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Abstract

Penso,Matheus; Endler, Markus (Advisor); Meslin, Alexandre (Co-
Advisor). Using Kubernetes for elasticity and load balancing of
ContextNet Core Gateways for scalable mobile connectivity.
Rio de Janeiro, 2024. 60p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

As the Internet of Things (IoT) increasingly incorporates mobile devices
and objects, this also calls for scalable services capable of handling a growing
number of concurrently connected mobile devices. Consequently, the ability to
provide reliable services that are adaptable to different scenarios, efficient, and
high-performing in a highly mobile environment is crucial to meet user expec-
tations and drive widespread adoption of IoT mobile applications (IoMT). In
this work, we design and implement a self-scalable and configurable architec-
ture, allowing application administrators to configure scalability parameters
according to their needs, using Kubernetes in ContextNet, a distributed IoMT
middleware, and evaluate the performance of our implementation in different
scalability and mobility scenarios.

Keywords
Scalable Communication; Mobile IoT; Kubernetes; Cloud-based IoT;

Service Middleware.



Resumo

Penso,Matheus; Endler, Markus; Meslin, Alexandre. Usando Kuber-
netes para incluir elasticidade e balanceamento de carga em
Gateways do ContextNet Core visando escalabilidade de co-
nexões móveis. Rio de Janeiro, 2024. 60p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

À medida que a internet das coisas (IoT) incorpora cada vez mais dis-
positivos móveis e objetos, isso também demanda serviços escaláveis capazes
de lidar com um número crescente de dispositivos móveis conectados simulta-
neamente. Como resultado, a capacidade de oferecer serviços confiáveis, que
sejam adaptáveis a diferentes cenários, eficientes e de alto desempenho em um
ambiente altamente móvel é crucial para atender às expectativas dos usuários
e impulsionar a adoção em massa de aplicações móveis IoT (IoMT). Neste
trabalho, projetamos e implementamos uma arquitetura autoescalável e confi-
gurável, de maneira que o administrador das aplicações consiga configurar pa-
râmetros de escalabilidade de acordo com a necessidade, usando o Kubernetes
no ContextNet, um middleware distribuído IoMT, e avaliamos o desempenho
de nossa implementação em diferentes cenários de escalabilidade e mobilidade.

Palavras-chave
comunicação escalável; IoT móvel; Kubernetes; cloud IoT; middleware

IoT.
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1
Introduction

Mobility has become a fundamental part of our daily lives, and the
Internet of Things (IoT) plays a central role in this context, primarily through
integrating mobile devices. More specifically, the Internet of Mobile Things,
or IoMT, encompasses the connection of smartphones, tablets, smartwatches,
mobile sensors, and other mobile devices in vehicles, drones, etc., to the
Internet, providing a series of functionalities and conveniences in our daily lives.
This integration allows us to use our mobile devices to monitor our health and
physical activity, receive real-time notifications, control home devices remotely,
and much more.

The concept of the Internet of Things, together with mobility and
constant connectivity, are foundational factors for smart cities. Thus, smart
cities host various applications, whether public or private, aimed at collecting
data through sensors and transmitting it for decision-making. Nowadays, we
can see applications that use location data to track public bus networks,
use location to provide real-time information on traffic conditions, work in
agricultural control through monitoring via sensors of weather conditions, soil
moisture, and irrigation control, and provide mobile payment services.

However, an infrastructure is needed to support mobility and scale in
this distributed and growing ecosystem. As mentioned by (MESLIN; RO-
DRIGUEZ; ENDLER, 2020) and discussed by (DELICATO et al., 2017), an
IoT ecosystem is organized into three layers: (i) the lower layer consisting of
devices; (ii) the upper layer consisting of static nodes, which can use cloud com-
puting; (iii) an intermediate layer that functions with edge nodes facilitating
communication between the other two layers.

As layer (i) grows with adopting IoMT in a smart city, the other layers
must adapt to support this demand. That is, layer (ii) needs to have more
processing power if necessary, and layer (iii) needs to be able to support
a greater number of connections and more processing in the case of edge
computing.

Thus, as described by (MESLIN; RODRIGUEZ; ENDLER, 2020), mo-
bile nodes rely on these edge gateways to connect to the Internet, and an
infrastructure that efficiently supports mobile users must be able to migrate
connections between gateways given the mobility of the nodes and must be
able to distribute the load effectively among the available gateways.

In the studies conducted by (TALAVERA et al., 2015) and (ELAZHARY,
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2019), infrastructures for IoMT applications were discussed. These infrastruc-
tures utilize mobile nodes (e.g. smartphones) as gateways to connect devices
to the Internet. These mobile nodes, categorized within the described layer (i),
establish connections with gateways belonging to layer (iii) to transmit data
from the connected devices.

Therefore, looking exclusively at the connectivity between mobile nodes
and stationary gateways in scenarios of demand volatility, and aiming to ensure
availability for various types of applications that a smart city may have, we
identified the following problem:

Problem 1
To support the variations in the demand for mobile nodes’ connectivity,
it is necessary to scale the static gateways so that they can handle these
mobile-cloud connections proportionally while ensuring that the elastic-
ity of static gateways is configurable to adapt to different scenarios.

With this focus, the objective of this study is to address the following
research question:

Research question 1
How can we create a self-scalable gateway architecture that does not
impact established connections and mobile-cloud availability, and allows
the system administrator to configure scalability parameters as needed?

To answer this question, this research will extend the previous work de-
scribed in (WANOUS, 2021), which uses ContextNet, a home-brewed IoMT
distributed middleware. Our contribution will be the design and implemen-
tation of a self-scalable architecture for mobile communications using Kuber-
netes, allowing us to evaluate the performance of our solution in different
scalability and mobility scenarios (MURALIDHARAN; SONG; KO, 2019; ER-
MOLENKO et al., 2021; KAYAL, 2020).



2
Fundamentals

In this chapter, we will discuss the key concepts needed to understand our
work separately. First, we will talk about ContextNet, which is the middleware
we will use as a case study in the development and evaluation of our work.
Next, we will briefly discuss autoscaling as it forms the basis for building an
elastic architecture. Finally, we will discuss Kubernetes, as it is the tool we
will use to deploy our application, make it elastic, and perform load balancing.

2.1
ContextNet middleware

ContextNet (ENDLER; SILVA, 2018) is a mobile-cloud middleware for
IoT that can handle a large and dynamic number of mobile nodes with inter-
mittent connectivity and provide unicast, groupcast, and broadcast commu-
nication between the ContextNet Core that runs in the cloud and the mobile
devices or smartphones. The initial version of the middleware adopted an ar-
chitecture that employed OMG DDS (Data Distribution Service) (PARDO-
CASTELLOTE, 2003) with a single-topic Publish/Subscribe (EUGSTER et
al., 2003) communication channel. However, as it evolved, we arrived at a
new version of the middleware (ContextNet 3.0) (WANOUS, 2021) that uses
Kafka (KREPS et al., 2011) in its core services, similar to the research seen in
(SOUSA et al., 2018).

To understand how the middleware works, we can divide ContextNet
into three groups of nodes, which are stationary and/or mobile, as can be
seen in Figure 2.1. The first group represents the core nodes, which are
stationary and responsible for running the ContextNet communication core
services and processing nodes. At the other end of the communication are the
Mobile Objects (M-OBJ), which represent peripheral IoT smart devices that
have sensors or actuators, and that are accessible through Wireless Personal
Area Network (WPAN) technologies independent of whether they are mobile.
To bridge the communication between the M-OBJs and the ContextNet core,
we employ ordinary smartphones or any mobile device capable of running
Android, executing our Mobile-hub (M-HUB) middleware on top of Android.
These distributed Mobile-hub nodes, which can also be stationary or mobile,
must have an Internet connection (4G/5G/Wi-fi), that can be intermitent, for
interacting with the core through and with WWAN and WBAN interfaces.
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Figure 2.1: Example of mobile nodes and M-OBJs connected to and interacting
through a ContextNet Core

ContextNet’s core, represented by yellow circle in Figure 2.1, comprises
microservices that interact through Publish/Subscribe on multiple topics
using Kafka. Essentially, ContextNet’s core runs the following ınfrastructure
microservices:

– Gateway: service responsible for the connection between ContextNet’s
core and the mobile nodes, through the MR-UDP protocol (SILVA;
ENDLER; RORIZ, 2013).

– PoA Manager : service responsible for load balancing between the Gate-
way nodes.

