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Abstract

Pacitti Gentil,Samuel; Craizer, Marcos (Advisor). Discretization of
"four-vertex type" theorems for spatial and spherical poly-
gons. Rio de Janeiro, 2024. 107p. PhD Dissertation – Departamento
de Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

The aim of this work is to study a certain class of spatial polygons and
prove theorems on the minimal number of flattenings that such polygons must
have. In order to do this, we investigate spherical polygons which are not
contained in any closed hemisphere and deduce, among many results, that
under certain hypotheses such spherical polygons have a nontrivial lower bound
on the number of spherical inflections.
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Spherical Polygons; Spherical Inflections; Four Vertex Theorems.



Resumo

Pacitti Gentil,Samuel; Craizer, Marcos. Discretização de teoremas do
tipo "quatro vértices" para polígonos espaciais e esféricos. Rio de
Janeiro, 2024. 107p. Tese de Doutorado – Departamento de Matemática,
Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo deste trabalho é estudar uma certa classe de polígonos espaci-
ais e provar teoremas a respeito do número mínimo de achatamentos que tais
polígonos necessariamente possuem. Para tal, investigamos polígonos esféricos
que não estão contidos em nenhum hemisfério fechado e deduzimos, entre vá-
rios resultados, que sob certas hipóteses tais polígonos esféricos possuem uma
cota inferior não-trivial para o número de inflexões esféricas.
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And further, my son, be admonished by
these: Of making many books there is no end,

and much study is wearisome to the flesh.
Let us hear the conclusion of the whole

matter: Fear God and keep His
commandments, for this is man’s all.

Qoheleth, Book of Ecclesiastes 12:12-13, NKJV.



1
Introduction

1.1
The four-vertex theorem and its generalizations

The four-vertex theorem is a remarkable result in the differential ge-
ometry of planar curves. In order to state the theorem, we need some basic
definitions: Let γ be a planar closed curve which is also simple (i.e., it does
not have self-intersections). We say that γ is convex if its interior is a con-
vex region, i.e., for each pair of points in the interior, the segment determined
by the pair is also in the interior. The original four-vertex-theorem proved by
Syamadas Mukhopadhyaya in 1909 (see (MUKHOPADHYAYA, 1909)) is:

Theorem 1.1 A planar curve α of class C3 which is closed, simple and convex
must have at least four local extremal points for its curvature κ (two of these
points are local minima and the other two are local maxima). Such points are
called the vertices of the curve.

Of course, if the curve being considered contains a segment, then the
curvature is constant equal to zero in this segment. Hence every point in the
relative interior of this segment is a local maximum and a local minimum
and therefore the four-vertex-theorem follows trivially for such a curve. For
this reason we will assume that our smooth convex curves do not contain any
segments (some authors call such curves strictly convex, but we will not follow
this terminology as applied to such curves since we reserve this term to another
class of curves to appear).

Since then, many mathematicians have come up with new proofs and
new generalizations of this beautiful theorem. For instance, Adolph Kneser
proved the theorem in 1912 (see (KNESER, 1912)) without the restriction of
the curve being convex.

Another version is a result of a “global" rather than “local" nature. Recall
from the theory of differential geometry that the osculating circle C at a point
p of a curve γ is the circle that best approximates the curve at a given point
(such a circle is said to have order of contact equal or greater than 3). We say
that an osculating circle C at a point of a smooth curve γ is full if γ lies entirely
inside C, and empty if α lies entirely outside C. An extremal circle is any full
or empty circle. Hellmuth Kneser (Adolph Kneser’s son) proved in 1922 (see
(KNESER, 1922)) the following result:
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Theorem 1.2 Any smooth convex closed curve has at least four extremal
circles (two of them being full and the other two being empty).

Now, if a circle C at a point p ∈ γ is full/empty, then the curvature of
γ has a local minimum/maximal (but not the converse), since the curvature
is the inverse of the radius of the osculating circle. Therefore the classical
four-vertex theorem follows as a corollary from Kneser’s result.

We can extend the previous theorem even more. Bose (see (BOSE, 1932))
proved in 1932 the next theorem:

Theorem 1.3 Let γ be a regular planar convex curve which is generic (i.e.,
it is not tangent to any circle at more than 3 points). Denote by s+ and s−

the number of full and empty osculating circles to γ, respectively. Denote by t+
and t− the number of full and empty circles tangent to γ at three points. Then

s+ − t+ = s− − t− = 2.

By Theorem 1.3, s+ = 2 + s− ≥ 2 and t+ = 2 + t− = 2 ≥ 2, which then
implies Theorem 1.2. For a proof of Theorem 1.3, see (BOSE, 1932).

Another version concerns the minimal number of points of a spherical
(rather than planar) closed curve at which its geodesic curvature κg attains a
maximum or a minimum (these are called the vertices of the spherical curve).
If the curve is convex in the spherical sense (i.e., the curve is contained in a
closed hemisphere and the interior of the curve is convex in the sense that for
any two points of the interior, the spherical segment between them also lies in
the interior), then the number of vertices is greater or equal to four.

One can generalize this theorem even further. In order to do this for space
curves (not necessarily spherical ones), it is necessary to reformulate not only
the notion of convexity for such curves, but also the notion of a vertex.

First recall from the theory of plane curves that the vertex of a curve is
also the point p at which the osculating circle C has a point of contact with
the curve greater or equal to 4 (see (BRUCE; GIBLIN, 1984), pp 16-37 for
more details). The same phenomenon happens with spherical curves: a vertex
of a spherical curve is a point p at which the spherical osculating circle C has
a point of contact with the curve greater or equal to 4. This spherical circle
C is the intersection of the sphere with a plane Π. Again, from the theory of
space curves, the circle C has contact of order 4 with the curve at p if and only
if the plane Π has contact of order 4 with the curve at p. But this happens if
and only if the torsion τ of the curve vanishes at point p.
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It makes sense, therefore, to define the vertex of a space curve (spherical
or not) as a point at which its torsion τ vanishes. A vertex of a space curve
is also called a flattening (because of the higher order of contact that the
osculating plane has with the curve at such point), and we will stick to this
terminology.

Now we need to come up with a good definition of convexity for space
curves. Contrary to the case of planar or spherical curves, a space curve does
not have an interior region. We need another way of expressing convexity for
planar curves that also applies for space curves.

A first approach would be to notice that a convex curve in R2 is convex
if and only if it is (entirely) contained in the boundary of its convex hull.
Following this idea, Romero Fuster (see (ROMERO-FUSTER, 1988)) and
Sedykh (see (SEDYKH, 1992)) studied such curves in R3 in order to derive a
four-vertex type theorem. We say that a regular space closed curve is weakly
convex if it lies on the boundary of its convex hull.

Theorem 1.4 Any weakly convex curve has at least four flattenings.

For a proof of theorem 1.4, see (ROMERO-FUSTER, 1988) or
(SEDYKH, 1992).

Another reformulation of the notion of convexity is given by the following
condition: a plane curve is convex if and only if, for any two given points of
the curve, the line that passes through them intersects the curve only at these
two points (the two points might be the same, in which case the tangent line
intersects the curve only at this point, but with multiplicity 2). We say that
a regular space curve γ is strictly convex if, for any two given points of γ,
there is a plane intersecting the curve only at these points (if the two points
are distinct, then the plane intersects the curve transversally at both points,
otherwise the plane is tangent to the curve at the point). For such a curve,
a result by Barner (see (BARNER, 1956)) establishes a lower bound for the
number of flattenings:

Theorem 1.5 A strictly convex space curve has at least 4 flattenings.

Barner’s result is more general since it is valid for certain curves defined
in any projective space of dimension n ≥ 2 and for any n-dimensional
euclidean space if n ≥ 3 is odd, but we will not delve into this subject here.
For the definition of strictly convexity for projective curves and a proof of
1.5 in this more general context, see (BARNER, 1956) and (OVSIENKO;
TABACHNIKOV, 2005).

A third way to see convexity of a plane curve is to look at the tangent
vector at each point: a plane curve is convex if and only if, for each pair of
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(distinct) points of the curve, their respective tangent vectors do not point
to the same direction. Segre proved in 1968 (see (SEGRE, 1968)) that space
curves that satisfy this property must have at least four flattenings.
Theorem 1.6 A regular space closed curve without parallel tangents with the
same orientation has at least four flattenings.

There does not seem to be a name in the literature for curves that satisfy
the hypotheses of theorem 1.6. Following Uribe (see (URIBE-VARGAS, 2003)),
we will call them Segre curves. Here is another way of viewing such curves.

Given a regular curve γ in R3 parametrized by arclength, its unit tangent
vector γ′, with its base point translated to the origin, describes a curve on the
unit sphere S2, which is called the tangent indicatrix of γ. For instance, if a
space curve γ is contained in a plane, its tangent indicatrix γ′ is contained in a
great circle. Moreover, if the space curve γ is closed and not contained in any
plane, then its tangent indicatrix γ′ is not contained in any closed hemisphere.

The condition for a space curve γ to be a Segre curve is then equivalent to
the condition of its tangent indicatrix being embedded in S2, i.e., not having
self-intersection nor cusps. Moreover, a space curve γ has a flattening at a
point γ(t0) if and only if the tangent indicatrix has a geodesic inflection at the
corresponding point γ′(t0). Therefore, theorem 1.6 follows from the following
result:
Theorem 1.7 If a spherical curve γ, not contained in a closed hemisphere, is
regular, closed and simple (i.e., without self-intersections), then γ has at least
four (geodesic) inflections.

For a proof of theorem 1.7, see (SEGRE, 1968) or (GHOMI, 2013). A
famous corollary of 1.7 is the following theorem, rediscovered and popularized
by Arnold (see (ARNOLD, 1994)):
Theorem 1.8 (Tennis Ball Theorem) If a spherical curve γ is regular, closed
and divides the sphere in two regions with the same area, then γ has at least
four inflections.

Another corollary of theorem 1.7 is the following result due to Möbius
(see (MöBIUS, 1886)):
Theorem 1.9 If a spherical curve γ is regular, closed and symmetric with
respect to the origin, then γ has at least six inflections.

Although the three conditions (weak convexity, strictly convexity and
“Segre convexity") are equivalent in the planar case (since they are equivalent
to the usual notion of convexity), they will characterize different classes of
curves in Euclidean space R3. Uribe (see (URIBE-VARGAS, 2003)) studied
these classes and established relations between them. He proved that:
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– strictly convex curves in R3 are weakly convex curves and also Segre
curves. Therefore theorem 1.5 is a corollary of both theorems 1.4 and
1.6;

– there is a non-empty open set of weakly convex curves in R3 which are
not Segre curves, and there is a non-empty open set of Segre curves in
R3 which are not weakly convex. Therefore neither of these two notions
of convexity is more general than the other.

Besides the classes of curves discussed above, there are other types (in R3

or in higher-dimensional Euclidean/projective spaces), but we will not consider
them here.

1.2
Discrete versions of the four-vertex theorem in the plane

Another strategy to deal with these theorems (for both the planar and the
spatial versions) is to consider the discrete case: instead of using smooth curves,
the object of study consists of polygons. This approach simplifies considerably
the problem, enables us to use induction on the number of the vertices, and
makes it possible to use tools from combinatorics. Moreover, the discrete result
becomes, in the limit, a smooth one, providing in this way an alternative proof
of the latter. The downside of this strategy is the ambiguity of the process
of discretization: there might be more than a way of doing so. Consequently,
there might be discrete versions of theorems from the smooth case which are
not equivalent to each other.

The literature on discrete versions of the four-vertex theorem on the plane
has been growing in the last decades. In this case there are several results,
each one shining a new light on different aspects of the problem. Some of
these results are stated in terms of the angle differences, others as the number
of certain circles defined by triples of vertices. Besides that, these theorems
translate easily to theorems on convex spherical polygons on the sphere.

Here we understand a plane polygon P = [v1, ..., vn] as a closed curve
on the plane formed by a concatenation of straight line segments, each one
connecting the vertices v1, v2, ..., vn of the polygon P in a cyclic sequence.
The edges of the polygon are the closed segments ei = [vi, vi+1], where we
consider the indices i mod n. Here convexity for polygons is the same as for
smooth curves: a polygon P is convex if its interior is a convex region.

The first difficulty is terminology: vertex of a polygon P = [v1, v2, ..., vn]
has the usual meaning, i.e., it refers to each of the points at which the polygon
does not need to be smooth. If we want to distinguish special points of the
polygon that inherit the notion of “vertex as a singular point" (since we want
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to discretize the smooth theory), it is better to use new terms such as extremal
vertices. And what would be a good definition for such vertices?

The most obvious choice is to think of the curvature of the polygon as a
discrete function at each vertex. A good candidate for such a discrete function
is then the exterior angle at each vertex (if three vertices are collinear, the
intermediate vertex would correspond to a point of curvature zero). Denote
each of these exterior angles by θi.

Another definition for curvature of a polygon at a vertex, however, is
inspired by the smooth theory of osculating circles. First notice that the notion
of a osculating circle can be easily defined for a plane polygon: at each triple
{vi−1, vi, vi+1} of consecutive vertices, the osculating circle Ci is the circle
defined by these three vertices (i.e., the circle circumscribed to the triangle
whose vertices are vi−1, vi and vi+1). If ri is the radius of the circle Ci, define
the curvature of P at vertex vi as κi := 1/ri. Notice that this aligns with what
we would expect from the smooth theory: it is a basic but fundamental result
for curves parametrized by arclength that the absolute value of the curvature
at a given point is the inverse of the radius of the osculating circle at such
point.

Both cyclic sequences (θ1, θ2, ..., θn) and (κ1, κ2, ..., κn) encode in this way
different but reasonable types of “discrete curvatures" of the polygon P . We
can say that the any of these curvatures (θ or κ) has an extremum at vi if is
greater or equal, or less or equal, than both the curvature at vi−1 and vi+1.
In the first case we say that the curvature has a local maximum at vi, and in
the second case that it has a local minimum. Now, is it true that for a convex
polygon P any of these sequences will have 4 sign changes? Unfortunately,
without extra assumptions, this might be false.

But not all is lost. We say that a plane polygon P = [v1, v2, ..., vn] is
generic if no four vertices of P lie on a circle. We also say that vertex vi is
extremal if vertices vi−2 and vi+2 lie on the same side of the circle Ci (i.e., they
are both inside or outside the circle).

Theorem 1.10 Every generic convex polygon P = [v1, v2, ..., vn] with (n ≥ 4)
has at least four extremal vertices.

Theorem 1.10 is an analog of theorem 1.1 in the sense that in the
smooth setting the osculating circle at the vertex p of the curve is such that a
neighborhood of the curve around p lie on the same closed region determined
by the circle. In the discrete setting, the “neighborhood" is represented by the
set of vertices {vi−2, vi−1, vi, vi+1, vi+2}.

Actually, a stronger result is true. We say that an osculating circle Ci is
full if all other vertices are inside Ci, and empty if all other vertices are outside



Chapter 1. Introduction 20

Ci. An extremal circle is a circle which either full or empty. Now we can state
the discrete analog of theorem 1.2:

Theorem 1.11 Every generic convex polygon P = [v1, v2, ..., vn] (n ≥ 4) has
at least four extremal circles (two of them being full and the other two being
empty).

In order to state the most general theorem for convex polygons in the
plane, we need some definitions. Given a plane polygon P = [v1, v2, ..., vn], let
Cijk be the circle determined by vertices vi, vj and vk (where i < j < k). As
we have already seen, the case where the vertices are consecutive is when Cijk

is osculating. We also say that Cijk is disjoint if no two vertices are adjacent.
The remaining circles (where only two of the vertices are adjacent) are called
intermediate. A circle Cijk is called full if all other vertices of P are inside,
and empty if all other vertices of P are outside. Now we can state the discrete
analog of theorem 1.3:

Theorem 1.12 Let P = [v1, v2, ..., vn] (n ≥ 4) be a planar, generic convex
polygon. Let s+, t+ and u+ be the number of full circles that are osculating,
disjoint and intermediate, respectively. Let s−, t− and u− be the number of
empty circles that are osculating, disjoint and intermediate, respectively. Then
the following equalities hold:

s+ − t+ = s− − t− = 2,

s+ + t+ + u+ = s− + t− + u− = n− 2.

As in the smooth case, theorem 1.12 implies theorem 1.11. Notice also that
while the first equalities are the same as in theorem 1.3, the others do not seem
to have any smooth counterpart.

An interesting and simple proof of theorem 1.12 relies on the Voronoi
diagram and its cut locus of the vertices of polygon P and can be found in
Pak’s book (see (PAK, )). We will obtain theorem 1.12 as a corollary of a result
by Sedykh on space polygons, which will be discussed in the next chapter.

There are many other results for planar convex polygons. We will talk
about them briefly, without going into the details.

Following Sedykh, we say that a planar polygon P = [v1, ..., vn] is good if
for any i the center of the circle Ci (defined by vertices vi−1, vi and vi+1) lies
in the interior of the angle ∠(vi−1vivi+1).
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Theorem 1.13 Let P = [v1, ..., vn] (n ≥ 4) be a plane, generic, good convex
polygon, and let κi be as defined before (inverse to the raddi of the osculating
circles). Then the sequence (κ1, ..., κn) has at least four extrema.

For a proof of 1.13, see (SEDYKH, 1997) (pp. 204-205).
Recall that the θi were defined as the exterior angles of the polygon at

each vertex vi of P . Denote by ψi the interior angle of the polygon at each
vi. Since equilateral convex polygons are also good, theorem 1.13 implies the
following result:

Corollary 1.14 Let P = [v1, ..., vn] (n ≥ 4) be a plane, generic, equilateral
convex polygon. Then the sequences (ψ1, ..., ψn) and (θ1, ..., θn) have at least
four extrema (at the same indices).

1.3
Convex spherical polygons

As we did in the smooth case, we can also consider four-vertex type
theorems for spherical polygons. First define a spherical/geodesic segment
between two points in the sphere as the geodesic path between them (i.e.,
the arc of the great circle defined by the points with the least length). For this
we require that both points are not antipodal to each other. By a spherical
polygon P = [u1, u2, ..., un] we mean a closed spherical curve obtained by a
concatenation of spherical/geodesic segments, each one connecting the vertices
v1, v2, ..., vn in a cyclic sequence (for this to make sense, we require that
vi+1 ̸= −vi for all i ∈ {1, ..., n}). The edges of P are the closed spherical
segments ei = [vi, vi+1], where we consider the indices i mod n.

All definitions and results for plane polygons in this section extend
verbatim to the case of spherical polygons. For instance, a vertex vi is called
extremal if vertices vi−2 and vi+2 lie on the same region of the osculating circle
Ci (i.e., the circle spanned by vertices vi−1, vi and vi+1). If the spherical polygon
P is convex in the spherical sense as a spherical closed curve (i.e., the polygon
is contained in a closed hemisphere and for any two points in the interior of the
polygon, the spherical segment connecting them is inside the interior), then it
will have at least four extremal vertices (this is analogous to theorem 1.10).

Although we will study spherical polygons in chapters 3, 4 and 5, we
shall not pursue specifically the theory of four-vertex type theorems for convex
spherical polygons as defined above: these polygons are always contained in
a closed hemisphere and therefore its geometry is, in a sense, “the same" as
in the planar case. What we really want to understand are spherical polygons
that are not contained in any closed hemisphere and therefore reflect better
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the nature of the ambient space S2. We will, however, need occasionally the
notion of a convex spherical polygon in some of our proofs.

1.4
Discrete versions of the four-vertex theorem in space

Now we want to investigate four-vertex type theorems for space polygons.
The definition of a space polygon P = [v1, v2, ..., vn] is the same as in the planar
case, but now the ambient space is the Euclidean space R3.

Now, what would be a flattening for a space polygon? The two following
facts suggest such a definition:

– Recall that for a smooth curve γ the flattening γ(t0) = p is a point at
which the osculating plane has an order of contact greater than usual
with curve at the point, which happens if and only if the torsion τ is
zero at this point. Suppose that τ ′(t0) ̸= 0. Then, in a neighborhood of
γ around p, all points are on the same side of the osculating plane at p
(in contrast to the case that τ(t0) ̸= 0, where the curve crosses locally
the osculating plane at p);

– At the end of the previous section we have seen that, by definition, the
osculating circle Ci at an extremal vertex vi does not separate vertices
vi−2 and vi+2. Since the circle Ci is the intersection of the sphere S2 with a
plane Πi, this means that vertices vi−2 and vi+2 lie on the same half-space
determined by the plane Πi.

Therefore, we define a flattening of a space polygon P = [v1, ..., vn] as a
triple {vi−1, vi, vi+1} such that vertices vi−2 and vi+2 are on the same side of
the plane Πi spanned by the {vi−1, vi, vi+1}. We call Πi the osculating plane of
P at vi.

When one considers space polygons, however, one does not see as
many discrete four-vertex type theorems as in the two-dimensional case.
While theorems 1.4 and 1.5 have discrete versions (see (SEDYKH, 1997)
and (OVSIENKO; TABACHNIKOV, 2001), respectively), discrete versions of
theorems 1.6, 1.7, 1.8 and 1.9 do not appear in the literature. The sole exception
seems to be an article by Panina (see (PANINA, 2010)), where she states and
proves a discrete version of theorem 1.7, but does so using the original smooth
theorem by Segre. It is the main goal of this work to state and prove a discrete
version of Segre’s theorem 1.6 using only discrete tools, and to explore later
some consequences of this theorem, which includes discrete versions of theorems
1.7, 1.8 and 1.9, as well as some generalizations and extensions.

The rest of this work is organized as follows:
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– In Chapter 2 we discuss the notion of weak convexity for polygons and
derive four-vertex type theorems. Most of this chapter is a discrete
version of the article by Romero Fuster (see (ROMERO-FUSTER, 1988))
and is influenced by the texts of Sedykh (see (SEDYKH, 1997)) and Pak
(see (PAK, )). We show how the results for weakly convex polygons can
be used via a stereographic projection to obtain results in the plane (for
instance, to prove theorem 1.12). Up to this point there is essentially
no original result here. We then complement the theory presented so
far pointing out some easy but interesting corollaries that we have not
found in the literature. The first fact is a generalization of a formula
that relates the number of osculating and tritangent support planes of
a space polygon. We also discuss the notion of strictly convexity for
polygons and show that strictly convexity implies weak convexity (which
incidentally implies a discrete version of theorem 1.5). Finally, we also
discuss centrally symmetric space polygons;

– In Chapter 3 we define the notion of a Segre polygon and prove one
of the main theorems of this work, namely, that Segre polygons must
have at least four flattenings (this is the discrete version of theorem 1.6).
In order to do this we define the notion of discrete tangent indicatrix
of a space polygon and prove that a spherical simple polygon which is
not contained in any closed hemisphere must have at least four spherical
inflections (this is the main result of the chapter and a discrete version
of theorem 1.7). We also state and prove discrete versions of theorems
1.8 and 1.9;

– In Chapter 4 we state and prove one of the most important theorems of
this work on spherical polygons. It states an improvement to 6 for the
lower bound on the number of inflections of a simple spherical polygon
not contained in any closed hemisphere, provided that it does not have
antipodal intersections.

