2 Preliminares

Neste capítulo vamos apresentar os conceitos básicos de Geometria Computacional necessários para a realização deste trabalho.

2.1 Complexo Simplicial

Começamos o capítulo com o conceito de complexo simplicial, que é uma estrutura combinatória simples bastante utilizada em Geometria Computacional. Como referência, indicamos [2].

Definição 2.1 (Fecho Convexo) *O fecho convexo Conv*(*C*) de um conjunto finito $C = \{p_1, p_2, ..., p_m\}$ de pontos do \mathbb{R}^2 é o conjunto de todas as combinações convexas de elementos de *C*, isto é, $Conv(C) = \{\lambda_1 p_1 + \lambda_2 p_2 + ... + \lambda_m p_m / \lambda_i \geq 0, \forall i \in \lambda_1 + \lambda_2 + ... + \lambda_m = 1\}.$

Definição 2.2 (Simplexo) Um p - simplexo em \mathbb{R}^2 , $p \leq 2$ é o fecho convexo de p+1 pontos v_0, \ldots, v_p de tal forma que os vetores $v_1 - v_0, \ldots, v_p - v_0$ sejam linearmente independentes. Os pontos v_0, \ldots, v_p são chamados de vértices do simplexo e p é a dimensão do simplexo. Denotaremos por σ_T o simplexo cujo conjunto de vértices é representado por T.

• •

2.1(b): 1–simplexo

Definição 2.3 (Face de um simplexo) Seja σ um simplexo de dimensão p, $p \leq 2$ e γ um simplexo de dimensão $k \leq p$. Dizemos que γ é face de σ quando os vértices de γ formam um subconjunto dos vértices de σ .

Figure 2.2: γ_T é face de δ_T

Definição 2.4 (Complexo Simplicial) Um *complexo simplicial* \mathcal{K} em \mathbb{R}^2 é um conjunto finito de simplexos em \mathbb{R}^2 tais que :

(i) Se $\gamma \in \mathcal{K}$ e τ é face de γ , então $\tau \in \mathcal{K}$.

(ii) Se $\gamma,\sigma\in\mathcal{K}$, então $\gamma\,\cap\,\sigma=\emptyset$ ou $\gamma\cap\sigma$ é uma face comum a γ e a $\sigma.$

2.3(b): Não são Complexos Simpliciais

Figure 2.3: Complexo Simplicial

2.2 União de Bolas

Em Biologia, um modelo utilizado para a representação de moléculas consiste em representar um átomo por uma bola cujo raio depende do tipo de átomo. Este modelo é chamado de Modelo de Van der Waals. Daí, o grande interesse no estudo de união de bolas, também chamada de *polibolas*. Como referência, indicamos [11] e [3]. Em Geometria Computacional também existe grande interesse nas polibolas, uma vez que qualquer objeto pode ser aproximado por uma união de bolas, vide [9].

Definição 2.5 (União de Bolas) Uma *união de bolas em* \mathbb{R}^2 é uma união finita de bolas fechadas de \mathbb{R}^2 . Assim, podemos escrever uma união de bolas \mathcal{U} como $\mathcal{U} = \bigcup B_i$, com $1 \leq i \leq k$, onde B_i representa uma bola fechada.

Figure 2.4: União de Bolas

Observemos que uma união de bolas pode ter uma forma bastante geral. Ela pode ser formada por várias componentes conexas, ter buracos e cavidades.

Figure 2.5: Exemplos de Uniões de Bolas

É importante observar que a estrutura de uma união de bolas não é necessariamente mínima. Assim, se uma união de bolas se escreve como $\mathcal{U} = \bigcup B_i$, certas bolas podem ser supérfluas.

Figure 2.6: Escrita Mínima

Definição 2.6 (Escrita Mínima) Seja \mathcal{U} uma união de bolas. Dizemos que $\mathcal{U} = \bigcup B_i, 1 \leq i \leq k$ é uma *escrita mínima de* \mathcal{U} se \mathcal{U} não pode ser escrita como a união de um subconjunto dos $B'_i s$.

As definições abaixo serão extremamente importantes para podermos fazer uma relação entre a união de bolas e o α -shape que será apresentado mais adiante.