– Mobile Temporary Disconnect (MTD): service for temporarily storing
messages addressed to mobile nodes that have their connections inter-
rupted, and automatic re-sending of the messages as soon as the mobile
node reconnects

– Group Definer : service responsible for grouping mobile nodes according
to some context attribute (e.g., current position) and sending groupcast
messages to all nodes whose attribute satisfies certain restrictions (e.g.,
all nodes placed within certain geographic boundaries).

ContextNet application developers can integrate their applications into
the Kafka layer to use the middleware in a way that decouples the core.
Therefore, the developer is responsible for the application on the mobile nodes
that will send the data to the core and for the cloud application that processes
the sent data.
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Using Kafka as an asynchronous communication layer means that Con-
textNet can deal with concurrency, lack of global synchronization, and in-
dependent failures, essential points for a distributed system (COULOURIS;
DOLLIMORE; KINDBERG, 2001). Firstly, ContextNet’s architecture ensures
that processes can run concurrently since each is a microservice. It also ensures
that there is no need for global synchrony between them since they communi-
cate through the message queue, which by its nature brings this asynchronous
approach. Finally, Kafka’s native replication mechanism ensures that Con-
textNet is fault-tolerant, so the failure of one of the microservices does not fail
the system as a whole.

In Figure 2.2, we can see the connection flow of mobile nodes to the
gateway through the MR-UDP (SILVA; ENDLER; RORIZ, 2013) protocol,
the developers’ applications connected to the Kafka layer, and the ContextNet
Core layer, which is also integrated into the Publish/Subscribe communication
model. Despite being containerized, this core layer lacks any automatic scaling
strategy in the current middleware version.

In order to investigate the research question, we will utilize the Con-
textNet 3.0 gateway as a use case for implementing an testing our autoscaling
architecture.

Figure 2.2: ContextNet 3.0 system
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2.2
Autoscaling

Autoscaling aims to dynamically adjust processing resources based on
application demand. It ensures that more resources are allocated at times
of higher demand and deallocated at times of lower demand. In this way, it
guarantees high availability for the application and efficiency of the resources
used.

In their review, (LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO,
2014) explain that the autoscaling process adheres to the MAPE cycle. This
cycle, consisting of four phases (Monitor, Analyze, Plan, Execute), guides the
system in automatically adjusting resources. The first phase is monitoring,
in which a system collects data on the monitored resources. The autoscaling
system then analyzes this data, which uses a predefined rule to plan an
action. The granularity and quality of the monitoring data directly impact
the performance of the autoscaling system, so the data collected for analysis
must be reliable and readily available. As classified by (LORIDO-BOTRAN;
MIGUEL-ALONSO; LOZANO, 2014), the different autoscaling techniques
can fall into at least one of the following groups: Threshold-based rules, Rein-
forcement learning, Queuing theory, and Time series analysis. The following
section will explain how we applied the threshold-based rule technique to our
work, the only one available in Kubernetes.

2.3
Kubernetes

Kubernetes (BURNS et al., 2016; BERNSTEIN, 2014) is an open-source
platform that allows containerized applications’ automation, management, and
scalability, generally used with Docker.

The architecture of Kubernetes1, as seen in Figure 2.3, is made up of
different components that work together to provide a resilient and scalable
environment. When using Kubernetes, we will deal with a Kubernetes cluster,
a set of processing servers called nodes, on which pods will be hosted and
where the application will run. There are two types of nodes: the Master
Node, which is responsible for making scalability decisions and managing the
cluster’s resources, and the Worker Nodes, which are responsible for hosting
the applications. Every Kubernetes cluster has at least one Worker Node.

The Kubernetes Master Node consists of three components: the API
server, which exposes the Kubernetes API and acts as the entry point for

1https://kubernetes.io/pt-br/docs/concepts/overview/components/
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Figure 2.3: Kubernetes Architecture

all services; the Scheduler, which is responsible for monitoring newly created
pods that have not yet been assigned to a node; and selecting a suitable
node for them to run on; and the Controller Manager, who is in charge of
managing the cluster’s controllers and ensuring that the cluster’s state is
properly maintained.

The Kubernetes’s Worker Node is also made up of three main compo-
nents: Kubelet, which is an agent that runs on each of the nodes and ensures
that the containers are running on a pod; Kube Proxy, which is responsible for
providing network services at the pod level; and Container Runtime, which is
the software responsible for running the containers, such as Docker.

Finally, the Kubernetes architecture includes ETCD, a consistent, highly
available key-value storage for all the data shared in the cluster.

2.3.1
Workloads

In the context of Kubernetes, the pod2 represents the smallest deployable
unit under our control for creation and management. In its most typical
configuration, a pod consists of a single container; however, the pod can span
multiple containers in situations involving applications of numerous coupled
containers. This possibility occurs due to the sharing of network and storage
resources between all the containers contained in the pod. It’s worth noting
that pods in Kubernetes are ephemeral by nature, which means they can

2https://kubernetes.io/docs/concepts/workloads/pods/
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be created, deleted, and recreated dynamically to adapt to the application’s
demands.

In general, pods are not directly created as individual resources within
Kubernetes but are instantiated from workload resources. A workload resource3

essentially serves as an automated mechanism for managing a group of pods.
Kubernetes offers various predefined workload resources:

– Deployment: It is a way of managing stateless applications, i.e., where the
state is not persisted, and each transaction can be treated as if starting
anew.

– StatefulSet: It is a way to manage stateful applications where the state
needs to be persisted.

– DaemonSet: This mechanism ensures that a specific pod instance runs on
each cluster node. In the event of new nodes being added to the cluster,
this workload guarantees the deployment of a new pod on the new cluster
node.

– Job and CronJob: The Job provides a way to execute tasks that run once
and then terminate. For scenarios where we want the same Job to run
repeatedly according to a schedule, a CronJob can be employed.

2.3.2
Autoscaling

In Kubernetes, a workload can be scaled to adjust the allocated resources.
This process can be made manually using kubectl4 CLI (Command Line
Interface) or automatically by providing metrics that can be used for scaling
decision-making. Automatic scaling is our main focus, and Kubernetes provides
two ways to scale our workload automatically:

– Horizontal Pod Autoscaler (HPA) acts by adding new pod replicas that
run the same application. As a result, load balancing is carried out on
more processing units, which means the load is diluted between the pods.
Since it only requires adding new pods, there is no need to restart the
application, which makes HPA attractive for applications that need high
availability.

– Vertical Pod Autoscaler (VPA) acts by directly switching the resources of
existing pods. As it is necessary to modify the existing resources available
in the pods, the service must be restarted, which hinders the use of VPA
for applications that need to run continuously.

3https://kubernetes.io/docs/concepts/workloads/
4https://kubernetes.io/docs/reference/kubectl/
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2.3.3
Services

To make an application accessible as a network service from a collection
of pods, Kubernetes provides a resource type known as a Service5. By utilizing
this resource, we can establish a coherent group of pods and a reliable means of
reaching them. The service facilitates the exposure of this pod group, making
it accessible not only within the cluster but also externally if required.

Kubernetes provides the following types of services:

– ClusterIP: Allocates an internal IP address, making the set of pods
accessible only internally to the cluster.

– NodePort: Exposes the service on a fixed port of each node in the cluster,
providing accessibility via the IP address of the cluster node at the
configured port.

– LoadBalancer: Exposes the service externally using an external load
balancer. It’s important to note that Kubernetes does not include a built-
in load balancer component; one must be provided separately, commonly
available in public cloud clusters such as the Google Cloud Platform
(GCP).

– ExternalName: Maps the service to a specified DNS (Domain Name
System).

5https://kubernetes.io/docs/concepts/services-networking/service/
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Self-scalable system architecture based on Kubernetes

As mentioned, the gateway is the ContextNet 3.0 microservice which
is responsible for communication between mobile and static nodes. This
component establishes connections with mobile nodes using the MR-UDP
protocol and translates messages into the Kafka protocol to deliver to other
microservices. Therefore, it will be the one we will evolve as a use case for our
work.

Initially, system resource bottlenecks were identified with the aim of
understanding how we can leverage them in decision-making for automatic
scaling. As mentioned in the previous work (WANOUS, 2021) and empirically
identified by us, the system has limitations based on available resources
such that variations in the amount of RAM directly impact the number of
connected mobile nodes. Consequently, it was determined that each gateway
can support up to 5000 mobile nodes, requiring 1.5GB of available RAM for
this purpose. Adding more connections with the same amount of RAM results
in system failures and significant loss of connections. It is worth noting that
this configuration was used for the project based on our available resources.
However, it is possible to configure gateways with more resources so that a
single gateway can support more than 5000 simultaneous mobile nodes.

