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Abstract

Oliveira Cabral, Raphael; Kalinowski, Marcos (Advisor). Investigating
the Impact of SOLID Design Principles on Machine Learn-
ing Code Understanding. Rio de Janeiro, 2023. 118p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Applying design principles has long been acknowledged as beneficial
for understanding and maintainability in traditional software projects. These
benefits may similarly hold for machine learning (ML) projects, which involve
iterative experimentation with data, models, and algorithms. However, ML
components are often developed by data scientists with diverse educational
backgrounds, potentially resulting in code that doesn’t adhere to software
development best practices. In order to better understand this phenomenon,
we investigated the impact of the SOLID design principles on ML code
understanding. To this end, we conducted a controlled experiment with three
independent trials (exact replications), overall involving 100 data scientists.
We restructured ML code from a real industrial setting that did not use
SOLID principles. Within each trial, one group was presented with the original
ML code, while the other one was presented with ML code incorporating
SOLID principles. Participants of both groups were asked to analyze the
code and fill out a questionnaire that included both open-ended and closed-
ended questions on their understanding. The study results provide statistically
significant evidence that the adoption of the SOLID design principles can
improve code understanding within the realm of ML projects. We put forward
that software engineering design principles should be spread within the data
science community and considered for enhancing the maintainability of ML
code.

Keywords
SOLID; Code Understanding; Machine Learning.



Resumo

Oliveira Cabral, Raphael; Kalinowski, Marcos. Investigando o Im-
pacto da Aplicação de Princípios de Projeto SOLID na Com-
preensão de Código de Machine Learning. Rio de Janeiro, 2023.
118p. Dissertação de Mestrado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

A aplicação de princípios de design tem sido reconhecida há muito tempo
como benéfica para a compreensão e manutenção em projetos de software
tradicionais. Esses benefícios podem ser válidos de forma semelhante para
projetos de aprendizado de máquina (ML), que envolvem experimentação
iterativa com dados, modelos e algoritmos. No entanto, os componentes de
ML são frequentemente desenvolvidos por cientistas de dados com diversas
formações educacionais, resultando potencialmente em código que não segue
as práticas recomendadas de desenvolvimento de software. Para compreender
melhor esse fenômeno, investigamos o impacto dos princípios de design SOLID
na compreensão do código de ML. Para tanto, conduzimos um experimento
controlado com três trials independentes (replicações exatas), envolvendo
no total 100 cientistas de dados. Reestruturamos o código de ML real da
indústria que não usava princípios SOLID. Dentro de cada ensaio, um grupo
foi apresentado ao código de ML original, enquanto o outro foi apresentado ao
código de ML incorporando princípios SOLID. Os participantes de ambos os
grupos foram convidados a analisar o código e preencher um questionário que
incluía perguntas abertas e fechadas sobre a sua compreensão. Os resultados
do estudo fornecem evidências estatisticamente significativas de que a adoção
dos princípios de design SOLID pode melhorar a compreensão do código
no âmbito dos projetos de ML. Propomos que os princípios de design de
engenharia de software devem ser difundidos na comunidade de ciência de
dados e considerados para melhorar a capacidade de manutenção do código de
ML.

Palavras-chave
SOLID; Compreensão de código; Aprendizado de Máquina.
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1
Introduction

1.1
Context and Motivation

Contemporary advances in machine learning (ML) and the availability
of vast amounts of data have both given rise to the feasibility and practical
relevance of incorporating ML components into software-intensive systems. ML
is inherently driven by experimentation, requiring data scientists to explore
data, algorithms, and models to find the most satisfying way of achieving their
objectives (AHO et al., 2020). Moreover, ML is also often used in the context
of proofs of concept, which allow for iterative refinement and validation before
implementation into a production environment. This may encourage quick
deliveries over clean code.

Furthermore, data scientists who are in charge of developing these ML
components may have a variety of educational backgrounds, such as economics,
mathematics, and physics, and typically lack Software Engineering (SE) foun-
dations (KIM et al., 2017). Therefore, ML code often falls short of adhering
to software development best practices, resulting in low-quality code that may
pose challenges in terms of maintenance and long-term sustainability (OORT
et al., 2021).

Despite code understanding being studied for over 40 years (WYRICH;
BOGNER; WAGNER, 2022) and the existence of evidence indicating that
maintenance requires a considerable amount of work related to understanding
code (ZELKOWITZ; SHAW; GANNON, 1979; FJELDSTAD, 1983; CORBI,
1989; KO et al., 2006; MINELLI; MOCCI; LANZA, 2015), we are not aware
of studies extending code understanding investigations to the domain of ML
code. This gap is particularly noteworthy because there seem to be several
ways in which ML code could benefit from well-established SE practices. For
instance, as data scientists often work on common ML components such as
data pre-processing, model training, evaluation, and deployment, they could
break down that code into reusable modules or functions, enhancing code reuse
and saving time and effort.



Chapter 1. Introduction 18

1.2
Goal

In response to the dynamic environment of ML development and recog-
nizing this identified research gap, in this dissertation, we investigate the im-
pact of using SOLID design principles - which are well-known object-oriented
design principles for writing clean code (MARTIN, 2009) - on ML code under-
standing capabilities of data scientists.

1.3
Method

We conducted a controlled experiment with 100 data scientists from
three different organizations that were divided into two groups. The control
group was presented with ML code from a real industrial setting that did not
incorporate SOLID principles, while the experimental group was presented
with that same ML code restructured by applying the SOLID principles.
Subsequently, the data scientists were tasked with analyzing the code and
filling out a questionnaire that included both closed-ended and open-ended
questions related to their understanding of the code and their agreement with
statements related to typical implications of applying the SOLID principles.

1.4
Summary of the Results

The results indicate that the adoption of each of the five SOLID design
principles significantly improves ML code understanding. More specifically,
the application of the principles was also perceived to lead to expected bene-
fits related to having clearly distributed and defined ML code responsibilities,
facilitating ML code extensions without substantially changing existing code,
favoring low coupling and enabling substituting ML code elements, and re-
sulting in proper segregation of interface operations, not forcing ML code to
depend upon methods that it does not use.

1.5
Dissertation Methodology Overview

To understand how code comprehension has been investigated from a
software engineering perspective, we first conducted an initial literature review
(Step 1). More specifically, in order to understand how code comprehension has
been investigated in the context of machine learning software, we performed
a systematic mapping study (Step 2), which did not retrieve any results.
The next step involved studying each of the SOLID principles (MARTIN,
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1995) (Step 3) in order to understand how they could be applied to machine
learning code to prepare the instrumentation for the experiment. Finally, to
evaluate the impact of the application of SOLID design principles on machine
learning code understanding, we conducted an experimental study comparing
the code understanding of a "traditional" ML code with a "restructured" one
using SOLID principles (Step 4). The subjects of the experiment analyzed
source code and answered questions related to their level of understanding and
their degree of agreement with statements related to the SOLID principles. An
Overview of the Methodology can be seen in Figure 1.1.

Figure 1.1: Overview of the methodology.

1.6
Text Organization

The remainder of this document is organized as follows. Chapter 2
presents the Theoretical Foundation and the Related Work. Chapter 3 de-
scribes the Experimental Study Plan. Chapter 4 presents the experimental
study results. Chapter 5 discusses the results and their major implications.
Chapter 6 discusses threats to validity. Finally, Chapter 7 presents the conclu-
sion of this dissertation.



2
Theoretical Foundation and Related Work

In this chapter, the theoretical foundation and related work that sup-
ports this dissertation are discussed. The section 2.1 introduces the SOLID
principles. The section 2.2 explores the relevance of understanding the code.
In the section 2.3, the characteristics of professionals dedicated to developing
systems based on machine learning are presented. The section 2.4 analyzes
the challenges inherent in understanding code in machine learning contexts.
Finally, the section 2.5 describes the absence of code comprehension studies
focused on machine learning.

2.1
SOLID Principles

Several object-oriented design principles have emerged, such as SOLID
(MARTIN, 2000) and GRASP (LARMAN et al., 1998), aiming at making
code more understandable, flexible, and maintainable. In this dissertation, we
focus on the five SOLID principles, which encapsulate fundamental design
concepts. This choice was also motivated by the inclusion of these principles in
popular best practices books for software developers (e.g., (MARTIN, 2009)),
their consideration in academic investigations regarding design principles in
general (e.g., (BRÄUER et al., 2018)), grey literature industrial sources (e.g.,
(UMANEO, 2023)) and data science blog posts (e.g., (SOULY, 2023; MUSIC,
2023)) anecdotally advocating for benefits of using SOLID within the ML
context, and even online courses teaching “SOLID principles for machine
learning Engineers" (e.g., (VELARDO, 2023)). Hence, while other design
principles might also be of interest, the need to scientifically dig deeper into the
use of the SOLID principles within ML is supported by multifaceted scientific
and practical motivations.

SOLID is an acronym that refers to a set of 5 object-oriented principles
intended to make object-oriented designs more understandable, flexible, and
maintainable. The Principles are the Single Responsibility Principle, Open-
Closed Principle, Liskov Substitution Principle, Interface Segregation Princi-
ple, and Dependency Inversion Principle. They will be presented in more detail
in this session.

These principles are a subset of many principles promoted by Robert
C. Martin (also known as Uncle Bob), first introduced in 2000 in his paper
Design Principles and Design Patterns (MARTIN, 2000). However, the SOLID
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acronym was introduced later, around 2004, by Michael Feathers after noting
that five object-oriented principles could fit this word.

2.1.1
SRP - Single Responsibility Principle

The first principle that we are going to discuss in this section is the Single
Responsibility Principle (SRP), and a simple translation of it is cohesion, "have
cohesive classes." Everyone has heard of cohesion, and there is still a famous
maxim that all your classes always have to be very cohesive. But the question
is: how to do it? How to create classes that are cohesive all the time? How to
avoid creating classes that have low cohesion?

To achieve this goal of high cohesion, this principle says that the class
must have a single responsibility in the software and be specialized in a single
subject, therefore having a single reason for change (KALINOWSKI et al.,
2023).

For example, let’s take a look at the following Animal class in Code 1
(all code examples of this chapter were adapted from (KALINOWSKI et al.,
2023)). The Animal class has two jobs, manage the animal’s property and
store the animal in the database. Later, if you want to save the Animal in
different storage, such as a file, you’ll need to change the save() method. In
this scenario, the responsibility of the class grows with each new type of storage
included in the requirement. To make the Animal class conform to the Single
Responsibility Principle, you’ll need to create another class that is in charge
of storing the Animal in a database, as in Code 2.

Violating this principle can result in low cohesion and high coupling.
Because classes that have many responsibilities, they can have a lot of code,
be more complex, difficult to understand, and difficult to test. They can still
have a low reusability, because the other system will rarely need everything it
does.

Another pertinent comment is that this principle fits perfectly the norm
of modular system development, proposed by Ken Thompson in the 1970s, “Do
one thing and do it well” from the Unix Philosophy (Ken Thompson, 2022).

Code 1: Code without SRP.

1 class Animal :

2 def __init__ (self ,name):

3 self. __name = name

4 def get_name (self):

5 return self. __name

6 def save(self):

7 print(f’Save the animal {self. __name } to the database ’)
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Code 2: Code with SRP.

1 class Animal :

2 def __init__ (self ,name):

3 self. __name = name

4 def get_name (self):

5 return self. __name

6

7 class AnimalDB :

8 def save(self , animal ):

9 print(f’Save the animal { animal . get_name ()} to the database ’)

2.1.2
OCP - Open-Closed Principle

The Open-Closed Principle (OCP) proposes that classes should be open
for extension but closed for modification (KALINOWSKI et al., 2023). Open
for extension means that when you receive a new requirement, you can add
new behavior. Closed to modification means that in order to introduce a new
behavior, an extension, it is not necessary to modify the existing code.

To understand better, let’s look at the example present in Code 3, where
the Open-Closed Principle is not used. In this example, the Animal class tends
to grow with each animal introduced into the system. In the example present
in Code 4, where the Open-Closed Principle is used, it is possible to observe
the behavior being extended without changing the code of the Animal class.
The Animal class is used as an abstraction, and the behavior is implemented
in the specialized child classes, Dog and Cat.

Code 3: Code without OCP.

1 class Animal :

2 def __init__ (self ,name):

3 self. __name = name

4 def get_name (self):

5 return self. __name

6 def make_sound (self):

7 if self. __name == "Dog":

8 print("Au Au")

9 if self. __name == "Cat":

10 print("Miau")

Code 4: Code with OCP.

1 class Animal :

2 def __init__ (self ,name):
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3 self. __name = name

4 def get_name (self):

5 return self. __name

6 def make_sound (self):

7 pass

8

9 class Dog( Animal ):

10 def make_sound (self):

11 print("Au Au")

12

13 class Cat( Animal ):

14 def make_sound (self):

15 print("Miau")

2.1.3
LSP - Liskov Substitution Principle

This Liskov Substitution Principle (LSP) says that a subclass must be
able to be replaced by its superclass (KALINOWSKI et al., 2023). This means
that objects can be replaced by their subtypes without affecting the correct
execution of the program.

