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Abstract

Schmitt Kremer, Oscar; Penello Temporão, Guilherme (Advisor);
Barbosa dos Santos Guerreiro, Thiago (Co-Advisor). Feedback
Control of Optically Levitated Nanoparticles. Rio de Janeiro,
2024. 111p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The harnessing of optical, electric and magnetic forces to levitate and
control nano-objects in high vacuum environment has enable the development
of the field of levitodynamics. Optical levitation, in particular, has allowed
the implementation of massive high-quality factor resonators, yielding results
that include ground-state cooling at the mesoscopic scale and high precision
force and displacement sensor. These advancements hold significant potential
for both fundamental research and technological progress. Precise control of
levitated systems is indispensable for advancing experimental techniques in
levitodynamics. This level of control facilitates motion stabilization, thereby
enhancing the sensitivity of these systems and enabling the attainment
of the desired properties necessary for examining fundamental principles.
This dissertation focuses on the study and control of certain optically
levitated systems: dielectric nanospheres trapped in vacuum by a highly
focused Gaussian beam. To undertake this examination, we will elucidate
the theoretical framework underlying these levitated systems and highlight
some majorly important control techniques. Subsequently, we will proceed
to experimental investigations where we aim to apply feedback forces in
two different contexts. First, we will explore feedback forces as a way to
change the dynamics of levitated nanoparticles, by means of adding nonlinear
terms governing their motion. Secondly, we will detail the development of
an experimental setup that allows 3D stabilization of motion by applying
an all electrical control scheme, allowing stable trapping at high vacuum.

Keywords
levitodynamics; control theory; feedback cooling.



Resumo

Schmitt Kremer, Oscar; Penello Temporão, Guilherme; Barbosa
dos Santos Guerreiro, Thiago. Teoria de controle aplicada à
partículas levitadadas opticamente. Rio de Janeiro, 2024. 111p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

A utilização de forças ópticas, elétricas e magnéticas para levitar e
controlar nano-objetos em um ambiente de alto vácuo possibilitou o desenvol-
vimento do campo da levitodinâmica. A levitação óptica, em particular, per-
mitiu a implementação de ressonadores massivos de alto fator de qualidade,
conduzindo a resultados que incluem o resfriamento ao estado fundamental
em escala mesoscópica e o desenvolvimento de sensores com sensibilidade
ultrafina. Esses avanços possuem um potencial significativo tanto no âmbito
da pesquisa fundamental quanto em termos de progresso tecnológico. O
desenvolvimento e implementação de técnicas avançadas de controle é indis-
pensável para o avanço experimental na levitodinâmica, visto que facilita a
estabilização do movimento destes sistemas levitados, melhorando assim a sua
sensibilidade e possibilitando a obtenção das propriedades necessárias para
examinar princípios fundamentais. Esta dissertação concentra-se no estudo
e controle de certos sistemas levitados opticamente: nanoesferas dielétricas
aprisionadas no vácuo por um feixe Gaussiano altamente focalizado. Para
realizar essa investigação, elucidaremos a descrição teórica destes sistemas
e destacaremos algumas técnicas de controle importantes. Posteriormente,
procederemos a investigações experimentais onde visamos atuar em dois
contextos diferentes. Primeiramente, exploraremos a geração de forças não
lineares como uma maneira de alterar o movimento dessas nanopartículas,
visando compreender o efeito destes termos na sua dinâmica. Em segundo
lugar, detalharemos o desenvolvimento de um aparato experimental que
permite a estabilização tridimensional do movimento de uma nanopartícula
por meio da aplicação apenas de controle elétrico, permitindo aprisionamento
estável em alto vácuo.

Palavras-chave
levitodinâmica; teoria de controle; resfriamento.
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1
Introduction

The study of the interaction between light and matter has captivated
researchers for well over a century, dating back to Einstein’s contributions
on photon momentum transfer [1] and the first experimental observation of
radiation pressure in 1901 [2, 3]. These inquiries have given rise to optome-
chanics, the specialized field of physics dedicated to explore the interactions
between electromagnetic radiation and mechanical systems [4, 5]. Over time,
optomechanics has become instrumental in exploring the manipulation and
even control of mechanical motion by use of optical forces, with experimental
results spanning in various areas and scales. Examples include GHz rotation
of nanoparticles and nanodumbbells [6, 7], trapping and manipulation of mi-
croorganisms [8, 9], macroscopic mirrors used for the detection of gravitational
waves [10] and the ground-state cooling of clamped and optically levitated
nanomechanical resonators [11–15].

Optical manipulation of nano and micron-sized particles was first proposed
and implemented by Arthur Ashkin [16], and it has enabled a sequence
of works, including stable trapping of cells [17], dielectric particles [18, 19]
and atoms [20], culminating in the tool that nowadays is known as optical
tweezer. Optical tweezers have consistently proven to be a versatile experimental
tool for biophysics [8, 9], sensing [21–24], non-equilibrium physics [25] and
quantum science [13–15, 26, 27]. Levitated optomechanics, also referred as
levitodynamics, focuses on harnessing trapping forces to control nano-objects in
vacuum environments. When implemented with optical tweezers, this yields
massive high quality-factor resonators with almost complete thermal isolation
from external perturbations. These optomechanical systems are a promising
platform for analysing and exploring quantum phenomena at the mesoscopic
scale [28].

One of the primary objectives in levitated optomechanics is the devel-
opment of techniques for accurate measurement and control of nano-objects.
Specifically, the controlled reduction in the amplitude of oscillation of the
trapped particle’s motion, known as cooling, is essential for experimental pur-
poses due to two main reasons. Firstly, the removal of residual gas in the
vacuum chamber decreases the damping of the medium, thereby increasing the
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chance of motional instability, which is further compounded by the effects of
nonlinearities and coupling between distinct axes [29]. Secondly, observation of
quantum aspects or preparation of a pure quantum state hinges directly upon
decoupling the particle’s dynamics from external noise sources. Additionally,
control mechanisms also enable the exploration of tweezed nanoparticles as
a platform for fundamental physics by introducing additional forces terms to
artificially alter the particle’s dynamics, allowing the examination of the system
response to nonlinear [30] or stochastic driving forces [31,32].

Optomechanical cooling can be pursued through two strategies, passive
and active cooling. Passive cooling relies on feedback terms provided by
scattering processes within optical cavities to cool the motion of trapped
objects [13, 33], while active cooling depends on real-time measurements of the
particle’s displacement, enabling employment of a variety of control theory
algorithms to compute feedback forces that are then applied by optical [34, 35]
or electrical actuators [14,15,36,37], aiming at effectively damping the nano-
object’s dynamics. Control theory is one of the main sub-areas in electrical
engineering, with part of its findings intersecting with signal processing, artificial
intelligence, stochastic analysis and optimization. Its application on quantum
systems has given rise to the field known as quantum control [38].

a) b)

Figure 1.1: Optically levitated nanoparticles in the 780 nm a)
and 1550 nm optical tweezer b). White arrows indicate the
trapped nano-object, which for both tweezers consists in a
71.5 nm radius Silica nanosphere (MicroParticles GmbH). In
both cases the optical trap was assembled inside a vacuum
chamber.

This dissertation primarily focuses on implementing and exploring control
methods within the domain of optically levitated nanoparticles. After assembling
two optical tweezers — one operating with a 780 nm laser and the other at
1550 nm — each setup will be utilized to present experimental results regarding
the use of feedback terms generated by electrodes positioned near each tweezer.
Images of nanoparticles trapped in these experimental setups are shown in
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Fig. 1.1. This dissertation is organized into six chapters, with its main content
(Chapters 2, 3, 4 and 5) divided into two parts.

The first part, comprised of Chapters 2 and 3, presents the theoretical
foundation and key concepts of optical tweezers and control theory. Given
the complexity inherent in describing generic optical beams applied to optical
tweezers across all regimes, Chapter 2 focuses on formulating the dynamics
of tweezed nanoparticles considering specific parameters and characteristics
used in the experiments presented in the subsequent chapters. Chapter 3
introduces general concepts of control theory, leading to the presentation of
control methods relevant to the optomechanics community. Readers already
familiar with either of these topics may opt to skip these chapters.

The second part, Chapters 4 and 5, presents the experimental setups and
results. Chapter 4 aims to validate theoretical predictions previously made
regarding perturbative nonlinear forces on underdamped stochastic systems,
where feedback is explored to induce an additional weak cubic nonlinearity.
Chapter 5 presents results of 3D cooling, which relied on the application of an
optimal control method and an all electrical actuation scheme, resulting in the
stable motion of a silica nanoparticles at pressures in the order of 10−5 mbar. For
the best extend of our knowledge, both setups are the first (780 nm) and second
(1550 nm) optical tweezers in vacuum in South America. As is briefly mentioned
in the beginning of each of these chapters, their content is presented just like
articles produced from the results showcased. Some overlap and redefinitions are
noticeable as some concepts need to be introduced within each article’s scope.
Conclusions of each experiment are made at end of each respective chapter.

Chapter 6 is dedicated to presenting potential future research directions
and general closing remarks. The list of publications produced throughout
this Masters is shown in Appendix A. Auxiliary methods necessary for the
development of the content in Chapter 3 are presented in Appendix B.
Additional characterizations and results related to the setup from Chapter 5
have been added to Appendix C. The code implemented to produce all the
plots and simulations in this dissertation can be found in [39,40], with a brief
description of code’s organization and structure in the final appendix. The code
repositories also include details and documentation regarding digital electronic
implementations.



2
Optical tweezers in the dipole regime

Prior knowledge with respect to the system’s dynamics is fundamental to
efficiently control any physical system, allowing one to anticipate possible non-
linearities and stochasticities, and to optimize the controller’s performance and
robustness. Throughout this chapter we dedicate our efforts into understanding
the dynamics of a dielectric nanoparticle levitated due to the optical forces
exerted by a focused Gaussian beam. Starting from the Maxwell’s equations,
we present the description of the fundamental mode of a laser beam focused
by an aplanatic lens. We then proceed with the dipole approximation, a sim-
plification applied to particles sufficiently smaller than the laser’s wavelength.
Lastly, we conclude by examining the particle’s equation of motion and possible
anharmonicities.

2.1
Optical beams

To mathematically describe the motion of a tweezed nanoparticle, we
must first understand the mathematical description of the electromagnetic field
in the vicinity of the particle’s position. In this section, we briefly present the
theoretical foundations that enable the derivation of the electromagnetic field
of a strongly focused Gaussian beam, covering topics such as the description of
monochromatic planes waves, the paraxial approximation and the angular
spectral representation. The mathematical description presented is based
primarily on [41,42].

2.1.1
Plane Waves

A monochromatic electromagnetic field with angular frequency ω propagat-
ing in a linear, homogeneous, non-dispersive, isotropic and source free-medium
satisfy the Maxwell’s equations,

∇ × E(r, t) = −iωµH(r, t), (2-1a)

∇ × H(r, t) = iωεE(r, t), (2-1b)

∇ · E(r, t) = 0, (2-1c)
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∇ · H(r, t) = 0, (2-1d)

where E(r, t) is the electric field, H(r, t) the magnetic field, and ε and µ are the
dielectric permittivity and magnetic permeability of the medium, respectively.
Utilizing properties of vector calculus, these equations can be rewritten as

∇2E(r, t) + ω2µεE(r, t) = 0, (2-2a)

∇2H(r, t) + ω2µεH(r, t) = 0, (2-2b)

which are the vector Helmholtz equations for electric and magnetic fields
propagating at velocity v = 1/

√
µε. The simplest solution for Eqs. (2-2) is the

transverse electromagnetic plane wave,

E(r, t) = E0e
−i(k·r−ωt) ûe, (2-3a)

H(r, t) = H0e
−i(k·r−ωt) k̂ × ûe. (2-3b)

Here, E0 and H0 are, respectively, the complex amplitudes for the electric
and magnetic field, k̂ is the unitary vector of k, which is the wavevector, and
ûe is the polarisation vector, which obeys k · ûe = 0. The wavevector magnitude
is |k| = k = ω

√
µε. By using the phasor representation, E(r, t) = E(r)eiωt, we

will omit the time parameter t from E(r, t) when referring specifically to the
spatially dependent component E(r).

Considering the wavevector in the Cartesian space, k = [kx, ky, kz], one
of its components, without loss of generality chosen here to be kz, can be
represented as

kz = k

√
1 −

k2
x − k2

y

k2 . (2-4)
Since k is solely determined by properties of the medium, this relation

when applied to Eqs. (2-3) gives rise to two distinct scenarios. Firstly, when
k2 < k2

x + k2
y, we encounter evanescent waves. These waves exhibit an

exponentially decaying behavior, making them non-propagating and outside
the scope of our interest. Secondly, for k2 ≥ k2

x + k2
y, we have the plane waves,

characterized by an oscillating behavior along the z-axis.
Even thought a true plane wave cannot exist they are useful because a

generic electric field E(r) can be expressed as a superposition of plane waves
by using what is called as the angular spectrum representation [41, 42]. By
rewriting E(r) into this plane wave basis, we obtain

E(r) =
∫ ∞

−∞

∫ ∞

−∞
Ē(kx, ky, 0)ei(kxx+kyy±kzz) dkx dky, (2-5)

where
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Ē(kx, ky, 0) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
E(x, y, 0)e−i(kxx+kyy) dx dy. (2-6)

Then, considering that we have knowledge of E(x, y, 0), is possible to
compute the different spectral components Ē(kx, ky, 0) of the electric field in
the plane z = 0. By propagating each component individually along the z-axis
and applying the inverse Fourier transform, we can reconstruct E(x, y, z) for
any value of x, y and z.

2.1.2
Paraxial approximation

In certain experiments, which include the ones described in Chapters 4
and 5 of this dissertation, the propagation of a laser beam predominantly occurs
along a specific direction, herein assumed to be along the z-axis, with spreading
observed in the transverse plane (x and y directions). With this condition in
mind, we can expand Eq. (2-4) in a Taylor series, resulting in

kz(kx, ky) = kz(0, 0) + k2
x

2!
∂2kz

∂k2
x

+
k2

y

2!
∂2kz

∂k2
y

+ kxky

2!
∂2kz

kxky

+ O(k4
x, k4

y), (2-7)

and leading to what is entitled as paraxial approximation,

kz(kx, ky) ≈ k −
k2

x + k2
y

2k
. (2-8)

This approximation considerably simplifies the integrals in Eqs. (2-5)
and (2-6), making it extremely useful in describing weakly focused laser
beams. However, it is important to note that in cases of strong focusing,
this approximation is no longer valid [41, 42].

2.1.3
Gaussian beam

In light of the paraxial approximation, we may apply to Eq. (2-6) an
electric field with a Gaussian distribution in the xy-plane for z = 0,

E(x, y, 0) = E0e
− x2+y2

w2
0 ûe, (2-9)

where w0 is the waist radius, or beam waist. By solving the components of E
in the plane wave basis we encounter

Ē(kx, ky, 0) = w2
0E0

4π
e−

w2
0(k2

x+k2
y)

4 ûe. (2-10)
Then, the spectral components may be inserted into Eq. (2-5), resulting

in the paraxial representation of a Gaussian beam,

E(x, y, z) = E0
w0

w(z)e
− x2+y2

w(z)2 ei[kz−ζ(z)+k(x2+y2)/2R(z)] ûe, (2-11)
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with

w(z) = w0

√
1 + z2

z2
0
, (2-12a)

R(z) = z
(

1 + z2
0

z2

)
, (2-12b)

ζ(z) = arctan
(

z

z0

)
, (2-12c)

z0 = nπw0

λ
, (2-12d)

where w(z) is the waist function, ζ(z) the Gouy phase shift, R(z) the wavefront
radius, n is the refractive index of the medium and z0 the Rayleigh length.
Equation (2-11) describes one of the most commonly used beams in optics.
The Gaussian beam is the fundamental mode sustained by a spherical-mirror
cavity, a type of resonator employed in the construction of the majority of lasers
[43, 44]. Although some lasers can emit other modes, our focus throughout this
dissertation will remain on the Gaussian mode, as it is the one employed in the
experiments detailed in the Chapters 4 and 5.