In Section 3.1, we will discuss the self-scalable architecture implemented
using Kubernetes. Next, in Section 3.2, we will address the self-scaling system,
describing its operation and the configurations made. In Section 3.3, we will
discuss Kubernetes’ internal load balancing and how we configured it to
support MR-UDP’s persistent connections. Finally, in Section 3.4, we will
discuss the challenges of balancing persistent connections.

3.1
Architecture of ContextNet gateways using Kubernetes

To manage ContextNet Gateways, we created a new entity named Point
of Access (PoA). A PoA consists of a Kubernetes cluster that runs gateway
instances and makes them available to mobile nodes. However, with the
application running in the Kubernetes cluster, we have the HPA, which adds
elasticity to the gateways. With the HPA, a PoA can dynamically adjust the
number of gateway instances being executed based on collected metrics and
previously defined limits.
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By adding this new entity to the ContextNet architecture, we have the
PoA as a dynamic pool of gateways. Therefore, the proposal is to stop the
mobile node from connecting directly to one gateway and start connecting to
a PoA that manages several gateways. We can see this change in Figure 3.1a
that illustrates a mobile node connecting directly to one of the gateways and in
Figure 3.1b that show the mobile node connection to a PoA that is managing
two gateways.

(a) Previous use of ContextNet gateways (b) New use gateways with PoAs

Figure 3.1: Point of Access concept.

For the architecture of a PoA, we implemented a single-node Kubernetes
cluster. In this setup, a single virtual machine serves the dual role of both
master and worker nodes. A deployment was set up with the gateway’s Docker
image. An HPA was associated with this deployment so that the gateway
instances are managed automatically according to the configured rule. Finally,
to access the gateways externally to the cluster, a NodePort-type service was
configured, where we mapped a fixed port on the Kubernetes cluster node with
a port on the service.

3.2
Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler operates as a Kubernetes API resource
and controller. The configuration of the resource dictates its behavior. The
HPA controller runs within the Kubernetes control plane, dynamically adjust-
ing the number of replicas based on predefined metrics. These metrics en-
compass pod resources, such as CPU and memory, and can extend to custom
metrics derived from the application.
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At its essence, the HPA functions as a continuous loop, running at
customizable fixed intervals. In each iteration, the controller refers to the
HPA resource definition to identify metrics for evaluation. When the metric
involves the CPU or memory of the pods, the controller queries the Resource
Metrics API. On the other hand, it utilizes the Custom Metrics API for any
other metric. This approach offers crucial flexibility in the metrics collection,
allowing the HPA to adapt to a diverse range of custom and standard pod
resource metrics.

To perform queries on the Resource Metrics API, a commonly employed
tool is the metrics-server1, a data consolidation tool for resource usage
across the entire Kubernetes cluster. Its primary function is to furnish data
exclusively for horizontal and vertical scaling processes. The metrics-server
collects resource metrics from the kubelet running on each cluster worker node
and exposes this data through the Resource Metrics API.

For queries to the Custom Metrics API, it is often necessary to employ
an agent in charge of providing data to the API based on application metrics.
A widely adopted solution involves exposing application metrics through
Prometheus2 and using the Prometheus Adapter3 to extract metrics from the
Prometheus server and feed the Custom Metrics API with the data exposed by
the application (SUKHIJA; BAUTISTA, 2019; SONG; ZHANG; HAIHONG,
2018; NGUYEN et al., 2020).

Hence, the architecture incorporating the metrics-server to provide data
for the Resource API and employing the Prometheus strategy to feed the
Custom Metrics API is illustrated in Figure 3.2.

This approach facilitates a robust and adaptable collection of custom
metrics, seamlessly integrating with the Kubernetes ecosystem to support
dynamic scaling processes tailored to the application’s specific demands.

3.2.1
Configuration

In configuring the horizontal autoscaling of the application, it is crucial
to understand the inherent bottlenecks within the system. This understanding
guides the selection of metrics for evaluation by the HPA and establishing
rules. The strategic metric selection process mirrors the application’s unique
nature and determines the HPA’s ability to adapt to load fluctuations. Aligning
metric selection with the recognition of specific bottlenecks ensures efficient

1https://github.com/kubernetes-sigs/metrics-server
2https://prometheus.io/
3https://github.com/kubernetes-sigs/prometheus-adapter
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Figure 3.2: HPA metrics scrape architecture

scalability and optimized resource allocation to meet the dynamic demands of
the application.

In prior research (WANOUS, 2021), Camilla empirically showed that the
gateway is the component imposing the highest demand on RAM. This is
attributed to the need to maintain and manage many MR-UDP connections.
As a result, in most ContextNet deployments, we always choose to allocate the
gateways to the machines with the most RAM available. The prior experiments
have also shown that ContextNet 3.0 is highly reliable when handling up to
5000 connected mobile nodes per gateway.

Therefore, as we aim to have precise control over resources for operating
a scalable system, we conducted tests to determine the amount of memory
a gateway needs to connect and sustain 5000 mobile nodes sending messages
every five minutes. After several tests, we found that the total RAM required
by a gateway is 1.5GB.

In our assessment of suitable/minimal environment configurations, we
empirically identified that CPU usage is also intensive and directly related to
the volume of messages processed by a gateway. For example, in a scenario
with 1000 connected mobile nodes sending messages at one-minute intervals,
we observed higher CPU usage than when the same number of nodes were
sending messages at five-minute intervals.

Therefore, we decided to work with gateway containers with 1.5GB of
allocated RAM for the environment configuration, setting the limit to 5000
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mobile nodes per gateway instance and one dedicated CPU. In response to
the limit of connected mobile nodes and the CPU volatility depending on the
message-sending scenario, we chose to configure the HPA with the capacity
to add new pods based on monitoring both CPU usage and the number of
connected nodes. We understand that monitoring memory usage is also an
option. However, we chose not to do it now since the metrics-server monitors
the operating system’s memory. At the same time, the JVM (Java Virtual
Machine) requests more memory than it may be using. To address this, we
recognize the need to metricize memory usage from the application itself and
prefer to treat this as a future task.

3.2.2
CPU Monitoring

In our scenario, we chose to assess the CPU usage of the pod rather than
directly monitoring the application. This decision is secure due to the one-to-
one correspondence relationship between the container and pod. In scenarios
with multiple containers, the resource usage of all containers is aggregated and
used as the scaling reference metric. This approach can lead to situations where
a single overloaded container might not be sufficient to trigger the scaling rule.

This way, we integrated the metrics-server into the cluster to collect
pod data and feed this information into the Resource Metrics API. This setup
enables the HPA to query and act based on these metrics.

The HPA was configured with a resource metric of type CPU, specifying
the scaling limit as a resource utilization percentage. It’s important to note that
this value may vary during testing to illustrate the behavior across different
scaling scenarios.

3.2.3
Connected nodes monitoring

As previously mentioned, each gateway has a limit on the number of
concurrently connected mobile nodes. Therefore, it is necessary to add new
gateway containers shortly before this limit is reached. However, this metric
is not inherently part of the infrastructure where the application is executed.
Consequently, we need to expose this metric from the application to enable
HPA to utilize it for decision-making.

To expose these metrics for utilization by the HPA, we chose to adopt
the strategy of exposing application metrics to Prometheus and having the
Prometheus Adapter collect and feed these metrics into the Metrics API. This
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involved including both Prometheus and the Prometheus Adapter in the cluster
to facilitate the desired information flow.

Subsequently, the HPA was configured with a Pods metric, using the
name associated with the exposed metric to indicate the total number of
connected mobile nodes. The scaling limit was set to the total number of
connected mobile nodes, specifically 4500. Despite the per-gateway limit being
5000 mobile nodes, we chose a scaling limit below this threshold to prevent
scenarios where the HPA takes a while to realize the need for scaling, which
leads to the unavailability of new mobile node connections.

3.3
Service load balancing

As detailed in section 2.3, a service is an abstraction defining a logical
group of pods and their access policies. These services are associated with a
fixed IP and a DNS, simplifying client communication with the pods. Once this
communication is established, effective load balancing for all requests directed
to the service becomes necessary, ensuring their distribution among the pods.
This process is known as service load balancing.

The kube-proxy, the component in charge of maintaining network rules
and enabling communication with the pods internally and externally to the
cluster, is responsible for implementing balancing. The standard implementa-
tion of this balancing occurs through iptables rules (PURDY, 2004), resulting
in an even distribution of the load in a round-robin algorithm.