Definição 2.7 (Vértices) O conjunto dos *vértices* de \mathcal{U} é formado por todos os pontos provenientes das interseções entre todas as bolas de \mathcal{U} e que estão situados no bordo $\partial \mathcal{U}$ de \mathcal{U} . Denotaremos este conjunto por \mathcal{V} .

Figure 2.7: Vértices da União de Bolas

Definição 2.8 (0 - componente) Uma 0-componente do bordo de \mathcal{U} é um subconjunto de \mathcal{V} contido na interseção entre duas bolas de \mathcal{U} . Note que uma mesma 0-componente pode conter um ou dois pontos de \mathcal{V} .

Definição 2.9 (1 - componente) Uma 1-componente do bordo de \mathcal{U} é o arco de círculo determinado por dois pontos de \mathcal{V} consecutivos no bordo de \mathcal{U} .

Figure 2.8: Componentes do $\partial \mathcal{U}$

Figure 2.9: 0-componente formada por dois pontos

Observemos que o conjunto das 0-componentes adicionado ao conjunto das 1-componentes do bordo de \mathcal{U} formam todo o bordo de \mathcal{U} .

2.3 Triangulação de Delaunay e Diagrama de Voronoi

Nesta seção, apresentaremos a Triangulação de Delaunay e seu grafo dual, chamado de Diagrama de Voronoi, que são estudados e aplicados em diversas áreas da matemática. A Triangulação de Delaunay de um conjunto de pontos em \mathbb{R}^2 é uma coleção de simplexos que satisfazem a propriedade de *círculo vazio:* para cada simplexo, podemos encontrar um círculo que contém os vértices deste simplexo e que não contém nenhum outro ponto. Como referência, podemos citar [8], [6], [2] e também [13].

2.3.1 Diagrama de Voronoi

Dado um conjunto $S = \{x_1, \ldots, x_n\}$ de pontos no plano, cada elemento x_i determina uma região $V_i = \{x \in \mathbb{R}^2/d(x_i, x) \leq d(x_j, x), \forall j \neq i\}$, onde d(,) denota a distância Euclidiana em \mathbb{R}^2 . O conjunto de todos os V'_i s formam uma partição de \mathbb{R}^2 . Esta decomposição é chamada de *Diagrama de Voronoi de S* e é denotada por Vor(S).

Figure 2.10: Diagrama de Voronoi

Propriedades do Diagrama de Voronoi

Teorema 2.1 As regiões de Voronoi correspondentes a um par de pontos x_i , x_j de S possuem uma aresta em comum se e somente se existe um círculo contendo $x_i \in x_j$ e tal que todos os demais pontos de S sejam exteriores a este círculo.

Figure 2.11: Propriedade 1

Teorema 2.2 Todo centro v de Vor(S) é comum a pelo menos três regiões de Voronoi e é centro de um círculo C(v) definido pelos pontos de S corres – pondentes às regiões que se encontram em v. Além disso, C(v) não contém nenhum outro ponto de S.

Figure 2.12: Propriedade 2

Teorema 2.3 Uma região de Voronoi é ilimitada se e somente se o ponto correspondente x_i pertence à fronteira de Conv(S).

Figure 2.13: Propriedade 3

2.3.2 Grafo Dual

No Diagrama de Voronoi, cada elemento de S está associado a uma região de Vor(S). O grafo dual de Vor(S) tem por vértices os elementos de S e por arestas os pares de S cujas regiões de Voronoi são vizinhas. Considere agora o diagrama obtido representando estas arestas pelos segmentos de reta que ligam os elementos respectivos de S. Tal diagrama é chamado de *Triangulação de Delaunay de S*, o que nos dá a seguinte definição:

Definição 2.10 (Triangulação de Delaunay) Dado um conjunto $S \subseteq \mathbb{R}^2$ em posição geral, isto é, quatro pontos quaisquer de S não estão sobre o mesmo círculo, a *Triangulação de Delaunay* DT(S) consiste em :

(i) Todos os 2-simplexos σ_T , com $T \subseteq S$ tais que o círculo circunscrito a T não contém nenhum ponto de S e

(ii) Todos os k - simplexos (k = 0, 1) que são faces de algum outro simplexo em DT(S).

Figure 2.14: Triangulação de Delaunay

Observemos que a fronteira do fecho convexo dos pontos está incluída na Triangulação de Delaunay.

