
Eduardo Roger Silva Nascimento

Querying Databases with Natural Language:
The use of Large Language Models for

Text-to-SQL tasks

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
April 2024

Eduardo Roger Silva Nascimento

Querying Databases with Natural Language:
The use of Large Language Models for

Text-to-SQL tasks

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee:

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Profa. Melissa Lemos Cavaliére
Instituto Tecgraf – PUC-Rio

Prof. Luiz André Portes Paes Leme
UFF

Rio de Janeiro, April 4th, 2024

All rights reserved.

Eduardo Roger Silva Nascimento

Graduated in computer science by the Federal University of Maranhão.

Bibliographic data
Nascimento, Eduardo

Querying Databases with Natural Language: The use of
Large Language Models for Text-to-SQL tasks / Eduardo
Roger Silva Nascimento; advisor: Marco Antonio Casanova.
– 2024.

106 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática – Teses. 2. Texto-para-SQL. 3. Modelos de
Linguagem Grandes. 4. LangChain. 5. GPT. I. Casanova,
Marco. II. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. III. Título.

CDD: 004

To my family, for their support
and encouragement.

Acknowledgments

First, I express my gratitude to God for His grace and strength, which have
been sources of inspiration and empowerment at all times.

I thank my advisor, Marco A. Casanova, for his encouragement, partnership,
patience and valuable insights throughout this process. Thank you for the
fantastic person you are and the positive impact you have had on my life.

To my dear family, for their constant encouragement and support. Their words
of encouragement have been my anchor in challenging times.

To my friends, especially Anderson, Nelia, and Mayara, and colleagues who
have stood by me during this journey, my thanks. Your moral support,
constructive discussions, and encouragement have been essential in maintaining
my motivation and determination.

To PUC-Rio and the professors, for providing a stimulating academic environ-
ment and the opportunity to learn and grow as a researcher.

To Tecgraf Institute and my colleagues, especially Melissa, Grettel, Gustavo,
Lucas, and Yenier, for their essential collaborations and support in the devel-
opment of this work.

I thank Petrobras who made it possible to complete this study.

Finally, I would like to express my sincere gratitude to all individuals and
entities who contributed to the completion of this research.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Abstract

Nascimento, Eduardo; Casanova, Marco (Advisor). Querying
Databases with Natural Language: The use of Large Language
Models for Text-to-SQL tasks. Rio de Janeiro, 2024. 106p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

The Text-to-SQL task involves generating an SQL query based on a
given relational database and a Natural Language (NL) question. While the
leaderboards of well-known benchmarks indicate that Large Language Models
(LLMs) excel in this task, they are evaluated on databases with simpler
schemas. This dissertation first investigates the performance of LLM-based
Text-to-SQL models on a complex and openly available database (Mondial)
with a large schema and a set of 100 NL questions. Running under GPT-3.5
and GPT-4, the results of this first experiment show that the performance of
LLM-based tools is significantly less than that reported in the benchmarks
and that these tools struggle with schema linking and joins, suggesting that
the relational schema may not be suitable for LLMs. This dissertation then
proposes using LLM-friendly views and data descriptions for better accuracy
in the Text-to-SQL task. In a second experiment, using the strategy with
better performance, cost and benefit from the previous experiment and another
set with 100 questions over a real-world database, the results show that the
proposed approach is sufficient to considerably improve the accuracy of the
prompt strategy. This work concludes with a discussion of the results obtained
and suggests further approaches to simplify the Text-to-SQL task.

Keywords
Text-to-SQL; Large Language Models; LangChain; GPT.

Resumo

Nascimento, Eduardo; Casanova, Marco. Consultando bancos de
dados com linguagem natural: o uso de modelos de linguagem
grandes para tarefas de texto-para-SQL. Rio de Janeiro, 2024.
106p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

A tarefa chamada brevemente de Texto-para-SQL envolve a geração de
uma consulta SQL com base em um banco de dados relacional e uma pergunta
em linguagem natural. Embora os rankings de benchmarks conhecidos indi-
quem que Modelos de Linguagem Grandes (LLMs) se destacam nessa tarefa,
eles são avaliados em bancos de dados com esquemas bastante simples. Esta
dissertação investiga inicialmente o desempenho de modelos Texto-para-SQL
baseados em LLMs em um banco de dados disponível ao público (Mondial)
com um esquema conceitual complexo e um conjunto de 100 perguntas em
Linguagem Natural (NL). Executando sob GPT-3.5 e GPT-4, os resultados
deste primeiro experimento mostram que as ferramentas baseadas em LLM
têm desempenho significativamente inferior ao relatado nesses benchmarks e
enfrentam dificuldades com a vinculação de esquemas e joins, sugerindo que o
esquema relacional pode não ser adequado para LLMs. Essa dissertação propõe
então o uso de visões e descrições de dados amigáveis ao LLM para melhorar
a precisão na tarefa Texto-para-SQL. Em um segundo experimento, usando a
estratégia com melhor performance, custo e benefício do experimento anterior
e outro conjunto com 100 perguntas sobre um banco de dados do mundo real,
os resultados mostram que a abordagem proposta é suficiente para melhorar
consideravelmente a precisão da estratégia de prompt. Esse trabalho conclui
com uma discussão dos resultados obtidos e sugere abordagens adicionais para
simplificar a tarefa de Texto-para-SQL.

Palavras-chave
Texto-para-SQL; Modelos de Linguagem Grandes; LangChain; GPT.

Table of contents

1 Introduction 15

2 Previous Work 18
2.1 Text-to-SQL Dataset Benchmarks 18
2.2 Text-to-SQL Evaluation Metrics 20
2.3 Text-to-SQL LLM Tools 20

3 Background and Definitions 24
3.1 Natural Language Queries and Interfaces 24
3.2 Large Language Models 25
3.3 The OpenAI and GPT family 36
3.4 LangChain 39

4 LLM-based Text-to-SQL strategies 41
4.1 LangChain-based Strategies for Text-to-SQL 41
4.2 Strategies based on C3 + LangChain 44
4.3 Strategies based on DIN + LangChain 47
4.4 A new strategy: C3-DIN combination + LangChain 49

5 Experiments to evaluate the effect of schema complexity 51
5.1 The Mondial Benchmark 51
5.2 Evaluation metrics 52
5.3 Experimental setup 54
5.4 Results 54
5.5 Analysis of the predicted SQL queries 57

6 Experiments to evaluate the effect of using views 61
6.1 A new approach: Views 61
6.2 A real-world benchmark 62
6.3 Experimental setup 66
6.4 Results 67
6.5 Analysis of the predicted SQL queries in LLM-Friendly views 69

7 Conclusions and future work 71
7.1 Conclusions 71
7.2 Future Work 72

8 Bibliography 74

A Details of the strategies used in the text-to-SQL task 80
A.1 LangChain-Based Strategies Prompts 80
A.2 Prompts used in the C3 strategy 82
A.3 Prompts used in DIN strategy 84
A.4 Description of the Mondial schema in DIN and C3 prompts 104

List of figures

Figure 3.1 An instruct prompt to translate a sentence from English to
Turkish. 28
Figure 3.2 An example of an chat prompt. 28
Figure 3.3 An Zero-Shot Prompting example 29
Figure 3.4 An Few-Shot Prompting example 30
Figure 3.5 An example of Chains of Though prompting. 31
Figure 3.6 Full pipeline of Zero-shot-CoT. 31
Figure 3.7 Example of Self-Consistency. 33
Figure 3.8 RAG operation - Augmenting prompt with external information. 33
Figure 3.9 ReAct and the different steps involved to perform question
answering. 34
Figure 3.10 Fine-tuning tutorial to a general purpose. 35
Figure 3.11 ChatGPT’s Interface. 39

Figure 4.1 Table definitions and example rows in langchain’s prompt for
Text-to-SQL task. 41
Figure 4.2 SQLQueryChain Overview. 43
Figure 4.3 SQLDatabaseSequentialChain Overview. 43
Figure 4.4 SQLAgent Overview. 44
Figure 4.5 ReAct strategy in SQLAgent. 45
Figure 4.6 The framework of C3. 45
Figure 4.7 The consistency output. 47
Figure 4.8 C3 strategy with langchain. 47
Figure 4.9 DIN-SQL overview. 48
Figure 4.10 C3+DIN combination diagram. 49

Figure 5.1 Data provided by LangChain about the tokens used. 54
Figure 5.2 Error analysis chart in the C3-GPT4 experiment in the
Mondial database. 58

Figure 6.1 Architecture using views for the Text-to-SQL task. 63
Figure 6.2 The referential dependency diagram of a simplified version. 64
Figure 6.3 An example of how partially extended views were constructed. 64
Figure 6.4 An example of how fully extended views were constructed. 65
Figure 6.5 SQLQueryChain’s prompt with some tips used in the experi-
ments. 67

List of tables

Table 3.1 Some OpenAI models available. 37

Table 5.1 A sample of the benchmark dataset. 52
Table 5.2 Results for Mondial database 60

Table 6.1 A sample of the designed benchmark dataset. 66
Table 6.2 Results for Views 68

List of algorithms

List of Listing

Listing 1 Example of Using LangChain to Invoke an LLM 39
Listing 2 An example of generating SQL with Langchian 42
Listing 3 Clear Prompting in the C3 approach 46
Listing 4 A common error in the SQL generated for LLM in the Mondial

database. 58
Listing 5 SQLQueryChain prompt in LangChain strategy 80
Listing 6 DeciderChain prompt template from SQLDatabaseSequen-

tialChain in LangChain strategy 81
Listing 7 SQLAgent in LangChain strategy 81
Listing 8 Table Recall Prompt in C3 strategy 82
Listing 9 Column Recall Prompt in C3 strategy 83
Listing 10 Calibrations with hints provided to the LLM in C3 strategy

using the LangChain 83
Listing 11 Schema linking prompt 85
Listing 12 Classification & decomposition prompt 92
Listing 13 Easy prompt 95
Listing 14 Non-Nested prompt 96
Listing 15 Nested prompt 99
Listing 16 Self-Correction prompt 103
Listing 17 Representation of the Mondial schema in OpenAI Demostra-

tion Prompt of the C3 strategy 104
Listing 18 Representation of the Mondial schema in Basic Prompt of

the DIN strategy 105

List of Abreviations

API – Application Programming Interface

CoT – Chain-of-Thought

CM – Component Matching

EA – Execution Accuracy

ESM – Exact Set Matching

FFT – Full Fine-tuning

GPT – Generative Pre-trained Transformers

LaMDA — Language Model for Dialogue Applications

LLaMA -– Large Language Model Meta AI

LLM – Large Language Models

NL – Natural Language

NLP – Natural Language Processing

PaLM — Pathways Language Model

PEFT – Parameter Efficient Fine-Tuning

RAG – Retrieval Augmentation Generation

RLHF – Reinforcement Learning from Human Feedback

VES – Valid Efficiency Score

The limits of my language mean the limits of
my world.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus.

1
Introduction

Natural Language Interfaces for Databases (NLIDBs) have long been a
crucial area of research. The purpose of these systems is to query databases and
retrieve information using natural language queries, eliminating the need for
formal query languages such as Structured Query Language (SQL) or SPARQL
Protocol and RDF Query Language (SPARQL)(HENDRIX, 1982).

In NLIDB systems, individuals can effortlessly collect information from
databases, reshaping our perception of database information. Traditionally,
people are accustomed to working with forms, and their expectations heavily
depend on the capabilities of these forms (NIHALANI; SILAKARI; MOT-
WANI, 2011). However, NLIDB systems face significant challenges, including
ambiguities, implicit query context, linguistic variations, incomplete queries,
and the query generation itself (AFFOLTER; STOCKINGER; BERNSTEIN,
2019).

Numerous systems and architectures attempted to address these chal-
lenges, including several systems that adopt a Text-to-SQL approach (XU;
LIU; SONG, 2017; YAGHMAZADEH et al., 2017; YU et al., 2018a). Text-to-
SQL refers to the task defined as "given a natural language question Q and
a database schema S = 〈T, C〉, generate the corresponding SQL query P, as-
suming that the question Q is a sequence of words (q1, ..., qn) and the database
schema S consists of tables T = (T1, ..., Tm), and columns C = (C1, ..., Ck)"
(GUO et al., 2023a).

Large Language Models (LLMs) follow a deep neural network architec-
ture composed of billions of parameters, such as the Transformer architecture
(VASWANI; AL., 2017). Trained on enormous quantities of unlabeled text
using self-supervised or semi-supervised learning, these models capture gener-
alized semantic representations of words and texts, making them applicable
to various natural language processing tasks.1 The versatile nature of LLMs
positions them at the forefront of advancing technologies in linguistic under-
standing and text generation. This expansive linguistic understanding posi-
tions LLMs as versatile tools for a broad spectrum of NLP applications such
as question answering, writing, text translation, document summarization, and
code generation in programming languages (SINGH, 2023). These model also
play pivotal roles in chatbots, digital assistants, and various other applications
necessitating text generation or comprehension capabilities. The rise in rele-

1https://openai.com/research/better-language-models

Chapter 1. Introduction 16

vance of LLMs is particularly evident with the introduction of ChatGPT, an
OpenAI language model optimized for dialogue using Reinforcement Learning
with Human Feedback (RLHF) (OPENAI, 2023b).

The use of LLM-based Text-to-SQL strategies, that is, Text-to-SQL
strategies that use Large Language Models (LLMs), has gained popularity,
showing relative success over well-known benchmarks, including the Spider
benchmark (GAO et al., 2023; POURREZA; RAFIEI, 2023; DONG et al.,
2023b). Despite promising, the results reported for these benchmarks are
biased towards databases with small schemas, few columns, instances, and joins
between tables. Also, the NL questions used in the benchmarks are written in
the schema vocabulary.

By contrast, real-world databases often feature large complex schemas,
with abbreviated and ambiguous attribute and table names. Furthermore,
user’s NL questions may be written in terms which are quite different from
those of the database schema or the data values. In fact, the relational schema
is often an inappropriate specification of the database from the point of view
of an LLM.

Building upon these observations, this dissertation presents experiments
to assess LLM-based Text-to-SQL strategies on two challenging scenarios
characterized by: (1) an openly available database with a large complex
schema, using terms close to those of the users’ NL questions; (2) a real-world
database with a large complex schema, using terms different from those of the
users’ NL questions.

To address the first scenario, the dissertation considers a benchmark,
which will be referred to as the Mondial benchmark, consisting of an openly
available database, Mondial, with a complex and large schema, and a set of 100
questions along with their corresponding SQL translations. This set contains
a variety of queries, including aggregations, numerous filters, ambiguities, and
requirements for multiple joins, which are similar to real-world user queries.
The investigation explores various Text-to-SQL strategies involving prompt
engineering, such as the Langchain tools for Text-to-SQL and successful
strategies identified in the Spyder benchmark.

Using the GPT-3.5 and GPT-4 models from OpenAI, the results suggest
that the performance of LLM-based Text-to-SQL tools over the Mondial
benchmark is significantly less than that reported for the Spider benchmark.
Despite excelling in handling aggregations, the tools exhibit considerable errors
in schema linking and join operations. This discrepancy in performance can be
attributed to the complexity of databases with larger schemas.

Consider now the second scenario for real-world databases. The disser-

Chapter 1. Introduction 17

tation first argues that the Text-to-SQL task can be greatly facilitated by
providing a database specification based on the use of LLM-friendly views,
that are close to the language of the users’ questions and that eliminate fre-
quently used joins, and LLM-friendly data descriptions of the database values.
The dissertation proceeds with experiments that use a real-world relational
database, with another set with 100 questions, and the Text-to-SQL tool with
the best performance and cost in the experiment with the Mondial bench-
mark. The results show that the use of LLM-friendly views and data samples,
albeit not too difficult to implement over a real-world relational database, are
sufficient to considerably improve the accuracy of the prompt strategy.

Finally, this work aims at contributing to the broader dialogue around
the potential and implementation of LLMs. By demonstrating its ability to
excel in these specific tasks, the dissertation contributes to the growing body
of knowledge about the practicality and usefulness of LLMs in real-world
applications.

This work is organized as follows: Chapter 2 covers related work. Chapter
3 presents the required definitions. Chapter 4 describes the LLM-based Text-
to-SQL strategies that were tested. Chapter 5 evaluates the effect of schema
complexity on LLM-based Text-to-SQL strategies. Chapter 6 evaluates the
effect of using views for this same task. Finally, Chapter 7 contains the
conclusions and suggestions for future work.

2
Previous Work

This chapter provides an overview of related work focusing on bench-
marks, evaluation metrics, and approaches to Text-to-SQL tasks. Section 2.1
discusses the benchmark datasets commonly employed in Text-to-SQL tasks,
while Section 2.2 examines prevalent evaluation metrics. Finally, Section 2.3
discusses previous research utilizing LLMs for converting NL sentences to SQL
queries.

2.1
Text-to-SQL Dataset Benchmarks

A high-quality dataset is essential for driving the development of various
natural language processing tasks, including Text-to-SQL. There are single-
domain Text-to-SQL datasets such as GeoQuery (ZELLE; MOONEY, 1996),
ATIS (DAHL et al., 1994), Restaurant (IYER et al., 2017) and SQL-Eval
(PING, 2023), which are designed for specific information retrieval tasks.

WikiSQL (ZHONG; XIONG; SOCHER, 2017) has 80,654 NL sentences
and SQL annotations of 24,241 tables. Each query in WikiSQL is limited to
the same table and does not contain complex operations such as sorting and
grouping.

The Spider – Yale Semantic Parsing and Text-to-SQL Challenge (YU
et al., 2018b) offers datasets for training and testing Text-to-SQL tools.
Spider features nearly 200 databases covering 138 different domains from three
resources: 70 complex databases from different college database courses, SQL
tutorial websites, online CSV files, and textbook examples; 40 databases from
DatabaseAnswers;1 and 90 databases based on WikiSQL, with about 500 tables
in about 90 different domains.

For each database, Spider lists 20-50 hand-written NL questions and their
SQL translations. An NL question S, with an SQL translation Q, is classified
as easy, medium, hard, and extra-hard, where the difficulty is based on the
number of SQL constructs of Q – GROUP BY, ORDER BY, INTERSECT, nested
sub-queries, column selections, and aggregators – so that an NL query whose
translation Q contains more SQL constructs is considered harder.

Most databases in Spider have small schemas: the largest five databases
have between 16 and 25 tables, and about half of the databases have schemas
with five tables or fewer. Furthermore, all Spider NL questions are phrased in

1<http://www.databaseanswers.org/>

http://www.databaseanswers.org/

Chapter 2. Previous Work 19

terms used in the database schemas. These two limitations considerably reduce
the difficulty of the Text-to-SQL task. Therefore, the results reported in the
Spider leaderboard are biased toward databases with small schemas and NL
questions written in the schema vocabulary, which is not what one finds in
real-world databases.

The Spider dataset has modified versions, such as Spider-Syn and Spi-
der DK. In the Spider-Syn (GAN et al., 2021) dataset, words and phrases are
replaced with synonyms and emphasizes the importance of maintaining ac-
curate schema linking mechanisms. It comprises 5,672 questions and aims at
leveraging common word substitutions related to schema items and values to
enhance the accuracy of models in translating natural language questions into
SQL queries.

The Spider DK dataset (GAN; CHEN; PURVER, 2021) addresses testing
how well Text-to-SQL tools deal with domain knowledge. Contains 535 pairs
of natural language (NL) questions and SQL queries. Of these, 270 pairs are
identical to the original samples from the Spider development set, while the
remaining 265 pairs have been modified to incorporate domain knowledge.
The Spider DK dataset highlights the challenge of cross-domain knowledge,
in which models need to generate correct and precise SQL queries, even when
confronted with new domains or scenarios not encountered during training.

BIRD – BIg Bench for LaRge-scale Database Grounded Text-to-SQL
Evaluation (LI et al., 2023) is a large-scale cross-domain Text-to-SQL bench-
mark in English. The dataset contains 12,751 Text-to-SQL data pairs and 95
databases with a total size of 33.4 GB across 37 domains. The BIRD dataset
tries to bridge the gap between Text-to-SQL research and real-world applica-
tions by exploring three additional challenges: dealing with large and messy
database values, external knowledge inference, and optimizing SQL execu-
tion efficiency. However, BIRD still does not have many databases with large
schemas: of the 73 databases in the training dataset, only two have more than
25 tables. And one of them is the Mondial database, of which another and
larger version is used in this work.

SQL-Eval is a framework that evaluates the correctness of Text-to-
SQL strategies, created during the development of SQLCoder (this model is
discussed in section 2.3).2 It is a set of manually selected questions and queries,
grouped by query category (PING, 2023).

Chase (GUO et al., 2021) is a dataset for the cross-database context-
dependent Text-to-SQL problem in Chinese. It consists of 5,459 question se-
quences (17,940 questions) over 280 databases, in which only 35% of questions

2<https://github.com/defog-ai/sql-eval>

https://github.com/defog-ai/sql-eval

Chapter 2. Previous Work 20

are context-independent, and 28% of SQL queries are easy. Each question in
Chase has rich semantic annotations, including its SQL query, contextual de-
pendency, and schema linking.

Finally, the sql-create-context dataset also addresses the Text-to-
SQL task, and was built from WikiSQL and Spider. 3 It contains 78,577
examples of NL queries, SQL CREATE TABLE statements, and SQL Queries
answering the questions. The CREATE TABLE statement provides context for
the LLMs, without having to provide actual rows of data.

2.2
Text-to-SQL Evaluation Metrics

Evaluating the semantic accuracy of a Text-to-SQL model is a long-
standing problem: how to know whether the predicted SQL query has the
same denotation as the ground truth SQL query, for every possible database
(ZHONG; YU; KLEIN, 2020). The main evaluation metrics in Text-to-SQL
tasks include Component Matching (CM), Exact Set Matching (ESM), and
Execution Accuracy (EA).

CM intricately analyzes model performance by measuring the average ex-
act match across diverse SQL components. Each component, such as SELECT,
WHERE, GROUP BY, ORDER BY, and KEYWORDS, undergoes decom-
position into subcomponents, treated as unordered sets for precise matching
(LAN et al., 2023). ESM measures the matched SQL keywords between the
predicted SQL query and its corresponding ground truth SQL query (YU et
al., 2018b). EA, on the other hand, compares the execution output of the pre-
dicted SQL query with that of the ground truth SQL query on some database
instances (GAO et al., 2023).

There are metrics designed to assess the efficiency of valid SQLs generated
by models. Valid Efficiency Score (VES), proposed by Li et al. (2023), aims
at quantifying the efficiency of the SQL generated by LLM, that is, running
time, throughput, memory cost, or merged metrics.

Most of the LLM-based Text-to-SQL tools (POURREZA; RAFIEI, 2023;
DONG et al., 2023b; GAO et al., 2023; GUO et al., 2023b) and benchmarks
(YU et al., 2018b; LI et al., 2023; LAN et al., 2023) have EA as a metric.

2.3
Text-to-SQL LLM Tools

Approaches to Text-to-SQL tasks using LLMs have recently garnered
significant attention. Lu et al. (2023) use Large Language Models (LLMs) to

3<https://huggingface.co/datasets/b-mc2/sql-create-context>

https://huggingface.co/datasets/b-mc2/sql-create-context

Chapter 2. Previous Work 21

create a natural language interface, enabling pharmacologists to query public
or private pharmacology databases.

Liu et al. (2023) provide a comprehensive analysis of ChatGPT’s zero-
shot Text-to-SQL capability, assessing its performance on 12 benchmark
datasets and comparing it to state-of-the-art models. The study highlights
ChatGPT’s robust Text-to-SQL abilities, surpassing current state-of-the-art
models in specific scenarios. It underscores the significance of zero-shot code
generation models, especially in Text-to-SQL tasks. The research suggests
future directions, such as addressing non-executable SQL statements and
incorporating more in-context examples into the prompt.