To achieve this goal of being replaceable by its subtype, every child class
has to think about the preconditions and postconditions of the parent class. In
the precondition, it can never squeeze. And in the postcondition, it can never
slack off. If not, the references that point to the parent class, when given a
child class, will not work as expected. For example, the child class can only
slack off preconditions. Think about the case where we have the parent class,
and the parent class has a method that can receive integers from 1 to 10. Then
the child class changes that, only allowing it to receive integers from 1 to 5. See
that 1 to 5 is more restrictive than 1 to 10. This can affect the functioning of
the client classes of the parent class. Likewise, a child class can never squeeze a
postcondition. Imagine that we have a method that returns an integer, and this
integer is from 1 to 10. Then, the child class overrides the method and starts
to return from 1 to 20. This can break the client classes that only expected a
return of 1 to 10.

The example present in Code 5 makes it very clear. The rectangle
class has no preconditions for the sides. The square class squeezes your
preconditions, where its sides must be equal. In this case, it cannot be replaced
by the parent class.

Code 5: LSP violation.

1 class Rectangle ():

2 def __init__ (self , l, w):
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3 self. length = l

4 self.width = w

5

6 def area(self):

7 return self. length *self.width

8

9 class Square ( Rectangle ):

10 def __init__ (self , l, w):

11 if(l != w):

12 raise Exception ("The sides of the square must be equal.")

13 super. __init__ (l,w)

2.1.4
ISP - Interface Segregation Principle

The Interface Segregation Principle (ISP) says that specific interfaces
are better than a single general purpose interface (KALINOWSKI et al.,
2023). That is when, depending on an interface, it shouldn’t know methods it
doesn’t need. Also, when implementing an interface, you shouldn’t be forced
to implement methods that you don’t need.

For a better understanding, we will use the AllInOnePrinter class present
in Code 6. It has the methods print, scan, and send_fax. If we use the
AllInOnePrinter class as a basis for creating the MultifunctionalPrinter class,
we won’t have a problem because the MultifunctionalPrinter also prints, scans,
and send fax. But if we use the AllInOnePrinter as a basis for creating the
DefaultPrinter class, we will violate the Interface Segregation Principle because
it only needs to print. So, to solve this problem, let’s refactor our example in
Code 7, creating the Printer, Scanner, and Fax interfaces, segregating them
into specialized interfaces.

Code 6: Code without ISP.

1 class AllInOnePrinter :

2 def print(self):

3 pass

4 def scan(self):

5 pass

6 def send_fax (self):

7 pass

8

9 class MultifunctionalPrinter ( AllInOnePrinter ):

10 def print(self):

11 pass

12 def scan(self):

13 pass

14 def send_fax (self):

15 pass
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Code 7: Code with ISP.

1 class Printer :

2 def print(self):

3 pass

4

5 class Scanner :

6 def scan(self):

7 pass

8

9 class Fax:

10 def send_fax (self):

11 pass

12

13 class MultifunctionalPrinter (Printer ,Scanner ,Fax):

14 def print(self):

15 pass

16 def scan(self):

17 pass

18 def send_fax (self):

19 pass

20

21 class DefaultPrinter ( Printer ):

22 def print(self):

23 pass

2.1.5
DIP - Dependency Inversion Principle

The Dependency Inversion Principle (DIP) has the following premise:
“Depend on abstractions, not on concretions” (KALINOWSKI et al., 2023).
The idea is that whenever it is necessary to couple to another class or module,
the less stable one should depend on the more stable one. A stable class is one
that tends to change very little. The advantage is that if it changes very little,
it won’t propagate the change to our implementation.

Let’s see Code 8 as a basis for our example, where we have the Dog
class, Cat class, and Animal abstraction. Code 9 presents the Owner class
without DIP because it depends directly on an implementation, which is not
very stable. Code 10 presents the Owner class with DIP, which directly depends
on the Animal abstraction, which is more stable.
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Code 8: Base code to explain the Dependency Inversion Principle (DIP).

1 class Animal :

2 def make_sound (self):

3 pass

4

5 class Dog( Animal ):

6 def make_sound (self):

7 self.bark ()

8 def bark(self):

9 print("Au Au")

10

11 class Cat( Animal ):

12 def make_sound (self):

13 self.meow ()

14 def meow(self):

15 print("Miau")

Code 9: Code without DIP.

1 class Owner:

2 def toStroll (self ,dog: Dog):

3 dog.bark ()

Code 10: Code with DIP.

1 class Owner:

2 def toStroll (self , animal : Animal ):

3 animal . make_sound ()

2.2
Importance of Code Comprehension

As evidenced by the systematic mapping conducted by MARVIN
WYRICH et al.(WYRICH; BOGNER; WAGNER, 2022), the importance of
code comprehension has been recognized for over 40 years by the scientific
community. Where during these years, several studies show that developers
indeed invest a considerable amount of their daily work in understanding code
(CORBI, 1989), (FJELDSTAD, 1983), (KO et al., 2006), (MINELLI; MOCCI;
LANZA, 2015), (ZELKOWITZ; SHAW; GANNON, 1979).

Zelkowitz et al. (ZELKOWITZ; SHAW; GANNON, 1979) claim that un-
derstanding the program takes more than half the time spent on maintenance
of the software. This statement is also confirmed by Fjeldstad and Hamlen
(FJELDSTAD, 1983) and Corbi (CORBI, 1989). Demonstrated through em-
pirical studies by Minelli et al. (MINELLI; MOCCI; LANZA, 2015) and by
Xia et al. (XIA et al., 2017).
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In this sense, there is great motivation among researchers to optimize
this process through scientific research. As a consequence, many studies are
conducted to support the developer in the task of understanding the source
code and discovering which characteristics contribute to this understanding.

This effort by the scientific community can also be seen with the
establishment of the International Conference on Program Comprehension
(ICPC), which in 2022 celebrates its 30th anniversary. Even making it clear
that understanding the source code is only a subset of understanding the
program, understanding the program goes beyond understanding the source
code. It can involve understanding the software architecture, requirements,
diagrams, etc.

2.3
Characteristics of the Professional Who Develop ML-Enabled Systems

Data science has become popular in recent years as companies recognize
the value of large volumes of data at their disposal, either to optimize their
operations, to use it as a decision support element, or even to create new
products that make use of the intelligence that is available by analyzing this
data.

Data scientists generally do not have a typical four-year educational
background in some computer-oriented degree (MAY, 2009), where it is
possible to acquire skills related to Software Engineering. In research, Harris
et al. (HARRIS; MURPHY; VAISMAN, 2013) asked more than 250 data
science professionals how they viewed their skills, careers, and experiences.
They observed evidence that data scientists have the depth of their skills “T-
shaped" and have a wide range of skills, with depth in a single area of expertise.

As evidenced by the study carried out by Kim et al.(KIM et al., 2016),
many have degrees in other fields, such as statistics, physics, mathematics,
bioinformatics, applied mathematics, business, economics, and finance. His
interdisciplinary background contributes to his strong skills in numerical
reasoning for data analysis, where many have titles of Masters or Doctorate,
and many have previous work experience with big data.

According to the statement made by Kim et al. (KIM et al., 2016), Data
Scientists with the analytical and software engineering skills to analyze these
huge volumes of data have been hard to come by, and only recently have
software companies started to develop skills in software-driven data analysis.
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2.4
Challenges in ML Code Comprehension

ML projects present unique challenges in terms of code comprehension.
One of the primary factors contributing to these challenges is the inherently
experimental nature of ML. Data scientists often work on interactive computa-
tional notebooks (SHEN, 2014) that combine code, text, and execution results
to handle data, train, and evaluate models iteratively. This emphasis on rapid
prototyping and literate programming documents can encourage poor coding
practices and results that are difficult to reproduce (PIMENTEL et al., 2019;
PIMENTEL et al., 2021).

In addition to the experimentation-driven challenges, data scientists have
a variety of educational backgrounds, such as statistics, physics, mathematics,
and economics (AHO et al., 2020). While this diversity of expertise is valuable
for tackling complex ML problems, it also poses challenges for code compre-
hension. Many of these team members may lack formal SE foundations, leading
to code that may not adhere to established best practices. In this line, Kim et
al. (KIM et al., 2016) state that it is difficult to find data scientists who combine
analytical and SE skills. As a consequence, there have been studies reporting
the prevalence of code smells in ML code (OORT et al., 2021) and indicating
that ML code is commonly subject to technical debt and refactoring (TANG
et al., 2021).

2.5
Absence of ML Code Comprehension Studies

Taking into account the importance of code understanding for the de-
veloper’s everyday work, we performed a systematic mapping of the literature
to provide an overview of research contributions of code comprehension in
ML-oriented software.

The systematic mapping study was carried out following the secondary
study guidelines proposed by Kitchenham and Charters (KITCHENHAM;
CHARTERS, 2007) and the specific systematic mapping guidelines by Petersen
(PETERSEN; VAKKALANKA; KUZNIARZ, 2015).

2.5.1
Research questions

RQ1. What code understanding contributions have emerged to support
the software development of ML-based systems? This question is intended to
provide an overview of research contributions on code understanding in ML-
oriented software.
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RQ2. What metrics are used to measure code comprehension in machine
learning software? The focus of this question is to identify which metrics are
being used to perform static code analysis and measure understanding, such
as cyclomatic complexity, cognitive complexity, lines of source code, lines of
executable code, etc.

RQ3. What design patterns (GAMMA et al., 1995), SOLID principles
(MARTIN, 2003), or even clean code rules (MARTIN, 2009) are addressed in
scientific contributions to understanding code in software aimed at machine
learning? The focus of this question is to identify the SOLID principles, design
patterns, or even clean code rules present in the scientific contributions of code
understanding in software focused on machine learning.

RQ4. What are the types of research contributions? The purpose of this
question is to classify articles according to their research type facets. We will
adopt the scheme of Wieringa classification (WIERINGA et al., 2006).

RQ5. What types of empirical evaluations were used to evaluate research
contributions? Obtaining this information provides an idea of the scientific
rigor of the reported evidence.

2.5.2
Research strategy

The mapping employs a hybrid search strategy (MOURÃO et al., 2020),
through a search in the Scopus Database based on a search string. Soon after,
he uses the snowball technique backward and forward, following Wohlin’s
guidelines (WOHLIN, 2014) in order to increase the article base.

The Search String to perform the database search from Scopus was
developed using the PICO (Population, Intervention, Comparison, Outcome)
criteria (LEONARDO, 2018).

Our research focuses on ML-based systems and aims to identify Code
Understanding contributions to such systems. For this reason, it was necessary
to create keywords for machine learning and Code Comprehension.

The defined search string was applied to titles, abstracts, and keywords:
“(software OR applications OR systems) AND ((machine AND learning)
OR ml) AND (code AND comprehension)”, where we had a return of 118
documents.

2.5.3
Inclusion criteria

1. The main criteria for inclusion of studies will be contributions from code
comprehension in the context of machine-oriented software Learning.
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2. When more than one contribution references the same study, only the
most recent contribution will be considered.

3. When multiple studies are referenced in a contribution, each study is
considered separately.

2.5.4
Exclusion criteria

1. Articles that do not meet the inclusion criteria.

2. Articles that are not written in English.

3. Articles that make use of machine learning to understand the source
code.

4. Articles published in journals classified below B3 in the Qualis Capes
system.

5. Articles with less than 5 pages.

2.5.5
Study selection

The first step consisted of searching for articles using the search string
in the Scopus database. The search string was applied to titles, abstracts, and
keywords on November 6, 2022, and returned 118 documents, as can be seen
through Figure 2.1.

Figure 2.1: Scopus database search return.

In the second stage, the exclusion and inclusion criteria were applied,
and no document was selected for the next stage.
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Of the 118 articles selected, by reading titles and abstracts, 114 articles
did not meet the main inclusion criteria, studies with contributions from code
comprehension in the context of machine learning software.

The remaining 4 articles (VISWANATHAN; KUMAR; SOMAN, 2019)
(SHALABY et al., 2017) (GONÇALES et al., 2020) (HUANG et al., 2020) were
removed by the exclusion criteria; they corresponded to articles that make use
of machine learning to understand the source code.

2.5.6
Conclusion of systematic mapping study

As no study passed the inclusion and exclusion criteria of the systematic
mapping, it was possible to highlight the absence of studies with code compre-
hension contributions specifically aimed at machine learning. This serves as a
motivation to continue the research.

In this dissertation, we provide an initial step to address this gap by
investigating the impact of using the SOLID design principles on ML code
understanding.



3
Experimental Study Plan

We decided to conduct a controlled experiment because we were inter-
ested in investigating the impact of specific factor levels (using or not using
the SOLID design principles) on code understanding, in isolation from other
confounding factors (WOHLIN et al., 2012). Hereafter, we detail the experi-
mental study planning steps as suggested by Wohlin et al. (WOHLIN et al.,
2012) (Figure 3.1), as well as the study operation, data collection, and analy-
sis procedures. While we assessed and mitigated threats to validity during the
experimental study planning, we will discuss them in Section 6.

Figure 3.1: Overview of experiment planning.
(WOHLIN et al., 2012)

3.1
Goal

The research goal was elaborated using the Goal Question Metric (GQM)
approach, proposed by Basili et al. (BASILI CALDIERA, 1994).

Analyze the <application of SOLID design principles>
for the purpose of <characterization>
with respect to their <impact on ML code understanding>
from the point of view of <data scientists>
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in the context of <industrial ML code>.

