

Richard Werneck de Carvalho

Um ambiente de suporte para uma linguagem de modelagem de sistemas multi-agentes

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio.

Orientadores: Prof. Carlos José Pereira de Lucena Prof. Ricardo Choren Noya

Richard Werneck de Carvalho

Um ambiente de suporte para uma linguagem de modelagem de sistemas multi-agentes

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos José Pereira de Lucena Orientador PUC-Rio

> Prof. Ricardo Choren Noya Co-orientador IME

Prof. Simone Diniz Junqueira BarbosaPUC-Rio

Prof. Renato Fontoura de Gusmão Cerqueira PUC-Rio

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 11 de março de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Richard Werneck de Carvalho

Graduou-se em Engenharia de Computação na PUC-Rio (Pontificia Universidade Católica do Rio de Janeiro) em dezembro de 2001.

Ficha Catalográfica

Carvalho, Richard Werneck de

Um ambiente de suporte para uma linguagem de modelagem de sistemas multi-agentes / Richard Werneck de Carvalho; orientadores: Carlos José Pereira de Lucena, Ricardo Choren Noya. – Rio de Janeiro : PUC-Rio, Departamento de Informática, 2005.

155 f.: il.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática.

Inclui referências bibliográficas

1. Informática – Teses. 2. Sistemas multi-agentes. 3. agentes. 4. Linguagem de modelagem. 5. Anote. 6. ASYNC. I. Lucena, Carlos José Pereira de. II. Noya, Ricardo Choren. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática.

CDD: 004

À Deus, por sempre estar ao meu lado, me iluminando e abençoando, e me proporcionando momentos de intensa felicidade e realização, como a conclusão deste trabalho.

Aos meus familiares, meu pai Carlos Alberto, minha mãe Madeleine e meu irmão Frederico, por todo amor e carinho a mim oferecidos. O apoio e o incentivo que sempre me proporcionaram, foram fundamentais para a realização do meu ideal.

A vocês, exemplos de integridade e dignidade, dedico este trabalho.

Agradecimentos

Ao meu orientador, Professor Carlos José Pereira de Lucena, e ao co-orientador, Ricardo Choren, que me deram oportunidade para desenvolver este trabalho. Suas orientações, amizade e apoio foram fundamentais durante esta jornada.

Aos meus amigos do TecComm/LES, pela amizade e pelos conhecimentos transmitidos sempre que requisitados.

À PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão da bolsa de estudo.

A todos que estiveram envolvidos direta ou indiretamente na realização deste trabalho.

Resumo

de Carvalho, Richard Werneck. **Um ambiente de suporte para uma linguagem de modelagem de sistemas multi-agentes.** Rio de Janeiro, 2005. 155p. Dissertação de Mestrado - Departamento de Informática, Pontificia Universidade Católica do Rio de Janeiro.

Este trabalho propõe a criação de um ambiente que dê suporte computacional ao desenvolvimento de sistemas multi-agentes, auxiliando o desenvolvedor durante o ciclo de vida de construção (da modelagem à implementação) destes sistemas. Estaremos utilizando o ANote como linguagem de modelagem para especificação e análise de sistemas multi-agentes e a arquitetura ASYNC para o processo de desenvolvimento. Ocorrendo assim, uma transformação dos diagramas do ANote para a arquitetura ASYNC.

Palayras-chave

Sistemas multi-agentes, agentes, linguagem de modelagem, ANote, ASYNC.

Abstract

de Carvalho, Richard Werneck. **An environment of support for a modeling language of multi-agents systems.** Rio de Janeiro, 2005, 155p. MSc. Dissertation - Computer Science Department, Pontifical University Catholic of Rio De Janeiro.

This work considers the creation of an environment that gives to computational support to the development of multi-agents systems, assisting the developer during the cycle of life of construction (the modeling to the implementation) of these systems. We will be using ANote as modeling language for specification and analysis of multi-agents systems and architecture ASYNC for the development process. Thus occurring, a transformation of the diagrams of ANote for architecture ASYNC.