Nascimento et al. (2023) illustrated how ChatGPT and LangChain can
contribute to the development of natural language interfaces for databases
(NLIDBs) through two approaches, one involving tools to generate an SQL
query from an NL question, and the other using the Language Model to
extract keywords from an NL question and passing the keywords to a Keyword
Search (KwS) tool to execute the query on the database. The most effective
NLIDB approach was the second one, incorporating prompts with contextual
information and examples to facilitate keyword extraction.

The Spider4 and BIRD 5 web sites publish a leaderboard of the best
performing Text-to-SQL tools, some of which are discussed below.

Dong et al. (2023b) introduced C3, a ChatGPT-based zero-shot Text-to-
SQL method that proficiently generates SQL queries with fewer tokens and on
LLM’s cheapest model, the GPT-3.5-turbo. C3 incorporates Clear Prompting
for schema linking, addressing irrelevant items, and reducing unnecessary
length. Calibration with Hints mitigates biases in ChatGPT’s output, guiding
the model to select necessary columns and avoid keyword misusage. The
Consistency Output component employs a self-consistency method, sampling
multiple reasoning paths, executing queries, and selecting the most consistent
answer for improved reliability. The evaluation focused on execution accuracy,
and the implementation used the OpenAI ChatGPT API, achieving robust
results in SQL query generation. C3 had an accuracy of 82.3% on the Spider
dataset.

Gao et al. (2023) presented a comprehensive study on Text-to-SQL em-
powered by Large Language Models (LLMs). The research emphasizes three
crucial components of LLM-based Text-to-SQL: question representation, in-
context learning, and supervised fine-tuning. Through a systematic evaluation
of existing prompt engineering methods, the authors introduce a novel inte-

4<https://yale-lily.github.io/spider>
5<https://bird-bench.github.io/>

https://yale-lily.github.io/spider
https://bird-bench.github.io/

Chapter 2. Previous Work 22

grated solution, DAIL-SQL, that comprises three primary components: ques-
tion representation, example selection, and example organization. Question
representation involves using a technique that contains complete database in-
formation, including primary and foreign keys. Example selection is conducted
through RAG based on the similarity between questions and SQL queries.
The example organization is implemented to preserve the mapping between
questions and SQL queries. DAIL has another extended model that uses the
self-consistency method (DONG et al., 2023b). Both models demonstrated
impressive execution accuracy on the Spider dataset and outperformed Text-
to-SQL with over 86% accuracy. However, at BIRD, performance declined to
approximately 57%.

LLMs may perform better through context learning (DONG et al.,
2023a), i.e., learning by analogy, in which only a few examples are provided in
the input prompts. DIN-SQL (POURREZA; RAFIEI, 2023) explores decom-
posing Text-to-SQL tasks to enhance Large Language Models’ (LLMs) per-
formance by providing some examples statically to the prompt. The strategy
outlines key modules: schema linking, query classification and decomposition,
SQL generation, and self-correction. Breaking down the Text-to-SQL task into
these submodules and using context learning through a few examples passed
in the prompt improved LLMs’ performance. This strategy had an accuracy
of 85.3% on Spider, but dropped to 55.9% on BIRD.

The examples provided at the DIN-SQL prompt are static. There are
other Text-to-SQL models that use retrieval-augmentation generation (RAG)
to provide examples dynamically. Guo et al. (2023b) presented an approach
to enhance the generation of SQL queries from natural language questions,
employing RAG in the prompts and a dynamic revision chain. The proposed
method incorporates sample-aware demonstrations to refine SQL query gen-
eration and employs strategies to assist in retrieving questions with similar
intents. Experimental results demonstrate that the proposed approach outper-
formed reference models across three Text-to-SQL benchmarks.

There are repositories that contain the best Text-to-SQL tools and how
to leverage LLMs to achieve Text-to-SQL analysis. The Awesome Text2SQL
(Eosphoros AI, 2024) lists the best-performing Text-to-SQL tools on Wik-
iSQL, Spider (Exact Match and Exact Execution), and BIRD (Valid Efficiency
Score and Execution Accuracy) benchmarks. The DB-GPT-Hub (Eosphoros
AI, 2023) encompasses several stages, including data collection, data prepro-
cessing, model selection and construction, and fine-tuning of model weights.
The project aims at realizing automated question-answering capabilities based
on databases, allowing users to execute complex database queries using natural

Chapter 2. Previous Work 23

language descriptions.
There are models trained specifically for the purpose of converting text to

SQL. Defog’s SQLCoder (Defog AI, 2023) is a specialized Text-to-SQL model,
open-sourced under the Apache-2 license, trained on more than 20,000 human-
curated questions. These questions were based on ten different schemas. The
training dataset consisted of prompt-completion pairs, encompassing several
schemas with varying difficulty levels, whereas the evaluation dataset featured
questions from novel schemas. The fine-tuning process occurred in two stages:
the base model was first refined using easy and medium questions, and then
further fine-tuned on hard and extra-hard questions to yield SQLCoder. The
latest model, sqlcoder-70b-alpha, features 70B parameters and achieved 93%
accuracy over an evaluation framework, SQL-Eval, outperforming the gpt-
4 and gpt-4-turbo models for SQL generation tasks from natural language
queries.

3
Background and Definitions

This chapter provides an overview of the main concepts related to this
dissertation. Section 3.1 approaches Natural Language Queries and Interfaces.
Section 3.2 covers Large Language Models concepts. Section 3.3 describes the
OpenAI family of GPT models. Finally, Section 3.4 addresses a generic LLM
framework, LangChain.

3.1
Natural Language Queries and Interfaces

A Natural Language (NL) query is simply a sentence S in a natural
language, such as “What is the character of Meryl Streep in the movie Out of
Africa?”. In this context, the use of NL in human-computer interaction presents
itself as an appealing option.

Natural Language Interfaces (NLI) are a type of human-computer com-
munication interface carried out through the use of sentences and phrases,
similar to those used by humans in everyday conversations, acting as com-
mands for computational systems.

At the core of NLI systems is their capability to comprehend and interpret
a user’s query articulated in Natural Language. These systems then generate
a structured query, which is subsequently executed against a structured data
source. However, the use of NL as a query language implies the emergence of
some inherent problems, such as query ambiguity, linguistic variability, high
processing costs, and the need for manual adaptation of the tool to the specific
usage domain (KAUFMANN; BERNSTEIN, 2007).

Various NLI systems and architectures have been developed, each aiming
to tackle the challenges mentioned above. These systems can be categorized
according to their methods for interpretation and generation of structured
queries. One of the predominant paradigms in NLI system architectures is
Text-to-SQL (QUAMAR et al., 2022).

3.1.1
Text-to-SQL

As already mentioned in the introduction, Text-to-SQL refers to the task
defined as: “Given a database D and a natural language sentence S, generate
an SQL query Q expressing S”. Systems designed for the Text-to-SQL task
use a trained model (machine learning or deep learning) that translates a

Chapter 3. Background and Definitions 25

natural language query, a sequence of words, to a structured query such as
SQL as an output to be executed against a schema. The natural language
input representation takes the natural language query and schema elements
to generate feature vectors. The encoder takes the input feature vectors of
the query text and schema elements as input and learns an intermediate
representation of this combined input. Finally, this intermediate representation
is decoded by the decoder to generate the SQL query.

3.2
Large Language Models

Large Language Models (LLMs) have emerged as a significant milestone
in the field of Natural Language Processing (NLP). The fundamental archi-
tecture of LLMs is grounded in deep neural network structures characterized
by an expansive parameter count. These models undergo training on vast cor-
pora of unlabeled text, employing self-supervised or semi-supervised learning
methodologies with the primary objective of predicting the subsequent word
in a given context (ABDULLAH; MADAIN; JARARWEH, 2022).

The architectural inspiration for LLMs is derived from Transformers
(VASWANI; AL., 2017). Unlike conventional linear sequence processing, Trans-
formers use an attention mechanism to assess different segments based on
their relevance to the ongoing task, thereby representing a position through a
weighted combination of other input positions.

LLMs have many parameters that govern their learning and text genera-
tion processes. The number of parameters is indicative of the model size, with
a larger number of parameters indicating a more complex model and enhanced
data processing capabilities. However, they also entail higher computational
costs for training and deployment. These parameters are used to learn the
relationships between words and phrases in the training data (DESAI, 2024).

The training process involves the systematic masking of words in the
text during training. The model is then tasked with predicting the missing
words based on the outer context, an iterative process that contributes to the
development of a comprehensive skill set and pattern recognition within the
model. Model parameters are adjusted during training to minimize the error
between predicted and actual output. These acquired abilities are leveraged at
inference time, enabling the model to swiftly adapt to or recognize the desired
task (BROWN et al., 2020).

However, an LLM reflects the data it was trained with (SANDHU,
2024). In particular, an LLM suffers from the “temporal generalization prob-
lem” - capturing facts that change over time - and the “factual grounding

Chapter 3. Background and Definitions 26

problem” - capturing specific facts. And it also produces untrue information,
commonly called “hallucinations” or “fabulations” (ZIEGLER; BERRYMAN,
2023). These problems limit reasoning and can generate inappropriate content.
To circumvent these limitations, the user may fine-tune the LLM, that is, re-
train it with more examples, or he may adopt few-shot learning, that is, add a
few examples in a dialog interaction so that the model can capture what the
user is trying to do and generate a plausible completion.

Below are some well-known LLM families (PINHEIRO. et al., 2023):

GPT - Generative Pre-Trained Transformer: GPT 3.5 (announced on Novem-
ber 30th, 2022) and GTP 4 (announced on March 14th, 2023), respec-
tively support ChatGPT and ChatGPT Plus (OPENAI, 2023b).

LLaMA - Large Language Model Meta AI: LLaMA (announced on February
23rd, 2023) was developed by Meta (META, 2024).

LaMDA - Language Model for Dialogue Applications and PaLM - Pathways
Language Model: LaMDA (announced on May 18th, 2021) and PaLM
(announced in March 2023 and upgraded in May 2023) support Google’s
Bard (GOOGLE, 2024).

The terms of use of GPT 3.5 prohibit developing models that compete
with OpenAI; and LLaMA has a non-commercial use license.

3.2.1
LLM Parameters

Interactions with the LLM occurs either directly or through an API. The
main parameters that can be configured to achieve distinct outcomes for the
an input are:

temperature : a lower temperature results in more deterministic outcomes,
as the next probable token with higher likelihood is consistently chosen.
Conversely, increasing the temperature introduces more randomness,
promoting diverse or creative outputs by essentially elevating the weights
of other possible tokens. A lower temperature value may be preferable for
fact-based quality control tasks, encouraging more factual and concise
responses. Conversely, for creative tasks such as poem generation, it
might be beneficial to raise the temperature value.

top_p : alters the way the model selects tokens for output. Tokens are chosen
from the most probable (considering the top-K) to the least probable
until the sum of probabilities equals the top-P value. For instance, if

Chapter 3. Background and Definitions 27

tokens A, B, and C have probabilities of 0.3, 0.2, and 0.1, respectively,
and the top-P value is 0.5, the model will select either A or B as the next
token using temperature and exclude C as a candidate. Specify a lower
value for fewer random responses and a higher value for more random
responses.

top_k : changes how the model selects tokens for output. A top-K of 1 means
the next token selected is the most probable among all tokens in the
model’s vocabulary (also called greedy decoding), while a top-K of 3
means the next token is chosen from the top three most probable tokens
using temperature. At each token selection step, the top-K tokens with
the highest probabilities are sampled. Then, tokens are filtered based
on the top-P value, with the final token selected through temperature
sampling.

max_tokens : This is the maximum number of tokens that LLM generates
in the response. A lower value is specified for shorter responses and a
higher value for potentially longer responses.

OpenAI LLMs (see Section 3.3), through their API, offer a parameter
that specifies the number of responses that the model should return in a single
request, and the user is only charged for the extra tokens of the extra output
cases.

3.2.2
Prompt

A prompt is an NL text describing the task that an LLM should perform.
Prompts are used to interact and instruct models. An LLM works to predict
the next best group of letters, called “tokens”, from the prompt. LLMs generate
outputs by leveraging the comprehensive content of all publicly available
documents, striving to predict the next token within a given document and
will only stop once it has reached a maximum threshold of tokens.

A prompt may encompass any of the following components (SARAVIA,
2022):

Instruction : a specific task or directive that is intended for the model to
execute.

Context : may involve external information or additional context that can
guide the model towards more optimal responses.

Input data : constitutes the input or question for which the user seek an
answer.

Chapter 3. Background and Definitions 28

Output indicator : denotes the type or format of the output.

Not all components are requisite for a prompt, and the format is contingent
upon the task at hand.

LLMs can operate in two prompt modes: chat and instruct.1 The Instruct
mode is designed for natural language processing tasks in specific domains,
where the LLM follows the user’s instructions and produces the desired output.
Figure 3.1 illustrates an example of an Instruct prompt (non-highlighted text)
to an LLM asking it to translate a sentence from English to Turkish with the
output of the LLM highlighted in green.

Figure 3.1: An instruct prompt to translate a sentence from English to Turkish.
From (HABIB; OZDEMIR, 2022)

The Chat mode is designed for conversational contexts, where the LLM
responds to the user’s messages in a natural and engaging way. Figure 3.2
shows an example of an chat prompt to capture information about the Eiffel
Tower.

Figure 3.2: An example of an chat prompt. From (ANDERSON, 2023)

3.2.3
Prompt Engineering

Prompt engineering is the process of structuring text that can be in-
terpreted and understood by a generative AI model . It offers a natural and
intuitive interface for humans to interact with LLMs (ZHOU et al., 2023).

1<https://wowdata.science/chat-and-instruct-modes-in-llms/>

https://wowdata.science/chat-and-instruct-modes-in-llms/

Chapter 3. Background and Definitions 29

Prompt engineering is used to improve the security of LLMs and create
new features, prevent hallucinations, and also augment models with domain
knowledge and external tools. There are several prompt engineering techniques
such as Zero-shot learning, Few-shot learning, Chains-of-Thought, Retrieval-
Augmented Generation (RAG), Self-Consistency and ReAct, discussed in the
sections that follow (SARAVIA, 2022).

3.2.3.1
Zero-shot learning

Zero-shot learning refers to the ability of a model to perform a task
without any specific training on that task (LIU et al., 2023). This capability
is particularly valuable as it allows models to adapt to new tasks or scenarios
without extensive retraining, making them more versatile and efficient in
handling a wide range of tasks.

Consider a sentiment analysis scenario, a traditional machine learning
task. One might label paragraphs with sentiment classifications and train a
model to predict classifications based on input paragraphs. However, such a
model lacks adaptability; any modification, such as adding a new class or
changing the task to summarization, necessitates retraining. Contrastingly, an
LLM does not require retraining. By properly phrasing queries, the model can
be instructed to classify or summarize without explicit task-specific training.
While it may struggle to classify a paragraph into ambiguous categories like
A or B, it can successfully classify into broader sentiments like “positive” or
“negative” due to its understanding of these concepts acquired during training
(TAM, 2023).

Figure 3.3: An Zero-Shot Prompting example

The prompt in Figure 3.3 lacks specific examples, showcasing the zero-
shot capabilities in action – the model accurately provided a single-word an-
swer, “positive,” showcasing its ability to understand the sentiment conveyed
by the term “awesome.” This understanding is attributed to the initial in-
struction, “Classify the text into positive, neutral, or negative.” This example

Chapter 3. Background and Definitions 30

illustrates how the model can effectively respond based on its comprehension
of given instructions.

3.2.3.2
Few-shot learning

While large language models showcase remarkable zero-shot capabilities,
they still fall short on more complex tasks when relying solely on zero-
shot configurations. The few-shot prompt technique can be employed to
facilitate contextual learning, where examples provided in the prompt guide the
model toward better performance. These demonstrations act as conditioning
for subsequent examples, guiding the model to generate desired responses
(SARAVIA, 2022).

Figure 3.4: An Few-Shot Prompting example

In the Figure 3.4, no explicit instruction is given on what the model
should do. However, with the inclusion of some examples, the model can
infer how to respond. It is noteworthy that the model generates a response
“Negative,” aligning with the examples provided.

According to Tam (2023), the randomness inherent in the model may
lead to variations in results, and attempting to reproduce the exact result may
not be feasible. This way, different results can be observed with each model
run.

3.2.3.3
Chains of Thought

Despite the power of Large Language Models (LLMs), even with the
provision of some examples, these models struggle with more complex tasks.
Notably, reasoning problems, such as arithmetic or commonsense reasoning, are
recognized as challenging (WOLFE, 2023). In order to enhance the language

Chapter 3. Background and Definitions 31

models’ ability to perform such tasks, Wei et al. (2023) introduced the Chain
of Thought (CoT) technique. This approach involves inserting several example
solutions into the LLM’s prompt (as in Section 3.2.3.2) and breaking down
the complex problem into intermediate steps. It provides a logical sequence of
reasoning to guide models in generating more precise and coherent responses.
An example prompt is shown in Figure 3.5. It is typical to decompose the
problem into intermediate steps and solve each (highlighted in blue) before
giving the final answer (highlighted in green).

Figure 3.5: An example of Chains of Though prompting. From (WEI et al.,
2023)

.

Another approach combines a zero-shot prompt with CoT (KOJIMA et
al., 2023), essentially involving adding Let’s think step by step to the original
prompt. Figure 3.6 illustrates an example, particularly useful when it is not
necessary to provide many examples in the prompt. Initially, a “reasoning”
prompt is used to extract a full reasoning path from a language model. Then,
a second “answer” prompt is employed to extract the answer in the correct
format from the reasoning text.

Figure 3.6: Full pipeline of Zero-shot-CoT. From (KOJIMA et al., 2023)
.

Chapter 3. Background and Definitions 32

For sufficiently large models (models larger than 100 billion parameters),
CoT approach significantly enhances the complex reasoning capabilities of
LLMs in tasks involving arithmetic, commonsense, and symbolic reasoning
(WEI et al., 2023).

3.2.3.4
Self-Consistency

The Self-Consistency method, proposed by Wang et al. (2023), aims at
exploring a variety of reasoning paths to enhance answer accuracy in language
models. This approach differs from the traditional method used in Chain-of-
Thought, allowing for the exploration of multiple reasoning paths and resulting
in more precise answers.

The concept involves sampling several reasoning paths through few-
shot CoT and using these generations to select the most consistent answer
(SARAVIA, 2022). The self-consistency method comprises three steps (WANG
et al., 2023):

1. Prompt a language model using CoT prompting.

2. Replace the “greedy decode” in CoT prompting by sampling from the
language model’s decoder to generate a diverse set of reasoning paths.

3. Marginalize out the reasoning paths and aggregate by choosing the most
consistent answer in the final answer set.

As shown in Figure 3.7, a model can generate multiple plausible responses
to a mathematical question, some leading to the same correct answer (Outputs
1 and 3). Given that language models are not perfect reasoners, there is a
possibility that the model might produce an incorrect reasoning path or make
a mistake in one of the steps (e.g., as seen in Output 2). The idea is that
correct reasoning processes, even if diverse, tend to exhibit greater agreement
in their final answer compared to incorrect processes.

3.2.3.5
Retrieval-Augmented Generation (RAG)

RAG, introduced in (LEWIS et al., 2021), enhanced generative tasks.
RAG involves an initial retrieval step where the LLMs query an external data
source to obtain relevant information before proceeding to answer questions or
generate text (GAO et al., 2024).

RAG operates in two main phases: retrieval and content generation. Fig-
ure 3.8 illustrates a RAG operation. During the retrieval phase, the process

Chapter 3. Background and Definitions 33

Figure 3.7: Example of Self-Consistency. From (WANG et al., 2023)
.

involves encoding documents and user input into vectors of real numbers,
commonly referred to as embeddings. These document embeddings are sub-
sequently stored in a vector database. Algorithms search for and retrieve rele-
vant snippets of information based on the user’s prompt or question in vector
database. Finally, there is a concatenation of relevant documents with the user
prompt, augmenting the prompt with external information. In the generative
phase, the LLM uses the retrieved information and its internal representation
of training data to synthesize a tailored answer for the user (SAFJAN, 2023).

Figure 3.8: RAG operation - Augmenting prompt with external information.
From (SAFJAN, 2023)

The dynamic retrieval of information from knowledge bases during the
inference phase allows RAG to change what a pretrained language model
knows, preventing the model from being retrained with new documents, and
finally, accessing and extracting up-to-date information and then use them to
produce the results (RIEDEL et al., 2020).

Chapter 3. Background and Definitions 34

3.2.3.6
ReAct

Yao et al. (2023) introduced a framework named ReAct (Reason + Act),
which combines reasoning and action generation in LLMs. ReAct aims at
enhancing performance across various tasks by interleaving reasoning traces
and task-specific actions.

ReAct prompts LLMs to generate verbal reasoning traces and actions for
a given task, enabling dynamic reasoning to formulate, maintain, and adjust
plans for action. Additionally, it assists the model in handling exceptions, facil-
itates interaction with external environments (e.g., Wikipedia) to incorporate
additional information into the reasoning process (SARAVIA, 2022).

In Figure 3.9, an example of ReAct and the associated steps for perform-
ing question answering are illustrated. The LLM initiates reasoning and takes
the action Search[Apple Remote]. This command interacts with an external
tool that retrieves information in Obs1. Based on this observation, the LLM
engages in further reasoning and formulates another action plan, Search [Front
Row]. Since this is not found in the external tool, but similar terms exist, the
model generates a new action plan accordingly. Finally, the process concludes
with the model providing the answer.

Figure 3.9: ReAct and the different steps involved to perform question answer-
ing. From (YAO et al., 2023)

Chapter 3. Background and Definitions 35

3.2.4
Fine-Tuning

In many LLM use cases, prompt engineering is a sufficient and least
resource-intensive approach. However, there are situations in which just using
prompting techniques in a model will not solve the problem. In such situations,
one of the options is to fine-tune the LLM. Fine-tuning LLM involves the
additional training of a pre-existing model, which has previously acquired
patterns and features from an extensive dataset, using a smaller, domain-
specific dataset (MEHRA, 2023).

Figure 3.10 presents a simplified way of the application of the technique.
Into the steps involved in LLM fine-tuning, initially, a pre-trained model is
chosen, and a dataset relevant to the specific task is gathered, ensuring it
is properly labeled or structured for the model to learn. The actual fine-
tuning takes place, where the selected pre-trained model is adjusted based
on the specific dataset, which may be related to a particular domain or
application. This task-specific adaptation enables the model to specialize for
the provided context while simultaneously retaining the general language
knowledge acquired during pre-training (DAS, 2024).

Figure 3.10: Fine-tuning tutorial to a general purpose. From (MEHRA, 2023)

There are two fundamental approaches to fine-tuning LLMs (DAS, 2024):
Full Fine-tuning (FFT) and Parameter Efficient Fine-Tuning (PEFT). FFT
involves reconfiguring all the parameters of the model during the training
process for a specific task. This means updating all weights and layers of
the model with the training data, creating a new version with improved
capabilities. However, this process may require a significant amount of data
and computational resources.

Chapter 3. Background and Definitions 36

On the other hand, PEFT represents a more efficient form of instruction
fine-tuning compared to FFT. This approach maintains the original LLM
weights and updates only a subset of parameters, effectively “freezing” the
rest. PEFT aims to optimize the performance and adaptability of language
models across various applications (HU et al., 2023). Among the methods for
achieving Parameter Efficient Fine-Tuning, there are approaches such as Low-
Rank Adaptation (LoRA) (HU et al., 2021) and QLoRA (DETTMERS et al.,
2023).