– In Chapter 5 we generalize the main theorems of Chapter 3 and 4, allow-
ing for the spherical polygon to have self-intersections and/or antipodal
intersections. Here we obtain lower bounds for the numbers of inflections
plus the numbers of self-intersections and antipodal intersections with
“multiplicity".



2
Weakly convex polygons

2.1
Introduction

In the second section, we go over some known theorems that have been
established by Romero Fuster in the smooth case (see (ROMERO-FUSTER,
1988)) and by Sedykh in both the smooth and discrete case (see (SEDYKH,
1992) and (SEDYKH, 1997), respectively). We present the material with
the notion of the Maxwell’s Graph of a space polygon, which appears in
(ROMERO-FUSTER, 1988) in the smooth setting and in (GENTIL, 2020)
in the discrete case. In the third section we prove a theorem for a more general
class of convex polygons in the plane using the results from the second section.
In the fourth section we deduce an easy but interesting theorem that unifies
some theorems of the second section. In the fifth section we see some examples
of the theory presented so far. In the sixth section we define the notion of
strict convexity for space polygons and deduce a four-vertex theorem for such
polygons. Finally, in the seventh section we go briefly into the subject of weakly
generic polygons and centrally symmetric polygons and state a theorem that
improves the results of the second section for this latter class of polygons.

2.2
The convex hull of a space polygon

Given a finite set of points V = {v1, ..., vn} in R3, the convex hull
of V , denoted by H(V ), is the smallest convex set in R3 that contains V .
Equivalently, it is the set of all finite positive combinations of points of V
whose coefficients sum up to 1. In symbols:

H(V ) = {λ1v1 + ...λkvk; v1, ..., vk ∈ V, λ1, ..., λk ≥ 0, λ1 + ...+ λk = 1}.

The set H(V ), thus defined, is a space polytope. It is known (see
(ZIEGLER, 1995), p. 29) that in this case H(V ) also has a different, but
equivalent description: it is the limited intersection of a finite number of closed
halfspaces, each one of them determined by an affine plane (see figure 2.1).

We say that a plane Π is a support plane of H(V ) if P ∩ Π ̸= ∅ and if all
the vertices of P (and therefore the convex hull itself H(P )) are contained in
one of the closed half-spaces H determined by Π. Now, it is clear that, given a
set V of points in R3, when we consider the affine planes that determine H(V ),
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we can consider only the support planes that contain at least three different
vertices.

The faces of H(V ) are the sets of the form H(V )∩Π, where Π is a support
plane of H(V ) that contains at least three non-collinear vertices of V .

Now, if the set V = {v1, ..., vn} is the set of vertices of a space polygon
P = [v1, ..., vn], then H(P ) = H(V ), since each edge of P is contained in H(V ).

We say that a space polygon P is generic if no four vertices of P lie on a
plane (notice that for a plane curve the genericity condition concerned circles
instead of lines). In such case, all the faces of H(P ) are triangles. H(P ) is then
said to be a simplicial polytope.

Denote by ∂H(P ) the topological boundary of H(V ). If P is generic,
∂H(P ) is a triangulated PL-surface. Each triangle of this triangulation is
the convex hull of vertices vi, vj and vk, and therefore will be denoted by
△ = △(i, j, k).

Given a polygon with n vertices, we say that two distinct integers i < j

are consecutive if j = i + 1 or i = 1 and j = n. There are three possibilities
regarding the relative position of the indices i, j and k:

– i, j, k are consecutive. In this case, both the corresponding triangle and
the plane spanned by these vertices will be called osculating;

– i, j, k are such that two of them are consecutive, but one of them is
isolated. In this case, both the corresponding triangle and the plane
spanned by these vertices will be called bitangent;

– i, j, k are all isolated from each other. In this case, both the corresponding
triangle and the plane spanned by these vertices will be called tritangent.

We say that a space polygon P = [v1, ..., vn] is weakly convex if it is
contained on the boundary of its convex hull. In symbols:

P ⊂ ∂H(P ).

Otherwise P is non weakly convex. Figure 2.1 shows both a weakly convex
polygon and a non weakly convex polygon.

We want to prove a result on the minimal number of osculating triangles
that a weakly convex polygon must have. The proof uses a basic idea from
graph theory that will appear repeatedly in this work. A graph is called a tree
if it is connected and does not have cycles. A tree is nontrivial if it has at least
1 edge. A leaf is a vertex which is adjacent to only one vertex.

Theorem 2.1 Every nontrivial tree has at least two leaves.
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Figure 2.1: A weakly convex polygon on the left, a non-weakly convex polygon
on the right, together with their respective convex hulls.

Theorem 2.2 If v and e are the numbers of vertices and edges of a tree,
respectively, then the formula equality holds:

v = e+ 1.

Theorems 2.1 and 2.2 are basic and classic results of graph theory and will
not be proved here (see (BONDY; MURTY, 2008), pp. 99-100, or (HENLE,
1994), pp. 138-139).

Theorem 2.3 A generic, weakly convex space polygon P = [v1, ..., vn] (n ≥ 4)
has at least 4 osculating triangles.

Proof. By hypothesis, P ⊂ ∂H(P ) is generic. In particular, it is simple.
Therefore, P separates ∂H(P ) in two different regions, each one with a certain
triangulation. The dual graph of each triangulated region is a tree (i.e., it does
not have cycles). Since n ≥ 4, each of these trees is nontrivial and, by theorem
2.1, has therefore at least 2 leaves, i.e., two triangles with incidence number
equal to 1. In other words, each region has at least two osculating triangles.
which implies the result. ■

Recall that a flattening of a space polygon P is a triple {vi−1, vi, vi+1}
such that vi−2 and vi+2 are on the same side of the plane Π(i−1, i, i+1). Now,
if a triangle spanned by vi−1, vi and vi+1 is a osculating support triangle, then
the respective triple of vertices is a flattening. Therefore, theorem 2.3 implies
the following result.

Theorem 2.4 A generic, weakly convex space polygon P = [v1, ..., vn] (n ≥ 4)
has at least 4 flattenings.

The dual graph that appears in the proof of theorem 2.3 is closely related
to the so called (discrete) Maxwell’s Graph GM(P ) of the polygon P . More



Chapter 2. Weakly convex polygons 27

Figure 2.2: An example of a polygon P with its associated Maxwell’s Graph
GM(P ) and its convex hull H(P ). The triangles are represented with differents
colors: red for tritangent triangles, green for bitangent triangles and blue for
osculating triangles.

generally, given a space polygon P , we consider first the dual graph G(P ) of
the triangulation of H(P ) −P : two triangles (and therefore its respective dual
vertices) are considered connected to each other if the common edge is not an
edge of P . Define then the (discrete) Maxwell’s Graph GM(P ) as the graph
whose vertices are the vertices of G(P ) with incidence number equal to 1 or 3
(i.e., they are dual to osculating or tritangent triangles, respectively), while the
vertices of G(P ) with incidence number equal to 2 (i.e., the vertices which are
dual to the bitangent triangles) are considered as part of the edges of GM(P ).
In other words, the edges of GM(P ) are dual to the sequences of bitangent
triangles that connect two triangles which are osculating and/or tritangent.
See figure 2.2 for an example.

Both the graph G(P ) and the Maxwell’s graph GM(P ) can be represented
by spherical graphs on the sphere whose vertices are the endpoints of the
normal internal vectors to the triangles that define the triangulation (i.e., the
normal vectors that point to the inside of H(P )). The following proposition
collects the main features of the Maxwell’s Graph (the interested reader may
found a more complete discussion in (GENTIL, 2020)):

Proposition 2.5 Let P = [v1, ..., vn] (n ≥ 4) be a generic space polygon. Then
we have that:

(a) GM(P ) has at most two connected components;

(b) GM(P ) is connected if and only if P is weakly convex;

(c) If P∩∂H(P ) has 1 connected component, then each component of GM(P )
is simply connected, i.e., it is a tree.

Proof. (a) and (b) are clear.
(c) If GM(P ) had any cycles, then P ∩ ∂H(P ) would have at least two

connected components (see figure 2.3 for some examples). ■

From the previous results we can derive some important numerical rela-
tions between the number of support triangles. Given a connected component
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Figure 2.3: If GM(P ) had any cycles, then P ∩ ∂H(P ) would have at least two
components.

of H(P ) −P , denote by Ti, Bi and Oi the numbers of its tritangent, bitangent
and osculating triangles, respectively (which are the same to the numbers of
vertices of the respective component of G(P ) with incidence number equal to
3, 2 and 1, respectively), and by Vi and Ei the numbers of vertices and edges
of the respective component of the Maxwell’s Graph GM(P ).

Proposition 2.6 Given a generic space polygon P = [v1, ..., vn] (n ≥ 4), the
following equalities hold for any component of GM(P ):

Ti +Oi = Vi,

3Ti +Oi = 2Ei.

Moreover, if P is weakly convex, then the following equality holds for both
components of H(P ) − P (or, equivalently, for both components of GM(P )):

Ti +Bi +Oi = n− 2.

Proof. The first equality is obvious. The second one follows from noticing that,
if one counts the number of edges that are incident with each of the vertices
and then adds all them up, this will give the expression on the left. On the
other hand, each edge will be counted twice.

Now, for the third equality, it suffices to prove that the number of faces
of any of the two connected components of H(P ) equals n− 2. Denote by v, e
and f the numbers of vertices, edges and faces of ∂H(P ), respectively. Since P
is generic, H(P ) is simplicial, i.e., all of its faces are triangles. Thus 3f = 2e,
which combined with Euler’s Formula v − e + f = 2 (applied to ∂H(P )) and
the fact that v = n implies that

f = 2n− 4.

Since both components of H(P ) have the same number of faces, the result
follows. ■
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Given a generic weakly convex space polygon P , denote by O and T

the total number of osculating and tritangent triangles of H(P ), respectively
(which are the same as the total number of vertices of GM(P ) with incidence
numbers equal to 1 and 3, respectively).

Theorem 2.7 Given a generic weakly convex space polygon P = [v1, ..., vn]
(n ≥ 4), the following equality holds for any connected component of ∂H(P )−P
(and of GM(P )):

Oi − Ti = 2,

for each i = 1, 2. Moreover, for the two components taken into account, we
have that

O − T = 4.

Proof. Since P is weakly convex, ∂H(P )−P (and GM(P )) has two components
(by Proposition 2.5(b)), both of which are trees (by Proposition 2.5(c)). By
proposition 2.6 and by theorem 2.2,

Ti +Oi = Vi = Ei + 1,

3Ti +Oi = 2Ei.

Multiplying the first equality by 2, substituting 2Ei by 3Ti+Oi and simplifying,
we get:

Oi − Ti = 2.

Summing on the two indices i = 1 and i = 2, we get:

O − T = 4.

■

Theorem 2.8 Given a generic non weakly convex polygon P = [v1, ..., vn]
(n ≥ 5), the following equality holds:

O − T = 4 − 2ρ.

Proof. Given a non weakly convex polygon P , denote by v, e and f the number
of vertices, edges and faces ∂H(P ). By Euler’s formula (applied to ∂H(P )),
we have that

v − e+ f = 2.
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Recall that ρ is the number of connected components of P ∩ ∂H(P ). Denote
by eP the number of edges of ∂H(P ) which are contained in P , and by e△ the
number of edges of ∂H(P ) which are not contained in P .

It is not hard to see that v − eρ = ρ and that e△ −B = Ei. Substituting
these numbers in Euler’s formula we get:

2 = v − e+ f = v − eP − e△ + T +B +O

= ρ− Ei + T +O.

Multiplying both sides by 2 and using proposition 2.6:

2ρ− 2Ei + 2T + 2O = 4

=⇒ 2ρ− 3T −O + 2T + 2O = 4

=⇒ O − T = 4 − 2ρ.

■

Remark 2.9 Theorem 2.3 was proved in the smooth setting by Romero Fuster
(see (ROMERO-FUSTER, 1988)) and Sedykh (see (SEDYKH, 1997)). The
proof we presented for the discrete setting can be found in Pak’s book (see
(PAK, )). Interestingly, a different proof for weakly convex but not necessarily
generic polygons was found by Sedykh (see (SEDYKH, 1997)).

The idea of using the Maxwell’s Graph of a smooth curve was used
extensively in (ROMERO-FUSTER, 1988) and was (as far as we know) first
adapted for the discrete case in (GENTIL, 2020). Propositions 2.5 and 2.6 and
theorems 2.7 and 2.8 appear in both these works, although the discrete versions
we present here are slightly more complete than the ones in (GENTIL, 2020).
Moreover, our proof of theorem 2.8 is slightly different than the one presented
in both (ROMERO-FUSTER, 1988) and (GENTIL, 2020).

2.3
Application to convex polygons in the plane

We can apply the previous theorems to prove theorem 1.12 from Chapter
1. This section is not essential to the subsequent sections and chapters and
therefore may be skipped on a first read.

In this section we follow Sedykh’s terminology (see (SEDYKH, 1997)).
Given a simple generic plane polygon P , we say that a circle passing through
at least one vertex of P is a support circle if all the vertices of the polygon lie
in one of the closed regions defined by this circle (i.e., they all lie on the inside
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or they all lie on the outside). Notice that, if a support circle C passes through
3 points of P , then C is extremal (as defined in the previous chapter).

We say that a simple generic plane polygon P is normal if every two of
consecutive vertices vi and vi+1 lie on a support circle.

Now, if P is convex, then the straight line spanned by any pair of
consecutive vertices vi and vi+1 is such that all other vertices are contained
in one of the closed halfplanes determined by this line. This implies that
there is a support circle passing through vi and vi+1. In other words, a convex
polygon is normal. Therefore, theorem 1.12 follows from the following result.
Recall that for any three vertices vi, vj and vk of a plane polygon P , the circle
Cijk determined by them is osculating/intermediate/disjoint if the number of
consecutive pairs among indices i, j and k is 2, 1 or 0, respectively. Cijk is
full/empty if all other vertices of P are inside/outside of Cijk.

Theorem 2.10 Let P = [v1, ..., vn] (n ≥ 4) be a normal generic plane polygon.
Let s+, t+ and u+ be the number of full circles that are osculating, disjoint and
intermediate, respectively. Let s−, t− and u− be the number of empty circles
that are osculating, disjoint and intermediate, respectively. Then the following
equalities hold:

s+ − t+ = s− − t− = 2,

s+ + t+ + u+ = s− + t− + u− = n− 2.

Proof. Let P = [v1, ..., vn] be a normal generic plane polygon. Let P ′ =
[v′

1, ..., v
′
n] be a stereographic projection of P into a sphere S2. Recall that

such a projection takes plane circles into spherical circles, which in turn equal
intersections of the sphere with planes.

Since P is generic as a plane polygon, i.e., no four vertices of P lie on
a plane circle, we have that no four vertices of P ′ lie on a spherical circle.
Hence no four vertices of P ′ lie on the same plane, i.e., P ′ is generic as a space
polygon. In particular, P ′ is simple.

Since P is normal, there is for each pair of consecutive vertices vi and
vi+1 a support circle C passing through them. The stereographic projection
then maps this circle onto a circle C ′ on the sphere such that all other vertices
of P ′ are on the same region of C ′. Since C ′ is the intersection of the sphere with
a plane Π′, this means that all other vertices of P ′ are on the same halfspace
determined by Π′. In other words, P ′ is weakly convex when considered as a
space polygon.

Now we observe that the full and empty circles Cijk of the plane P are
mapped, in a one-to-one correspondence via the stereographic projection, to



Chapter 2. Weakly convex polygons 32

the circles on the sphere that are contained in the support planes that intersect
the space polygon P ′ at three vertices. Consequently, each plane circle Cijk

corresponds to a support triangle △(i, j, k) of H(P ′). Since P ′ is weakly convex,
it separates ∂H(P ′) − P ′ into two regions. One of them is triangulated by
triangles that correspond to full circles of P , while the other is triangulated
by triangles that correspond to empty circles of P .

Moreover, we have that the osculating, intermediate and disjoint circles
of the plane polygon P are mapped, in a one-to-one correspondence via the
stereographic projection, to the circles on the sphere that are contained in os-
culating, bitangent and tritangent planes of the space polygon P ′, respectively.
Therefore s+ = O1, t+ = T1, u+ = B1, and s− = O2, t− = T2, u− = B2.

The result now follows from theorem 2.7 and proposition 2.6. ■

Remark 2.11 Theorem 2.10 can be found in (PAK, ) (p. 202), although the
version we present here is slightly more general. It is important to note that
the idea of using the stereographic projection to relate convex (or even normal)
plane polygons with weakly convex space polygons can be used to deduce theorem
1.11 directly from theorem 2.3. This was actually Sedykh’s original argument
when proving theorem 2.3 (see (SEDYKH, 1997), pp. 201-204).

2.4
A unified formula for weakly convex and non weakly convex polygons

There is some similarity between equations for weakly convex/non weakly
convex polygons in theorems 2.7 and 2.8. Notice that the equation of the
former is not a particular case of the equation of the latter, since ρ equals
1 and not 0 for weakly convex polygons. We might wonder if there is a
unified formula for both equations. This is true if we consider the number of
connected components of P ∩ intH(P ) instead of P ∩ ∂H(P ) (i.e., we consider
the number of components of P in the topological interior of H(P )), and not
in its boundary). Denote by µ = µ(P ) the number of connected components
of P ∩ intH(P ). For weakly convex polygons, ρ = 1 ̸= 0 = µ. For non weakly
convex simple polygons, however, the next proposition implies that ρ = µ.

Proposition 2.12 If a simple polygon P in R3 is non weakly convex, then

µ(P ) = ρ(P ).

Proof. We may assume without loss of generality that (vn, v1) ⊂ intH(P ) and
v1 ∈ ∂H(P ). If we start moving at v1 and going through the polygon with
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the usual orientation (v2,v3 and so on), we will pass through every connected
component of both sets P ∩ ∂H(P ) and P ∩ intH(P ). Since P is simple, we
will not pass through any of these connected regions twice. Moreover, since P
is a closed polygonal line, these distinct components must alternate between
the ones contained in the boundary and the ones contained in the interior of
H(P ), which implies that µ(P ) = ρ(P ). ■

Since generic polygons are also simple, proposition 2.12 is also true for
weakly convex generic polygons.

Theorem 2.13 Given a generic polygon P = [v1, ..., vn] (n ≥ 4), the following
equality holds:

O − T = 4 − 2µ.

Proof. If P is weakly convex, µ = 0. By theorem 2.7,

O − T = 4 = 4 − 2µ.

If P is non weakly convex, proposition 2.12 implies that µ = ρ. By
theorem 2.8,

O − T = 4 − 2ρ = 4 − 2µ.

■

An immediate consequence of theorem 2.13 is the following result:

Corollary 2.14 Given a generic polygon P = [v1, ..., vn] (n ≥ 4), the
following inequality holds:

2µ+O ≥ 4.

Recall that we denote by F the number of flattenings of a polygon.

Corollary 2.15 Given a generic polygon P = [v1, ..., vn] (n ≥ 4), the
following inequality holds:

2µ+ F ≥ 4.

Remark 2.16 Although theorem 2.13 and corollaries 2.14 and 2.15 are easy
consequences of the theory presented so far, we have not found them in the
literature. The reason we present them here is to parallel the results that will
be proved in subsequent chapters for another class of polygons.
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Figure 2.4: Weakly convex curve, with C = 4, T = 0 and µ = 0.

2.5
Examples of generic polygons

We now present some examples of generic polygons, showing that the
lower bound on corollary 2.14 cannot be improved for the values µ = 0, 1, 2.
We used polygons that approximate certain curves, which are by their turn
given by parametric equations. For each one we give the equation together
with the number of points used. For each example, there is a figure with the
polygon P , its associated Maxwell’s Graph GM(P ) and the boundary of its
convex hull ∂H(P ).

In order to make it easier to visualize the convex hull, we display it in
two different ways: the complete image and the one without the superior part.
Besides that, the support triangles of ∂H(P ) appear with different colors:
red for tritangent, green for bitangent and blue for osculating triangles. In
the graph GM(P ) the corresponding vertices have the same colors as their
corresponding panels: red for vertices with incidence degree equal to 3, green
for the edges and blue for vertices with incidence degree equal to 1.

Example 2.17 We use the curve α : [0, 2π] −→ R3, given by

α(t) = (cos(t), sin(t), ϵ sin(2t)),

where ϵ is small, but not so much (for instance, ϵ ∈ [1
5 ,

3
5 ]). The discretization

has 20 points. Figure 2.4 displays the polygon (where C = 4 e T = 0).

Example 2.18 We use the curve α : [0, 2π] −→ R3, given by

α(t) = (2 sin(t) − sin(2t), 2 cos(t) − cos(2t),− sin(2t)).

The discretization has 20 points and is represented in figure 2.5. It is a non
weakly convex polygon, with C = 2, T = 0 e ρ = µ = 1.
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Figure 2.5: Non weakly convex polygon, with C = 2, T = 0 and ρ = µ = 1.

Figure 2.6: Non weakly convex polygon, with C = 0, T = 0 and ρ = µ = 2.

Example 2.19 (Torus knot (3-2)) We use the curve α : [0, 2π] −→ R3,
given by

α(t) = ((4 + cos(2t)) cos(3t), (4 + cos(2t)) sin(3t), 2 sin(2t)).

The discretization has 30 points and is represented in figure 2.6. It is a non
weakly convex polygon, with O = 0, T = 0 and ρ = µ = 2. Hence the
intermediate graph G(P ) for this polygon is a cycle and the Maxwell’s graph
GM(P ) is not a proper graph (it should have at least one vertex).

2.6
Strictly convex polygons

In the previous chapter we defined the notion of strict convexity for space
curves and stated without proof a theorem on the lower bound of flatten-
ings that such curves must have. Now we discuss briefly the discrete coun-
terpart of it. In the following definitions we follow almost verbatim a section
of Tabachnikov and Ovsienko’s article (see (OVSIENKO; TABACHNIKOV,
2001)), where a more general version of strict convexity for projective polygons
is discussed. Here we restrict ourselves to the ambient space R3.

A space polygon P is said to be transverse to a plane Π at point p ∈ P∩Π
if either p is an interior point of an edge and this edge is transverse to Π, or p
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Figure 2.7: In the first case, plane Π (as seen from “above") intersects polygon
P with multiplicity 2. In the second case, plane Π intersects polygon P with
multiplicity 3.

is a vertex and the two edges incident do P are transverse to Π and are locally
separated by Π.