2.4 Triangulação Regular e Diagrama de Potências

Nesta seção apresentaremos os conceitos da Triangulação Regular e do Diagrama de Potências que são generalizações da Triangulação de Delaunay e do Diagrama de Voronoi para pontos com peso. Um ponto com peso (ou bola) é denotado por p = (x, r), onde $x \in \mathbb{R}^2$ é dito *posição* de p e $r \in \mathbb{R}$ é dito *peso* de p. Para maiores detalhes sobre este assunto, sugerimos a referência [2].

2.4.1 Diagrama de Potências

Definição 2.11 (Potência) Seja p_0 um ponto com peso e seja $x \in \mathbb{R}^2$. A potência de x em relação a p_0 é definida por $\pi(p_0, x) = d(x_0, x)^2 - r_0^2$.

Figure 2.15: Potência de x em relação a p_0

Definição 2.12 (Eixo Radical) Sejam p_0 , p_1 duas bolas. *O eixo radical* $ER(p_0, p_1)$ é o conjunto de pontos definido por $ER(p_0, p_1) = \{x \in \mathbb{R}^2 / \pi(p_0, x) = \pi(p_1, x)\}.$

Figure 2.16: Eixo Radical entre duas bolas

Observamos que o eixo radical é uma reta porque consideramos a potência como a distância entre um ponto com peso e um ponto em \mathbb{R}^2 . Podemos definir outras distâncias entre eles de modo que o eixo radical tenha a forma de um arco, por exemplo. Para maiores detalhes sobre esta discussão, sugerimos, também, a referência [2].

Definição 2.13 (Distância π) Para dois pontos com peso $p_1 = (x_1, r_1)$ e $p_2 = (x_2, r_2)$, defina $\pi(p_1, p_2) = d(x_1, x_2)^2 - r_1^2 - r_2^2$, onde d(,) denota a distância Euclidiana em \mathbb{R}^2 .

Definição 2.14 (Ortogonalidade) Duas bolas p_0 , p_1 são ditas ortogonais se $\pi(p_0, p_1) = 0$.

Definição 2.15 (Centro Radical) Sejam p_0 , p_1 , p_2 três bolas cujos centros são linearmente independentes. O ponto de interseção dos C_2^3 eixos radicais é chamado de *centro radical*. O centro radical é o centro de uma bola X ortogonal à p_0 , $p_1 \in p_2$.

Figure 2.17: Centro Radical

Definição 2.16 (Diagrama de Potências) O Diagrama de Potências é definido para um conjunto finito de pontos com peso. Seja $S = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^2 \times \mathbb{R}$ um tal conjunto. Assim, cada elemento p_i de S determina uma região $W_i = \{p \in \mathbb{R}^2 / \pi(p_i, p) \le \pi(p_j, p), \forall j \neq i\}$. O conjunto de todos os W'_i s formam uma patição de \mathbb{R}^2 . Esta decomposição é chamada de *Diagrama de Potências (ou Laguerre) de S* e é denotada por Pot(S).

Figure 2.18: Diagrama de Potências

Definição 2.17 (Simplexo Regular) Seja T um conjunto de três bolas . O simplexo σ_T é dito regular se existe uma bola X tal que $\pi(X, p_i) = 0, \forall p_i \in T$ e $\pi(X, p_j) > 0, \forall p_j \in S - T$.

Definição 2.18 (Triangulação Regular) A coleção de todos os 2-simplexos regulares define a *Triangulação Regular de S*, denotada por $\mathcal{R}(S)$.

Figure 2.19: Triangulação Regular de pontos com peso

2.5 α -Shape

O conceito de α -shape formaliza a noção intuitiva da "forma" de um conjunto de pontos, que aparece frequentemente nas ciências computacionais. Um α -shape é um objeto geométrico concreto que é unicamente determinado por um conjunto particular de pontos e que não é necessariamente convexo nem conexo.

Definição 2.19 (Bola Vazia / Simplexo α -exposto) Para $0 < \lambda < \infty$ uma λ -bola é uma bola aberta de raio λ . Uma certa λ -bola b é dita vazia se $b \cap S = \emptyset$. Assim, um k-simplexo σ_T (k = 0, 1) é dito α -exposto se existe uma α -bola vazia com $T = \partial b \cap S$.