The models can be trained through unsupervised, supervised fine-tuning
(SFT) or combining SFT with RLHF (OUYANG et al., 2022), utilizing human
preferences as a reward signal to improve LLM’s ability to follow instructions
effectively.

3.3
The OpenAI and GPT family

This section discusses the GPT-based language models and the tools
developed by OpenAI.

OpenAI is an AI research and deployment company, focusing on research-
ing generative models, built using Deep Learning, a technology that uses large
amounts of data to train AI systems to perform specific tasks. The text models
developed by OpenAI are advanced language processing tools capable of gener-
ating, classifying, and summarizing text. The company’s research on generative
modeling extends to image and audio processing (OPENAI, 2023b).

3.3.1
GPT-based models

The OpenAI Research API offers several models of the GPT family, with
different capabilities and prices.2 OpenAI models are non-deterministic; that
is, identical inputs can yield different outputs. Setting the temperature to zero
will make the outputs mostly deterministic, but a small amount of variability
may remain. Basically, the models are:

GPT-3.5 can understand and generate natural language or code. The model
has 175 billion parameters.

GPT-4 is a large multimodal model that can solve difficult problems with
greater accuracy, and is optimized for chat but works well for traditional
completions tasks. The model has approximately 1.76 trillion parameters.

2The relationship between the models the OpenAI API offers and those mentioned in the
dissertation is described at https://platform.openai.com/docs/models/overview

Chapter 3. Background and Definitions 37

However, they also have their variations, with a larger context window,
more updated training data, and new features. Table 3.1 summarizes some
characteristics of the basic models, such as the date of the training data, the
maximum number of tokens allowed in the context window, and prices for each
one.

Model Description Max
tokens

Training
data

Input
Tokens
Price
(US$/1K
tokens)

Output
Tokens
Price
(US$/1K
tokens)

gpt-4 More capable than any GPT-3.5
model, able to do more complex tasks,
and optimized for chat.

8,192
tokens

Up to Sep
2021

$0.03 $0.06

gpt-4-32k Same capabilities as the base GPT-4
model, but with 4x the context length.

32,768
tokens

Up to Sep
2021

$0.06 $0.12

gpt-3.5-turbo Most capable GPT-3.5 model and op-
timized for chat at 1/10th the cost of
text-davinci-003.

4,096
tokens

Up to Sep
2021

$0.0015 $0.0020

gpt-3.5-
turbo-16k

Same capabilities as the base gpt-3.5-
turbo model, but with 4x the context
length.

16,385
tokens

Up to Sep
2021

$0.0030 $0.0040

Table 3.1: Some OpenAI models available.

In January 2024, OpenAI launched the gpt-4-turbo model, trained with
data until December 2023, larger context windows of 128k, and lower prices
(OPENAI, 2024). This model completes tasks like code generation more
thoroughly than the previous model and is intended to reduce cases of
“laziness” where the model does not complete a task.

3.3.2
ChatGPT

ChatGPT from OpenAI, released in November 2022, is a sibling model to
InstructGPT, which is trained to follow an instruction in a prompt and provide
a detailed and optimized response.3 According to OpenAI, “ChatGPT provides
articulated answers across several knowledge domains, but uneven factual
accuracy has been identified as a significant drawback, and sometimes it writes
plausible-sounding but incorrect or nonsensical answers” (OPENAI, 2024) The
name “ChatGPT” combines “Chat”, denoting its chatbot capabilities, and
“GPT”, an acronym for Generative Pre-trained Transformer (LOCK, 2022).

The model was trained using Reinforcement Learning from Human
Feedback (RLHF)(LI; YANG; WANG, 2023), following similar methods as
InstructGPT but with slight variations in data collection and training data,
include “Internet phenomena”, software documentation, and code. Initial
training involved supervised fine-tuning, where AI trainers played both user
and assistant roles in conversations, aided by model-written suggestions.

3<https://openai.com/research/instruction-following>

https://openai.com/research/instruction-following

Chapter 3. Background and Definitions 38

This new dialogue dataset was combined with the InstructGPT dataset,
transformed into a dialogue format (OPENAI, 2023b).

To create a reward model for reinforcement learning, comparison data
was collected by having AI trainers rank two or more model responses for qual-
ity. Conversations with the chatbot provided the basis for selecting a model-
written message, sampling alternative completions, and obtaining rankings.
The model underwent fine-tuning using Proximal Policy Optimization through
several iterations.

ChatGPT is fine-tuned from a GPT-3.5 series model, and, as the last
column of Table 3.1 suggests, it has limited knowledge of events that occurred
after September 2021. Both, ChatGPT and GPT-3.5, were trained on Azure
AI supercomputing infrastructure.

In fact, OpenAI used outsourced Kenyan workers earning less than USD
2.00 per hour to label “toxic content” (PERRIGO, 2023).

Limitations include the occasional generation of plausible-sounding but
incorrect or nonsensical answers. The model is sensitive to input phrasing
variations and may be excessively verbose, with biases from training data
contributing to these issues. Additionally, the model tends to guess user intent
instead of asking clarifying questions for ambiguous queries.

Efforts have been made to address inappropriate requests, but the model
may still respond to harmful instructions or exhibit biased behavior. The
Moderation API is utilized to warn or block unsafe content, but false negatives
and positives can occur. OpenAI seeks user feedback to enhance the system
continually.

The reader is invited to test ChatGPT by running the following three
generic knowledge queries, for which ChatGPT produces answers of varying
quality: (Correct answer) “How Liz Taylor, Richard Burton, and John Hurt are
related?”; (Incorrect answer) “Where did D. Pedro I of Brazil died?”; (Failed
answer due to lack of data) “Tell me about the coronation of Charles III of
England.”

Figure 3.11 shows the ChatGPT interface where the model is asked to
generate a short email and it responds with an email template.

As for training a model, the user can adopt few- shot learning (see Section
3.2.3), passing examples in the prompts, or fine-tune the model, as mentioned
in Section 3.2.4

ChatGPT Plus, the paid version of ChatGPT, was released on March
14th, 2023, uses GPT 4 (OPENAI, 2023a), at a cost of USD 20.00 per month
(on May 2023). According to the OpenAI annoucement, “GPT-4 is 82%
less likely to respond to requests for disallowed content, is 40% more likely

Chapter 3. Background and Definitions 39

Figure 3.11: ChatGPT’s Interface.

to produce factual responses than GPT-3.5, and can take images as input”
(OPENAI, 2023a).

3.4
LangChain

LangChain is a framework for developing applications powered by lan-
guage models. This framework facilitates the creation of applications charac-
terized by their (LANGCHAIN, 2024):

1. Context-Awareness: Establishing a connection between a language
model and various sources of context, such as prompt instructions, few-
shot examples, or contextual content, enables the application to ground
its responses effectively.

2. Reasoning Capability: Leveraging a language model for reasoning,
including determining how to respond based on provided context and
deciding on appropriate actions, empowers applications to navigate
complex scenarios.

At the core of LangChain is the fundamental building block of invoking
an LLM on a given input. For example, Listing 1 shows how to import the LLM
wrapper, adjust parameters such as temperature for generating more diverse
outputs, and finally, invoke the LLM (GPT-4 model from OpenAI) with a
specific input.

Listing 1: Example of Using LangChain to Invoke an LLM

Chapter 3. Background and Definitions 40

1 from langchain .llms import OpenAI

2 llm = OpenAI (model=‘‘gpt -4’’, temperature =0.9)

3 text = ‘‘Tell me a short joke about cakes.’’

4 print(llm(text))

While the example provided is rudimentary, in real-world applications,
interactions with the LLM are not isolated but rather constitute a series of
steps where intermediate results necessitate logical processing for initiating the
subsequent step. This sequence of combined interactions is termed as Chains,
which typically involves integrations with one or more model providers, data
storage systems, and APIs, among others. These modules can be combined to
build more intricate applications or used individually for simpler applications.

LangChain proves instrumental in designing applications such as personal
assistants, chatbots, document-based question-answering (QA), summarizing
lengthy documents, extracting structured information from unstructured text,
querying tabular data, and performing Text-to-SQL tasks.

4
LLM-based Text-to-SQL strategies

This chapter addresses the strategies used to explore LLM features for
the Text-to-SQL task. The strategies were implemented with the help of
the LangChain framework. It outlines three “LangChain-based Text-to-SQL
strategies for Text-to-SQL”, two models that performed well over the Spider
benchmark, “C3 + ChatGPT+ Zero-Shot”(DONG et al., 2023b) and “DIN-
SQL”(POURREZA; RAFIEI, 2023), and finally “C3+DIN”, a new strategy
that combines components of C3 and DIN-SQL. A

4.1
LangChain-based Strategies for Text-to-SQL

LangChain offers some predefined chains1 and agents for Text-to-SQL,
that are compatible with any SQL dialect supported by SQLAlchemy (e.g.,
MySQL, PostgreSQL, Oracle SQL, Databricks, SQLite and other DBMSs).2

The SQL chains and agent have predefined prompts, but can be customized. In
simple terms, they operate through three main steps. First, the model converts
the user’s NL question into a structured SQL query, making it understandable
to the database. Next, the SQL query is executed, fetching the necessary data
from the database. Finally, the model responds to the user’s input using the
query results obtained.

Figure 4.1: Table definitions and example rows in langchain’s prompt for Text-
to-SQL task.

1<https://python.langchain.com/docs/use_cases/sql/prompting>
2<https://www.sqlalchemy.org/>

https://python.langchain.com/docs/use_cases/sql/prompting
https://www.sqlalchemy.org/

Chapter 4. LLM-based Text-to-SQL strategies 42

In addition to including the schema in the prompt, these SQL chains
enable the provision of sample data, as illustrated in Figure 4.1. This data
can assist an LLM in formulating accurate queries, especially when the data
format is not evident. Sample rows are incorporated into the prompt following
the column information for each respective table.

Listing 2 shows an example of generating SQL with LangChain. The
Chains for SQL use a module named SQLDatabase that inspects the schema,
tables, columns and foreign keys in the database. The DDL (Data Definition
Language) of the schema is provided at the prompt as context for an LLM
in an automated way. This representation of the schema, illustrated in Figure
4.1, is called Code Representation by Gao et al. (2023). Using such context in
the prompt, the LLM constructs an SQL query for the original NL question,
which is then executed and returned by LangChain.

Listing 2: An example of generating SQL with Langchian

1 from langchain . utilities import SQLDatabase

2 from langchain_community .llms import OpenAI

3 from langchain_experimental .sql import SQLDatabaseChain

4

5 db = SQLDatabase . from_uri (" sqlite :/// Chinook .db")

6 llm = OpenAI (temperature =0, verbose =True)

7 db_chain = SQLDatabaseChain . from_llm (llm , db , verbose =True)

8

9 db_chain .run("How many employees are there?")

This dissertation proposes to test and evaluate these chains for
LangChain’s Text-to-SQL task.

SQLQueryChain and SQLDatabaseChain are chains that basically re-
ceive the database schema as a prompt and convert an NL question into an
SQL statement. They are the simplest and easiest versions, as the schema is
automatically extracted from the database, as illustrated in Figure 4.2. Listing
5, located in the Annex A, shows a prompt that begin describing the behavior
of the LLM. Subsequently, within the LangChain framework, the prompt is
customized with some tips. Then, the instruction establishes the desired for-
mat for the model’s output. Lastly, the complete database schema and the
natural language query are provided. It is possible to include a few sample
database instances in the prompt.

SQLDatabaseSequentialChain is a more sophisticated version that em-
ploys a sequential chaining of prompts, as illustrated in Figure 4.3. The first
prompt, referred to as the decider chain prompt, shown in Listing 6, identifies
tables related to the user’s query without providing the database schema. The
second prompt is identical to the prompt in the SQLQueryChain (See Listing

Chapter 4. LLM-based Text-to-SQL strategies 43

Figure 4.2: SQLQueryChain Overview.

5); however, only the involved tables are provided for the LLM to generate the
SQL statement. This helps when the number of tables in the database is large.
Similarly to the SQLQueryChain, it is possible to include samples of database
instances.

Figure 4.3: SQLDatabaseSequentialChain Overview.

Finally, SQLAgent provides a more flexible way of interacting with
databases. Figure 4.4 shows an overview of the strategy, where the first two
steps are similar to SQLDatabaseSequentialChain.

It uses the ReAct strategy (discussed in Section 3.2.3.6) to create SQL
statements, that is, for each instance, it invokes a chain of “reasonings” that
involve an “Action” (such as “I need to list the tables in this database”), an
“Observation” (the tables), and a “Thought” (“I should access details only
from table X”), as illustrated in Figure 4.5. This reasoning process iterates,

Chapter 4. LLM-based Text-to-SQL strategies 44

Figure 4.4: SQLAgent Overview.

recovering from errors by running a generated SQL query, capturing the trace,
and regenerating it until the desired result is achieved.

Each “Action” that the Agent can use is called a “Tool” and is described
in the prompt with the name, description and the function that should be called
to take that action. In the context of the SQLAgent, as shown in Listing 7,
there are four actions.

The first tool, named sql_db_list_tables, enumerates all tables in the
database, allowing the LLM to identify those relevant to the query.

The second tool, sql_db_schema, takes as input this list of specific tables
and returns their schema along with sample rows. It is specified in the prompt
that sql_db_schema is always invoked prior to sql_db_list_tables.

The LLM generates the SQL query, which is then passed to the
sql_db_query_checker tool, responsible for verifying the correctness of the
SQL query before execution.

Finally, the sql_db_query tool is called to execute the SQL query. If an
error is returned, it is captured, and the query is rewritten for another attempt.
After a specified number of attempts, defined as a parameter in the function,
the SQLAgent terminates. For the study in this dissertation, the last tool was
modified to return the SQL query even if it was incorrect.

4.2
Strategies based on C3 + LangChain

“C3 + ChatGPT + Zero-Shot” (DONG et al., 2023b) (or briefly C3)
is a prompt-based strategy, originally defined for ChatGPT. C3 has three
key components: Clear Prompting (CP); Calibration with Hints or bias (CH);
Consistent Output (CO). Figure 4.6 shows how C3 works.

Chapter 4. LLM-based Text-to-SQL strategies 45

Figure 4.5: ReAct strategy in SQLAgent.

Clear Prompting addresses two problems: (1) the size of the database
schema may exceed the prompt limit; (2) a prompt with too many tables
and columns may confuse ChatGPT. Clear prompting then recalls relevant
tables and columns (to the NL question) and adds them to the prompt, along
with the schema. This component employs Self-Consistency (seen in Section
3.2.3.4), where the LLM generates multiple responses for a given task, clusters
them with similar ones, and selects the most consistent response through a
voting mechanism.

Figure 4.6: The framework of C3. From (DONG et al., 2023b).

Table recall is implemented by a zero-shot prompt that instructs Chat-
GPT to: (1) recall tables; (2) rank tables based on their relevance to the ques-
tion; (3) check if all tables have been considered. Listing 8 shows the prompt.
It consists of a description of the database schema (only tables and columns)
and a query in Natural Language.

Chapter 4. LLM-based Text-to-SQL strategies 46

Column recall is also a zero-shot prompt that instructs the LLM to: (1)
recall columns; (2) rank all columns within each candidate table based on their
relevance to the question; (3) give priority to columns that better match NL
question words and foreign keys. Listing 9 depicts the prompt. It consists of
a description of the database schema (only tables and columns), the foreign
keys and a query in natural language.

After running the clear prompting step of the C3 framework on an
example with the Mondial database, Listing 3 shows the prompt generated,
which is then submitted to the GPTs models to create the SQL equivalent to
the user’s NL query. In lines 4 and 5, only the tables and columns relevant
to the user’s NL query are provided, following the Table Recall and Column
Recall steps. In line 6, foreign keys are specified, and in line 8 the user’s query
is presented. The prompt concludes with the “SELECT” statement to ask the
LLM to generate the SQL code to complete the query.

Listing 3: Clear Prompting in the C3 approach

1 ### Complete oracle SQL query only and with no explanation , and do

not select extra columns that are not explicitly requested in

the query.

2 ### Oracle SQL tables , with their properties :

3 #

4 # country (name , code , capital , province)

5 # language (country , name , percentage)

6 # language . country = country .code

7 #

8 ### What are the languages spoken in Poland ?

9 SELECT

Calibration with Hints or Calibration Bias avoids errors caused by certain
biases inherent in ChatGPT: to select columns that are relevant to the question
but not required; to use LEFT JOIN, OR, and IN incorrectly. Calibration with
Hints then instructs ChatGPT to follow two “debias” hints: (1) select only the
necessary column; (2) avoid misusing SQL constructs. Listing 10 shows all
hints provided.

Consistent Output tries to avoid the problem that the output of Chat-
GPT is unstable due to the inherent randomness of LLMs. This step, as il-
lustrated in Figure 4.7, again uses Self-Consistency, which generates several
SQL queries, executes the SQL queries on the database, and collects the exe-
cution results. It uses a voting mechanism on the results to identify the most
consistent SQL query.

At the time of writing, C3 was the sixth strategy listed in the Spider
Leaderboard, achieving 82.3% in terms of execution accuracy on the test

Chapter 4. LLM-based Text-to-SQL strategies 47

Figure 4.7: The consistency output.

set. It outperformed state-of-the-art fine-tuning-based approaches in execution
accuracy on the test set, while using only approximately 1,000 tokens per query.
The representation of the C3 strategy follows the “OpenAI Demonstration
Prompt” format (GAO et al., 2023). It consists of instructions, table schemas,
and questions, where all information is commented using the pound sign
“#”. To implement this strategy, LangChain was used in each of the steps,
as illustrated in Figure 4.8. The SQLDatabase module of LangChain allows
connecting to a database and inspecting the existing tables in the schema.
This information is stored in metadata that can be manipulated via code. The
schema of the Mondial database in the C3 strategy is shown in Listing 17.
In fact, any database schema compatible with LangChain can be represented
using this approach, as discussed in Section 4.1.

Figure 4.8: C3 strategy with langchain.

4.3
Strategies based on DIN + LangChain

“DIN-SQL” (POURREZA; RAFIEI, 2023) (or briefly DIN) uses only
prompting techniques, such as few-shot and chains-of-thought.

It decomposes the Text-to-SQL task into 4 steps: schema linking; query
classification and decomposition; SQL generation; and self-correction. Figure

Chapter 4. LLM-based Text-to-SQL strategies 48

4.9 depicts an overview of DIN. Each of the steps follows a specific prompt, but
they share a pattern characterized by using a substantial number of tokens,
resulting in considerable prompt length. These prompts consist of instructions
for LLM behavior, a simplified representation incorporating table schemas, a
limited set of examples for few-shot prompting, an NL question preceded by
“Q:”, and a response prefix “A: Let’s think step by step” to initiate the LLM’s
Chains-of-Thought reasoning process. This prompt structure is referred to as
the Basic Prompt (GAO et al., 2023).

Figure 4.9: DIN-SQL overview. From (POURREZA; RAFIEI, 2023).

Schema Linking includes ten randomly selected samples from the training
set of the Spider dataset and follows the chain-of-thought template. The 10
examples are static at the prompt, that is, they are not randomly generated at
run time. For the column names mentioned in the question, the corresponding
columns and their tables are selected from the schema; possible entities and
cell values are also extracted from the question. Furthermore, the prompt tends
to be very large, and its length may increase significantly depending on the
size of the database. In some cases, it might exceed the token limit imposed
by the LLM. The full prompt for this step is shown in Listing 11.

Classification and Decomposition classifies each query into: easy – single-
table queries that can be answered without joins or nesting; non-nested –
queries that require joins but no sub-queries; nested – queries that require joins,
sub-queries, and set operations. This step, whose prompt is demonstrated in
Listing 12 also detects the set of tables to be joined, for both non-nested and
nested queries, any sub-queries of nested queries.

SQL Generation depends on the query classification. For easy queries,
a simple few-shot prompting with no intermediate steps is adequate. For
non-nested complex queries, it uses an intermediate representation, removes
operators JOIN ON, FROM, GROUP BY, and set operators, and merges the
HAVING and WHERE clauses. Briefly, for nested complex queries, it breaks
down the problem into multiple steps; the prompt for this class is designed in

Chapter 4. LLM-based Text-to-SQL strategies 49

a way that the LLM should first solve the sub-queries and then use them to
generate the final answer. The prompts for the easy, non-nested and nested
classes are shown in Listings 13, 14 and 15, respectively.

Finally, Self-Correction addresses the problem that the generated SQL
queries can sometimes have missed or redundant keywords such as DESC, DIS-
TINCT, and aggregation functions. To solve this problem, the self-correction
step instructs the LLM to correct those minor mistakes through a zero-shot
setting (see Listing 16), where only the buggy code is passed to the LLM,
which is asked to fix the bugs.

When was released, “DIN-SQL + GPT-4” was the top-performing tool
listed in the Spider Leaderboard, achieving 85.3% in terms of of execution
accuracy.

As in C3, LangChain was used to capture the schema information in the
database and be described in the DIN prompts. Hence, any database supported
by LangChain can be represented using this approach. Listing 18 shows the
schema representation of the Mondial database in the DIN strategy.

4.4
A new strategy: C3-DIN combination + LangChain

“C3+DIN” combines the mechanisms and modules of the C3 and DIN
strategies, as depicted in Figure 4.10.

Figure 4.10: C3+DIN combination diagram.

Database schema description. “C3 + DIN” uses LangChain’s SQL-
Database module to access database metadata. This metadata is manipulated
to represent the schema in an automated way.

Clear Prompting (C3) + Schema Linking (DIN). C3 uses a prompt with
much fewer tokens than DIN, that is, cheaper. Indeed, DIN considers all tables
for schema linking and uses a chain-of-thought strategy (a series of intermediate
reasoning steps) providing examples that assist the LLM during reasoning. “C3
+ DIN” combines the two modules to take advantage of the chain of thought
strategy used by DIN, but passing only the tables and columns relevant to the

Chapter 4. LLM-based Text-to-SQL strategies 50

query, using the C3 clear prompting strategy. Hence, “C3 + DIN” uses fewer
tokens to represent the schema in the prompt.

Classification and Decomposition (DIN). DIN classification is important
for SQL generation, since it uses different prompts for each class. Additionally,
the prompts help detect tables that should be joined and nested queries by
detecting subqueries contained in the main query. “C3 + DIN” then adopts
this strategy.

Calibration with hints (C3). C3 calibration incorporates prior knowledge
of the LLM. Before the SQL generation step, “C3 + DIN” provides hints to
help the model generate SQL queries that align more closely with the desired
output.

SQL Generation Module (DIN). Generating a chain of thought (WEI et
al., 2023), where some thought-chain demonstrations are provided as stimulus
examples, significantly improves the ability of LLMs to perform complex rea-
soning. Furthermore, the SQL Generation Module from DIN applies different
few-shot prompts for each query class through a chain of thought. Thus, “C3
+ DIN” adopts this approach to generate SQL code.

Self-correction (DIN). LLMs have hallucination problems, that is, they
can generate text that does not make sense (YU et al., 2024). In the Text-to-
SQL task, an LLM can generate SQL code with incorrect syntax. Therefore,
“C3 + DIN” incorporates DIN’s self-correction mechanism, which seeks to
correct the SQL code in a simple way by passing some hints to the model
along with the database schema.

5
Experiments to evaluate the effect of schema complexity

This chapter presents experiments to assess how LLM-based Text-to-SQL
strategies perform on a challenging scenario characterized by a database with
a large complex schema, assuming that the schema vocabulary is close to the
vocabulary of the user NL questions. This scenario therefore isolates schema
complexity from vocabulary mismatch.