Keywords

Multi-agents systems, agents, modeling language, ANote, ASYNC.

Sumário

1 Introdução	15
1.1. Motivação	16
1.2. Objetivo	18
1.3. Contribuições	19
1.4. Guia do Leitor	20
2 Sistemas Multi-Agentes e Ambientes de Desenvolvimento de Software	e21
2.1. Caracterização de SMA	21
2.1.1. Conceitos Básicos	22
2.2. Ambiente de Desenvolvimento de Software (ADS)	24
2.3. Trabalhos Relacionados	26
3 Fundamentos teóricos e tecnologias básicas	28
3.1. ANote	28
3.2. ASYNC	33
3.3. Tecnologias Utilizadas	35
3.3.1. XML	35
3.3.2. JAVA	36
3.3.3. Plataforma Eclipse	37
4 ALBATROZ : Um ambiente para desenvolvimento de SMA	41
4.1. Albatroz	41
4.2. Plug-in de Manipulação de Diagramas do ANote	43
4.2.1. Os Diagramas do ANote	45
4.2.2. Funcionalidades Adicionais	50
4.3. Plug-in Transform	51
4.3.1. Flexibilizando a ferramenta Transform para outras Configurações	56
4.4. Plug-in Generator	57
4.4.1. Flexibilizando a ferramenta Generator para outras configurções	59

5 ESTUDO DE CASO	61
5.1. O Learn Agents	61
5.1.1. Diagrama de Objetivos	63
5.1.2. Diagrama de Classes de Agentes	64
5.1.3. Diagrama de Ontologias	64
5.1.4. Diagrama de Cenários	65
5.1.5. Diagrama de Planejamento	66
5.1.6. Diagrama de Interação	66
5.1.7. Diagrama de Organização	67
5.1.8. A implementação do Sistema	68
5.2. Usando o Albatroz	68
5.2.1. Apoio Visual	69
5.2.2. Transformação para ASYNC	72
5.2.3. Geração Parcial	80
5.3. Análise Crítica	88
6 Conclusão	90
6.1. Trabalhos Futuros	91
O.T. Trabalilos i uturos	91
7 Referência	92
A A	0.5
Anexo A	95
A.1 DTD do ANote	95
A.2 DTD do Transform	99
A.3 DTD do Generator	100
A.4 Template do Generator	100
A.5 Template do GeneratorIDL	104
A.6 Classes geradas no exemplo do capitulo 4.4	109
Anexo B	111
B.1 Estrutura intermediária gerada pelo ANote para o Estudo de Caso	111
B 2 Estrutura intermediária gerada nelo Transform para o Estudo de C	:ลรด1

Anexo C	127
C.1 Código gerado pelo Generator para o Estudo de Caso	127

Lista de figuras

Figura 1 – Visão de Objetivos do Alnote	29
Figura 2 – Visão de Agentes do ANote	30
Figura 3 – Visão de Planejamento	31
Figura 4 – Visão de Interação	32
Figura 5 – Visão de Organização	32
Figura 6 – Diagrama de Classe do ASYNC	34
Figura 7 – Plataforma do Eclipse	38
Figura 8 – Diagrama do GEF	40
Figura 9 – Ambiente Albatroz	41
Figura 10 – Plataforma Eclipse com o Albatroz	42
Figura 11 – Ferramenta visual do ANote	43
Figura 12 – Meta-modelo do ANote parte 1	44
Figura 13 – Meta-modelo do ANote parte 2	44
Figura 14 – Estrutura intermediária do ANote	45
Figura 15 – Diagrama de Objetivos	45
Figura 16 – Diagrama de Organizações	46
Figura 17 – Diagrama de Classe de Agentes	46
Figura 18 – Diagrama de Ontologias	47
Figura 19 – Agentes de interação no cenário	47
Figura 20 – Diagrama de Planejamento	48
Figura 21 – Diagrama de Cenário	49
Figura 22 – Diagrama de Interação	49
Figura 23 – Visão de Propriedades	50
Figura 24 – Visão Outline	50
Figura 25 - Zoom	51
Figura 26 - Help	51
Figura 27- Transformação dos Modelos	52
Figura 28 – Meta-modelo do Transform	53
Figura 29 – Estrutura intermediária do Transform	53
Figura 30 - Transform	54