The intensity I(x, y, z) of this electromagnetic field will also follow a
Gaussian distribution,

I(x, y, z) = cε

2 |E(r)|2 = cε|E0|2

2

[
w0

w(z)

]2
e

− 2(x2+y2)
w(z)2 , (2-13)

and from this expression we can relate the magnitude of the electric field
complex amplitude |E0| with the output power P of the laser source,

|E0| =
√

4P

cεπw2
0
. (2-14)

For a clearer understanding of its characteristics, in Fig. 2.1a) we present
the longitudinal profile of the Gaussian beam and in Fig. 2.1b) the transversal
profile of its intensity. As can be seen, for |z| ≪ z0, w(z) remain approximately
constant, and the beam can be treated as a plane wave propagating along the
z-axis.
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a) b)

Figure 2.1: Gaussian beam. a) Longitudinal profile highlighting
w0, z0 and the hyperboloid formed along the z-axis by the
waist function w(z), here ρ =

√
x2 + y2 and θ0 = w0/z0. b)

Transversal profile of the intensity for an optical beam with
w0 = 2.2 mm and P = 300 mW. Colormap is presented in
arbitrary units (normalized by the maximum intensity).

2.1.4
Focusing a Gaussian beam

In optical manipulation of nano-objects, strongly focused optical fields
are used [16]. A theoretical treatment of how an optical field behaves after
being focused by an aplanatic lens was presented in [45,46]. This approach may
be employed to characterize the electromagnetic field at the focal point of an
aspheric lens after the incidence of a Gaussian beam on its surface. To better
comprehend this, let us refer to Fig. 2.2 (figure inspired by the representation
found in Chapter 4, Section 5 of [42]). A paraxial optical field propagating
along the z-axis crosses an aperture stop of radius Ra and then reaches the
surface pl of an aspheric lens. This surface is centered at the focal point and
has a radius equals to the focal length f . For this case, we assume that the
mediums before and after the lens have ε = ε0 and µ = µ0.

The electric field before the lens, Ei, and after, Et, must adhere the
intensity law of geometric optics, which states that the energy flux along each
optical ray must remain constant even after passing by a perfect optical element.
This conduct us to an initial conclusion regarding the relation between the
magnitude of Ei and Et,

|Ei| =
√

cos θ|Et|. (2-15)
Due to the azimuthal symmetry, we represent Ei in cylindrical coordinates

and decompose its components into radial and azimuthal polarisations, referred
to as p- and s-polarisations, respectively,
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y z
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k̂t
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Figure 2.2: Focusing of an optical beam by an aplanatic optical
lens. An optical beam, depicted as a set of rays, passes through
an iris and reaches the spherical surface pl of an optical lens.
At pl each ray is refracted and focused.

Ei(ρ, ϕ) = [Ei(ρ, ϕ) · ûρ]ûρ + [Ei(ρ, ϕ) · ûϕ]ûϕ. (2-16)

After passing through the lens, it is practical to represent the electric
field in a spherical coordinate system, considering the lens’s geometric aspects.
The incident electric field will be refracted by the lens, with the component ûϕ

remaining unchanged, while ûρ is transformed into ûθ. This transformation cor-
responds to the polarisations E(p)

i and E(s)
i becoming Et,θ and Et,ϕ, respectively,

and for the unitary wavevector k̂i turning into k̂t. Considering the coordinate
system transformation and Eq. (2-15), Et can be expressed as

Et(θ, ϕ) =
√

cos θ[ts(θ)(Ei · ûϕ)ûϕ + tp(θ)(Ei · ûρ)ûθ]. (2-17)
The functions ts(θ) and tp(θ) are referred to as apodisation or pupil

functions and serve to take into account attenuation, distortions and aberrations
that may be caused to each polarisation. Since pl is located in the far-field
region (ktf ≫ 1) of the focal point, we can obtain the electric field at the focus
Ef by employing the near-field to far-field relation,

Ef(x, y, z) = iktfe−iktf

2π

∫ θmax

0

∫ 2π

0
Et(θ, ϕ)eikt,zzei(kt,xx+kt,zy) sin θ dϕ dθ. (2-18)

The parameter θmax is defined as a function of the numerical aperture
(NA), θmax = arcsin (NA), and not only directly affects the integration domain in
Eq. (2-18) but also influences the apodisation functions ts and tp [41]. Applying
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to this formalism a Gaussian beam linearly polarised along the ûx direction we
encounter the intensity profile depicted in Fig. 2.3a). In Fig. 2.3b) we examine
the profile along x = 0 and y = 0, showing a small asymmetry, which will have
an impact in the behavior of a tweezed nanoparticle, as shown in Sections 2.2
and 2.3.

a) b)

Figure 2.3: Intensity of a focused Gaussian beam. a) Transver-
sal profile of the intensity at the focal point. Colormap is
presented in arbitrary units (normalized by the maximum
intensity). b) Intensity at the focal point evaluated along x-
direction (y = 0) and y-direction (x = 0).

2.2
Optical forces on an electrical dipole

Now that we can describe the electromagnetic field in the focus of
an aplanatic lens, let us shift our attention to the forces experienced by a
nanosphere when it is positioned near the focal point. When the nanoparticle’s
radius R is significantly smaller than the laser’s wavelength, R ≪ λ, the
electromagnetic field within the particle becomes approximately uniform [42,47].
However, this uniform field will induce an electric dipole in a dielectric particle,
and because it undergoes time-dependent oscillations, the dipole also oscillates.

An electric dipole can be modelled as two particles of mass m/2 and
charges +q and −q, at positions r+(t) and r−(t), respectively. The particles
will experience Lorentz forces due to the electric Ef and magnetic Hf fields at
the focus. The equations describing the motion of the dipole are

m
d2r+(t)

dt2 = +qRe
[
Ef(r+, t) + µ0

dr+(t)
dt

× Hf(r+, t)
]
, (2-19a)

m
d2r−(t)

dt2 = −qRe
[
Ef(r−, t) + µ0

dr−(t)
dt

× Hf(r−, t)
]
. (2-19b)
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As the particle is much smaller than λ, we can expand Ef and Hf in a
Taylor series around the dipole center of mass rd = r++r−

2 . This leads to a first
order approximation,

Ef(r±, t) ≈ Ef(rd, t) + [(r± − rd) · ∇]Ef(rd, t), (2-20a)

Hf(r±, t) ≈ Hf(rd, t) + [(r± − rd) · ∇]Hf(rd, t). (2-20b)

Now, after summing both expressions in Eq. (2-19) and substituting the
expansion in Eqs. (2-20), we arrive at the equation of motion for the dipole’s
center of mass,

m
d2rd

dt2 = (p · ∇)Ef(rd, t) + µ0

[
dp
dt

× Hf(rd, t) + drd

dt
× (p · ∇)Hf(rd, t)

]
, (2-21)

where p = q(r+ −r−) is the electric dipole moment. Our main interest will be in
time-averaged values of the force because the oscillations in the electromagnetic
field are much faster than the mechanical motion of the nanoparticle.

This assumption allows us to find the expression for the time-averaged
force applied to the nanoparticle by the focused laser beam [42,47,48],

F(r) = 1
4Re{αd}∇|Ef(r)|2+kIm{αd}

2cε0
Re{Ef(r) × H∗

f (r)}

−ickIm{αd}
4ω

[∇ × (Ef(r) × E∗
f (r))],

(2-22)

where αd is the effective polarisability, which provides the linear relation
p = αdEf and introduces corrections to the Clausius-Mossoti polarisability,
αCM , for cases when the nanoparticle is in the presence of an oscillating field.
The expression for αd is [42]

αd ≈ αCM

(
1 − i

k3αCM

6πε0

)−1
, (2-23)

with αCM = 4πε0R
3(ε2

R −1)/(ε2
R +2) and εR = εp/εm, where εp is the dielectric

permittivity of the particle and εm the dielectric permittivity of the medium.
After plugging Eq. (2-23) into Eq. (2-22) and rewriting the expression by

means of the intensity If(r) of the focused optical field, we find the following
expressions for the first and second terms on right side of Eq. (2-22),

Fgrad(r) = 2πR3

c

(
ε2

R − 1
ε2

R + 2

)
∇If(r), (2-24)

Fscat(r) = 128π5R6

3cλ4

(
ε2

R − 1
ε2

R + 2

)2
If(r)ûz. (2-25)

First, in Eq. (2-24) we have a conservative force, proportional to ∇If(r),
and entitled as the gradient force, and second, in Eq. (2-25) the scattering
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force, a non-conservative force acting along the optical axis due to scattering
and absorption processes. The remaining force is entitled as the spin-curl force
and appears in the presence of polarization gradients [42,49]. This force will
be disregarded as we will work with uniform linearly polarised laser beams.
In Fig. 2.4 we present the simulated forces for a silica nanoparticle with
radius R = 71.5 nm trapped in air by a 1550 nm Gaussian beam with power
P = 300 mW and initial waist of w0 = 2.75 mm. The beam is focused by an
aspheric lens with NA of 0.67 and focal length f = 3.1 mm.

a) b)

Figure 2.4: Optical forces in a Gaussian optical trap. a) Forces
along the x and y-axis. b) Total, gradient and scattering forces
along the z-axis.

As shown in Fig. 2.4, we can observe that for sufficiently small displace-
ments, the forces acting along each axis can be approximated as harmonic forces,
denoted as Fi = −km,iri for i ∈ {x, y, z}. These spring constants, represented
as km,j, allow us to calculate characteristic oscillation frequencies for each axis,
denoted as Ωi =

√
km,i/m, for a particle with mass m. In the specific simulation

shown in Fig. 2.4, these frequencies are Ωx/2π = 63.10 kHz, Ωy/2π = 70.24 kHz
and Ωz/2π = 15.79 kHz. The difference between Ωx and Ωy is attributed to the
asymmetry in the intensity profiles along x and y presented in Fig. 2.3.

2.3
Dynamics of a levitated nanoparticle

The motion of a nanoparticle is governed by the various forces acting
upon it. In the previous section, we demonstrated that the effect of the optical
field can be approximated as harmonic forces acting along each axis. However,
a trapped nanosphere is subject to additional forces, including a drag force
resulting from friction between the object and the surrounding fluid, as well as
a stochastic force arising from random collisions between residual gas molecules
and the nanosphere. The motion of the nano-object can be mathematically
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described using a second-order Langevin equation,

z̈(t) + γmż(t) + Ω2
zz(t) = 1

m
Fth(t). (2-26)

Here, γm represents the drag coefficient and Fth stands for the stochastic
force. In scenarios with gas pressures, Pgas, smaller than 10 mbar, the drag
coefficient can be expressed using the empirical expression [50,51],

γm ≈ 15.8R2Pgas

mvgas
, (2-27)

with vgas being the root mean-squared velocity of the gas molecules. As for the
term Fth, it must comply with

⟨Fth(t)⟩ = 0, (2-28a)

⟨Fth(t)Fth(t + τ)⟩ = 2mγmkBTδ(τ), (2-28b)

where T is the residual gas temperature, kB the Boltzmann constant and δ(τ)
the Dirac delta function. In other words, the values of Fth can be described as an
additive white Gaussian noise with zero mean and a standard deviation equals
to

√
2mγmkBT . Even though Eq. (2-26) specifically addresses the variable z(t),

expressions for x(t) and y(t) are analogous.
When analysing stochastic signals or systems, frequency domain tech-

niques provide a valuable tool to gain insights. By applying the Fourier transform
on Eq. (2-26) we find an expression for z(t) in the Fourier space, denoted as
Z(Ω),

Z(Ω) = −Fth(Ω)
m

 (Ω2 − Ω2
z) + iγmΩ

(Ω2 − Ω2
z)2 + γ2

mΩ2

. (2-29)

Now, considering that we carefully conducted a measurement of the signal
z(t) with a duration of Tm, we may explore how the power of the random
process is distributed across the spectral space by utilizing the power spectral
density (PSD). The PSD can be defined in terms of Z(Ω) and Tm [52, 53],

Szz(Ω) = lim
Tm−→∞

 |Z(Ω)|2
Tm

. (2-30)

By utilizing the properties presented in Eq. (2-28) and by substituting
Eq. (2-29) into Eq. (2-30) we arrive at the Lorentzian function,

Szz(Ω) = 2γmkBT

m[(Ω2 − Ω2
z)2 + γ2

mΩ2] . (2-31)

The PSD is a robust method for calibration of the optical tweezer and
for extraction of the parameters γm and Ωz [54–56], and is one of the main
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experimental tools used to produced the results in Chapters 4 and 5. Traces and
the PSDs produced by numerical simulations of the motion of a nanoparticle
are shown in Fig. 2.5. We considered Pgas = 1 mbar, the other parameters were
the same employed to produce Fig. 2.4.

a) b)

Figure 2.5: Time and frequency behavior of a tweezed nanopar-
ticle under the dipole regime. a) An example of time traces
produced using the Euler-Maruyama method to solve Eq. (2-
26). b) The PSD (scatter) resulted from the averaging of
50 traces per axis, the solid lines represent fitted Lorentzian
curves.

The effective center of mass temperature of the levitated nanoparticle
for each axis, T i

eff , can be extracted by integrating the PSD’s Sii(Ω) [15, 57],
according to

T i
eff = mΩ2

i

kB

∫ ∞

0

[
1 +

( Ω
Ωi

)2]
Sii(Ω) dΩ. (2-32)

2.4
Anharmonicities in optical tweezers

The harmonic approximation presented in Section 2.2 is widely employed
and can precisely describe the motion of a tweezed nanoparticle for sufficiently
small displacements, nicely fitting the optical forces around the origin as showed
in Fig. 2.4. We may also apply the harmonic approximation to the potential
energy U , such that U ∝ r2

i , resulting in the plots in Fig. 2.6. As firstly presented
in [29], and noticeable in Fig. 2.6, for the case of larger displacements, the
particle starts to experience non-linearities in all three axis. The first higher-
order mode that dictates the particle’s motion results in a Duffing non-linearity,
coupling all three degrees of freedom (DOF) [29].



Chapter 2. Optical tweezers in the dipole regime 33

a) b)

Figure 2.6: Potential landscapes along each axis: a) for x and y,
b) for z. The dashed lines represent fitted harmonic potentials,
successfully approximating the potential behavior near the
origin.

To model these anharmonicities, the resulting field from the integral in
Eq. (2-18) is approximated by a Gaussian beam in the vicinity of the focal
region [29]. This treatment results in the following equation of motion,

r̈i(t) + γmṙi(t) + Ω2
i (1 +

∑
j

ξjr
2
j )ri(t) = 1

m
Fth,i(t), (2-33)

where ξx = −2/w2
x, ξy = −2/w2

y and ξz = −2/z2
0 . Here, wx and wy are the beam

waist radius of the fitted Gaussian beam and z0 the fitted Rayleigh range.



3
Control theory for levitodynamics

Control theory constitutes a fundamental area of electrical engineering,
representing a well-established field with a rich history of successful applications.
These applications span a diverse spectrum, ranging from robotics [58–62]
and industrial process control [59, 63] to biomedical engineering [64], and
aircraft/spacecraft control [65]. The overarching goal of control theory is to
develop and analyze control laws for physical systems or processes [66, 67].
The term control law denotes a mathematical function or heuristic designed
to guide a system towards a desired pattern of behavior. In most cases, this
function depends on a measurement of the system, giving rise to a specific
category of control systems known as closed-loop or feedback systems [66]. A
block diagram for an elementary feedback control scheme of a single-input
single-output (SISO) dynamics is shown in Fig. 3.1.

yd(t) +
Σ Controller

u(t)
Actuator

Plant

System

Disturbance

x(t)

Sensor

Measurement noise

y(t)

−

Figure 3.1: Block diagram of a basic feedback control scheme.
In this illustration, x(t) symbolizes the states of the physical
system or process, while y(t) represents a real-time measure-
ment output by the sensor. The variable yd(t) corresponds to
the reference or desired value for the measurement, and u(t)
denotes the control signal generated by the feedback control
system.

In Fig. 3.1, the main component is the plant, formed by the connection of
the actuator and the controlled system. The actuator is a device engineered to
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influence the system’s dynamics through a controllable variable. Albeit it possess
its own dynamics, ideally, it produces a linear response based on the controller’s
output. A disturbance term is included to refer to any external factor associated
with non-deterministic events or unmodeled process characteristics. To act on
the system, a control signal u(t) is generated by the controller, which usually
takes as input the difference between the reference and the measurement.

Control theory has played an essential role in recent advances in the field
of levitodynamics. By exploring the use of optical and electrical actuators,
researchers have achieved the cooling of levitated nanoparticles to sub-kelvin
temperatures [34–37], even reaching its ground state with use of derivative
filters [15] or optimal control and estimation techniques [14]. By manipulating
the control signal applied, feedback control has also proven to be an important
tool to explore non-Markovianity [31] and non-equilibrium dynamics [35,51,68].