Figure 2.20: simplexo α -exposto / simplexo não α -exposto

Definição 2.20 (α **-complexo)** Para um conjunto de pontos $S \subset \mathbb{R}^2$ e $0 \leq \alpha \leq \infty$, *o* α *-complexo* C_{α} *de* S é um subcomplexo simplicial de DT(S). Um simplexo σ_T de DT(S) está em C_{α}

(i) se o círculo de menor raio r que passa pelos vértices de σ_T não contém nenhum outro ponto de S - T e é tal que $r < \alpha$ ou

(ii) se σ_T é face de outro simplexo em \mathcal{C}_{α} .

Figure 2.21: $DT(S) / \partial S_{\alpha} / C_{\alpha}$

Definição 2.21 (α -shape) $O \alpha$ -shape S_{α} de um conjunto de pontos $S \subseteq \mathbb{R}^2$ consiste na realização geométrica do complexo simplicial C_{α} .

Teorema 2.4 O bordo ∂S_{α} do α -shape de um conjunto de pontos S em \mathbb{R}^2 consiste em todos os k-simplexos (k = 0, 1) de S que são α -expostos.

Figure 2.22: S_{α}

2.6 α -Shape com peso

O conceito de α -shape também pode ser generalizado para um conjunto de pontos com peso. Como referência, indicamos [4].

Definição 2.22 (α -complexo) Para um conjunto de pontos $S \subset \mathbb{R}^2 \ge \mathbb{R}$ e $0 \le \alpha \le \infty$, o α -complexo \mathcal{C}_{α} de S é um subcomplexo simplicial de $\mathcal{R}(S)$. Sejam σ_T um simplexo de $\mathcal{R}(S)$ e X = (x, w) o círculo de menor peso ortogonal aos círculos cujos centros são os vértices de σ_T . σ_T está em \mathcal{C}_{α} se (i) $w^2 < \alpha \in \pi(p, X) > 0$, para todo $p \in S - T$ ou (ii) σ_T é face de outro simplexo em $\mathcal{R}(S)$.

Definição 2.23 (α **-shape)** $O \alpha$ *-shape* S_{α} de um conjunto de pontos com peso S consiste na realização geométrica do complexo simplicial C_{α} .

Definição 2.24 (Simplexo α -exposto) Considere um conjunto S de pontos com peso. Um k-simplexo σ_T (k = 0, 1) é dito α -exposto se existe um ponto com peso $X = (x, \alpha)$ tal que $\pi(p, X) = 0$, para todo $p \in T$ e $\pi(q, X) > 0$, para todo $q \in S - T$.

Teorema 2.5 O bordo ∂S_{α} do α -shape de um conjunto de pontos com peso S consiste em todos os k-simplexos (k = 0, 1) de S que são α -expostos.

Figure 2.23: α -shape de pontos com peso

0-shape

Propriedade: Suponha que a união de bolas \mathcal{U} está na sua escrita mínima. Um simplexo σ_T de $\mathcal{R}(S)$ está no 0-shape se, e somente se, as bolas correspondentes se interceptam.

De fato, se σ_T está no 0-shape, existe um ponto X que define a mesma potência negativa em relação às bolas cujos centros determinam σ_T . Assim, X é interior à todas as bolas que definem σ_T , o que significa que X é um ponto comum às bolas que definem σ_T .

Reciprocamente, se as bolas cujos centros definem σ_T se interceptam, o ponto X que realiza a mesma potência em relação às bolas de σ_T deve estar no interior de todas as bolas correspondentes. Assim, a potência de X em relação às bolas é negativa e o simplexo σ_T está no 0-shape.

Figure 2.24: Círculo Ortogonal

Figure 2.25: 0-shape

Apresentaremos abaixo o conceito de *dualidade* que relaciona a estrutura do α -shape com a união de bolas.

Definição 2.25 (Dualidade) Sejam γ uma 0-componente do bordo de \mathcal{U} e σ o 1-simplexo do α -shape cujos vértices são os centros das bolas cuja interseção

contém γ . Analogamente, sejam γ uma 1-componenete do bordo de \mathcal{U} e σ o 0-simplexo do α -shape cujo vértice é o centro da bola que contém γ . Dizemos que γ e σ são duais.