3.2
Context Selection

The selected context consists of an off-line experiment (i.e., without
direct participation of the researchers), where data scientists (students and
professionals, as detailed and characterized later) were randomly assigned to
two different treatments and asked questions related to their understanding of
real industrial ML code.

To increase representativeness, we decided to use the ML code of a real
ML-enabled system created in partnership with the Exacta (ExACTa, 2023)
initiative. The system was built to, based on an ML model prediction, emit
alerts for oil refineries about the likelihood of emitting strong odors that
could result in claims from the community. The ML code for this system
was produced in Python using Jupyter Notebooks without employing SOLID
design principles. It is noteworthy to mention that the system has been
deployed and is currently in use in several oil refineries.

While being part of a specific solution, the ML code sample is repre-
sentative of code that is typically part of ML applications, including code for
tasks such as data loading, preprocessing, ML model building, and ML model
evaluation. The treatments involved receiving either the original ML code or
the original ML with a restructuring using the SOLID design principles and
answering the same questions.

3.3
Hypothesis Formulation

We formulated the following null hypothesis (H0) and alternative hy-
pothesis (H1). We aim to reject the H0 by showing statistically significant
differences in the levels of code understanding with an alpha value of 0.1.

– H0: There is no relationship between applying the SOLID Design Prin-
ciples and ML code understanding.

– H1: Applying the SOLID Design Principles improves ML code under-
standing.
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3.4
Variables Selection

The independent variable of interest (experimental factor) corresponds
to the application of the SOLID design principles. It can receive as treatment
the use of SOLID principles or not using the principles. Other independent
variables captured during the subject characterization included the experience
with ML software development and the experience with SOLID principles.

The experimental study has two dependent variables. The first is the
difficulty level of understanding of the source code perceived by the developer.
Therefore, we prepared ordinal Likert scale questions on the difficulty in
understanding the source code, which could assume the following values: 1
- Very Hard, 2 - Hard, 3 - Normal, 4 - Easy, 5 - Very Easy. The second is the
level of agreement with statements related to the theoretical benefits of the
SOLID principles. Again, we prepared ordinal Likert scale questions for these
hypothesized benefits, which could assume the following values: 1 - Totally
disagree, 2 - I disagree, 3 - I neither agree nor disagree, 4 - I agree, 5 - Totally
agree.

3.5
Selection of Subjects

We used convenience sampling for our population of data scientists. The
team of authors had access to data science graduate students from PUC-Rio
and the University of Bari and to data science professionals from SERPRO, a
large-scale public IT company with more than 8,000 employees in Brazil.

We managed to have access to samples of 32 data science students
from the University of BARI, 32 data science students from PUC-Rio, and
36 professional data scientists from the SERPRO, totaling 100 participants.
Within these samples, we used probabilistic quotas to randomly assign the
subjects to the experimental treatments in a balanced way. We characterized
the subjects to allow us to apply experiment design principles, such as blocking,
if needed.

3.6
Choice of Design Type

The goal was to investigate whether applying SOLID design principles
produces ML code that is easier to understand. The dependent variables are
the level of understanding of the source code by the developer and the degree
of agreement with statements related to the SOLID principles. Given this
goal, we adopted a completely randomized one-factor with two treatments
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design (WOHLIN et al., 2012). The design setup uses the same object (the
ML code of a real ML-enabled system) with two treatments (original and
restructured, applying SOLID design principles) and assigns the subjects
randomly to each treatment. The experimental tasks concerned participants
who analyzed the source code and answered questions concerning difficulty in
understanding and answering questions about their degree of agreement with
statements related to the SOLID principles.

3.6.1
Groups of participants

Participants were selected at random, by random selection of the available
developers. They were separated by blocks of applied treatment.

3.6.2
Study Object

The study object of the experiment is a Source Code of ML software in
the form of code snippets.

3.6.3
Factor

The factor is the Design Principle of the source code.

3.6.4
Treatments

We used two treatments. Treatment 1 was the use of SOLID Design
Principles, and Treatment 2 was the not use of any Design Principle.

3.6.5
Tasks

The set of tasks is composed of Code Snippets based on real machine
learning projects created in partnership with the Exacta (ExACTa, 2023)
initiative. Where experiment participants need to analyze the source code and
answer questions related to the perceived difficulty level of understanding the
source code, which could assume the following values: 1 - Very Hard, 2 - Hard,
3 - Normal, 4 - Easy, 5 - Very Easy, and answer questions about their level
of agreement with statements related to the theoretical benefits of the SOLID
principles, which could assume the following values: 1- Totally disagree, 2- I
disagree, 3- I neither agree nor disagree, 4- I agree, 5- Totally agree.
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3.7
Instrumentation

We carefully designed and independently peer-reviewed the instrumenta-
tion, aiming to ensure that it would provide the necessary means for appropri-
ately collecting data for the experiment. It consisted of two versions of an online
questionnaire (one for each treatment), implemented using Google Forms, di-
vided into 4 basic components: a consent form, a participant characterization
form, the substantive questions related to the difficulty in understanding code
snippets, and the levels of agreement with statements related to the SOLID
principles, and a follow-up questionnaire. Both versions of the questionnaire
are available in our online open science repository (ANONYMOUS, 2023). We
detail each component of the instrumentation as follows.

3.7.1
Consent form

The consent form explains the research objectives, informs about their
right to withdraw their participation at any time, and highlights the non-
association of their name and e-mail address with the responses, ensuring that
the research is conducted in accordance with ethical standards. It is noteworthy
that all participants were volunteers.

3.7.2
Participant Characterization Form

The participant characterization form aims to collect relevant demo-
graphic information that may influence the study’s results. The form includes
questions related to academic background, proficiency in the English language,
experience with software development, specific experience with ML software
development, and levels of expertise in specific software coding-related topics,
such as object-oriented programming, SOLID principles, Design Patterns, and
Python.

3.7.3
Substantive questions related to the hypothesis

The substantive questions addressing the hypothesis include a set of code
snippets from the real ML code. The set of ML code snippets, depending
on the treatment, are the original ones or the restructured ones (applying
SOLID design principles). Both instrument versions can be found in the online
repository (ANONYMOUS, 2023).
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Participants were required to analyze the code snippets and respond to
closed-ended questions related to their perceived difficulty in understanding
the code. Responses were registered using the five-point Likert scale: 1 - Very
Hard, 2 - Hard, 3 - Normal, 4 - Easy, 5 - Very Easy. Additionally, participants
are asked to provide feedback on their level of agreement with statements
related to the SOLID principles, also on a five-point Likert scale: 1 - Totally
disagree, 2 - I disagree, 3 - I neither agree nor disagree, 4 - I agree, 5 - Totally
agree. For each closed-ended question, there was an open-ended question to
provide justification for responses optionally.

3.7.4
Follow-up questionnaire

The follow-up questionnaire contains a closed-ended question regarding
the participant’s availability to answer further questions and two open-ended
questions that provide an opportunity for feedback, allowing the participant
to suggest improvements.

3.8
Operation and Data Collection

This section describes the operation and data collection conducted as
part of the experiment.

3.8.1
Participant Selection

To conduct this experiment, it was necessary to select participants
from three distinct groups: students from the University of Bari, students
from the Software Engineering for Data Science course at PUC-Rio, and
professionals from SERPRO. Participants were recruited voluntarily from these
three sources.

3.8.1.1
University of Bari

This group is made up of students from the University of Bari Aldo Moro.
They were recruited through appropriate means, such as email invitations and
classroom announcements.



Chapter 3. Experimental Study Plan 38

3.8.1.2
PUC-Rio

This group was composed of students from the Software Engineering
for Data Science course at PUC-Rio, Pontifical Catholic University of Rio
de Janeiro. Their participation was obtained through direct invitations and
communications in the classroom.

3.8.1.3
SERPRO

Participants in this group were employees of SERPRO, a federal data
processing company of Brazil. They were invited to participate in the experi-
ment through internal company channels.

3.8.2
Online Questionnaires

The data collection instrument used was an online questionnaire created
with Google Forms, available in Portuguese and English. Identical question-
naires were created for the three groups of participants, containing questions
related to the dependent variables that were evaluated in this study.

3.8.3
Treatment Randomization Method

In this software engineering study, the choice of treatment applied to
the participants was performed randomly. The aim was to ensure that the
two treatments, Treatment 1 and Treatment 2, were impartially and randomly
assigned to each participant in order to avoid any bias in data collection.

To achieve this randomization, an algorithm was implemented in
JavaScript to run in the participant’s browser, with the aim of randomly choos-
ing one of the two available treatments. The algorithm followed the following
steps:

1. First, it was verified that the participant’s browser supported local stor-
age to retain the treatment choice previously assigned to a participant.
This was done using the following conditions.

Code 11: Local storage support verification.

1 if ( typeof Storage !== " undefined " && localStorage . getItem (’

random_page ’)) {
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2. If a participant already had a treatment choice assigned, the algorithm
retrieved that choice and redirected the participant to the page corre-
sponding to that treatment.

Code 12: Redirects to previous choice.

1 var webpage = localStorage . getItem (’random_page ’);

2 document . getElementById (" framey ").src = webpage ;

3. Otherwise, if the participant did not have a previous choice registered,
the algorithm creates a list of web pages corresponding to the different
treatments available. In this case, two web pages (Google Forms URLs)
were included in the list.

Code 13: Create a page per treatment.

1 var webpages = [];

2 webpages .push("https :// docs. google .com/forms/d/e/1

FAIpQLSfKGte3XHdmjjcU4R5y4R7PAiXpP3eCpCocSJpTqB4v5WYMYw /

viewform ");

3 webpages .push("https :// docs. google .com/forms/d/e/1 FAIpQLSfwx -1

IeaBEqFDRn8kRSxoopT8BH4EDdVMy1Rf3uPeUS48z7g / viewform ");

4. Then, the algorithm randomly selects a web page from the list of available
pages, using a random number generator to pick a random index from
the list.

Code 14: Randomly select treatment webpage.

1 var random_page = webpages [Math.floor(Math. random () * webpages .

length )];

5. The choice of treatment for the participant is recorded in local storage.

Code 15: Redirects to the treatment webpage.

1 if ( typeof Storage !== " undefined ") {

2 localStorage . setItem (’random_page ’, random_page );

3 }

6. Finally, the participant is redirected to the web page corresponding to
the chosen treatment.

Code 16: Redirects to previous choice.

1 document . getElementById (" framey ").src = random_page ;
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3.8.4
Administration of Questionnaires

After the randomization of treatments, participants were redirected
to the questionnaire corresponding to the assigned treatment. They were
instructed to answer the questionnaire’s questions based on their experiences
and perceptions.

3.8.5
Data Collection

Data were collected from participant’s responses to the online question-
naires. The data included participant consent, demographic information, an-
swers to substantive questions related to the hypothesis, and information re-
lated to follow-up.

The dataset collected during the experiment is available in our online
repository (ANONYMOUS, 2023).

3.9
Analysis Procedures

This section presents the statistical techniques that were applied to the
data collected by the experiment.

3.9.1
Tabulation and Graphics

First, the data were tabulated by participants, including their answers
about consent to participate in the research, answers about their characteriza-
tion, answers about levels of understanding perceived by the developer of the
presented source codes, and answers about levels of agreement with statements
related to the SOLID principles, grouping by institution of participant’s origin
and type of treatment applied in the experiment.

After tabulation, the data were loaded into a Colab Notebook (LLC,
2023), using the Python language (FOUNDATION, 2023), with the help of
the Pandas data analysis library (NUMFOCUS, 2023).

With the data already loaded into the Colab Notebook, frequency tables
were created and printed for each answer on the characterization form. In order
to understand the characterization of the research participants.

Soon after, the research used bar graphs to visualize the frequency
distribution of responses on source code understanding and levels of agreement
with statements related to the SOLID principles. These frequencies were
normalized and grouped by participant’s origin and type of treatment applied.
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3.9.2
Descriptive Statistics

To give an overview of the overall distribution of responses provided by
participants in the experiment, we calculated measures of central tendency,
mean, median, and mode.

To understand the distribution of the data, we calculated two measures
of dispersion: the mean absolute deviation and the standard deviation.

3.9.3
Outlier Analysis

Assuming that the dependent variables are limited to an ordinal scale,
with predefined values from 1 to 5, technically, there are no outliers, as all
responses are limited to this discrete interval.

3.9.4
Hypothesis Testing

How to choose between parametric tests and non-parametric tests de-
pends on the characteristics of your data and the assumptions underlying your
statistical tests. Analyzing the results of measures of central tendency and
measures of dispersion, it is not possible to assume that the samples meet
certain assumptions about the distribution of the data, such as the normal
distribution, which led us to perform non-parametric hypothesis tests.

With regard to our samples, in addition to not being able to assume a
normal distribution, they are also independent. So, the non-parametric test
that proved to be the most appropriate was the Mann-Whitney test. To
measure this statistical effect size, we will use Cohen’s d, which is widely used
and easy to interpret.



4
Experimental Study Results

In this chapter, we describe the participant characterization and present
the experimental study results.

4.1
Participant Characterization

In this section, we describe the population of participants involved in
our experiment. The composition of this population, including its relevant
demographic data, is essential for understanding the database upon which our
study is based.