In conjunction with the comprehension of the system dynamics discussed
in Chapter 2, an understanding of the theoretical underpinnings of control
theory becomes essential for experimentalists in optomechanics. This chapter
is dedicated to presenting the formalism of key control methods. Commencing
with optimal control theory for linear deterministic systems, we delve into
stochastic control, state estimation and parametric control. Lastly, we finish
this chapter with a brief conclusion regarding the presented techniques.

3.1
Optimal control

In many cases, linear control is sufficient to meet technical requirements
defined within the application, even at the expense of neglecting stochasticities
and other crucial characteristics. Moreover, the fulfilment of these requirements
is often related to an iterative trial-and-error process, where various methods
are applied until the design meets acceptable or optimized criteria. Optimal
control theory emerges as a subarea of control focused in achieving the desired
closed-loop behavior while simultaneously extremizing a performance criterion
[69]. In this section, we introduce a fundamental control method aimed at
minimizing the energy of linear systems. First, it proves useful to express the
system’s dynamics in a well-established representation within the control theory
community— the state-variable representation. This enables the expression of
any linear system of arbitrary order as a first-order matrix differential equation.



Chapter 3. Control theory for levitodynamics 36

3.1.1
State-variable representation

Any finite dynamic linear system can be described as a set of first-order
ordinary differential equations through the application of the state-variable
representation, a methodology widely used in classical control theory. Consider
the equation of motion introduced in Eq. (2-26), generalized for all DOF’s,

ẍ(t) + γmẋ(t) + Ω2
xx(t) = 1

m
Fth,x(t), (3-1a)

ÿ(t) + γmẏ(t) + Ω2
yy(t) = 1

m
Fth,y(t), (3-1b)

z̈(t) + γmż(t) + Ω2
zz(t) = 1

m
Fth,z(t). (3-1c)

This model presupposes the absence of coupling between motions along
distinct axes. It is crucial to underscore that the stochastic forces acting on
each axis are independent, leading to the following conditions

⟨Fth,i(t)⟩ = 0 , for i ∈ {x, y, z}, (3-2a)

⟨Fth,i(t)Fth,j(t + τ)⟩ = 2mγmkBTδijδ(τ) for i ∈ {x, y, z}. (3-2b)

With the state-variable representation, Eqs. (3-1) can be rewritten as the
multiple-input multiple-output (MIMO) systemẋ(t) = Ax(t) + Bu(t) + w(t),

y(t) = Cx(t) + Du(t) + m(t).
(3-3)

Here A, B, C and D are referred to as the system, input, output and
direct transmission matrices, respectively. The terms w(t) and m(t) represent
disturbance and measurement noise matrices, respectively. The term Bu(t)
accounts for external forces acting on the particle, initially omitted in Eqs.
(3-1). The second line in Eq. (3-3) characterizes the measurement dynamics.
For a state vector x(t) =

[
x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)

]T
, and considering

Ω2 =
[
Ω2

x Ω2
y Ω2

z

]T
and Fth(t) =

[
Fth,x(t) Fth,y(t) Fth,z(t)

]T
, we have

A =
 03×3 I3

−diag(Ω2) −γmI3

 , w(t) = 1
m

 03×1

Fth(t)

 . (3-4)

The input matrix will depend on the constructive characteristics of the
actuators, potentially causing coupling between DOF’s. The matrices C, D and
m in the measurement dynamics hinge on the employed detection scheme and
characteristics of the detectors. Subsequent sections will present some scenarios,
elucidating these terms further.
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3.1.2
Minimizing the energy of linear systems

Cooling or reducing the energy of a system can be easily conceptualized
as an optimization problem. By considering the linear dynamics given in Eq.
(3-3) — temporarily neglecting the random processes w(t) and m(t) — we
express the system as

ẋ(t) = Ax(t) + Bu(t). (3-5)
Minimizing the total energy of the system involves finding the control

policy u∗(t) which minimizes a positive definite cost function J . For linear
systems, quadratic performance criteria are often employed,

J = 1
2

∫ ∞

0
L̄(x, u, t) dt = 1

2

∫ ∞

0
[xT (t)Qx(t) + uT (t)Ru(t)] dt, (3-6)

where Q is the weighting matrix (a real symmetric positive semi-definite matrix)
and R is the control effort matrix (a real symmetric positive definite matrix).
The integrand L̄(x, u, t) in Eq. (3-6) is known as the objective or cost-to-go
function. The proportion between the values that constitute Q and R signify an
intention to maintain x(t) close to the origin without an excessive expenditure
of control effort.

To determine the optimal policy u∗(t), we rely on one of the milestones
in optimal control theory — the Pontryagin’s maximum principle [69, 70].
Introducing this principle requires first presenting the concept of the control
Hamiltonian,

H̄(x, u, Λ, t) = L̄(x, u, t) + ΛT (t)ẋ(t). (3-7)
The Hamiltonian depends on the objective function, the system’s dynamics

and, akin to Lagrangian multipliers in static optimization problems, Λ(t), that
here assume a time-dependent behavior and constitute what is referred to as the
costate vector. Equation (3-7) is equivalent to the Legendre transformation of
the Lagrangian [71], denoted in the context of optimal control by the cost-to-go
function L̄(x, u, t). The states and costates form a canonical variable pair and,
as in classical mechanics, it must obey the Hamilton’s equations

∂H̄(x(t), u(t), Λ(t), t)
∂Λ

T

= ẋ(t), (3-8a)

∂H̄(x(t), u(t), Λ(t), t)
∂x

T

= −Λ̇(t). (3-8b)

These expressions set two distinct conditions for the optimal behavior.
The Pontryagin’s principle arises as third condition with which, when combined
with Eqs. (3-8), allows one to find u∗(t). Considering the state and costate
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trajectories for u∗(t) as x∗(t) and Λ∗(t), respectively, the maximum principle
is written as ∂H̄(x∗(t), u∗(t), Λ∗(t), t)

∂u
= 0. (3-9)

Now, by substituting Eqs. (3-5) and (3-6) into (3-8) and (3-9), and
applying for optimal trajectories, we find the following three expressions

∂H̄(x∗(t), u∗(t), Λ∗(t), t)
∂Λ

T

= Ax∗(t) + Bu∗(t) = ẋ∗(t), (3-10a)

∂H̄(x∗(t), u∗(t), Λ∗(t), t)
∂x

T

= Qx∗(t) + AT Λ∗(t) = −Λ̇∗(t), (3-10b)

∂H̄(x∗(t), u∗(t), Λ∗(t), t)
∂u

T

= Ru∗(t) + BT Λ∗(t) = 0. (3-10c)

The last expression above leads to

u∗(t) = −R−1BT Λ∗(t). (3-11)

Due to the system’s linearity, we can assume Λ∗(t) = Sx∗(t) [69].
Replacing Λ∗(t) by its linear relation with the states, we obtain the algebraic
Riccati equation

SA + AT S + Q − SBR−1BT S = 0. (3-12)

Consequently, we conclude that the optimal control policy for a linear
system with quadratic criteria is

u∗(t) = −R−1BT Sx∗(t), (3-13)

where S is the solution of Eq. (3-12). This control law is known as the Linear
Quadratic Regulator (LQR), a widely employed and a powerful method for
controlling linear systems.

A simulation of the dynamics of a 3D oscillator controlled by LQR is
depicted in Fig. 3.2. The frequency vector Ω =

[
Ωx Ωy Ωz

]T
is given by

Ωx/2π = 63.10 kHz, Ωy/2π = 70.24 kHz, Ωz/2π = 15.79 kHz, and γm = 10 s−1.

The input matrix is B =
 03×3

I3/m

, the Q and R matrices are

Q = m

diag(Ω2) 03×3

03×3 I3

 , R = 1
mgfb


Ω−2

x 0 0
0 Ω−2

y 0
0 0 Ω−2

z

 . (3-14)

The input matrix results from considering three actuators independently acting
on each DOF. The parameter gfb is an adimensional gain, which is varied to
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observe the controller’s behavior under different control efforts. In Fig. 3.2a) the
phase portrait for each DOF demonstrates successful control of both velocity
and position and Fig. 3.2b) presents the normalized cost-to-go performance
criteria as function of gfb, we isolated the criteria for x, y and z.

a) b)

Figure 3.2: Performance of LQR for a 3D harmonic oscillator.
a) Phase plot for each axis considering gfb = 0.5. b) Cost-
to-go performance criteria L̄/L̄max as a function of gfb. The
simulation lasted 20π/Ωz, which proved not to be sufficiently
long for cooling in cases with small values of gfb.

3.2
Stochastic control

Despite the effectiveness of LQR in minimizing the energy of a linear
system, a few considerations are warranted. Firstly, when implementing control
methods, the signal u(t) is going to be computed by a microprocessor or a Field
Programmable Gate Array (FPGA). These devices calculate the policy using
samples of the measurement signal captured at a specific sampling frequency fs.
This process of discretization, or digitalization, alters our model of the system
dynamics [72]. Secondly, the optimal control signal u∗(t) is computed taking into
account the complete state vector x(t). In the context of levitodynamics, this
implies the need for measurement methods for extracting both the position and
the velocity (or momentum) of the particle. When measuring only the position,
methods to estimate the velocity become necessary. Lastly, it is noteworthy
that, up to this point, the disturbances and noises have not been taken into
account.

Stochastic control theory emerges as a field focused on studying and
analysing dynamical systems subjected to stochastic disturbances. Its goal is to
provide tools for problems as stochastic optimal control, states estimation and
parametric optimization [61]. In this section we are going to address each one
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of the considerations highlighted in the last paragraph. Starting by providing
a recursive model for discrete linear systems, we are going to present the
Kalman-Bucy filter—an optimal state estimator—and elaborate on how it can
be leveraged to formulate an optimal control strategy for stochastic systems.

3.2.1
From a continuous to a discrete-time system

To characterize a discrete-time system, it is customary to first examine
the dynamics of its continuous analogue. The solution of the first-order non-
homogeneous differential equation expressed in Eq. (3-5) is well-known [66, 72].
Given an initial condition x(t0), the expression for x(t) is

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ. (3-15)

The solution in Eq.(3-15) is the sum between the homogeneous response
and the convolution between the external influence term and the state transition
matrix eAt. The equation above can be employed to encounter the state
vector after a certain time interval, denoted here as Ts. If this interval is
sufficiently small we can assume that the signals x(t) and u(t) remain constant
along Ts and that any time instant can be described as kTs, with k ∈ N. By
expressing the instant t as kTs + Ts, t0 as kTs and considering u(τ) = u(kTs)
for kTs ≤ τ ≤ kTs + Ts, x(kTs + Ts) is

x(kTs + Ts) = eATsx(kTs) +
∫ kTs+Ts

kTs

eA(kTs+Ts−τ)Bu(kTs) dτ, (3-16)

which can be directly reduced to the first-order difference equation

xn+1 = Adxn + Bdun, (3-17)

where

Ad = eATs and Bd =
 ∫ Ts

0
eAη dη

B, with η = kTs + Ts − τ. (3-18)

These matrices can be encountered by considering the Taylor expansion
of eATs , leading to

Ad =
∞∑

k=0

T k
s

k! Ak and Bd = (Ad − I)A−1B. (3-19)

The procedure just described is equivalent to the zero-order holder
sampling method, applied for a sampling time Ts, or, sampling frequency
fs = 1/Ts. This stands as a fundamental method for time-discretization
[67], and its impact on the temporal behavior of a continuous-time signal
is illustrated in Fig. 3.3. Through this method, we have established a means
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to express the system evolution as a recursive equation. While there are cases
where discretization may be negligible, as for example when implementing
control algorithms with sufficiently fast hardware, it is imperative to consider
it, specially for signal processing purposes such as filtering and estimation.

t

x(t)

Sampler

n

xn

Figure 3.3: Sampling process utilizing a zero-order holder.

Until this point we have focused solely in the system dynamics. However,
without any difficulties we can generalize the discretization process for the
measurement equation. Also, stochastic disturbance and measurement noise
can be added to the expression, yielding

xn+1 = Adxn + Bdun + wd,n, (3-20a)

yn+1 = Cdxn+1 + Ddun+1 + md,n+1, (3-20b)

where, Cd = C and Dd = D, and wd(t) and md(t) are zero-mean discrete-time
white noise with covariances equals to W and M, respectively. The term Dd

was included just to present the more general formulation, even though in our
scenario Dd = 0. With the formulation presented in Eq. (3-20) we have taken
into consideration one of the three points listed in the beginning of Section 3.2.

3.2.2
Kalman filter, an optimal state estimator

In both deterministic and stochastic systems, the reconstruction of the
state vector xn holds significant importance in the computation of control laws.
The problem of estimation is articulated as follows: given the measurement
equation in Eq. (3-20), estimation involves determining the state or signal xk

based on a set of measurements Yn = {yi|, i ∈ N, , 0 ≤ i ≤ n}. This gives rise
to three distinct situations:

– Smoothing, if n > k,

– Prediction, if n < k,

– Filtering, if n = k.
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Throughout this subsection, our emphasis will primarily be on the last
case, although the other situations can be of interest in alternative applications
[73,74]. Before examining the filtering problem in more detail, we establish two
conditions necessary for implementing an estimator. First, for accurate state
estimation, the system dynamics and noise characteristics must be known and
precisely defined. Second, given the estimation error en = xn − x̂n, a suitable
cost function or optimization criterion L(en) must be chosen, such that the
optimal estimate x̂n of xn minimizes ⟨L(en)⟩. If L(en) is even, non-decreasing
for en ≥ 0, and positive definite, then the optimal estimate x̂∗

n is

x̂∗
n = ⟨xn⟩. (3-21)

The proof of this assertion can be found in Appendix B.1 and in the
stochastic control literature [61,75]. This expression provides the initial optimal
estimation x̂∗

0 = ⟨x0⟩. To determine x̂∗
n for any time-step n, it is important

to comprehend how to propagate the average given by the initial estimation,
balancing between knowledge of the theoretical model of the dynamics and
measurements acquired through the iterations. For linear dynamics, where both
disturbances and noises are white-noises processes, and considering a quadratic
criterion, analogous to the cost-to-go function used in Subsection 3.1.2,

L(en) = 1
2⟨eT

n en⟩, (3-22)

the optimal estimation is given by the Linear Quadratic Estimator (LQE),
commonly known as the Kalman filter, firstly proposed by [76].

As we considered the system to be subject only to white-noise processes,
the statistical behavior of xn can be fully described by its mean ⟨xn⟩ and
covariance matrix, Pn. Upon establishing the initial estimation ⟨x0⟩, the
covariance matrix can be computed. However, since x̂0 = ⟨x0⟩ and given
the definition of the estimation error, the covariance matrix P0 can be renamed
to what is known as the error covariance matrix, since

P0 = ⟨(x0 − ⟨x0⟩)(x0 − ⟨x0⟩)T ⟩ = ⟨e0eT
0 ⟩. (3-23)

After the initialization, the first step of the Kalman filter involves
predicting the behavior of x1 and P1 given information of the system dynamics
previously provided to the algorithm. Appendix B.2 details the propagation of
the average and covariance of a state vector xn. By applying Eqs. (B-9) and
(B-12), x̂1 and P1 are

x̂1 = Adx̂0 + Bdu0, (3-24a)

P1 = AdP0Ad + W, (3-24b)
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where x̂1 also obeys
x̂1 = ⟨x1⟩. (3-25)

Subsequently, at the new time-step, after the propagation, a measurement
y1 becomes available, offering new information regarding the state vector. If
Eq. (3-25) is adhered to, it is possible to optimally estimate and correct the
x̂1 based on y1 by applying the least-square method (we refer to Appendix
B.3 for more details). To distinguish between estimates made before and after
acquiring a new value yn, we introduce the terms a priori (for before yn),
denoted as x̂−

n and P−
n , and a posteriori (for after yn), denoted as x̂+

n and P+
n .

The corrections from the least-squares method are

x̂+
1 = x̂−

1 + K1(y1 − Cdx̂−
1 ), (3-26a)

P+
1 = (I − K1Cd)P−

1 (I − K1Cd)T + K1MKT
1 , (3-26b)

where
K1 = P−

1 CT
d (CdP−

1 CT
d + M)−1. (3-27)

Now, by amalgamating the expressions for a priori and a posteriori
estimates and generalizing the recursive expression for any value of n, we obtain

x̂−
n = Adx̂+

n−1 + Bdun, (3-28a)

P−
n = AdP+

n−1Ad + W, (3-28b)

Kn = P−
n CT

d (CdP−
n CT

d + M)−1, (3-28c)

x̂+
n = x̂−

n + Kn(yn − Cdx̂−
n ), (3-28d)

P+
n = (I − KnCd)P−

n (I − KnCd)T + KnMKT
n . (3-28e)

0

x̂+
0

P+
0

x̂−
n

P−
n

n

x̂+
n

P+
n

. . .