Figure 2.26: Dualidade

Definição 2.26 (Aresta Singular / Componente Regular) Uma aresta no bordo ∂S_{α} do α -shape é singular se ela não é uma face de um simplexo de dimensão 2 do α -complexo C_{α} . Se removermos as arestas singulares do α -shape S_{α} , as componentes conexas restantes são ditas componentes regulares.

Figure 2.27: Aresta Singular e Componente Regular

2.7 Eixo Medial

O eixo medial de um objeto é uma estrutura que carrega informações sobre a topologia deste objeto, vide figura 2.28. A complexidade do eixo medial está relacionada com a complexidade do objeto. Por isso, se quisermos simplificar um objeto, é natural pensarmos em simplificar seu eixo medial. Esta estrutura possui várias aplicações em geração de malhas, reconstrução de curvas e superfícies e em modelagem geométrica. Em [12], por exemplo, temos um trabalho teórico que mostra o que acontece com o eixo medial de uma curva sob a ação do movimento por curvatura. **Definição 2.27 (Eixo Medial)** O *eixo medial* \mathcal{X} de um objeto \mathcal{O} é o fecho do conjunto de pontos $m \in \mathcal{O}$ tais que a distância de m ao bordo de \mathcal{O} está realizada em pelo menos dois pontos.

Figure 2.28: Eixo Medial

2.8 Eixo Medial de União de Bolas

Em [11], Nina Amenta nos dá uma caracterização para o eixo medial de uma união de bolas e propõe um algoritmo que será descrito na próxima seção. Descrevemos abaixo alguns dos resultados que podem ser encontrados nesta referência.

Teorema 2.6 (Eixo Medial de União de Bolas–Attali [1]) Sejam \mathcal{U} uma união de bolas, \mathcal{V} seus vértices e \mathcal{S}_{α} seu α -shape. O *eixo medial* \mathcal{X} de \mathcal{U} consiste: (i) nas arestas singulares de \mathcal{S}_{α} e

(ii) no subconjunto das separatrizes do Diagrama de Voronoi $Vor(\mathcal{V})$ cujo ponto mais próximo da fronteira $\partial \mathcal{U}$ de \mathcal{U} é um vértice em \mathcal{V} .

Teorema 2.7 (Eixo Medial de União de Bolas–Amenta) Sejam \mathcal{U} uma união de bolas, \mathcal{V} seus vértices e \mathcal{S}_{α} seu α -shape. O *eixo medial* \mathcal{X} de \mathcal{U} consiste: (i) nas arestas singulares de \mathcal{S}_{α} e

(ii) na interseção das separatrizes do Diagrama de Voronoi $Vor(\mathcal{V})$ com as componentes regulares de \mathcal{S}_{α} .

Figure 2.29: Eixo Medial de União de Bolas

No final desta seção, faremos a demonstração do teorema 2.7. Mas antes disto, apresentaremos algumas observações e alguns lemas que serão utilizados nesta demonstração.

Observação 2.1 Para cada ponto $x \in \mathcal{U}$ - S_{α} existe um único ponto $u \in \partial \mathcal{U}$ tal que para todo $v \in \partial \mathcal{U}$, $d(\mathbf{u}, \mathbf{x}) < d(\mathbf{v}, \mathbf{x})$.

Observação 2.2 Se $y \in \sigma_T$, onde σ_T é um simplexo em ∂S_{α} , então y é centro de um círculo b tal que a face dual a σ_T , $\gamma_T \subseteq \partial b \subseteq \partial \mathcal{U}$.

Figure 2.30: Pontos mais próximos

Observação 2.3 Uma aresta singular de S_{α} é dual a uma 0-componente do bordo de \mathcal{U} contendo dois pontos do conjunto de vértices \mathcal{V} de \mathcal{U} .

Um 1-simplexo que pertence a fronteira ∂C de uma componente regular C de S_{α} é dual a uma 0-componente do bordo de \mathcal{U} contendo um único ponto do conjunto de vértices \mathcal{V} de \mathcal{U} .

Um 0-simplexo em ∂C pode ser dual a mais de uma 1-componete do bordo de \mathcal{U} , vide figura 2.31.

Figure 2.31: Dualidade

Lema 2.1 Todo vértice da fronteira ∂S_{α} do α -shape de \mathcal{U} pertence ao eixo medial \mathcal{X} de \mathcal{U} .