However, in our scenario, where connections are persistent, and the gate-
way imposes a predefined maximum limit of connections, evenly distributing
new connections becomes problematic, because trying to connect to a satu-
rated gateway results in the mobile node trying new reconnections until it
connects to an available gateway.

We used kube-proxy in IPVS (IP Virtual Server) mode to address this
challenge. IPVS (DU HAIBIN XIE, 2018; ZHANG et al., 2000; PHAN; KIM et
al., 2022) implements load balancing at the transport layer of the OSI model
(IREN; AMER; CONRAD, 1999) within the Linux kernel. Integrated with the
Linux Virtual Server (LVS), it acts as a load balancer, directing TCP or UDP
service requests to the servers that will process the request.

With the Kubernetes cluster operating in IPVS mode, kube-proxy dy-
namically monitors resources and configures IPVS rules accordingly. Simul-
taneously, IPVS in the Linux kernel is responsible for packet forwarding and
balancing between the pods. This configuration allows us to specify the desired
load-balancing algorithm. Given the challenges in connecting to the gateways,
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we determined that the best option is to use the Least Connection Algorithm
(SINGH; KAUR, 2018), ensuring that new connections are directed to the
server with the fewest existing connections at that moment.

3.4
Dealing with persistent connections in Kubernetes

Knowing that Kubernetes does not rebalance active connections, even
when adjusting the replica count, persistent connections can be a challenge
that the architecture does not address.

This problematic scenario becomes apparent when the gateways increase
CPU usage, mainly resulting from events of already connected mobile nodes.
For instance, if the CPU increase is due to a rise in message exchange among
the already connected mobile nodes, this might trigger a scale-up in the
PoA. However, it does not alleviate the overload on the specific gateway
because existing connections have not been migrated. Understanding this, our
test scope, described in Chapter 5, always considers a fixed interval between
message exchanges.



4
PoA Manager

In the original ContextNet 3.0 (WANOUS, 2021), the PoA Manager was
responsible for load balancing between gateways and creating a prioritized list
of active gateways. However, as explained in Chapter 3, the new architecture
proposes isolating gateways through the PoA entity. This entity has a public IP
where mobile nodes should connect, functioning as an elastic pool of gateways
that adjust the number of its instances according to the current demand. In
section 4.1, we will briefly introduce how the old PoA Manager worked, followed
by an explanation of the new simplified PoA Manager in section 4.2, which we
implemented to enable the use of the new architecture.

4.1
PoA Manager for non-elastic gateways

To perform load balancing among gateways, the former PoA Manager
takes into account two sets of monitoring information involving mobile nodes
and gateways: the Load Report and the Connection Report. Additionally, to
receiving data reports from mobile nodes and gateways, there is also a need to
monitor whether the gateways are active to include them in the load balancing,
as seen in Figure 4.1. This gateway state monitoring is done through the
recurring sending of Load Reports. The absence of a report within a specific
time interval indicates that the gateway is inactive, resulting in its removal
from the load balancing.

Figure 4.1: PoA Manager for non-elastic gateways gateway management pro-
cess
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The Load Report periodically sent by gateways provides information
about the status of their hardware. Therefore, it includes details such as the
utilization rate and size of the Thread Pool, CPU load, total memory, and
available fraction, as well as total JVM memory and available fraction.

In the Connection Report, which is also sent periodically by the gateways,
we have information regarding the connectivity of mobile nodes that are con-
nected to the respective gateway. This report provides data on communication
latency and the list of connected mobile nodes.

As a result, the PoA Manager executes a ranking algorithm that considers
the load and connection reports and can be implemented by the developer.
The objective of this algorithm is to generate scores for all active gateways,
where a higher score represents greater availability and, consequently, a higher
suitability for receiving new connections.

With the scores assigned to all active gateways, a reallocation process is
initiated, taking into account both connection data and gateway scores. The
purpose of this process is to calculate the number of mobile nodes that should
be connected to each gateway and send reconnection requests to the mobile
nodes that need to be relocated.

Figure 4.2: PoA Manager for non-elastic gateways reallocation process

4.2
PoA Manager for elastic gateways

With the change in the gateway architecture, the reports sent by each
gateway become obsolete as the mobile node’s point of connection shifts to
the PoA instead of the gateway. For this reason, a restructuring of the PoA
Manager was necessary to review its responsibilities and align it with the
proposed new architecture.

Given that the main focus of the work is the evolution of gateways toward
a self-scalable structure, when the need to restructure the PoA Manager was
identified, we opted for a simple implementation to facilitate the testing and
validation of the new PoA architecture. Therefore, the goal in restructuring the
PoA Manager was to clearly define its new responsibilities and implement them
in a way that is flexible for developers of ContextNet applications, allowing
them to choose their decision-making policies. Additionally, we aimed to make
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it easily extensible for ContextNet developers, as there are certain aspects to
be improved to make it a more flexible component.

Looking at the new self-scalable architecture, we realize that the gateway
is isolated from the mobile node so that the connection occurs between the
mobile node and the PoA. Therefore, load balancing among gateways within
a PoA becomes the responsibility of Kubernetes, which manages the available
gateway instances per PoA. Hence, we observe that the PoA Manager now has
two basic responsibilities: managing gateways to determine their associated
PoA and link the sent reports to a PoA; and deciding the best PoA for a
mobile node to connect to.

In subsections 4.2.1 and 4.2.2, we will thoroughly describe the two
mentioned responsibilities of the PoA Manager.

4.2.1
Gateways management by PoA

Unlike gateways, a PoA is not considered a dynamic entity that frequently
appears and disappears. Instead, it is viewed as a static entity that requires
an installation process to exist in a real-world scenario. From our perspective,
a PoA is a statically and geographically distributed access point responsible
for managing a pool of gateways. Consequently, there is no mechanism for a
PoA to spontaneously appear and inform the PoA Manager of its existence.
Therefore, the PoA Manager needs prior knowledge of the existing PoAs.

To map the existing PoAs, the PoA Manager maintains a JSON
(JavaScript Object Notation) file containing the following data for each PoA:

– Identifier: the name identifying the PoA

– IP: the public IP of the PoA, where mobile nodes should connect

– Latitude: the latitude of the location where the PoA is situated

– Longitude: the longitude of the location where the PoA is situated

In contrast to the previous PoA Manager, which used Load reports to
determine whether gateways were inactive or not, the new version now relies
on the "Hello" messages sent by gateways every ten seconds in a specific Kafka
topic. This change was made because we want the responsibility of determining
gateway liveliness to be associated with a dedicated Kafka topic focused solely
on indicating the proper functioning of the system.

On the PoA Manager side, we configured a liveliness buffer with a size of
two to support instabilities in the liveliness signal transmission. This ensures
that a single failure in transmission is not sufficient to label the gateway as
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inactive. Currently, the size of this buffer is fixed, but for the evolution of the
PoA Manager, we recognize that making this value configurable per PoA could
be beneficial. This is particularly relevant in regions with varying connection
quality, which may result in more or fewer communication failures.

To associate a gateway with a PoA, we consider the first transmission of
the "Hello" message containing the IP of the PoA to which the gateway belongs,
as we can see in Figure 4.3. This enables us to map information from reports
sent by gateways and aggregate them for decision-making by the PoA. Finally,
to simplify the implementation in this version of the PoA Manager, only the
load reports sent by gateways are considered. However, we acknowledge that
in the future, it might be advantageous to also consider connection reports.

In summary, the new PoA Manager now determines the state of gateways
solely based on the "Hello" message. It organizes gateways by PoA to aggregate
reports sent by gateways within the scope of PoAs for decision-making.

Figure 4.3: PoA Manager for elastic gateways gateways management

4.2.2
Choosing the best PoA

The PoA Manager is responsible for providing the mobile node with
a prioritized list of the best PoA based on a rule defined by the developer of
ContextNet’s application, as we can see in Figure 4.4. If necessary, we delegate
to Kubernetes the responsibility of allocating more resources and deploying
additional gateways in scenarios where a PoA experiences high traffic.

Determining the "best" PoA is subjective and relies on the developer’s
specific needs. That’s why we designed the PoA Manager to let the developer
decide on the algorithm for selecting the best PoA. When implementing the
algorithm, developers have access to all the data sent by mobile nodes in the
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context message. This means they can utilize any information sent by the
mobile nodes to choose the best PoA.

In our work, we used an example of a decision algorithm based on
geolocation. Since each mobile node reports its latitude and longitude in its
context message, and the PoA Manager knows the coordinates of the PoAs, we
can use the Haversine algorithm (PRASETYA et al., 2020), which calculates
the distance between two coordinates on earth using latitude and longitude,
to determine the distance from the mobile node to each of the existing PoAs.
This allows us to rank the PoAs based on proximity and return this list to the
mobile node.