. . .

x̂−
n+1

P−
n+1

n+ 1

x̂+
n+1

P+
n+1

Figure 3.4: Kalman filter timeline for a posteriori and a priori
terms.

To better illustrate the temporal relation between each estimate, Fig.
3.4 depicts the signal timeline where the relation between x̂−

n , P−
n , x̂+

n and
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P+
n is shown. In Fig. 3.5 we present the simulation of a Kalman filter

applied to estimate the coordinates and velocities of the 3D motion of a
confined nanoparticle. The simulation employs the same parameters of previous
simulations, except for a modification in the value of γm, which now is the
resulting damping factor for a pressure of 10−5 mbar. For the output matrix we
considered C =

[
I3 03×3

]
, accompanied by zero-mean measurement noise

characterized by a standard deviation of ≈ 0.8 nm. As evidenced by the
simulated traces, the filtering algorithm adeptly estimated all the states.

Figure 3.5: Kalman filter estimates for an optically levitated
particle. The results shows the estimates convergence towards
the actual states. The estimation error becomes more dis-
cernible in the insets presented in the lower part of the figure,
providing a detailed view of the discrepancies.

One may question the importance of the filter initialization. While
initialization plays a crucial role in its mathematical formulation and proof of
optimality, incorrect initialization can still result to accurate estimation [77,78].
However, this may prolong the time required for correct estimation and hinder
the minimization of the overall cost function

n∑ L(en).
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3.2.3
Optimal stochastic control

The problem of optimal control outlined in Section 3.1 can be reformulated
to accommodate incomplete state information, time discretization, disturbances
and measurement noise. To achieve this, we must first define a new cost function
Jd, tailored for the stochastic discrete system,

Jd = 1
N

N∑
n=0

〈
1
2[xT

n Qxn + uT
n Run]

〉
. (3-29)

Kalman’s contributions weren’t limited only to the formulation of LQE.
His contributions also unveiled a duality between control and estimation (or
observation) in linear systems [79]. While the generalization of this duality
has proven challenging, the LQR and LQE have shown to form a robust pair
for linear control, with each serving as the optimal solution for its respective
problem. To determine the optimal control policy u∗

n that minimizes Eq. (3-29)
we can employ a fundamental principle in stochastic control theory known as
the separation principle [61].

Σ Kn Σ

−Cd

z−1

Ad

Bd

x̂+
n

LQR
un

Bd Σ

wd,n

z−1
xn

Ad

Cd

Σ

System DynamicsState Estimator

md,n

Figure 3.6: Block diagram for the LQG controller. Sub-blocks
delimited by dashed lines represent system dynamics and
state estimation. Middle block accounts for control gain
computation.

The separation principle divides the optimal control problem into sub-
problems of estimation and control. It states that the overall optimal solution is
found by encountering the optimal solution for each sub-problem individually.
Therefore, the optimal control law for the aforementioned criteria integrates
concepts of Section 3.1 and Subsections 3.2.1 and 3.2.2, yielding [61,80]

u∗
n = −(R + BT

d SdBd)−1BT
d SdAdx̂+

n , (3-30)
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where Sd is the solution of the discrete-time algebraic Ricatti equation.
This control method is known as the Linear Quadratic Gaussian (LQG)

control law. In Fig. 3.6, a diagram of the closed-loop system, including
state estimation, is presented. The diagram represents the discrete-time
representation of the system dynamics. The block z−1 is the unitary delay
block, which when applied to xn returns xn−1. By simulating a levitated
nanoparticle with the same parameters used in the LQR and Kalman filter
simulations previously shown, we obtain the results depicted in Fig. 3.7.

Figure 3.7: Simulation of the LQG controller applied to
a levitated nanoparticle. Simulation conducted considering
incorrect initialization of the LQE, still, the filtering method
achieved indistinguishability between x and x̂.

3.3
Parametric control

Up to this point, the previously presented control methods have computed
u(t) as linear functions of x(t), not jeopardizing the system’s linearity [81]. An
emerging class of control techniques, particularly advantageous for thermal
processes [81] and extensively applied in levitodynamics [14,15,34,36,37], are
the parametric controllers. In contrast to classical control methods, parametric
control acts on a system parameter. For instance, in parametric cooling, the
trap stiffness is modulated with a frequency Ωm, introducing an extra force
term

Fp(r, t) = 2m
∑

j∈{x,y,z}
Ω∗ 2

j cos(Ωm,jt + ϕi)r, (3-31)
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with Ω∗ 2 =
[
ΓxΩx ΓyΩy ΓzΩz

]T
and r =

[
x y z

]T
. The modulation

frequency can be defined as Ωm,i = 2Ωi and Γi = biΩi, with bi being
the modulation factor for the i-axis. To illustrate the mechanism behind
parametric cooling, let us first analyse the one-dimensional equation of motion
as presented in [82], considered here for the z-axis. We will consider only the
deterministic forces acting upon the particle and neglect any effect related to
time-discretization. Also, for now, we consider modulation only in Ωz, resulting
in

z̈(t) = −γmż(t) − Ω2
zz(t) + 2bzΩ2

z cos(2Ωzt + ϕz)z(t). (3-32)
Assuming z(t) = z̄(t)e−γmt/2 and t̄ = Ωzt + ϕz, and considering

Ωz ≈
√

Ω2
z − γ2

m

4 , which is true for sufficiently low pressures, Eq. (3-32) can be
reformulated as a Mathieu differential equation,

d2z̄(t̄)
dt̄2 +

[
1 − 2bz cos

(
2t̄

)]
z̄(t̄) = 0. (3-33)

As demonstrated in [82], the solution of Eq. (3-33) can be approximated
as

z(t) = A−e− (γm+Γz)t
2 cos(Ωzt + ϕz) + A+e− (γm−Γz)t

2 sin(Ωzt + ϕz). (3-34)

Here, A− and A+ are constants defined by the initial conditions of the
problem, such that

A− = [−(γm − Γz) sin ϕz + 2Ωz cos ϕz]z0 − 2 sin ϕz ż0

2(Ωz + Γz sin ϕz cos ϕz) , (3-35a)

A+ = [(γm + Γz) cos ϕz + 2Ωz sin ϕz]z0 + 2 cos ϕz ż0

2(Ωz + Γz sin ϕz cos ϕz) . (3-35b)

Further examination of Eq. (3-34) reveals that with increasing time, and
for pressures such that γm < Γz, the second term on the left side will start to
dominate, causing heating and leading to instability, potentially removing the
particle from the optical trap. Balancing between heating and cooling is possible
by adjusting the phase ϕz. To maintain stability during phase drifts, active
feedback is essential for stable cooling [34, 82, 83]. Experimentally, modulation
of the trap stiffness can be achieved by adjusting the total optical power of
the trapping beam, with the modulation locked to the phase of the particle’s
motion using a Phase Lock-in Loop (PLL).

Parametric cooling has been successfully applied in several works in
the levitodynamics literature [14, 15, 34, 36, 37, 51]. Although the presented
treatment focuses on one-dimensional motion, this control scheme is applicable
for 3D cooling, provided there are no degenerate modes (Ωi ̸= Ωj for i ̸= j).
However, as indicated by Eq. (3-31), the component of Fp acting on each axis
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depends on the modulation frequency of all three DOFs, as power modulation
affects the particle’s motion entirely. In Figure 3.8, simulation results show the
transient effective temperature, computed with Eq. (2-32), of a particle subject
to parametric cooling.
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Figure 3.8: Simulation of parametric cooling. Parametric
cooling successfully reduces the effective temperature for each
axis of a tweezed nanoparticle for two different values of
modulation amplitudes. The timescale used, t∗, is t normalized
by a factor 2π/Ωi.

3.4
Conclusion

Control methods have been successfully applied to levitodynamics,
employing well-established methodologies such as proportional-derivative
controllers and innovative techniques like parametric control. In this chapter, we
briefly presented some of the most relevant methods applied in optomechanical
cooling. The simulations presented considered the tweezed nanoparticle as a
classical system, not accounting for quantum aspects such as measurement
uncertainty or back-action. Despite this, the importance of these simulations in
showcasing the potential to reduce the system’s energy, even reaching sub-kelvin
temperatures, remains significant.



4
Perturbative nonlinear feedback forces for optical levitation
experiments

As mentioned in the beginning of Chapter 3, the introduction of an
additional force term to influence the particle’s motion, facilitated by feedback
loops, has proven to be a powerful tool for exploring non-equilibrium dynamics
and non-markovianity [31, 35, 51, 68]. This approach can also be applied to
enhance our understanding of how trapped nano-objects behave when subjected
to nonlinear forces. The theoretical predictions concerning the effects of
perturbative nonlinear forces on the motion of tweezed nanoparticles were
presented in [30]. In this chapter, we report the experimental validation of these
predictions, specifically focusing on the underdamped regime. The findings
reported here were published in [84]. Its content follows just as in the article,
minor adjustments were made to the notation for consistency within this
dissertation. Lastly, the supplementary material from the publication has been
consolidated into the Section 4.5.

4.1
Introduction

Optical levitation of nanoparticles provides a robust setup for both fun-
damental and applied physics [4, 85], from classical stochastic thermodynamics
[86–89] to mesoscopic quantum science [26, 90, 91]. In the typical levitated
optomechanics experiment, a dielectric particle is trapped in a tightly focused
Gaussian beam providing, to leading order approximation, a confining harmonic
potential [42,56]. The particle undergoes Brownian motion due to interaction
with its surrounding medium and measurements of its position correlation
functions, notably the auto-correlation and the associated power spectrum,
allows for the characterization of the trap’s parameters [56,92].

While the harmonic approximation is commonly employed in optical
trapping, the ability to engineer potential landscapes beyond the quadratic
approximation is central to optomechanics. Nonlinear force landscapes are a
valuable resource to nonequilibrium Brownian machines [93,94], the preparation
of non-classical and non-Gaussian quantum states [95] and matter wave
interference experiments [96], to mention just a few examples. Nonlinear
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potential landscapes also appear in structured light optical tweezers [97], as in
double-well landscapes [98–101], structured light beams with pattern revivals
[102], cylindrical vector beams [103] and dark focus traps [104,105].

In these nonlinear potential landscapes, to which we refer here as
nonlinear optical tweezers, quantitative statistical description of the stochastic
particle motion is significantly more complicated as it involves nonlinear
stochastic differential equations. To make quantitative predictions regarding
the statistical correlators of the trapped particle’s motion we can, however,
resort to perturbation theory [106].

A perturbative method for nonlinear optical tweezers has been developed
in [30], wherein it is possible to compute corrections to the statistical moments
of particle motion, in particular the position power spectrum. The purpose of the
present work is to experimentally validate these methods. In standard Gaussian
optical tweezers, the ratio between linear and nonlinear spring constants cannot
be varied independently, given that both scale linearly with the trapping power
[29,107]. Thus, we turn to effective feedback potential landscapes to implement
nonlinear position-dependent forces upon a levitated nanosphere. We implement
the nonlinearity via electric feedback and characterize its effects on the particle
motion.

This article is organized as follows. In the next section, we briefly review
the perturbation theory for computing corrections to the correlation functions
of a trapped particle under the influence of a nonlinear force, and generalize
it to include the effect of delayed forces. Since we deal with artificial electric
feedback potentials relying on measurements and processing of the trapped
particle’s position, they imply an inherent delay to the nonlinear force and
therefore accounting for the effects of this delay is essential to validating the
methods of [30]. We then describe the experimental setup used to generate
nonlinear potential landscapes through electric feedback on the particle and
numerically compute the effects of delay, showing that within the range of
parameters employed in our experiment they are negligible. We implement a
cubic force (quartic potential) on the particle and finally verify the perturbation
theory by comparing the predicted center frequency of the position power
spectral density with experimental results. We conclude with a brief discussion
on the applications of artificial nonlinear forces to levitated optomechanics
experiments.
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4.2
Theory

4.2.1
Formulation of the perturbation theory

We model the stochastic motion of a particle in a fluid at thermal
equilibrium at temperature T and under a force field F (ri) using the Langevin
equation,

r̈i(t) = −γmṙi(t) + F (ri(t))/m +
√

Cηi(t), (4-1)
where m is the particle’s mass, γm = γ/m, C = 2γkBT/m2 with γ the drag
coefficient and ηi(t) is isotropic Gaussian white noise, whose components satisfy

E[ηi(t)ηj(t′)] = δijδ(t − t′). (4-2)
Concentrating in the motion along the longitudinal z-direction, Eq. (4-1) reduces
to a one dimensional Langevin equation

z̈(t) = −γmż(t) + Fz(z(t))/m +
√

Cη(t). (4-3)

For an approximately linear trapping force perturbed by nonlinear corrections,
the steady state position auto-correlation A(t) ≡ E[z(t)z(0)] can be perturba-
tively approximated. We next summarize the perturbation theory outlined in
[30] and used throughout this work.

Consider the force acting on the particle,

Fz(z) = −mΩ2
zz − Gfbz

3, (4-4)

where the first term accounts for an optical trap with resonance frequency Ωz

and the second term is a small nonlinear correction, which in the experiment
originates from a feedback force on the particle proportional to the feedback
gain Gfb times a nonlinear function of the particle’s position. We define the
Green’s function

G(t) = sin(Ω′
z t)

Ω′
z

exp
(

−γmt

2

)
H(t), (4-5)

where Ω′
z =

√
Ω2

z − γ2
m/4 and H(t) is the Heaviside step function with H(t) = 1

for t > 0 and H(t) = 0 for t ≤ 0. We introduce the auxiliary variable (also
referred to as the response paths) z̃(s) and define the Wick sum bracket ⟨(· · · )⟩0:

⟨z(t1) · · · z(tn)z̃(s1) · · · z̃(sm)⟩0 = δnm

∑
σ

n∏
j=1

G(tj − sσ(j)) (4-6)

where the sum goes over all permutations σ of indexes {1, . . . , n}. The
response variables z̃(s) can be understood as auxiliary integration variables
in a stochastic path integral defining the perturbation theory expansion; we
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refer to [30,106] for details on stochastic perturbation methods. Note that the
second order correlator is given by the Green function, ⟨z(t)z̃(s)⟩0 = G(t − s).
The perturbation theory is summarized by the expression for the position
auto-correlation function,

A(t) ≡ E[z(t)z(0)] = ⟨z(t)z(0)eC
2

∫
z̃2(s)dse

Gfb
m

∫
z̃3(t′)z(t′)dt′⟩0, (4-7)

where the right-hand side is defined by expanding both exponentials inside the
brackets as a power series in C and in Gfb/m and interchanging summations
and integrations by applying the Wick bracket ⟨(· · · )⟩0. Note that only brackets
with an equal number of z and z̃ variables are non-vanishing [30,106].

The first non-vanishing term in the expansion of Eq. (4-7) is

C

2

∫
⟨z(t)z(0)z̃2(s)⟩0 ds = C

∫
G(t − s)G(−s)ds , (4-8)

which gives the auto-correlation for the case of a linear force Fz(x) = −mΩ2
zz,

A(t)(Gfb=0) = Ce−γm|t|/2(2Ω′
z cos Ω′

z|t| + γm sin Ω′
z|t|)

γmΩ′
z(γ2

m + 4Ω′2
z ) . (4-9)

The leading order correction in the feedback gain reads,

∆A(t) ≡ C2Gfb

8m

∫
⟨z̃2(s1)z̃2(s2)z̃(t1)z3(t1)z(t)z(0)⟩0 ds1ds2dt1. (4-10)

Expanding the brackets using (4-6) would produce a sum with 5! = 120
terms, but many of these vanish since ⟨z̃(t1)z(t1)⟩ = G(0) = 0. Moreover,
by symmetry of the integration variables s1 and s2, the contribution to
the integral of the non-vanishing terms is equal to the contribution of
G(t − t1)G(−s1)G(t1 − s1)G2(t1 − s2) or G(−t1)G(t − s1)G(t1 − s1)G2(t1 − s2).
Therefore, the integral in (4-10) is computed by integrating these two terms over
t1, s1, s2 and multiplying both integrals by a multiplicity factor 23(3!) = 48. We
note that a diagrammatic expansion can be employed to organize non-vanishing
terms in the Wick sum; for more details we refer to [30].