A space polygon P is said to intersect a plane Π with multiplicity k if,
for every plane Π′ sufficiently close to Π and transverse to P , the number of
points of P ∩ Π′ does not exceed k and, moreover, k is achieved for some Π′

(see figure 2.7).
A generic space polygon P = [v1, ..., vn] ⊂ R3 is said to be strictly convex

if, for any two vertices vi and vj of P , there is a plane Π that contains both vi

and vj and intersects P with multiplicity 2. This definition does not exclude
the case where vi = vj.

Uribe (in (URIBE-VARGAS, 2003)) proved, in the smooth case, that
strictly convex curves are also weakly convex. Here we prove the discrete
version of his result, which uses the same underlying idea of his proof, but
taking into account Tabachnikov and Ovsienko’s formalism for intersection of
polygons.

Lemma 2.20 Let vi1 , ..., vik
be vertices of a generic polygon P (with k ≤ 3).

Then any plane Π passing through vi1 , ..., vik
intersects P with multiplicity at

least k.

Lemma 2.20 is actually a particular case of a result due to Ovsienko and
Tabachnikov and will not be proved here (see Lemma 3.3 of (OVSIENKO;
TABACHNIKOV, 2001)).

Proposition 2.21 A strictly convex polygon is weakly convex.

Proof. Let P be a strictly convex polygon. Let ei = −−−→vivi+1 be any of its edges.
We must show that ei ⊂ ∂H(P ). Since P is strictly convex, there is a plane
Πi passing through vi and vi+1 (and therefore Πi contains the whole edge ei)
with multiplicity 2. In particular, the plane Πi does not intersect P elsewhere
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(otherwise it would have multiplicity greater or equal to 3, by lemma 2.20)
and therefore is a support plane of H(P ).

Denote by H the closed halfspace determined by Π which contains H(P ).
Since ei ⊂ H(P ) ⊂ H and ei ⊂ Π = ∂H, we have that

ei ⊂ ∂H(P ).

Since the edge ei was chosen arbitrarily, it follows that P ⊂ ∂H(P ). ■

Theorem 2.22 A strictly convex space polygon P = [v1, ..., vn] (n ≥ 4) has at
least 4 flattenings.

Proof. It follows immediately from proposition 2.21 and theorem 2.4. ■

Remark 2.23 Theorem 2.22 is a particular case of a more general result
for projective polygons, stated and proved in (OVSIENKO; TABACHNIKOV,
2001). Our proof (which is considerably shorter than the one presented in
(OVSIENKO; TABACHNIKOV, 2001)) has the same strategy used by Uribe
in the smooth case (see (URIBE-VARGAS, 2003)). Since we have not found
this proof in the discrete form in the literature, we included it here.

2.7
A further remark: weakly generic polygons

The results proved until now always required our polygons to be generic.
This condition can, however, be weakened in the following way:

Remark 2.24 The notion of genericity was important so that the polytope
H(P ) was simplicial (i.e., all of its faces were triangles) and thus we avoided
degenerate cases. There is, however, no problem if P has 4 vertices in the same
plane Π provided that Π is not a support plane of P , since it does not affect
the triangulation of ∂H(P ). An example of such polygon is given in figure 2.2.

For this reason, we have the following definition: we say that P is weakly
generic if all quadruples of coplanar vertices of P do not span a support plane of
P . Therefore, all results proved in this chapter are also valid when we substitute
“generic" by “weakly generic".

Before introducing an important class of weakly generic polygons, we
need the following definition: we say that a set X ⊂ R3 is centrally symmetric
to a point x0 ∈ R3 if x0 + x ∈ X holds if and only if x0 − x ∈ X. In other
words, the set X ⊂ R3 is preserved under reflections through a point x0 ∈ R3.

Consider now the particular case of X being a space polygon with 2n
vertices. Notice that the condition that for every point/vertex of P being
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reflected through x0 to another point/vertex of P implies that every vertex
vi of P is reflected through x0 to the vertex vi+n, where we consider the indices
mod 2n.

Lemma 2.25 Let P be a centrally symmetric space polygon with at least 2n
vertices (2n ≥ 6). Suppose that P is not contained in any plane. Then, for any
i ̸= j, j + n ∈ {1, ..., 2n}, the plane spanned by vi, vi+n, vj and vj+n is not a
support plane.

Proof. Since P is centrally symmetric to a point x0, the plane Π spanned by
vi, vi+n, vj and vj+n contains x0. Since P is not contained in any plane, there
is at least one vertex vk ̸∈ Π. Because P is centrally symmetric to x0, we have
that vk+n (i.e., the reflection of vk through x0) is on the other side of Π.

Our conclusion is that Π cannot be a support plane of P . ■

Therefore, it makes sense to talk about centrally symmetric polygons
which are weakly generic. An interesting result is the following theorem, which
states an improvement on the lower bound of flattenings that a centrally
polygon must have. We will prove this theorem at the end of the next chapter,
using the notion of tangent indicatrix of a space polygon.

Theorem 2.26 Let P be a weakly generic polygon with 2n vertices (2n ≥ 6).
If P is a centrally symmetric to a point x0 and weakly convex, then it has at
least 6 flattenings.

Remark 2.27 As with the results presented in Section 4, theorem 2.26 is not
hard to prove (as we will see in the next chapter), and is another result that
we have not found in the literature. By the same reason as before, we present
it here to parallel a theorem that will be proved in the next chapter for another
class of polygons.



3
Segre polygons

3.1
Introduction

In this chapter we define the notion of a Segre polygon and prove the
discrete analog of theorem 1.6. In order to do this, we need to define the notion
of the (discrete) tangent indicatrix of a space polygon (which is a spherical
polygon) and prove a discrete analog of theorem 1.7, which is the main result
of this chapter.

The general strategy to prove this theorem is to use induction on the
number of vertices of the spherical polygon. The most difficult and subtlest
point of the induction step is to prove that there is at least one point that can
be deleted from the spherical polygon so that the resulting spherical polygon
still will neither be contained in any closed hemisphere nor will have self-
intersections. In order to prove this fact, we also obtain some interesting results
regarding spherical polygons in general using basic tools of convex geometry.
In the last section we present two applications of the main theorem of the
chapter: a discrete version of theorem 1.8 (a discrete Tennis Ball Theorem)
and a discrete version of theorem 1.9.

3.2
Basic definitions

Recall from chapter 1 that a closed space curve γ : S1 → R3 is called a
Segre curve if it has non-vanishing curvature and if, for any t1 ̸= t2 ∈ S1, the
tangent vectors γ′(t1) and γ′(t2) do not point to the same direction.

Now, let P = [v1, v2, ..., vn] be a space polygon, i.e., a closed polygonal
line (where we consider the indices i modulo n) in R3. Recall that P is generic
if it does not have 4 of its vertices on the same plane. A naive approach to
discretize the notion of a Segre curve would be as follows: a “Segre polygon"
should not have directed edges pointing to the same direction. Notice, however,
that any generic polygon satisfies this condition: if there were ei = −−−→vivi+1 and
ej = −−−→vjvj+1 with ei ∥ ej, then the vertices vi, vi+1, vj and vj+1 would be in the
same plane, contradicting the genericity of the polygon.

Before we present a better approach for this problem, we recall the
following definition from chapter 1: given a smooth curve γ in R3 with non-
vanishing curvature, translate the unit tangent vector at each point of the
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Figure 3.1: A flattening on the left, a non-flattening on the right

curve to a fixed point 0. The endpoints of the translated vectors describe then
a curve on the unit sphere S2. We call this curve the tangent indicatrix of γ.

Therefore, a Segre curve can be reformulated as a closed curve such
that its tangent indicatrix is embedded in S2 (i.e., smooth and without self-
intersections). Moreover, Theorem 1.6 now reads:

Theorem 3.1 Let γ be a closed curve in R3. If its tangent indicatrix is
embedded in S2, then γ has at least 4 flattenings.

Definition 3.2 Given a polygon P = [v1, v2, ..., vn] in R3, denote by ui the
unit tangent vector with the same direction of the edge ei, i.e.,

ui = ei

|ei|
=

−−−→vivi+1

|−−−→vivi+1|
= vi+1 − vi

|vi+1 − vi|
.

We define the (discrete) tangent indicatrix of P as the closed spherical polyg-
onal line, i.e., the spherical polygon

Q = [u1, u2, ..., un],

whose edges are the spherical segments (with minimal length) joining ui and
ui+1. This definition goes back to the work of Banchoff (see (BANCHOFF,
1982)).

We can finally define the discrete counterpart of a Segre polygon:

Definition 3.3 A polygon P is a Segre polygon if its tangent indicatrix Q does
not have self-intersections.

Definition 3.4 A flattening of a space polygon is a triple {vi, vi+1, vi+2} such
that vi−1 and vi+3 are on the same side of the plane generated by vertices vi,
vi+1 and vi+1 (see figure 3.1).

Remark 3.5 The previous definition implies that, if the triple {vi, vi+1, vi+2}
is a flattening, then the vectors ei−1 and ei+2 point to different sides of the
plane generated by {vi, ei, ei+1}. This in turn implies that ui−1 and ui+2 are on
different sides of span{ui, ui+1} (see figure 3.2).
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Figure 3.2: Flattening of a polygon P and the corresponding inflection of the
tangent indicatrix Q.

The main goal of this chapter is to prove the following result:

Theorem 3.6 A Segre polygon with at least 4 vertices has at least 4 flatten-
ings.

It is important to notice that, although this theorem states the result for
Segre polygons in R3, its proof will work entirely within the realm of certain
spherical polygons in S2. To get a feeling by what we mean by this, first we
notice that the previous remark suggests the following definition:

Definition 3.7 Given a spherical polygon Q ⊂ S2, a (spherical) inflection of
Q is a pair {ui, ui+1} such that ui−1 and ui+2 are in different sides of the plane
spanned by {ui, ui+1}. Equivalently, ui−1 and ui+2 are in different hemispheres
determined by the spherical line spanned by {ui, ui+1}.

The condition that ui−1 and ui+2 are in different hemispheres determined
by the spherical line spanned by {ui, ui+1} is equivalent to the condition that
the determinants ϵi−1 = [ui−1, ui, ui+1] and ϵi = [ui, ui+1, ui+2] = [ui+2, ui, ui+1]
have opposite signs. Consequently, Theorem 3.6 states that, if a spherical
polygon Q is the tangent indicatrix of a polygon and does not have self-
intersections, then the cyclic sequence (ϵ1, ϵ2, ..., ϵn) has at least 4 sign changes
(where each ϵi is defined as [ui, ui+1, ui+2]).

3.3
The Cone Condition

It is instructive to see first the following example of spherical polygon.

Example 3.8 Let Q = [u1, u2, u3, u4] ⊂ S2 the spherical polygon with u1 =(√
2

2 , 0,
√

2
2

)
, u2 =

(
0,

√
2

2 ,
√

2
2

)
, u3 =

(
−

√
2

2 , 0,
√

2
2

)
and u4 =

(
0,−

√
2

2 ,
√

2
2

)
.

It is not hard to (visually) see that Q does not have any flattenings (see
figure 3.3). It is also not hard to check algebraically that this is indeed the case:
all determinants ϵ1, ϵ2, ϵ3 and ϵ4 are positive.



Chapter 3. Segre polygons 42

Figure 3.3: A spherical polygon without inflections.

The spherical polygon of the previous example does not have any self-
intersections, but it does not have any inflections. Is that a counterexample to
our result? The answer is no. The reason why this happened is because there
is no space polygon whose tangent indicatrix is Q.

More generally, consider a spherical polygon Q ⊂ S2 contained in a closed
hemisphere, but not entirely contained in a spherical line. We may assume that
this hemisphere is the one above the xy-plane (rotate the sphere S2 for that
to be the case). This implies that all vectors u1, u2, ..., un (and consequently
e1, e2, ..., en) have z-coordinate equal or greater than zero. Since Q is not
entirely contained in any spherical line, at least one of the ei, say en, have
positive z-coordinate. Suppose that there is a space polygon P = [v1, v2, ..., vn]
whose tangent indicatrix is Q. Denoting by z(vi) and z(ei) the z-coordinate of
vi and ei respectively, we have

z(v1) ≤ z(v1) + z(e1) = z(v2) ≤ z(v2) + z(e2) = z(v3) ≤ ...,

since each z(ei) is equal or greater than zero. Now, because z(en) is strictly
greater than zero, we have

z(v1) ≤ z(v2) ≤ ... ≤ z(vn−1) ≤ z(vn) < z(vn) + z(en) = z(v1),

i.e., z(v1) < z(v1). This contradiction implies that there is no such polygon P

whose tangent indicatrix is Q. We have therefore proved

Proposition 3.9 A necessary condition for a spherical polygon Q ⊂ S2, not
entirely contained in a spherical line, to be the tangent indicatrix of some
polygon P ⊂ R3 is that it cannot be contained in any closed hemisphere, i.e.,it
must intersect every great circle of S2.

It turns out that the converse of the previous proposition is also true.

Proposition 3.10 If a spherical polygon Q ⊂ S2, not entirely contained in
a spherical line, is not contained in any closed hemisphere (equivalently, it
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intersects every great circle of S2), then Q is the tangent indicatrix of some
polygon P in R3.

A proof of Proposition 3.10 will be provided later. In order to do so, as
well to prepare the way for the proof of Theorem 3.6, it will be again useful to
express the geometry of the configuration of points in terms of determinants.

Recall what we have done so far: given a polygon P = [v1, ..., vn] ⊂ R3,
we calculated its edges {e1, ..., en} and normalized them, obtaining {u1, ..., un}.
Now we want to go the other way around: given Q = [u1, ...un], we must obtain
{e1, ..., en} as an edge set of some polygon P = [v1, ..., vn].

Notice that, since a space polygon P is closed,

v1 + e1 + e2 + ...+ en = v2 + e2 + ...+ en = ... =

= vn + en = v1.

Thus e1+...+en = 0, the zero vector. Conversely, if e1, ..., en are such that their
sum is zero, then one can choose an arbitrary point v ∈ R3 and put v1 = v,
v2 = v1+e1, ..., and vn = vn−1+en−1. Since vn+en = v1+e1+e2+...+en−1+en =
v1 + 0 = v1, we obtain a closed polygon P = [v1, ..., vn] whose "not normalized
tangent indicatrix" is the space polygon [e1, ..., en].

Therefore, it is easy to pass from {e1, ..., en} to {v1, ..., vn}. The difficult
step is, given {u1, ..., un}, to rescale them so that the new vectors sum up
to zero. Since for each i ∈ {1, ..., n} the vectors ei and ui point to the same
direction, what we want are positive real numbers λ1, ..., λn such that ei = λiui

for each i ∈ {1, ..., n}, and with sum

e1 + ...+ en = λ1u1 + ...+ λnun

equal to zero.
One can already see how we can use the fact of the {u1, ..., un} not be

entirely contained in one hemisphere: for any ui there must be a certain number
of vectors which, for a convenient sum, cancel out the (possibly rescaled) vector
ui. At this point we introduce the following definitions:
Definition 3.11 Given m vectors w1, ..., wm ∈ RN , the closed cone generated
by {w1, ..., wm} is the set defined by

C(w1, ..., wn) = {λ1w1 + ...+ λnwm;λi ≥ 0 for each i ∈ {1, ...,m}}.

Similarly, the open cone generated by {w1, ..., wm} is the set defined by

C(w1, ..., wn) = {λ1w1 + ...+ λnwm;λi > 0 for each i ∈ {1, ...,m}}.
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Given 3 linearly independent vectors u2, u3, u4 ∈ R3, any vector u ∈ R3

can be written as a unique linear combination of u2, u3 and u4. If in addition
u is contained in C(u2, u3, u4), then the coefficients λ2, λ3, λ4 are all positive.
It is clear that in this case the plane span{u2, u3} does not separate u and u4.
In terms of determinants, this means that

sign[u, u2, u3] = sign[u4, u2, u3] = sign[u2, u3, u4].

Analogously, we deduce that

sign[u, u3, u4] = sign[u2, u3, u4]

and
sign[u, u2, u4] = sign[u3, u2, u4] = −sign[u2, u3, u4].

Conversely, it is clear that if a unit vector u satisfies the above three
equations, then u ∈ C(u2, u3, u4).

Now, using the notion of cone, let us examine the following situation:
Suppose that we are given four unit vectors {u1, u2, u3, u4} ⊂ R3, not all
contained in the same closed hemisphere. Assume {u2, u3, u4} to be linearly
independent.

We claim that −u1 ∈ C(u2, u3, u4). For suppose that this is not the case,
i.e., that one of the last three equations (say the first one) does not hold. If

sign[−u1, u2, u3] ̸= sign[u2, u3, u4],

then either [u1, u2, u3] = 0 (in which case u1, u2 and u3 are in the same spherical
line and therefore u1, u2, u3 and u4 are on the same closed hemisphere)
or sign[u1, u2, u3] = sign[u2, u3, u4], i.e., u1 and u4 are on the same side of
span{u2, u3}, i.e., u1, u2, u3 and u4 are on the same closed hemisphere.

Similarly, assuming that one of the other two equations does not hold,
one gets another contradiction.

Now, assume that the set of unit vectors {u1, u2, u3, u4} is contained in a
closed hemisphere H. Denote by H ′ the open hemisphere which is the reflection
of the open hemisphere H. Since u1 ∈ H and C(−u2,−u3,−u4) ∩ S2 ⊂ H ′,
and moreover H ∩H ′ = ∅, it follows that u1 /∈ C(−u2,−u3,−u4).

We have therefore proved:

Proposition 3.12 Given any 4 vectors u1, u2, u3, u4 in S2 such that
{u2, u3, u4} is linearly independent, the following conditions are equivalent:

(a) u1, u2, u3 and u4 are not on the same closed hemisphere;
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(b) −u1 ∈ C(u2, u3, u4);
(c) sign[u1, u2, u3] = sign[u1, u3, u4] = −sign[u1, u2, u4] =

−sign[u2, u3, u4].

If Q = [u1, u2, u3, u4] is a spherical polygon, then the hypothesis that the
points are not on the same hemisphere is equivalent to −u1 ∈ C(u2, u3, u4),
which in turn is equivalent to the fact that there are positive real numbers λ2,
λ2 and λ3 such that −u1 = λ2u2 + λ3u3 + λ4u4, i.e.,

1 · u1 + λ2u2 + λ3u3 + λ4u4 = 0.

Therefore, in this case we were successful at lifting the vectors u1, ..., u4

to rescaled vectors e1, ..., e4 such that their sum is zero, which in turn implies
the existence of (an infinite number of) polygons P whose tangent indicatrix
is Q.

An interesting and simple geometric fact that follows immediately from
the previous proposition is the following:

Corollary 3.13 Given any 4 vectors u1, u2, u3, u4 in S2 such that any triple
of them is linearly independent, the following conditions are equivalent:

(a) −u1 ∈ C(u2, u3, u4);
(b) −u2 ∈ C(u1, u3, u4).
(c) −u3 ∈ C(u1, u2, u4).
(d) −u4 ∈ C(u1, u2, u4).

Proof. By Proposition 3.12, all of the above conditions are equivalent to the
condition that u1, u2, u3 and u4 are not on the same closed hemisphere. ■

Now we want to look at configurations with more than just 4 points in
S2. To have an idea of what problems might arise, let us look at the following
examples:

Example 3.14 Let {u1, u2, u3, u4, u5} be a set of 5 points in the sphere S2,
where u2 =

(√
2

2 , 0,
√

2
2

)
, u3 =

(
0,

√
2

2 ,
√

2
2

)
, u4 =

(
−

√
2

2 , 0,
√

2
2

)
and u5 =(

0,−
√

2
2 ,

√
2

2

)
(the same points of Example 3.8, except that the indices are

translated by 1).
Depending on the position of the vector u1, its antipode −u1 might be in

different regions of S2. Figure 3.4 shows some of the possibilities.
In case (a), −u1 ∈ C(u2, u3, u4) ∩ C(u2, u3, u5).
In case (b), −u1 ∈ C(u2, u3, u4) ∩ C(u3, u5).
Finally, in case (c), −u1 ∈ C(u2, u4) ∩ C(u3, u5).
If −u1 is not in one of these configurations, then −u1 /∈ C(u2, u3, u4, u5).

Similarly as in the proof of Proposition 3.12, there are two possibilities:
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Figure 3.4: Three different cases

– −u1 is on one of the spherical edges of the quadrangular region (say,
[u2, u3]) and then, since u4 and u5 are on the same side of span{u2, u3},
we have that all of the points are one the same closed hemisphere.

– −u1 is separated by the plane span{ui, uj} (where i, j are some indices
of {2, 3, 4, 5}) from the remaining pair {uk, ul}, i.e., the points u1, uk

and ul are on the same side of the plane span{ui, uj}. In other words,
all points u1, ..., u5 are on the same closed hemisphere.

Therefore, for a set of points not entirely contained in a hemisphere, the
three cases above are (up to symmetry) the only possibilities. Thus:

– In (a), −u1 = λ2u2 + λ3u3 + λ4u4 and −u1 = µ2u2 + µ3u3 + µ4u5, which
implies

2u1 + (λ2 + µ2)u2 + (λ3 + µ3)u3 + λ4u4 + µ5u5 = 0.

– In (b), −u1 = λ2u2 + λ3u3 + λ4u4 and −u1 = µ3u3 +µ5u5, which implies

2u1 + λ2u2 + (λ3 + µ3)u3 + λ4u4 + µ5u5 = 0.

– In (c), −u1 = λ2u2 + λ4u4 and −u1 = µ3u3 + µ5u5, which implies

2u1 + λ2u2 + µ3u3 + λ4u4 + µ5u5 = 0.

In any of these three cases, we succeeded at rescaling our original unit vectors
so that their new sum equals zero. Now, if these points were originally the
vertices of a spherical polygon Q = [u1, u2, u3, u4, u5], this implies the existence
of (a infinite number of) polygons whose tangent indicatrix is exactly Q.
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Figure 3.5: Two degenerate cases

Example 3.15 Now let us look at another configuration, as shown in figure
3.5.