4.1.1
Participants by source and treatment

The participants were randomly assigned to the two treatments: SOLID
(the SOLID restructured ML code) and unstructured (the original ML code).
As described, participants were selected from three sources: University of
BARI, PUC-Rio, and SERPRO. The distribution of participants for each
treatment and source is presented in Table 4.1. It is possible to observe that
the equal likelihood of being assigned to one treatment or the other led to
almost balanced distributions of participants between treatments.

Table 4.1: Participants by source and treatment.

Treatment SOLID Unstructured

BARI 15 17
PUC 16 16

SERPRO 17 19
Total 48 52

4.1.2
Level of education and relation to computer science

The distribution of the level of education of participants per treatment
and source is shown in Table 4.2, which also shows whether participants had
academic degrees related to computer science or not. It is possible to observe
that the random assignment led to some differences, which we do not believe
to affect the results. In particular, slightly higher educational levels can be
observed for the Unstructured treatment at University of BARI and for the
SOLID treatment at PUC-Rio, while the ones for the SERPRO Company are
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comparable. It is also possible to observe a balance between participants with
a computer science degree and from other areas. It is noteworthy, however,
that the sources for subject selection may have led to a higher number of
data scientists with a computer science background than in general. The data
science graduate programs at both universities were part of the informatics
departments, and the company was an IT company. We will further discuss
this representativeness threat later.

Table 4.2: Level of education and relation to computer science.

Source BARI PUC SERPRO
Treatment SOLID Unstructured SOLID Unstructured SOLID Unstructured
Level of education

Bachelor’s Degree. 13 12 4 10 2 4
Specialization. 1 1 1 1 9 10
Master’s Degree. 1 4 8 4 4 5
Doctoral Degree. 0 0 3 1 2 0

Computer Science 10 11 11 12 14 17
Others 5 6 5 4 3 2

4.1.3
Experience with software development

The participants’ experience with software development in general, as
characterized across different treatments and sources, is presented in Table
4.3. Additionally, this table also shows the participants’ years of experience in
software development. Similarly, Table 4.4 shows the experience with specific
ML-related software development. It is possible to observe that, in terms of
experience, the control and experimental groups are comparable.

Table 4.3: Experience with software development.

Source BARI PUC SERPRO
Treatment SOLID Unstructured SOLID Unstructured SOLID Unstructured
Experience with software development

I have never developed software. 0 0 1 0 0 0
I have been developing for my own use. 7 12 6 7 7 9
I have been developing as team member, related to a course. 14 16 8 7 10 12
I have been developing as team member, in industry. 1 5 12 16 17 17

0-2 years 3 3 4 4 1 1
3-5 years 9 10 4 6 1 4
6-10 years 3 4 4 4 2 0
More than 10 years 0 0 4 2 13 14
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Table 4.4: Experience with ML software development.

Source BARI PUC SERPRO
Treatment SOLID Unstructured SOLID Unstructured SOLID Unstructured
Experience with Machine Learning Software Development

I never developed ML software. 3 4 1 0 0 1
I developed ML software for my own use. 4 6 6 8 10 7
I developed ML software as a team member, related to a course. 10 11 9 11 14 13
I developed ML software as a team member in the industry. 0 0 8 11 10 12

0-2 years 12 15 10 11 6 8
3-5 years 2 1 3 2 7 6
6-10 years 1 1 1 3 2 5
Greater than 10 years 0 0 2 0 2 0

4.1.4
Experience with topics related to software engineering

Finally, an overview of participants’ background on software engineering
and development topics related to this research, encompassing object-oriented
programming, SOLID principles, and Python proficiency (among other col-
lected data available in our online dataset), is presented in Table 4.5.

It is possible to observe that all of the participants had some experience
with object-oriented programming and Python, with different experience levels
of using SOLID principles. This data collectively provides valuable information
about participants’ backgrounds and competencies in software design aspects,
offering context for interpreting their responses.

4.1.5
English reading and comprehension skills level

This subsection presents the English reading and comprehension skills
of our participants across different treatment groups and sources. The data
presented in Table 4.6 summarizes the distribution of participants based on
their English language proficiency levels.

Table 4.6: English reading and comprehension skills level.

Source BARI PUC SERPRO
Treatment SOLID Unstructured SOLID Unstructured SOLID Unstructured
English reading and comprehension skills level

Basic. 2 4 1 1 2 3
Intermediate. 10 7 6 2 6 7
Advanced. 3 6 9 13 9 9

This information is crucial for understanding the English language profi-
ciency levels of our participants within each treatment and source. It provides
valuable insights into the language capabilities of our study participants, which
may have implications for their understanding of source code and comprehen-
sion of questionnaire questions.
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Table 4.5: Experience with topics related to software engineering.

Source BARI PUC SERPRO
Treatment SOLID Unstructured SOLID Unstructured SOLID Unstructured
Object-oriented programming
I studied in a classroom or in a book. 2 1 1 1 0 1
I actively practiced in a classroom project. 9 11 4 3 0 2
I used it in one project in industry. 2 2 1 7 2 4
I used it in several projects in industry. 2 3 10 5 15 12
Encapsulation
No experience. 0 0 0 1 0 0
I studied in a classroom or in a book. 2 3 3 2 0 2
I actively practiced in a classroom project. 10 8 3 2 1 3
I used it in one project in industry. 2 3 1 6 2 6
I used it in several projects in industry. 1 3 9 5 14 8
Inheritance, Abstract Classes and Interfaces
No experience. 0 0 0 1 0 0
I studied in a classroom or in a book. 3 2 4 1 0 1
I actively practiced in a classroom project. 9 9 2 4 0 3
I used it in one project in industry. 2 3 1 6 3 5
I used it in several projects in industry. 1 3 9 4 14 10
Clean Code
No experience. 1 1 3 0 4 6
I studied in a classroom or in a book. 2 2 4 3 2 3
I actively practiced in a classroom project. 9 8 1 3 3 1
I used it in one project in industry. 3 3 2 6 2 6
I used it in several projects in industry. 0 3 6 4 6 3
SOLID Principles
No experience. 2 3 4 0 6 7
I studied in a classroom or in a book. 5 4 5 5 4 4
I actively practiced in a classroom project. 8 6 2 5 2 4
I used it in one project in industry. 0 2 3 5 0 1
I used it in several projects in industry. 0 2 2 1 5 3
Design Patterns
No experience. 0 1 3 2 1 1
I studied in a classroom or in a book. 4 6 4 4 3 2
I actively practiced in a classroom project. 8 5 1 4 3 5
I used it in one project in industry. 1 3 2 5 3 5
I used it in several projects in industry. 2 2 6 1 7 6
Domain-Driven Design (DDD)
No experience. 6 10 6 2 7 6
I studied in a classroom or in a book. 2 2 4 9 3 5
I actively practiced in a classroom project. 6 3 1 3 1 3
I used it in one project in industry. 1 1 3 1 4 4
I used it in several projects in industry. 0 1 2 1 2 1
Python
I studied in a classroom or in a book. 1 4 2 0 0 1
I actively practiced in a classroom project. 10 7 1 2 6 5
I used it in one project in industry. 2 3 7 2 2 2
I used it in several projects in industry. 2 3 6 12 9 11

4.2
Results

This session presents the results of questions related to our hypotheses
organized by SOLID principle (MARTIN, 2000).

4.2.1
SRP - Single Responsibility Principle

4.2.1.1
Question 1

What is your perception about understanding the source code?
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Figure 4.1: BARI - Question 1 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.54 3 [3]
Unstructured Code (Treatment 2) 3.36 3 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.97 1.13
Unstructured Code (Treatment 2) 0.85 1.0

Hypothesis Test
p-value 0.34056528361427313

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.7: BARI - Question 1 - Statistics.

The results of question 1 in BARI are presented in Figure 4.1, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.7 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

Although the non-parametric test Mann-Whitney did not find statisti-
cally significant evidence to reject the null hypothesis, we can observe a no-
ticeable difference in the perception of comprehension between Treatment 1
(SOLID) and Treatment 2 (Unstructured Code) based on participants’ re-
sponses.

With Treatment 1 (SOLID), 46.7% of the participants classified com-
prehension as "Easy" or "Very Easy." In Treatment 2 (Unstructured Code),
46.1% of the participants classified comprehension as "Easy" or "Very Easy."



Chapter 4. Experimental Study Results 47

While the difference in those classifying it as "Easy" or "Very Easy" is not
very large, with Treatment 1 (SOLID), a substantial portion of participants,
approximately 26.7%, classified comprehension as "Very Easy." This indicates
that many respondents found the SOLID code extremely easy to understand.
However, with Treatment 2 (Unstructured Code), only about 11.8% of partic-
ipants classified comprehension as "Very Easy." This suggests that a consider-
ably smaller proportion of respondents found the unstructured code as easy to
understand as the SOLID code.

Therefore, even though the statistical test did not show a significant dif-
ference, the qualitative analysis of the responses also suggests that Treatment 1
(SOLID) results in a better understanding of the code, as participants consid-
ered it more organized and easier to understand. As an example, a participant
subjected to Treatment 1 (SOLID) commented: "The code is commented, and
I have already used Python OOP." Another participant stated: "It’s easy to
understand all the code." On the other hand, even though finding the code
easy to understand, a participant subjected to the original code, Treatment
2 (Unstructured Code), commented: "Usually, a Python developer does not
know the implementation of the language in order to write code."

Figure 4.2: PUC - Question 1 - Frequencies normalized by treatment.
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Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.07 4 [4]
Unstructured Code (Treatment 2) 3.82 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.47 0.78
Unstructured Code (Treatment 2) 0.74 0.92

Hypothesis Test
p-value 0.19019767217258426

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.8: PUC - Question 1 - Statistics.

The results of question 1 in PUC are presented in Figure 4.2, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.8 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

Although the non-parametric Mann-Whitney test did not yield statis-
tically significant evidence to reject the null hypothesis, we can observe that
using Treatment 1 (SOLID) leads to better comprehension based on partici-
pants’ responses.

In Treatment 1 (SOLID), a substantial percentage of participants, ap-
proximately 87.5%, rated the code as either "Easy" or "Very easy" to under-
stand. Participants in this group praised the code’s organization, modularity,
clear variable names, and the presence of comments. For instance, one partici-
pant commented, "The code is well-commented and organized. The classes are
self-explanatory".

In contrast, for Treatment 2 (Unstructured Code), only about 62.5%
of participants rated the code as "Easy" or "Very easy" to understand. Re-
spondents in this group raised concerns about code organization, the lack of
modularity, and the clarity of variable names. For instance, a participant from
this group commented, "I believe that the code is not well-written and difficult
to understand for programmers in general.".

Therefore, even though the statistical test did not yield significant re-
sults, a qualitative analysis of participant responses strongly indicates that
Treatment 1 (SOLID) leads to enhanced code comprehension. Participants
consistently noted that this treatment resulted in a more organized, modular,
and easily comprehensible codebase. This qualitative feedback, in conjunc-
tion with the quantitative data, underscores the advantages of Treatment 1
(SOLID) for improving code understandability.
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Figure 4.3: SERPRO - Question 1 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.24 4 [5]
Unstructured Code (Treatment 2) 3.53 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.72 0.84
Unstructured Code (Treatment 2) 0.66 0.78

Hypothesis Test
p-value 0.00857908778636166
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.88

Table 4.9: SERPRO - Question 1 - Statistics.

The results of question 1 in SERPRO are presented in Figure 4.3,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.9 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0086, which is below the alpha value of 0.1, with a large effect
size of 0.88. This indicates that there is statistical evidence suggesting that
Treatment 1 (SOLID) leads to a better understanding of the source code than
Treatment 2 (Unstructured Code).
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Figure 4.4: OVERALL - Question 1 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.96 4 [4]
Unstructured Code (Treatment 2) 3.56 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.73 0.95
Unstructured Code (Treatment 2) 0.77 0.9

Hypothesis Test
p-value 0.013864774287158765
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.43

Table 4.10: OVERALL - Question 1 - Statistics.

The results of question 1 in all groups are presented in Figure 4.4,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.10 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0139, which is below the alpha value of 0.1, with an effect size of
0.43, very close to being considered a medium effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).
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4.2.1.2
Question 3

The responsibilities in the code above are clearly distributed and defined.
What is your degree of agreement with the statement?

Figure 4.5: BARI - Question 3 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.67 5 [5]
Unstructured Code (Treatment 2) 3.65 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.45 0.49
Unstructured Code (Treatment 2) 0.89 1.12

Hypothesis Test
p-value 0.0018036147129539043
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.15

Table 4.11: BARI - Question 3 - Statistics.

The results of question 3 in BARI are presented in Figure 4.5, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.11 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0018, which is below the alpha value of 0.1, with a large effect
size of 1.15. This indicates that there is statistical evidence to suggest that
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Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.6: PUC - Question 3 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.75 5 [5]
Unstructured Code (Treatment 2) 2.63 2 [2]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.38 0.45
Unstructured Code (Treatment 2) 1.08 1.26

Hypothesis Test
p-value 7.630706162350667e-06
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 2.25

Table 4.12: PUC - Question 3 - Statistics.

The results of question 3 in PUC are presented in Figure 4.6, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.12 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 2.25. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.7: SERPRO - Question 3 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.53 5 [5]
Unstructured Code (Treatment 2) 3.22 3 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.67 0.88
Unstructured Code (Treatment 2) 0.75 0.92

Hypothesis Test
p-value 4.144861139609103e-05
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.46

Table 4.13: SERPRO - Question 3 - Statistics.

