged['Tipo_de_objeto'] == 'BCCP']
df_bc_grouped = df_bc.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_bc_grouped['Subestacao'] = 'BC_' + df_bc_grouped['Subestacao']
df_bc_grouped['Nivel'] = 'Tipo'
df_bc_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_bc_grouped['Ano_construcao'],1)
df_bc_grouped = df_bc_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_bc_grouped

Filtro BS

Show result

df_bs = df_merged[(df_merged['Tipo_de_objeto'] == 'BCCP')&(df_merged['Loc_instalacao'].str.upper().str.contains('-BS'))]
df_bs_grouped = df_bs.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_bs_grouped['Subestacao'] = 'BS_' + df_bs_grouped['Subestacao']
df_bs_grouped['Nivel'] = 'Tipo'
df_bs_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_bs_grouped['Ano_construcao'],1)
df_bs_grouped = df_bs_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_bs_grouped

Filtro CR

Show result

df_reat = df_merged[df_merged['Tipo_de_objeto'] == 'REAT']
df_reat_grouped = df_reat.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_reat_grouped['Subestacao'] = 'CR_' + df_reat_grouped['Subestacao']
df_reat_grouped['Nivel'] = 'Tipo'
df_reat_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_reat_grouped['Ano_construcao'],1)
df_reat_grouped = df_reat_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_reat_grouped

Filtro CS

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 6/8

Show result

df_cs = df_merged[df_merged['Loc_instalacao'].str.upper().str.contains('-CS')]
df_cs_grouped = df_cs.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_cs_grouped['Subestacao'] = 'CS_' + df_cs_grouped['Subestacao']
df_cs_grouped['Nivel'] = 'Tipo'
df_cs_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_cs_grouped['Ano_construcao'],1)
df_cs_grouped = df_cs_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_cs_grouped

Filtro MG

Show result

df_mg = df_merged[df_merged['Loc_instalacao'].str.upper().str.contains('-MG')]
df_mg_grouped = df_mg.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_mg_grouped['Subestacao'] = 'MG_' + df_mg_grouped['Subestacao']
df_mg_grouped['Nivel'] = 'Tipo'
df_mg_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_mg_grouped['Ano_construcao'],1)
df_mg_grouped = df_mg_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_mg_grouped

Filtro RS

Show result

df_rs = df_merged[df_merged['Loc_instalacao'].str.upper().str.contains('-RS')]
df_rs_grouped = df_rs.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_rs_grouped['Subestacao'] = 'RS_' + df_rs_grouped['Subestacao']
df_rs_grouped['Nivel'] = 'Tipo'
df_rs_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_rs_grouped['Ano_construcao'],1)
df_rs_grouped = df_rs_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_rs_grouped

Filtro TR

Show result

df_tr = df_merged[df_merged['Tipo_de_objeto'].isin(('TFFR', 'TFRL'))]
df_tr_grouped = df_tr.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_tr_grouped['Subestacao'] = 'TR_' + df_tr_grouped['Subestacao']
df_tr_grouped['Nivel'] = 'Tipo'
df_tr_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_tr_grouped['Ano_construcao'],1)
df_tr_grouped = df_tr_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_tr_grouped

Filtro RT

df_rt = df_merged[(df_merged['Tipo_de_objeto'] == 'REAT') & (df_merged['Loc_instalacao'].str.upper().str.contains('-RT')) &
((df_merged['Denominacao'].str.upper().str.contains('FASE')))]
df_rt_grouped = df_rt.groupby('Subestacao').mean()['Ano_construcao'].reset_index()
df_rt_grouped['Subestacao'] = 'RT_' + df_rt_grouped['Subestacao']
df_rt_grouped['Nivel'] = 'Tipo'
df_rt_grouped['Idade_Equipamento'] = round(datetime.date.today().year - df_rt_grouped['Ano_construcao'],1)
df_rt_grouped = df_rt_grouped.drop(columns = 'Ano_construcao').rename(columns = {'Subestacao':'Nome'})
df_rt_grouped

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 7/8

Show result

Show result

df_final = pd.concat([df_grouped_dept,df_grouped_sub, df_ce_grouped, df_bc_grouped, df_bs_grouped, df_reat_grouped,
df_cs_grouped, df_mg_grouped, df_rs_grouped, df_tr_grouped, df_rt_grouped])
display(df_final)

/databricks/spark/python/pyspark/pandas/internal.py:1572: FutureWarning: iteritems is deprecated and will be removed in a future
version. Use .items instead.
 fields = [
/databricks/spark/python/pyspark/sql/pandas/conversion.py:656: FutureWarning: iteritems is deprecated and will be removed in a f
uture version. Use .items instead.
 [(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)]

26/04/2024, 09:48 get_all_dga_results - Databricks

file:///C:/Users/marce/Downloads/get_all_dga_results (1).html 8/8

Appendix A. Code Listings 101

A.3
NB Final script

(https://databricks.com)

nb_final

Show result

import numpy as np
import pandas as pd
from pathlib import Path
from enum import Enum, auto
from dataclasses import dataclass
from abc import ABC, abstractmethod
from os import path, rename, listdir, stat
from datetime import date, datetime, timedelta
import hashlib, csv, re, locale, calendar, glob
import pyspark.pandas as ps
import re
from os import listdir, path, getcwd, stat
from datetime import date, datetime, timedelta
import os, glob
from pathlib import Path
import time
import itertools, re
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
pd.options.mode.chained_assignment = None
import time
import json
from datetime import datetime
#import caminhos_pastas