It is important to note that a geolocation-based decision is not the only
valid one, but it was chosen by us for validation purposes in the architecture of
autoscalable gateways. Besides the chosen decision for our validation, scenarios
may exist where specific PoAs are designated for processing different types of
data. In such cases, each mobile node can only connect to a group of PoAs
processing the data it transfers. Scenarios may also consider the current battery
level of the mobile node, directing nodes with lower battery levels to PoAs
with higher availability to prevent data loss in case of failure. Another option
is to assign mobile nodes that require faster updater in PoAs with greater
availability.

As we can see, there are various scenarios where choosing the best PoA
may need to be approached differently. For us, the most important aspect of
developing the PoA Manager was to provide this flexibility of implementation
for the ContextNet applications developer, as each one may have different
requirements.

Figure 4.4: Choose best PoA



5
Experiments and performance results

5.1
Setup

Some experiments were carried out to evaluate our solution and ensure
that it complies with the requirements for PoA operation without interfering
with the connectivity quality of the nodes.

For the testing, we configured the environment in a distributed manner
with four virtual machines (VMs) having 4 CPU cores and 16 GB of RAM
each on PUC-Rio DI private cloud. These VMs were logically organized in a
star network topology (MEADOR, 2008), with a separate VM as the central
node responsible for packet forwarding in message exchanges.

As described in Section 2.1, ContextNet uses Kafka as the communica-
tion layer between microservices. Therefore, it was necessary to configure the
environment with Zookeeper (HUNT et al., 2010). In addition to the base con-
figuration, we set up an instance of the PoA Manager, as this service manages
the created PoAs and connections of mobile nodes, leading to a significant
exchange of messages with this service. To represent PoAs, two VMs were con-
figured with a Kubernetes cluster using the minikube tool (MUDDINAGIRI;
AMBAVANE; BAYAS, 2019). Finally, two VMs were allocated to simulate
mobile nodes.

Thus, our test infrastructure was arranged as shown in Figure 5.1. The
first VM runs Zookeeper, the PoA Manager, and simulates mobile nodes. The
second and third VMs are exclusively responsible for implementing one PoA
each. Finally, the fourth VM also simulates mobile nodes.

For all experiments described below, we used the infrastructure outlined
above. Therefore, as it is a distributed architecture with asynchronous message
exchange, the tests were executed multiple times to ensure a confidence level of
95%. Additionally, following the scenario described in section 3.4, the message
exchange interval of the mobile nodes was configured for five minutes.

5.1.1
Fairness Index

We also considered it essential to assess how Kubernetes distributed
connections among the operational gateway instances, especially in a persistent
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Figure 5.1: Experiments Infrastructure

connection scenario. So, in some experiments, we’re using the Fairness Index
(JAIN et al., 1984) to verify if Kubernetes are balancing connections properly.

As mentioned in chapter 3, section 3.3, we configured the Kubernetes
cluster for the kube-proxy to operate in IPVS mode with the least connections
algorithm. Consequently, new connections would always be directed to the
gateway with the fewest connections. This setup is ideal since we deal with
the same load across all connections and aim for fair balancing based on the
number of connections rather than the processed load.

To evaluate the balancing performed by Kubernetes using our configu-
ration, we used the Fairness Index (JAIN et al., 1984). This index provides a
quantitative measure to assess the distribution of connections. The 5-1 index
aims to measure the equality of the distribution of a quantity x of connections
among n gateways, where each has xi connections. The index result will be one
when the distribution is 100% fair and deviates from one as the discrepancy
in the distribution increases.

FairnessIndex = fa(x) = [∑n
i=1 xi]2

n
∑n

i=1 x2
i

(5-1)

5.2
Availability and Load Balancing in PoA with and without autoscaling

This experiment aims to show the availability and load balancing in with
a PoA with autoscaling, which can allocate more resources as needed when
compared to a PoA without autoscaling, with a fixed resource limit.
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We configured the pods with one CPU core and 1.5 GB of RAM to carry
out the experiment. This configuration ensures the connection of up to 5000
mobile nodes in each gateway pod, as previously described. Thus, the PoA
without the autoscaling strategy will use consistently three pods, while the
PoA with the autoscaling strategy is configured to use between one and three
pods. To control pod usage in the autoscaling PoA, we configured the HPA to
scale for 4500 connected mobile nodes and 50% CPU usage.

To experiment in different scenarios, we connected 1000, 2500, 5000, 7500,
and 10000 mobile nodes with a fixed interval of 1000ms between connections
and checked the percentage of successful connections for each of the PoAs and
the number of gateways used, bearing in mind that each one is configured to
accept a maximum of 5000 mobile nodes.

Figures 5.2a, 5.2b and 5.3 depicts the number of connection failures
for the two PoAs, the number of instances of gateways used in the tests and the
connections load balance within a PoA, respectively, with a confidence level of
95%.

Figure 5.2a show that both PoA configurations can handle 100% of con-
nections up to 10000 mobile nodes with low percentage of failed connections.
We can see that the PoA without autoscaling has a higher percentage of failed
connections when connecting less mobile nodes, indicating that connection
failure should be an absolute value by gateway instance.

In Figure 5.2b we can see that while PoA without autoscaling has all
gateways available since the beginning, PoA with autoscaling adapt according
to new connections to guarantee availability.

(a) Percentage of failed connections for
PoAs with and without autoscaling

(b) Gateways instances for PoAs with and
without autoscaling

Figure 5.2: Availability analysis in autoscaling PoAs.

In Figure 5.3, we observe that a PoA with autoscaling impacts the
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Fairness Index during an upscale event, indicated by the red line. This suggests
that a PoA without autoscaling maintains a fair load balance, as all gateways
are available from the start and connections are evenly distributed. While a
PoA with autoscaling dynamically adjusts resources, it results in an unfair
balance compared to the PoA without autoscaling. However, in terms of
resource efficiency, only the autoscaling PoA can provide savings.

Thus, both configurations demonstrate the ability to handle all connec-
tions with minimal failures. Additionally, a PoA without autoscaling may
achieve better connection balance, but lacks the resource-saving capabilities
of the autoscaling PoA.

Figure 5.3: Fairness index with upscale events represented by red line

5.3
Connectivity assessment during downscale

This experiment is intended to check the connectivity of mobile nodes
during the downscale process. In an ideal world, we would like no reconnection
by the mobile node. However, Kubernetes does not manage the redirection of
active connections, so, at a downscale moment, it will be required by all nodes
connected to do the down pod disconnection followed by a reconnection.

Although it does not redirect connections, when a pod terminates,
Kubernetes sends a SIGTERM signal to the container and waits for a pre-
configured resolution time, called the termination grace period, to properly
terminate the pod. During the grace period, the persistent mobile nodes do
not lose connectivity with the gateway, but no new connections are directed to
the pod. In the face of this, the goal is to guarantee the following three points:
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– All mobile nodes must be reconnected within the termination grace
period.

– Low average reconnection time so that it does not impact the system’s
restabilization.

– The downscale event should not impact the Fairness Index

This way, we can guarantee the system’s resilience and show that
the proposed solution is effective even when mobile nodes reconnect during
Kubernetes’ automatic adjustments.

The tests conducted for the described experiment involve a downscale
simulation. To achieve this, we start a PoA with two gateway replicas and
connect mobile nodes with a fixed interval of 1000ms. During this process, the
established connections are evenly distributed among the gateway instances
managed by the PoA. Subsequently, when all mobile nodes are connected,
we force the shutdown of one of the gateway instances, causing all mobile
nodes connected there to reconnect and establish a new connection with the
remaining operational gateway.

As a result, we decided to vary the number of mobile nodes to be
connected by 500, 1000, 1500, 2000, 2500, and 3000, and the available CPU
resource for the gateway instances at 0.5 CPU, 0.75 CPU, and 1 CPU, while
keeping the available RAM fixed at 1.5 GB.

Next, we will discuss the analyses conducted to ensure the two objectives
mentioned in subsections 5.3.1 and 5.3.2.

5.3.1
Evaluation of system restabilization

To ensure the first point mentioned earlier, it is necessary to assess the
system’s restabilization time, which we understand as the time it takes for all
mobile nodes to disconnect from the gateway being shut down and reconnect
to another gateway. This process involves disconnecting from the PoA and
reconnecting, ensuring the new connection is directed to one of the remaining
gateways in service.