In case (a), −u1 ∈ C(u2, u3, u4) ∩ C(u3, u4, u5), i.e., −u1 = λ2u2 +λ3u3 +
λ4u4 and −u1 = µ3u3 +µ4u4 +µ5u5 for positive λ’s and µ’s, which implies that

2u1 + λ2u2 + (λ3 + µ3)u3 + (λ4 + µ4)u4 + µ5u5 = 0,

where all coefficients are positive.
In case (b), −u1 ∈ C(u2, u3, u4)∩C(u3, u5), i.e., −u1 = λ2u2 +λ3u3 +λ4u4

and −u1 = µ3u3 + µ5u5 for positive λ’s and µ’s, which implies that

2u1 + λ2u2 + (λ3 + µ3)u3 + λ4u4 + µ5u5 = 0,

where all coefficients are positive. These two cases are (up to symmetry) the
only possibilities (if −u1 /∈ C(u2, u3, u4, u5), then we derive a contradiction in
the same way as we did in Example 3.14). Since we could rescale these points
so that they sum to zero, we can then find a space polygon P whose tangent
indicatrix is Q = [u1, u2, u3, u4, u5].

Example 3.16 A third type of configuration is given by figure 3.6.
In case (a) and (b), u1 ∈ C(u2, u3, u4) ∩ C(u2, u3, u5).
In case (c), −u1 ∈ C(u2, u3, u4) ∩ C(u4, u5).
In case (d), −u1 ∈ C(u2, u3, u4) ∩ C(u5) Notice that in this case u5 is the

antipode of u1.
Proceeding the same way as it was done in the previous examples, one

shows that, if the ui’s are not entirely contained in a hemisphere, then these
four cases are (up to symmetry) the only possibilities. For each case one can
then obtain rescaled versions of the ui’s so that they sum up to zero. Therefore
there is a space polygon P whose tangent indicatrix is Q = [u1, u2, u3, u4, u5].

As the three previous examples have shown, a certain configuration of
points determines a couple of cases to consider. A little thought might convince
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Figure 3.6: Four more cases

the reader that these three examples exhaust all possibilities for the relative
position of the points u2, u3, u4 and u5 up to some permutation of the indices
(the case in which u2, u3, u4 and u5 are in the same spherical line does not
appear since it would then imply that all points from u1 to u5 would be on the
same closed hemisphere).

Another important feature of what we have just done is that, given a
unit vector u1, every other unit vector from u2, u3, u4 and u5 appeared at
least once as the generator of one of the cones that contained the antipode of
u1 (some of them appeared more than once, but that does not matter). This
made it possible to obtain a sum with all the (rescaled) vectors.

Moreover, as we have seen in these examples, there might happen that
three different points are in the same spherical line (i.e.,three vectors on the
same plane). Although we could prove Proposition 3.10 in this more general
case, it will be convenient to assume that this does not happen. The reason
is twofold: it will make the proof considerably simpler and, as we will see
later, any spherical polygon with three non-consecutive collinear vertices can
be perturbed into a spherical polygon with no three collinear vertices, but with
the same number of inflections.

From now on, we assume the following typographical conventions: given
vectors ui,uj and uk, we may also write [i, j, k] instead of [ui, uj, uk]. Addition-
ally, the notation

[i, j, k] ≃ [a, b, c]

means that sign[i, j, k] = sign[a, b, c]. Therefore, if the determinants have
opposite signs, we write

[i, j, k] ≃ −[a, b, c].

Since we are also assuming from now on that the spherical polygons
considered do not have three points in the same spherical line, any determinant
calculated using a triple of the points of the spherical polygon is nonzero.
Thus, in this case, [i, j, k] ≃ −[a, b, c] is equivalent to and will be written as
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[i, j, k] ̸≃ [a, b, c].

3.4
Some results of Convex Geometry

Before proving Proposition 3.10, we need some results of Convex Geome-
try. The proof of the first one reveals an interplay between conical sets and the
notion of convexity in the sphere. For an account of these ideas, the interested
reader might consult (FERREIRA; IUSEM; NéMETH, 2013).

Lemma 3.17 Let Q = {u1, u2, ..., un} be a finite set of points on the sphere S2

(n ≥ 4), not all of them on the same closed hemisphere. Then C(u1, ..., un) =
R3.

Proof. The proof is by induction on the number of points. For n = 4, then
Proposition 3.12 (or equivalently, Corollary 3.13) implies that each point ui

(i = 1, 2, 3, 4) is such that its antipode in the open cone spanned by the other
points. Since the four closed cones (each one generated by a different triple of
points from the set {u1, u2, u3, u4}), restricted to the sphere, divide it into four
regions, we have that C(u1, u2, u3, u4) = R3.

Now, assume the result true for n, and suppose we are given a set of n+1
points Q = {u1, ..., un, un+1}, not all of them in the same closed hemisphere.
If the set Q − {un+1} is not in the same hemisphere, then by the induction
hypothesis R3 = C(u1, ..., un) ⊂ C(u1, ..., un, un+1) ⊂ R3, from which the result
follows.

If, however, {u1, ..., un} is in some closed hemisphere H, consider then the
open regionR = C(u1, ..., un)∩S2 ⊂ C(u1, ..., un)∩S2 ⊂ H. We may assume that
the vertices of the topological boundary of this region are all the ui’s of Q. For if
it were not the case (say uj is the topological interior of R), then C(u1, ..., un) =
C(u1, ..., ûj, ..., un) and, consequently, C(u1, ..., un+1) = C(u1, ..., ûj, ..., un+1).
By the induction hypothesis applied to the set {u1, ..., ûj, ..., un+1},

C(u1, ..., un+1) = C(u1, ..., ûj, ..., un+1) = R3.

After labelling the indices, if necessary, we may assume that the boundary
of the region R is a convex polygon with the ordering u1, u2, ..., un and oriented
so that the R is always on the left of the polygon. This region is, therefore,
the intersection of all the open hemispheres

Hi = {u ∈ S2; [u, ui, ui+1] > 0},

for i = 1, 2, ..., n. Notice that uj ∈ Hi, for all j ̸= i, i+ 1.
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We claim that −un+1 ∈ R. For if it were not in R, then −un+1 would
not be in at least one of the Hi. This would imply that [−un+1, ui, ui+1] ≤ 0,
i.e., [un+1, ui, ui+1] ≥ 0, i.e., un+1 ∈ H i. Since all other points uj’s are in H i,
this implies that all points are in the closed hemisphere H i, contrary to the
hypothesis.

Now, since un+1 is not in any of the Hi, then the open cones of the form
C(ui, ui+1, un+1) (for all i = 1, ..., n) are disjoint and do not intersect the open
cone C(u1, ..., un). Moreover, we have that

C(u1, ..., un) ∪
n⋃

i=1
C(ui, ui+1, un+1) = R3.

Since the set on the left is contained in C(u1, ..., un, un+1) ⊂ R3, the result
follows. ■

The following proposition is the conical version of the known
Carathéodory’s Theorem for convex sets (see for instance (HUG; WEIL,
2020), p. 14). The proof of the former is similar to the usual proof of the latter
result.

Proposition 3.18 Let Q be a finite set of n points in Rd (n ≥ d). Let u be
any point of

C(Q) = { finite sums of elements of the form λu;λ ≥ 0, u ∈ Q}.

Then there are d points u1, ..., ud in Q and non-negative numbers λ1, ..., λd such
that

u = λ1u1 + ...+ λdud.

Proof. Given u ∈ C(Q), we have that

u = λ1u1 + ...+ λmum,

with λi ≥ 0, for all i ∈ {1, ...,m}. Let m be the minimal number for which
such a conical combination for u is possible.

We claim that {u1, ..., ud} is linearly independent (from which it follows
that m ≤ d). For if it were linearly independent, then there would be α1, ..., αm,
not all zero, such that

m∑
i=1

αiui = 0.



Chapter 3. Segre polygons 51

Let I := {i ∈ {1, ...,m};αi > 0} (which can be assumed to be nonempty,
otherwise we could work with −αi’s instead of αi’s). Choose i0 ∈ I such that

λi0

αi0

= min
i∈I

λi

αi

.

Hence,
λi − λi0

αi0

αi ≥ 0,

for all i ∈ I (notice also that this inequality always holds when αi ≤ 0). Then,
we have

m∑
i=1

(
λi − λi0

αi0

αi

)
ui =

m∑
i=1

λiui − λi0

αi0

m∑
i=1

αiui =
m∑

i=1
λiui − λi0

αi0

· 0 = u,

with λi −
λi0
αi0
αi ≥ 0, for all i ∈ {1, ...,m}, and λi0 − λi0

αi0
αi0 = 0. This contradicts

minimality of m. ■

Lemma 3.19 Let Q = {u1, u2, ..., un} be a finite set of points on the sphere
S2, with n ≥ 5, not all of them on the same hemisphere. Then the set

X = {ui ∈ Q; {u1, ..., ûi, ..., un} is not contained on a hemisphere}

has at least n− 3 elements.

Proof. By Lemma 3.17, C(u1, ..., un) = R3. In particular, −u1 ∈ C(u1, ..., un),
i.e., there are non-negative numbers λi (1 ≤ i ≤ n) such that

−u1 = λ1u1 + λ2u2 + ...+ λnun,

i.e.,
−u1 = µ2u2 + ...+ µnun,

where µi = λi/(1+λ1) ≥ 0. In other words, −u1 ∈ C(u2, ..., un). By Proposition
3.18, there are ui, uj, uk ∈ Q and non-negative numbers αi, αj and αk such
that

−u1 = αiui + αjuj + αkuk.

Since we are assuming that there are no three spherically collinear points in
Q, all three numbers αi, αj and αk are positive, i.e., −u1 ∈ C(ui, uj, uk).

After a relabelling of the indices, if necessary, we may assume that the
points ui, uj and uk are u2, u3 and u4.

By Proposition 3.12, each one of the points u1, u2, u3 and u4 is such that
its antipode is on the open cone spanned by the other points. The respective
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four closed cones divide the sphere into four regions. Since we are assuming
that no three points of Q are collinear, we have that any of the remaining
points u5, ..., un is such that its antipode is contained in one and only one of
the cones C(u1, u2, u3), C(u1, u2, u4), C(u1, u3, u4) and C(u2, u3, u4).

Since the antipode of any point from u1 to un is in an open cone spanned
by a triple from the four points u1, u2, u3 or u4, this means that all points
from u5 to un are not essential as a cone generator. Hence all points from u5

to un are in the set X, as defined before.
Now, we just need to show that at least one of the points u1, u2, u3 or

u4 is in X. Since n ≥ 5 and no three points are (spherically) collinear, at least
one of the following sets is non-empty:

Q1 = {ui ∈ Q− {u1}; −ui ∈ C(u2, u3, u4)},

Q2 = {ui ∈ Q− {u2}; −ui ∈ C(u1, u3, u4)},

Q3 = {ui ∈ Q− {u3}; −ui ∈ C(u1, u2, u4)},

Q4 = {ui ∈ Q− {u4}; −ui ∈ C(u1, u2, u3)}.

We may assume that this non-empty set is Q1. This implies, by Proposition
3.12, that for some i ∈ {5, ..., n} the points u2, u3, u4 and ui are not on the same
hemisphere. This in turn implies that any of the remaining points (including
u1) is in one and only one of the four open cones spanned by each possible
triple from {u2, u3, u4, ui}. Thus u1 is not essential as a cone generator, i.e.,
u1 ∈ X. ■

Remark 3.20 The proof of Lemma 3.19 actually showed a stronger result:
We could get rid of all points except four at once so that the new configuration
would still not be contained in a hemisphere.

Proof. (of Proposition 3.10) Given a spherical polygon Q = [u1, u2, ..., un], we
just have to show that there are positive scalars αi such that the rescaled
vectors ei = αiui sum up to zero.

The proof is on induction on the number of points n ≥ 4. The case n = 4
is Proposition 3.12: −u1 ∈ C(u2, u3, u4), which implies that 1 · u1 + α2 · u2 +
α3 · u3 + α4 · u4 = 0.

Now, assume the result for n points. Suppose we are given (n+1) points,
not all of them on the same hemisphere. By Lemma 3.19, there is at least
one point (say, un+1) such that the remaining points are not on the same
hemisphere. By the induction hypothesis, there are positive λi such that

λ1 · u1 + λ2 · u2 + ...+ λn · un = 0.
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By the proof of Lemma 3.19, there are four points ui, uj, uk and ul (which
can be assumed to be different from un+1) such that the four different cones
divide the sphere in four regions. Since we assume that no three points of Q
are (spherically) collinear, we have that −un+1 is in one of these open cones,
say C(ui, uj, uk). Therefore

µi · ui + µj · uj + µk · uk + 1 · un+1 = 0,

which, summing to the previous sum, gives

n+1∑
m=1

αmum = 0,

where αm = λm + µm for m = i, j or k, αn+1 = 1 and αm = λm for the
remaining points. ■

The reader might be wondering why we bothered to prove Lemma 3.19,
which is considerably stronger than what we actually used in the proof of
Proposition 3.10. The reason why we need this result will become clear in the
course of the proof of Theorem 3.6.

In order to simplify language, we introduce the following terminology:
Definition 3.21 A set of points Q = {u1, ..., un} ⊂ S2 (n ≥ 4), not in the
same spherical line, is said to be balanced or in balanced position if its points
are not in the same closed hemisphere. A point ui of a balanced set is said
to be essential if the set {u1, ..., ûi, ..., un} is not balanced. Otherwise ui is
nonessential. For a spherical polygon Q = [u1, .., un], the same definitions apply
to Q considered as a set of vertices.

The condition of having all unit vectors u1, u2, ..., un in balanced position
simply means that, for each i ∈ {1, ..., n}, there is at least one triple of
points uj, uk and ul such that −ui ∈ C(uj, uk, ul). By Proposition 3.12, this is
equivalent to

[i, j, k] ≃ [i, k, l] ̸≃ [i, j, l] ≃ [j, k, l].

In Lemma 3.19, however, we improved this even more: there are actually
four specific points ui, uj, uk and ul such that any um of the remaining points
has its antipode located in one and only one of the four cones spanned by these
points.

The next step is, therefore, to express the fact of a spherical polygon not
having self-intersection as a relation of signs of determinants. Looking at figure
3.7 we have some possibilities regarding the relative position of two spherical
edges. For the sake of simplicity of notation we assume that one (spherical)
edge is −−→u1u2 and the other is −−→u5u6.
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Figure 3.7: Possibilities regarding the relative positions of edges

If edges −−→u1u2 and −−→u5u6 intersect, then the spherical line spanned by an
edge separates the two endpoints of the other edge (see figure 3.7(d)). In terms
of determinants, this means that

[1, 2, 5] ̸≃ [1, 2, 6] and [1, 5, 6] ̸≃ [2, 5, 6].

Notice, however, that this relation is not exclusive to the case where both
edges intersect: this relation is also true if one edge intersects the antipode of
the other edge (see figure 3.7(e)). In order to distinguish these two possibilities,
notice that, if the edges intersect, then the spherical line spanned by u1 and
u6 does not separate u2 and u5, while the spherical line spanned by u2 and u5

does not separate u1 and u6 (that would not be case if one edge intersected
the antipode of the other edge). Hence

[1, 6, 2] ≃ [1, 6, 5] and [2, 5, 1] ≃ [2, 5, 6].

i.e.,
[1, 2, 6] ≃ [1, 5, 6] and [1, 2, 5] ≃ [2, 5, 6].

Therefore, if edges −−→u1u2 and −−→u5u6 intersect, we have that

[1, 2, 5] ≃ [2, 5, 6] ̸≃ [1, 2, 6] ≃ [1, 5, 6].

We have therefore proved

Proposition 3.22 A spherical polygon Q ⊂ S2 has a self-intersection at edges
−−−→uiui+1 and −−−−→ujuj+1 (where j ̸= i+ 1 and i ̸= j + 1) if and only if the relation

[i, i+ 1, j] ≃ [i+ 1, j, j + 1] ̸≃ [i, i+ 1, j + 1] ≃ [i, j, j + 1]

holds.
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Example 3.23 Let Q = [u1, u2, u3, u4] ⊂ S2 be a spherical polygon whose
vertices are not entirely contained on one hemisphere. By Proposition 3.12,
this is equivalent to

[1, 2, 3] ≃ [1, 3, 4] ̸≃ [1, 2, 4] ≃ [2, 3, 4],

i.e., the cyclic sequence ϵ1 = [1, 2, 3], ϵ2 = [2, 3, 4], ϵ3 = [3, 4, 1] = [1, 3, 4] and
ϵ4 = [4, 1, 2] = [1, 2, 4] has 4 sign changes. As we saw earlier, this is equivalent
to the polygon Q having 4 (spherical) inflections.

Moreover, Q does not have self-intersections. For if it had (say, between
edges −−→u1u2 and −−→u3u4), then Proposition 3.22 would imply

[1, 2, 3] ≃ [2, 3, 4] ̸≃ [1, 2, 4] ≃ [1, 3, 4],

contradicting the previous determinant relations.
Our conclusion is that, for a spherical polygon Q with 4 points, not

only the condition (a) of Proposition 3.12 implies the existence of 4 spherical
inflections, but also the converse. Besides that, any of these two statements
imply that Q does not have self-intersections.

Remark 3.24 Our extra assumption on the spherical polygons not having
three points in the same spherical line might seem redundant, since we assume
the original polygon P in R3 to be generic: if its tangent indicatrix Q had three
consecutive points ui, ui+1 and un+2 in the same spherical line, then ei, ei+1

and ei+2 would be in the same plane, i.e., the vertices vi, vi+1, vi+2 and vi+3

would be in the same plane.
Notice, however, that if the tangent indicatrix had three non-consecutive

points in the same spherical line, say ui, ui+1 and uj, that would only mean
that vj and vj+1 are in a plane parallel to the plane generated by vi, vi+1 and
vi+2. This does not contradict the genericity of P .

The justification of why we can assume Q to have this extra property rests
on the following remark: given a spherical polygon without Q ⊂ S2, we can
perturb its vertices slightly so that Q will not have three (spherically) collinear
vertices, but preserving at the same time not only the property of not being
entirely contained in a hemisphere but also the property of not having self-
intersections. Moreover, if Q does not have three consecutive collinear vertices
(which is the case), this perturbation can be done without altering the state of
a triple of vertices of P of being a flattening or not.
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3.5
Good vertices and proof of the Main Result

Theorem 3.6 follows from the following Main Result:

Theorem 3.25 Let Q = [u1, ..., un] ∈ S2 (n ≥ 4) be a spherical polygon
in balanced position and without self-intersections. Then Q has at least four
spherical inflections.

The proof will need some lemmas. Given a spherical polygon Q and any
of its vertices ui, denote by Q−ui the polygon [u1, ..., ûi, ..., un], obtained from
Q by deleting the vertex ui along with the edges −−−→ui−1ui and −−−→uiui+1, and adding
the edge −−−−−→ui−1ui+1 to connect vertices ui−1 and ui+1.

Definition 3.26 A spherical polygon Q = [u1, ..., un] is simple if it does not
have self-intersections. A vertex ui is said to be good if the spherical polygon
Q− ui is simple. Otherwise ui is said to be bad.

Lemma 3.27 Let Q = [u1, u2, ..., un] be a balanced, simple spherical polygon,
(n ≥ 4). Then the set

Y = {ui ∈ Q;ui is good}

has at least four elements.

Proof. Since Q is simple, it divides the sphere S2 into two disjoint, open regions
R1 and R2. The fact that Q is balanced implies, by Lemma 3.17, that for any
point u of S2, u can be expressed as a non-negative combination of vertices
of Q (at most three of them, by Proposition 3.18), i.e., u in the inside of the
triangle spanned by vertices ui, uj and uk of Q.

Therefore, the sphere can be subdivided into triangles whose vertices
are the vertices of Q. Choose any such triangulation T of the sphere whose
triangles are entirely contained either in R1 ∪Q or R2 ∪Q. Such triangulations
always exist in this case (see figure 3.8). (For instance, for vertex u1, connect
to it all other vertices ui such that the spherical segment −−→u1ui (i.e., the segment
that minimizes distance between the points) only intersects Q at u1 and ui;
then connect u2 to all other vertices ui such that the spherical segment −−→u2ui

does not intersect Q and the previous added segments, except of course at the
vertices of Q; and so on.) Notice that, since n ≥ 4, this triangulation has at
least 4 triangles.

For the triangulation T restricted to the region R1 (denoted by T1),
consider its dual graph G1 (a triangle △1 ∈ T is considered a vertex and is
connected to another triangle △2 if both have a common edge which is not
in Q). Since the triangulation only uses triangles with vertices in Q, then the
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Figure 3.8: Two possible triangulations for a region determined by a spherical
polygon (again, we represent such objects on the plane in order to aid
visualization). Notice that different triangulations might lead to different sets
of good vertices. Our argument, however, guarantees that for any triangulation
there will always be at least 2 such vertices per region.

Figure 3.9: Two examples showing that the balanced position hypothesis is
necessary for Lemma 3.27 to be true. On the left the spherical polygons, on
the right their planar version to aid visualization. The vertices in blue are
good, while the ones in red are bad.

dual graph G1 is a tree, i.e., it is connected and does not have cycles. By a
basic theorem of graph theory (theorem 2.1), such a graph (provided it has at
least two vertices, which is the case), has at least two leaves, i.e., 2 vertices
adjacent to only one other vertex (see figure 3.8).

In terms of the triangulation T1, this means that there are two triangles
△1 and △2 in T1 with only one edge in the relative interior of the region R1.
For △1, let ui be the vertex adjacent to the edges of △1 that are contained
in Q. Since the edge −−−−−→ui−1ui+1 of △1 is entirely contained in R1, this means in
particular that it does not intersect Q at any other edge, i.e., Q−ui is simple.
In other words, ui is good. By the same argument applied to △2, we obtain
another good vertex uj.

Proceeding analogously to the triangulation T restricted to the region
R2, we obtain other two good vertices. ■

Figure 3.9 shows that the balanced position hypothesis on the spherical
polygon is necessary, even for a large number of vertices.
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Lemma 3.28 Given a balanced, simple spherical polygon Q = [u1, u2, ..., un],
n ≥ 5, there is at least one good, nonessential vertex ui.

Proof. By Lemma 3.19, the set

X = {ui ∈ Q;ui is nonessential}

has at least n− 3 elements. By Lemma 3.27, the set

Y = {ui ∈ Q;ui is good}

has at least four elements. Therefore, the set X ∩ Y has at least one element,
i.e., there is at least one good, nonessential vertex. ■

Lemma 3.29 Given a simple spherical polygon Q, let ui be a good vertex of
Q. Then the number of spherical inflections of Q is greater or equal to the
number of spherical inflections of the resulting spherical polygon Q− ui.

Proof. Given ui ∈ Q, the polygon Q − ui will be formed by deleting ui along
with the (spherical) edges −−−→ui−1ui and −−−→uiui+1 from Q, and by adding the edge
−−−−−→ui−1ui+1. Figure 3.10 depicts two of the many possibilities (we represent them
on the plane instead of the sphere to aid visualization).