The results of question 3 in SERPRO are presented in Figure 4.7,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.13 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.46. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.8: OVERALL - Question 3 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.65 5 [5]
Unstructured Code (Treatment 2) 3.18 3 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.51 0.64
Unstructured Code (Treatment 2) 0.96 1.15

Hypothesis Test
p-value 1.603950527806893e-11
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.56

Table 4.14: OVERALL - Question 3 - Statistics.

The results of question 3 in all groups are presented in Figure 4.8,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.14 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.56. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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4.2.1.3
Question 5

The code block above has classes structured to have a single responsibility
in the software, that is, they are specialized in a single subject. What is your
degree of agreement with the statement?

Figure 4.9: BARI - Question 5 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.47 5 [5]
Unstructured Code (Treatment 2) 3.36 3 [3 4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.64 0.84
Unstructured Code (Treatment 2) 0.61 0.79

Hypothesis Test
p-value 0.00014139010604550343
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.37

Table 4.15: BARI - Question 5 - Statistics.

The results of question 5 in BARI are presented in Figure 4.9, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.15 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.37. This indicates that there is statistical evidence to suggest that
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Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.10: PUC - Question 5 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.57 5 [5]
Unstructured Code (Treatment 2) 2.0 2 [1]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.5 0.52
Unstructured Code (Treatment 2) 0.75 0.97

Hypothesis Test
p-value 8.21212453080668e-07
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 3.31

Table 4.16: PUC - Question 5 - Statistics.

The results of question 5 in PUC are presented in Figure 4.10, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.16 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 3.31. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.11: SERPRO - Question 5 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.48 5 [5]
Unstructured Code (Treatment 2) 2.53 2 [2]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.75 1.01
Unstructured Code (Treatment 2) 0.99 1.22

Hypothesis Test
p-value 5.064673811903765e-05
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.72

Table 4.17: SERPRO - Question 5 - Statistics.

The results of question 5 in SERPRO are presented in Figure 4.11,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.17 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.72. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.12: OVERALL - Question 5 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.5 5 [5]
Unstructured Code (Treatment 2) 2.64 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.63 0.8
Unstructured Code (Treatment 2) 0.98 1.14

Hypothesis Test
p-value 5.620884537172174e-13
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.88

Table 4.18: OVERALL - Question 5 - Statistics.

The results of question 5 in all groups are presented in Figure 4.12,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.18 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.88. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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4.2.1.4
Question 7

The code above is structured so that your classes have a single reason
for change. What is your degree of agreement with the statement?

Figure 4.13: BARI - Question 7 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.87 4 [4 5]
Unstructured Code (Treatment 2) 2.95 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.85 1.13
Unstructured Code (Treatment 2) 0.45 0.75

Hypothesis Test
p-value 0.002710597738677753
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.98

Table 4.19: BARI - Question 7 - Statistics.

The results of question 7 in BARI are presented in Figure 4.13, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.19 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0027, which is below the alpha value of 0.1, with a large effect
size of 0.98. This indicates that there is statistical evidence to suggest that
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Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.14: PUC - Question 7 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.0 4 [3 5]
Unstructured Code (Treatment 2) 2.19 2 [1 2]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.75 0.9
Unstructured Code (Treatment 2) 0.86 1.05

Hypothesis Test
p-value 5.9474010623007696e-05
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.86

Table 4.20: PUC - Question 7 - Statistics.

The results of question 7 in PUC are presented in Figure 4.14, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.20 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.86. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.15: SERPRO - Question 7 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.95 4 [5]
Unstructured Code (Treatment 2) 2.37 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 1.02 1.25
Unstructured Code (Treatment 2) 0.78 0.9

Hypothesis Test
p-value 0.0001991942516487031
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.46

Table 4.21: SERPRO - Question 7 - Statistics.

The results of question 7 in SERPRO are presented in Figure 4.15,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.21 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0002, which is below the alpha value of 0.1, with a large effect
size of 1.46. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.16: OVERALL - Question 7 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.94 4 [5]
Unstructured Code (Treatment 2) 2.5 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.88 1.08
Unstructured Code (Treatment 2) 0.81 0.94

Hypothesis Test
p-value 1.4343993338573635e-09
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.42

Table 4.22: OVERALL - Question 7 - Statistics.

The results of question 7 in all groups are presented in Figure 4.16,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.22 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.42. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

4.2.2
OCP - Open-Closed Principle
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4.2.2.1
Question 9

What is your perception about understanding the source code?

Figure 4.17: BARI - Question 9 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.07 4 [5]
Unstructured Code (Treatment 2) 3.77 4 [3 4 5]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.88 1.1
Unstructured Code (Treatment 2) 0.87 1.04

Hypothesis Test
p-value 0.18700567415489328

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.23: BARI - Question 9 - Statistics.

The results of question 9 in BARI are presented in Figure 4.17, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.23 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

Although the result of the non-parametric hypothesis test did not show
a statistically significant difference between the Treatment 1 (SOLID) and
Treatment 2 (Unstructured Code) groups in relation to the perception of
understanding the source code, it is still possible to argue that the use of
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Treatment 1 (SOLID) leads to better understanding based on the answers and
their justifications.

The majority of participants who received Treatment 1 (SOLID) clas-
sified their understanding of the code as "Easy" or "Very easy" (73.4%). On
the other hand, in the group that received Treatment 2 (Unstructured Code),
a smaller portion of participants classified understanding as "Easy" or "Very
easy" 58.8%. Participants in Treatment 1 (SOLID) mentioned justifications
that point to the clarity and understanding of the code. Some examples in-
clude "The code uses the same architecture and just adds three more models."
and "The code is smaller and well written." In Treatment 2 (Unstructured
Code), the justifications are not as consistent in highlighting the clarity of
the code, and some mention difficulties or confusion, such as "It looks very
confusing."

Although the non-parametric test did not show a significant difference
in the medians, it is important to note that the distribution of responses in
Treatment 1 (SOLID) is inclined towards more positive responses, while the
Treatment 2 group (Unstructured Code) has a more balanced distribution
between different levels of understanding.

Figure 4.18: PUC - Question 9 - Frequencies normalized by treatment.
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Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.5 4 [4 5]
Unstructured Code (Treatment 2) 4.19 4 [5]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.5 0.52
Unstructured Code (Treatment 2) 0.72 0.92

Hypothesis Test
p-value 0.20762403448905742

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.24: PUC - Question 9 - Statistics.

The results of question 9 in PUC are presented in Figure 4.18, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.24 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

Even though the hypothesis test results did not demonstrate a statis-
tically significant difference between Treatment 1 (SOLID) and Treatment 2
(Unstructured Code) groups regarding their perception of code comprehen-
sion, we can still argue that the use of Treatment 1 (SOLID) leads to a better
understanding based on participant’s responses and justifications.

In the group that received Treatment 1 (SOLID), 100% of the partici-
pants classified their code comprehension as "Easy" or "Very easy." They em-
phasized that class modularization, clarity of module responsibilities, and the
use of Object-Oriented (OO) principles made the code easily understandable.
For example, one participant mentioned, "The OO principles used allow us
to focus on the broader view of the code based on the understanding of each
module’s responsibility. We can even abstract the understanding of model im-
plementation details or preprocessing." These responses and justifications indi-
cate a high satisfaction with code comprehension in the Treatment 1 (SOLID)
group.

On the other hand, in the group that received Treatment 2 (Unstructured
Code), although 81.3% of the participants classified code comprehension
as "Easy" or "Very easy," some rated it as "Difficult" or "Normal." Some
participants mentioned that the code was clear due to comments but not
practical to read. They highlighted that the code could be better structured
and more modular. Additionally, one participant noted, "The code remains
clear despite being repetitive," suggesting that the code could be optimized.

While the hypothesis test did not reveal a significant difference, it is
important to note that all responses in the Treatment 1 (SOLID) group
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were positive, indicating a clear preference for superior comprehension. In
contrast, in the Treatment 2 (Unstructured Code) group, where some responses
indicated that the code was clear due to comments, it was not well-structured.

Figure 4.19: SERPRO - Question 9 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.42 5 [5]
Unstructured Code (Treatment 2) 3.74 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.77 0.94
Unstructured Code (Treatment 2) 0.76 0.94

Hypothesis Test
p-value 0.011256204509341639
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.72

Table 4.25: SERPRO - Question 9 - Statistics.

The results of question 9 in SERPRO are presented in Figure 4.19,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.25 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated
p-value was 0.0113, which is below the alpha value of 0.1, with a medium
effect size of 0.72, very close to being considered a large effect. This indicates
that there is statistical evidence suggesting that Treatment 1 (SOLID) leads
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to a better understanding of the source code than Treatment 2 (Unstructured
Code).

Figure 4.20: OVERALL - Question 9 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.34 5 [5]
Unstructured Code (Treatment 2) 3.89 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.73 0.89
Unstructured Code (Treatment 2) 0.78 0.97

Hypothesis Test
p-value 0.005691739528320074
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.48

Table 4.26: OVERALL - Question 9 - Statistics.

The results of question 9 in all groups are presented in Figure 4.20,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.26 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0057, which is below the alpha value of 0.1, with an effect size of
0.48, very close to being considered a medium effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).
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4.2.2.2
Question 11

It was easy to extend the behavior of the software with the addition of
new models. What is your degree of agreement with the statement?

Figure 4.21: BARI - Question 11 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.47 5 [5]
Unstructured Code (Treatment 2) 4.0 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.79 1.0
Unstructured Code (Treatment 2) 0.59 0.87

Hypothesis Test
p-value 0.03261401452924273
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.50

Table 4.27: BARI - Question 11 - Statistics.

The results of question 11 in BARI are presented in Figure 4.21, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.27 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0326, which is below the alpha value of 0.1, with a medium
effect size of 0.50. This indicates that there is statistical evidence to suggest
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that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.22: PUC - Question 11 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.57 5 [5]
Unstructured Code (Treatment 2) 3.5 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.61 0.73
Unstructured Code (Treatment 2) 0.94 1.16

Hypothesis Test
p-value 0.0014693487108773985
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.10

Table 4.28: PUC - Question 11 - Statistics.

The results of question 11 in PUC are presented in Figure 4.22, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.28 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0015, which is below the alpha value of 0.1, with a large effect
size of 1.10. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.23: SERPRO - Question 11 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.42 5 [5]
Unstructured Code (Treatment 2) 3.74 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.77 1.07
Unstructured Code (Treatment 2) 0.79 1.0

Hypothesis Test
p-value 0.00784193272120681
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.65

Table 4.29: SERPRO - Question 11 - Statistics.

The results of question 11 in SERPRO are presented in Figure 4.23,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.29 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0078, which is below the alpha value of 0.1, with a medium
effect size of 0.65. This indicates that there is statistical evidence to suggest
that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).



Chapter 4. Experimental Study Results 71

Figure 4.24: OVERALL - Question 11 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.48 5 [5]
Unstructured Code (Treatment 2) 3.75 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.72 0.93
Unstructured Code (Treatment 2) 0.78 1.01

Hypothesis Test
p-value 1.1863728457030575e-05
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.75

Table 4.30: OVERALL - Question 11 - Statistics.

The results of question 11 in all groups are presented in Figure 4.24,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.30 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with an effect size
of 0.75, very close to being considered a large effect. This indicates that there
is statistical evidence to suggest that Treatment 1 (SOLID) leads to greater
agreement with the statement than Treatment 2 (Unstructured Code).
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4.2.2.3
Question 13

Adding new models did not imply changing pre-existing code. What is
your degree of agreement with the statement?

Figure 4.25: BARI - Question 13 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.41 5 [5]
Unstructured Code (Treatment 2) 3.89 4 [5]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.72 0.92
Unstructured Code (Treatment 2) 0.86 1.06

Hypothesis Test
p-value 0.06717759263702512
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.52

Table 4.31: BARI - Question 13 - Statistics.

The results of question 13 in BARI are presented in Figure 4.25, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.31 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0672, which is below the alpha value of 0.1, with a medium
effect size of 0.52. This indicates that there is statistical evidence to suggest
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that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.26: PUC - Question 13 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.63 5 [5]
Unstructured Code (Treatment 2) 2.94 3 [1 4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.52 0.62
Unstructured Code (Treatment 2) 1.33 1.53

Hypothesis Test
p-value 0.00048131696999929125
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.44

Table 4.32: PUC - Question 13 - Statistics.

The results of question 13 in PUC are presented in Figure 4.26, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.32 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0005, which is below the alpha value of 0.1, with a large effect
size of 1.44. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.27: SERPRO - Question 13 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.42 5 [5]
Unstructured Code (Treatment 2) 3.0 3 [2 3 4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.77 0.94
Unstructured Code (Treatment 2) 0.95 1.21

Hypothesis Test
p-value 0.00035783185499303055
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.29

Table 4.33: SERPRO - Question 13 - Statistics.

The results of question 13 in SERPRO are presented in Figure 4.27,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.33 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0004, which is below the alpha value of 0.1, with a large effect
size of 1.29. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.28: OVERALL - Question 13 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.48 5 [5]
Unstructured Code (Treatment 2) 3.27 3 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.68 0.83
Unstructured Code (Treatment 2) 1.13 1.32

Hypothesis Test
p-value 4.909543919850292e-07
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.09

Table 4.34: OVERALL - Question 13 - Statistics.