The gateway shutdown message is sent to all connected mobile nodes.
However, due to the MR-UDP protocol and internal implementations of
ContextNet components, mobile nodes receive the reconnection message at
different times. Therefore, evaluating the system’s restabilization ensures that
the discrepancy in receiving the reconnection message does not negatively
impact the reconnection of mobile nodes in this downscale process. To verify
that there is no impact, we expect all mobile nodes affected by the downscale
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to reconnect within a shorter time than the termination grace period. Thus,
the only period of unavailability will be the reconnection time itself.

Despite the existing dispersion in the perception of mobile node discon-
nection due to the utilized protocol, it is possible to observe from the test
results, in Figure 5.4, with a 95% confidence level that there is no distinct
behavior given different pod configurations, nor with an increased number of
connected mobile nodes.

Therefore, we ensure that in this scenario, all mobile nodes reconnect
within the termination grace period of 60 seconds, affirming that no mobile
node loses connectivity with its current gateway before reconnecting.

Figure 5.4: System re-stabilization analysis

5.3.2
Evaluation of reconnection time

After ensuring the system’s restabilization time falls within the termina-
tion grace period interval, our next step is to analyze the reconnection times
of mobile nodes. The objective is to assess the relationship between the num-
ber of reconnecting mobile nodes and the reconnection time and whether the
available resources have any impact.

Analyzing the test results depicted in Figure 5.5 with a 95% confidence
level, we can see that the average reconnection time increases as more mobile
nodes attempt to reconnect. A more substantial impact is noticeable regard-
ing the available resources when limited resources (0.5 CPU per pod) exist.
However, we do not observe any significant influence when comparing exper-
iments with more abundant resources (0.75 CPU and 1 CPU). Additionally,
upon examining Figure 5.6, we notice that the dispersion in reconnection
times increases with more reconnecting mobile nodes. This suggests that some
mobile nodes reconnect much faster than others in this scenario.

Given that the system’s restabilization time falls within the termination
grace period, we can ensure that the mobile nodes’ downtime is solely the
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Figure 5.5: Mobile nodes reconnection time analysis

Figure 5.6: Mobile nodes reconnection time analysis

duration it takes to reconnect. Hence, in addition to assessing the average
reconnection time, we find examining the maximum reconnection time crucial.
This metric represents the worst-case scenario of unavailability, offering direct
insights into the downtime caused by the downscale process.

In Figure 5.7, with a 95% confidence level, we observe a consistent
pattern across the three variations of available resources. The maximum
reconnection time increases as the number of connected mobile nodes rises.
This suggests that the more mobile nodes are affected by the downscale, the
longer it might take them to reconnect. However, the maximum reconnection
time remains below one second, a level we consider satisfactory for the nature
of the system under consideration.
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Figure 5.7: Mobile nodes maximum reconnection time analysis

5.3.3
Fairness index evaluation

During downsizing, when reconnections occur due to the shutdown of a
gateway instance, we deemed it crucial to assess the Fairness Index to ensure
that this event does not affect the balance of connections among operational
gateways.

For this evaluation, we focused on the scenario with the most mobile
nodes involved in the downsizing process, namely when 3000 mobile nodes are
utilized. Additionally, we restricted our analysis to the scenario where each
gateway instance has 1 CPU and 1.5GB of RAM, as the amount of resources
available in the gateway does not impact the distribution of connections since
balancing connections is the responsibility of the kube-proxy.

In Figure 5.8, with a 95% confidence level, we observed that during
the connection of the mobile nodes, the Fairness Index remains close to one.
After the downsizing event, represented by the marker on the graph, we
maintained the index at the same levels. This indicates that, despite a third of
the connections being migrated, the balance remained fair among the gateway
instances that continued operating.

5.3.4
Discussion

The experiment aims to show that the system does not experience
downtime exceeding the reconnection time during downscales, which should be
insignificant given the application’s nature, and to ensure that the downsizing
event does not impact the Fairness Index.

We observed that the configured termination grace period of 60 seconds
is sufficient for the tested scenarios. However, in scenarios where gateways
have more resources and consequently more concurrently connected mobile
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Figure 5.8: Fairness Index during downscale event represented by the red line.

nodes, an adjustment to this time may be necessary. This flexibility in the
configuration indicates that our system functions for the tested values and can
be adapted to support scenarios beyond our current evaluations.

Furthermore, we noted that the individual reconnection time for mobile
nodes increases alongside the number of mobile nodes attempting to reconnect.
However, we also identified that the maximum time in these scenarios does not
exceed one second, indicating that it has no significant impact.

Finally, verifying that the downsizing event does not impact the Fair-
ness Index was possible, demonstrating that downsizing does not affect the
balancing of connections within a PoA.

5.4
Upscaling during high connection demand scenarios

As outlined in the previous tests, connections were gradually established,
with mobile nodes connecting in 1000ms intervals. However, it is crucial
to understand how our service handles scenarios involving high connection
demand, as this may impact up-scaling behavior. This experiment assesses up-
scaling performance in scenarios with varying quantities of connected mobile
nodes and different CPU scaling activation thresholds. We recognize that the
connection of many mobile nodes in burst directly influences the application’s
CPU usage, necessitating the addition of more instances to distribute the load
effectively. Furthermore, we want to analyze how the upscale event impacts the
Fairness Index since we have persistent connections that are not rebalanced
after adding a new gateway.
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Figure 5.9: Percentage of failed connections in moments of high demand of
connections

Table 5.1 outlines the tested scenarios (Case 1 to 3), where we varied the
quantity of connected mobile nodes and the interval between each connection.
Each test was conducted with CPU scaling thresholds set at 25%, 50%, and
75%. Additionally, we configured node quantity scaling, set at 4500 connected
mobile nodes, in conjunction with CPU-based scaling.

Table 5.1: Connections burst experiment configuration.

Number of mobile nodes Case 1 Case 2 Case 3
1000 1000 ms 500 ms 100 ms
2500 1000 ms 500 ms 100 ms
5000 1000 ms 500 ms 100 ms
7500 1000 ms 500 ms 100 ms
10000 1000 ms 500 ms 100 ms

5.4.1
Connectivity Assessment

First, we assessed the impact of the interval between connections on the
connectivity of mobile nodes with the PoA. It was crucial to determine whether
the scenario involving numerous simultaneous connections would affect the
establishment of connections. During periods of high demand, the gateway’s
increased CPU consumption could potentially pose challenges in establishing
new connections.

As depicted in Figure 5.9, we can see the percentage of failed connec-
tions for each connection interval in each CPU threshold case.

We observe a trend of improved connectivity in the graphs for 25% and
50% CPU when the interval between connections is larger, significantly as
we increase the number of connected nodes. Enlarging the intervals between
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connections has a positive impact, reducing the load on gateways and decreas-
ing the likelihood of failures. Additionally, as the number of connected nodes
increases, the percentage of failures decreases since failures are typically in
absolute values. This indicates that, as the number of mobile nodes increases,
the amount of connection failures does not increase proportionally, which can
only be achieved using the proposed autoscaling architecture.

However, the graph for 75% CPU exhibits a similar but slightly more
diverging trend, especially at points with 5000 and 10000 connected mobile
nodes. This occurs because this configuration allows the gateway to operate
with higher CPU usage, resulting in more connection failures, especially in
scenarios where the gateway is close to its limit of connected nodes, as in the
mentioned cases. Notably, this higher variability pattern is more pronounced
in the test with a connection interval of 100ms, as this interval significantly
increases CPU usage.

5.4.2
Scaling Evaluation

Next, we thought it should be essential to evaluate the number of gateway
instances used in each test scenario, as the impact on CPU usage is a factor
that can lead to the addition of new gateway pods. We understand that in a
scenario with high demand for new connections, it is acceptable to work with
more gateways to meet the momentary demand and avoid unavailability. If
possible, downsizing can be performed later once the peak load has subsided.

Figure 5.10: Scaling analysis in moments of high demand of connections

As illustrated in Figure 5.10, we categorized the graphs based on the
configuration threshold for activating scaling, allowing us to assess different
connection intervals with three scaling configurations, similar to the previous
analysis.
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For the 25% CPU usage configuration, we observe consistent behavior
across the three variations of connection intervals. The pattern reflects a proac-
tive scaling approach, resulting in the utilization of more gateway instances
without approaching each one’s limit. For example, scenarios with 2500 con-
nected nodes use two instances, even though a gateway supports up to 5000
connected nodes. Notably, the scenario with a 100ms interval to connect 1000
mobile nodes stands out, indicating that shorter connection intervals lead to
faster scaling events due to increased CPU usage on the gateway.