Show result

%run "/Workspace/Dev/preprocessing/SAGE/mover_trusted/SAGE_utils.ipynb"

Show result

def processAnIntegerNumber(sub):
 dbutils.notebook.run(path = caminho_notebook_parent,
 timeout_seconds = 14400,
 arguments = {'subestação': sub})

Show result

def executar_notebooks_ano(subs):
 with ThreadPoolExecutor() as executor:
 results = executor.map(processAnIntegerNumber, subs)

Show result

subestacoes = os.listdir(f'/dbfs{caminho_landing}/sage/')

Show result

Notebook Workflows

executar_notebooks_ano(subestacoes)

Start time End time Notebook path Duration Status Error code Run parameters

26/04/2024, 17:26 nb_final - Databricks

file:///C:/Users/marce/Downloads/nb_final.html 1/3

Show result

month_translation = {
 'jan': 'jan',
 'fev': 'feb',
 'mar': 'mar',
 'abr': 'apr',
 'mai': 'may',
 'jun': 'jun',
 'jul': 'jul',
 'ago': 'aug',
 'set': 'sep',
 'out': 'oct',
 'nov': 'nov',
 'dez': 'dec',
}

def translate_month(date_string):
 month_portuguese = date_string[:3]
 month_english = month_translation.get(month_portuguese, '')
 return date_string.replace(month_portuguese, month_english)

def transform_date(date_string):
 given_date = datetime.strptime(translate_month(date_string), "%b%d%y").date()
 current_date = datetime.now().date()
 return given_date == current_date

def falha_na_data_atual(arquivo_log_caminho):
 datas = []
 df = pd.read_csv(arquivo_log_caminho, header = None)
 for arquivo in df[3]:
 datas.append(arquivo.replace('.pas', '')[-7:])

 for data in datas:
 if transform_date(data):
 return True
 return False

def is_dataframe_empty(arquivo_log_caminho):
 return pd.read_csv(arquivo_log_caminho).empty

def falhas_datas_atual_e_anteriores(arquivo_log_caminho):
 df = ps.read_delta(arquivo_log_caminho, header = None).to_pandas()
 df = df[df['Sistema'] == 'SAGE']
 data_hoje = datetime.now().date()
 erro_na_data_atual = False
 erro_datas_passadas = False
 for index, row in df.iloc[1:].iterrows():

 #data_execucao_erro = datetime.strptime(row[1].replace('.pas', ''), '%d/%m/%Y %H:%M:%S').date()
 data_execucao_erro = row['Data_execucao_erro'].date()
 data_arquivo_erro = datetime.strptime(translate_month(row['Nome_arquivo_erro'].replace('.pas', '').split('/')[-1]),
"%b%d%y").date()
 if (data_arquivo_erro == data_hoje):
 erro_na_data_atual = True
 if (data_execucao_erro == data_hoje) and (data_arquivo_erro != data_hoje):
 erro_datas_passadas = True
 return erro_na_data_atual, erro_datas_passadas

Show result

arquivo_log_caminho = '/dbfs/mnt/sandbox/trusted/sage/arquivos_com_problemas_indexacao.csv'
retorno = falha_na_data_atual(arquivo_log_caminho), not is_dataframe_empty(arquivo_log_caminho)

26/04/2024, 17:26 nb_final - Databricks

file:///C:/Users/marce/Downloads/nb_final.html 2/3

Show result

#arquivo_log_caminho = f'/dbfs{caminho_trusted}/sage/arquivos_com_problemas_indexacao.csv'
arquivo_log_caminho = '/mnt/trusted/_logs'
retorno = falhas_datas_atual_e_anteriores(arquivo_log_caminho)

Show result

26/04/2024, 17:26 nb_final - Databricks

file:///C:/Users/marce/Downloads/nb_final.html 3/3

	A Data Reference Architecture for Brazilian Electrical Companies
	Resumo
	Table of contents
	Introduction
	Motivation
	Service quality standards
	Current maintenance practices
	Data in electrical companies
	Conclusion
	Dissertation organization

	Related Work
	Introduction
	Big Data
	Cloud Computing
	Data Architectures
	Data Governance
	Conclusion

	The proposed Data Reference Architecture
	Introduction
	Data Reference Architecture
	An Analysis of Implementation Alternatives
	Azure Implementation Details
	Conclusion

	Results
	Introduction
	Azure Data Lake Storage
	Data Extraction
	Azure Synapse Analytics Pipelines
	Azure Databricks
	Azure Synapse Analytics SQL Pools
	CosmosDB
	Azure App Services
	PowerBI
	Azure Purview
	Conclusion

	Conclusions and future work
	Bibliography
	Code Listings
	Save Transactions script
	Get All DGA Results script
	NB Final script