The results of question 13 in all groups are presented in Figure 4.28,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.34 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.09. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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4.2.3
LSP and DIP - Liskov Substitution Principle and Dependency Inversion
Principle

4.2.3.1
Question 15

What is your perception about understanding the source code?

Figure 4.29: BARI - Question 15 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.14 4 [4 5]
Unstructured Code (Treatment 2) 3.36 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.7 0.92
Unstructured Code (Treatment 2) 0.86 1.06

Hypothesis Test
p-value 0.017456387154301322
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.78

Table 4.35: BARI - Question 15 - Statistics.

The results of question 15 in BARI are presented in Figure 4.29, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.35 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
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value was 0.0175, which is below the alpha value of 0.1, with an effect size of
0.78, very close to being considered a large effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).

Figure 4.30: PUC - Question 15 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.44 5 [5]
Unstructured Code (Treatment 2) 3.88 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.64 0.82
Unstructured Code (Treatment 2) 0.46 0.72

Hypothesis Test
p-value 0.007565774046882678
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.73

Table 4.36: PUC - Question 15 - Statistics.

The results of question 15 in PUC are presented in Figure 4.30, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.36 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0076, which is below the alpha value of 0.1, with an effect size of
0.73, very close to being considered a large effect. This indicates that there
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is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).

Figure 4.31: SERPRO - Question 15 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.3 5 [5]
Unstructured Code (Treatment 2) 3.58 4 [3 4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.92 1.11
Unstructured Code (Treatment 2) 0.76 0.91

Hypothesis Test
p-value 0.011413403208042936
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.71

Table 4.37: SERPRO - Question 15 - Statistics.

The results of question 15 in SERPRO are presented in Figure 4.31,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.37 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0114, which is below the alpha value of 0.1, with an effect size of
0.71, very close to being considered a large effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).
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Figure 4.32: OVERALL - Question 15 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.3 5 [5]
Unstructured Code (Treatment 2) 3.6 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.77 0.95
Unstructured Code (Treatment 2) 0.79 0.92

Hypothesis Test
p-value 6.784250167060853e-05
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.74

Table 4.38: OVERALL - Question 15 - Statistics.

The results of question 15 in all groups are presented in Figure 4.32,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.38 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0001, which is below the alpha value of 0.1, with an effect size of
0.74, very close to being considered a large effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).
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4.2.3.2
Question 17

The models can be replaced without changing the controller. What is
your degree of agreement with the statement?

Figure 4.33: BARI - Question 17 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.07 4 [5]
Unstructured Code (Treatment 2) 3.53 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.88 1.23
Unstructured Code (Treatment 2) 1.04 1.24

Hypothesis Test
p-value 0.08730525788049082
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.43

Table 4.39: BARI - Question 17 - Statistics.

The results of question 17 in BARI are presented in Figure 4.33, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.39 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0873, which is below the alpha value of 0.1, with an effect size of
0.43, very close to being considered a medium effect. This indicates that there
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is statistical evidence to suggest that Treatment 1 (SOLID) leads to greater
agreement with the statement than Treatment 2 (Unstructured Code).

Figure 4.34: PUC - Question 17 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.25 5 [5]
Unstructured Code (Treatment 2) 4.25 4 [4 5]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.94 1.24
Unstructured Code (Treatment 2) 0.66 0.86

Hypothesis Test
p-value 0.26619201215880495

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.40: PUC - Question 17 - Statistics.

The results of question 17 in PUC are presented in Figure 4.34, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.40 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

Although the result of the hypothesis test did not show a statistically
significant difference between the Treatment 1 (SOLID) and Treatment 2
(Unstructured Code) groups regarding the statement "Models can be replaced
without needing to change the controller," we can still argue that Treatment
1 (SOLID) promotes a better understanding of this capacity, based on the
answers to question 17 and the justifications presented.
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In the group that received Treatment 1 (SOLID), a significantly larger
portion of participants (62.5%) totally agreed that models can be replaced
without changing the controller. This majority of "5 - Totally Agree" responses
demonstrate a clear understanding and confidence in the code’s ability to sup-
port model replacement without controller interventions. Their justifications
mentioned that the controller was designed to be generic, accepting models as
parameters. For example, one participant mentioned that "the models are pa-
rameterized in the controller", which means that the controller is independent
of the specific models and can work with different models without significant
changes.

On the other hand, in the group that received Treatment 2 (Unstructured
Code), although the majority (43.8%) also agreed with the statement, their
agreement was less emphatic. This difference in responses suggests a less
solid and confident understanding of the code’s ability to support model
replacement without controller changes. Their justifications were more varied.
Some participants mentioned that the function that processes models is generic
and does not need modifications for model switching, while others noted that
flexibility depends on the evaluation metric and the behavior of the models.
As an example, one participant responded, "Since what matters is the list of
models, if the model requires the same metric and is of the regressor type,
it would not be necessary. However, if the model to be tested has a different
metric or behavior, it would be necessary to modify the function or create a
new one". This suggests that, although there is agreement, participants in this
group expressed a somewhat less clear and direct understanding of the code’s
flexibility.

Therefore, based on the high percentage of participants who totally
agree with the statement, combined with justifications for their responses,
it suggests that participants in Treatment 1 (SOLID) have a more solid and
confident degree of agreement with the statement presented in question 17,
compared to participants in Treatment 2 (Unstructured Code), despite the
lack of statistically significant difference.
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Figure 4.35: SERPRO - Question 17 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.48 5 [5]
Unstructured Code (Treatment 2) 4.06 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.81 1.18
Unstructured Code (Treatment 2) 0.4 0.63

Hypothesis Test
p-value 0.003807243519790059
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.45

Table 4.41: SERPRO - Question 17 - Statistics.

The results of question 17 in SERPRO are presented in Figure 4.35,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.41 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0038, which is below the alpha value of 0.1, with an effect size of
0.45, very close to being considered a medium effect. This indicates that there
is statistical evidence to suggest that Treatment 1 (SOLID) leads to greater
agreement with the statement than Treatment 2 (Unstructured Code).
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Figure 4.36: OVERALL - Question 17 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.28 5 [5]
Unstructured Code (Treatment 2) 3.95 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.92 1.2
Unstructured Code (Treatment 2) 0.7 0.96

Hypothesis Test
p-value 0.004928369662340698
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.30

Table 4.42: OVERALL - Question 17 - Statistics.

The results of question 17 in all groups are presented in Figure 4.36,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.42 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0049, which is below the alpha value of 0.1, with an effect size of
0.30. This indicates that there is statistical evidence to suggest that Treatment
1 (SOLID) leads to greater agreement with the statement than Treatment 2
(Unstructured Code).
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4.2.3.3
Question 19

Changes in a model implementation do not imply changes in the con-
troller. What is your degree of agreement with the statement?

Figure 4.37: BARI - Question 19 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.8 4 [5]
Unstructured Code (Treatment 2) 3.3 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.91 1.09
Unstructured Code (Treatment 2) 0.5 0.59

Hypothesis Test
p-value 0.06325706533595894
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.59

Table 4.43: BARI - Question 19 - Statistics.

The results of question 19 in BARI are presented in Figure 4.37, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.43 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0633, which is below the alpha value of 0.1, with a medium
effect size of 0.59. This indicates that there is statistical evidence to suggest
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that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.38: PUC - Question 19 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.94 4 [5]
Unstructured Code (Treatment 2) 3.75 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.96 1.13
Unstructured Code (Treatment 2) 1.0 1.3

Hypothesis Test
p-value 0.35384736353087953

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.44: PUC - Question 19 - Statistics.

The results of question 19 in PUC are presented in Figure 4.38, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.44 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

Although the results of the hypothesis test did not show a statistically
significant difference between Treatment 1 (SOLID) and Treatment 2 (Un-
structured Code) regarding the statement "Changes in a model implementa-
tion do not imply changes in the controller," we can still argue that Treatment
1 (SOLID) promotes a better understanding of this capability based on the
responses to question 19 and the provided justifications.
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In the group that received Treatment 1 (SOLID), a significantly larger
portion of participants, 43.8%, totally agreed with the statement that changes
in a model implementation do not result in changes in the controller. This
majority of "5- Totally agree." responses demonstrates a clear understanding
and confidence in the code’s ability to support model changes without requiring
modifications to the controller. Their justifications mentioned that models
are independent of controllers and that changes in model implementations
would not significantly affect the controller’s functionality. For example, one
participant mentioned, "There is no need to alter the controller because
each model still follows the abstraction, that of the model superclass. It
always constructs the model without altering anything from the controller’s
perspective".

On the other hand, in the group that received Treatment 2 (Unstructured
Code), although 31.2% also totally agreed with the proposed statement, their
agreement was less emphatic. This difference in responses suggests a slightly
less solid and confident understanding of the code’s ability to support model
changes without controller alterations. Some participants mentioned that the
function processing of the models is specific and may require changes for dif-
ferent models or model changes. One participant mentioned, "As long as the
Model has the same methods (fit, predict, etc.), the internal implementation
can be changed." Another participant mentioned, "It changes because methods
accessed by the model may have been affected or have new names or parame-
ters."

Therefore, based on the percentage of participants who totally agree with
the statement, combined with justifications for their responses, it suggests
that participants in Treatment 1 (SOLID) have a more solid and confident
degree of agreement with the statement presented in question 19, compared to
participants in Treatment 2 (Unstructured Code), despite the lack of statistical
significance.
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Figure 4.39: SERPRO - Question 19 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.59 5 [5]
Unstructured Code (Treatment 2) 3.69 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.59 0.72
Unstructured Code (Treatment 2) 0.75 0.95

Hypothesis Test
p-value 0.001168880786491067
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.07

Table 4.45: SERPRO - Question 19 - Statistics.

The results of question 19 in SERPRO are presented in Figure 4.39,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.45 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0012, which is below the alpha value of 0.1, with a large effect
size of 1.07. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.40: OVERALL - Question 19 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.13 4 [5]
Unstructured Code (Treatment 2) 3.58 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.88 1.03
Unstructured Code (Treatment 2) 0.82 0.98

Hypothesis Test
p-value 0.0024062638472889053
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.54

Table 4.46: OVERALL - Question 19 - Statistics.

The results of question 19 in all groups are presented in Figure 4.40,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.46 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0024, which is below the alpha value of 0.1, with a medium
effect size of 0.54. This indicates that there is statistical evidence to suggest
that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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4.2.3.4
Question 21

The controller has loose coupling with model implementations. What is
your degree of agreement with the statement?

Figure 4.41: BARI - Question 21 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.14 4 [5]
Unstructured Code (Treatment 2) 3.53 3 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.81 1.0
Unstructured Code (Treatment 2) 0.68 0.8

Hypothesis Test
p-value 0.029838012543261735
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.67

Table 4.47: BARI - Question 21 - Statistics.

The results of question 21 in BARI are presented in Figure 4.41, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.47 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0298, which is below the alpha value of 0.1, with a medium
effect size of 0.67. This indicates that there is statistical evidence to suggest



Chapter 4. Experimental Study Results 91

that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.42: PUC - Question 21 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 3.88 4 [5]
Unstructured Code (Treatment 2) 3.82 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.93 1.15
Unstructured Code (Treatment 2) 0.91 1.23

Hypothesis Test
p-value 0.4526400721768805

Interpretation
Does not reject the null hypothesis: There is no evidence
that the median of ’SOLID’ is greater than the median of ’Unstructured’.

Table 4.48: PUC - Question 21 - Statistics.

The results of question 21 in PUC are presented in Figure 4.42, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.48 presents measures of central tendency, measures
of dispersion, and results of the hypothesis test.

The hypothesis test result does not reject the null hypothesis. There
is no statistical evidence that participants in Treatment 1 (SOLID) agree
more with the statement about low coupling than participants in Treatment 2
(Unstructured Code).

It is observed that the responses for both treatments vary significantly.
In both treatments, there are participants who totally agree, agree, disagree,
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and neither agree nor disagree with the statement about low coupling. This
indicates that the perception of the degree of coupling is not consistent among
participants.

The justifications provided by participants for their responses are also
diverse. Some participants in Treatment 1 (SOLID) claim that the controller
has low coupling due to its object-oriented approach and dependence only on
the model’s interface, while others argue that there is still some dependence
on specific model implementations. One participant commented, "There is
dependence only on the Model interface and not on Model implementations."
Another participant disagreed with their response but commented, "The
controller depends on a model that implements the expected interface (public
methods)."

In Treatment 2 (Unstructured Code), the justifications also vary, with
some participants emphasizing the independence of the function and others
pointing out potential dependencies. One participant commented, "It has
low coupling because it is independent of the models." Another participant
commented, "A change in the implementation of a model can lead to a change
in the processes_models function."

There is no clear consensus among participants in both treatments
regarding the degree of coupling. Some totally agree that there is low coupling,
while others disagree or do not have a strong opinion on the matter. This
suggests that the perception of coupling can be subjective and dependent on
individual interpretation.

In summary, based on the responses and justifications of participants,
along with the result of the hypothesis test, it is not possible to conclusively
state that Treatment 1 (SOLID) leads to a higher degree of agreement with the
statement about low coupling compared to Treatment 2 (Unstructured Code).
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Figure 4.43: SERPRO - Question 21 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.59 5 [5]
Unstructured Code (Treatment 2) 3.27 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.59 0.8
Unstructured Code (Treatment 2) 0.99 1.15

Hypothesis Test
p-value 0.0001269668037778324
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.32

Table 4.49: SERPRO - Question 21 - Statistics.