In the 50% CPU usage configuration, we observe similar behavior for the
three evaluated intervals. However, for smaller quantities of connected mobile
nodes, fewer gateway instances are employed. For example, in the scenario
with 2500 mobile nodes, which previously used two instances, now only uses
one. This happens because we need more CPU usage to trigger HPA scaling
when compared with the previous scenario.

The final configuration with 75% CPU usage shows similar behavior to
the configuration with 50%, except for the 100ms intervals in tests approaching
the gateway’s connection limit. Connecting 5000 mobile nodes in a short time
sometimes doesn’t provide enough time for the HPA to identify the scaling
need based on the number of connected nodes before the test concludes. This
is reflected in the variation in the number of gateway instances in these tests.

It is crucial to emphasize that, in addition to the number of instances
used, the timing of scaling influences the distribution of mobile nodes among
these instances. In the 25% CPU configuration, despite employing more
gateway instances, there is a more effective distribution of connections because
scaling events occur more rapidly. Conversely, in the 75% CPU configuration,
gateway instances are utilized up to their limit before scaling occurs. This
observation during the tests indicates that a higher CPU threshold for scaling
increases the likelihood of gateway overload. A potential strategy to address
this situation is to reduce the scale threshold based on the number of nodes to
be connected.

5.4.3
Fairness Index

During the upscale, when a new gateway instance is added within a
PoA, we consider it essential to assess the Fairness Index to understand how
the event impacts the balance of connections among operational gateways.

For this analysis, we focused on the scenario with the highest number
of mobile nodes involved, namely the one involving the connection of 10000
mobile nodes. We analyzed the three connection intervals already described for



Chapter 5. Experiments and performance results 47

this case: 100ms, 500ms, and 1000ms. Additionally, we restricted our analysis
to the scenario where the CPU usage threshold for scaling is 50%.

In Figures 5.11, 5.12, and 5.13, we were able to verify, with a 95%
confidence level, the test results. In them, we observed that in the three
evaluated intervals, the behavior of the Fairness Index follows the same pattern,
indicating a drop in the index with each upscale event followed by its recovery
in the following minutes.

This behavior aligns with what is expected by the designed system.
We have a less fair balance after inserting a new gateway instance because
the old connections are not distributed to the new gateway. However, as
new connections are made, the index tends toward one again, as these new
connections are exclusively directed to the new gateway since it has fewer
active connections.

Figure 5.11: Fairness Index in upscale events, represented by the red line, with
1000ms interval between connections

5.4.4
Discussion

In conclusion, this experiment provided an insightful evaluation of the
upscale behavior in scenarios with high connection demand. While previous
tests focused on gradual connections, this experiment aimed to comprehend
the system’s response to many mobile nodes connecting at short intervals. The
objective was to analyze how scaling performs under varying load conditions,
considering different quantities of mobile nodes and distinct CPU usage
thresholds to trigger scaling.
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Figure 5.12: Fairness Index in upscale events, represented by the red line, with
500ms interval between connections

Figure 5.13: Fairness Index in upscale events, represented by the red line, with
100ms interval between connections

The results indicate that increasing the interval between connections
and the number of mobile nodes contributes to more stable connectivity,
particularly in configurations with 25% and 50% CPU usage. Extending
intervals between connections helps to reduce the load on gateways, resulting in
fewer connection failures. Moreover, the percentage of failures tends to decrease
as the number of mobile nodes increases, suggesting that the number of failures
does not rise proportionally with the number of connected mobile nodes.

In the scaling assessment, it was observed that configurations with 25%
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Table 5.2: PoA’s configurations.

Identifier Latitude Longitude IP
Gramado - RS -29.39461097 -50.79763940 172.16.2.202/24

Rio de Janeiro - RJ -23.00040296 -43.33866122 172.16.3.202/24

and 50% CPU usage adopt a preventive approach, utilizing more gateway
instances without approaching their limits. However, the 75% CPU configu-
ration, especially at 100ms intervals, exhibits more turbulence, highlighting
more intensive CPU usage. This condition may lead to connection failures
with loads closer to the gateway limits. Furthermore, the distribution of mo-
bile nodes among instances is influenced by the scaling timing, being more
effective in configurations with a lower CPU threshold for scaling activation.

Finally, based on the analysis of the Fairness Index, even though our
system does not rebalance active connections during upscale events, we ensure
that it always balances new connections in a way that they are distributed as
fairly as possible.

As intended, the goal of this experiment is not to provide a definitive
answer on how to configure CPU scaling but rather to furnish developers with
data to make informed decisions based on their specific scenarios. Considering
the results, the suggestion is to adopt scaling approaches that consider the
number of connected nodes and the predicted connection flow, adjusting the
threshold based on these criteria to mitigate the likelihood of gateway overload.

5.5
Migration between PoAs

The previous experiments involved a single PoA, where we tested avail-
ability and connectivity during downscale and upscale moments. However, we
also consider it essential to evaluate a scenario involving multiple PoAs, simu-
lating a real-world scenario of mobile node migration to assess the scalability
of the involved PoAs and the effectiveness of the architecture proposed in this
work.

Therefore, two PoAs were considered for the test: the source PoA
(Gramado - RS) and the destination PoA (Rio de Janeiro - RJ). Each PoA has
a different IP, representing various geographic regions for the PoA Manager
based on latitude and longitude. As mentioned in Section 4.2, the algorithm to
determine the best PoA for a mobile node was Haversine, where we considered
latitudes and longitudes to calculate the distance between points and create the
priority list. The PoAs for tests were configured in the PoA Manager according
to Table 5.2.
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The test was designed so that once a mobile node connects to the source
PoA, it has a consistent chance of migrating to the destination PoA. The
success of the migration means that the mobile node will not be moved back
to the source—effectively a one-way migration.

Furthermore, mobile nodes are connected to the source PoA at intervals
of 500 ms, and the likelihood of migration is tied to sending a context message
containing the mobile node’s latitude and longitude, which is sent every five
minutes. Consequently, every five minutes after connecting to the source,
the mobile node has a fixed probability of undergoing migration. Lastly, the
configuration of the PoAs ensures scaling limits of 4500 connected nodes or
50% CPU usage.

5.5.1
Scalability and multi PoA architecture effectiveness

To assess the solution’s scalability, we varied the number of mobile nodes
involved in the test to 1000, 2500, 5000, 7500, and 10000. We also varied their
migration probability to 25%, 50%, and 75%. The goal was to examine the
demand for gateways in each scenario and evaluate the proposed architecture’s
effectiveness.

In Figures 5.14, 5.15, 5.16, 5.17, and 5.18, we can observe the results
for each test scenario.

Figures 5.14 and 5.15 show, with a 95% confidence level, that during
the experiment with 1000 and 2500 mobile nodes, there was no need for
scaling by either of the two PoAs in any variation of migration probability.
This indicates that, in the described and tested situation, there was no CPU
overload on the gateways, resulting in the addition of new instances, and there
were no more than 4500 mobile nodes to trigger scaling based on the number of
mobile nodes. Lastly, we also verified that 99% of the mobile nodes concluded
the experiment at the destination PoA, indicating that the test succeeded.

Figure 5.14: 1000 mobile nodes migration
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Figure 5.15: 2500 mobile nodes migration

Figures 5.16 and 5.17 show, with a 95% confidence level, that during
the experiment with 5000 and 7500 mobile nodes, scaling was required for two
gateways in the destination PoA in all variations of migration probability. The
graph shows that scaling occurs within the range of 4500 to 5000 connected
mobile nodes in the destination PoA, indicating that scaling occurred based on
the number of connected mobile nodes. Regarding the connectivity of migrating
mobile nodes, it was confirmed that in these test scenarios, 99% of the mobile
nodes concluded the experiment at the destination PoA, indicating that the
test succeeded.

Figure 5.16: 5000 mobile nodes migration

Finally, Figure 5.18, with a 95% confidence level, shows that during the
experiment with 10000 mobile nodes, scaling was necessary for three gateways
in the destination PoA in all variations of migration probability. The graph
shows that scaling occurs initially within 4500 to 5000 connected mobile nodes
and subsequently within 9000 to 10000 connected mobile nodes, a behavior
similar to that described in the scenarios with 5000 and 7500 mobile nodes.
This indicates that scaling occurred based on the number of connected mobile
nodes. Like the other tests, we also confirmed that in these test scenarios,
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Figure 5.17: 7500 mobiles nodes migration

99% of the mobile nodes concluded the experiment at the destination PoA,
indicating that the test succeeded.