Despite the availability of the benchmark datasets for the Text-to-SQL
task described in Section 2.1, and inspired by them, this chapter first introduces
the Mondial benchmark, based on a familiar open-sourced database with a
complex schema, and a set of 100 NL questions and their translations to SQL
queries. Then, it analyses the Text-to-SQL strategies discussed in Chapter
4 using this benchmark. The experiments and benchmark are in a Github
repository1.

5.1
The Mondial Benchmark

Mondial stores geographic data, with a total of 47,699 instances. It
features a relational schema with 46 tables, a total of 184 columns, and 49
foreign keys (some of which are multi-column).2 The Mondial schema is large
and complex, but uses familiar terms, such as countries, cities, rivers, etc.
Therefore, it meets the goal of this chapter. A version of Mondial, with 34
tables, is also part of the BIRD benchmark.

The benchmark contains a set of 100 NL questions, L = {L1, ..., L100}
and the ground truth SQL queries, G = {G1, ..., G100}, that were collected
from the Internet or defined manually on the Mondial relational schema so
that the execution of Gi returns the expected answer to the NL question Li.

The questions are classified into simple, medium, and complex, that
correspond to the easy, medium, and hard classes used in the Spider benchmark
(extra-hard questions were not considered). As in the Spider benchmark,
the difficulty is based on the number of SQL constructs, so that queries
that contain more SQL constructs (GROUP BY, ORDER BY, INTERSECT,
nested subqueries, column selections, and aggregators) are considered to be
harder. The list of questions contains 33 simple, 33 medium, and 34 complex
questions.

1<https://github.com/dudursn/text_to_sql_chatgpt_real_world/>
2<https://relational.fit.cvut.cz/dataset/Mondial>

https://github.com/dudursn/text_to_sql_chatgpt_real_world/
https://relational.fit.cvut.cz/dataset/Mondial

Chapter 5. Experiments to evaluate the effect of schema complexity 52

Table 5.1 shows some samples of NL questions and their ground truth
SQL translations. Column “ID” indicates the question identifiers; column
“NL Question” indicates the test NL questions suggested by experts; column
“Gold SQL” indicates the ground truth SQL query that represents the answer
table for the NL question; and column “Type” represents the question type
classification.

ID NL Question Gold SQL Type
33 Show the Airports

with elevation more
than 3000

SELECT name FROM
mondial_airport
WHERE elevation >
3000.0

simple

59 What are the area, el-
evation and type of
lakes in Italy?

SELECT l.area,
l.elevation,
l.type FROM
mondial_geo_lake
gl , mondial_lake
l, mondial_country
c WHERE (gl.LAKE
= l.NAME) AND
(gl.COUNTRY =
c.CODE) AND c.name
= "Italy"

complex

99 What type of govern-
ment is Iran?

SELECT
p.government FROM
mondial_country
c INNER JOIN
mondial_politics
p ON p.country =
c.code WHERE c.name
= "Iran"

medium

Table 5.1: A sample of the benchmark dataset.

5.2
Evaluation metrics

Execution accuracy will be used as the evaluation metrics. This metric
provides a more precise estimate of the model’s performance since there may be
multiple valid SQL queries for a single given question (POURREZA; RAFIEI,
2023). Both the SQL query generated by LLM and the Ground Truth query
were executed on an Oracle database, and their results were compared. The
accuracy of a given text-to-SQL strategy over the benchmark is the number of
correct predicted SQL queries divided by the total number of predicted queries,
as usual.

Chapter 5. Experiments to evaluate the effect of schema complexity 53

5.2.1
Evaluation Procedure

Let B = (D, {(Pi, Gi)/i = 1, ..., n}) be a benchmark dataset. Let Pi be
a predicted SQL query and Gi be the corresponding ground truth SQL query.
Let PTi and GTi be the tables that Pi and Gi return when executed over D,
called the predicted and the ground truth tables.

Intuitively, Pi is correct if PTi and GTi are similar. The notion of
similarity adopted neither requires that PTi and GTi have exactly the same
columns, nor that they have exactly the same rows. This allows for some
mismatch between PTi and GTi. The similarity between two tables or columns
was measured with Jaccard similarity. 3

The following procedure captures this intuition:

1. Compute GTi and PTi over D.

2. For each column of GTi, compute the most similar column of PTi,
respecting a minimum column similarity threshold of tc. This step
induces a partial matching M from columns of GTi to columns of PTi.

3. If the fraction of the number of columns of GTi that match some column
of PTi is below a given threshold tn, Pi is considered incorrect.

4. The adjusted ground truth table AGTi is constructed by dropping all
columns of GTi that do not match any column of PTi, and the adjusted
predicted table APTi is constructed by dropping all columns of PTi that
are not matched and permuting the remaining columns so that PCk is
the kth column of APTi iff GCk, the kth column of AGTi, is such that
M(GCk) = PCk.

5. Finally, AGTi and APTi are compared. If their similarity is above a given
threshold tq, then Pi is correct; otherwise Pi is incorrect.

3<https://docs.snowflake.com/pt/user-guide/querying-approximate-similarity>

https://docs.snowflake.com/pt/user-guide/querying-approximate-similarity

Chapter 5. Experiments to evaluate the effect of schema complexity 54

5.3
Experimental setup

Each strategy was executed with two models, GPT-3.5-turbo and GPT-
4. However, since the Mondial schema is fairly large, samples of database
instances were passed in some experiments, and since DIN-SQL has a large
prompt, GPT-3.5-turbo-16k, which allows 16k tokens, had to be used in some
cases.

In all experiments, LangChain played a pivotal role. Beyond the call to
the LLM, it was instrumental in constructing prompts and automating the
extraction of metadata from the Mondial schema directly from the database.
Additionally, the framework offered valuable insights, including the count of
input and output tokens, as well as the overall cost associated with each
invocation of the OpenAI API, as shown in Figure 5.1.

Figure 5.1: Data provided by LangChain about the tokens used.

LangChain-based strategies for Text-to-SQL were divided in two groups:
passing the NL question and the schema; passing the NL question, the schema,
and some sample rows from each table.

5.4
Results

Table 5.2 displays the results for the Mondial database. Columns “Sim-
ple”, “Medium”, and “Complex” denote the accuracy results for each type
of question, while column “Overall” represents the total accuracy across the
entire dataset. Additionally, columns “Input Tokens” and “Output Tokens”
indicate the number of tokens passed as input and received as output from the
model, respectively. Lastly, column “Estimated Cost” provides the estimated
cost in US Dollars.

With respect to overall accuracy, the Top-5 strategies used GPT-4, albeit
they were also associated with the highest costs. C3 had the best overall
accuracy of 0.78. Then, SQLQueryChain with samples, DIN, and C3+DIN had

Chapter 5. Experiments to evaluate the effect of schema complexity 55

the same overall accuracy of 0.70. Lastly, SQLQueryChain, without samples,
achieved 0.69.

The top-performing strategies for each query type were all based on GPT-
4. C3+DIN achieved the highest accuracy for simple queries, reaching 0.91,
whereas SQL Query Chain with samples outperformed the other strategies
for medium-type queries with an accuracy of 0.85. Finally, C3 demonstrated
excellent performance for complex queries, attaining an accuracy of 0.71.

Despite the very low cost, the GPT-3.5 model proved to be very poor for
generating SQL. The best strategy was SQLQueryChain with an overall accu-
racy of 0.60. The model was unable to correctly generate medium and complex
SQL queries, precisely those with many filters, aggregations, ambiguous queries
and joins. However, considering only simple queries, the top-5 strategies with
the GPT-3.5 model had an accuracy greater than 0.75.

SQLQueryChain was the best among the LangChain-based strategies. It
had the best cost-benefit ratio among the Top-5 strategies. This shows the
importance of providing the entire schema to achieve higher overall accuracy.
Additionally, incorporating samples into the prompt, helping to capture the
semantics of the data, improved accuracy. However, the size of the prompt
presents a challenge, as it requires passing the entire database schema and
other relevant data. This large data volume occasionally lead the LLM to be
confused during the SQL conversion for certain queries.

SQLDatabaseSequentialChain had minimal cost due to smaller prompts,
obtained by filtering schemas for tables. However, the GPT models incorrectly
identified relevant tables for the NL query, leading to incorrect SQL queries,
thus exhibiting poor performance in both models. This occurred due to the
simplicity of the decider chain prompt, whose task is to identify tables relevant
to the queries. It lacks detailed descriptions of the tables, such as synonyms,
definitions, or other guiding tips for the LLM. While providing samples of
the data in the prompt proved beneficial in SQLQueryChain, it did not yield
positive results in this strategy. However, this error was primarily caused by
inaccuracies in the initial step, where incorrect table selection rendered sample
provisioning irrelevant for SQL generation.

SQLAgent also had a low cost in both the number of tokens used and
the price spent, due to the size of the prompt. Similarly to SQLDatabaseSe-
quentialChain, the strategy made mistakes in identifying the tables and, conse-
quently, generated incorrect SQL. SQLAgent became lost or hallucinated using
GPT-4. In fact, SQLAgent is not fully compatible with GPT-4. Also, SQLA-
gent had a poor performance with GPT-3.5-turbo. Another problem found was
in the correction mechanism of this chain. Upon generating incorrect SQL and

Chapter 5. Experiments to evaluate the effect of schema complexity 56

executing it in the database, the error feedback was returned to the LLM to
fix the SQL query, but it continued to generate the query incorrectly.

C3 significantly enhances LLM’s performance in handling simple and
complex queries. Clear Prompting offers effective prompts that help the LLM
to better comprehend the query intent and the database schema structure. As
it captures only specific tables and columns, it increases the clarity on how
joins should be synthesized.

On the other hand, for medium queries, characterized by numerous filters,
its efficacy is reduced as it fails to assist LLM in understanding the semantics
of the data. Also, Consistent Output generated many output tokens since it
produces ten answers in each Clear Prompting stage and twenty results in SQL
generation. If the output does not align with the strategy’s expectations, the
LLM is required to generate the outputs again. This became problematic when
translating medium and complex queries into SQL, with many queries taking
more than two minutes for the LLM to provide a response. The output token
price of GPT models is higher than the input token price, as shown in Table
3.1. Thus, albeit C3 with GPT-4 had the best overall accuracy, it generated
426,937 output tokens and had a high cost of $30.23.

DIN incurred a cost of $44.80, the second-highest among all strategies.
DIN with GPT-3.5-turbo had the largest number of input tokens, followed
closely by DIN with GPT-4, both with over 1.4 MM input tokens. Indeed,
DIN generates large prompts since it passes the complete database schema and
uses a few examples to indicate how the LLM should reason and generate SQL
code in each stage, except for the self-correction stage. While providing a few
examples in the prompts proved effective for helping the LLM correctly answer
simple and medium queries, it was not sufficient for complex queries involving
many joins. This limitation arises from the static nature of the examples in
DIN, which involve vocabularies from other databases rather than Mondial.

C3+DIN was the highest among all experiments, totaling $58.19.
C3+Din with GPT-4 exhibited the same overall accuracy as DIN, albeit lower
than C3 with GPT-4. Whereas the strategy proved effective for simple queries,
it inherited the issues of both C3 and DIN, such as prolonged table and col-
umn recall times and large prompt sizes. This resulted in the consumption of a
substantial number of tokens, both input and output, despite generating fewer
input tokens than DIN, as it did not utilize all DIN modules. Consequently,
the combination becomes impractical for real-world applications.

Chapter 5. Experiments to evaluate the effect of schema complexity 57

5.5
Analysis of the predicted SQL queries

The LLM-based Text-to-SQL strategies were able to understand aggre-
gations and translate them correctly into SQL as shown below:

1 Question : What is the average infant mortality rate for each continent ?
2 LLM: SELECT continent .name , AVG(population . infant \ _mortality) FROM continent

JOIN encompasses ON continent .name = encompasses . continent JOIN
population ON encompasses . country = population . country GROUP BY
continent .name;

3

4

5 Question : What is the area of the largest continent ?
6 LLM: SELECT MAX(area) FROM continent ;
7

8

9 Question : What is the total of provinces of Netherlands ?
10 LLM: SELECT COUNT(*) FROM province WHERE country = 'Netherlands ';

In order to comprehend the areas where the LLM-based Text-to-SQL
strategies struggle with SQL query generation, the incorrect answers generated
by the best strategy, C3, were manually examined. The aim was to understand
the reasons behind their failure. Inspired by Pourreza e Rafiei (2023), these
errors were classified into five categories: Schema Linking, JOIN, Nested,
Invalid SQL and Miscellaneous.

Figure 5.2 shows the error analysis of C3 with GPT-4. When compared
with that of C3 for the Spider benchmark (DONG et al., 2023b), it indicates
that the errors resulting from schema linking and joins are exacerbated in the
experiments with Mondial, which would be expected, given that the Mondial
schema is far more complex than the majority of the datasets in the Spider
benchmark.

The most prevalent errors occurred during schema linking and subsequent
joins. In the case of joins, while the LLM managed to correctly identify tables,
it frequently made mistakes when determining which columns should be used.
This was a consistent issue observed across all approaches.

The cause of this problem lies in that, in the Mondial schema, the for-
eign keys in the tables had the same name as the table they related to,
such as mondial_country, mondial_sea, mondial_river, mondial_city, mon-
dial_province. Listing 4 shows the result for the question “What are the lan-
guages spoken in Poland?”. A join between the mondial_country table and the
mondial_language table was required, linking the mondial_country code pri-
mary key with the foreign key country referencing the table of the same name
in the mondial_language table, as depicted in line 27. However, the LLM con-
fused the instruction at line 25, generating SQL that simply searched for the

Chapter 5. Experiments to evaluate the effect of schema complexity 58

Figure 5.2: Error analysis chart in the C3-GPT4 experiment in the Mondial
database.

country using the foreign key country instead of executing the join. Therefore,
this ambiguity in the schema caused the LLM to get confused and project a
column instead of doing the join correctly.

Listing 4: A common error in the SQL generated for LLM in the Mondial
database.

1

2 CREATE TABLE country (

3 name VARCHAR (50 CHAR) NOT NULL ,

4 code VARCHAR(4 CHAR) NOT NULL,

5 capital VARCHAR (50 CHAR),

6 province VARCHAR (50 CHAR),

7 area NUMBER ,

8 population NUMBER ,

9 CONSTRAINT countrykey PRIMARY KEY (code),

10 CONSTRAINT countryarea CHECK (Area >= 0),

11 CONSTRAINT countrypop CHECK (Population >= 0)

12)

13

14 CREATE TABLE language (

15 country VARCHAR(4 CHAR) NOT NULL,

16 name VARCHAR (50 CHAR) NOT NULL ,

17 percentage NUMBER ,

18 CONSTRAINT languagekey PRIMARY KEY (name , country),

19 CONSTRAINT language_country_fk FOREIGN KEY(country) REFERENCES country (code),

20 CONSTRAINT languagepercent CHECK ((Percentage > 0) AND (Percentage

<= 100))

21)

22

23 Question : What are the languages spoken in Poland?

24

Chapter 5. Experiments to evaluate the effect of schema complexity 59

25 LLM: SELECT name FROM mondial_language WHERE country = "Poland"

26

27 Expected : SELECT mondial_language .name FROM mondial_language INNER

JOIN mondial_country ON mondial_language.country =
mondial_country.code WHERE mondial_country .name = " Poland "

In some cases, samples of instances from the database were passed and
LLM was able to capture the semantics of the data in the database, correctly
identifying that country refers to the country’s acronym. Listing 5.5 shows a
correctly generated SQL query, although a join was expected:

1

2 CREATE TABLE language (

3 country VARCHAR(4 CHAR) NOT NULL,

4 name VARCHAR (50 CHAR) NOT NULL ,

5 percentage NUMBER ,

6 CONSTRAINT languagekey PRIMARY KEY (name , country),

7 CONSTRAINT language_country_fk FOREIGN KEY(country) REFERENCES country (code),

8 CONSTRAINT languagepercent CHECK ((Percentage > 0) AND (Percentage

<= 100))

9)

10

11 /*

12 3 rows from language table:

13 country name percentage

14 AL Albanian 98.8

15 AL Greek 0.5

16 GR Greek 99.0

17 */

18

19

20 Question : What are the languages spoken in Poland?

21 LLM: SELECT name FROM mondial_language WHERE country = "PL";

A limited experiment was done by changing the country column to
code_country. As a result, the LLM was able to generate the SQL query cor-
rectly. Perhaps the accuracy would be greater if the names of these foreign keys
were changed, such as code_country, code_sea, code_province and code_river.

Chapter 5. Experiments to evaluate the effect of schema complexity 60

Table 5.2: Results for Mondial database

Simple Medium Complex Overall Input
Tokens

Output
Tokens Tokens Estimate

Cost Comments

SQL
Database
Agent
(LangChain)
- with sam-
ples
GPT-3.5-turbo 0.58 0.37 0.12 0.35 441785 17939 459724 $0.70 (2)
GPT-4 — — — — — — — — (4)

DIN-SQL
GPT-3.5-turbo 0.82 0.45 0.41 0.56 1431645 33050 1464695 $4.43 (1)(5)
GPT-4 0.85 0.76 0.50 0.70 1428284 32473 1460757 $44.80 -

C3
GPT-3.5-turbo 0.79 0.48 0.38 0.55 175298 754619 929917 $1.77 (6)
GPT-4 0.82 0.51 0.71 0.78 153705 426937 580642 $30.23 (6)

C3+DIN
GPT-3.5-turbo 0.82 0.51 0.44 0.59 1147061 719891 1866952 $6.32 (1)(5)(6)
GPT-4 0.91 0.70 0.5 0.70 1137152 401191 1538343 $58.19 (5)(6)

(1) GPT-3.5-turbo-16k was used due to its larger token limit.
(2) Two samples were passed in the prompt.
(3) The complete schema could be passed in the prompt.
(4) GPT-4 is not entirely compatible with SQLAgent.
(5) The DIN prompt requires a larger token limit.
(6) Table and column recall took a long time.

6
Experiments to evaluate the effect of using views

The previous chapter indicated that the performance of LLM-based Text-
to-SQL tools is significantly less than that reported for well-known benchmark
when applied to complex database. This chapter shows that the Text-to-SQL
task can be significantly facilitated by providing a database specification based
on the use of LLM-friendly views that are close to the language of the users’
questions and that eliminate frequently used joins, and LLM-friendly data
descriptions of the database values, applying the SQLQueryChain strategy to
a complex, real-world database.

6.1
A new approach: Views

The results of the experiments in Chapter 5 indicated that an LLMs
makes mistakes in schema linking and joins because:

– The relational schema is often an inappropriate specification of the
database from the point of view of the LLM – the table and column
names are often different from the terms the users adopt to formulate
their NL questions;

– The database schema is often large, in the number of tables, columns per
table, and foreign keys – but a large schema may not fit in the prompt
area, and opens space to queries with many joins, which are difficult to
synthesize;

– The data semantics is often complex; for example, some data values
may encode enumerated domains – again, the terms the users adopt to
formulate their NL questions may have to be mapped to this internal
semantics;

Consider, for example, the NL sentence S: “What is the installation with
the largest number of open maintenance orders?”. Sentence S uses the end
user’s terms “installation”, “open”, and “maintenance order” which, in the
best scenario, would match the database table names “Installation” and
“Maintenance_Order”, and the column name “Situation”, which has “open”
as a value. However, in a real-world scenario, the relational schema may induce
a quite different vocabulary, such as the table names “TB_IN” and “TB_MO”,
and the column name “MO_ST”, and the database may use “1” as a value of
“MO_ST” to indicate that the order is open.

Chapter 6. Experiments to evaluate the effect of using views 62

An LLM trained for the Text-to-SQL task would translate the expression
“the largest number” to the correct SQL constructs, which is not a trivial feat
(compare it to the treatment of aggregations in earlier approaches reported in
(AFFOLTER; STOCKINGER; BERNSTEIN, 2019)). It would then produce
the correct SQL query under the best scenario but it would fail in the real-world
scenario due to the use of database terms which are thoroughly inappropriate
to the LLM. Thus, for the LLM to succeed in the Text-to-SQL task, it should,
first of all, be able to match the user and the database vocabularies.

This dissertation then argues that the Text-to-SQL task can be greatly
facilitated by a database specification that provides:

– LLM-friendly views that map (fragments of) the database schema to
terms close to the terms users frequently adopt and that try to pre-define
fre- quently used joins.

– LLM-friendly descriptions of the database values.

LLM-friendly views are nothing but the familiar concept of views, de-
signed to present (fragments of) the relational schema (that is, database meta-
data) to the LLM. Views represent a subset of the data contained in a table.
It can join and simplify multiple tables into a single virtual table, hiding the
complexity of data (GROFF; WEINBERG, 1999). As such, they can be imple-
mented with the usual DBMS mechanisms, within the database. LLM-friendly
descriptions refer to a set of constructs that try to capture the data seman-
tics. The experiments in this chapter include data samples in the LLM prompt
through Langchain. Alternatively, RAG can be used to capture the data se-
mantics, or the LLM can be fine-tuned using a set of prompt completion pairs
such as (in OpenAI GPT syntax1):
{"prompt": "the order is open", "completion": "Situation='open'"}

Figure 6.1 summarizes the approach adopted in this chapter. The view
definitions will create a vocabulary that better matches user terms, and they
will also pre-define frequently required joins. The first step aims at reducing
schema linking errors, while the second focuses on join errors, thereby reducing
the complexity of generating the SQL query.

Lastly, the experiments in this chapter will use a complex real-world
database, discussed in Section 6.2.

6.2
A real-world benchmark

1<https://platform.openai.com/docs/guides/fine-tuning>

https://platform.openai.com/docs/guides/fine-tuning

Chapter 6. Experiments to evaluate the effect of using views 63

Figure 6.1: Architecture using views for the Text-to-SQL task.

6.2.1
The real-world relational database

The benchmark adopts a real-world relational database (in Oracle) that
stores data related to the integrity management of Petrobras’ industrial assets.2

The relational schema contains 27 relational tables with, in total, 585
columns and 30 foreign keys (some multi-column), where the largest table has
81 columns.

Table and column names in the relational schema do not follow a specific
vocabulary. They are assigned using mnemonic terms based on an internal
company specification for naming database objects. This scenario implies that
users who do not know the relational schema have difficulties in understanding
the semantics of the stored data and must turn to database specialists when
retrieving data related to maintenance and integrity management processes,
even if the user has access to a description of the tables and their columns.

Also, some column values are not end-user-friendly – coding values and
combinations of different values may hide semantic information. To overcome
this situation, database experts often create SQL functions that contain the
logic to represent the semantics hidden in the column values.

6.2.2
The sets of views

To test how the proposed approach affects the Text-to-SQL task, the
benchmark introduces three sets of LLM-friendly views of increasing complex-
ity:

Conceptual schema views: a set of views that define a one-to-one mapping
of the relational schema to end users’ terms; the views basically rename tables
and columns. Figure 6.2 shows the referential dependencies diagram of a much-

2<https://petrobras.com.br>

https://petrobras.com.br

Chapter 6. Experiments to evaluate the effect of using views 64

Figure 6.2: The referential dependency diagram of a simplified version.

simplified version of the conceptual schema views, where an arrow represents
a foreign key and points to the referenced table, as usual.

Partially extended views: a set of views that extend the conceptual
schema views with new columns that predefine joins that follow foreign
keys, as well as other selected columns. Figure 6.3 shows that previously
it was necessary to have at least three joins between the Installation and
Maintenance_Order tables. Creating an installation_id column in Mainte-
nance_Order, reduced it to just one join between the tables.

Figure 6.3: An example of how partially extended views were constructed.

In practice, the set of partially extended views was defined by
including the non-primary key columns of the view Installation
into the views Equipment, Maintenance_Order, Maintenance_Request,
Maintenance_Recommendation, and Maintenance_Plan_Item, respectively.