If ui is the vertex of the conclusion of Lemma 3.28, then the situation of
figure 3.10 (b) cannot happen: if at least one of the vertices ui−2 and ui+2 were
in the inside of the spherical triangle formed by the vertices ui−1, ui and ui+1,
then Q would either have a self-intersection (which is impossible by hypothesis)
or Q− ui would have a self-intersection (which is not true due to the choice of
ui).

Therefore, all possible possibilities are, up to symmetry, the ones rep-
resented in figures 3.11 and 3.12 (again, we represent these configurations on
the plane instead of the sphere). Denoting by di(x) the number of spherical
inflections of Q minus the number of spherical inflections of Q− ui in configu-
ration (x), we see that di(a) = 0, di(b) = 0, di(c) = +2, di(d) = 0, di(e) = +2,
di(f) = 0, di(g) = +2, di(h) = 0, di(i) = +2 and di(j) = +4. Since all these
numbers are either positive or zero, the lemma is proved. ■

Proof. (of Theorem 3.25) The proof in on induction on the number of vertices
of Q. The case n = 4 is Example 3.23, for which the result is valid.

Assume that the result holds for spherical polygons with n points.
Suppose we are given a spherical polygon Q with n+ 1 points.

By Lemma 3.28, there is at least one point ui such that the resulting
polygon Q − ui is balanced and simple. By Lemma 3.29, the number of
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Figure 3.10: Two of many possibilities

Figure 3.11: Three possible simple cases

Figure 3.12: Seven possible cases in which at least one of the adjacent edges
might change its condition of being an inflection or not.

inflections of Q is greater or equal to the number of inflections of Q − ui.
By the induction hypothesis, however, the number of inflections of Q − ui is
greater or equal to four. ■

3.6
Applications to Spherical Polygons

Besides the original Segre’s Theorem for spherical curves, there are in the
literature other interesting results regarding smooth curves. Among these re-
sults we have the Tennis Ball Theorem (theorem 1.8) and a theorem by Möbius
on smooth projective curves, which can be formulated in terms of spherical
centrally symmetric curves (theorem 1.9). In (OVSIENKO; TABACHNIKOV,
2001), Ovsienko and Tabachnikov state discrete analogs of these theorems as
Conjectures, adding that it would be interesting to find discrete proofs of these
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results. Since both of these theorems follow from Segre’s Theorem, while our
proof of the latter result is entirely discrete, our approach follows the outline
set by Ovsienko and Tabachnikov. Before stating and proving these results, we
need a preliminary remark.

Remark 3.30 We assume the following convention: a simple spherical poly-
gon Q which is contained in a spherical line will be considered balanced and
all its edges will be considered spherical inflections. Note that Definition 3.21
does not apply here since we assumed then that the points of Q would not be
in the same spherical line.

The reason for this convention is that such a spherical polygon can always
be realized as a tangent indicatrix of a planar polygon P in R3. Definition 3.21
could be phrased in terms of open hemispheres instead of closed ones in order to
contain the planar case, but the proofs involving this alternative notion would
always require some argument of perturbation of hemispheres.

Moreover, since the notion of inflection we use is related to the change of
signs of the cyclic sequence of determinants, it is a way to mimic the smooth
idea of the torsion going from negative to positive (or vice-versa), i.e., passing
through zero. For a planar spherical polygon, all determinants [ui, ui+1, ui+2]
are zero, hence it is reasonable to consider all edges as inflections.

As a first application of Theorem 3.25 we have the following result:

Theorem 3.31 (Discrete Tennis Ball Theorem) If a spherical, simple polygon
Q = [u1, ..., un] (n ≥ 4) divides the sphere into two regions with the same area,
then Q has at least 4 spherical inflections.

Proof. If Q is contained in a spherical line, then the result follows by Remark
3.30.

Suppose now that Q is not contained in a spherical line. Since Q is simple,
it suffices by Theorem 3.25 to show that Q is balanced. If it were not balanced,
then Q would be contained in a closed hemisphere H. Hence one of the two
regions R1 and R2 determined by Q would be contained in H (say R1 ⊂ H).
Since Q is not planar, R1 ̸= H and therefore area(R1) < area(H) = 2π,
contrary to hypothesis that area(R1) = area(R2) = 2π. ■

Corollary 3.32 A space polygon P = [v1, ..., vn] (n ≥ 4) whose tangent
indicatrix divides the sphere into two regions with the same area must have
at least 4 flattenings.

Before our second application of Theorem 3.25, we need a definition:
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Definition 3.33 For a set X ⊂ Rd, define −X as −X = {−x;x ∈ X}. We
say that X is centrally symmetric (to the origin) if −X = X.

Proposition 3.34 Let Q be a simple, centrally symmetric spherical polygon.
Then

(a) Q is balanced.
(b) Q divides the sphere into two regions with the same area.

Proof. (a) We may assume Q is not contained in a spherical line. If Q were
not balanced, then it would be contained in a closed hemisphere H. Hence
−Q ⊂ −H. Since Q is centrally symmetric, Q = −Q ⊂ −H, which implies
that Q ⊂ H ∩ −H, i.e., H is contained in a spherical line, contrary to our
assumption.

(b) Let R1 and R2 be the two (connected) regions of S2 determined by Q.
Since both S2 and Q are centrally symmetric and R1 and R2 are connected, we
have that −R1 = R2 and −R2 = R1. Since the operation −X on sets preserves
area, the result follows. ■

The following result is a discrete analog of a theorem by Möbius (theorem
1.9). Recall that the indices of the vertices are always taken modulo the number
of vertices of the polygon.
Theorem 3.35 A simple, centrally symmetric spherical polygon Q with at
least 2n vertices (2n ≥ 6) has at least 6 inflections.

Proof. We may assume that Q is not a spherical line. By Proposition 3.34 (a)
and Theorem 3.25 (or also by Proposition 3.34 (b) and Theorem 3.31), Q has
at least 4 inflections. Recall that, in terms of determinants, a pair {ui, ui+1} is
an inflection if and only if the determinants [i − 1, i, i + 1] and [i, i + 1, i + 2]
have opposite signs. From this the following facts follow:

(i) Since Q is centrally symmetric (hence ui+n = −ui), the pair {ui, ui+1}
is an inflection if and only if {ui+n, ui+n+1} is an inflection, because in both
cases there will be a sign change of determinants.

(ii) Moreover, if the sign change in {ui, ui+1} was from negative to positive
(resp. from positive to negative), then the sign change in {ui+n, ui+n+1} will be
from positive to negative (resp. from negative to positive), by the same reason
in (i).

If the inflections already obtained are

{ui, ui+1}, {uj, uj+1}, {uk, uk+1} and {ul, ul+1},

then by fact (i) the pairs

{ui+n, ui+n+1}, {uj+n, uj+n+1}, {uk+n, uk+n+1} and {ul+n, ul+n+1}
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are also inflections. There might be some repetitions if some of the first 4
inflections are symmetric to each other. If that does not happen, then we
obtain in total 8 inflections. If there is only one pair of symmetric inflections
among these first ones, then we obtain in total 6 inflections. Finally, if there
are two pairs of symmetric inflections among the first 4 ones, then we still have
only 4 inflections. In this case, we label these inflections simply as

{ui, ui+1}, {uj, uj+1}, {ui+n, ui+n+1} and {uj+n, uj+n+1},

with i < j < i + n < j + n. We may assume, without loss of generality, that
in inflection {ui, ui+1} the sign change went from positive to negative. Conse-
quently, the sign change in {ui+n, ui+n+1} goes from negative to positive (by
fact (ii)). Since inflection {uj, uj+1} happens between them (hence, changing
the sign), there must be an odd extra number of inflections between {ui, ui+1}
and {ui+n, ui+n+1} in order to compensate for the change. In particular, there
is at least one other inflection {uk, uk+1}, with i < k < i + n and k ̸= j. By
fact (i) again, edge {uk+n, uk+n+1} is also an inflection (a new one). We have,
thus, proved that also in this case Q has at least 6 inflections. ■

Corollary 3.36 A space polygon P with 2n vertices (2n ≥ 6) and whose
tangent indicatrix is simple and centrally symmetric must have at least 6
flattenings.

3.7
An application to weakly generic polygons

Notice that in the proof of theorem 3.35 we actually proved the following
result, which is stated here separately for reference:

Lemma 3.37 If a centrally symmetric spherical polygon Q with at least 2n
vertices (2n ≥ 6) has at least 4 inflections, then it has at least 6 inflections.

Using lemma 3.37, we can prove theorem 2.26:
Proof. (of theorem 2.26) Since P is weakly generic and weakly convex, then
it has at least 4 flattenings, by remark 2.24 and theorem 2.4. Because each
flattening of P corresponds to an inflection of its tangent indicatrix Q, it
follows that Q has at least 4 inflections.

Moreover, since P is centrally symmetric to a point x0 ∈ R3, Q is also
centrally symmetric. By lemma 3.37, Q has at least 6 inflections. But this
implies that P has at least 6 flattenings. ■
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3.8
Further remarks

Although propositions 3.12 and 3.22 are elementary, their proofs and
application to our study of spherical polygons seem to be new.

On the other hand, lemmas 3.19, 3.27 and 3.28 are new. Since we have
not found proposition 3.10 in the discrete case in the literature (although
the corresponding result for smooth curves is known), we included it here for
completeness.

Lemma 3.29 also does not appear in the literature, and by the same
reason as before we included it here.

The proof of theorem 3.6 using only discrete tools is new. Consequently,
the proofs of theorems 3.25, 3.31 and 3.35 and corollaries 3.32 and 3.36 are
new in the sense that, since they follow from theorem 3.25, they also depend
only on discrete tools.

Notice also that theorem 3.6 and corollary 3.36 parallel theorem 2.4 and
theorem 2.26, respectively, in the sense that that, once one adds the hypothesis
of central symmetry to the condition of “convexity" in each case, one improves
the lower bound on the number of flattenings of the polygon.



4
Spherical polygons without self nor antipodal intersections

4.1
Introduction

In the previous chapter, we proved a discrete analog of a theorem by
Segre. Although the curves originally considered by Segre were smooth and
the ones considered in our case were polygons, both versions stated that these
curves, under the hypotheses of not being contained in a closed hemisphere
and not having self-intersections, must have at least four inflections.

Ghomi (in (GHOMI, 2013)) proved in the smooth setting that, under
one additional condition (namely, that such curves do not have antipodal
intersections), the lower bound on the number of inflections can be improved
to six:

Theorem 4.1 Let γ be a C2 closed spherical curve, not entirely contained in
any closed hemisphere. If, for any pair of points t ̸= s ∈ S1, γ(t) ̸= ±γ(s) (i.e.,
γ does not have self nor antipodal intersections), then γ must have at least six
(spherical) inflections.

Theorem 4.1 is actually a particular case of a theorem also proved by
Ghomi, which will be stated in the next chapter (but see (GHOMI, 2013)).

The main goal of this chapter is to state a discrete analog of theorem
4.1 and prove it. In order to do it, we use determinants again to express
algebraically when the edge of a spherical polygon intersects the antipode
of another edge. The proof of our theorem then proceeds on induction on the
number of vertices of the polygon. Similarly as in the previous chapter, the
most difficult step of the proof is to prove the existence of a vertex such that,
after its deletion, the resulting polygon is not contained in a closed hemisphere
nor has self or antipodal intersections. In this chapter we also assume that any
spherical polygon being considered is such that no three of its vertices are in
the same spherical line.

4.2
Antipodal intersections

Recall that, given four unit points ui, uj, uk and ul (any triple of them
being linearly independent), they are said to be in balanced position if they are
not in the same closed hemisphere. By proposition 3.12, this happens if and
only if the following relation holds:
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Figure 4.1: A self-intersection (left) and a antipodal intersection (right).

[ui, uj, uk] ≃ [ui, uk, ul] ̸≃ [ui, uj, ul] ≃ [uj, uk, ul].

Recall also that, by proposition 3.22, a spherical polygon Q ⊂ S2 has a
self-intersection at edges −−−→uiui+1 and −−−−→ujuj+1 (where j ̸= i + 1 and i ̸= j + 1) if
and only if the relation

[i, i+ 1, j] ≃ [i+ 1, j, j + 1] ̸≃ [i, i+ 1, j + 1] ≃ [i, j, j + 1]

holds (see figure 4.1 on the left).
We will also need the notion of intersection of an edge with the antipode

of another edge (see figure 4.1 on the right). We will call such an intersection
as an antipodal intersection. In the proof of proposition 3.22 (see our previous
chapter), we noticed that, given edges −−−→uiui+1 and −−−−→ujuj+1 (assume that i = 1
and j = 5 for the sake of simplicity of notation) such that one intersects the
antipode of the other, the spherical line spanned by each one intersects the
other one. This implies that

[1, 2, 5] ̸≃ [1, 2, 6] and [1, 5, 6] ̸≃ [2, 5, 6].

However, this condition also applies to the case of ordinary intersection
of edges. The difference now is that here the spherical line spanned by u1 and
u6 separates u2 and u5, while the spherical line spanned by u2 and u5 separates
u1 and u6. Hence

[1, 6, 2] ̸≃ [1, 6, 5] and [2, 5, 1] ̸≃ [2, 5, 6],

i.e.,
[1, 2, 6] ̸≃ [1, 5, 6] and [1, 2, 5] ̸≃ [2, 5, 6].

Therefore, if edge −−→u1u2 intersects the antipode of −−→u5u6, we have that

[1, 2, 5] ≃ [1, 5, 6] ̸≃ [1, 2, 6] ≃ [2, 5, 6],

which is equivalent to the condition of the vertices of edges −−→u1u2 and −−→u5u6
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Figure 4.2: A balanced polygon Q with 6 vertices, without self nor antipodal
intersections, together with its reflected polygon Q. Notice that a polygon
not having antipodal intersections is equivalent to this same polygon not
intersecting its reflected version.

being in balanced position. We have therefore proved

Proposition 4.2 A spherical polygon Q ⊂ S2 has a antipodal intersection at
edges −−−→uiui+1 and −−−−→ujuj+1 (where j ̸= i + 1 and i ̸= j + 1) if and only if the
following relation holds:

[i, i+ 1, j] ≃ [i, j, j + 1] ̸≃ [i, i+ 1, j + 1] ≃ [i+ 1, j, j + 1].

This, on its turn, happens if and only if the set of vectors {ui, ui+1, uj, uj+1}
is in balanced position.

4.3
Statement of theorem and idea of its proof

We can finally state the discrete analog of theorem 4.1:

Theorem 4.3 Let Q = [u1, ..., un] ∈ S2 (n ≥ 6) be a spherical polygon in bal-
anced position. If Q does not have self-intersections nor antipodal intersections,
then it has at least six inflections.

Notice that the hypotheses of theorem 4.3 do not even hold for polygons
with 4 or 5 vertices: since a balanced spherical polygon has 4 of its vertices in
balanced position, these vertices will necessarily be consecutive in any spherical
polygon with 4 or 5 vertices. For spherical polygons with 6 vertices, however,
the hypotheses of theorem 4.3 can be met (see figure 4.2 for an example).

We can prove 4.3 by induction on the number n ≥ 6 of vertices: for the
case n = 6 we can make explicit use of propositions 3.22 and 4.2. For the
induction step we need to find a vertex v with the property that the polygon
Q′ = Q− {ui} (obtained by deleting ui and its adjacent edges and connecting
its adjacent vertices with a new edge) is such that:
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– Q′ is not contained in any closed hemisphere (recall that in this case ui

is called nonessential);

– Q′ does not have self-intersections (recall that in this case ui is called
good);

– Q′ does not have antipodal intersections.

Now notice that lemma 3.29 also applies to our case: given a simple
spherical polygon Q, let ui be a good vertex of Q. Then the number of spherical
inflections of Q is greater or equal to the number of spherical inflections of the
resulting spherical polygon Q′ = Q − ui. By the induction hypothesis, Q′ has
at least six inflections, from which follows that Q has at least six inflections.
It remains, therefore, to show that:

– the result holds for polygons with n = 6 vertices satisfying the hypotheses
of theorem 4.3;

– there is a vertex that can be eliminated so that the resulting polygon
still satisfies the hypotheses of theorem 4.3.

The base case of our induction argument is given in the following
proposition:

Proposition 4.4 Let Q = [u1, u2, u3, u4, u5, u6] ∈ S2 be a balanced spherical
polygon without self nor antipodal intersections. Then Q has 6 inflections.

Proof. Since Q is balanced, four of its vertices are in balanced position. Since
Q does not have antipodal intersections, the indices of these vertices cannot
be two pairs of consecutive indices (which includes in particular the case of
four consecutive indices). Therefore the indices must be such that three of
them are consecutive and the remaining one is isolated in the cyclic sequence
(1, 2, 3, 4, 5, 6) (for example, {1, 2, 3, 5} or {2, 4, 5, 6} are in principle valid, but
{1, 2, 4, 5} and {2, 3, 4, 5} are not). After a cyclic rearrangement of the indices
of Q, we may assume that the indices of these vertices are {1, 2, 3, 5}. Therefore

[1, 2, 3] ≃ [1, 3, 5] ̸≃ [1, 2, 5] ≃ [2, 3, 5].

In this case, the vertices u1, u2, u3 and u5 subdivide the sphere in four
spherical regions (triangles). The vertices u4 is such that its antipode must be
in one of these four regions, i.e., u4 must be in balanced position with three
of the four other vertices. The only triple that works is {u1, u3, u5}, since any
other triple, being in balanced position with u4, would then form an antipodal
intersection. The fact of {u1, u3, u4, u5} being in balanced position then implies
that
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[3, 4, 5] ≃ [1, 3, 5] ̸≃ [1, 4, 5] ≃ [1, 3, 4].

Again, by the same argument as with the vertex u4, {u1, u3, u5, u6} is in
balanced position. Therefore

[1, 3, 5] ≃ [1, 5, 6] ̸≃ [3, 5, 6] ≃ [1, 3, 6].

Notice that the determinant [1, 3, 5] appears in all cases. Suppose without
loss of generality that [1, 3, 5] > 0. Hence

– [1, 3, 5], [1, 2, 3], [3, 4, 5] and [1, 5, 6] are positive;

– [1, 2, 5], [2, 3, 5], [1, 4, 5], [1, 3, 4], [3, 5, 6] and [1, 3, 6] are negative.

Since [1, 2, 3], [3, 4, 5] and [1, 5, 6] are positive, we just need to show that
[2, 3, 4], [4, 5, 6] and [1, 2, 6] are negative.

Suppose by contradiction that one of these determinants, say [1, 2, 6], is
positive. From this the following two facts follow:

– [2, 5, 6] is positive. In fact, if [2, 5, 6] were negative, then we would have

[1, 2, 5] ≃ [2, 5, 6] ̸≃ [1, 2, 6] ≃ [1, 5, 6],

i.e., edges −−→u1u2 and −−→u5u6 would have a (usual) self-intersection, contrary
to hypothesis.

– [2, 3, 6] is positive. In fact, if [2, 3, 6] were negative, then we would have

[1, 2, 3] ≃ [1, 2, 6] ̸≃ [2, 3, 6] ≃ [1, 3, 6],

i.e.,
[2, 3, 6] ≃ [3, 6, 1] ̸≃ [2, 3, 1] ≃ [2, 6, 1],

i.e., the edges −−→u2u3 and −−→u6u1 would have a (usual) self-intersection,
contrary to hypothesis.

Now, since [2, 5, 6] and [2, 3, 6] are positive, we have that

[2, 3, 5] ≃ [3, 5, 6] ̸≃ [2, 3, 6] ≃ [2, 5, 6],

i.e., the edges −−→u2u3 and −−→u5u6 have a (usual) self-intersection. But this contra-
dicts our hypothesis on Q.

Our conclusion then is that the determinant [1, 2, 6] must be negative.
Now, the fact that the determinant [1, 2, 6] is negative actually implies

that [2, 3, 4] and [4, 5, 6] are also negative when one considers a certain
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symmetry between the determinants of the six-vector configuration. Notice
that the bijection of the sets of vertices of Q into itself, defined by ui 7→
ui+2 mod 6, preserves the sign of all determinants considered (for example,
[1, 3, 6] < 0, and [3, 5, 2] = [2, 3, 5] < 0). Geometrically, we are now looking to
polygon Q but with a cyclically different order: Q′ = [u5, u6, u1, u2, u3, u4].
It follows that our previous argument (for the determinant [1, 2, 6]) works
exactly the same but to the polygon Q′, implying that the determinant [4, 5, 6]
is negative. Applying this bijection one more time we can use the argument
again but to polygon Q′′ = [u3, u4, u5, u6, u1, u2], implying that the determinant
[2, 3, 4] is negative. ■

Now, given a spherical polygon Q in balanced position without self nor
antipodal intersections, we must prove the existence of a vertex vi such that
the resulting polygon Q′ = Q − vi is also in balanced position and does not
have self nor antipodal intersections. An idea to prove the existence of such
vertex would be similar to the idea that we used to prove the existence of a
nonessential, good vertex in a simple polygon in balanced position: recall that
there are always n−3 nonessential vertices and 4 good vertices, therefore there
is at least one vertex in both subsets.

In our present case, however, there are three different features that the
resulting polygon Q′ must have. Therefore a counting argument such as the
one before would not necessarily work as easily now. A more hopeful strategy
is to consider again two subsets of the vertices of Q:

– vertices vi such that Q′ = Q− vi is balanced, i.e., nonessential vertices;

– vertices vi such that Q′ = Q − vi does not have self nor antipodal
intersections. From now on, such vertices will be called excellent.

We know already that the number of nonessential vertices is always
greater or equal to n − 3. And what about the minimal number of excellent
vertices?

Proposition 4.5 Let Q = [u1, ..., un] (n ≥ 6) be a balanced spherical polygon,
without self nor antipodal intersections. Then Q has at least 2 excellent vertices.

Proof. Since Q does not have self nor antipodal intersections, both Q and
its reflection Q through the origin subdivide the sphere into three different
regions. Here it makes sense to talk about the interior of Q: it is one of the
two regions determined by Q which does not contain the reflected polygon Q.

Since Q is balanced, the interior of Q can be triangulated with vertices
of Q. Since the dual graph of this triangulation (i.e., the graph whose vertices
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are dual to the triangles of the triangulation and whose edges are dual to
the edges used in the triangulation but not contained in the polygon Q) is a
nontrivial tree, it has (by theorem 2.1) at least two leaves, i.e., two triangles
whose set of vertices are of the form {ui−1, ui, ui+1} and {uj−1, uj, uj+1}. Since
both triangles △(ui−1, ui, ui+1) and △(uj−1, uj, uj+1) are entirely contained in
the interior of Q, both edges −−−−−→ui−1ui+1 and −−−−−→uj−1uj+1 do not intersect any other
edge of Q nor Q. Therefore vertices ui and uj are excellent, by definition. ■

At first sight we could hope to improve the lower bound on the number
of nonessential or excellent vertices. A reasonable guess would be, for instance,
that:

– the lower bound for nonessential vertices could be improved from n − 3
to n− 2;

– the lower bound for excellent vertices could be improved from 2 to 3.