From the auto-correlation function perturbation ∆A we can obtain the
correction in the PSD of the particle motion by taking the Fourier transform
[30],

∆S = 3GfbC
2

γmΩ2
z

Ω2 − Ω2
z

[γ2
mΩ2 + (Ω2 − Ω2

z)2]2 . (4-11)

The PSD of the motion of a particle with unperturbed resonance frequency Ωz

subject to a frequency shift ∆Ω can be expanded to first order as:

C

γ2
mΩ2 + [Ω2 − (Ωz + ∆Ω)2]2 ≈ C

γ2
mΩ2 + (Ω2 − Ω2

z)2
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+ 4CΩz∆Ω Ω2 − Ω2
z

[γ2
mΩ2 + (Ω2 − Ω2

z)2]2 , (4-12)

Comparing the first order correction in Eq. (4-12) with the correction in Eq.
(4-11), we conclude that the nonlinearity causes a frequency shift given by:

∆Ω
2π

= 3kBT

4πm2Ω3
z

Gfb ≡ κGfb. (4-13)

We see that effectively, the nonlinear perturbation manifests as a shift
in the PSD central frequency scaling linearly with the feedback gain Gfb and
with a slope given by the constant κ. This is valid for small Gfb,

Gfb ≪ m2Ω4
z

2kBT
. (4-14)

The right-hand side of (4-14) can be used to delimit the validity region of
perturbation theory. The shift ∆Ω in the central frequency of the PSD is the
experimental signature which we use as an indicator of the effect of nonlinear
perturbations. It is worth noticing that the shift described by (4-13) also includes
intrinsic nonlinearities of the tweezer, which arise due to anharmonicities of
the trapping potential [29]. Note, however, that only relative shifts to the
original resonance frequency (with the cubic feedback off but in presence of the
intrinsic nonlinearities) are measured. Thus, our experiment is not sensitive
to the intrinsic anharmonicities of the trap, but only to those effected by the
cubic feedback.

4.2.2
Delayed nonlinearities

Besides nonlinear force perturbations, we will be interested in delayed
forces. Artificially produced feedback forces will naturally be subject to
electronic delay. Accounting for the effects of such delays in perturbation
theory allows us to understand the limits of validity of Eq. (4-7) for modelling
the artificial feedback forces. More broadly, understanding the role of delays
might also enable the study of perturbative nonlinear non-Markovian stochastic
dynamics [32].

We consider the generalized Langevin equation,

z̈(t) = −γmż(t) − Ω2
zz(t) − Gfb

m
z3(t − τ) +

√
C η(t), (4-15)

where τ > 0 is a fixed (constant) time delay. Note the delayed position can be



Chapter 4. Perturbative nonlinear feedback forces for optical levitation
experiments 54

written in terms of a memory kernel,

z(t − τ) =
∫

z(s)K(t − s) ds, (4-16)

where

K(t − s) = δ(t − τ − s). (4-17)

The perturbation expansion for τ = 0 (Eq. (4-7)) can then be generalized to

A(t, τ) ≡ E[z(t)z(0)] = ⟨z(t)z(0)eC
2

∫
z̃2(s)dse

Gfb
m

∫
z̃(t′)z3(t′−τ)dt′⟩0. (4-18)

Expanding the exponentials in power series and using the Wick sum as
defined in (4-6), the leading correction to the auto-correlation function (4-9) is
given by the following integrals,

∆A(t, τ) ∝∫
G(t − t1)G(−s1)G(t1 − s1 − τ)G2(t1 − s2 − τ)dt1ds1ds2

+
∫

G(−t1)G(t − s1)G(t1 − s1 − τ)G2(t1 − s2 − τ)dt1ds1ds2 . (4-19)

We note both integrals are multiplied by the constant 3GfbC
2/m, which we

omit to avoid cluttering the notation. Evaluating the integrals leads to the
corrected auto-correlation function to first order in the perturbation,

A(t, τ) = Ce−γm|t|/2(2Ω′
z cos Ω′

z|t| + γm sin Ω′
z|t|)

γmΩ′
z(γ2

m + 4Ω′2
z ) + 3C2Gfbe

−γm|t|/2

64mγ3
mΩ′4

z Ω6
z


eγmτ/2[8γmΩ′4

z − 4Ω2
zγ2

mΩ′2
z (|t| − τ)] cos(Ω′

z(|t| − τ))

+ eγmτ/2[8γmΩ′3
z Ω2

z(|t| − τ) + 8Ω′5
z + 4γ2

mΩ2
zΩ′

z + 6γ2
mΩ′3

z ] sin(Ω′
z(|t| − τ))

+ e−γmτ/2[Ω′2
z (2γ2

mΩ′
z − 8Ω′3

z ) sin(Ω′
z(|t| + τ))

+ 8γmΩ′4
z cos(Ω′

z(|t| + τ))]

 + O
(
G2

fb, C3
)
, (4-20)

The quantity A(0, τ) can be experimentally obtained from the area under
the PSD of the particle’s motion, which in turn can be related to the mean
occupation number of the mechanical modes. In what follows, we use these
expressions to account for the effects of delay in the artificially generated
nonlinear forces, and to show that perturbation theory in the absence of delay
provides a good approximation to current experiments.
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4.3
Experiment

A simplified schematic of the experimental setup is shown in Fig. 4.1. A
CW laser at 780 nm (Toptica DL-Pro) is amplified using a tapered amplifier
(Toptica BoosTa) producing up to 1.5 W at the output of a single mode fiber,
yielding a high quality Gaussian beam. The beam is expanded to overfill an
aspheric lens of numerical aperture NA = 0.77 (LightPath 355330) mounted
inside a vacuum chamber, which provides a tightly focused Gaussian beam to
form the optical trap. A solution of silica spheres of diameter 2R = 143 nm
(MicroParticles GmbH) is mono-dispersed in ethanol and delivered into the
optical trap using a nebulizer. Once a single particle is trapped, the pressure in
the chamber is reduced to 10 mbar. The trapped particle’s axial center-of-mass
(CoM) motion, z(t), is recorded by collecting forward scattered light with an
aspheric lens of numerical aperture NA = 0.50, and directing it to a photodiode
(Thorlabs PDA100A2), generating an electric signal proportional to z(t).

z(t)Gfbz
3(t − τ)

FPGA

x

z

Figure 4.1: Experimental setup. A silica nanoparticle is trapped
by an optical tweezer in vacuum. The forward scattered light
is collected and sent to a photodiode, producing a signal
proportional to the particle’s axial coordinate, z(t). An FPGA
processes the signal to produce a voltage that induces a force
on the trapped particle proportional to z3(t−τ). Amplification
prior to and after the FPGA enhance the maximum resolution
of its analog-to-digital converter, enabling the exploration of
a broader range of values for the applied electrical force. The
x-direction pictured in the scheme is parallel to the optical
table.

The signal from the detector is sent to a wide band-pass filter, amplified
and then input into an FPGA. The FPGA introduces a tunable delay, raises
the signal to the third power and multiplies it by a tunable gain. The output
signal is then amplified once again and applied to the mount of the trapping
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lens, producing a voltage difference with respect to the mount of the collection
lens, which is grounded. This generates an electric force at the particle position
given by Gfbz

3(t − τ), where τ is the total delay introduced by the electronics
and Gfb is the overall feedback gain. For more details on the generated electric
field and electronics, see Subsections 4.5.1 and 4.5.2.

The electronics naturally introduce a delay to the applied position-
dependent electric forces, which could lead to deviations from the predictions
of the perturbation theory discussed in Subsection 4.2.1. To qualitatively
understand the effects of a delayed feedback nonlinear force, we have exaggerated
the electronic delay τ applying a cubic force of the form Gfbx

3(t − τ) for
τ = 2π/4Ωz and τ = 6π/4Ωz, and subsequently measured the PSDs of the
particle motion along the longitudinal direction, these delays are equivalent,
respectively, to an additional phase ϕ of π/2 and 3π/2. The results can be
seen in Fig. 4.2a), in comparison to the PSD of the trapped particle in the
absence of nonlinear feedback. We see that depending on the delay, the particle
undergoes cooling (ϕ = π/2) or heating (ϕ = 3π/2). This can be understood
as the nonlinear analogue of cold damping, where the delayed feedback signal
acquires a force component proportional to the velocity [15,36,37].

ef
f

Figure 4.2: Effect of a delayed nonlinearity. a) Longitudinal po-
sition PSDs for the reference measurement ( ) in comparison
to cubic feedback forces at a gain of Gfb = 5.31 × 106 N/m3

and delays of ϕ = π/2 ( ) and ϕ = 3π/2 ( ). These com-
parisons reveal how the introduction of a delayed cubic force
can either cool or heat the particle’s motion. b) Numerically
simulated effective temperature Teff of particle’s motion as a
function of the delay in the cubic feedback force, displaying
cooling and heating in accordance to the predictions of non-
linear delayed perturbation theory described in Subsection
4.2.2. With this analysis, we conclude that the electronic delay
present in our experiment, measured to be τ = (4.2 ± 0.6)%
of a period, can be safely neglected.
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We can quantify the effect of delay for the case of our experiment using the
theory described in Subsection 4.2.2. To do that, we have simulated the particle
dynamics under the influence of a delayed feedback cubic force for two different
values of the feedback gain Gfb within the regime of perturbation theory.
For each simulation, we extract the particle motion traces and compute the
position variance, from which the effective temperature Teff of the mechanical
oscillator can be obtained. The results are plotted in Fig. 4.2b) as a function
of τ , in comparison to the theoretical prediction given by Eq. (4-20). The
simulations confirm the qualitative cooling/heating results shown in Fig. 4.2
and are in good agreement to the perturbation theory with the inclusion of
delay. Notably, for the electronic delay in our experiment, characterized to be
τ = (0.518 ± 0.074) × 10−6 s, we verify that the expected cooling/heating effects
due to a delayed nonlinear feedback provide a correction to the auto-correlation
at the level of 1.10% and are buried within experimental uncertainties. With
this analysis we conclude that any effect associated to electronic delay in our
experiment is negligible and the perturbation theory in the absence of delay
can be used to model the effect of nonlinear perturbations.

We next proceed to verify the perturbation theory as described in Section
4.2.1 (without delay, τ = 0). We apply an effective quartic perturbation to
the optical potential by acting on the trapped particle with a cubic force
which was generated, as previously described, from the position measurement
feedback. PSDs of particle motion under the influence of the cubic feedback
force with positive and negative feedback gains can be seen in Fig. 4.3a). These
measurements qualitatively confirm the effect of the cubic force predicted by
perturbation theory as a shift in the PSD central frequency. Note the shift
depends on the sign of the feedback gain, in accordance to Eq. (4-13), indicating
an effective hardening or softening of the optical trap due to the cubic actuation.

To quantitatively compare the frequency shifts with the predictions from
perturbation theory, we acquired the longitudinal motion PSD for different
values of feedback gain Gfb. Note that all parameters going into κ (see Eq.
(4-13)) are obtained from additional setup characterizations, leaving no free
parameters for adjusting the theory to the data. For instance, the trap central
frequency Ωz and mechanical damping γm are obtained from Lorentzian fits of
the unperturbed PSD, the nanoparticle mass m is calculated from the diameter
provided by the manufacturer and from the density of silica, and the applied
feedback gain Gfb is obtained after the calibration of the detector, electrode and
other intermediate electronic elements as described in more detail in Subsection
4.5.2. The particle is taken to be at ambient temperature T = 293 K; note that
a 5 K variation in temperature yields a 2 % variation in theoretical prediction.
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Once these characterizations have been performed, the central frequencies
of the perturbed PSDs – and consequently the associated shifts – can be
obtained by a Lorentzian fit as a function of feedback gain and compared to
the theoretical predictions. The result of these measurements is shown in Fig.
4.3b), in comparison to the theoretical prediction given in Eq. (4-13) for our
experimental parameters.

Figure 4.3: Verifying the predictions of perturbation theory. a)
PSDs of the trapped particle’s longitudinal motion under cubic
force, displaying central frequency shifts. The data was taken
at 293 K and a pressure of 10 mbar. The reference PSD ( )
has a central frequency of 77.8 kHz and a shift of ±1.4 kHz
was measured for Gfb = ±1.2 × 106 N/m3. b) Frequency shifts
as a function of Gfb, verifying the prediction of perturbation
theory given by Eq. (4-13) (dashed line). The grey shaded
region marks the regime of validity for perturbation theory
described in Eq. (4-14). Each point corresponds to 250 seconds
of data acquisition at 500 kHz divided into 1000 traces and
organized into batches of 5 traces each. All data points were
collected using the same nanoparticle.

Good agreement between the data and the theoretical prediction was
observed within the perturbation regime, indicated by the non-shaded region
of the plot. Note also that outside the regime of perturbation theory (grey
shaded regions in Fig. 4.3b), the measured shifts fall systematically slightly
bellow the predicted first order correction, consistent with the second-order
correction scaling of O(G2

fb) [30]. Note the error bars in Fig. 4.3b) are larger
for negative feedback in comparison to positive feedback gains. We attribute
this to the fact that the intrinsic nonlinearity of the optical trap introduces an
effective negative feedback gain (Goptical ≈ 106 N/m3), shifting the regime of
validity of perturbation to the right, towards positive gains [29]. Finally, the
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experimentally obtained angular coefficient κe was measured to be

κe = (5.46 ± 0.10) × 10−4 Hz m3 N−1, (4-21)

which compares to the theoretical prediction given the parameters for our
experiment,

κt = 5.69 × 10−4 Hz m3 N−1 . (4-22)

4.4
Conclusions

In conclusion, we have implemented a cubic nonlinear force based
on position measurement feedback acting on an underdamped levitated
nanoparticle. Effects of the cubic force on the particle’s stochastic dynamics
have been experimentally studied. In particular, shifts introduced in the
particle motion power spectrum due to the presence of the cubic feedback
force have been measured. We have verified that these shifts are in accordance
to the predictions of the stochastic path integral perturbation theory for
nonlinear optical tweezers introduced in [30]. To account for the experimental
imperfections due to electronic delay in the feedback, we have also extended the
perturbation theory and showed that for feedback schemes currently available
in levitated optomechanics experiments the effects of electronic delay can be
made negligible.

We anticipate that nonlinear electric feedback potentials will find a number
of applications in levitated optomechanics experiments, both in the classical
stochastic and quantum regimes. For instance, delayed nonlinear feedback can be
used to engineer a non-conservative system with nonlinear damping of the Van
der Pol type [108]. Finally, weak measurements of a levitated optomechanical
system in a cavity might allow for feedback-induced nonlinear dynamics in the
quantum regime [109] – the non-classical version of feedback-induced nonlinear
forces. In combination with recent advances in levitated quantum control
experiments [14,15], weak nonlinear feedback could then enable the preparation
of non-Gaussian states beyond the nonlinearities naturally present in optical
potentials [27, 96].
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4.5
Supplementary material

4.5.1
Electric field simulation

One of the experiment’s central assumptions is that the electric force acting
upon the trapped particle is proportional to the voltage applied to the electrodes
and does not depend on its position. Moreover, due to symmetry around the
optical axis, we expect the components of the electric force orthogonal to the
optical axis to be negligible. To verify these assumptions, a simulation of the
electric potential and electric field generated by the geometry of the optical
setup was conducted using COMSOL Multiphysics software (version 5.4).
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Figure 4.4: Electric potential generated by the electrode’s
geometry for a slice in the xz plane passing through the optical
axis. The contour shows the internal structure of the optical
setup with the black dot marking the average position of the
trapped particle, about 1.59 mm away from the flat base of
the trapping lens.

In Fig. 4.4, the electrical potential between the electrodes is shown for a
slice in the xz plane, where the internal contour of the optical setup is displayed
for clarity. The left electrode, which contains the trapping lens, is set at 1 V
relative to the right one, which holds the collection lens. The black dot denotes
the average position of the trapped particle, 1.59 mm away from the flat base
of the aspheric lens. Figures 4.5a) and 4.5b) show the electric field components
in the vicinity of the particle. Considering an average amplitude of 100 nm for
the CoM motion, the simulation shows a percent change of roughly 0.01% for
the z component of the electric field. Moreover, the x and y components are
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four to five orders of magnitude smaller than the z component, thus providing
a firm foundation for our assumptions.

a) b)

Figure 4.5: a)-b) The z and x, y components of the electric
field in the vicinity of the trapped particle. The dashed line
denotes the average position of the particle.