Fully extended views: a set of views such that each view is a single view
formed from the combination of one or more views created from the conceptual
schema. This way, it aims to eliminate the generation of SQLs with joins by
LLM.

Chapter 6. Experiments to evaluate the effect of using views 65

Figure 6.4: An example of how fully extended views were constructed.

The following statement shows an example SQL code to create a fully
extended view by combining the views Installation and Equipment in a new
and single view named Installation_Equipment3 as illustrated in Figure 6.4:

1 CREATE VIEW pe_equipment AS
2 SELECT inst.name AS installation_name , inst.asset ,
3 inst.main_hub , inst. business_unit , equip .*
4 FROM equipment equip JOIN installation inst
5 ON inst.id = equip . installation_id

where it has all the columns of Equipment and Installation views.

6.2.3
The test questions and their ground truth SQL translations

The benchmark contains a set of 100 NL questions, L = {L1, ..., L100},
that consider the terms and questions experts use when requesting information
related to the maintenance and integrity processes.

The ground truth SQL queries, G = {G1, ..., G100}, were manually defined
over the conceptual schema views so that the execution of Gi returns the
expected answer to the NL question Li. The use of the conceptual schema
views facilitated this manual task, since these views use a vocabulary close to
that of the NL questions.

An NL question Li is classified into simple, medium, and complex,
based on the complexity of its ground truth SQL query Gi, as in the Spider
benchmark (extra-hard questions were not considered). The set of questions L

contains 33 simple, 33 medium and 34 complex questions.
Note that the NL questions classification is anchored on the conceptual

schema views. But, since these views map one-to-one to the tables of the
relational schema, a classification anchored on the relational schema would
remain the same. The classification is maintained for the other sets of views,
even knowing that the definition of these other sets of views might simplify the

3Oracle names are case insensitive by default

Chapter 6. Experiments to evaluate the effect of using views 66

translation of some NL questions (which was one of the reasons for considering
these sets of views, in any case).

Table 6.1 shows examples of NL questions and their ground truth SQL
translations. Column “ID” indicates the question identifiers; column “NL
Question” indicates the test NL questions suggested by experts; column
“Ground Truth SQL Query Table” indicates the ground truth SQL query
that represents the answer table for the NL question; and column “Question
Type” represents the question type classification (as explained above).

Table 6.1: A sample of the designed benchmark dataset.

6.3
Experimental setup

The experiments used a Text-to-SQL implementation based on
LangChain’s SQLQueryChain (see Section 4.1). The results in Table 5.2
show that this strategy had good performance and a much lower cost than
other tested strategies.

This chain greatly simplifies creating prompts to access databases
through views since it passes a view specification as if it were a table specifica-
tion. Figure 6.5 illustrates the prompt implemented: (A) contains instructions
for the LLM; (B) defines the output format; (C) partly illustrates how the
maintenance_order view is passed to the LLM as a CREATE TABLE state-
ment; (D) shows 3 data samples from the maintenance_order view; and (E)
passes the NL question.

The experiments applied the LangChain-based strategy with GPT-3.5-
turbo-16k and GPT-4 against the 100 questions introduced in Section 6.2,
separately for the database relational schema of Section 6.2.1, and each of the
three sets of views outlined in Section 6.2.2, all with data samples. Finally, the

Chapter 6. Experiments to evaluate the effect of using views 67

Figure 6.5: SQLQueryChain’s prompt with some tips used in the experiments.

metrics and evaluation procedure were the same as those described in Section
5.2.

6.4
Results

Table 6.2 shows the results. Overall, the accuracy results with GPT-4
were much better than those with GPT-3.5-turbo-16k; if we compare the best
accuracy results (the gray cells), GPT-4 achieved an overall accuracy 22%
better than GPT-3.5-turbo-16k. Let us concentrate on the accuracy results
with GPT-4.

The results demonstrated that running LLM for Text-to-SQL tasks
on the relational schema of a real-world database resulted in the lowest
performance, with an accuracy of 41%. An experiment was conducted on an
extended version of the relational schema, introducing new foreign keys to
minimize table joins. This adjustment alone led to a 13% increase in accuracy.
However, the accuracy remained notably lower compared to benchmarks such
as Mondial and Spider, primarily due to persistent challenges with schema
linking and joins.

Implementing the strategy with LLM-friendly views yielded significant
improvements. A comparison between the results of experiments on the rela-
tional schema and Conceptual Schema Views indicates that the overall accu-
racy achieved with the view-based strategy was 24% higher than that achieved
with the relational schema alone. This means that simply renaming the tables
and columns to terms closer to the end-user vocabulary sufficed to improve
accuracy substantially.

The Partially Extended Views experiment achieved an accuracy of 74%,
representing the highest accuracy among all employed strategies. This ap-
proach simplified the Text-to-SQL task by renaming columns to more descrip-

Chapter 6. Experiments to evaluate the effect of using views 68

Table 6.2: Results for Views

Simple Medium Complex Overall Input
Tokens

Output
Tokens

Total
Tokens

Estimate
Cost Comments

Partially Extended
- Conceptual
Schema - Views
GPT-3.5-turbo 0.79 0.54 0.23 0.52 810903 5307 816210 $2.45 (1)
GPT-4 0.91 0.76 0.56 0.74 810903 10259 821162 $24.94 -

Fully Extended
Conceptual Schema
Views
GPT-3.5-turbo 0.85 0.40 0.18 0.47 209601 6616 216217 $0.33 (2)
GPT-4 0.85 0.61 0.53 0.66 206178 7388 213566 $6.63 (2)

Conceptual Schema
Views
GPT-3.5-turbo 0.82 0.49 0.15 0.48 750503 7849 758352 $2.28 (1)
GPT-4 0.97 0.55 0.44 0.65 750503 14345 764848 $23.38 -

Partially Extended
Relational Schema
GPT-3.5-turbo 0.73 0.24 0.09 0.35 559204 4602 563806 $1.70 (1)
GPT-4 0.82 0.42 0.39 0.54 559204 11746 570950 $17.48 -

Relational Schema
GPT-3.5-turbo 0.73 0.24 0.12 0.36 1011903 5377 1017280 $3.06 (1)(3)
GPT-4 0.67 0.33 0.23 0.41 1011903 11405 1023308 $31.04 (3)

(1) GPT-3.5-turbo-16k was used due to its larger token limit.
(2) Only a single view that was related to the question was passed in the prompt
(3) The relational schema does not have foreign keys defined

tive names, facilitating for the LLM the identification of columns and tables
during SQL generation. Additionally, it created new columns simulating for-
eign keys to reduce the need for joins. The overall accuracy achieved with these
views was substantially better (33% improvement) than that achieved with the
relational schema. Moreover, it demonstrated greater accuracy in medium and
complex queries, reaching 76% and 56%, respectively.

Also, note that the Partially Extended Views experiment failed to trans-
late two more simple NL questions than Conceptual Schema Views experiment.
One explanation is that LLMs are non-deterministic; if the experiments were
repeated several times, Table 6.2 could report slightly different accuracy results
for Conceptual Schema Views and Partially extended views experiments.

A comparison between the results of the Partially Extended Views and
Fully Extended Views experiments shows a decrease of 8%. Indeed, the fully
extended views save more joins, facilitating the Text-to-SQL task, but they
require passing much larger view specifications in the prompt. Furthermore,
the definition of a fully extended view, which combines several views, requires
renaming several columns, which may create columns with similar names. In
conjunction – views with many columns and similar column names – confuse

Chapter 6. Experiments to evaluate the effect of using views 69

the LLM, leading to ambiguous matches with an NL question.
Another consideration is that, despite the Fully Extended Views achieving

the second-best results, with 66%, the views related to each question were
already provided to the LLM. In other words, the model did not have to choose
which views to select; they were explicitly given. Also, this is reflected in the
approach having the lowest cost of all, since in other approaches, all available
views or tables were described in the prompt.

In summary, the results suggest that the partially extended views, with
just a few extra columns that pre-define joins, is a better alternative than
fully extended views, that combine several views. These views also proved to
be a much better alternative than using the relational schema or the set of
conceptual schema views. From a broader perspective, the accuracy increases
when one moves from prompting the LLM with the relational schema to
prompting the LLM with LLM-friendly views and data samples, corroborating
the position argued in this work.

6.5
Analysis of the predicted SQL queries in LLM-Friendly views

As the results in Section 6.4 demonstrate, the issue of schema linking and
joins has been mitigated. Consider the NL sentence S: “What is the installation
with the largest number of open maintenance orders?”. The tables involved
are Installation and Maintenance_Order. At least two joins are required as
we can see in Figure 6.2: Installation -> Equipment and, Equipment ->
Maintenance_Order. Extending to views, the Installation_ID column was
created in the Maintenance_Order view as a foreign key referencing the
Installation view, reducing it to just a join. Renaming the Situation column to
Open_situation in the Maintenance_Order view facilitated the identification
of the meaning of “open maintenance orders”. By providing samples of the
instances in the prompt, the LLM was able to identify that the value of this
column is "open". As result, the language model successfully generated the
SQL query, as shown below:

1 Question : What is the installation with the largest number of open
maintenance orders ?

2

3 LLM: SELECT i. Installation_Name
4 FROM Installation i JOIN Maintenance_Order mo ON i.ID = mo. Installation_ID
5 WHERE mo. Open_situation = 'open '
6 GROUP BY i. Installation_Name
7 ORDER BY COUNT(*) DESC
8 FETCH FIRST 1 ROWS ONLY

Chapter 6. Experiments to evaluate the effect of using views 70

In Table 5.1, we have the question “Which IBX15 installation recommen-
dations are expired?”, while the gold SQL searches for installation_name =
“IBX-15”, the user’s question references “IBX15” without the hyphen. Conse-
quently, when the LLM searches for installation_name = “IBX15”, it returns
an empty set as there is no matching value in the database.

In another question, “What are the requests located in MX10 ?”, SQL
gold is expected to use the LIKE operator and thus SELECT * FROM main-
tenance_request WHERE localization LIKE “%MX10%”, but LLM generates
SELECT * FROM maintenance_request WHERE localization =“MX10”, and
again, returns an empty set.

Assembling the filters in the SQL query posed the greatest challenge for
the LLM. Despite having samples of some instances in the prompt, it is not
possible to pass all possible values that a column can have, partly due to the
limitation of the size of the context window. Consequently, in cases where the
LLM did not have sufficient information about the data, it made mistakes in
constructing the generated SQL filter.

7
Conclusions and future work

7.1
Conclusions

This dissertation described experiments with various strategies using
LLMs for the text-to-SQL task in two challenging scenarios characterized by:
(1) an openly available database with a large complex schema, using terms
close to those of the users’ NL questions; (2) a real-world database with a large
complex schema, using terms different from those of the users’ NL questions.

As a first contribution of this dissertation, the results of the experi-
ments in Chapter 5 permitted concluding that, while some of these strategies
showed promising results in benchmarks such as Spider, their performance
decreased when applied to a complex database. Among the strategies tested,
SQLQueryChain with samples using GPT-4 proved more effective, because C3
with GPT-4, despite having the best overall accuracy, incurred higher costs,
longer runtime, and more output tokens. In general, passing the entire schema
to the LLM achieved better results than filtering the schema and passing just
a few tables, but this approach is limited by the number of tokens the LLM
allows, especially for complex schemas, such as that of Mondial.

As a second contribution of this dissertation, the results of the experi-
ments in Chapter 6 revealed that the overall accuracy of a text-to-SQL strat-
egy (SQLQueryChain with samples using GPT-4) improved by customizing
the database specification. On a real-world benchmark, the experiments sug-
gested that there is a dramatic increase in accuracy when one moves from
prompting the LLM with the relational schema to prompting the LLM with
LLM-friendly views and data samples. These views help reduce SQL query
complexity, thereby improving the overall accuracy of the Text-to-SQL task.
They rename tables and columns to more descriptive terms aimed at facilitat-
ing the identification of columns and tables by the LLM during SQL generation,
and introduce new columns that reduce the number of joins.

Partial results related to this dissertation, as well other relevant results,
were reported in the following articles:

– Pinheiro, J.; Victorio, W.; Nascimento, E. R.; Seabra, A.; Izquierdo, Y.;
García, G.; Coelho, G.; Lemos, M.; Leme, L.; Furtado, A. and Casanova,
M. (2023).On the Construction of Database Interfaces Based on
Large Language Models. In Proceedings of the 19th International

Chapter 7. Conclusions and future work 72

Conference on Web Information Systems and Technologies - WEBIST;
ISBN 978-989-758-672-9; ISSN 2184-3252, SciTePress, pages 373-380.
DOI: 10.5220/0012204000003584.

– Nascimento, E.R., Garcia, G.M., Victorio, W.Z., Lemos, M., Izquierdo,
Y.T., Garcia, R.L., Leme, L.A.P., Casanova, M.A.: A family of nat-
ural language interfaces for databases based on chatgpt and
langchain. In: Proceedings of the 42nd International Conference on Con-
ceptual Modeling – Posters&Demos. Lisbon, Portugal (nov 2023).

– Nascimento, E.; García, G.; Feijó, L.; Victorio, W.; Izquierdo, Y.; R. de
Oliveira, A.; Coelho, G.; Lemos, M.; Garcia, R.; Leme, L. and Casanova,
M. A. (2024). (2024). Text-to-sql meets the real-world. In: Proc.
26th Int. Conf. on Enterprise Info. Sys.

– Nascimento, E. R., Izquierdo, Y. T., Garcia, G. M., Coelho, G., Feijó, L.,
Lemos, M., Leme, L. A. P., and Casanova, M. A. (2024). My Database
User is a Large Language Model. In Proc. 26th Int. Conf. on
Enterprise Info. Sys.

– Coelho, G., Nascimento, E. R., Izquierdo, Y. T., Garcia, G. M., Feijó, L.,
Lemos, M., Garcia, R. L., R. de Oliveira, A., Pinheiro, J., and Casanova,
M. A. (2024). Improving the Accuracy of Text-to-SQL Tools
based on Large Language Models for Real-World Relational
Databases. (Submitted for publication).

7.2
Future Work

Future work will consider four alternatives for text-to-SQL, which are
not mutually exclusive.

The first alternative is to improve some of the text-to-SQL strate-
gies tested. This can be achieved by implementing self-correction and self-
consistency mechanisms in LangChain-based strategies, offering more compre-
hensive information about the database tables in the decider_chain prompt of
SQLDatabaseSequentialChain, refining self-consistency in C3, and incorporat-
ing a few examples of NL question/SQL query pairs in clear prompting.

The LLM-friendly views used in the experiments were created by inspect-
ing the database documentation and by mining a log of user questions. Albeit
this process was tedious but not too difficult, a second suggestion is to develop
on a tool that automatically creates views on the fly, depending on the NL
question submitted.

Chapter 7. Conclusions and future work 73

The third alternative is to explore the use of RAG (discussed in Section
3.2.3.5). While DIN relies on static examples and SQLQueryChain provides
data samples, both strategies demonstrated that having access to external
information helps LLMs generate SQL queries. RAG further assists LLMs by
providing access to external data, enabling them to generate responses with
additional context.

In this approach, a dataset comprising NL question/SQL query pairs
would be encoded and stored in a vector database. Subsequently, the input NL
question would also be encoded, and based on this encoding, the pairs whose
NL question is most similar to the input NL question would be retrieved from
the dataset. Leveraging the context formed by these pairs along with the input
NL question, the LLM would be prompted to generate the SQL query. This
approach would help the LLM identify the tables and columns involved in the
input NL question, as well as understand the semantics of the data.

The last alternative is to fine-tune an open-source LLM, stored locally,
for a given database with a large schema. The training dataset can be quite
laborious to create, but GPT-4 may come in hand to augment the training set
from a seed set of NL questions and their SQL translations. Running locally
an LLM, rather than as a service provided by a third party, has the advantage
that proprietary data and metadata will remain in-house when running the
LLM, a concern often voiced by companies.

8
Bibliography

ABDULLAH, M.; MADAIN, A.; JARARWEH, Y. Chatgpt: Fundamentals, applica-
tions and social impacts. In: 2022 Ninth International Conference on Social
Networks Analysis, Management and Security (SNAMS’22). [S.l.: s.n.],
2022. p. 1–8.

AFFOLTER, K.; STOCKINGER, K.; BERNSTEIN, A. A comparative survey of
recent natural language interfaces for databases. The VLDB Journal, Springer
Science and Business Media LLC, v. 28, n. 5, p. 793–819, ago. 2019. ISSN 0949-
877X. Available at: <http://dx.doi.org/10.1007/s00778-019-00567-8>.

ANDERSON, C. Guardrails on Large Language Models, Part 3: Prompt De-
sign. 2023. Available at: <https://avidml.org/blog/llm-guardrails-3/>. Accessed
on February 14, 2024.

BROWN, T. B. et al. Language Models are Few-Shot Learners. 2020.
Available at: <https://arxiv.org/abs/2005.14165>.

DAHL, D. A. et al. Expanding the scope of the ATIS task: The ATIS-3 corpus.
In: Human Language Technology: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994. [S.l.: s.n.], 1994. Available at:
<https://aclanthology.org/H94-1010>.

DAS, S. Fine Tune Large Language Model (LLM) on a Custom
Dataset with QLoRA. 2024. Available at: <https://dassum.medium.com/
fine-tune-large-language-model-llm-on-a-custom-dataset-with-qlora-fb60abdeba07>.

Defog AI. sqlcoder. 2023. <https://github.com/defog-ai/sqlcoder>.

DESAI, G. Parameters for LLM Models: A Simple Explana-
tion. 2024. Linkedin. Available at: <https://www.linkedin.com/pulse/
parameters-llm-models-simple-explanation-gaurang-desai-kabfe/>. Accessed
on February 15, 2024.

DETTMERS, T. et al. QLoRA: Efficient Finetuning of Quantized LLMs.
2023. Available at: <https://arxiv.org/abs/2305.14314>.

DONG, Q. et al. A Survey on In-context Learning. 2023. Available at:
<https://arxiv.org/abs/2301.00234>.

DONG, X. et al. C3 Zero-shot Text-to-SQL with ChatGPT. 2023. Available
at: <https://arxiv.org/abs/2307.07306>.

Eosphoros AI. DB-GPT-Hub. 2023. <https://github.com/eosphoros-ai/
DB-GPT-Hub>.

Eosphoros AI. Awesome-Text2SQL. 2024. <https://github.com/eosphoros-ai/
Awesome-Text2SQL>.

http://dx.doi.org/10.1007/s00778-019-00567-8
https://avidml.org/blog/llm-guardrails-3/
https://arxiv.org/abs/2005.14165
https://aclanthology.org/H94-1010
https://dassum.medium.com/fine-tune-large-language-model-llm-on-a-custom-dataset-with-qlora-fb60abdeba07
https://dassum.medium.com/fine-tune-large-language-model-llm-on-a-custom-dataset-with-qlora-fb60abdeba07
https://github.com/defog-ai/sqlcoder
https://www.linkedin.com/pulse/parameters-llm-models-simple-explanation-gaurang-desai-kabfe/
https://www.linkedin.com/pulse/parameters-llm-models-simple-explanation-gaurang-desai-kabfe/
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2307.07306
https://github.com/eosphoros-ai/DB-GPT-Hub
https://github.com/eosphoros-ai/DB-GPT-Hub
https://github.com/eosphoros-ai/Awesome-Text2SQL
https://github.com/eosphoros-ai/Awesome-Text2SQL

Chapter 8. Bibliography 75

GAN, Y. et al. Towards robustness of text-to-sql models against synonym substi-
tution. CoRR, abs/2106.01065, 2021. Available at: <https://arxiv.org/abs/2106.
01065>.

GAN, Y.; CHEN, X.; PURVER, M. Exploring underexplored limitations of cross-
domain text-to-sql generalization. In: Conference on Empirical Methods in
Natural Language Processing. [S.l.: s.n.], 2021. Available at: <https://api.
semanticscholar.org/CorpusID:237491444>.

GAO, D. et al. Text-to-SQL Empowered by Large Language Models
A Benchmark Evaluation. 2023. Available at: <https://arxiv.org/abs/2308.
15363>.

GAO, Y. et al. Retrieval-Augmented Generation for Large Language Mod-
els: A Survey. 2024. Available at: <https://arxiv.org/abs/2312.10997>.

GOOGLE. Official blog: AI. 2024. Available at: <https://blog.google/
technology/ai/>.

GROFF, J. R.; WEINBERG, P. N. SQL: The Complete Reference. [S.l.]:
Osborne/McGraw-Hill, 1999. 291–292 p. ISBN 0072118458.

GUO, C. et al. Prompting GPT-3.5 for Text-to-SQL with De-
semanticization and Skeleton Retrieval. 2023. Available at: <https://arxiv.
org/abs/2304.13301>.

GUO, C. et al. Retrieval-augmented GPT-3.5-based Text-to-SQL Frame-
work with Sample-aware Prompting and Dynamic Revision Chain. 2023.
Available at: <https://arxiv.org/abs/2307.05074>.

GUO, J. et al. Chase: A large-scale and pragmatic chinese dataset for cross-
database context-dependent text-to-sql. In: Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing. [S.l.]:
Association for Computational Linguistics, 2021. p. 2316–2331. Available at:
<https://aclanthology.org/2021.acl-long.180>.

HABIB, R.; OZDEMIR, S. Prompt Engineering 101. 2022. Available at:
<https://humanloop.com/blog/prompt-engineering-101>. Accessed on February
14, 2024.

HENDRIX, G. G. Natural-language interface. American Journal of Computa-
tional Linguistics, v. 8, n. 2, p. 56–61, 1982. Available at: <https://aclanthology.
org/J82-2002>.

HU, E. J. et al. LoRA: Low-Rank Adaptation of Large Language Models.
2021. Available at: <https://arxiv.org/abs/2106.09685>.

HU, Z. et al. LLM-Adapters: An Adapter Family for Parameter-Efficient
Fine-Tuning of Large Language Models. 2023. Available at: <https://arxiv.
org/abs/2304.01933>.

https://arxiv.org/abs/2106.01065
https://arxiv.org/abs/2106.01065
https://api.semanticscholar.org/CorpusID:237491444
https://api.semanticscholar.org/CorpusID:237491444
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2312.10997
https://blog.google/technology/ai/
https://blog.google/technology/ai/
https://arxiv.org/abs/2304.13301
https://arxiv.org/abs/2304.13301
https://arxiv.org/abs/2307.05074
https://aclanthology.org/2021.acl-long.180
https://humanloop.com/blog/prompt-engineering-101
https://aclanthology.org/J82-2002
https://aclanthology.org/J82-2002
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2304.01933
https://arxiv.org/abs/2304.01933

Chapter 8. Bibliography 76

IYER, S. et al. Learning a Neural Semantic Parser from User Feedback.
2017. Available at: <https://arxiv.org/abs/1704.08760>.

KAUFMANN, E.; BERNSTEIN, A. How useful are natural language interfaces to
the semantic web for casual end-users? In: The Semantic Web. [S.l.]: Springer,
2007. p. 281–294.

KOJIMA, T. et al. Large Language Models are Zero-Shot Reasoners. 2023.

LAN, W. et al. UNITE: A Unified Benchmark for Text-to-SQL Evaluation.
2023. Available at: <https://arxiv.org/abs/2305.16265>.

LANGCHAIN. LangChain is a framework for developing applications pow-
ered by language models. 2024. Available at: <https://python.langchain.com/
docs/get_started/introduction>.

LEWIS, P. et al. Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks. 2021. Available at: <https://arxiv.org/abs/2005.11401>.

LI, J. et al. Can llm already serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. 2023. Available at: <https://arxiv.org/abs/
2305.03111>.