In this case, by the same counting argument as before, we would find our
nonessential, excellent vertex. There are, however, balanced polygons without
self or antipodal intersections but with exactly n−3 nonessential vertices. And,
among these latter polygons, some of them do not have more than 3 excellent
vertices. Therefore, we must proceed differently.

Denote by Ess(Q) and Exc(Q) the the number of vertices of P that
are essential and excellent, respectively. Let us first rephrase what we know:
Ess(Q) ≤ 3 and Exc(Q) ≥ 2. Our strategy will be as follows: besides the cases
where Ess(Q) equals 0 or 1 (where the existence of a nonessential and excellent
vertex follows immediately from proposition 4.5), we must study separately the
cases where Ess(Q) = 2 and Ess(Q) = 3 and prove, in each case, the existence
of an excellent vertex among the nonessential ones.

For what follows, we will need the following definitions. A (closed) lune
of the sphere is the intersection of two closed hemispheres H1 and H2, each of
them determined by distinct spherical lines (i.e., great circles) l1 and l2. The
intersection l1 ∩ l2 is a pair of antipodal points, which are called the cusps
of the lune. The intersection of each of the spherical lines l1 and l2 with the
boundary of the lune are called the sides of the lune.

Now, let u, v, w ∈ S2 be three noncollinear points (in the spherical sense).
Consider the lune which has as cusps the vertices u and u and whose sides pass
through v and w. We will denote such lune by L(u; v, w).

Lemma 4.6 Let L be a lune, p any of its cusps and q any point of the interior
of the lune. Then the open segment −→pq is entirely contained in the interior of
the lune.
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Figure 4.3: Examples of lunes. The spherical segment that connects any interior
point of the lune to any of the two cusps is entirely contained in the closed
lune.

Proof. Let l1 and l2 be the two spherical lines that determine the lune. Denote
by p the antipodal point to p. Consider the line l spanned by the points p and
q. If the open segment −→pq were not contained entirely in the interior of the lune,
then it would have to intersect one of the sides of the lune, and consequently
intersect one of the spherical lines (say l1), at a point distinct from p and p. But
then the spherical lines l and l1 would intersect at three different points. This
would imply that the lines l and l1 are the same, contrary to the hypothesis
that q is an interior point of the lune. ■

4.4
The case where Ess(Q) = 3

We will first treat the case where Ess(Q) = 3:

Proposition 4.7 Let Q = [u1, ..., un] (n ≥ 7) be a spherical polygon in
balanced position and without self nor antipodal intersections, with Ess(P ) =
3. Then there is at least one nonessential, excellent vertex.

For the proof of 4.7 we will need some lemmas. Since Q is balanced,
there are four vertices of Q which are in balanced position. By hypothesis,
exactly three of them are essential. Let ui, uj and uk be these vertices (with
i < j < k). Since all the remaining vertices are nonessential, they must all be
contained in the triangular region spanned by ui, uj and uk, i.e., the antipodes
of the essential vertices. See figure 4.4. Notice that this triangular region is
the intersection of any two of the three following lunes (see figure 4.5 for an
example):

– the one whose cusps are ui and ui and whose sides pass through uj and
uk, i.e., L(ui;uj, uk);

– the one whose cusps are uj and uj and whose sides pass through uk and
ui, i.e., L(uj;uk, ui);
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Figure 4.4: When Ess(Q) = 3, all nonessential vertices are in the triangular
region spanned by the antipodes of the essential vertices.

Figure 4.5: The triangle △(ui, uj, uk) as the intersection of the lunes
L(ui;uj, uk) (in blue), L(uj;uk, ui) (in green) and L(uk;uj, ui) (in red).

– and the one whose cusps are uk and uk and whose sides pass through ui

and uj, i.e., L(uk;ui, uj).

Lemma 4.8 Let Q = [u1, ..., un] (n ≥ 6) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(Q) = 3. Then
the triple of essential vertices of Q does not have a pair of consecutive vertices.

Proof. If there were at least one pair of consecutive vertices among the essential
ones, then we would have one of the two situations:

– two of them are consecutive and the other one is isolated. After a cyclic
rearrangement, we can relabel these vertices as u1, u2 and ui, where
i ̸= 3, n. Since ui must be connected to vertices ui−1 and ui+1, which are
in the lune L(ui;u1, u2), the respective edges must then be contained in
this same lune, by lemma 4.6. This implies that these edges intersect the
open segment −−→

u1u2, which means that Q has two antipodal intersections,
contrary to hypothesis (see figure 4.6 on the left for an example);

– the three vertices are consecutive. After a cyclic rearrangement, we can
relabel them as u1, u2 and u3. Since u3 must be connected to vertex u4,
the corresponding edge must be (by lemma 4.6 again) entirely contained
in the lune L(u3;u1, u2), and therefore intersects the open segment −−→

u1u2.
An analogous argument also implies that the edge connecting vertices
u1 and un intersects the open segment −−→

u2u3. In other words, Q has two
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Figure 4.6: Spherical polygons where the triple of essential vertices always has
at least a pair of consecutive vertices (on the left, the triple is {u1, u2, u6},
while on the right it is {u1, u2, u3}. In both examples, this implies at least two
antipodal intersections.

Figure 4.7: Given a polygon Q with Ess(Q) = 3, the region U(Q) is the union
of the lunes L(ui;uj, uk), L(uj;uk, ui) and L(uk;ui, uj).

antipodal intersections, contrary to hypothesis (see figure 4.6 on the right
for an example).

■

Recall that the triangle △(ui, uj, uk) is the intersection of lunes
L(ui;uj, uk), L(uj;uk, ui) and L(uk;ui, uj). Denote by U(Q) the union of
these three lunes. Notice that the boundary of U(Q) is the polygon
[ui, uk, uj, ui, uk, uj], which is symmetric. Therefore the reflection of U(Q) is the
union of other three lunes, namely, L(ui;uj, uk), L(uj;uk, ui) and L(uk;ui, uj)
(see figure 4.7 for an example).

Lemma 4.9 Let Q = [u1, ..., un] (n ≥ 7) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(Q) = 3. Then

(a) Q ⊂ U(Q);

(b) the vertices ui,uj and uk are in the topological boundary of U(Q), while
all other points of Q (including interior points of its edges) are in the
topological interior of U(Q).

Proof. (b) The first claim is immediate. Any other vertex of Q is in the interior
of △(ui, uj, uk) and hence in the interior of U(Q). For an open edge e of Q, it
either:
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Figure 4.8: Given the vertices which are adjacent to the essential ones, the
polygonal lines connecting them must be such that a is connected to f , e to d
and c to b.

Figure 4.9: If vertex a is connected via a polygonal line to vertex b, then Q
is split into two polygons. If a is connected via a polygonal line to any of the
vertices c, d or e, then Q will either have a self-intersection or becomes split
into two polygons again.

– has as endpoints two nonessential vertices. Hence it is contained in the
interior of △(ui, uj, uk) and therefore in the interior of U(Q);

– has as endpoints a nonessential vertex and a essential vertex. Hence it
is, by lemma 4.6, entirely contained in the interior of the corresponding
lune and therefore in the interior of U(Q).

(a) follows immediately from (b). ■

Now we can finally prove proposition 4.7:
Proof. (of proposition 4.7) By lemma 4.8, the three essential vertices are not
consecutive. Denote these vertices by ui, uj and uk, where i < j < k and
j ̸= i + 1, k ̸= j + 1. In principle, the vertices which are connected to any
of the essential vertices could be connected via a polygonal line to any of the
others. In figure 4.8 in the center we see a possible configuration, while in figure
4.9 any of the connecting polygonal lines lead to the resulting polygon having
either a self-intersection or being split into two different polygons. Therefore
these vertices are connected in the following way: the vertex adjacent to ui

which is nearest to uk and the vertex adjacent to uj which is nearest to uk will
be connected to each other via a polygonal line; do the same but with indices
i, j and k permuted (see figure 4.8 right).

It might happen that ui+1 = uj−1, uj+1 = uk−1 or uk+1 = ui−1. However,
since Q has at least 7 vertices, there is at least one pair of consecutive vertices
inside the spherical triangle △(ui, uj, uk). We might assume without loss of
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Figure 4.10: A polygon Q with 7 vertices and its corresponding polygon Q̃
with 4 vertices: in the given triangulation we have u2 as an excellent vertex.

Figure 4.11: A polygon Q with 9 vertices and its corresponding polygon Q̃
with 6 vertices. Here we depict two different ways of triangulating the region
R: in the first one we have u3 and u5 as excellent vertices, while in the second
one we have only u3 as an excellent vertex.

generality that ui+1 and uj−1 are distinct and that therefore the polygonal line
with vertices ui, ui+1, ..., uj−1 and uj has at least four vertices.

Consider then the (closed) polygon Q̃ = [ui, ui+1, ..., uj−1, uj] and the
region R enclosed by it which contains the vertex uk. Since Q̃ has at least 4
vertices, any triangulation of R has at least two triangles. The dual graph of
this triangulation is then a nontrivial tree and has therefore at least two leaves
△1 and △2. Because all vertices ui+1,...,uj−1 are in the same triangular region,
all the edges added to form the triangulation must be contained in one of the
two lunes (if its endpoints are nonessential, it is inside the triangular region
by convexity; if one of the endpoints is essential, the claim follows from lemma
4.6) and therefore the only triangle that contains the vertex uk is the one with
side −−→ujui, while the other triangles are inside of one of the two lunes. Therefore
at least one leaf of this triangulation (say △1) has two of its sides as edges of
the original polygon Q. Figures 4.10 and 4.11 show some examples.

We claim that the intermediate vertex of △1 (i.e., the vertex of △1

connected to the edges of Q) is an excellent vertex of Q. Consider the side
of △1 that is not an edge of Q and denote its open segment by s. It is clear
that s does not intersect any other edge of Q. Now, s has as endpoints either:

– two nonessential vertices of Q and therefore is entirely contained in the
interior of U(Q), by the same argument in the proof of lemma 4.9(b);

– a nonessential vertex and an essential vertex of Q, in which case the same
edge must be in the interior of U(Q), again by the same argument in the
proof of lemma 4.9(b).
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Since Q satisfies the same hypotheses of Q (since it is its reflected image),
lemma 4.9(a) applied to Q implies that Q is contained in U(Q) (i.e., the
reflection of U(Q)), which is disjoint from int U(Q). Therefore s cannot
intersect any edge of Q.

Since s does not intersect no other edge of Q or Q, the intermediate
vertex of △1 is excellent. Because this vertex is not one of the essential ones,
the proposition is proved. ■

4.5
The case where Ess(Q) = 2

Now we turn our attention to balanced spherical polygons without self
nor antipodal intersections with Ess(Q) = 2. The proof of the existence of a
nonessential, excellent vertex turns out to be more involved in this case.

Proposition 4.10 Let Q = [u1, ..., un] (n ≥ 7) be a spherical polygon in
balanced position and without self nor antipodal intersections, with Ess(P ) =
2. Then there is at least one nonessential, excellent vertex.

As it was the case for proposition 4.7, we will also need some lemmas for
the proof of proposition 4.10. Since Q is balanced, there are four vertices of Q
in balanced position. By hypothesis, exactly two of them are essential. Let ui

and uj be the essential vertices (with i < j) and uk and ul be nonessential ones
among these four vertices (the indices k and l do not hold any specific position
with respect to i and j). All the nonessential vertices must be contained in
the triangular regions △(ui, uj, uk) and △(ui, uj, ul), and each of these regions
must have at least two vertices in its interior (for if one of them had only
one, then this sole vertex would be a third essential vertex, contradicting our
assumption). Figure 4.12 shows some examples.

Moreover, by the next lemma, the spherical convex hull of the set of
nonessential vertices must be contained in the union of these two triangular
regions. Figure 4.13 shows a polygon for which this latter property holds, while
figure 4.14 shows a polygon for which this property does not hold.

Lemma 4.11 Let Q = [u1, ..., un] (n ≥ 7) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(P ) = 2. Then
the spherical convex hull of the set of nonessential vertices must be contained
in the union of △(ui, uj, uk) and △(ui, uj, ul).

In particular, the spherical convex hull of the nonessential vertices does
not contain the antipodal points of the essential vertices.

Proof. If it were not the case, then the spherical convex hull of the nonessential
vertices would intersect one of the following open spherical segments: −−→

uiuk,
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Figure 4.12: Examples of polygons for which the number of essential vertices
is exactly 2.

Figure 4.13: Valid spherical convex hull

Figure 4.14: Invalid spherical convex hull

−−→
ukuj,

−−→
ujul or −−→

ului. But this would mean that a pair of nonessential vertices
intersects one of these segments, say −−→

ujul, which implies that these two
nonessential vertices, together with uj and ul, are in balanced position. In
other words, ui would be nonessential, contrary to hypothesis. ■

As in the case where Ess(Q) = 3, the essential vertices cannot be
consecutive:

Lemma 4.12 Let Q = [u1, ..., un] (n ≥ 6) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(P ) = 2. Then
the essential vertices cannot be consecutive.

Proof. Suppose that the essential vertices ui and uj are consecutive. After a
cyclic rearrangement, we can relabel them as u1 and u2. Let uk and ul be
nonessential vertices of Q in balanced position with u1 and u2. There are two
possibilities (see figure 4.15):
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Figure 4.15: If the only 2 essential vertices were consecutive, Q would neces-
sarily have at least one antipodal intersection.

– u3 and un are in the same triangle. Without loss of generality we can
consider this triangle to be △(u1, u2, uk). Since polygon Q also has
vertices in the triangular region △(u1, u2, ul) and the spherical convex
hull of the nonessential vertices is contained in the union of the triangular
regions, it must cross the edge segment −−→

u1u2 at least twice, i.e., it has at
least two antipodal intersections, contrary to hypothesis (see figure 4.15
on the left for an example);

– u3 and un are in different triangles. Since polygon Q must close itself
and the spherical convex hull of the nonessential vertices is contained in
the union of the triangular regions, it must cross the edge segment −−→

u1u2

at least once, i.e., it has at least one antipodal intersection, contrary to
hypothesis (see figure 4.15 on the right for an example).

■

In the different examples of figure 4.12 we see that the vertices of Q
connected to ui (i.e., ui−1 and ui+1) or uj (i.e., uj−1 and uj+1) are both in the
same triangle. We might wonder if it is possible for a polygon satisfying our
hypothesis to have these four (or three, if ui+1 = uj−1) vertices in different
triangles. The next lemmas show that this cannot happen:

Lemma 4.13 Let Q = [u1, ..., un] (n ≥ 6) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(P ) = 2. Let ui

and uj be the essential vertices of Q. Then:

(a) ui−1 and ui+1 are in the same triangular region.

(b) uj−1 and uj+1 are in the same triangular region.

Proof. (a) First we prove that ui−1 and ui+1 cannot be in different triangular
regions.

Suppose by contradiction that one of them is in △(ui, uj, ul) while the
other one is in △(ui, uj, uk). Since the spherical convex hull of the nonessential



Chapter 4. Spherical polygons without self nor antipodal intersections 79

Figure 4.16: In both examples, ui = u1 and uj = u5. If ui−1 and ui+1 were in
different triangles, vertex uj would be isolated from vertices uk and ul.

vertices of Q does not cross edge segments −−→
ujul and −−→

ujuk and moreover Q
must close itself, the vertex uj would then be separated by Q from vertices
uk and ul, i.e., they would be in different regions delimited by the polygon
Q. But because Q is a continuous curve and must connect uj to uk and to
ul via polygonal lines, it would necessarily intersect polygon Q at some edge,
contrary to hypothesis (see figure 4.16 for some examples).

(b) The proof that vertices uj−1 and uj+1 are in the same triangular
region is analogous to the proof of (a). ■

Lemma 4.14 Let Q = [u1, ..., un] (n ≥ 6) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(P ) = 2. Let ui

and uj be the essential vertices of Q. Then ui−1, ui+1, uj−1 and uj+1 are in the
same triangular region.

Proof. Given lemma 4.13, it suffices to prove that the pair {ui−1, ui+1} is in
the same triangular region as {uj−1, uj+1}.

Suppose by contradiction that ui−1 and ui+1 are in △(ui, uj, ul) while uj−1

and uj+1 are in △(ui, uj, uk). In particular, there are two polygonal lines from
ui to uk, each of them crossing the edge segment −−→

uluj only once (see figure 4.17
for two different examples). Consider the polygonal line not passing through
uj and denote it by pli,k = pl(ui, ..., uk). Similarly, there are two polygonal
lines from uj to ul, each of them crossing the edge segment −−→

uiuk only once.
Consider the antipodal polygonal line of the one not passing through ui and
denote it by plj,l = pl(uj, ..., ul).

We know that pli,k intersects the segment −−→
uluj once and that plj,l

intersects the segment −−→uiuk once. We shall prove that pli,k intersects plj,l, which
contradicts the hypothesis of Q not having antipodal intersections.

Concatenating the polygonal line plj,l and the segment −−→
uluj one forms a

(closed) polygon pj,l := [uj, ..., ul] which intersects the segment −−→uiuk twice (see
figure 4.18.a).
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Figure 4.17: Two examples where ui−1 and ui+1 are in △(ui, uj, ul) while uj−1
and uj+1 are in △(ui, uj, uk).

Figure 4.18: In (a), we see that the polygon pj,l subdivides the sphere into
different regions, one of them containing both vertices ui and uk in its interior.
Figures (b), (c) and (d) show different possibilities regarding the polygonal
line pli,k and its intersections with polygon pj,l.

The polygon pj,l is a closed continuous curve which subdivides the sphere
in at least two regions (more than two if it has self-intersections). Since pj,l

crosses segment −−→uiuk twice and, except by uj and the edges adjacent to uj, all
the polygon pj,l is contained in the two triangular regions, both vertices ui and
uk must in the same region among the regions determined by pj,l.

On the other hand, the polygonal line pli,k must cross segment −−−→
ul, uj once,

say at a point q. If this point happens to be also in the polygonal line pj,l, we
are done (see figure 4.18(b)). Suppose then that q is not in pj,l. Since we are
dealing with segments and there are no three collinear vertices, all intersections
between segments are transversal, which implies in our case that at the point
of intersection q the curve pli,k is locally separated by segment −−→

uluj. In other
words, the curve pli,k passes in at least two different regions determined by pj,l:
the one that contains vertices ui and uk, and another one denoted by R (see
figure 4.18(c) and (d)). Therefore pli,k must intersect another boundary point
q′ of R. Since q′ cannot be in −−→

uluj (by hypothesis), it must be a point of plj,l.
Similarly, assuming that ui−1 and ui+1 are in △(ui, uj, uk) while uj−1 and

uj+1 are in △(ui, uj, ul), we derive another contradiction. ■

Here is an idea to prove proposition 4.10: we have a geometrically similar
situation as we had in the case where Ess(Q) = 3: although two triangular
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Figure 4.19: In this polygon Q, only one vertex between uk and ui is in
△(ui, uj, uk). Consider the polygonal line from uk to ui and concatenate it with
segment −−→uiuk, obtaining polygon pk,i. Consider now the region determined by
pk,i which contains uj. The unique triangulation on it has as leaves: the triangle
whose side is the added segment −−→uiuk (which does not have three consecutive
vertices of the original polygon Q); and a triangle with uj in its interior (which
therefore will intersect the polygon Q).

regions contain more than one vertex, one of them, say △(ui, uj, uk) has “more
parts of Q" in the sense that the polygon Q enters and exits this region more
times (more precisely: the number of connected components of Q∩△(ui, uj, uk)
is equal the number of connected components of Q ∩ △(ui, uj, ul) plus 2).
At first we could try to use the same argument as in proposition 4.7: we
could triangulate a certain region enclosed by a polygon whose vertices are
some essential and nonessential vertices of Q, and then obtain a leaf of the
triangulation.

The problem with this approach in the case of Ess(Q) = 2 is that
it depends for the polygon Q to have at least two consecutive vertices in
△(ui, uj, uk), which might not happen here. If we try to triangulate the corre-
sponding region as in figure 4.19, all extra edges arising from the triangulation
will intersect the reflected polygon Q.

Therefore, in order to prove proposition 4.10, we must choose carefully
the region that we want to triangulate. First we need the following terminology.
Given a balanced spherical polygon Q without self nor antipodal intersections,
Q separates the sphere into two regions: we say that the region which contains
Q is the exterior of Q, (which we denote it by Ext(Q)), while the other one
is the interior of Q (which we denote by Int(Q)). First notice that a striking
difference between the triangulations used in the proofs of proposition 4.5 and
of proposition 4.7 is that in the former the interior ofQ is triangulated, while in
the latter a subset of the exterior of Q is triangulated. Of course, in the second
proof we also had to show that the one of the leaves of the triangulation did
not intersect polygon Q, which was true due to the fact that the corresponding
triangle was contained in U(Q) and that Q was contained in U(Q) (recall that
it only makes sense to speak of the subset U(Q) when Ess(Q) = 3).

In the case where Ess(Q) = 2, the excellent (and nonessential) vertex
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to be found might come from either an internal or an external triangulation.
By proposition 4.5 and its proof, Q has at least 2 excellent vertices, the two
of them coming from a triangulation of the interior of Q. If one of them is
nonessential, we are done. Therefore we might assume that both of them are
the essential vertices.

Denote by HS(X) the spherical convex hull of a subset X of the sphere,
provided X is contained in a closed hemisphere. Let ui and uj be the essential
vertices of Q. In order to find an excellent vertex among the nonessential ones,
we want to look at the new (simple) polygon Q̃ := Q − ui − uj (i.e., the
polygon obtained deleting vertices ui and uj and the edges adjacent to these
two vertices, and then connecting ui−1 to ui+1 and uj−1 to uj+1 by spherical
segments) and its spherical convex hull HS(Q̃). It is instructive to see some
examples. First, a lemma:

Lemma 4.15 Let Q = [u1, ..., un] (n ≥ 7) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(P ) = 2. Let ui

an uj be essential vertices and Q̃ := Q− ui − uj. Then

HS(Q̃) ∩ HS(Q̃) = ∅.

Proof. Since ui and uj are essential, Q̃ is contained in a (open) hemisphere H.
By the same reason, Q̃ is also contained in a (open) hemisphere H ′ which is
disjoint from H. Since Q̃ = Q̃, the result follows. ■

Example 4.16 Let Q be the polygon of figure 4.20. In this case we have
two excellent and nonessential vertices. The triangulation of Int(Q̃) has two
leaves, which gives u5 and u7 as excellent vertices of the polygon Q̃. Since
u5 is connected through edges of the original polygon Q while u7 is not, we
can deduce only that u5 is an excellent vertex of the original polygon Q. On
the other hand, Ext(Q̃) ∩ HS(Q̃) is already a triangle, which gives u6 as the
intermediate vertex of the unique leaf of the triangulation. Notice that the edges
adjacent to u6 are contained in the original polygon Q.