Figure 5.18: 10000 mobile nodes migration

5.5.2
Discussion

As mentioned earlier, based on the experimental data, it can be concluded
that the scalable multi-PoA architecture works for the described scenarios. It
is also evident that the transition between PoAs for a mobile node occurs as
expected according to the geolocation rule used in this work.

However, it is essential to highlight the impact of variations in migration
probabilities and their significance for the study. In the test, we used probabil-
ities of 25%, 50%, and 75% for a mobile node to migrate. This results in more
excellent retention of nodes in the source PoA for lower probabilities, while for
higher probabilities, the retention at the source is lower. Therefore, a scenario
where the migration probability is 5% could lead to significant retention at the
source, triggering scaling. This is a plausible scenario and demonstrates that
the system functions correctly. Additionally, it is essential to note that mobile
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nodes were connected at fixed intervals in the experiment, and reducing this
interval could also impact the scaling of the source PoA.

To illustrate the meaning of this experiment using the geolocation-based
algorithm, we can make an analogy with a real-world scenario: imagine a
city where people’s movement reflects the probability of migration. At a high
probability time, we would have an intense flow of people moving, while at a
low probability time, the flow would be reduced. Additionally, there are other
possible scenarios, such as using an algorithm that decides the best PoA based
on the battery level of mobile nodes. In this case, the probability of migration
would be associated with the battery levels set for migration.
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Related Work

In this section, we present and discuss some research work on autoscaling
systems that does not necessarily focus on mobile IoT.

An API gateway was proposed by (SONG; ZHANG; HAIHONG, 2018)
as an entry point for backend applications in a microservices architecture, using
Kubernetes as the autoscaling system and Prometheus as the pod’s resource
monitoring system. In their approach, they pointed out that the API Gateway
is the client’s only access point to the backend services, making it a potential
bottleneck during periods of high demand with many simultaneous requests.
Similar to ContextNet’s gateway, the API Gateway presented requires high
availability since any bottleneck in the system could result in the entire system
being unavailable.

Although the main objective of the (SONG; ZHANG; HAIHONG, 2018)’s
experiments was to validate the system’s ability to dynamically adjust the
number of pods using the Kubernetes HPA in response to variations in service
load, no connectivity-related experiments were conducted, since the system in
question did not involve client connection persistence. On the other hand, in
our experiments, we investigated both the scalability and connectivity of the
mobile nodes, ensuring a more comprehensive view and addressing the specific
challenges related to mobility and connectivity in our application scenarios.

Sharing some similarities with our work, (DICKEL; PODOLSKIY;
GERNDT, 2019) deals with the obstacle of the gateway in a scalable IoT
platform, as it is a component that needs to handle many simultaneous con-
nections. Their study addressed the problem of the increase in devices corre-
lating directly with the increase in latency, timeout, and disconnections. To
solve this problem, they carried out an experimental study focusing on three
metrics: CPU usage, number of concurrent active connections, and throughput
per gateway, which were used by the autoscaling system to make horizontal
scale decisions.

Our study faced a similar challenge but focused on enabling new connec-
tions after gateway saturation. Similar to the study by (DICKEL; PODOL-
SKIY; GERNDT, 2019), we also observed that the number of simultaneous
connections and individual messaging rate influenced the load. However, we
chose to rely solely on CPU usage and simultaneous connection metrics for
scaling decision-making.

We can see in Table 6.1 in which aspects the works relate to our study.
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Table 6.1: Comparison with related work.

Paper Type Metrics Related
of autoscaling to IoT/IoMT

(SONG; ZHANG; HAIHONG, 2018) HPA CPU usage, QPS No
(DICKEL; PODOLSKIY; GERNDT, 2019) HPA CPU usage, active connections, Yes

throughput of messages
Our work HPA CPU, current connections Yes

Besides research similar to our proposed work, it was also possible to
verify in the work conducted by (ELAMIN; PAARDEKOOPER, 2021) the
effect of persistent connections in autoscaling scenarios using HPA. Even after
adding new pods, the traffic remains restricted to the initial pod due to the
configuration of HTTP session persistence. Their conclusions raised the point
that not all traffic patterns benefit from horizontal autoscaling, and in their
tests, the scenario of persistent connections was identified as one that does not.

In our scenario, connections between mobile nodes and the gateway
are persistent UDP connections. As mentioned earlier, the increase in the
number of messages sent by mobile nodes directly impacts the CPU usage
of the gateway. Therefore, we might encounter a similar scenario described by
(ELAMIN; PAARDEKOOPER, 2021). This fact motivated us to narrow our
test scope to a fixed interval for sending messages by mobile nodes.

Related to autoscaling techniques, (VERMA; BALA, 2021) conducted a
literature review on IoT cloud applications, focusing on evaluating different
QoS (Quality of Service) metrics. The review details threshold-based autoscal-
ing that is the strategy adopted in our study, and discusses various works that
use this strategy as a basis for autoscaling, especially in cloud systems that
use public providers.

As in our study, most of these systems that adopt the same strategy
also use the CPU metric as a decision criterion for autoscaling. Furthermore,
like our work, most of the systems reviewed also employ reactive rather than
proactive techniques since proactive approaches require more intelligence to
predict events before they occur.
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Conclusions and future work

As the popularity of IoT and IoMT continues to grow, the challenges
associated with this domain, particularly those related to real-time commu-
nication services and high availability, are becoming increasingly prominent.
This study assessed the implementation of a self-scalable architecture using
Kubernetes for the ContextNet 3.0 middleware, aiming to make its gateway
component self-manageable in response to demand.

The conducted experiments aimed to demonstrate the feasibility of the
solution, focusing on the impact that the architecture could have on connec-
tivity and the need for flexibility in configuration for system management, as
described in the research questions in Chapter 1.

Our experiments demonstrated the advantages of using an elastic archi-
tecture in terms of resource savings compared to a non-elastic architecture.
They also showed that the upscale and downscale events resulting from the
proposed architecture do not significantly impact the connectivity of mobile
nodes or the balancing of connections among operational gateways. Finally,
we demonstrated the performance of the multi-PoA autoscalable architecture
in different scenarios of mobile node migrations with the aim of guiding Con-
textNet application developers to configure the system according to needs.
Thus, we demonstrate that the architecture proposed in the work addresses
Research question 1.

Research question 1
How can we create a self-scalable gateway architecture that does not
impact established connections and mobile-cloud availability, and allows
the system administrator to configure scalability parameters as needed?

Therefore, the work addresses the solution to the problem below identified
in Chapter 1 for the described scenarios, allowing us to conclude that the
proposed architecture is a way to deal with the scalability issues of static
gateways focusing on establishing connections.
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Problem 1
To support the variations in the demand for mobile nodes’ connectivity,
it is necessary to scale the static gateways so that they can handle these
mobile-cloud connections proportionally while ensuring that the elastic-
ity of static gateways is configurable to adapt to different scenarios.

Finally, it is worth noting that the architecture implemented with Kuber-
netes to add elasticity and load balancing to the gateways of the ContextNet
Core for scalable mobile connectivity can be implemented in various other
systems where elasticity is needed for resource savings purposes.

7.1
Future Work

As part of future work, we can outline aspects related to the evolution of
the multi-PoA architecture and advancements in the ContextNet middleware.

We recognize the potential to incorporate more sophisticated analyses by
varying the scaling parameters introduced thus far regarding the architecture’s
evolution. Moreover, we aim to explore additional scaling parameters beyond
the number of connected mobile nodes and CPU usage. Different metrics may
offer better scaling performance depending on the specific system context.

In advancing the ContextNet 3.0 middleware, the next phase involves
assessing the auto-scaling architecture for protocols not reliant on persistent
connections. This exploration entails investigating alternatives beyond connec-
tion persistence, as indicated by the limitations identified in this study.

Additionally, while our focus has primarily been on developing and
testing autoscalable gateways, we have pursued a simplified implementation
of the new PoA Manager deemed necessary. However, we have identified areas
for improvement that demand attention in the future.

Primarily, the current configuration of the PoA Manager fixedly sets
gateway liveliness. We recognize the need to tailor this configuration to each
PoA, especially in scenarios with varying connectivity. This approach would
enhance fault tolerance, allowing for greater resilience in PoAs with poorer
connectivity and tighter control in PoAs with better connectivity.

Regarding the architecture of the PoA Manager, we want to provide
mobile node connectivity data and PoA load data as additional options
while implementing ranking algorithms. While the initial implementations
only utilized data sent by mobile nodes’ context messages, incorporating these
additional data can enrich decision-making processes.
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