4.5.2
Electronics

In order to apply the feedback signal, essential steps were undertaken
regarding the implementation of an electronic setup aimed at preprocessing
the detection signal. First, it was crucial to address a strong DC component
present in the signal obtained from the photodetector. To prevent saturation
of the Red Pitaya RF input used in the experiment, an analog band-pass filter
was implemented for its capability to remove both DC and high-frequency
components effectively. While it is common to opt for a Butterworth filter
based on the Sallen-Key topology [110], it is important to highlight that this
choice introduces an undesirable phase effect.

As demonstrated by simulation results showed in Fig. 4.6a), the addition
of a Butterworth filter results in a shift of the PSD central frequency, which
deviates from the theoretical prediction presented in [30]. To overcome this
problem a passive RC filter is used along with a non-inverter amplifier. As
evident from Fig. 4.6b), the comparison of the Bode diagrams for both topologies
illustrates that the passive filter will have minimal impact on the signal phase,
while simultaneously maintaining a flat band over a wider frequency range.

The addition of a non-inverting amplifier after the band-pass filter enables
the utilization of the full resolution of the ADC on the Red Pitaya board.
Furthermore, a second amplifier is incorporated after the FPGA, facilitating
the generation of voltage values approximately ten times higher than the board’s
limit. Upon characterization of both amplifiers, we found that the gains, A1 and
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A2, before and after the FPGA were measured as 11.00 V/V and 11.27 V/V,
respectively. These values will be necessary for the calibration of the overall
feedback gain Gfb, detailed in Subsection 4.5.3.

In Fig. 4.6c) we illustrate an example of input and output signals of
the Red Pitaya. In order to implement the non-linear function, we employed
fixed-point arithmetic—a method for representing fractional numbers within a
specified range. This approach enables us to execute complex mathematical
operations without suffering from information loss [111], as is often the case
with binary representation. Furthermore, it offers straightforward means of
extending the code to implement higher-order polynomial functions.

Figure 4.6: Electronics design. a) PSDs obtained from sim-
ulations of a tweezed nanoparticle (Ωz/2π = 81.5 kHz and
γm = 1.3 × 104 s−1) under the influence of a cubic force. Three
scenarios were considered: second-order Butterworth filter with
1 kHz bandwidth ( ), 10 kHz bandwidth ( ) and, lastly,
with no filter ( ).b) Bode diagrams of a highly selective
Butterworth filter ( ) and of a passive RC filter ( ), both
circuits were simulated using LTspice XVII. c) Results from
the FPGA program. The dashed line represents the input,
which is a triangular wave with a frequency of 81 kHz. The
solid line corresponds to the output, which is proportional to
the input raised to the third power.

4.5.3
Calibration of applied force

To validate the theoretical predictions outlined in [30], it was necessary
to calibrate the overall feedback gain Gfb, defined as

Gfb = CNV A2AdA3
1C

3
V m, (4-23)
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where A1 and A2 represent the gains originating from the electronic amplifiers,
Ad is the tunable digital gain defined within the FPGA, CV m is the calibration
factor which converts the measured voltage into corresponding displacement in
meters and CNV is the transduction coefficient that establishes the connection
between applied voltage across the electrodes and the resulting force applied to
the particle; see Subsection 4.5.2 for further details.

Figure 4.7: Electrode calibration. (a) PSD obtained from a
trapped nanoparticle at 10 mbar and T = 293 K under the
action of a sinusoidal drive (voltage amplitude V0 = 10 V
and frequency Ωdr/2π = 90 kHz). b) Calibration curve for
electrodes used to map the applied voltage to the resulting
force applied on the nanoparticle.

To calibrate the photodetector, 1000 traces of 0.1 seconds were collected.
The PSD of the time traces is fitted by a Lorentizan distribution,

SV V (Ω) = D

γ2
mΩ2 + (Ω2 − Ω2

z)2 , (4-24)

where D = 2γmkBTC2
V m/m; this take in consideration that SV V (Ω) =

C2
V mSzz(Ω) [92]. This procedure led to a calibration factor of CV m = (1.504 ±

0.073) × 104 V/m. After calibration of the detector, we proceed to determine
the transduction coefficient, denoted as CNV . To obtain CNV , we subjected
the particle to a series of sinusoidal signals with varying amplitudes and
measured the particle’s response in the position PSD [24]. For a particle
subjected to Eq. (4-3), the total PSD ST

zz(Ω) in the presence of an electric drive
Fel(t) = F0 cos(Ωdrt) can be expressed as [24],

ST
zz(Ω) = Szz(Ω) + Sel

zz(Ω) =
2γmkBT

m[(Ω2 − Ω2
z)2 + γ2

mΩ2] + F 2
0 τel sinc2[(Ω − Ωdr)τel]

m2[(Ω2 − Ω2
z)2 + γ2

mΩ2] , (4-25)
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with τel being the duration of the measure. In Fig. 4.7a), we display one
of the PSDs used for the electrode calibration. The resulting calibration
curve is presented in Fig. 4.7b), which yields a transduction coefficient
CNV = (3.06 ± 0.13) × 10−15 N/V. All measurements described in the main
text were performed with the same nanoparticle.



5
All electrical cooling of an optically levitated nanoparticle

Optically trapped nanoparticles are a promising platform for investigating
quantum mechanics in the mesoscopic regime [26, 27, 112]. However, to explore
their quantum properties effectively, particles motion must be decoupled entirely
from the thermal environment. This necessitates precise control over their
motion, high detection efficiency, and an ultra-high vacuum environment.
Typically, parametric cooling is utilized to pre-cool the particle’s motion in three
dimensions [14, 15,34, 36,37, 51]. However, this approach introduces additional
experimental requirements, such as the need for electro or acoustic-optic devices
for laser beam modulation and electronic equipment for phase locking. In this
chapter, we explore the use of an all-electrical control approach, wherein a
set of electrodes is employed to apply a three-dimensional linear control law
aimed at reducing the energy of the trapped nanoparticle. This dissertation was
finished a few days before the findings reported in this chapter were published
in a pre-print [113], and the content of this chapter closely mirrors that of the
article. Similar to Chapter 4, the supplementary material from the publication
has been integrated, resulting in Section 5.6.

5.1
Introduction

Optical tweezers [19] have emerged as a valuable tool for isolating
and controlling the motion of micro- and nano-objects [4, 56, 85]. By clever
combinations with electric and magnetic traps and actuators [114–118], optical
traps can be used to design highly sensitive sensors for force, acceleration,
and torque [22, 24, 119–121], with a high degree of control enabling cooling
of the center-of-mass motion of a levitated nanoparticle to the ground state
[13–15, 122]. Moreover, tweezers provide a versatile platform for many-body
[123–127] and fundamental physics experiments, with applications in diverse
areas such as stochastic thermodynamics [31,86,128–130], nonlinear dynamics
[29,31,84,99,131], the search for new particles and forces of nature [132–137],
and unprecedented tests of quantum mechanics [138–142]. All these applications
require the levitated object to be well isolated from its surrounding environment,
which is mainly limited by the vacuum quality of the experiment, photon recoil
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heating [51], and black body radiation [143]. Regarding the vacuum quality, since
the nano-object is initially trapped at atmospheric pressure, it is thermalized at
room temperature, preventing stable trapping at low pressures and rendering the
trapping potential nonlinear due to large thermal fluctuations [29]. Therefore,
cooling the object’s motion is often a prerequisite for levitation experiments.

Active feedback cooling [36, 37], in particular parametric cooling, has
emerged as the standard technique for achieving 3D cooling of the levitated
nanoparticle’s motion [34], enabling temperatures as low as sub-mK [51]. In
practice, parametric control techniques are often used as a precooling mechanism.
The performance of parametric feedback, however, comes at the cost of
employing a nonlinear control protocol which modulates a portion of the optical
trapping power according to the resonance frequencies of the nanoparticle.
In addition, expensive electro- (EOM) or acousto-optic (AOM) modulators
must be used in combination with lock-in devices capable of modulating a
signal locked to the particle’s motion. Alongside the parametric control, once
the thermal occupation number has been reduced to around 103, the levitated
object’s charge can be exploited to further control its motion along one direction
to even lower temperatures all the way into the quantum ground state [14, 15].

In this letter we explore an all electrical approach to pre-cool the motion
of a levitated nanoparticle from room temperature to a point where the trap’s
nonlinear features are significantly reduced and stable trapping can be achieved
in high-vacuum (p < 10−3 mbar). To do so, we design a simple electric actuator
based on a custom made printed circuit board (PCB), capable of influencing
the particle’s motion via Coulomb forces. Fine alignment of the PCB with the
levitated nanoparticle is not required. After a careful calibration of the electrical
forces, we employ a delayed feedback scheme to 3D cool the CoM motion of
the particle. We experimentally measure the effect of the delay in the feedback
force and show excellent agreement with theoretical predictions [144]. Finally,
we successfully demonstrate 3D cooling down to sub-Kelvin temperatures while
completely avoiding modulation of the trap’s power, in a first step towards the
larger effort of simplifying optomechanical cooling experiments. With numerical
simulations based on our electrical actuator we argue that, in combination with
a stiffer optical trap, quantum-limited detection for all three axes [145] and
optimal quantum state estimation [38,146,147], all electrical 3D ground state
cooling can be achieved in our setup.

We highlight that 3D electrical feedback cooling of levitated nanoparticles
has been recently implemented in levitated optomechanics experiments – see
[148–150] for examples using integrated chip photonics, hybrid optical Paul
trap and finely aligned electrode tips. Our setup adds a simplified solution
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to that list, while still offering the possibility of 3D quantum control of a
levitated nanoparticle. This paper is organized as follows. In Section 5.2 we
briefly describe the equations of motion and the LQR, used to evaluate the
optimal proportional and derivative gains used in the control feedback. Next,
Section 5.3 describes the experimental setup, while 5.4 shows the results on all
electrical feedback cooling and the prospects for 3D ground state cooling. We
conclude in Section 5.5 with a brief discussion.

5.2
Theory

The CoM motion along the x, y and z-axes of an optically levitated
nanoparticle trapped by a strongly focused Gaussian beam can be effectively
modeled through a set of second-order Langevin equations,

ẍ(t) + γmẋ(t) + Ω2
xx(t) = 1

m
Fth,x(t) + bxux, (5-1a)

ÿ(t) + γmẏ(t) + Ω2
yy(t) = 1

m
Fth,y(t) + byuy, (5-1b)

z̈(t) + γmż(t) + Ω2
zz(t) = 1

m
Fth,z(t) + bzuz, (5-1c)

where m is the particle’s mass, γm the drag coefficient, Ωi the angular frequency
along the i-axis and Fth,i represents the (white-noise) stochastic force on each
axis due to residual gas pressure in the vacuum chamber, satisfying

⟨Fth,i(t)⟩ = 0, (5-2a)

⟨Fth,i(t)Fth,j(t + τ)⟩ = 2mγmkBTδijδ(τ), (5-2b)

where kB is the Boltzmann constant, T the residual gas temperature, δij is the
Kronecker delta and i, j ∈ {x, y, z}. The biui terms in Eqs. (5-1) account for
external forces that may influence the particle’s motion, with ui representing
the control signals defining feedback forces acting on the trapped particle.

By defining the state vector

x(t) ≡
[
x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)

]T
, (5-3)

one can then write Eqs. (5-1) in the state-variable representation [66], resulting
in the MIMO system

ẋ(t) = Ax(t) + Bu(t) + w(t), (5-4)

where
A =

 03×3 I3

−diag(Ω2) −γmI3

 , w(t) = 1
m

 03×1

Fth(t)

 , (5-5)
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and

B =
 03×3

diag(bx, by, bz)

 , u =


ux

uy

uz

 , (5-6)

with Ω2 =
[
Ω2

x Ω2
y Ω2

z

]T
and Fth(t) =

[
Fth,x(t) Fth,y(t) Fth,z(t)

]T
. Note

that due to the geometry of the feedback actuators in our experiment, the
submatrix in B is not block diagonal, but assumes a more complicated form;
see Section 5.3 for more details.

Optimal control theory provides tools to find a control policy u(t) capable
of minimizing the energy of a physical system. For linear systems, such as the
one described by Eq. (5-4), this is achieved by the LQR, a controller where the
optimization task targets the minimization of a quadratic cost criterion J of
the form

J = 1
2

∫ ∞

0
[xT (t)Qx(t) + uT (t)Ru(t)] dt, (5-7)

where Q is the weighting matrix and R is the control effort matrix. The optimal
control policy which minimizes Eq.(5-7) is [69]

u = −Kx, (5-8)

where K = R−1BS is the controller’s gain matrix and S is the solution of the
algebraic Riccati equation

SA + AT S + Q − SBR−1BT S = 0. (5-9)

Practical application of the LQR poses the significant challenge of
obtaining the complete state vector x. Experimentally, access is not granted to
x but rather to a measurement vector y, which is related to the states according
to

y(t) = Cx(t) + m(t), (5-10)
where C is known as the output matrix. The term m is the measurement
noise vector and can be expressed as m =

[
ζx(t) ζy(t) ζz(t)

]T
. Here ζi(t) are

zero-mean white-noise processes with variance σ2
i , satisfying

⟨ζi(t)⟩ = 0, (5-11a)

⟨ζi(t)ζj(t + τ)⟩ = σ2
i δijδ(τ). (5-11b)

On the one hand, measurements of x(t), y(t) and z(t) can be implemented
by collecting forward or backward-scattered light from the nanoparticle [145].
On the other hand, the velocities are not accessible experimentally. An optimal
estimation x̂ can be computed by applying real-time filtering techniques to
estimate x. For linear dynamics where the disturbances and measurement noises
adhere to Eq. (5-2) and (5-11), x is best estimated using the Kalman filter
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[61,76].
Implementing the Kalman filter significantly increases the complexity of

the feedback loop. As a simplification, it is possible to estimate the velocity
as being proportional to a delayed position measurement. This approach has
proven successful for cooling one of the spatial degrees of freedom of the
levitated nanoparticle [37], albeit increasing the minimal effective temperature
achievable. The effective temperature for each axis can be computed by using
the integral [15]

T i
eff = mΩ2

i

kB

∫ ∞

0

1 + Ω2

Ω2
i

Sii(Ω) dΩ − 1
2 , (5-12)

where Sii is the double-sided PSD for the particle’s motion along the i-axis,
expressed as

Sii = 2γmkBT

m[(Ω2 − Ω2
i )2 + γ2

mΩ2
i ]

. (5-13)

5.3
Experiment

The experimental setup is schematically illustrated in Fig. 5.1a). A CW
laser at 1550 nm (RIO Orion) amplified by an Erbium-doped fiber amplifier
(Keopsys CEFA-C-BO-HP-SM) is used to produce a high-quality Gaussian
beam linearly polarized along the x direction with a power of Pt ≈ 2 W, at
the output of a single-mode fiber. The beam is focused by an aspheric lens
(Thorlabs C330TM-C, NA = 0.68) assembled inside a vacuum chamber, allowing
for stable optical trapping. The light scattered by the particle along the forward
direction is collimated by a collecting lens (Thorlabs C110TM-C, NA = 0.40).
Silica nanoparticles (diameter 143 nm, MicroParticles GmbH) are loaded into
the vacuum chamber by a nebulizer and trapped at atmospheric pressure. The
trapped particle oscillates with resonance frequencies along the three axes given
by Ωx/2π = 96.24 kHz, Ωy/2π = 101.49 kHz and Ωz/2π = 31.52 kHz.

Detection of transversal motion, x(t) and y(t), is carried out using balanced
photodiodes (Newport 2117-FC), while information about the longitudinal z(t)
direction is obtained by direct intensity photodetection. The optical trap is
characterized through measurements of the particle’s PSDs for each direction.
Information on the occupation numbers and effective temperatures of each
direction can also be obtained from the PSDs by using Eq. (5-12).

A PCB containing two orthogonal pairs of electrodes, illustrated in Fig.
5.1b), is placed in the vicinity of the optical trap’s focus, allowing for two-
dimensional electrical feedback control of the nanoparticle’s CoM motion. The
PCB is designed to be compatible with cage plate optical systems (Thorlabs
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a)

b)

Figure 5.1: Experimental setup. a) Simplified scheme of the
setup. An optical tweezer is assembled within a vacuum
chamber, and a CCD is used for imaging of the tweezed
particle upon illumination with a 532 nm laser beam. The
trapping lens is grounded, and detection of forward-scattered
light is used to generate the electrical feedback signal sent to
the electrodes. The collection lens works as the z-electrode,
whilst the board shown in b) is placed close to the trap’s focus
and contains the x- and y-electrodes. The axes at the top left
indicate the orientation between the electrodes’ axes (x′, y′)
and the coordinate system of the detection.