Figura 31 – Estrutura complementar do Transform 54
Figura 32 – Meta-modelo do Generator IDL 56
Figura 33 – Meta-modelo do Generator 58
Figura 34 – Estrutura intermediaria do Generator 58
Figura 35 – Classe de exemplo gerada pelo Generator 59
Figura 36 – Chamada para o GeneratorIDL parte 1 60
Figura 37 – Chamada para o GeneratorIDL parte 2 60
Figura 38 - TAC 62
Figura 39 - Diagrama de Objetivos do LearnAgents desenvolvido sem
Albatroz 63
Figura 40 – Diagrama de Classe dos Agentes do LearnAgents
desenvolvido sem Albatroz 64
Figura 41 – Diagrama de Ontologias do LearnAgents desenvolvido sem
Albatroz 65
Figura 42 – Cenário do LearnAgents desenvolvido sem Albatroz 65
Figura 43 - Diagrama de Planejamento do LearnAgents desenvolvido
sem Albatroz 66
Figura 44 - Diagrama de Interação do LearnAgents desenvolvido sem
Albatroz 67
Figura 45 - Organização do LearnAgents desenvolvido sem Albatroz 68
Figura 46 - Classes geradas a partir do agente PredizerPreco 68
Figura 47 – Diagrama de Objetivos do LearnAgents desenvolvido com
Albatroz 69
Figura 48 – Diagrama de Organizações do LearnAgents desenvolvido
com Albatroz 69
Figura 49 - Diagrama de Agentes do LearnAgents desenvolvido com
Albatroz 70
Figura 50 – Diagrama de Ontologias do LearnAgents desenvolvido com
Albatroz 70
Figura 51 – Cenário do LearnAgents desenvolvido com Albatroz 71
Figura 52 – Diagrama de Planejamento do LearnAgents desenvolvido
com Albatroz 71
Figura 53 – Diagrama de Interação do LearnAgents desenvolvido com

Albatroz	72
Figura 54 – Estrutura intermediária do ANote para o Estudo de Caso	72
Figura 55 – Chamada para o ANote parte 1	73
Figura 56 – Chamada para o ANote parte 2	73
Figura 57 – Regra 1	74
Figura 58 – Regra 2	75
Figura 59 – Regra 3	77
Figura 60 – Regra 4	78
Figura 61 – Regra 5	79
Figura 62 – Estrutura intermediária gerada pelo Transform para Estud	lo de
Caso	80
Figura 63 – Chamada para o Generator parte 1	81
Figura 64 – Chamada para o Generator parte 2	81
Figura 65 – Estrutura de pacotes e suas classes geradas pelo Gene	rator
	82
Figura 66 - Geração de Código	83
Figura 67 – Comparação de pacotes	84

Lista de abreviaturas

ADS - Ambiente de Desenvolvimento de Software

ADSMA - Ambiente de Desenvolvimento de Software Multi-Agente

AUML - Agent UML

BDI - Belief Desire Intention

DTD - Document Type Definition

EJB - Enterprise JavaBeans

EMF - Eclipse Modeling Framework

GEF - Graphical Editing Framework

IDE - ambientes integrados de desenvolvimento

IDL - Interface Definition Language

JDE - Jack Development Environment

JDK - Java Developer's Kit

JDT - Java Development Tooling

OCL - Object Constraint Language

OMA - Object Management Architecture

PDE - Plug-in Developer Environment

SMA - Sistemas Multi-Agentes

SO - Sistemas Operacionais

SWT - Standard Widget Toolkit

UML - Unified Modeling Language

XMI - XML Metadata Interchange

XSD - XML Schema Definition