Is u6 an excellent vertex of Q? If it were not excellent, then the segment
−−→u5u7 would intersect Q at some edge, which would imply that a vertex u of Q is
in HS(Q̃). But this contradicts lemmas 4.11 and 4.15. Therefore, u6 is indeed
excellent.

Example 4.17 Let Q be the polygon of figure 4.21. It has two excellent
and nonessential vertices: u5 and u6. Both come from internal triangulations
but, since they are consecutive, the triangulations used in each case must be
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Figure 4.20: This polygon has u5 and u6 as excellent and nonessential vertices:
u5 (blue) can be found through an triangulation of the interior of polygon Q̃
(blue), while u6 (green) comes from the triangle obtained as the intersection
of the exterior of Q̃ with HS(Q̃) (green).

Figure 4.21: This polygonQ has u5 and u6 as excellent and nonessential vertices
(in blue). Different triangulations are needed in order to conclude that both
of them are excellent because both vertices are consecutive. On the other
hand, although u2 is the intermediate vertex of the unique triangle of the
triangulation of Ext(Q̃) ∩ HS(Q̃), it is not an excellent vertex of Q.

different. Notice that these two triangulations also point to u4 and u7 as the
intermediate vertices of the leaves of each triangulation, but since at least one
edge adjacent to each these vertices is not of the original polygon Q, we cannot
conclude whether or not they excellent vertices of Q.

On the other hand, u2 is the intermediate vertex of the unique triangle
of Ext(Q̃) ∩ HS(Q̃), but the two edges adjacent to it are not of the original
polygon Q. Therefore we cannot conclude that u2 is an excellent vertex of Q.

Example 4.18 Let Q be the polygon of figure 4.22. Both vertices u2 and u4 are
the intermediate vertices of the leaves of the internal triangulation, but since
they are adjacent to edges which are not contained in the original polygon Q,
we cannot conclude that they are excellent vertices of Q.

On the other hand, vertex u3 is the intermediate vertex of the unique
triangle of Ext(Q̃) ∩ HS(Q̃) and, moreover, is adjacent to edges of the original
polygon Q. To conclude that u3 is indeed excellent, it suffices to see that
the segment −−→u2u4 does not intersect Q. For if it intersected an edge of Q,
it would follow that that HS(Q̃) contains a vertex u of Q in its interior, which
contradicts lemmas 4.11 and 4.15. Therefore, u3 must be an excellent vertex
of Q.
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Figure 4.22: This polygon has only u3 (in green) as an excellent vertex: it
comes from the unique triangle of Ext(Q̃) ∩ HS(Q̃).

The previous examples show some general principles when looking for
excellent and nonessential vertices of Q. When we consider the intermediate
vertex of any leaf of the triangulation, it might be a vertex among ui−1, ui+1,
uj−1 or uj+1. In this case it is an excellent vertex of Q̃, although we cannot
conclude in principle if it is an excellent vertex of Q. On the other hand, if the
vertex is not one of these four vertices, the next lemma shows that it must be
an excellent vertex of Q:

Lemma 4.19 Let Q = [u1, ..., un] (n ≥ 7) be a spherical polygon in balanced
position and without self nor antipodal intersections, with Ess(P ) = 2. Let
ui an uj be the essential vertices and let Q̃ := Q − ui − uj. Let ut be a good
vertex of Q̃ coming from a triangulation of either Int(Q̃) or of a connected
component of Ext(Q̃) ∩ HS(Q̃). If ut is not one of the vertices ui−1, ui+1, uj−1

and uj+1, then ut is an excellent vertex of Q.

Proof. If ut comes from a triangulation of Int(Q̃), it is excellent since in this
case edge −−−−−→ut−1ut+1 is contained in Int(Q̃) and therefore cannot intersect Q.

Now, suppose that ut comes from a triangulation of a connected compo-
nent of Ext(Q̃) ∩ HS(Q̃). To prove that ut is excellent, it suffices to show that
the segment −−−−−→ut−1ut+1 (i.e., the side of △1 not adjacent to ut) does not intersect
Q. For if it intersected an edge of Q, it would follow that that HS(Q̃) contains
a vertex u of Q in its interior, which contradicts lemmas 4.11 and 4.15. ■

Before proving proposition 4.10, we prove a lemma which states a lower
bound on the number of good vertices of a polygon which is not in balanced
position. From now on, “convex" will always mean “spherically convex".

Lemma 4.20 Let Q = [u1, ..., un] (n ≥ 4) be a simple spherical (or even
planar) polygon which is contained in a closed hemisphere. Then Q has at
least 3 good vertices. More precisely:

(a) If Q is convex, then all of its vertices are good;

(b) If Q is not convex, then it has at least 3 good vertices.
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Figure 4.23: Vertices u3 and u8 are excellent and come from a triangulation of
Int(Q̃). Vertices u7 and u11 are also excellent, but come from a triangulation
of Ext(Q̃)∩HS(Q̃). Notice that since u6, u8 and u9 are also at the boundary of
components of Ext(Q̃)∩HS(Q̃), they can be seen as the “intermediate" vertices
of leaves of these regions. However, each of them is adjacent to a segment that
is not of the original polygon Q, so lemma 4.19 does not apply here.

Proof. (a) is clear: if a vertex ui were not good, then the segment −−−−−→ui−1ui+1

would intersect the polygon Q at some other edge and therefore some of its
points would not be in the interior of Q, contradicting the convexity of Q.

(b) If Q is not convex, then HS(Q) ∩ Ext(Q) is nonempty. Consider
any triangulation of HS(Q): since Q has at least 4 vertices, the dual graph of
HS(Q) ∩ Int(Q) is nontrivial and, by theorem 2.1, has at least two leaves. The
intermediate vertex of each of these triangles is a good vertex.

Moreover, HS(Q) ∩ Ext(Q) is nonempty (it might have more than one
connected component). Consider a connected component C of HS(Q)∩Ext(Q):
it is either a triangle with vertices ui−1, ui and ui+1 (in which case ui is the
good vertex), or another type of poligonal region. In the latter case the dual
graph of any triangulation of C is nontrivial and, again by theorem 2.1, has at
least two leaves. Since at most one of these triangles might have as side the
segment of ∂HS(Q) which is not a side of Q, at least one of the leaves has
two sides contained in Q. The vertex of Q which is adjacent to these sides is
therefore good. ■

Now we can finally prove proposition 4.10:
Proof. (of proposition 4.10) Let p be the polygonal line from ui+1 to uj−1.

Step 1: First we prove the proposition in the case where i+ 2 < j, i.e.,
where p is not a sole point (see figure 4.24.a). Here we proceed analogously to
the proof of the proposition for Ess(Q) = 3: we consider the (closed) polygon
[ui, ui+1, ..., uj−1, uj] and denote by R the region enclosed by it which contains
the vertex uk. Triangulating the region R, we obtain again two leaves △1

and △2, one of them (say △1) having as intermediate vertex a nonessential
vertex (see figure 4.24.b). It must be excellent: for if it were not the case, then
the edge of △1 which is not contained in Q (which we denote by e) would
intersect an edge of Q (which we denote by f), in which case there would be
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Figure 4.24: If the polygonal line p is not a sole point, the polygon
[ui, ui+1, ..., uj−1, uj] defines a region R whose triangulation has at least two
leaves. In this example, the intermediate vertices of each leaf of the triangula-
tion are excellent vertices of Q.

two possibilities:

– The endpoints of e are two nonessential vertices (see figure 4.24.c). Since
e intersects f , one of the endpoints of f is inside of △1 and therefore
cannot be ui nor uj, i.e., it must be a nonessential vertex of Q. But
then we would have four points of Q in balanced position (namely, the
endpoints of e and f), at most one of them being essential. But this
contradicts our hypothesis of Ess(Q) = 2;

– One endpoint of e is nonessential and the other is essential (see figure
4.24.d). We can assume without loss of generality that the latter point is
ui. Again, since e intersects f , one of the endpoints of f is inside of △1

and therefore cannot be ui nor uj, i.e., it must be a nonessential vertex
of Q. The other endpoint cannot be ui nor uj, since in this case f would
not intersect e. Therefore, we would have four points of Q in balanced
position (namely, the endpoints of e and f), with only one of them being
essential. But this contradicts our hypothesis of Ess(Q) = 2.

Step 2: Now we assume (for the rest of the proof) that i + 2 = j, i.e.,
the polygonal line p is the sole point ui+1 = uj−1 (see figure 4.25). Denote this
point by uh. Denote by p′ the polygonal line from uj+1 to ui−1.

Let Q̃ := Q−ui −uj, where ui and uj are the essential vertices of Q (see
figure 4.25). This new polygon is equal to the concatenation of the polygonal
line p, the segment −−−−−→uj−1uj+1, the polygonal line p′, and the segment −−−−−→ui−1ui+1.
Moreover, Q̃ is a simple polygon with at least 5 vertices.

If Q̃ is convex, then all of its vertices are good (by lemma 4.20.a) and
therefore at least two of its vertices (namely, the ones different from ui−1, uh

and uj+1) are also excellent vertices of the original polygon Q, by lemma 4.19.
Now, if Q̃ is not convex, then it has at least 3 good vertices by lemma

4.20.b. If one of these vertices is different from ui−1, uh and uj+1, then it is an
excellent vertex of Q, by lemma 4.19.
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Figure 4.25: Two examples of a polygon Q together with the corresponding
Q̃ := Q− ui − uj.

Figure 4.26: An example of a polygon Q̃ such that the triangulation of HS(Q̃)
gives only ui−1, uh and uj+1 as good vertices of Q̃. Notice that all edges
which were added to form the internal triangulation must be adjacent to uh.
Moreover, we can “flip" a pair of consecutive triangles in order to find another
good vertex of Q̃.

Step 3: Suppose now (for the rest of the proof) that the set of good
vertices of Q̃ (relative to the given triangulation) is precisely {ui−1, uh, uj+1}
(see figures 4.26 and 4.27). By the proof of lemma 4.20.b, two of them are the
intermediate vertices of leaves of a triangulation of the interior of Q̃, while the
other is the intermediate vertex of a leaf of a triangulation of HS(Q̃)∩Ext(Q̃).
Since ui−1, uh and uj+1 are consecutive in Q̃, the only possibility is that uh is
the intermediate vertex of the leaf of a triangulation of HS(Q̃) ∩ Ext(Q̃).

Now, since ui−1, uh and uj+1 are (in this order) consecutive in Q̃, we have
that all edges which were added to form the internal triangulation of Q̃ must
have uh as one of their endpoints: since △(ui−2, ui−1, uh) and △(uh, uj+1, uj+2)
are the only leaves of the internal triangulation, all added edges must have as
endpoints both a vertex in the polygonal line between ui−1 and uj+1 (in this
order, relative to polygon Q̃) and a vertex in the polygonal line between uj+1

and ui−1 (in this order, relative also to polygon Q̃).
Moreover, we have that the polygon Q̃ is star-shaped with respect to uh:

given any point of Q̃ (including edge points), the segment connecting it to uh

does not intersect the exterior of Q̃.
Therefore, the triangles

△(uh, uj+1, uj+2),△(uh, uj+2, uj+3), ...△(uh, ui−3, ui−2),△(uh, ui−2, ui−1)
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Figure 4.27: An example of a polygon Q̃ such that the triangulation of HS(Q̃)
gives only ui−1, uh and uj+1 as good vertices of Q̃. Notice that all edges which
were added to form the internal triangulation must be adjacent to uh. This
example also shows that, besides the pairs of consecutive triangles of type (a)
(which can be “flipped"), type (b) pairs may also appear (which happens at
vertices uh, ui−3, ui−2 and ui−1).

Figure 4.28: Three possibilities regarding a pair of consecutive triangles of the
internal triangulation of Q̃.

are all the triangles of the internal triangulation of Q̃. We want to examine
each pair P of consecutive triangles of this sequence (△(uh, ut−1, ut) and
△(uh, ut, ut+1), for each j + 1 < t < i − 1). The four vertices of Q̃ which
define them (i.e., uh, ut−1, ut and ut+1) might be either in convex position or
not. Because Q̃ is star-shaped with respect to uh, there are in principle only
three possibilities (see figure 4.28):

(a) the four points are in convex position and such that uh, ut−1, ut and ut+1

are in the counterclockwise order in ∂HS(P);

(b) ut is in the interior of HS(P) and uh, ut−1 and ut+1 are in the counter-
clockwise order in ∂HS(P);

(c) uh is in the interior of HS(P) and ut−1, ut and ut+1 are in the counter-
clockwise order in ∂HS(P);

In case (a), we can just “flip" the pair of triangles, i.e., switch the
triangulation of P (and therefore change also the triangulation of the interior
of Q̃). In this case, we have that vertex ut is a good vertex of Q̃.

In case (b), we notice that, since Q̃ is star-shaped with respect to uh, we
have that the triangle △(ut−1, ut, ut+1) does not have vertices in its interior
and, therefore, the vertex ut is a good vertex of Q̃.
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It remains to show that case (c) cannot happen for every pair of triangles
P of the internal triangulation of Q̃. We have two cases to consider: the
polygonal line p′ has either 4 vertices or more than 4 vertices.

– If the polygonal line p′ from uj+1 to ui−1 has exactly 4 vertices (see
figure 4.29), then Q̃ is a pentagon and, moreover, vertices uj+2 and ui−2

are consecutive and are both in the triangular region △(ui, uj, ul).

Here, it is impossible for vertex uh to be inside of △(uj+2, ui−2, ui−1):
since uh is adjacent to ui in the original polygonQ, it must be “on the left"
of the oriented segment −−−→ui−1ui (i.e., the determinant [ui−1, ui, uh] is pos-
itive). On the other hand, any point of the interior of △(uj+2, ui−2, ui−1)
must be “on the right" of −−−→ui−1ui (i.e., the corresponding determinant is
negative), because points uj+2 and ui−2 are also on the right of −−−→ui−1ui.

Analogously, one proves that △(uj+1, uj+2, ui−2) cannot have uh in its
interior.

The conclusion is that in the case of Q̃ being a pentagon, only cases (a)
and (b) can happen, which implies the existence of at least two good
vertices of Q̃, both of them different from uh, uj+1 and ui−1. Therefore,
they are excellent vertices of Q, by lemma 4.19.

– If the polygonal line p′ from uj+1 to ui−1 has more than 4 vertices (see
figure 4.30), then Q̃ is a polygon with at least 6 vertices, whose interior
is triangulated with at least 4 triangles. Therefore, there are at least 3
pairs of consecutive triangles P1,..., Pm (m ≥ 3). Assume that there are
no pairs of triangles of type (b). In this case (see figure 4.30), vertex uh

cannot be in the interior of all triangles of the form △(uj+1, uj+2, uj+3),
..., △(ui−3, ui−2, ui−1), since some of them have disjoint interiors (for
instance, triangles △(uj+1, uj+2, uj+3) and △(ui−3, ui−2, ui−1)).

Therefore, there must be at least one pair P of triangles of type (a) or
(b). This implies the existence of at least one good vertex of Q̃, which is
different from uh, uj+1 and ui−1. Hence it is also an excellent vertex of
Q, by lemma 4.19.

■

Since we proved propositions 4.7 and 4.10, theorem 4.3 is also proved.
An immediate consequence of theorem 4.3 is the following result:

Corollary 4.21 Let P = [v1, ..., vn] (n ≥ 6) be a space polygon whose tangent
indicatrix does not self nor antipodal intersections. Then P must have at least
6 flattenings.
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Figure 4.29: If Q̃ is a pentagon and does not have pairs of type (b), we have that
vertex uh cannot be inside of △(uj+2, ui−2, ui−1), since both sets are separated
by the spherical line spanned by ui−1 and ui. Analogously, uh cannot be inside
of △(uj+1, uj+1, ui−2).

Figure 4.30: If Q̃ has 6 or more vertices and does not have pairs of type (b), then
the situation is depicted above: there will be triangles formed by consecutive
vertices of p′ whose interiors are disjoint. Even if we move uh, it cannot be
inside all of these triangles.

4.6
Further remarks

As with propositions 3.12 and 3.22, the characterization of antipodal
intersections given by proposition 4.2 and its application to our study of
spherical polygons seem to be new.

Propositions 4.4, 4.5, 4.7 and 4.10 are new.
Theorem 4.3 and corollary 4.21 are new in the discrete setting.
Except for figures 4.1 and 4.18, all figures depicted in this chapter were

made using the app Spherical Easel (see (DICKINSON; DULIMARTA, )).



5
Spherical polygons with self and antipodal intersections

5.1
Introduction

In this chapter we prove some generalizations of the main results on
spherical polygons from the previous chapters. Recall that theorems 1.7 and
3.25 stated that a closed smooth spherical curve and a spherical polygon,
respectively, without self-intersections and not entirely contained in any hemi-
sphere must have at least four inflections. If such curve / polygon is symmetric,
then this lower bound can be improved to six (the smooth case is theorem 1.9
and the discrete case is theorem 3.35).

In the previous chapter, we saw that this lower bound on the number
of inflections may be improved for nonsymmetric curves / polygons when the
given curve / polygon does not have antipodal intersections (in the smooth
case, this result was theorem 4.1 due to Ghomi, while the discrete case was
theorem 4.3 from the previous chapter).

Ghomi (in (GHOMI, 2013)) extended all these smooth results by allowing
the curves to have singularities (i.e., cusps) and/or double points (i.e., self and
antipodal intersections). Then he obtains the following results:

Theorem 5.1 Given a C2 closed spherical curve γ, not entirely contained in
any closed hemisphere, let S be the number of singular points of γ, I be the
number of its inflections, and D the number of pairs of points t ̸= s ∈ S1 where
γ(t) = ±γ(s). Then

2(D + S) + I ≥ 6.

Theorem 5.2 Let γ be a spherical curve under the same conditions and
notations of the previous theorem. If D+(≤ D) denotes the number of pairs
of points t ̸= s ∈ S1 where γ(t) = γ(s), then

2(D+ + S) + I ≥ 4.

Furthermore, if γ is symmetric, i.e., −γ = γ, then

2(D+ + S) + I ≥ 6.
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Figure 5.1: A cusp in the smooth/discrete setting.

Note that in the particular case where D+ = S = 0, theorem 5.2 is
theorem 1.7. In the particular case where D = S = 0, 5.1 is theorem 4.1.

We have already proved the discrete version of Theorem 5.2 in the case
where D+ = S = 0 (theorem 3.25) and Theorem 5.1 in the case where
D = S = 0 (theorem 4.3). It remains, therefore, to state Theorems 5.1 and 5.2
in the discrete setting and then prove them.

Our strategy to prove these theorems consists of a “cutting-and-pasting"
procedure: at the point of self-intersection we delete the two edges and
reconnect its adjacent vertices in such a way that we obtain a new polygon,
which is free from self-intersections. We then prove that the number of
inflections of the original polygon plus 2 (which refers to the self-intersection
counted twice) is greater or equal than the number of inflections of the resulting
polygon, for which the lower bound is known.

5.2
Cusps in the discrete setting and statement of theorems

We still have to define the notion of a “discrete singular point". In the
smooth case, the singular point is a cusp, i.e., a point at which the curve fails
to be differentiable. Therefore it makes sense to define a “discrete cusp" as a
pair of consecutive inflections (see figure 5.1).

Therefore, since a discrete cusp already counts as two inflections, it is
enough to state theorems 5.1 and 5.2 without the explicit number S of discrete
cusps of the polygon.

Given a spherical polygon Q, let D+ the number of double points (i.e.,
self-intersections) of the polygon, D− be the number of its antipodal-double
points (i.e., antipodal intersections), D := D+ + D− and I be the number of
its inflections. Now we can state the discrete analogs of theorems 5.1 and 5.2.

Theorem 5.3 Let Q = [u1, ..., un] ∈ S2 (n ≥ 6) be a spherical polygon, not
entirely contained in a closed hemisphere. Then

2D + I ≥ 6.
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Theorem 5.4 Let Q = [u1, ..., un] ∈ S2 (n ≥ 4) be a spherical polygon, not
entirely contained in a closed hemisphere. Then

2D+ + I ≥ 4.

Theorem 5.5 Let Q = [u1, ..., u2n] ∈ S2 (2n ≥ 6) be a spherical polygon. If Q
is symmetric, then

2D+ + I ≥ 6.

We will first prove theorem 5.4. Notice that for D+ ≥ 2 the result follows
trivially, while for D+ = 0 the result follows from Theorem 3.25. Therefore, it
suffices to consider the case where D+ = 1. The strategy to prove the theorem
in this case will be following: we eliminate the intersecting edges and reconnect
the adjacent vertices in such a way that the resulting polygon Q′ does not have
self-intersections (we might need to add some more vertices to the polygon P

before this operation, in order to avoid new self-intersections). We then show
that the number 2D+ + I = 2 + I is greater or equal than the number I ′ of
inflections of Q′, which in its turn is greater or equal than 4, by Theorem 3.25.

5.3
Eliminating self-intersections

Suppose that we are given a spherical (or even planar) polygon Q =
[u1, u2, ..., un] (with the usual orientation) with only one self-intersection, which
happens at edges −−−→uiui+1 and −−−−→ujuj+1 (see figure 5.2 - left). Suppose that no
other vertex is in the spherical region spanned by {ui, ui+1, uj, uj+1}, i.e.,
C(ui, ui+1, uj, uj+1) ∩ S2 (in the case of a planar polygon, this region would
be the convex hull of points ui, ui+1, uj and uj+1).

After deleting edges −−−→uiui+1 and −−−−→ujuj+1, there are two different ways of
reconnecting these pairs of vertices (see figure 5.2):

– form an edge from ui to uj+1 and an edge of from uj to ui+1. The
result will be two new polygons Q1 = [ui, uj+1, uj+2, ..., ui−1] and Q2 =
[uj, ui+1, ui+2, ..., uj−1], both of them with the orientation induced by that
of Q;

– form an edge from ui to uj and an edge from ui+1 to uj+1, and reverse the
orientation from vertex ui+1 to uj. This will result in only one polygon
Q′ = [ui, uj, uj−1, ..., ui+2, ui+1, uj+1, uj+2, ..., ui−1].
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Figure 5.2: Two possible ways of eliminating a intersection: only one way results
in a connected polygon.