The results of question 21 in SERPRO are presented in Figure 4.43,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.49 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.32. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.44: OVERALL - Question 21 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.21 5 [5]
Unstructured Code (Treatment 2) 3.52 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.83 1.01
Unstructured Code (Treatment 2) 0.91 1.08

Hypothesis Test
p-value 0.0003345198533971498
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.65

Table 4.50: OVERALL - Question 21 - Statistics.

The results of question 21 in all groups are presented in Figure 4.44,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.50 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0003, which is below the alpha value of 0.1, with a medium
effect size of 0.65. This indicates that there is statistical evidence to suggest
that Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

4.2.4
ISP - Interface Segregation Principle
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4.2.4.1
Question 23

What is your perception about understanding the source code?

Figure 4.45: BARI - Question 23 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.2 5 [5]
Unstructured Code (Treatment 2) 3.65 4 [3]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.86 1.02
Unstructured Code (Treatment 2) 0.85 1.0

Hypothesis Test
p-value 0.05889495285502934
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.55

Table 4.51: BARI - Question 23 - Statistics.

The results of question 23 in BARI are presented in Figure 4.45, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.51 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0589, which is below the alpha value of 0.1, with a medium effect
size of 0.55. This indicates that there is statistical evidence suggesting that
Treatment 1 (SOLID) leads to a better understanding of the source code than
Treatment 2 (Unstructured Code).
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Figure 4.46: PUC - Question 23 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.5 4 [4 5]
Unstructured Code (Treatment 2) 4.07 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.5 0.52
Unstructured Code (Treatment 2) 0.47 0.69

Hypothesis Test
p-value 0.033171700123354395
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.72

Table 4.52: PUC - Question 23 - Statistics.

The results of question 23 in PUC are presented in Figure 4.46, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.52 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0332, which is below the alpha value of 0.1, with an effect size of
0.72, very close to being considered a large effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).
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Figure 4.47: SERPRO - Question 23 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.12 5 [5]
Unstructured Code (Treatment 2) 3.58 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 1.04 1.27
Unstructured Code (Treatment 2) 0.81 0.97

Hypothesis Test
p-value 0.034594182722377693
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.48

Table 4.53: SERPRO - Question 23 - Statistics.

The results of question 23 in SERPRO are presented in Figure 4.47,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.53 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0346, which is below the alpha value of 0.1, with an effect size of
0.48, very close to being considered a medium effect. This indicates that there
is statistical evidence suggesting that Treatment 1 (SOLID) leads to a better
understanding of the source code than Treatment 2 (Unstructured Code).
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Figure 4.48: OVERALL - Question 23 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.28 5 [5]
Unstructured Code (Treatment 2) 3.75 4 [4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.79 0.99
Unstructured Code (Treatment 2) 0.75 0.91

Hypothesis Test
p-value 0.000928821630030991
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.55

Table 4.54: OVERALL - Question 23 - Statistics.

The results of question 23 in all groups are presented in Figure 4.48,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.54 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
perception of code understanding between the two groups. The calculated p-
value was 0.0009, which is below the alpha value of 0.1, with a medium effect
size of 0.55. This indicates that there is statistical evidence suggesting that
Treatment 1 (SOLID) leads to a better understanding of the source code than
Treatment 2 (Unstructured Code).
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4.2.4.2
Question 25

The operations in the evaluator implementations are properly segregated
for evaluation of classification and regression algorithms. What is your degree
of agreement with the statement?

Figure 4.49: BARI - Question 25 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.0 4 [5]
Unstructured Code (Treatment 2) 2.95 3 [3 4]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.8 1.14
Unstructured Code (Treatment 2) 0.9 1.15

Hypothesis Test
p-value 0.0057089239759575555
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 0.92

Table 4.55: BARI - Question 25 - Statistics.

The results of question 25 in BARI are presented in Figure 4.49, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.55 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0057, which is below the alpha value of 0.1, with a large effect
size of 0.92. This indicates that there is statistical evidence to suggest that
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Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).

Figure 4.50: PUC - Question 25 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.07 4 [5]
Unstructured Code (Treatment 2) 1.63 1 [1]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.94 1.19
Unstructured Code (Treatment 2) 0.86 1.09

Hypothesis Test
p-value 1.0654155165429655e-05
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 2.14

Table 4.56: PUC - Question 25 - Statistics.

The results of question 25 in PUC are presented in Figure 4.50, where
the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.56 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 2.14. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).
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Figure 4.51: SERPRO - Question 25 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.42 5 [5]
Unstructured Code (Treatment 2) 1.9 2 [2]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.77 0.94
Unstructured Code (Treatment 2) 0.57 0.74

Hypothesis Test
p-value 6.140022430043098e-07
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 3

Table 4.57: SERPRO - Question 25 - Statistics.

The results of question 25 in SERPRO are presented in Figure 4.51,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.57 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect size
of 3. This indicates that there is statistical evidence to suggest that Treatment
1 (SOLID) leads to greater agreement with the statement than Treatment 2
(Unstructured Code).
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Figure 4.52: OVERALL - Question 25 - Frequencies normalized by treatment.

Measures of Central Tendency
Treatment Mean Median Mode
SOLID (Treatment 1) 4.17 5 [5]
Unstructured Code (Treatment 2) 2.16 2 [1]

Measures of Dispersion
Treatment Mean Absolute Deviation Standard Deviation
SOLID (Treatment 1) 0.87 1.08
Unstructured Code (Treatment 2) 0.94 1.13

Hypothesis Test
p-value 6.852381839511321e-12
Interpretation Reject the null hypothesis: The median of "SOLID" is greater than "Unstructured Code".
Effect Size (Cohen’s d): 1.82

Table 4.58: OVERALL - Question 25 - Statistics.

The results of question 25 in all groups are presented in Figure 4.52,
where the frequencies of participants’ responses are normalized by the type of
treatment applied. Table 4.58 presents measures of central tendency, measures
of dispersion, and hypothesis test results.

The hypothesis test shows a statistically significant difference in the
degree of agreement with the statement between the two groups. The calculated
p-value was 0.0001, which is below the alpha value of 0.1, with a large effect
size of 1.82. This indicates that there is statistical evidence to suggest that
Treatment 1 (SOLID) leads to greater agreement with the statement than
Treatment 2 (Unstructured Code).



5
Discussion

We discuss the obtained results for each SOLID principle based on the
results shown in Table 5.1, focusing on the observed statistical significance and
effect sizes.

Table 5.1: Consolidated results.

SRP
BARI PUC SERPRO Overall

Question p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size
1- What is your percep-
tion about understanding the
source code?

0.35 No 0.2 No 0.01 Yes 0.88 0.02 Yes 0.43

3- The responsibilities in the
code above are clearly dis-
tributed and defined. What
is your degree of agreement
with the statement?

0.01 Yes 1.15 0.01 Yes 2.25 0.01 Yes 1.46 0.01 Yes 1.56

5- The code block above has
classes structured to have a
single responsibility in the
software, that is, they are
specialized in a single subject.
What is your degree of agree-
ment with the statement?

0.01 Yes 1.37 0.01 Yes 3.31 0.01 Yes 1.72 0.01 Yes 1.88

7- The code above is struc-
tured so that your classes
have a single reason for
change. What is your degree
of agreement with the state-
ment?

0.01 Yes 0.98 0.01 Yes 1.86 0.01 Yes 1.46 0.01 Yes 1.42

OCP
BARI PUC SERPRO Overall

Question p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size
9- What is your percep-
tion about understanding the
source code?

0.19 No 0.21 No 0.02 Yes 0.72 0.01 Yes 0.48

11- It was easy to extend the
behavior of the software with
the addition of new models.
What is your degree of agree-
ment with the statement?

0.04 Yes 0.50 0.01 Yes 1.1 0.01 Yes 0.65 0.01 Yes 0.75

13- Adding new models
did not imply changing
pre-existing code. What is
your degree of agreement
with the statement?

0.07 Yes 0.52 0.01 Yes 1.44 0.01 Yes 1.29 0.01 Yes 0.82

LSP and DIP
BARI PUC SERPRO Overall

Question p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size
15- What is your percep-
tion about understanding the
source code?

0.02 Yes 0.78 0.01 Yes 0.73 0.02 Yes 0.71 0.01 Yes 0.74

17- The models can be re-
placed without changing the
controller. What is your de-
gree of agreement with the
statement?

0.09 Yes 0.43 0.27 No 0.01 Yes 0.45 0.01 Yes 0.3

19- Changes in a model im-
plementation do not imply
changes in the controller.
What is your degree of agree-
ment with the statement?

0.07 Yes 0.59 0.36 No 0.01 Yes 1.07 0.01 Yes 0.54

21- The controller has loose
coupling with model imple-
mentations. What is your de-
gree of agreement with the
statement?

0.03 Yes 0.67 0.46 No 0.01 Yes 1.32 0.01 Yes 0.65

ISP
BARI PUC SERPRO Overall

Question p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size p-value Reject H0 Effect Size
23- What is your percep-
tion about understanding the
source code?

0.06 Yes 0.55 0.04 Yes 0.72 0.04 Yes 0.48 0.01 Yes 0.55

25- The operations in the
evaluator implementations
are properly segregated
for evaluation of classi-
fication and regression
algorithms. What is your
degree of agreement with the
statement?

0.01 Yes 0.92 0.01 Yes 2.14 0.01 Yes 3 0.01 Yes 1.82

5.1
SRP - Single Responsibility Principle

In the context of the SRP principle, the results show that the null
hypothesis (H0) could not be rejected for the perception of the difficulty of
understanding the source code (Question 1) for the trials at the University of
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Bari and PUC-Rio but could be rejected for the SERPRO trial and considering
the aggregated results. Still, it is possible to observe a slightly higher perceived
ease of understanding for the SOLID treatment in all trials (cf. Figures 4.1 and
4.2). Not achieving statistically significant differences for the University of Bari
and PUC-Rio could be due to the slightly smaller sample size.

While a complete qualitative analysis of the open-ended questions is
not the main scope of this dissertation, we used this data aiming at better
understanding situations in which HO could not be rejected. At BARI, three
participants of the SOLID treatment considered the code hard to understand.
Out of these three, two explained their answers. One mentioned “I’m quite
new in the ML field, i’ve just studied some concepts for my personal projects,"
while the other one justified “I didn’t understand the part of features and
labels because I have no solid base of ML." Hence, their difficulties were
apparently more closely related to specific ML-related implementations than
to the code structure. At PUC-Rio, only one participant of the SOLID
treatment considered the code hard to understand, justifying it with “lack
of practice with object-oriented programming". Another important aspect is
that the original code was relatively small, potentially making the benefits of
distributing responsibilities clearer for the subsequent maintenance scenarios.
Indeed, many subjects of the Unstructured treatment also found the code easy
to understand. The limited sample size within a single trial can have isolated
cases of confounding factors leading to non-statistically significant results in
some cases.

The SRP questions regarding clearly distributed and defined responsi-
bilities (Question 3), single responsibilities (Question 5), and single reasons
for change (Question 7) allowed rejecting H0, with significantly low p-values
and high effect sizes. These results indicate that when it comes to specific as-
pects related to SRP, a significant and positive impact was perceived by the
participants.

Finding 1: Applying the SRP principle favors ML code understanding and
leads to the perception of benefits related to having clearly distributed and
defined ML code responsibilities, favoring future maintenance by having
single responsibilities and single reasons for change.

5.2
OCP - Open-Closed Principle

For OCP, the null hypothesis (H0) could also not be rejected concerning
the overall perception of the difficulty of understanding the related source code
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(Question 9) for the University of Bari and PUC-Rio. Nevertheless, a slightly
higher perceived ease of understanding was observed for the SOLID treatment
for all trials, even for the University of Bari and PUC-Rio (the difference can
be observed in the graphs provided in the online material (ANONYMOUS,
2023)). Not achieving statistically significant differences could be due to the
smaller sample size. Indeed, it was possible to reject H0 for the SERPRO trial
and for the aggregated results.

Looking at the qualitative data at the University of Bari, two participants
of the SOLID treatment considered the code difficult to understand, potentially
leading to the lack of statistical significance in the differences. Out of these two,
one provided an explanation "I don’t know these functions well", apparently
referring to difficulties related to the new specific regression ML algorithms
added as part of the OCP scenario and not to the code structure. At PUC-Rio,
all participants perceived the code as easy or very easy to understand. Still,
the difference favoring the SOLID treatment for PUC-Rio was not statistically
significant.

The OCP questions regarding ease of extension (Question 11) and not
implying changing existing code (Question 13) allowed rejecting H0, with
significantly low p-values and medium to high effect sizes. This indicates that
the application of OCP had a positive impact on the ease of extending the
software without modifying existing code.

Finding 2: Applying the OCP principle favors ML code understanding
and leads to the perception of benefits related to facilitating ML code
extensions without substantially changing existing code.

5.3
LSP and DIP - Liskov Substitution Principle and Dependency Inversion
Principle

For the LSP and DIP principles, the null hypothesis (H0) could be
rejected with statistical significance and medium to high effect sizes concerning
the overall perception of the difficulty of understanding the related source code
(Question 15), indicating that the application of the principles made it easier
to understand the ML code.