SP02). Note also that only coarse alignment of the PCB with respect to the
levitated nanoparticle is required, and this can be achieved by placing the PCB
near the optical focus. Due to the employed control method, coupling between
degrees of freedom in the transverse plane is compensated by the calibration
process.

A third pair of electrodes is implemented by applying an electric signal to
the mount of the collection lens, producing a voltage difference with respect to
the grounded trapping lens. The signal from the detection is digitally processed
by two FPGAs (STEMlab 125-14, Red Pitaya) and analogically amplified
before being fed back to the electrodes. We remove any cross-talk between z

and xy electrodes by digital filtering, which is facilitated by the difference in
characteristic frequencies between the longitudinal and transversal degrees of
freedom. Taking this and the geometry of the actuators into consideration, the
gain matrix assumes a block diagonal form,

K =
Kp,xy 0 Kd,xy 0

01×2 kp,z 01×2 kd,z

 (5-14)
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A detailed description of the analogical amplification and the digital
processing of the detection signal can be found in Subsection 5.6.2. Digital
processing includes frequency filtering, delaying and application of deriva-
tive/proportional gains to the signal. The choice of optimal gains was based on
control theory, as presented in Subsection 5.6.1. Since the theory predicts only
a weak dependence of optimal gain on pressure, we consider a single gain to be
optimal throughout the experiment.

Appropriate calibration of the electrodes accounts for misalignment
between the electrodes’ axes and the mechanical modes, allowing for a partial
reconstruction of the B matrix, which assumes a 45◦ rotated form with respect
to the diagonal matrix given by Eqs. (5-1). During calibration, the effect of the
z-electrode was observed to be too weak, such that only the x- and y-electrodes
could be calibrated. This has led to applying the control LQR only to the x and
y motion and a cold damping protocol [15, 36] along the z direction (kp,z = 0).
We refer to Subsection 5.6.3 for more information on the calibration procedure.

5.4
Results

Proper implementation of the control method as previously described
requires precisely delaying each detection signal. The delay characterization
process involves applying a force proportional to the delayed position inde-
pendently in the x and y directions. For instance, referring to Eq. (5-1), this
translates to ux = Gxx(t − τx) for the x coordinate (and similarly for y and
z). Each delay τi consists of two components, the intrinsic electronic delay
τe,i, and an adjustable delay τc,i. Fig. 5.2 shows measures of T x

eff and T y
eff while

subjecting the particle to the delayed force. The controllable delay τc,i was
varied to span the range of τi from τe,i to one period of oscillation (ϕ = 2π). The
experimental results show excellent agreement with the theoretical predictions
from [144]. Furthermore, this measurement allowed for the characterization
of the electronic delays, τe,x and τe,y, both of which were determined to be
0.639 µs. We assume τe,z has the same value.

Figure 5.3a) shows the results of 3D feedback cooling. The minimal
effective temperatures achieved in the experiment are T x

eff = (0.58 ± 0.12) K,
T y

eff = (0.55 ± 0.11) K and T z
eff = (3.63 ± 0.77) K, for each of the three axes.

The gray shaded area in Fig. 5.3a) depicts an instability region observed
near 10−2 mbar, characterized by a sudden increase in T i

eff . We attribute
this phenomenon to variations on the net charge of the nanoparticle [151].
The net charge acts as a linear parameter affecting the input matrix, thus
linearly impacting the control gain. As electrode calibration was performed at
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Figure 5.2: Effect of delayed feedback forces. Comparison
between experimental results and theory (solid lines) is pre-
sented. Measurements were conducted at room temperature
(293 K) and a pressure of 1.2 mbar. Each data point corre-
sponds to 10,000 50 ms-traces. The used gains were Gx =
(9.17 ± 0.98) × 10−9 N/m and Gy = (8.97 ± 0.97) × 10−9 N/m.
The gray shaded area marks the region that could not be
measured due to the minimal delay imposed by the electronics.
The horizontal axis, ϕ, represents the phase Ωiτi introduced
by the delay. In the inset, the interval where the delay induces
cooling is presented with more detail.

high pressure (> 1 mbar), for pressures smaller than 0.01 mbar, it cannot be
assumed that the applied gain was optimal. Nonetheless, stable cooling has
been implemented by using only electrical actuators and the application of
LQR returned a gain matrix capable of handling any coupling between DOFs
in the dynamics. The PSD of the CoM motion for the y direction under three
distinct pressures is shown in Fig. 5.3b). Feedback cooling not only reduces
the area of the PSD, from which the effective temperatures are estimated, but
also introduces a term which increases its linewidth, as expected due to the
presence of derivative terms in the nanoparticle’s motion.

For pressures smaller than 0.01 mbar, no instability has been encountered.
As previously established, when the net charge is controlled, its values have been
shown to be conserved as pressure reduces below [152]. Therefore, the control
protocol employed should be capable of successfully controlling the nanoparticle
until the stochastic thermal force becomes negligible and the dynamics starts
to be dominated by measurement back-action and photon recoil heating. When
compared to parametric cooling, an all electrical approach is advantageous since
it avoids contamination of the signal by spurious modulation signals, which
are rendered unnecessary. Additionally, in contrast to parametric cooling, the
LQR employs a linear control law, thus not affecting the overall linearity of
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b)a)

Figure 5.3: All electrical cooling. a) Dependence between
pressure and x, y and z effective temperatures. The grey
shaded region shows a region of instability, as discussed in
the main text. b) PSD of the y motion. Measures were made
at 1.0 mbar( ), 5.4 × 10−2 mbar ( ) and 1.2 × 10−4 mbar
( ).

the system.
Since the LQR has been successfully employed in conjunction with Kalman

filter for ground-state cooling along the longitudinal axis [14], extending its
application as a 3D quantum control policy should be experimentally achievable.
By considering the electrode parameters presented in Subsection 5.6.3 and the
trapping and detection efficiency parameters reported in [14], we numerically
simulated 3D all electrical cooling of a trapped nanoparticle. Figure 5.4 presents
the expected final mean occupation numbers with our all electrical controller. To
account for quantum effects, the same parameters of measurement uncertainty,
detection efficiency ηz and back-action provided in [14] were taken into account
in the simulation. The detection efficiency along the transversal axes, ηx and
ηy, were computed given the expected proportion between the efficiency along
these axes and the longitudinal one for the given NA [145]. The simulation
results for pressures on the order of 10−10 mbar agree with the experimental
findings in [14], while for higher pressures the simulation may seen optimistic. It
must be noted that experimental imperfections were not considered. Moreover,
while it is evident that in simulation the thermal occupancy for y exceed that
of x, the experimental results in Fig. 5.3a) shows the opposite. This most likely
arises from experimental imperfections in the x-axis detection.
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Figure 5.4: Simulation of optimal all electrical 3D cooling
with improved trapping lens and detection scheme: expected
thermal occupation numbers, n̄, as a function of pressure
for the x, y and z directions. Dashed line marks a single
phonon. Error bars correspond to one standard deviation over
30 simulation runs.

5.5
Conclusions

In conclusion, we have demonstrated an all electrical feedback cooling
scheme for reducing the CoM temperature of a levitated nanoparticle in high
vacuum. Through a simple custom-designed electrical actuator, we have shown
sub-Kelvin temperatures for the transverse directions of motion, avoiding the
use of nonlinear feedback cooling schemes such as parametric feedback cooling.
This greatly simplifies levitated optomechanics experiments by avoiding the
need for modulation of the trapping power. Numerical simulations point that
future improvements over our setup, in particular implementation of a higher
NA trapping lens and of the optimal backward detection scheme reported in
[14], should enable all electrical 3D cooling near the ground state, reaching
thermal occupation numbers below unity.

5.6
Supplementary material

5.6.1
Digital control theory

In the study and analysis of physical systems, time is conventionally
treated as a continuous variable. However, when employing signal processing
and control methods, a transition to a discrete representation becomes necessary.
This is specially crucial when implementing systems on microprocessors or



Chapter 5. All electrical cooling of an optically levitated nanoparticle 75

FPGAs, where a set of instructions is executed based on a sampling frequency
fs [72]. The discrete-time formulation of a state-space model can be obtained
through the integral approximation, which is based on the assumption that
x and u remain constant during a sampling period Ts = 1/fs. The system
evolution is then considered to unfold at fixed time-steps tn = nTs, leading to
the following recursive equations

xn+1 = Adxn + Bdun + w̄n, (5-15a)

yn+1 = Cdxn+1 + m̄n+1, (5-15b)

where Ad, Bd and Cd can be expressed in terms of their continuous analogues,

Ad =
∞∑

k=0

T k
s

k! Ak, (5-16a)

Bd = (Ad − I)A−1B, (5-16b)

Cd = C. (5-16c)

Also, xn = x(nTs) and un = u(nTs). The discrete disturbance and noise
terms, w̄n and m̄n, represent discrete-time white-noise processes adhering to
conditions akin to those established in Eqs. (5-2) and (5-11) in the main text.
Considering w̄n = 1

m

[
03×1 F̄th,n

]T
, with F̄th,n =

[
F̄th,x,n F̄th,y,n F̄th,z,n

]T
and

m̄n =
[
ζ̄x,n ζ̄y,n ζ̄z,n

]T
, the conditions are

⟨F̄th,i,k⟩ = 0, (5-17a)

⟨F̄th,i,kFth,j,k′⟩ = 2mγmkBTTsδijδkk′ , (5-17b)

and

⟨ζ̄i,k(t)⟩ = 0, (5-18a)

⟨ζ̄i,kζ̄j,k′⟩ = σi

Ts

δijδkk′ . (5-18b)

Similar to its continuous version, the LQR for discrete-time systems
returns an optimal control law, expressed as a linear combination on the states
xn,

un = −Kdxn, (5-19)
however, the expression for the controller’s gain changes to

Kd = (Rd + BT
d SdBd)−1BT

d SdAd, (5-20)

where Sd is the solution of the discrete algebraic Ricatti equation
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Sd = AT
d SdAd + Qd

− AT
d SdBd(Rd + BT

d SdBd)−1BT
d SdAd,

(5-21)

and Qd and Rd are the matrices defining the cost function Jd for the digital
control law, which reads

Jd = 1
2

∞∑
n=0

[xT
n Qdxn + uT

n Rdun]. (5-22)

5.6.2
Electronic setup

The control law defined in Eq. (5-19) was implemented using two Red
Pitayas, each equipped with a Xilinx Zynq 7010 FPGA and a 2 channel 14-
bits ADC, allowing for a maximum sampling frequency of 125 MHz for two
distinct inputs, xa and xb. The feedback loop incorporated a decimation block,
increasing the sampling time Ts from 8.00 ns to 64.00 ns, enabling synchronous
execution of more complex tasks.

In Fig. 5.5 a simplified block diagram of the main components implemented
within each FPGA is shown. The controller block is responsible for computing
the output signal ua,n and ub,n, being equivalent to the following expression

ua,n

ub,n

 =
kd

p,aa kd
p,ab kd

d,aa kd
d,ab

kd
p,ba kd

p,bb kd
d,ba kd

d,bb




x̃a,n

x̃b,n

x̃a,n−Na

x̃b,n−Nb

 . (5-23)

The signals x̃a,n, x̃b,n result from passing the inputs through a D.C block
and a notch filter, both implemented by using digital biquadratic filters. The
constant kd

p,ij and kd
d,ij refer to the digital proportional and derivative gains.

The signals x̃a,n−Na , x̃b,n−Nb
are the delayed positions, serving as estimates of

the particle’s velocity.
The notch filter transfer function is shown in Fig. 5.5b). For the FPGA

processing the x and y signals, the transfer function used was Hxy to remove
harmonic components near Ωz. In the other FPGA, a filter Hz was applied to
remove any components sufficiently close to Ωx and to Ωy. The filter’s impact
on the phase of each signal is approximately constant near each resonance
frequency, being included in the overall intrinsic delay of the electronic setup,
already described in Section 5.4. The computed control signals were sent to
non-inverting analog amplifiers, providing a constant gain A = 5.00 V/V with
minimal phase impact for signals with harmonic components from D.C up to
150.00 kHz.
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a) b)

Figure 5.5: Digital electronic implementation. a) Block diagram
illustrating the FPGA implementation for stable control of
the particle CoM motion. The digital filters are responsible
for signal conditioning. A Block Random Access Memory
allows the implementation of delay blocks, delaying the signal
in multiples (Na, Nb) of the sampling time. The delayed
and non-delayed filtered signals are then transmitted to the
controllers to compute the output signals. b) Bode plots for
each notch filter Hz and Hxy, depicting their magnitude and
phase behavior for the frequency range of interest.

5.6.3
Model parameters

Implementation of LQR relies on the accurate extraction of the A and B
matrices, essential for the correct computation of Ad and Bd. This appendix
clarifies how the parameters that allow the reconstruction of these matrices
were extracted for the experiment.

5.6.3.1
Detector calibration

Assuming the trapped nanoparticle reaches thermal equilibrium with the
residual gas in the vacuum chamber, its initial effective temperature along the
three axes is approximately 293 K. Calibration of the detection system involves
establishing the linear relationship between the PSD of the detector output for
motion along the i-axis, denoted as SViVi

(Ω), and the displacement PSD for
the same axis, denoted as Sii(Ω) [92],

SViVi
(Ω) = (Ci

V m)2Sii(Ω), (5-24)

with Ci
V m representing the calibration factor and SViVi

being defined by the
Lorentzian function,

SViVi
(Ω) = (Ci

V m)2 2γmkBT

m[(Ω2 − Ω2
i )2 + γ2

mΩ2
i ]

(5-25)

Calibration was done by collecting 10,000 traces, each with a duration of
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50 ms. The average PSDs were then fitted to Eq. (5-25), enabling the extraction
of Ci

V m, Ωi and γm. The coefficients were found to be

Cx
V m = (6.87 ± 0.72) × 105 V/m

Cy
V m = (7.08 ± 0.75) × 105 V/m

Cz
V m = (1.07 ± 0.11) × 106 V/m

5.6.3.2
Electrodes calibration

To compute the controller’s gain matrix Kd described in Subsection 5.6.1,
it is necessary to measure the transduction coefficient Cij

NV that provides the
linear relation between the applied voltage across the electrodes j and the
resulting force along the i-axis. From these, it is possible to reconstruct the
terms of the B matrix, which due to the geometry of the actuators couples the
x and y-axes.

a) b)

Figure 5.6: Electrode calibration. a) Calibration curves are
presented for each coefficient of the xy plane. Each point
corresponds to the analysis of 7000 traces with an individual
duration of 50 ms. The particle was driven with a sinusoidal
signal at Ωdr/2π = 97.50 kHz. b) PSD of the particle’s CoM
motion under the action of a sinusoidal force. The dashed line
delineates the peak region from which the amplitude of the
force F0 can be extracted.

Force calibration of the electrodes can be carried out by measuring the
particle’s response to sinusoidal voltage drives applied to an individual pair of
electrodes at known frequencies near each resonance [24]. The driving voltage in
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the electrode j introduces a sinusoidal force F j
i cos(Ωdrt) which can be observed

within the PSD of the driven CoM motion of the i direction Sj
ii,

Sj
ii = Sii(Ω) + Sj,el

ii (Ω), (5-26)

where Sii(Ω) follows Eq. (5-13) and Sj,el
ii (Ω) is

Sj,el
ii (Ω) = F j2

i τel sinc2[(Ω − Ωdr)τel]
m2[(Ω2 − Ω2

i )2 + γ2
mΩ2] , (5-27)

with τel being the duration of the measure.
In Figure 5.6a), the calibration curves for each coefficient is shown, yielding

Cxx
NV = (2.83 ± 0.14) × 10−16 N/V

Cxy
NV = (2.18 ± 0.13) × 10−16 N/V

Cyx
NV = (2.21 ± 0.13) × 10−16 N/V

Cyy
NV = (2.36 ± 0.12) × 10−16 N/V

An example of one of the PSDs used for calibration is presented in Fig. 5.6b).