Demonstração 2.1 Considere um vértice x de ∂S_{α} , isto \acute{e} , um 0-simplexo σ do ∂S_{α} . A dimensão de γ , dual de σ \acute{e} 1. Pela observação 2.2, x \acute{e} centro de uma bola b, com $\gamma \subseteq \partial b \subseteq \partial \mathcal{U}$. Como a dimensão de γ \acute{e} 1, ∂b contém mais de um ponto de $\partial \mathcal{U}$ e x \acute{e} um ponto do eixo medial.

Lema 2.2 Qualquer ponto pertencente a uma aresta singular de S_{α} pertence ao eixo medial \mathcal{X} de \mathcal{U} .

Demonstração 2.2 Sejam σ_T uma aresta singular e x um ponto contido em σ_T . Pela observação 2.3, o dual γ_T consiste em dois vértices $p, q \in \partial \mathcal{U}$. Pela observação 2.2, p e q são os vértices mais próximos de x em $\partial \mathcal{U}$ e x pertence ao eixo medial.

Lema 2.3 Seja C uma componente regular de S_{α} . Então , para qualquer ponto $x \in C$, ou

(i) x tem exatamente un ponto mais próximo $p \in \partial \mathcal{U}$ e p é un vértice de \mathcal{U} (ii) x tem mais de un ponto mais próximo na $\partial \mathcal{U}$ e pelo menos dois deles são vértices de \mathcal{U} .

Demonstração 2.3 Consideremos primeiro um ponto x no interior de C. Nós afirmamos que qualquer ponto mais próximo de x é um vértice de ∂U . Assuma por contradição que existe um ponto p mais próximo de x tal que $p \in \sigma_T$ para alguma face σ_T com dimensão maior do que zero. Considere a bola b centrada em x e tocando em p. Como p é o ponto mais próximo de x em ∂U , $b \subseteq U$, o segmento px intercepta a fronteira de S_{α} em algum ponto y. Pela observação 2.2, existe uma bola b_y centrada em y, com $\sigma_T \subseteq \partial b_y \subseteq \partial U$, e como $y \in px$, o ponto p é também um ponto mais próximo de y. Como y está mais próximo de p do que x, $b_y \subset b$, de modo que o conjunto $\sigma_T - p$, de dimensão maior do que zero, pertence ao interior de b - p. Como σ_T é parte de ∂U , isto contradiz $b \subseteq U$. Então, quando um ponto x tiver um ponto mais próximo em ∂U (i) ou mais de um (ii), em ambos os casos todo ponto mais próximo deve ser um vértice de ∂U .

Consideremos agora o caso em que $x \in \partial C$. Seja γ_T o simplexo de menor dimensão na ∂C contendo x. Se γ_T é um simplexo de dimensão 1, então o único ponto ponto mais próximo de x na ∂U é o dual δ_T , que é um vértice de ∂U . Por outro lado, se γ_T é um 0-simplexo, seu dual δ_T contém infinitos pontos mais próximos de x em ∂U , sendo que pelo menos dois deles são vértices de ∂U , vide observação 2.3.

demonstração do Teorema 2.7 Primeiro, mostraremos que qualquer ponto que pertence a uma aresta singular de S_{α} ou que pertence ao mesmo tempo a uma componente regular de S_{α} e ao $Vor(\mathcal{V})$ está no eixo medial. Pelo lema 2.2, qualquer ponto em uma aresta singular de S_{α} está no eixo medial. Qualquer ponto x em uma componente regular pertencente a $Vor(\mathcal{V})$ tem, claramente, mais de um vértice de \mathcal{U} como ponto mais próximo de $\partial \mathcal{U}$. O lema 2.3 implica que nenhum outro ponto em $\partial \mathcal{U}$ é mais próximo de x e, portanto,

x deve estar no eixo medial de \mathcal{U} .

Agora considere um ponto m no eixo medial de \mathcal{U} . Pela observação 2.1, m não pode ser um ponto de $\mathcal{U} - S_{\alpha}$. Por outro lado, se m está em alguma componente regular, pelo lema 2.3, m deve ter mais de um ponto mais próximo em \mathcal{V} , isto é, m pertence a $Vor(\mathcal{V})$.

No próximo capítulo mostraremos uma implementação para o eixo medial de união de bolas cujo algoritmo se baseia nos resultados apresentados nesta seção.