Both possibilities do not cause new self-intersections because we are
assuming that no other vertex is in the region spanned by {ui, ui+1, uj, uj+1}.
More precisely, denoting by w the self-intersection of edges −−−→uiui+1 and −−−−→ujuj+1,
we see that:

– Q1 and Q2 do not have self-intersections because no other vertex is in
the regions spanned by {ui, uj+1, w} and {uj, ui+1, w};

– Q′ does not have self-intersections because no other vertex is in the
regions spanned by {ui, uj, w} and {ui+1, uj+1, w}.

Since we will need only the case where we obtain polygon Q′, our
hypothesis might be narrowed down to the case in which no other vertex is in
the regions spanned by {ui, uj, w} and {ui+1, uj+1, w}.

Now we need the following lemma. Recall that D+ and I denote respec-
tively the number of self-intersections and the number of inflections of Q ,
while D′+ and I ′ denote respectively the number of self-intersections and the
number of inflections of Q′.

Lemma 5.6 Let Q be a spherical (or planar) polygon with one self-intersection
w and such that no other vertex is in the regions spanned by {ui, uj, w} and
{ui+1, uj+1, w}. Let Q′ be the spherical (or planar) polygon obtained as above.
Then

2D+ + I ≥ 2D′+ + I ′.

Lemma 5.6 does not apply to a polygon Q which does not satisfy the
hypothesis concerning the regions spanned by {ui, uj, w} and {ui+1, uj+1, w}
(see figure 5.3). We will see later how to deal with such polygons.

Since Q has only one self-intersection and Q′ has none, we have that
D+ = 1 and D′+ = 0. Therefore it suffices to show that 2 + I is greater
than or equal to I ′, i.e., that 2 + I − I ′ is greater than or equal to zero. First
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Figure 5.3: For the original polygon Q we have D+ = 1 and I = 2, while for
the resulting polygon Q′ we have D′+ = 1 and I ′ = 4.

notice that an edge does not change its condition of being an inflection or not
if we reverse its orientation (since [ui+2, ui+1, ui] = (−1) · [ui, ui+1, ui+2] and
[ui+3, ui+2, ui+1] = (−1) · [ui+1, ui+2, ui+3]). Hence the operation of reversing
the orientation of the polygon from vertex ui+1 to uj does not increase nor
decrease the number of inflections.

Therefore, in order to determine the number 2 + I − I ′, it is enough to
study what happens to the edges near the intersection:

– two of the original edges disappear (namely, −−−→uiui+1 and −−−−→ujuj+1). These
edges might be inflections, in which case they would contribute to the
number I;

– two new edges appear (namely, −−→uiuj and −−−−−→ui+1uj+1). These edges might
be inflections, in which case they would contribute to the number I ′;

– the adjacent edges −−−→ui−1ui , −−−−−→ui+1ui+2, −−−−→uj−1uj and −−−−−→uj+1uj+2 might also
change their condition of being inflections or not, since we are altering
one of the vertices that are adjacent to each one of these edges. Therefore
theses edges might contribute either to I or I ′ (or both).

The condition of any of these edges to be an inflection or not depends on
the position of the adjacent vertices ui−1, ui+2, uj−1 and uj+2. We call these
vertices external. The vertices ui, ui+1, uj or uj+1 are internal. Likewise, the
edges whose endpoints are internal vertices (−−−→uiui+1, −−−−→ujuj+1, −−→uiuj and −−−−−→ui+1uj+1)
are called internal edges, while the remaining adjacent edges (−−−→ui−1ui , −−−−−→ui+2ui+1,
−−−−→ujuj−1 and −−−−−→uj+1uj+2) are called external edges.

Each external vertex might be in one of four different regions. For
instance, vertex ui−1 might be in one of the two regions determined by the
line spanned by −−−→uiui+1 and in one of the two regions determined by the line
spanned by −−→uiuj, which gives us four regions in total (see figure 5.4). Now, if
ui−1 is not in any of the gray regions as in the figure 5.4 (a), then ui+1 and
uj will be on the same region determined by the line spanned by −−−→ui−1ui. This
implies that edge −−−→ui−1ui does not alter its condition of being an inflection or
not after the cut-and-connect process, and therefore its contribution to the
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Figure 5.4: In (a), edge −−−→ui−1ui is not an inflection in P nor in P ′. In (b), edge
−−−→ui−1ui is not an inflection in P , but it is an inflection in P ′.

number 2 + I − I ′ is zero. If, however, ui−1 is in one of the gray regions, then
we must also consider subcases in which −−−→ui−1ui goes from being an ordinary
edge to being an inflection, and vice-versa (in which case its contribution to the
number 2 + I − I ′ would be −1 resp. +1). Figure 5.4(c) shows simultaneously
the gray regions for all internal vertices.

Figure 5.5 shows 4 possibilities (among many others). In case (a), −−−→uiui+1

and −−−−−→ui+1uj+1 are inflections, while −−−−→ujuj+1 and −−→uiuj are not. This gives us
2 + I − I ′ = 2 + 0 = 2.

In case (b), −−−−→ujuj+1 and −−−−−→ui+1uj+1 are inflections, while −−−→uiui+1 and −−→uiuj

are not, which means that these four edges contribute zero to the number
2 + I − I ′. Now, in this case we must also look at edges −−−→ui−1ui and −−−−→uj−1uj:
both of them are originally inflections but become ordinary edges. Therefore
2 + I − I ′ = 2 + 2 = 4.

A similar analysis shows that for case (c) the number 2 + I − I ′ equals
0. Notice that configurations (b) and (c) are the same except for the vertices
ui−2 and uj−2, which in each case determine if edges −−−→ui−1ui and −−−−→uj−1uj cease to
be or become inflections. This, on its turn, determine a change in the number
2+I−I ′. Hence, in a certain sense, case (c) is a “worse" situation than case (b)
because its corresponding number 2 + I − I ′ is less than that of (b), although
it does not contradict the conclusion of Lemma 5.6. Since we want to simplify
the number of configurations to be analyzed, we will assume that if any of the
external vertices u is in a gray region, then the adjacent vertex to u which
is not internal is positioned in such a way that the corresponding external
edge goes from being an ordinary edge to becoming an inflection, i.e., it will
contribute −1 to the number 2 + I − I ′ (that is, since we want to prove that
the number 2 + I − I ′ is equal or greater than zero, we are already considering
the “worst-case scenario").

For case (d) the number 2 + I − I ′ equals −2. This does not contradict
the validity of Lemma 5.6, since in this case vertex uj+2 is in the forbidden
region and therefore the configuration does not satisfy the hypotheses.
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Figure 5.5: Four different cases

Figure 5.6: If vertices uj+1 and ui are consecutive, one can add an intermediate
vertex without altering the numbers I and I ′.

Another important fact is that vertices uj+1 and ui (or ui+1 and uj) might
be consecutive. In this case, we can just add another vertex uk between uj+1

and ui as in figure 5.6: just delete edge −−−−→uj+1ui and add the new ones −−−−→uj+1uk and
−−→ukui. This can be done without altering the numbers I and I ′ provided that
one places vertex uk as in figure 5.6: edges −−−→uiui+1, −−−−→ujuj+1, −−→uiuj and −−−−−→ui+1uj+1

do not change their condition of being or not being an inflection, while edges
−−−−→uj+1ui (the deleted one), −−−−→uj+1uk and −−→ukui (the new ones) are not inflections.
Since the number 2 + I + I ′ of the new polygon is equal to the corresponding
number of the original polygon, we can therefore assume that our polygons do
not have self-intersections of the type of figure 5.6-left.

We could prove Lemma 5.6 by looking at all 34 = 81 possible configura-
tions (each of the 4 external vertices might be in 3 different regions) and check-
ing that the number 2+I−I ′ is always greater or equal to zero. One can notice
further that many of these configurations are symmetric (by reflections) to each
other. For example, in figure 5.7 the configurations (a),(b),(c) and (d) can be
obtained from the others by reflecting “horizontally" and “vertically", and in-
flections are reflected into each other. Hence the number 2 + I− I ′ = 2 + 0 = 2
is the same for these 4 cases. In figure 5.7 cases (e) and (f) can also be obtained
from one another by a reflection, and cases (g) and (h) can also be reflected
into each other.

Therefore the number of configurations to be considered can be de-
creased. The final number of cases is 27 and is depicted in figure 5.8. Since in
all the cases the number γ = 2 + I − I ′ is greater or equal than 0, lemma 5.6
is proved.
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Figure 5.7: Cases (a),(b),(c) and (d) can be reflected one into the other, and
for all of them the number 2 + I − I ′ is the same, equal to 2. Cases (e) and
(f) can be reflected into each other as well, and their number 2 + I − I ′ is
the same, equal to 0. Cases (g) and (h) can also be reflected into each other,
and their number 2 + I − I ′ is the same, equal to 0 (recall that we assume
the “worst-case scenario", i.e., the external edges in the gray regions goes from
ordinary edges to becoming inflections).

A more algebraic approach to checking that the number 2+I−I ′ is always
greater or equal to zero may be found in the following (optional) section.

5.4
An elementary algebraic approach to study all the possible configurations

Instead of depicting all the possible configurations, we can do a more
synthetic approach: we noticed before that the location of the external vertices
suffices to discover the number γ = 2 + I − I ′ (recall that for each vertex in
a gray region we assume an extra contribution of −1 to γ). Each of these
vertices does not work alone: the location of pairs of them is what determines
which edges (from −−−→uiui+1, −−−−→ujuj+1, −−→uiuj and −−−−−→ui+1uj+1) are inflections or not.
This suggests that it might be possible to assign to each external vertex a
signed number that, all of them considered together, gives us a formula that
computes the number γ. If we succeed at finding such a formula, it will be
easier for a computer to check all the possible configurations. If we are lucky,
however, it might be possible to prove easily (by elementary algebra) that such
a formula always gives zero or positive numbers.

The idea to deduce a formula that gives the number γ is to associate
to each external vertex a pair (xk, yk) ∈ {±1}2. At each internal vertex two
different lines intersect. The corresponding external vertex might be in one of
the two regions determined by one line, and in one of the regions determined by
the other line. From now on we relabel (for simplicity of notation) each index
of the internal vertices as in figure 5.9 (c). If the external vertex corresponding
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Figure 5.8: The 27 possible types of configurations regarding the location of
the external vertices. In all of the cases, the number γ = 2 + I − I ′ is greater
or equal to 0.

to the internal vertex uk is in a region with plus respectively minus sign in
figure 5.9 (a), then put xk equal to +1 respectively −1. If the external vertex
corresponding to the internal vertex uk is in a region with a plus respectively
minus sign in figure 5.9 (b), then put yk equal to +1 respectively −1. See figure
5.10 for an example. Once this is done, the following facts follow:

– edge −−→u4u1 is an inflection if and only if x1 and x4 have the same sign, and
edge −−→u3u2 is an inflection if and only if x2 and x3 have the same sign;

– edge −−→u2u1 is an inflection if and only if y1 and y2 have opposite signs, and
edge −−→u3u4 is an inflection if and only if y3 and y4 have opposite signs;

– the edge connecting the internal and external vertices at ui is changes
its condition of being an inflection if and only if it is in one of the gray
regions, which on its turn happens if and only if xi and yi have the same
sign;
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Figure 5.9: Assigning a pair of signed numbers to each region

Figure 5.10: An example of configuration with the respective values of xk’s and
yk’s.

Although the assigning was a bit arbitrary, it still conveys the symmetry
we are looking for as figure 5.7 shows. Now comes the trick: we want to find a
formula in terms of the xk’s and the yk’s that gives the number γ = 2 + I − I ′.
The previous facts imply the following numerical relations, respectively:

– We want an expression that gives 1 if edge −−→u4u1 is an inflection, and 0
if it is not. It is not hard to see that x1x4+|x1x4|

2 does the work. Similarly,
for the edge −−→u3u2, the expression x2x3+|x2x3|

2 gives 1 when this edge is an
inflection, and 0 when it is not. Therefore the contribution of inflections
among the internal edges to the number I is equal to

x1x4 + x2x3 + |x1x4| + |x2x3|
2 = x1x4 + x2x3 + 2

2 = x1x4 + x2x3

2 + 1.

– We want an expression that gives 1 if edge −−→u2u1 is an inflection, and 0 if it
is not. Such an expression is −y1y2+|y1y2|

2 . Similarly, for the edge −−→u3u4, the
expression −y3y4+|y3y4|

2 gives 1 when this edge is an inflection, 0 when it
is not. Therefore the contribution of inflections among the internal edges
to the number I ′ is equal to

−y1y2 − y3y4 + |y1y2| + |y3y4|
2 = −y1y2 − y3y4 + 2

2 = −y1y2 + y3y4

2 + 1.

– Assuming the “worst-case scenario" concerning the change of the condi-
tions of the external edges, we want an expression that gives 1 if the exter-
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nal edge at uk is an inflection, and 0 when it is not (for all k ∈ {1, 2, 3, 4}).
Such an expression is xkyk+|xkyk|

2 . Therefore, the contribution of inflections
among the external edges to the number I ′ is equal to

x1y1 + x2y2 + x3y3 + x4y4 + |x1y1| + |x2y2| + |x3y3| + |x4y4|
2

= x1y1 + x2y2 + x3y3 + x4y4 + 4
2

= x1y1 + x2y2 + x3y3 + x4y4

2 + 2.

Our conclusion is that the number γ = 2 + I − I ′ is equal to

2 + x1x4 + x2x3

2 + 1 − (−y1y2 + y3y4

2 + 1 + x1y1 + x2y2 + x3y3 + x4y4

2 + 2)

= x1x4 + x2x3 + y1y2 + y3y4 − x1y1 − x2y2 − x3y3 − x4y4

2 .

Notice that this formula is invariant by permuting the indices by (12)(34)
(which is related by the “y-axis reflection" symmetry) and by (13)(24) (which
is related by the “x-axis reflection" symmetry). Therefore the formula gives
the same number for configurations that can be obtained one from another by
reflections (as we saw in the examples of figure 5.7).

It remains to prove that the number γ is always positive or equal to zero,
provided that the external vertices are not in the forbidden regions. By the
previous discussion, it suffices to prove the following lemma:

Lemma 5.7 If (xk, yk) ̸= (−1,−1) for all k ∈ {1, 2, 3, 4}, then 2γ, given by

x1x4 + x2x3 + y1y2 + y3y4 − x1y1 − x2y2 − x3y3 − x4y4,

is always greater or equal to zero.

Proof. Consider the sequence (x1y1, x2y2, x3y3, x4y4). There are five possibilities
regarding the number of +1’s in the sequence:

– 4 of them. The hypothesis implies then that all xk’s and yk’s are equal
to 1, and therefore 2γ is equal to 0.

– 3 of them. The hypothesis implies then that exactly one number among
the xk’s and yk’s is equal to −1, which then implies that 2γ is equal to
0.

– 2 of them. This immediately implies that the last four terms of the
expression of 2γ add up to 0. Moreover, by hypothesis, this implies that
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exactly two numbers among the xk’s and yk’s are equal to −1. This in
turn implies that at least two of the first four terms of the expression
of 2γ are equal to 1, which suffices for the entire expression of 2γ to be
greater or equal to 0.

– 1 of them. This immediately implies that the last four terms of the
expression of 2γ add up to 2. Moreover, by hypothesis, this implies that
exactly five numbers among the xk’s and yk’s are equal to +1. This in
turn implies that at least one of the first four terms of the expression
of 2γ is equal to 1, which suffices for the entire expression of 2γ to be
greater of equal to 0.

– 0 of them. This immediately implies that the last four terms of the
expression of 2γ add up to 4, which suffices for the entire expression
of 2γ to be greater or equal to 0.

■

Lemma 5.6 now follows immediately from lemma 5.7.

5.5
Proofs of theorems

Now we can prove the promised theorems.
Proof. (of Theorem 5.4) It suffices to prove the theorem when D+ = 1. If the
polygon Q satisfies at its self-intersection the hypothesis of Lemma 5.6 and the
corresponding polygon Q′ is obtained as indicated, then 2D+ + I = 2 + I ≥
2D′+ + I ′ = 0 + I ′ = I ′, which is greater or equal to 4, since Q′ satisfies the
hypotheses of Theorem 3.25.

If, however, one (or even both) of the regions determined by {ui, uj, w}
and {ui+1, uj+1, w} contain in its interior other vertices of Q (which would then
imply that the new polygon would have a self-intersection), then we construct
and intermediate polygon before “cutting-and-pasting". We put

ϵ = 1
2 min{|w − ui|S2 ; i ∈ {1, ..., n}}

(where we denote by | · |S2 the spherical distance) and denote by Sϵ(w) the
circle with radius ϵ centered at w. We then add new vertices to the polygon Q
in the following way (see figure 5.11):

– If the region determined by {ui, uj, w} has some other vertex in its
interior, then add to Q the new vertices ui+ 1

3
:= −−→uiw ∩ Sϵ(w) and

uj+ 1
3

:= −−→ujw ∩Sϵ(w), with the ordering induced by the usual ordering of
rational numbers mod n;



Chapter 5. Spherical polygons with self and antipodal intersections 103

Figure 5.11: Adding vertices

Figure 5.12: Perturbing a polygon with three consecutive vertices so that the
number of its inflections will still be the same.

– if the region determined by {ui+1, uj+1, w} has some other vertex in its
interior, then add to Q the new vertices ui+ 2

3
:= −−−→wui+1 ∩ Sϵ(w) and

uj+ 2
3

:= −−−→wuj+1 ∩ Sϵ(w), with the ordering induced by the usual ordering
of rational number mod n.

Denote the newly obtained polygon by Q′. Perturb the vertices of Q′

slightly so that it does not have three consecutive collinear vertices nor new
self-intersections, and such that the number of inflections of Q′ is the same
as the original polygon Q (see figure 5.12 for examples). This can always
be done. Continue denoting such polygon by Q′. Now, the new polygon Q′

satisfies the hypotheses of Lemma 5.6, with I ′ = I and D′+ = D+. Therefore
we can construct from Q′ a new polygon Q′′ without self-intersections as in
the discussion before Lemma 5.6 (in the case of figure 5.11 on the right, for
instance, the internal vertices would be ui+ 1

3
, ui+ 2

3
, uj+ 1

3
and uj+ 2

3
). By the

latter result we have:

2D+ + I = 2D′+ + I ′ ≥ 2D′′+ + I ′′ = 0 + I ′′ ≥ 4,

where the last inequality holds by Theorem 3.25.
■

Now we prove Theorem 5.5:
Proof. (of Theorem 5.5) If the original polygon Q is symmetric, then D+

is always even. If D+ ≥ 4, the result follows immediately. If D+ = 0,
then we apply theorem 3.35. Now, if D+ = 2, then we can apply the same
procedure as we did in this section: construct from Q a new polygon Q′ through
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“cutting-and-pasting" at each of the two self-intersections (adding new vertices
if necessary), so that Q′ does not have self-intersections. Notice that each
step of this procedure is invariant by reflection on the origin, hence Q′ is also
symmetric. Therefore

2D+ + I ≥ I ′ ≥ 6,

where the first inequality holds applying Lemma 5.6 twice and the second
inequality holds by Theorem 3.35. ■

We still need to prove theorem 5.3. Recall that D+ is the number of
self-intersections of Q, D− is the number of antipodal intersections of Q and
D = D+ +D−.
Proof. (of theorem 5.3) If for a given spherical polygon Q not contained in any
hemisphere the number D− equals 1, then

2D + I = 2(D+ +D−) + I = 2D− + 2D+ + I = 2 + 2D+ + I ≥ 2 + 4 = 6,

where the inequality holds by theorem 5.4. If, however, D− = 0, then we still
need to prove that in this case the number 2D+ + I is greater or equal to
6. Now, Q either has no self-intersections or has at least one. In the former
case we apply theorem 4.3, while in the latter case we proceed as we did in
the previous section: at the self-intersection we cut-and-paste the edges of Q
such that the resulting polygon Q has no self-intersections and no antipodal
intersections. In case we need to add new vertices before cutting-and-pasting,
we must take now as ϵ the number

ϵ = 1
2 min{|w ± ui|S2 ; i ∈ {1, ..., n}}

(where we denote again by | · |S2 the spherical distance), so that the proof of
theorem 5.4 also works here. The conclusion is that 2D+ +I is greater or equal
to I ′, where I ′ is the number of inflections of the resulting polygon Q′, which
does not have self-intersections nor antipodal intersections. By theorem 4.3,
this number is greater or equal to 6. ■

5.6
Further remarks

The “cutting-and-pasting" approach used around the double points (i.e.,
intersection points) is also used in the smooth setting by Ghomi in (GHOMI,
2013) to prove theorems 5.1 and 5.2. In our case, however, the separate study
of the 27 cases (up to symmetry) around the intersection point to prove lemma
5.6 is necessary since we are dealing with (spherical) polygons. The elementary



Chapter 5. Spherical polygons with self and antipodal intersections 105

algebraic argument of section 5.4 and the proof of lemma 5.7 are new.
In the smooth setting, theorems 5.1 and 5.2 are due to Ghomi (see

(GHOMI, 2013)). From these theorems, he also considers corresponding re-
sults for space curves: self/antipodal intersections in the tangent indicatrix
correspond to pairs of parallel tangents with the same/inverse orientation in
the original space curve. Taking into account the number of such pairs, he
obtains inequalities for space curves which are analogous to the inequalities of
theorems 5.1 and 5.2.

As far as we know, the proofs of theorems 5.3, 5.4 and 5.5 in the discrete
setting are new. Notice also that these theorems, although stated for spherical
polygons, can be thought as applied to tangent indicatrices of space polygons.
Since generic space polygons do not have “pairs of parallel tangents", one
can define pairs of parallel vertices with the same/inverse orientation of a
space polygon P as pairs of vertices vi and vj such that the tangent indicatrix
Q of P has self/ antipodal intersections between spherical edges −−−→ui−1ui and
−−−−→uj−1uj. Taking into account the number of such pairs, we can obtain the
following inequalities for space polygons which are analogous to the inequalities
of theorems 5.3 and 5.4. Denote by T+ and T− the numbers of pairs of
parallel vertices with the same/inverse orientation of a space polygon, and
put T := T+ + T−. Denote also by F the number of flattenings of a space
polygon.

Theorem 5.8 Let P = [v1, ..., vn] ∈ R3 (n ≥ 6) be a space polygon. Then

2T + F ≥ 6.

Theorem 5.9 Let P = [v1, ..., vn] ∈ R3 (n ≥ 6) be a space polygon. Then

2T+ + F ≥ 4.

Notice also that theorem 5.9 parallels corollary 2.15 in the sense that
the notion of “convexity" in each case can be slightly weakened and, still, the
polygon still admits a lower bound for the the number of flattenings plus twice
a “measure of nonconvexity" of the polygon.

On the other hand, we are not aware of a result on weakly convex
polygons which is analogous to theorem 5.8, even when T = 0 (in which case
theorem 5.8 reduces to corollary 4.21).
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