LI, Z.; YANG, Z.; WANG, M. Reinforcement Learning with Human Feedback:
Learning Dynamic Choices via Pessimism. 2023. Available at: <https://arxiv.
org/abs/2305.18438>.

LIU, A. et al. A comprehensive evaluation of ChatGPT’s zero-shot Text-
to-SQL capability. 2023. Available at: <https://arxiv.org/abs/2303.13547>.

LOCK, S. What is ai chatbot phenomenon chatgpt and could it replace humans?
The Guardian, 2022. Accessed on February 27, 2024.

LU, H. et al. Utilizing Large Language Models for Natural Interface to
Pharmacology Databases. 2023. Available at: <https://arxiv.org/abs/2307.
15717>.

MEHRA, A. Fine-Tuning Tutorial: Falcon-7b LLM To A General Purpose
Chatbot. 2023.

META. Getting started with Llama. 2024. Available at: <https://llama.meta.
com>.

NASCIMENTO, E. et al. A family of natural language interfaces for databases
based on chatgpt and langchain. In: ER2023: Companion Proceedings of the
42nd International Conference on Conceptual Modeling: ER Forum, 7th
SCME, Project Exhibitions, Posters and Demos, and Doctoral Consor-
tium. Lisbon, Portugal: [s.n.], 2023. Available at: <https://ceur-ws.org/Vol-3618/
pd_paper_1.pdf>.

NIHALANI, N.; SILAKARI, S.; MOTWANI, M. Natural language interface for
database: A brief review. In: . [S.l.: s.n.], 2011. Available at: <https://api.
semanticscholar.org/CorpusID:18731245>.

https://arxiv.org/abs/1704.08760
https://arxiv.org/abs/2305.16265
https://python.langchain.com/docs/get_started/introduction
https://python.langchain.com/docs/get_started/introduction
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.18438
https://arxiv.org/abs/2305.18438
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2307.15717
https://arxiv.org/abs/2307.15717
https://llama.meta.com
https://llama.meta.com
https://ceur-ws.org/Vol-3618/pd_paper_1.pdf
https://ceur-ws.org/Vol-3618/pd_paper_1.pdf
https://api.semanticscholar.org/CorpusID:18731245
https://api.semanticscholar.org/CorpusID:18731245

Chapter 8. Bibliography 77

OPENAI. Gpt-4 technical report. arXiv, 2023. Doi: 10.48550/arXiv.2303.08774.

OPENAI. OpenAI Documentation. 2023. Available at: <https://platform.
openai.com/docs>.

OPENAI. OpenAI Blog. 2024. Available at: <https://openai.com/blog/
new-embedding-models-and-api-updates>.

OUYANG, L. et al. Training language models to follow instructions with
human feedback. 2022. Available at: <https://arxiv.org/abs/2203.02155>.

PERRIGO, B. Exclusive: Openai used kenyan workers on less than $2 per hour
to make chatgpt less toxic. The Time, 2023. Available at: <https://time.com/
6247678/openai-chatgpt-kenya-workers>. Accessed on February 27, 2024.

PING, W. J. Open-sourcing SQLEval: our framework for evaluat-
ing LLM-generated SQL. 2023. Disponível em: <https://defog.ai/blog/
open-sourcing-sqleval/>.

PINHEIRO., J. et al. On the construction of database interfaces based on large
language models. In: INSTICC. Proceedings of the 19th International Con-
ference on Web Information Systems and Technologies - WEBIST. [S.l.]:
SciTePress, 2023. p. 373–380. ISBN 978-989-758-672-9. ISSN 2184-3252.

POURREZA, M.; RAFIEI, D. DIN-SQL: Decomposed In-Context Learning
of Text-to-SQL with Self-Correction. 2023. Available at: <https://arxiv.org/
abs/2304.11015>.

QUAMAR, A. et al. Natural language interfaces to data. Foundations and
Trends in Databases, v. 11, n. 4, p. 319–414, 2022.

RIEDEL, S. et al. Retrieval Augmented Generation: Streamlining the
creation of intelligent natural language processing models. 2020. Available
at: <https://ai.meta.com/blog/retrieval-augmented-generation-streamlining/
the-creation-of-intelligent-natural-language-processing-models/>. Accessed on
February 26, 2024.

SAFJAN, K. Understanding retrieval-augmented generation (rag) empowering
llms. Krystian’s Safjan Blog, 2023.

SANDHU, J. A. What are LLMs and Generative AI? A Beginner’s Guide
to the Technology Turning Heads. 2024. Available at: <https://srinstitute.
utoronto.ca/news/gen-ai-llms-explainer>. Accessed on February 27, 2024.

SARAVIA, E. Prompt Engineering Guide. https://github.com/dair-ai/Prompt-
Engineering-Guide, 12 2022.

SINGH, A. Large Language Models: A Guide on Its Benefits, Use Cases,
and Types. 2023. Available at: <https://yellow.ai/blog/large-language-models>.
Accessed on February 17, 2024.

TAM, A. What Are Zero-Shot Prompting and Few-Shot Prompt-
ing. 2023. Disponível em: <https://machinelearningmastery.com/
what-are-zero-shot-prompting-and-few-shot-prompting/>.

https://platform.openai.com/docs
https://platform.openai.com/docs
https://openai.com/blog/new-embedding-models-and-api-updates
https://openai.com/blog/new-embedding-models-and-api-updates
https://arxiv.org/abs/2203.02155
https://time.com/6247678/openai-chatgpt-kenya-workers
https://time.com/6247678/openai-chatgpt-kenya-workers
https://defog.ai/blog/open-sourcing-sqleval/
https://defog.ai/blog/open-sourcing-sqleval/
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://ai.meta.com/blog/retrieval-augmented-generation-streamlining/the-creation-of-intelligent-natural-language-processing-models/
https://ai.meta.com/blog/retrieval-augmented-generation-streamlining/the-creation-of-intelligent-natural-language-processing-models/
https://srinstitute.utoronto.ca/news/gen-ai-llms-explainer
https://srinstitute.utoronto.ca/news/gen-ai-llms-explainer
https://yellow.ai/blog/large-language-models
https://machinelearningmastery.com/what-are-zero-shot-prompting-and-few-shot-prompting/
https://machinelearningmastery.com/what-are-zero-shot-prompting-and-few-shot-prompting/

Chapter 8. Bibliography 78

VASWANI, A.; AL. et. Attention is all you need. In: Advances in Neural
Information Processing Systems. [S.l.: s.n.], 2017. v. 30.

WANG, X. et al. Self-Consistency Improves Chain of Thought Reasoning in
Language Models. 2023. Available at: <https://arxiv.org/abs/2203.11171>.

WEI, J. et al. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. 2023. Available at: <https://arxiv.org/abs/2201.11903>.

WOLFE, C. R. Chain of Thought Prompting for LLMs. 2023. Available at:
<https://cameronrwolfe.substack.com/p/chain-of-thought-prompting-for-llms>.
Accessed on February 28, 2024.

XU, X.; LIU, C.; SONG, D. Sqlnet: Generating structured queries from natural
language without reinforcement learning. arXiv preprint arXiv:1711.04436,
2017.

YAGHMAZADEH, N. et al. Sqlizer: query synthesis from natural language. Pro-
ceedings of the ACM on Programming Languages, v. 1, n. OOPSLA, p.
1–26, 2017.

YAO, S. et al. ReAct: Synergizing Reasoning and Acting in Language
Models. 2023. Available at: <https://arxiv.org/abs/2210.03629>.

YU, T. et al. Typesql: Knowledge-based type-aware neural text-to-sql generation.
In: Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). [S.l.: s.n.], 2018. p. 588–594.

YU, T. et al. Spider: A large-scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In: RILOFF, E. et al. (Ed.). Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing. Brussels, Belgium: Association for Computational Linguistics,
2018. p. 3911–3921. Available at: <https://aclanthology.org/D18-1425>.

YU, X. et al. Automatic Hallucination Assessment for Aligned Large
Language Models via Transferable Adversarial Attacks. 2024. Available at:
https://openreview.net/forum?id=VQZCXoteoP.

ZELLE, J. M.; MOONEY, R. J. Learning to parse database queries using inductive
logic programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Portland, Oregon: The AAAI Press, 1996. v. 13. ISBN 978-0-262-
51091-2.

ZHONG, R.; YU, T.; KLEIN, D. Semantic Evaluation for Text-to-SQL with
Distilled Test Suites. 2020. Available at: <https://arxiv.org/abs/2010.02840>.

ZHONG, V.; XIONG, C.; SOCHER, R. Seq2sql: Generating structured queries
from natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.
Available at: <http://arxiv.org/abs/1709.00103>.

ZHOU, Y. et al. Large Language Models Are Human-Level Prompt Engi-
neers. 2023. Available at: <https://arxiv.org/abs/2211.01910>.

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://cameronrwolfe.substack.com/p/chain-of-thought-prompting-for-llms
https://arxiv.org/abs/2210.03629
https://aclanthology.org/D18-1425
https://arxiv.org/abs/2010.02840
http://arxiv.org/abs/1709.00103
https://arxiv.org/abs/2211.01910

Chapter 8. Bibliography 79

ZIEGLER, A.; BERRYMAN, J. A Developer’s Guide to Prompt Engineering
and LLMs - The GitHub Blog. 2023. Available at: <https://github.blog/
2023-07-17-developers-guide-prompt-engineering-llms/>. Prompt engineering is
the art of communicating with a generative AI model.

https://github.blog/2023-07-17-developers-guide-prompt-engineering-llms/
https://github.blog/2023-07-17-developers-guide-prompt-engineering-llms/

A
Details of the strategies used in the text-to-SQL task

This section presents a comprehensive list of all the prompts utilized in the
strategies used to allow for easy replication and understanding of the approaches.

A.1
LangChain-Based Strategies Prompts

A.1.1
SQLQueryChain

Listing 5: SQLQueryChain prompt in LangChain strategy

1 You are an Oracle SQL expert . Given an input question , first create

a syntactically correct Oracle SQL query to run , then look at

the results of the query and return the answer to the input

question .

2 Unless the user specifies in the question a specific number of

examples to obtain , don ’t query for at {top_k} most results or

any using the FETCH FIRST n ROWS ONLY clause as per Oracle SQL.

3 Never query for all columns from a table. You must query only the

columns that are needed to answer the question .

4 Pay attention to use only the column names you can see in the tables

below. Be careful to not query for columns that do not exist.

Also , pay attention to which column is in which table.

5 Pay attention to use TRUNC(SYSDATE) function to get the current date

, if the question involves "today ".

6

7 Some hints:

8 - Don ’t use double quotes in column name

9 - Don ’t use LEFT JOIN , only JOIN

10

11 Use the following format :

12

13 Question : Question here

14 SQLQuery : SQL Query to run

15 SQLResult : Result of the SQLQuery

16 Answer : Final answer here

17

18 Only use the following tables :

19 { schema }

20

21 Question : { question }

Appendix A. Details of the strategies used in the text-to-SQL task 81

A.1.2
SQLDatabaseSequentialChain

Listing 6: DeciderChain prompt template from SQLDatabaseSequen-
tialChain in LangChain strategy

1 Given the below input question and list of potential tables , output

a comma separated list of the table names that may be necessary

to answer this question .

2

3 Question : { question }

4

5 Table Names: { table_names }

6

7 Relevant Table Names:

A.1.3
SQLAgent

Listing 7: SQLAgent in LangChain strategy

1

2 You are an agent designed to interact with a SQL database .

3 Given an input question , create a syntactically correct oracle query

to run , then look at query and return only the sql query.

4 You can order the results by a relevant column to return the most

interesting examples in the database .

5 Never query for all the columns from a specific table , only ask for

the relevant columns given the question .

6 You have access to tools for interacting with the database .

7 Only use the below tools. Only use the information returned by the

below tools to construct your final answer .

8 You MUST double check your query before executing it. If you get an

error while executing a query , rewrite the query and try again.

9

10 DO NOT make any DML statements (INSERT , UPDATE , DELETE , DROP etc .)

to the database .

11

12 custom_sql_db_query : Input to this tool is a detailed and correct

SQL query , output is a sql query. If the query is not correct ,

an error message will be returned . If an error is returned ,

rewrite the query , check the query , and try again. If you

encounter an issue with Unknown column ’xxxx ’ in ’field list ’,

using sql_db_schema to query the correct table fields .

13 sql_db_schema : Input to this tool is a comma - separated list of

tables , output is the schema and sample rows for those tables .

Be sure that the tables actually exist by calling

sql_db_list_tables first! Example Input: ’table1 , table2 , table3

’

Appendix A. Details of the strategies used in the text-to-SQL task 82

14 sql_db_list_tables : Input is an empty string , output is a comma

separated list of tables in the database .

15 sql_db_query_checker : Use this tool to double check if your query is

correct before executing it. Always use this tool before

executing a query with custom_sql_db_query !

16

17 Use the following format :

18

19 Question : the input question you must answer

20 Thought : you should always think about what to do

21 Action : the action to take , should be one of [sql_db_query ,

sql_db_schema , sql_db_list_tables , sql_db_query_checker]

22 Action Input: the input to the action

23 Observation : the result of the action

24 ... (this Thought / Action / Action Input/ Observation can repeat N times

)

25 Thought : I now know the SQL QUERY generated

26 Final Answer : the SQL QUERY generated

27

28 Begin!

29

30 Question : {input}

31 Thought : I should look at the tables in the database to see what I

can query. Then I should query the schema of the most relevant

tables .

A.2
Prompts used in the C3 strategy

A.2.1
Table and Column recall prompts

Listing 8: Table Recall Prompt in C3 strategy

1 Given the database schema and question , perform the following

actions :

2 1 - Rank all the tables based on the possibility of being used in

the SQL according to the question from the most relevant to the

3 least relevant , Table or its column that matches more with the

question words is highly relevant and must be placed ahead.

4 2 - Check whether you consider all the tables .

5 3 - Output a list object in the order of step 2, Your output should

contain all the tables . The format should be like:

6 [

7 " table_1 ", " table_2 ", ...

8]

9

10 Schema :

11 { schema }

Appendix A. Details of the strategies used in the text-to-SQL task 83

12

13 Question :

14 { question }

Listing 9: Column Recall Prompt in C3 strategy

1 Given the database tables and question , perform the following

actions :

2 1 - Rank the columns in each table based on the possibility of being

used in the SQL , Column that matches more with the question

3 words or the foreign key is highly relevant and must be placed ahead

. You should output them in the order of the most

4 relevant to the least relevant .

5 Explain why you choose each column .

6 2 - Output a JSON object that contains all the columns in each table

according to your explanation . The format should be like:

7 {{

8 " table_1 ": [" column_1 ", " column_2 ",] ,

9 " table_2 ": [" column_1 ", " column_2 ",] ,

10 " table_3 ": [" column_1 ", " column_2 ",] ,

11

12 }}

13

14 Schema :

15 { schema }

16 { foreign_keys }

17

18 Question :

19 { question }

A.2.2
Calibrations with hints

Listing 10: Calibrations with hints provided to the LLM in C3 strategy
using the LangChain

1

2 C3_HINTS_PROMPT =[

3 SystemMessage (

4 content ="""

5 You are now an excellent SQL writer , first I’ll give you

some tips and examples , and I need you to

6 remember the tips , and do not make same mistakes

7 """

8),

9 HumanMessage (

10 content ="""

11 Tips 1:

12 Question : Which A has most number of B?

Appendix A. Details of the strategies used in the text-to-SQL task 84

13 Gold SQL: select A from B group by A order by count (*) desc

fetch first 1 rows only;

14 Notice that the Gold SQL doesn ’t select COUNT (*) because the

question only wants to know the A and

15 the number should be only used in ORDER BY clause , there are

many questions asks in this way , and I

16 need you to remember this in the the following questions .

17 """

18),

19 AIMessage (

20 content ="""

21 Thank you for the tip! I’ll keep in mind that when the

question only asks for a certain field , I should not

22 include the COUNT (*) in the SELECT statement , but

instead use it in the ORDER BY clause to sort the

23 results based on the count of that field.

24 """

25),

26 HumanMessage (

27 content ="""

28 Tips 2:

29 Don ’t use "IN", "OR", "LEFT JOIN" as it might cause extra

results , use " INTERSECT " or " EXCEPT "

30 instead , and remember to use " DISTINCT " or "FETCH FIRST"

when necessary .

31 For example ,

32 Question : Who are the A who have been nominated for both B

award and C award?

33 Gold SQL should be: select A from X where award = ’B’

intersect select A from X where award = ’C’;

34 """

35),

36 AIMessage (

37 content ="""

38 Thank you for the tip! I’ll remember to use " INTERSECT " or "

EXCEPT " instead of "IN", "NOT IN", or

39 "LEFT JOIN" when I want to find records that match or don ’t

match across two tables . Additionally , I’ll

40 make sure to use " DISTINCT " or "FETCH FIRST" when necessary

to avoid repetitive results or limit the number

41 of results returned .

42 """

43)

44]

A.3
Prompts used in DIN strategy

Appendix A. Details of the strategies used in the text-to-SQL task 85

A.3.1
Schema Linking

Listing 11: Schema linking prompt

1 # Find the schema_links for generating SQL queries for each question

based on the database schema and Foreign keys.

2 Table advisor , columns = [*,s_ID ,i_ID]

3 Table classroom , columns = [*, building , room_number , capacity]

4 Table course , columns = [*, course_id ,title ,dept_name , credits]

5 Table department , columns = [*, dept_name ,building , budget]

6 Table instructor , columns = [*,ID ,name ,dept_name , salary]

7 Table prereq , columns = [*, course_id , prereq_id]

8 Table section , columns = [*, course_id ,sec_id ,semester ,year ,building ,

room_number , time_slot_id]

9 Table student , columns = [*,ID ,name ,dept_name , tot_cred]

10 Table takes , columns = [*,ID ,course_id ,sec_id ,semester ,year ,grade]

11 Table teaches , columns = [*,ID ,course_id ,sec_id ,semester ,year]

12 Table time_slot , columns = [*, time_slot_id ,day ,start_hr ,start_min ,

end_hr , end_min]

13 Foreign_keys = [course . dept_name = department .dept_name , instructor .

dept_name = department .dept_name , section . building = classroom .

building , section . room_number = classroom . room_number , section .

course_id = course .course_id , teaches .ID = instructor .ID , teaches .

course_id = section .course_id , teaches . sec_id = section .sec_id ,

teaches . semester = section .semester , teaches .year = section .year ,

student . dept_name = department .dept_name ,takes.ID = student .ID ,

takes. course_id = section .course_id ,takes. sec_id = section .

sec_id ,takes. semester = section .semester ,takes.year = section .

year , advisor .s_ID = student .ID , advisor .i_ID = instructor .ID ,

prereq . prereq_id = course .course_id , prereq . course_id = course .

course_id]

14 Q: "Find the buildings which have rooms with capacity more than 50."

15 A: Let ’s think step by step. In the question "Find the buildings

which have rooms with capacity more than 50." , we are asked:

16 "the buildings which have rooms" so we need column = [classroom .

capacity]

17 "rooms with capacity " so we need column = [classroom . building]

18 Based on the columns and tables , we need these Foreign_keys = [].

19 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [50]. So the Schema_links are:

20 Schema_links : [classroom .building , classroom .capacity ,50]

21

22 Table department , columns = [*, Department_ID ,Name ,Creation ,Ranking ,

Budget_in_Billions , Num_Employees]

23 Table head , columns = [*, head_ID ,name ,born_state ,age]

24 Table management , columns = [*, department_ID ,head_ID ,

temporary_acting]

25 Foreign_keys = [management . head_ID = head.head_ID , management .

department_ID = department . Department_ID]

26 Q: "How many heads of the departments are older than 56 ?"

Appendix A. Details of the strategies used in the text-to-SQL task 86

27 A: Let ’s think step by step. In the question "How many heads of the

departments are older than 56 ?", we are asked:

28 "How many heads of the departments " so we need column = [head .*]

29 "older" so we need column = [head.age]

30 Based on the columns and tables , we need these Foreign_keys = [].

31 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [56]. So the Schema_links are:

32 Schema_links : [head .*, head.age ,56]

33

34 Table department , columns = [*, Department_ID ,Name ,Creation ,Ranking ,

Budget_in_Billions , Num_Employees]

35 Table head , columns = [*, head_ID ,name ,born_state ,age]

36 Table management , columns = [*, department_ID ,head_ID ,

temporary_acting]

37 Foreign_keys = [management . head_ID = head.head_ID , management .

department_ID = department . Department_ID]

38 Q: "what are the distinct creation years of the departments managed

by a secretary born in state ’Alabama ’?"

39 A: Let ’s think step by step. In the question "what are the distinct

creation years of the departments managed by a secretary born in

state ’Alabama ’?", we are asked:

40 " distinct creation years of the departments " so we need column = [

department . Creation]

41 " departments managed by" so we need column = [management .

department_ID]

42 "born in" so we need column = [head. born_state]

43 Based on the columns and tables , we need these Foreign_keys = [

department . Department_ID = management . department_ID , management .

head_ID = head. head_ID].

44 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [’Alabama ’]. So the Schema_links are:

45 Schema_links : [department .Creation , department . Department_ID =

management . department_ID ,head. head_ID = management .head_ID ,head.

born_state ,’Alabama ’]

46

47 Table Addresses , columns = [*, address_id ,line_1 ,line_2 ,city ,

zip_postcode , state_province_county , country]

48 Table Candidate_Assessments , columns = [*, candidate_id , qualification

, assessment_date , asessment_outcome_code]

49 Table Candidates , columns = [*, candidate_id , candidate_details]

50 Table Courses , columns = [*, course_id , course_name , course_description

, other_details]

51 Table People , columns = [*, person_id ,first_name , middle_name ,

last_name , cell_mobile_number , email_address ,login_name , password]

52 Table People_Addresses , columns = [*, person_address_id ,person_id ,

address_id ,date_from , date_to]

53 Table Student_Course_Attendance , columns = [*, student_id ,course_id ,

date_of_attendance]

54 Table Student_Course_Registrations , columns = [*, student_id ,

course_id , registration_date]

55 Table Students , columns = [*, student_id , student_details]

Appendix A. Details of the strategies used in the text-to-SQL task 87

56 Foreign_keys = [Students . student_id = People .person_id ,

People_Addresses . address_id = Addresses .address_id ,

People_Addresses . person_id = People .person_id ,

Student_Course_Registrations . course_id = Courses .course_id ,

Student_Course_Registrations . student_id = Students .student_id ,

Student_Course_Attendance . student_id =

Student_Course_Registrations .student_id ,

Student_Course_Attendance . course_id =

Student_Course_Registrations .course_id , Candidates . candidate_id =

People .person_id , Candidate_Assessments . candidate_id =

Candidates . candidate_id]

57 Q: "List the id of students who never attends courses ?"

58 A: Let ’s think step by step. In the question "List the id of

students who never attends courses ?", we are asked:

59 "id of students " so we need column = [Students . student_id]

60 "never attends courses " so we need column = [

Student_Course_Attendance . student_id]

61 Based on the columns and tables , we need these Foreign_keys = [

Students . student_id = Student_Course_Attendance . student_id].