The specific questions related to model substitution (Questions 17 and
19) and low coupling (Question 21) also suggest that these principles had
a significant and positive impact on the participants’ perception regarding
these aspects. An exception was observed for the trial at PUC-Rio, where
these questions, while having answers slightly favoring the SOLID treatment
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(ANONYMOUS, 2023), did not allow rejecting H0. Digging into the qualitative
data allowed us to observe that for Question 17, out of the participants of the
SOLID treatment at PUC-Rio, only one participant strongly disagreed, and
one disagreed that models could be replaced without changing the controller,
potentially leading to the lack of statistically significant differences within
this trial. In their justifications, both argued that the controller had to be
modified to support a list of models. Hence, they slightly misinterpreted the
question, which referred to the ability to replace models within the list of
models handled by the improved controller. This same misunderstanding led
the one who strongly disagreed to also disagree with Questions 19 and 21, with
which the participant who disagreed with Question 17 agreed, observing that
changes in the implementation of a model would not affect the controller.

Finding 3: Applying the LSP and DIP principles favors ML code under-
standing and leads to the perception of benefits related to the flexibility of
substituting ML code elements and favoring low coupling.

5.4
ISP - Interface Segregation Principle

For the ISP principle, the results show that the null hypothesis (H0)
could be rejected with statistical significance and medium to high effect sizes
for all questions related to this principle. This indicates that the application
of ISP had a significant impact on the ease of understanding the ML source
code (Question 23). Furthermore, it indicated that the ISP had a significantly
positive impact on the participants’ perception of proper segregation of oper-
ations, in this case, related to establishing separate evaluation interfaces for
classification and regression algorithms.

Finding 4: Applying the ISP principle favors ML code understanding and
leads to the perception of proper segregation of interface operations, not
forcing ML code to depend upon methods that it does not use.

5.4.1
Implications

In summary, the consolidated analysis of the results with the combination
of all trials indicates that the application of SOLID principles has a significant
positive impact on ML code understanding and leads to the perception of
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several other benefits related to the ML system’s maintainability. These
results provide empirical evidence allowing us to assert that the application
of these principles is beneficial for improving ML code understanding and
maintainability.

Implications for researchers include having evidence to ground themselves
when referring to the need and benefits of applying software engineering design
best practices within the ML context. Of course, this study can also foster
additional experimental replications, potentially varying the experimental
objects and involving larger and more diverse samples. Furthermore, additional
studies are needed to investigate the effects of applying many other software
engineering practices within the ML context.

Implications for data science practitioners include the need to familiarize
themselves with software engineering design best practices in order to write
more robust ML code. For educators, the results indicate that, as society
becomes more and more dependent on ML-enabled systems, data science
curricula should include software engineering skills to ensure that these systems
and their ML components are built with quality and that they are easy to
maintain.



6
Threats to validity

In this chapter, we describe the threats to validity faced by this research
and the mitigation actions taken to control them within our possibilities.
We organize the threats according to the categories described by Wohlin et
al. (WOHLIN et al., 2012).

6.1
Internal Validity

Threats to internal validity are trial-related influences that can affect the
independent variable with respect to causality (WOHLIN et al., 2012). The
instrument was applied without any assistance from the researchers. Hence,
participants were not monitored during their activities, and some of them
could have conducted the task with less attention or within environments facing
interruptions, which may have affected their code understanding. Participants
were volunteers, and we had no way to control this threat. However, all
participants completed the tasks until the end and provided justification for
at least some of the open-ended questions, which leads us to assume that they
participated with attention.

Furthermore, before running the experimental trials, we conducted a pilot
study with four participants, which allowed us to observe an average effort
of 20 to 30 minutes. The pilot allowed us to improve the instrument with
some simplifications (removing two questions that were considered redundant)
and minor adjustments (e.g., adjusting the size of the code, some snippets to
improve readability, and adding definitions for some concepts). We considered
the effort reasonable for retaining the attention of the participants.

6.2
External Validity

Threats to external validity are conditions that limit our ability to
generalize the results of our experiment to industrial practice (WOHLIN et
al., 2012). Two threats to external validity involve the representativeness of
our subjects and the representativeness of our experimental object (i.e., the
ML code used as a basis for the experiment) and tasks.

With respect to the subjects, we aimed to mitigate this threat by carefully
characterizing them, allowing us to discuss their representativeness. Indeed,
while we had data scientists with varying levels of experience in all three
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samples, 75% of our sample received education within the area of computer
science. This does not properly reflect the observation of widely varying
educational backgrounds reported in the literature (AHO et al., 2020; KIM et
al., 2016). An explanation for this is that the data science graduate programs
at both universities were part of the informatics departments and that the
company was an IT company. Nevertheless, applying blocking allowed us to
observe that an improvement in the ease of ML code understanding when
SOLID principles are applied could also be observed for data scientists without
a computer science degree. Due to the small sample size within this group
not favoring significance testing or effect size calculations, we did not include
this (rather weak) analysis in the dissertation. Indeed, as commonly done
in controlled experiments in software engineering, we relied on convenience
sampling to recruit the best sample we were able to in order to make this
investigation happen and carefully describe its limitations. To further address
this threat, we call for additional external replications with more diverse
subjects.

Regarding the experimental object, to improve representativeness, we
used the real ML code of a solution deployed at an industrial partner of PUC-
Rio. This ML code was developed using Jupyter notebooks and without ap-
plying SOLID principles. For the SOLID treatment, to avoid any confounding
factors, we strictly redesigned the code by applying the principles. It is note-
worthy that the authors reviewed the code and that they include experts in
software design. To assess the code in a maintenance context, we also elicited
typical evolution scenarios that would make sense for the ML context based
on our experience with delivering ML-enabled systems to industrial partners.
These scenarios involved implementing several ML algorithms, assessing a list
of ML models, and assessing regression and classification algorithms. All of
these are commonly discussed tasks within the data science domain. Despite
the care, we also call for additional replications involving other experimental
objects and tasks.

6.3
Construct Validity

Construct validity concerns how well the treatments and outcome mea-
surements of the experimental design reflect the causes and effects being as-
sessed. We used real ML code as the basis for designing the experimental
object. For one treatment, we used the ML code as it was, while for the other,
we strictly applied the SOLID principles. Hence, this was the only difference
in the treatments, and therefore, we believe that using the SOLID principles
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(or not) properly reflects the cause for observed differences (measured using
the exact same questions and scales).

To avoid hypothesis guessing, we only informed participants that the
study aimed to understand the impact of design principles on understanding
machine learning code. They did not know which treatment they were (ran-
domly) assigned to. Also, their participation was on a volunteer basis, and we
informed them that the research would be conducted anonymously, avoiding
the evaluation apprehension threat.

To assess whether confounding factors would appear during the exper-
imental tasks, we conducted a pilot study, which allowed us to improve the
instrument further. We used the random assignment experimental design prac-
tice and characterized participants to control other potential confounding fac-
tors, such as background and experience. Nevertheless, we still observed some
isolated confounding factors taking place, like a few participants not properly
understanding some of the questions. Based on the qualitative analyses of the
open-ended justifications, we observed that these were rare and isolated cases,
not severely affecting the overall results. The instrument for each treatment
and all the collected data are available online (ANONYMOUS, 2023).

6.4
Conclusion Validity

Conclusion validity refers to the degree to which conclusions about the
relationship among variables based on the data are correct from a statistical
point of view (WOHLIN et al., 2012). Conclusion validity can be affected by
the sample size. We recruited 100 data scientists from 3 different origins: two
universities and one company. For the inferential statistics, we conservatively
employed the Mann-Whitney test with an alpha value of 0.1. Mann-Whitney
is a non-parametric statistical test that doesn’t pose assumptions on the data
distribution, and that can be safely applied to ordinal scales. Furthermore,
we observed mainly comparable scenarios for the different experimental trials,
improving our confidence in the results.
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Conclusion

7.1
Contributions

ML projects present unique challenges in terms of code understanding.
Among the primary factors contributing to these challenges are the inherently
experimental nature of ML and the variety of educational backgrounds of data
scientists. Despite these challenges and the importance of code understanding
for effective maintenance, we found no studies related to ML code comprehen-
sion in the literature.

In this dissertation, we take a step towards addressing this gap, inves-
tigating the impact of SOLID design principles on ML code understanding
by data scientists. We conducted a controlled experiment involving 100 data
scientists from three different organizations. The control group was presented
with ML code from a real industrial setting that did not incorporate SOLID
principles. The experimental group was presented with that same ML code
restructured by applying the SOLID principles. Subsequently, the data scien-
tists were tasked with analyzing the code and filling out a questionnaire that
included both closed-ended and open-ended questions related to their under-
standing of the code and their agreement with statements related to typical
implications of applying the SOLID principles.

The results indicate that the adoption of each of the five SOLID design
principles can significantly facilitate ML code understanding. Moreover, the
application of the principles was also perceived to lead to expected benefits
related to applying the SOLID principles. These benefits include having clearly
defined ML code responsibilities, facilitating ML code extensions without
substantially changing existing code, enabling substituting ML code elements,
favoring low coupling, and proper segregation of interfaces.

Our results highlight the relevance of SOLID principles in machine learn-
ing Software projects and suggest further research to enhance the relationship
between data science and traditional Software Engineering principles and best
practices. In light of these findings, we propose the dissemination of software
engineering design principles within the data science community, advocating
for their consideration as a means to enhance the maintainability of ML code.

Additionally, exploring code understanding in machine learning has
implications for the broader field of data science. As we observed, data



Chapter 7. Conclusion 112

scientists often come from diverse educational backgrounds without formal
software engineering training. Our research emphasizes the need for data
scientists and machine learning professionals to recognize the importance
of code understanding and the potential benefits of adhering to SOLID
Design Principles in their projects. These principles can serve as a bridge
between data science and software engineering, enhancing the effectiveness
of interdisciplinary teams.

7.2
Limitations

While this research has provided valuable insights into the impact of
SOLID principles on code understanding in machine learning projects, it is
important to acknowledge the limitations that should be considered when
interpreting the results and applying the findings. These limitations include:

– Sample Size: Sample size is a typical limitation in experimental studies
in software engineering. We managed to involve 100 participants in the
experiment. Although participants were recruited from different groups
(students and professionals), it is important to note that generalizing the
results to a broader population may still have some risks. Future studies
with additional samples could provide a more comprehensive view of
the effects of SOLID principles in different machine learning software
development contexts.

– Experiment Context: The experiment was conducted in a controlled
environment where participants were asked to analyze and evaluate code
in accordance with SOLID principles guidelines. While this method has
its advantages, it may not fully reflect the complexities of real-world
software development in machine learning projects. Therefore, applying
the results to practical situations requires careful consideration of the
nuances of real development.

– Subjective Nature of Participant Responses: Participant responses
regarding code understanding and agreement with SOLID principles
statements are subjective. Each individual’s perception may vary and
can be influenced by individual factors. While measures were taken to
minimize bias, the subjectivity of responses should be considered when
interpreting the results.

– Focus on SOLID principles: This research specifically focused on
SOLID principles of software design. Other software engineering practices
and factors that may affect code understanding in machine learning
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projects were not addressed. Therefore, the results should not be seen
as a comprehensive assessment of all aspects of software development in
this context.

– Exploratory Nature of the Study: This research is evaluative but
not conclusive. It provides preliminary evidence of the impact of SOLID
principles on code understanding in machine learning projects, but
additional studies are needed to validate and deepen these findings.

In summary, this research offers valuable insights, but it’s important
to acknowledge its limitations for a proper interpretation of the results.
Considering these limitations, the results of this study can serve as a starting
point for future research and software development practices in machine
learning projects.

7.3
Future work

This master’s dissertation paves the way for several areas of research
concerning the understanding of code in machine learning projects. Based on
the findings and limitations identified in this research, the following suggestions
are proposed for future work:

– Experiment Replication and Expansion: Conduct a replication of
the experiment with a larger and more diverse sample of participants,
including developers with different levels of experience and contexts of
machine learning applications. This would help validate and deepen the
conclusions obtained in this dissertation.

– Longitudinal Study: Carry out a longitudinal study to assess how the
impact of SOLID principles on code understanding evolves over time in
machine learning projects. This would allow for an analysis of whether
the initial improvements are sustained throughout the project’s lifecycle.

– Code Complexity Variation: Investigate how code complexity affects
the effectiveness of SOLID principles in machine learning projects. It
would be interesting to evaluate whether the observed benefits are more
pronounced in high-complexity projects.

– Comparison with Other Software Engineering Practices: Con-
duct comparative studies to assess how SOLID principles compare to
other software engineering practices in terms of their impact on code un-
derstanding in machine learning projects. This could include the analysis
of best practices specific to machine learning projects.
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– Development of Support Tools: Develop code analysis and design
tools that assist developers in effectively applying SOLID principles in
machine learning projects. These tools could provide real-time feedback
and guidance on how to improve the code.

– Cost-Benefit Analysis: Perform a cost-benefit analysis to evaluate
whether the application of SOLID principles in machine learning projects
is worthwhile in terms of development effort versus improvements in code
maintainability and understanding.

– Application in Different machine learning Domains: Extend the
research to assess the impact of SOLID principles in different domains of
machine learning applications, such as computer vision, natural language
processing, and others.

These suggestions represent a direction for future research related to code
understanding in machine learning projects.
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