62 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = []. So the Schema_links are:

63 Schema_links : [Students . student_id = Student_Course_Attendance .

student_id]

64

65 Table Country , columns = [*,id ,name]

66 Table League , columns = [*,id ,country_id ,name]

67 Table Player , columns = [*,id , player_api_id , player_name ,

player_fifa_api_id ,birthday ,height , weight]

68 Table Player_Attributes , columns = [*,id , player_fifa_api_id ,

player_api_id ,date , overall_rating ,potential , preferred_foot ,

attacking_work_rate , defensive_work_rate ,crossing ,finishing ,

heading_accuracy , short_passing ,volleys ,dribbling ,curve ,

free_kick_accuracy , long_passing , ball_control , acceleration ,

sprint_speed ,agility ,reactions ,balance ,shot_power ,jumping ,

stamina ,strength ,long_shots ,aggression , interceptions , positioning

,vision ,penalties ,marking , standing_tackle , sliding_tackle ,

gk_diving , gk_handling ,gk_kicking , gk_positioning , gk_reflexes]

69 Table Team , columns = [*,id , team_api_id , team_fifa_api_id ,

team_long_name , team_short_name]

70 Table Team_Attributes , columns = [*,id , team_fifa_api_id , team_api_id ,

date , buildUpPlaySpeed , buildUpPlaySpeedClass , buildUpPlayDribbling

, buildUpPlayDribblingClass , buildUpPlayPassing ,

buildUpPlayPassingClass , buildUpPlayPositioningClass ,

chanceCreationPassing , chanceCreationPassingClass ,

chanceCreationCrossing , chanceCreationCrossingClass ,

chanceCreationShooting , chanceCreationShootingClass ,

chanceCreationPositioningClass , defencePressure ,

defencePressureClass , defenceAggression , defenceAggressionClass ,

defenceTeamWidth , defenceTeamWidthClass , defenceDefenderLineClass]

71 Table sqlite_sequence , columns = [*,name ,seq]

Appendix A. Details of the strategies used in the text-to-SQL task 88

72 Foreign_keys = [Player_Attributes . player_api_id = Player .

player_api_id , Player_Attributes . player_fifa_api_id = Player .

player_fifa_api_id , League . country_id = Country .id ,

Team_Attributes . team_api_id = Team. team_api_id , Team_Attributes .

team_fifa_api_id = Team. team_fifa_api_id]

73 Q: "List the names of all left - footed players who have overall

rating between 85 and 90."

74 A: Let ’s think step by step. In the question "List the names of all

left - footed players who have overall rating between 85 and 90." ,

we are asked:

75 "names of all left - footed players " so we need column = [Player .

player_name , Player_Attributes . preferred_foot]

76 " players who have overall rating " so we need column = [

Player_Attributes . overall_rating]

77 Based on the columns and tables , we need these Foreign_keys = [

Player_Attributes . player_api_id = Player . player_api_id].

78 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [left ,85 ,90]. So the Schema_links are:

79 Schema_links : [Player . player_name , Player_Attributes . preferred_foot ,

Player_Attributes . overall_rating , Player_Attributes . player_api_id

= Player . player_api_id ,left ,85 ,90]

80

81 Table advisor , columns = [*,s_ID ,i_ID]

82 Table classroom , columns = [*, building , room_number , capacity]

83 Table course , columns = [*, course_id ,title ,dept_name , credits]

84 Table department , columns = [*, dept_name ,building , budget]

85 Table instructor , columns = [*,ID ,name ,dept_name , salary]

86 Table prereq , columns = [*, course_id , prereq_id]

87 Table section , columns = [*, course_id ,sec_id ,semester ,year ,building ,

room_number , time_slot_id]

88 Table student , columns = [*,ID ,name ,dept_name , tot_cred]

89 Table takes , columns = [*,ID ,course_id ,sec_id ,semester ,year ,grade]

90 Table teaches , columns = [*,ID ,course_id ,sec_id ,semester ,year]

91 Table time_slot , columns = [*, time_slot_id ,day ,start_hr ,start_min ,

end_hr , end_min]

92 Foreign_keys = [course . dept_name = department .dept_name , instructor .

dept_name = department .dept_name , section . building = classroom .

building , section . room_number = classroom . room_number , section .

course_id = course .course_id , teaches .ID = instructor .ID , teaches .

course_id = section .course_id , teaches . sec_id = section .sec_id ,

teaches . semester = section .semester , teaches .year = section .year ,

student . dept_name = department .dept_name ,takes.ID = student .ID ,

takes. course_id = section .course_id ,takes. sec_id = section .

sec_id ,takes. semester = section .semester ,takes.year = section .

year , advisor .s_ID = student .ID , advisor .i_ID = instructor .ID ,

prereq . prereq_id = course .course_id , prereq . course_id = course .

course_id]

93 Q: "Give the title of the course offered in Chandler during the Fall

of 2010."

94 A: Let ’s think step by step. In the question "Give the title of the

course offered in Chandler during the Fall of 2010." , we are

Appendix A. Details of the strategies used in the text-to-SQL task 89

asked:

95 "title of the course " so we need column = [course .title]

96 " course offered in Chandler " so we need column = [SECTION . building]

97 " during the Fall" so we need column = [SECTION . semester]

98 "of 2010" so we need column = [SECTION .year]

99 Based on the columns and tables , we need these Foreign_keys = [

course . course_id = SECTION . course_id].

100 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [Chandler ,Fall ,2010]. So the Schema_links are:

101 Schema_links : [course .title , course . course_id = SECTION .course_id ,

SECTION .building , SECTION .year , SECTION .semester ,Chandler ,Fall

,2010]

102

103 Table city , columns = [*, City_ID , Official_Name ,Status ,Area_km_2 ,

Population , Census_Ranking]

104 Table competition_record , columns = [*, Competition_ID ,Farm_ID ,Rank]

105 Table farm , columns = [*, Farm_ID ,Year , Total_Horses , Working_Horses ,

Total_Cattle ,Oxen ,Bulls ,Cows ,Pigs , Sheep_and_Goats]

106 Table farm_competition , columns = [*, Competition_ID ,Year ,Theme ,

Host_city_ID ,Hosts]

107 Foreign_keys = [farm_competition . Host_city_ID = city.City_ID ,

competition_record . Farm_ID = farm.Farm_ID , competition_record .

Competition_ID = farm_competition . Competition_ID]

108 Q: "Show the status of the city that has hosted the greatest number

of competitions ."

109 A: Let ’s think step by step. In the question "Show the status of the

city that has hosted the greatest number of competitions .", we

are asked:

110 "the status of the city" so we need column = [city. Status]

111 " greatest number of competitions " so we need column = [

farm_competition .*]

112 Based on the columns and tables , we need these Foreign_keys = [

farm_competition . Host_city_ID = city. City_ID].

113 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = []. So the Schema_links are:

114 Schema_links : [city.Status , farm_competition . Host_city_ID = city.

City_ID , farm_competition .*]

115

116 Table advisor , columns = [*,s_ID ,i_ID]

117 Table classroom , columns = [*, building , room_number , capacity]

118 Table course , columns = [*, course_id ,title ,dept_name , credits]

119 Table department , columns = [*, dept_name ,building , budget]

120 Table instructor , columns = [*,ID ,name ,dept_name , salary]

121 Table prereq , columns = [*, course_id , prereq_id]

122 Table section , columns = [*, course_id ,sec_id ,semester ,year ,building ,

room_number , time_slot_id]

123 Table student , columns = [*,ID ,name ,dept_name , tot_cred]

124 Table takes , columns = [*,ID ,course_id ,sec_id ,semester ,year ,grade]

125 Table teaches , columns = [*,ID ,course_id ,sec_id ,semester ,year]

126 Table time_slot , columns = [*, time_slot_id ,day ,start_hr ,start_min ,

end_hr , end_min]

Appendix A. Details of the strategies used in the text-to-SQL task 90

127 Foreign_keys = [course . dept_name = department .dept_name , instructor .

dept_name = department .dept_name , section . building = classroom .

building , section . room_number = classroom . room_number , section .

course_id = course .course_id , teaches .ID = instructor .ID , teaches .

course_id = section .course_id , teaches . sec_id = section .sec_id ,

teaches . semester = section .semester , teaches .year = section .year ,

student . dept_name = department .dept_name ,takes.ID = student .ID ,

takes. course_id = section .course_id ,takes. sec_id = section .

sec_id ,takes. semester = section .semester ,takes.year = section .

year , advisor .s_ID = student .ID , advisor .i_ID = instructor .ID ,

prereq . prereq_id = course .course_id , prereq . course_id = course .

course_id]

128 Q: "Find the id of instructors who taught a class in Fall 2009 but

not in Spring 2010."

129 A: Let ’s think step by step. In the question "Find the id of

instructors who taught a class in Fall 2009 but not in Spring

2010." , we are asked:

130 "id of instructors who taught " so we need column = [teaches .id]

131 " taught a class in" so we need column = [teaches .semester , teaches .

year]

132 Based on the columns and tables , we need these Foreign_keys = [].

133 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [Fall ,2009 , Spring ,2010]. So the Schema_links

are:

134 Schema_links : [teaches .id , teaches .semester , teaches .year ,Fall ,2009 ,

Spring ,2010]

135

136 Table Accounts , columns = [*, account_id , customer_id ,

date_account_opened , account_name , other_account_details]

137 Table Customers , columns = [*, customer_id , customer_first_name ,

customer_middle_initial , customer_last_name ,gender , email_address ,

login_name , login_password , phone_number ,town_city ,

state_county_province , country]

138 Table Financial_Transactions , columns = [*, transaction_id ,account_id

, invoice_number , transaction_type , transaction_date ,

transaction_amount , transaction_comment , other_transaction_details

]

139 Table Invoice_Line_Items , columns = [*, order_item_id , invoice_number ,

product_id , product_title , product_quantity , product_price ,

derived_product_cost , derived_vat_payable , derived_total_cost]

140 Table Invoices , columns = [*, invoice_number ,order_id , invoice_date]

141 Table Order_Items , columns = [*, order_item_id ,order_id ,product_id ,

product_quantity , other_order_item_details]

142 Table Orders , columns = [*, order_id , customer_id , date_order_placed ,

order_details]

143 Table Product_Categories , columns = [*, production_type_code ,

product_type_description , vat_rating]

144 Table Products , columns = [*, product_id , parent_product_id ,

production_type_code ,unit_price , product_name , product_color ,

product_size]

Appendix A. Details of the strategies used in the text-to-SQL task 91

145 Foreign_keys = [Orders . customer_id = Customers . customer_id , Invoices .

order_id = Orders .order_id , Accounts . customer_id = Customers .

customer_id , Products . production_type_code = Product_Categories .

production_type_code , Financial_Transactions . account_id =

Accounts .account_id , Financial_Transactions . invoice_number =

Invoices . invoice_number , Order_Items . order_id = Orders .order_id ,

Order_Items . product_id = Products .product_id , Invoice_Line_Items .

product_id = Products .product_id , Invoice_Line_Items .

invoice_number = Invoices . invoice_number , Invoice_Line_Items .

order_item_id = Order_Items . order_item_id]

146 Q: "Show the id , the date of account opened , the account name , and

other account detail for all accounts ."

147 A: Let ’s think step by step. In the question "Show the id , the date

of account opened , the account name , and other account detail

for all accounts .", we are asked:

148 "the id , the date of account opened , the account name , and other

account detail for all accounts ." so we need column = [Accounts .

account_id , Accounts . account_name , Accounts . other_account_details ,

Accounts . date_account_opened]

149 Based on the columns and tables , we need these Foreign_keys = [].

150 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = []. So the Schema_links are:

151 Schema_links : [Accounts .account_id , Accounts . account_name , Accounts .

other_account_details , Accounts . date_account_opened]

152

153 Table city , columns = [*, City_ID , Official_Name ,Status ,Area_km_2 ,

Population , Census_Ranking]

154 Table competition_record , columns = [*, Competition_ID ,Farm_ID ,Rank]

155 Table farm , columns = [*, Farm_ID ,Year , Total_Horses , Working_Horses ,

Total_Cattle ,Oxen ,Bulls ,Cows ,Pigs , Sheep_and_Goats]

156 Table farm_competition , columns = [*, Competition_ID ,Year ,Theme ,

Host_city_ID ,Hosts]

157 Foreign_keys = [farm_competition . Host_city_ID = city.City_ID ,

competition_record . Farm_ID = farm.Farm_ID , competition_record .

Competition_ID = farm_competition . Competition_ID]

158 Q: "Show the status shared by cities with population bigger than

1500 and smaller than 500."

159 A: Let ’s think step by step. In the question "Show the status shared

by cities with population bigger than 1500 and smaller than

500." , we are asked:

160 "the status shared by cities " so we need column = [city. Status]

161 " cities with population " so we need column = [city. Population]

162 Based on the columns and tables , we need these Foreign_keys = [].

163 Based on the tables , columns , and Foreign_keys , The set of possible

cell values are = [1500 ,500]. So the Schema_links are:

164 Schema_links : [city.Status ,city.Population ,1500 ,500]

165

166 { schema }

167 Foreign_keys = { foreign_keys }

168 Q: { question }

169 A: Let ’s think step by step.

Appendix A. Details of the strategies used in the text-to-SQL task 92

A.3.2
Classification & decomposition

Listing 12: Classification & decomposition prompt

1 # For the given question , classify it as EASY , NON -NESTED , or NESTED

based on nested queries and JOIN.

2

3 if need nested queries : predict NESTED

4 elif need JOIN and don ’t need nested queries : predict NON - NESTED

5 elif don ’t need JOIN and don ’t need nested queries : predict EASY

6

7 { schema }

8 Foreign_keys = { foreign_keys }

9

10 Q: "Find the buildings which have rooms with capacity more than 50."

11 schema_links : [classroom .building , classroom .capacity ,50]

12 A: Let ’s think step by step. The SQL query for the question "Find

the buildings which have rooms with capacity more than 50."

needs these

13 tables = [classroom], so we don ’t need JOIN.

14 Plus , it doesn ’t require nested queries with (INTERSECT , UNION ,

EXCEPT , IN , NOT IN), and we need the answer to the questions =

[""].

15 So , we don ’t need JOIN and don ’t need nested queries , then the the

SQL query can be classified as "EASY ".

16 Label: "EASY"

17

18 Q: "What are the names of all instructors who advise students in the

math depart sorted by total credits of the student ."

19 schema_links : [advisor .i_id = instructor .id , advisor .s_id = student .

id , instructor .name , student .dept_name , student .tot_cred ,math]

20 A: Let ’s think step by step. The SQL query for the question "What

are the names of all instructors who advise students in the math

depart sorted by total credits of the student ." needs these

tables = [advisor ,instructor , student], so we need JOIN.

21 Plus , it doesn ’t need nested queries with (INTERSECT , UNION , EXCEPT ,

IN , NOT IN), and we need the answer to the questions = [""].

22 So , we need JOIN and don ’t need nested queries , then the the SQL

query can be classified as "NON - NESTED ".

23 Label: "NON - NESTED "

24

25 Q: "Find the room number of the rooms which can sit 50 to 100

students and their buildings ."

26 schema_links : [classroom .building , classroom . room_number , classroom .

capacity ,50 ,100]

27 A: Let ’s think step by step. The SQL query for the question "Find

the room number of the rooms which can sit 50 to 100 students

and their buildings ." needs these tables = [classroom], so we

don ’t need JOIN.

Appendix A. Details of the strategies used in the text-to-SQL task 93

28 Plus , it doesn ’t require nested queries with (INTERSECT , UNION ,

EXCEPT , IN , NOT IN), and we need the answer to the questions =

[""].

29 So , we don ’t need JOIN and don ’t need nested queries , then the the

SQL query can be classified as "EASY ".

30 Label: "EASY"

31

32 Q: "How many courses that do not have prerequisite ?"

33 schema_links : [course .*, course . course_id = prereq . course_id]

34 A: Let ’s think step by step. The SQL query for the question "How

many courses that do not have prerequisite ?" needs these tables

= [course , prereq], so we need JOIN.

35 Plus , it requires nested queries with (INTERSECT , UNION , EXCEPT , IN ,

NOT IN), and we need the answer to the questions = [" Which

courses have prerequisite ?"].

36 So , we need JOIN and need nested queries , then the the SQL query can

be classified as " NESTED ".

37 Label: " NESTED "

38

39 Q: "Find the title of course that is provided by both Statistics and

Psychology departments ."

40 schema_links : [course .title , course .dept_name ,Statistics , Psychology]

41 A: Let ’s think step by step. The SQL query for the question "Find

the title of course that is provided by both Statistics and

Psychology departments ." needs these tables = [course], so we

don ’t need JOIN.

42 Plus , it requires nested queries with (INTERSECT , UNION , EXCEPT , IN ,

NOT IN), and we need the answer to the questions = [" Find the

titles of courses that is provided by Psychology departments "].

43 So , we don ’t need JOIN and need nested queries , then the the SQL

query can be classified as " NESTED ".

44 Label: " NESTED "

45

46 Q: "Find the id of instructors who taught a class in Fall 2009 but

not in Spring 2010."

47 schema_links : [teaches .id , teaches .semester , teaches .year ,Fall ,2009 ,

Spring ,2010]

48 A: Let ’s think step by step. The SQL query for the question "Find

the id of instructors who taught a class in Fall 2009 but not in

Spring 2010." needs these tables = [teaches], so we don ’t need

JOIN.

49 Plus , it requires nested queries with (INTERSECT , UNION , EXCEPT , IN ,

NOT IN), and we need the answer to the questions = [" Find the

id of instructors who taught a class in Spring 2010"].

50 So , we don ’t need JOIN and need nested queries , then the the SQL

query can be classified as " NESTED ".

51 Label: " NESTED "

52

53 Q: "Find the name of the department that offers the highest total

credits ?"

54 schema_links : [course .dept_name , course . credits]

Appendix A. Details of the strategies used in the text-to-SQL task 94

55 A: Let ’s think step by step. The SQL query for the question "Find

the name of the department that offers the highest total credits

?." needs these tables = [course], so we don ’t need JOIN.

56 Plus , it doesn ’t require nested queries with (INTERSECT , UNION ,

EXCEPT , IN , NOT IN), and we need the answer to the questions =

[""].

57 So , we don ’t need JOIN and don ’t need nested queries , then the the

SQL query can be classified as "EASY ".

58 Label: "EASY"

59

60 Q: "What is the name of the instructor who advises the student with

the greatest number of total credits ?"

61 schema_links : [advisor .i_id = instructor .id , advisor .s_id = student .

id , instructor .name , student . tot_cred]

62 A: Let ’s think step by step. The SQL query for the question "What is

the name of the instructor who advises the student with the

greatest number of total credits ?" needs these tables = [advisor

,instructor , student], so we need JOIN.

63 Plus , it doesn ’t need nested queries with (INTERSECT , UNION , EXCEPT ,

IN , NOT IN), and we need the answer to the questions = [""].

64 So , we need JOIN and don ’t need nested queries , then the the SQL

query can be classified as "NON - NESTED ".

65 Label: "NON - NESTED "

66

67 Q: "Find the total number of students and total number of

instructors for each department ."

68 schema_links = [department . dept_name = instructor .dept_name , student .

id , student . dept_name = department .dept_name , instructor .id]

69 A: Let ’s think step by step. The SQL query for the question "Find

the total number of students and total number of instructors for

each department ." needs these tables = [department ,instructor ,

student], so we need JOIN.

70 Plus , it doesn ’t need nested queries with (INTERSECT , UNION , EXCEPT ,

IN , NOT IN), and we need the answer to the questions = [""].

71 So , we need JOIN and don ’t need nested queries , then the the SQL

query can be classified as "NON - NESTED ".

72 Label: "NON - NESTED "

73

74 Q: "Give the name and building of the departments with greater than

average budget ."

75 schema_links : [department .budget , department .dept_name , department .

building]

76 A: Let ’s think step by step. The SQL query for the question "Give

the name and building of the departments with greater than

average budget ." needs these tables = [department], so we don ’t

need JOIN.

77 Plus , it requires nested queries with (INTERSECT , UNION , EXCEPT , IN ,

NOT IN), and we need the answer to the questions = [" What is

the average budget of the departments "].

78 So , we don ’t need JOIN and need nested queries , then the the SQL

query can be classified as " NESTED ".

Appendix A. Details of the strategies used in the text-to-SQL task 95

79 Label: " NESTED "

80

81 Q: { question }

82 schema_links : { schema_links }

83 A: Let ’s think step by step.

A.3.3
SQL Generation

Listing 13: Easy prompt

1 # Use the the schema links to generate the SQL queries for each of

the questions .

2

3 { schema }

4

5 Q: "Find the buildings which have rooms with capacity more than 50."

6 Schema_links : [classroom .building , classroom .capacity ,50]

7 SQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50

8

9 Q: "Find the room number of the rooms which can sit 50 to 100

students and their buildings ."

10 Schema_links : [classroom .building , classroom . room_number , classroom .

capacity ,50 ,100]

11 SQL: SELECT building , room_number FROM classroom WHERE capacity

BETWEEN 50 AND 100

12

13 Q: "Give the name of the student in the History department with the

most credits ."

14 Schema_links : [student .name , student .dept_name , student .tot_cred ,

History]

15 SQL: SELECT name FROM student WHERE dept_name = ’History ’ ORDER BY

tot_cred DESC FETCH FIRST 1 ROWS ONLY

16

17 Q: "Find the total budgets of the Marketing or Finance department ."

18 Schema_links : [department .budget , department .dept_name ,Marketing ,

Finance]

19 SQL: SELECT sum(budget) FROM department WHERE dept_name = ’

Marketing ’ OR dept_name = ’Finance ’

20

21 Q: "Find the department name of the instructor whose name contains ’

Soisalon ’."

22 Schema_links : [instructor .dept_name , instructor .name , Soisalon]

23 SQL: SELECT dept_name FROM instructor WHERE name LIKE ’% Soisalon %’

24

25 Q: "What is the name of the department with the most credits ?"

26 Schema_links : [course .dept_name , course . credits]

27 SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(

credits) DESC FETCH FIRST 1 ROWS ONLY

28

Appendix A. Details of the strategies used in the text-to-SQL task 96

29 Q: "How many instructors teach a course in the Spring of 2010?"

30 Schema_links : [teaches .ID , teaches .semester , teaches .YEAR ,Spring ,2010]

31 SQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = ’

Spring ’ AND YEAR = 2010

32

33 Q: "Find the name of the students and their department names sorted

by their total credits in ascending order ."

34 Schema_links : [student .name , student .dept_name , student . tot_cred]

35 SQL: SELECT name , dept_name FROM student ORDER BY tot_cred

36

37 Q: "Find the year which offers the largest number of courses ."

38 Schema_links : [SECTION .YEAR , SECTION .*]

39 SQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count (*) DESC

FETCH FIRST 1 ROWS ONLY

40

41 Q: "What are the names and average salaries for departments with

average salary higher than 42000?"

42 Schema_links : [instructor .dept_name , instructor .salary ,42000]

43 SQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY

dept_name HAVING AVG (salary) > 42000

44

45 Q: "How many rooms in each building have a capacity of over 50?"

46 Schema_links : [classroom .*, classroom .building , classroom .capacity ,50]

47 SQL: SELECT count (*) , building FROM classroom WHERE capacity >

50 GROUP BY building

48

49 Q: "Find the names of the top 3 departments that provide the largest

amount of courses ?"

50 Schema_links : [course .dept_name , course .*]

51 SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count

(*) DESC FETCH FIRST 3 ROWS ONLY

52

53 Q: "Find the maximum and average capacity among rooms in each

building ."

54 Schema_links : [classroom .building , classroom . capacity]

55 SQL: SELECT max(capacity) , avg(capacity) , building FROM

classroom GROUP BY building

56

57 Q: "Find the title of the course that is offered by more than one

department ."

58 Schema_links : [course .title]

59 SQL: SELECT title FROM course GROUP BY title HAVING count (*) > 1

60

61 Q: { question }

62 Schema_links : { schema_links }

Listing 14: Non-Nested prompt

1 # Use the the schema links and Intermediate_representation to

generate the SQL queries for each of the questions .

2

Appendix A. Details of the strategies used in the text-to-SQL task 97

3 { schema }

4 Foreign_keys = { foreign_keys }

5

6 Q: "Find the total budgets of the Marketing or Finance department ."

7 Schema_links : [department .budget , department .dept_name ,Marketing ,

Finance]

8 A: L e t â s think step by step. For creating the SQL for the given

question , we need to join these tables = []. First , create an

intermediate representation , then use it to construct the SQL

query.

9 Intermediate_representation : select sum(department . budget) from

department where department . dept_name = \" Marketing \" or

department . dept_name = \" Finance \"

10 SQL: SELECT sum(budget) FROM department WHERE dept_name = ’

Marketing ’ OR dept_name = ’Finance ’

11

12 Q: "Find the name and building of the department with the highest

budget ."

13 Schema_links : [department .budget , department .dept_name , department .

building]

14 A: L e t â s think step by step. For creating the SQL for the given

question , we need to join these tables = []. First , create an

intermediate representation , then use it to construct the SQL

query.

15 Intermediate_representation : select department . dept_name ,

department . building from department order by department . budget

desc limit 1

16 SQL: SELECT dept_name , building FROM department ORDER BY budget

DESC FETCH FIRST 1 ROWS ONLY

17

18 Q: "What is the name and building of the departments whose budget is

more than the average budget ?"

19 Schema_links : [department .budget , department .dept_name , department .

building]

20 A: L e t â s think step by step. For creating the SQL for the given

question , we need to join these tables = []. First , create an

intermediate representation , then use it to construct the SQL

query.

21 Intermediate_representation : select department . dept_name ,

department . building from department where @.@ > avg (

department . budget)

22 SQL: SELECT dept_name , building FROM department WHERE budget > (

SELECT avg(budget) FROM department)

23

24 Q: "Find the total number of students and total number of

instructors for each department ."

25 Schema_links : [department . dept_name = student .dept_name , student .id ,

department . dept_name = instructor .dept_name , instructor .id]

26 A: L e t â s think step by step. For creating the SQL for the given

question , we need to join these tables = [department ,student ,

instructor]. First , create an intermediate representation , then

Appendix A. Details of the strategies used in the text-to-SQL task 98

use it to construct the SQL query.

27 Intermediate_representation : " select count(distinct student .ID) ,

count(distinct instructor .ID) , department . dept_name from

department group by instructor . dept_name

28 SQL: SELECT count(DISTINCT T2.id) , count(DISTINCT T3.id) , T3.

dept_name FROM department T1 JOIN student T2 ON T1. dept_name =

T2. dept_name JOIN instructor AS T3 ON T1. dept_name = T3.

dept_name GROUP BY T3. dept_name

29

30 Q: "Find the title of courses that have two prerequisites ?"

31 Schema_links : [course .title , course . course_id = prereq . course_id]

32 A: L e t â s think step by step. For creating the SQL for the given

question , we need to join these tables = [course , prereq]. First ,

create an intermediate representation , then use it to construct

the SQL query.

33 Intermediate_representation : select course .title from course where

count (prereq .*) = 2 group by prereq . course_id

34 SQL: SELECT T1.title FROM course T1 JOIN prereq T2 ON T1. course_id

= T2. course_id GROUP BY T2. course_id HAVING count (*) = 2

35

36 Q: "Find the name of students who took any class in the years of

2009 and 2010."

37 Schema_links : [student .name , student .id = takes.id ,takes.YEAR

,2009 ,2010]

38 A: Let ’s think step by step. For creating the SQL for the given

question , we need to join these tables = [student ,takes]. First ,

create an intermediate representation , then use it to construct

the SQL query.

39 Intermediate_representation : select distinct student .name from

student where takes.year = 2009 or takes.year = 2010

40 SQL: SELECT DISTINCT T1.name FROM student T1 JOIN takes T2 ON T1.id

= T2.id WHERE T2.YEAR = 2009 OR T2.YEAR = 2010

41

42 Q: "list in alphabetic order all course names and their instructors ’

names in year 2008."

43 Schema_links : [course .title , course . course_id = teaches .course_id ,

teaches .id = instructor .id , instructor .name , teaches .year ,2008]

44 A: Let ’s think step by step. For creating the SQL for the given

question , we need to join these tables = [course ,teaches ,

instructor]. First , create an intermediate representation , then

use it to construct the SQL query.

45 Intermediate_representation : select course .title , instructor .name

from course where teaches .year = 2008 order by course .title

asc

46 SQL: SELECT T1.title , T3.name FROM course T1 JOIN teaches T2 ON T1

. course_id = T2. course_id JOIN instructor AS T3 ON T2.id =

T3.id WHERE T2.YEAR = 2008 ORDER BY T1.title

47

48 Q: { question }

49 Schema_links : { schema_links }

50 A: Let ’s think step by step.

Appendix A. Details of the strategies used in the text-to-SQL task 99

Listing 15: Nested prompt

1 # Use the the schema links and Intermediate_representation to

generate the SQL queries for each of the questions .

2

3 { schema }

4 Foreign_keys = { foreign_keys }

5

6 Q: "Find the title of courses that have two prerequisites ?"

7 Schema_links : [course .title , course . course_id = prereq . course_id]

8 A: Let ’s think step by step. "Find the title of courses that have

two prerequisites ?" can be solved by knowing the answer to the

following sub - question "What are the titles for courses with two

prerequisites ?".

9 The SQL query for the sub - question "What are the titles for courses

with two prerequisites ?" is SELECT T1.title FROM course T1 JOIN

prereq T2 ON T1. course_id = T2. course_id GROUP BY T2. course_id

HAVING count (*) = 2

10 So , the answer to the question "Find the title of courses that have

two prerequisites ?" is =

11 Intermediate_representation : select course .title from course where

count (prereq .*) = 2 group by prereq . course_id

12 SQL: SELECT T1.title FROM course T1 JOIN prereq T2 ON T1. course_id

= T2. course_id GROUP BY T2. course_id HAVING count (*) = 2

13

14 Q: "Find the name and building of the department with the highest

budget ."

15 Schema_links : [department .dept_name , department .building , department .

budget]

16 A: Let ’s think step by step. "Find the name and building of the

department with the highest budget ." can be solved by knowing

the answer to the following sub - question "What is the department

name and corresponding building for the department with the

greatest budget ?".

17 The SQL query for the sub - question "What is the department name and

corresponding building for the department with the greatest

budget ?" is SELECT dept_name , building FROM department ORDER

BY budget DESC FETCH FIRST 1 ROWS ONLY

18 So , the answer to the question "Find the name and building of the

department with the highest budget ." is =

19 Intermediate_representation : select department . dept_name ,

department . building from department order by department . budget

desc limit 1

20 SQL: SELECT dept_name , building FROM department ORDER BY budget

DESC FETCH FIRST 1 ROWS ONLY

21

22 Q: "Find the title , credit , and department name of courses that have

more than one prerequisites ?"

23 Schema_links : [course .title , course .credits , course .dept_name , course .

course_id = prereq . course_id]

24 A: Let ’s think step by step. "Find the title , credit , and department

name of courses that have more than one prerequisites ?" can be

Appendix A. Details of the strategies used in the text-to-SQL task 100

solved by knowing the answer to the following sub - question "What

is the title , credit value , and department name for courses

with more than one prerequisite ?".

25 The SQL query for the sub - question "What is the title , credit value ,

and department name for courses with more than one prerequisite

?" is SELECT T1.title , T1. credits , T1. dept_name FROM course

T1 JOIN prereq T2 ON T1. course_id = T2. course_id GROUP BY T2.

course_id HAVING count (*) > 1

26 So , the answer to the question "Find the name and building of the

department with the highest budget ." is =

27 Intermediate_representation : select course .title , course . credits ,

course . dept_name from course where count (prereq .*) > 1

group by prereq . course_id

28 SQL: SELECT T1.title , T1. credits , T1. dept_name FROM course T1

JOIN prereq T2 ON T1. course_id = T2. course_id GROUP BY T2.

course_id HAVING count (*) > 1

29

30 Q: "Give the name and building of the departments with greater than

average budget ."

31 Schema_links : [department .dept_name , department .building , department .

budget]

32 A: Let ’s think step by step. "Give the name and building of the

departments with greater than average budget ." can be solved by

knowing the answer to the following sub - question "What is the

average budget of departments ?".

33 The SQL query for the sub - question "What is the average budget of

departments ?" is SELECT avg(budget) FROM department

34 So , the answer to the question "Give the name and building of the

departments with greater than average budget ." is =

35 Intermediate_representation : select department . dept_name ,

department . building from department where @.@ > avg (

department . budget)

36 SQL: SELECT dept_name , building FROM department WHERE budget > (

SELECT avg(budget) FROM department)

37

38 Q: "Find the id of instructors who taught a class in Fall 2009 but

not in Spring 2010."

39 Schema_links : [teaches .id , teaches .semester , teaches .YEAR ,Fall ,2009 ,

Spring ,2010]

40 A: Let ’s think step by step. "Find the id of instructors who taught

a class in Fall 2009 but not in Spring 2010." can be solved by

knowing the answer to the following sub - question "Find the id of

instructors who taught a class in Spring 2010".

41 The SQL query for the sub - question "Find the id of instructors who

taught a class in Spring 2010" is SELECT id FROM teaches WHERE

semester = ’Spring ’ AND YEAR = 2010

42 So , the answer to the question "Find the id of instructors who

taught a class in Fall 2009 but not in Spring 2010." is =

43 Intermediate_representation : select teaches .ID from teaches where

teaches . semester = \" Fall \" and teaches .year = 2009 and

teaches . semester != \" Spring \" and teaches .year = 2010

Appendix A. Details of the strategies used in the text-to-SQL task 101

44 SQL: SELECT id FROM teaches WHERE semester = ’Fall ’ AND YEAR =

2009 EXCEPT SELECT id FROM teaches WHERE semester = ’Spring ’

AND YEAR = 2010

45

46 Q: "Find the name of the courses that do not have any prerequisite ?"

47 Schema_links : [course .title , course . course_id]

48 A: Let ’s think step by step. "Find the name of the courses that do

not have any prerequisite ?" can be solved by knowing the answer

to the following sub - question "What are the courses that have

any prerequisite ?".

49 The SQL query for the sub - question "What are the courses that have

any prerequisite ?" is SELECT course_id FROM prereq

50 So , the answer to the question "Find the name of the courses that do

not have any prerequisite ?" is =

51 Intermediate_representation : select course .title from course where

@.@ not in prereq . course_id

52 SQL: SELECT title FROM course WHERE course_id NOT IN (SELECT

course_id FROM prereq)

53

54 Q: "Find the salaries of all distinct instructors that are less than

the largest salary ."

55 Schema_links : [instructor . salary]

56 A: Let ’s think step by step. "Find the salaries of all distinct

instructors that are less than the largest salary ." can be

solved by knowing the answer to the following sub - question "What

is the largest salary of instructors ".

57 The SQL query for the sub - question "What is the largest salary of

instructors " is SELECT max(salary) FROM instructor

58 So , the answer to the question "Find the salaries of all distinct

instructors that are less than the largest salary ." is =

59 Intermediate_representation : select distinct instructor . salary from

instructor where @.@ < max (instructor . salary)

60 SQL: SELECT DISTINCT salary FROM instructor WHERE salary < (SELECT

max(salary) FROM instructor)

61

62 Q: "Find the names of students who have taken any course in the fall

semester of year 2003."

63 Schema_links : [student .id , student .name ,takes.id ,takes.semester ,fall

,2003]

64 A: Let ’s think step by step. "Find the names of students who have

taken any course in the fall semester of year 2003." can be

solved by knowing the answer to the following sub - question "Find

the students who have taken any course in the fall semester of

year 2003.".

65 The SQL query for the sub - question "Find the students who have taken

any course in the fall semester of year 2003." is SELECT id

FROM takes WHERE semester = ’Fall ’ AND YEAR = 2003

66 So , the answer to the question "Find the names of students who have

taken any course in the fall semester of year 2003." is =

67 Intermediate_representation : select student .name from student where

takes. semester = \" Fall \" and takes.year = 2003

Appendix A. Details of the strategies used in the text-to-SQL task 102

68 SQL: SELECT name FROM student WHERE id IN (SELECT id FROM takes

WHERE semester = ’Fall ’ AND YEAR = 2003)

69

70 Q: "Find the minimum salary for the departments whose average salary

is above the average payment of all instructors ."

71 Schema_links : [instructor .salary , instructor . dept_name]

72 A: Let ’s think step by step. "Find the minimum salary for the

departments whose average salary is above the average payment of

all instructors ." can be solved by knowing the answer to the

following sub - question "What is the average payment of all

instructors .".

73 The SQL query for the sub - question "What is the average payment of

all instructors ." is SELECT avg(salary) FROM instructor

74 So , the answer to the question "Find the minimum salary for the

departments whose average salary is above the average payment of

all instructors ." is =

75 Intermediate_representation : select min(instructor . salary) ,

instructor . dept_name from instructor where avg (instructor .

salary) > avg (instructor . salary) group by instructor .

dept_name

76 SQL: SELECT min(salary) , dept_name FROM instructor GROUP BY

dept_name HAVING avg(salary) > (SELECT avg(salary) FROM

instructor)

77

78 Q: "What is the course title of the prerequisite of course Mobile

Computing ?"

79 Schema_links : [course .title , course . course_id = prereq .course_id ,

prereq .prereq_id , course .title , Mobile Computing]

80 A: Let ’s think step by step. "What is the course title of the

prerequisite of course Mobile Computing ?" can be solved by

knowing the answer to the following sub - question "What are the

ids of the prerequisite of course Mobile Computing ?".

81 The SQL query for the sub - question "What are the ids of the

prerequisite of course Mobile Computing ?" is SSELECT T1.

prereq_id FROM prereq T1 JOIN course T2 ON T1. course_id = T2.

course_id WHERE T2.title = ’Mobile Computing ’

82 So , the answer to the question "What is the course title of the

prerequisite of course Mobile Computing ?" is =

83 Intermediate_representation : select course .title from course where

@.@ in prereq .* and course .title = \" Mobile Computing \"

84 SQL: SELECT title FROM course WHERE course_id IN (SELECT T1.

prereq_id FROM prereq T1 JOIN course T2 ON T1. course_id = T2.

course_id WHERE T2.title = ’Mobile Computing ’)

85

86 Q: "Give the title and credits for the course that is taught in the

classroom with the greatest capacity ."

87 Schema_links : [classroom .capacity , classroom . building = SECTION .

building , classroom . room_number = SECTION . room_number , course .

title , course .credits , course . course_id = SECTION . course_id]

88 A: Let ’s think step by step. "Give the title and credits for the

course that is taught in the classroom with the greatest

Appendix A. Details of the strategies used in the text-to-SQL task 103

capacity ." can be solved by knowing the answer to the following

sub - question "What is the capacity of the largest room ?".

89 The SQL query for the sub - question "What is the capacity of the

largest room ?" is (SELECT max(capacity) FROM classroom)

90 So , the answer to the question "Give the title and credits for the

course that is taught in the classroom with the greatest

capacity ." is =

91 Intermediate_representation : select course .title , course . credits

from classroom order by classroom . capacity desc limit 1"

92 SQL: SELECT T3.title , T3. credits FROM classroom T1 JOIN SECTION T2

ON T1. building = T2. building AND T1. room_number = T2.

room_number JOIN course AS T3 ON T2. course_id = T3. course_id

WHERE T1. capacity = (SELECT max(capacity) FROM classroom)

93

94 Q: { question }

95 Schema_links : { schema_links }

96 A: Let ’s think step by step. { question } can be solved by knowing the

answer to the following sub - question "{ sub_questions }".

97 The SQL query for the sub - question

A.3.4
Self-Correction

Listing 16: Self-Correction prompt

1 #### For the given question , use the provided tables , columns ,

foreign keys , and primary keys to fix the given Oracle SQL QUERY

for any issues . If there are any problems , fix them. If there

are no issues , return the Oracle SQL QUERY as is.

2 #### Use the following instructions for fixing the SQL QUERY:

3 1) Use the database values that are explicitly mentioned in the

question .

4 2) Pay attention to the columns that are used for the JOIN by using

the Foreign_keys .

5 3) Use DESC and DISTINCT when needed .

6 4) Pay attention to the columns that are used for the GROUP BY

statement .

7 5) Pay attention to the columns that are used for the SELECT

statement .

8 6) Only change the GROUP BY clause when necessary (Avoid redundant

columns in GROUP BY).

9 7) Use GROUP BY on one column only.

10 8) Use FETCH FIRST <NUMBER > ROWS ONLY when needed

11

12 { schema }

13 Foreign_keys = { foreign_keys }

14 Primary_keys = { primary_keys }

15 #### Question : { question }

16 #### { dialect } SQL QUERY

17 {query}

Appendix A. Details of the strategies used in the text-to-SQL task 104

18 #### { dialect } FIXED SQL QUERY

19 SELECT

A.4
Description of the Mondial schema in DIN and C3 prompts

Listing 17: Representation of the Mondial schema in OpenAI Demostration
Prompt of the C3 strategy

1 # continent (name , area)

2 # country (name , code , capital , province , area , population)

3 # desert (name , area , coordinates)

4 # island (name , islands , area , elevation , type , coordinates)

5 # lake (name , river , area , elevation , depth , height , type ,

coordinates)

6 # mountain (name , mountains , elevation , type , coordinates)

7 # river (name , river , lake , sea , length , area , source , mountains ,

sourceelevation , estuary , estuaryelevation)

8 # sea (name , area , depth)

9 # borders (country1 , country2 , length)

10 # countrylocalname (country , localname)

11 # countryothername (country , othername)

12 # countrypops (country , year , population)

13 # economy (country , gdp , agriculture , service , industry , inflation ,

unemployment)

14 # encompasses (country , continent , percentage)

15 # ethnicgroup (country , name , percentage)

16 # islandin (island , sea , lake , river)

17 # lakeonisland (lake , island)

18 # language (country , name , percentage)

19 # mergeswith (sea1 , sea2)

20 # mountainonisland (mountain , island)

21 # politics (country , independence , wasdependent , dependent ,

government)

22 # population (country , population_growth , infant_mortality)

23 # province (name , country , population , area , capital , capprov)

24 # religion (country , name , percentage)

25 # riveronisland (river , island)

26 # riverthrough (river , lake)

27 # city (name , country , province , population , latitude , longitude ,

elevation)

28 # geo_desert (desert , country , province)

29 # geo_estuary (river , country , province)

30 # geo_island (island , country , province)

31 # geo_lake (lake , country , province)

32 # geo_mountain (mountain , country , province)

33 # geo_river (river , country , province)

34 # geo_sea (sea , country , province)

35 # geo_source (river , country , province)

36 # provincelocalname (province , country , localname)

Appendix A. Details of the strategies used in the text-to-SQL task 105

37 # provinceothername (province , country , othername)

38 # provpops (province , country , year , population)

39 # airport (iatacode , name , country , city , province , island , latitude

, longitude , elevation , gmtoffset)

40 # citylocalname (city , country , province , localname)

41 # cityothername (city , country , province , othername)

42 # citypops (city , country , province , year , population)

43 # located (city , province , country , river , lake , sea)

44 # locatedon (city , province , country , island)

45 # organization (abbreviation , name , city , country , province ,

established)

46 # ismember (country , organization , type)

Listing 18: Representation of the Mondial schema in Basic Prompt of the
DIN strategy

1 Table continent , columns = [*,name ,area]

2 Table country , columns = [*,name ,code ,capital ,province ,area ,

population]

3 Table desert , columns = [*,name ,area , coordinates]

4 Table island , columns = [*,name ,islands ,area ,elevation ,type ,

coordinates]

5 Table lake , columns = [*,name ,river ,area ,elevation ,depth ,height ,type

, coordinates]

6 Table mountain , columns = [*,name ,mountains ,elevation ,type ,

coordinates]

7 Table river , columns = [*,name ,river ,lake ,sea ,length ,area ,source ,

mountains , sourceelevation ,estuary , estuaryelevation]

8 Table sea , columns = [*,name ,area ,depth]

9 Table borders , columns = [*, country1 ,country2 , length]

10 Table countrylocalname , columns = [*, country , localname]

11 Table countryothername , columns = [*, country , othername]

12 Table countrypops , columns = [*, country ,year , population]

13 Table economy , columns = [*, country ,gdp , agriculture ,service ,industry

,inflation , unemployment]

14 Table encompasses , columns = [*, country ,continent , percentage]

15 Table ethnicgroup , columns = [*, country ,name , percentage]

16 Table islandin , columns = [*, island ,sea ,lake ,river]

17 Table lakeonisland , columns = [*,lake , island]

18 Table language , columns = [*, country ,name , percentage]

19 Table mergeswith , columns = [*,sea1 ,sea2]

20 Table mountainonisland , columns = [*, mountain , island]

21 Table politics , columns = [*, country , independence , wasdependent ,

dependent , government]

22 Table population , columns = [*, country , population_growth ,

infant_mortality]

23 Table province , columns = [*,name ,country ,population ,area ,capital ,

capprov]

24 Table religion , columns = [*, country ,name , percentage]

25 Table riveronisland , columns = [*,river , island]

26 Table riverthrough , columns = [*,river ,lake]

Appendix A. Details of the strategies used in the text-to-SQL task 106

27 Table city , columns = [*,name ,country ,province ,population ,latitude ,

longitude , elevation]

28 Table geo_desert , columns = [*, desert ,country , province]

29 Table geo_estuary , columns = [*,river ,country , province]

30 Table geo_island , columns = [*, island ,country , province]

31 Table geo_lake , columns = [*,lake ,country , province]

32 Table geo_mountain , columns = [*, mountain ,country , province]

33 Table geo_river , columns = [*,river ,country , province]

34 Table geo_sea , columns = [*,sea ,country , province]

35 Table geo_source , columns = [*,river ,country , province]

36 Table provincelocalname , columns = [*, province ,country , localname]

37 Table provinceothername , columns = [*, province ,country , othername]

38 Table provpops , columns = [*, province ,country ,year , population]

39 Table airport , columns = [*, iatacode ,name ,country ,city ,province ,

island ,latitude ,longitude ,elevation , gmtoffset]

40 Table citylocalname , columns = [*,city ,country ,province , localname]

41 Table cityothername , columns = [*,city ,country ,province , othername]

42 Table citypops , columns = [*,city ,country ,province ,year , population]

43 Table located , columns = [*,city ,province ,country ,river ,lake ,sea]

44 Table locatedon , columns = [*,city ,province ,country , island]

45 Table organization , columns = [*, abbreviation ,name ,city ,country ,

province , established]

46 Table ismember , columns = [*, country , organization ,type]

	Querying Databases with Natural Language: The use of Large Language Models for Text-to-SQL tasks
	Resumo
	Table of contents
	Introduction
	Previous Work
	Text-to-SQL Dataset Benchmarks
	Text-to-SQL Evaluation Metrics
	Text-to-SQL LLM Tools

	Background and Definitions
	Natural Language Queries and Interfaces
	Large Language Models
	The OpenAI and GPT family
	LangChain

	LLM-based Text-to-SQL strategies
	LangChain-based Strategies for Text-to-SQL
	Strategies based on C3 + LangChain
	Strategies based on DIN + LangChain
	A new strategy: C3-DIN combination + LangChain

	Experiments to evaluate the effect of schema complexity
	The Mondial Benchmark
	Evaluation metrics
	Experimental setup
	Results
	Analysis of the predicted SQL queries

	Experiments to evaluate the effect of using views
	A new approach: Views
	A real-world benchmark
	Experimental setup
	Results
	Analysis of the predicted SQL queries in LLM-Friendly views

	Conclusions and future work
	Conclusions
	Future Work

	Bibliography
	Details of the strategies used in the text-to-SQL task
	LangChain-Based Strategies Prompts
	Prompts used in the C3 strategy
	Prompts used in DIN strategy
	Description of the Mondial schema in DIN and C3 prompts