5.6.3.3
Gain matrix

After ensuring proper calibration of the detectors and actuators, computa-
tion of the LQR gains becomes feasible. Analysis of the PSDs of the x, y and z

confirms the trapped nanoparticle’s oscillation frequencies Ωx/2π = 96.24 kHz,
Ωy/2π = 101.49 kHz and Ωz/2π = 31.52 kHz. Given the average diameter of
the nanoparticle as provided by the manufacturer, the its mass is calculated to
be m ≈ 3.37 fg. The weighting and cost-effort matrices used were

Rd = m

diag(Ω2) 03×3

03×3 I3

 , (5-28)

and

Qd = 100
m


Ω−2

x 0 0
0 Ω−2

y 0
0 0 Ω−2

z

 . (5-29)

These matrices were selected to ensure that the cost function Jd possesses
appropriate energy units, considering the states measured in S.I units and u
accounting for feedback forces. Such dimensional considerations are crucial
for converting the controller’s gain from the LQR theory to the digital gains
configured in the FPGA. The B matrix is expressed as
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B =
03×3

Bxyz

 , where Bxyz =
Bxy 0
01×2 bz

 . (5-30)

The submatrix Bxy, expressed in kg−1, is determined by m and the
proportion of the electrodes coefficients Cij

NV ,

Bxy = 1
m

 −1 Cxy
NV /Cxx

NV

Cyx
NV /Cxx

NV Cyy
NV /Cxx

NV

 . (5-31)

Without loss of generality, its terms were normalized by the biggest transduction
coefficient, Cxx

NV . The negative sign accounts for the orientation of the electrodes
axes, x′ and y′, as illustrated in Fig. 5.1.

The final parameter required to fully describe the dynamics given by Eq.
(5-4), is γm. To assess the impact of varying it, we substitute the values for the
resonance frequencies, B, Ts, Qd, and Rd and compute Kd for different drag
coefficients. The results of this evaluation are depicted in Fig. 5.7. Notably, for
pressures below 1 mbar, the influence of γm on the controller’s gains is negligible.
Therefore, under the premise that pressure solely affects the drag coefficient,
Kd can be computed only once, even as pressure reduces.
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Figure 5.7: Optimal gains dependence with pressure. The con-
stant behavior for values bellow 1 mbar allows one to employ
the same matrix Kd for the underdamped and undamped
regimes.

After completing the system characterization, with γm considered as zero,
Kd can be properly computed. The next step involves converting the theoretical
gains into digital values configured within the FPGA. The following expressions
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govern this conversion

kd
p,ij = kp,ij

ACxx
NV Cj

V m

, (5-32a)

kd
d,ij = − Ωjkd,ij

ACxx
NV Cj

V m

. (5-32b)

Here, Ωj emerges from estimating the velocity as proportional to the delayed
position, leading, for example, to ẋ = −Ωxx(t − τx), for a delay τx. The factor
Cxx

NV arises from the Bxy matrix normalization, while Cj
V m is used to convert

displacement in the j-axis to output voltages from its detector. In Table 5.1,
both theoretical and digital gains are presented. Note that the digital gains
had to pass through a conversion to a fixed-point representation during the
VHDL implementation, allowing arithmetical operations with minimal loss of
numerical resolution [111].

Gain LQR (Eq. 5-19) Digital Gains (Eq. 5-32)
kp,xx −3.40 × 10−10 N/m −0.35
kp,xy 7.99 × 10−10 N/m 0.80
kp,yx 1.46 × 10−9 N/m 1.50
kp,yy −1.15 × 10−9 N/m −1.15
kd,xx −2.19 × 10−13 N · s/m 136.45
kd,xy 1.86 × 10−13 N · s/m −119.14
kd,yx 1.96 × 10−13 N · s/m −122.22
kd,yy 2.32 × 10−13 N · s/m −148.23

Table 5.1: Controller’s gains. Values returned by optimal
control theory and implemented values within the FPGA are
shown according to the system characterization and Eq. (5-32).



6
Outlook

While conclusions of each experiment were separately detailed in their
respective chapters, the exploration of numerous potential research avenues
remains open for both experiments. This final chapter will outline some of
the possibilities that can be implemented in the near future and give general
closing remarks.

Exploring nonlinearities and artificial stochastic forces

The fourth chapter of this dissertation detailed the experimental setup,
which employed an FPGA to generate a feedback signal represented as Gfbz

3(t).
This setup offers versatility for exploring various feedback forces, such as the
delayed cubic forces detailed in [84], artificial higher-order anharmonicities
as discussed in [30], or additional stochastic forces akin to those in [153].
Specifically addressing stochastic forces, the experimental platform can facilitate
investigations into the particle’s response to colored noise, thereby extending
the existing examination of extra stochastic terms. To enable this, the FPGA
should first function as a pseudorandom number generator, a topic that will be
addressed in more detail here.

Various methods can be used to implement pseudorandom number
generators capable of producing a sequence of random numbers conforming to a
Gaussian distribution. In electronic systems, generating a Gaussian distribution
typically involves capturing environmental noise through open-circuited inputs.
However, this approach presents certain challenges that could potentially impact
experiments negatively. The resolution of digital conversion electronics and
the low amplitude of environment noise (on the order of few mV) result in
a limited range of possible distinct values for the distribution. Furthermore,
environmental noise is often temperature-dependent, leading to variations in
its statistical properties with changes in the room temperature [154].

An alternative approach involves employing Linear-Feedback Shift Reg-
ister (LFSR) generators [155], which were first introduced by Tausworthe in
[156]. The general structure of a LFSR is illustrated in Fig. 6.1a), where a set
of linear operations, typically XOR operations, are applied to an N -bit variable.
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The specific bits used in the operations are called taps. After applying XOR
operations to the designated taps sequentially, all bits are right-shifted, and
the leftmost bit becomes the result of the XOR operations. The starting value
of the LSFR is denominated seed. This process is iterated at fixed time-steps,
producing a sequence of pseudorandom numbers following a uniform distri-
bution. The arrangement of taps determines the number of different values
this sequence can possess, constrained by 2N − 1, where N is the number of
bits in the variable. While identifying the optimal tap positions for achieving
maximum-length LFSRs falls outside the scope of this dissertation, interested
readers can refer to [157] for more details.

1 1 111 10 0 0 0 0 0 0 0

11 0

Right-shift all bits

a) b)

Figure 6.1: Pseudorandom number generation. a) A maximum
length 14-bit LSFR structure with taps located at bits 2, 12,
13 and 14. b) PSD of synthetically created white and colored
noises.

By implementing multiples LSFRs with distinct seeds and summing
their outputs, it becomes possible to generate a pseudorandom number
signal that, according to the central limit theorem, conforms to a Gaussian
distribution. White noise with an arbitrary standard deviation can be generated
straightforwardly in this manner, and colored noise, as brown and violet noise,
can be produced by applying discrete integration or differentiation operators.
Figure 6.1b) shows the PSD of white, brown and violet noise generated
considering the sum of 50 14-bit LFSRs. The synthesized white noise presents
an almost flat band across the frequency spectrum, while brown and violet
noises are defined by a decrease and increase of 20 dB/dec, respectively. This
definition is outlined in the Federal Standard 1037C of the Telecommunications
Glossary [158].
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A roadmap to ground-state cooling

Despite the demonstration of 3-D cooling presented in Chapter 5, to
achieve ground-state cooling some steps are necessary. Firstly, ground-state
cooling of levitated silica nanoparticles has been accomplished at pressures
on the order of ≈ 10−9 mbar [14, 15]. This means that an improvement by a
factor of 104 is necessary given the minimal pressure reached in the all-electrical
cooling experiment. Achieving this enhancement could involve replacing vacuum
elements incompatible with ultra-high vacuum, incorporating an ion pump,
and employing chamber baking to reach the necessary vacuum level.

A significant upgrade to the experimental setup would involve replacing
the current pair of lenses used for trapping and collection. Substitution of
the trapping lens with the Lightpath 355617 aspheric lens would increase
the NA used for trapping from 0.68 to 0.75, resulting in higher resonance
frequencies for the nanoparticle’s motion. This modification would require a
corresponding adjustment in the collection lens to optimize light collection
efficiency. Additionally, two other important improvements in terms of detection
would involve implementing collection of light backscattered by the particle
to enhance the Signal-to-Noise Ratio (SNR) for the z-axis detection [145] and
incorporating a heterodyne detection scheme to enable absolute measurement
of the particle’s effective temperature [159].

Finally, modifications on the controller and actuators are necessary. To
implement the LQG control law for the particle’s 3-D motion, as simulated
in Chapter 3, the actuator responsible for the z direction must be correctly
characterized, and the estimation method used should be substituted with a
LQE. However, as observed in the experiment, silica nanoparticles undergo
changes in their properties as pressure decreases. These changes directly affect
the validity of the characterization, and, therefore, jeopardize the LQG’s
implementation. Solving this issue could be approached in two ways. One
approach would be to control the particle’s charge as conducted in [152].
Alternatively, it is possible to expand the controller’s policy to accommodate a
regime where the system’s parameters are unknown.

Adaptive control theory offers algorithms for stable control of linear,
stochastic and nonlinear systems with unknown parameters [62] or even partially
known dynamics [59, 160], with techniques ranging from parameters estimation
to self-tunning controllers. A particularly interesting controller is the Model-
Reference Adaptive Controller (MRAC). While most controllers focus on making
a system behave according to a reference signal yd(t), MRAC focuses on
determining the correct control law u(t) capable of making a linear system,
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such as the one described in Eq. (6-1a), mimic the behavior of a reference
system with the same order, Eq. (6-1b), when this reference process is being
excited by a command signal uc(t). In Eq. (6-1), xr(t) refers to the state-vector
trajectory for the reference system defined by the matrices Ar and Br, and
x(t) the state-trajectory for the nominal system.

ẋ(t) = Ax(t) + Bu(t), (6-1a)

ẋr(t) = Arxr(t) + Bruc(t). (6-1b)

To make x(t) follow xr(t), u(t) must adhere to

u(t) = B−1[(Ar − A)x(t) + Bruc(t)], (6-2)

which is feasible only if B−1, the left inverse of B, exists. The main challenge
in computing Eq. (6-2) lies in the fact that only the matrices Ar and Br are
known. Due to the lack of information of the system parameters, an alternative
control law must implemented,

u(t) = −Kx(t)x(t) + Ku(t)uc(t), (6-3)

where Kx(t) and Ku(t) are estimations of −B−1(Ar − A) and B−1Br,
respectively. MRAC provides the adaptation rules for these estimations, ensuring
convergence from x(t) to xr(t). These rules are governed by Eq. (6-4), where
e(t) represents the error vector, defined as e(t) = x(t) − xr(t), and Γ is the
adaptation gain matrix, a symmetric positive-defined matrix, with its elements
defined within the controller’s project. The proof of Eq. (6-4) is cumbersome,
but can be conducted by analysing the necessary conditions for the Lyapunov
stability of the closed-loop system. For more details we refer to [161].

K̇x(t) = BT
r Γe(t)xT (t), (6-4a)

K̇u(t) = −BT
r Γe(t)uT

c (t). (6-4b)

To showcase the effectiveness of MRAC, Fig. 6.2 presents application of
this adaptive controller to a second-order system as a toy-problem scenario. The
command signal uc(t) used was a combination of a cold damping controller and
an additional stimulus signal, a square wave at 80 kHz. This stimulus signal is
added to reduce the likelihood of incorrect estimation, which commonly occurs
when both x(t) and xr(t) have reduced amplitudes, consequently diminishing
uc(t) and the adaptation factors K̇x(t) and K̇u(t). Figure 6.2b) presents the
artificial b∗ term of the closed-loop system, which starts in b and correctly
converges to br after approximately 1.5 ms.
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Figure 6.2: MRAC. Parameters used for simulation: γm,r =
γm = 80 kHz, Ω0,r/2π = Ω0/2π = 80 kHz, br = 0.5 kg−1 and
b = 0.3 kg−1. a) Trajectories for both nominal and reference
model. The gray shaded area marks the region where only
cold damping was used. b) Effective b∗ parameter (solid line)
resulted from applying adaptive control. Dashed line represents
the reference model value.

In the context of levitodynamics, the directly application of this method
for feedback cooling involves considering uc(t) as the signal returned by LQG.
When considering the MRAC correct convergence, only the parameters of the
reference model would be required in this approach, eliminating the need of
proper system calibration. Additionally, if parameters change, but much slower
than the particle dynamics or the controller’s processing capability, MRAC
should be capable of correctly re-adapting the matrices Kx(t) and Ku(t),
thereby effectively counteracting any variations in the system parameters.

Closing remarks

This dissertation explored feedback control theory within the domain
of optically levitated nanoparticles. Albeit the points already raised in this
outlook focused on technical aspects of specific future research paths, both
experimental apparatus (at 780 nm and 1550 nm) could be employed for research
on a much more vast variety of areas, some of which levitodynamics has already
found successful results, both for applied and fundamental research. Lastly,
the presented findings represent the initial steps towards a long-term goal:
ground-state cooling and quantum control of a mesoscopic particle.
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B
Fundamentals for optimal linear filtering

B.1
Expected value as optimal estimation

Given a signal x, defined as a stochastic process X with a probability
density function fX(x), which is symmetric with respect to its mean value ⟨x⟩,
even and non decreasing for x ≥ ⟨x⟩, the optimal estimation x̂ of x is the one
capable of minimizing the expected value of a loss function L(x − x̂),

⟨L(x − x̂)⟩ =
∫ ∞

−∞
L(x′ − x̂)fX(x′) dx′. (B-1)

By introducing an auxiliary variable p = x′ − ⟨x⟩, the expression above
can be rewritten as

⟨L(x − x̂)⟩ =
∫ ∞

−∞
L(p + ⟨x⟩ − x̂)fX(p + ⟨x⟩) dp. (B-2)

Now, consider two integrable real positive-definite and even functions
g : Rn −→ R and h : Rn −→ R. It must be stated that g(x) is non-decreasing and
h(x) non-increasing for x ≥ 0. Within this conditions it is known that∫ ∞

−∞
g(x′ + a)h(x′ + b) dx′ ≥

∫ ∞

−∞
g(x′)h(x′ + b) dx′, (B-3)

where a and b are arbitrary constants. Proof of this property can be found
with the following steps. First by rewriting the expression above as∫ ∞

−∞
[g(x′ + a)) − g(x′)]h(x′ + b) dx′ ≥ 0, (B-4)

and then, by rewriting the integration interval from [−∞, +∞] to [−∞, −a/2]∪
[−a/2, ∞] and applying in the resulting two integrals a pair of variable
substitution (x′ −→ −x′ and x′ −→ x′ − a), Eq. (B-4) becomes∫ ∞

a/2
[g(x′) − g(x′ − a)][h(x′ − a) − h(x′)] dx′ ≥ 0, (B-5)

which is known to be true, given that g is non-decreasing and h non-increasing.
Consequently, if L attends to the same conditions of g and fX to the conditions
of h, it leads to

⟨L(x − x̂)⟩ ≥
∫ ∞

−∞
L(p)fX(p + ⟨x⟩) dp, (B-6)
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allowing the conclusion that

⟨L(x − x̂)⟩ ≥ ⟨L(x − ⟨x⟩)⟩. (B-7)

In other words, the minimization of the expected value of L is achieved
when x̂ = ⟨x⟩.

B.2
Propagating averages and covariances

Let’s consider the following discrete-time stochastic dynamics defined by
the state transition matrix Ad and input matrix Bd,

xn+1 = Adxn + Bdun + wd,n, (B-8)

where xn is the state vector, un is a known input, and wd,n is a Gaussian zero-
mean white noise with a covariance matrix W. Due to the intrinsic stochastic
behavior and the Gaussian nature of the probabilistic term, it is of great interest
to possess the knowledge of how the first moment, ⟨xn⟩, and the covariance
matrix, Pn, propagate through time. To understand this, we start by taking
the expected value of both sides of Eq. (B-8), which results in

⟨xn+1⟩ = Ad⟨xn⟩ + Bdun. (B-9)

The covariance matrix Pn+1 can be obtained by using its definition,

Pn+1 = ⟨(xn+1 − ⟨xn+1⟩)(xn+1 − ⟨xn+1⟩)T ⟩, (B-10)

then, after substituting xn+1 with Eq. (B-8) and ⟨xn+1⟩ with Eq. (B-9), we
encounter

Pn+1 = ⟨Ad(xn − ⟨xn⟩)(xn − ⟨xn⟩)T Ad

+ wd,nwT
d,n + Ad(xn − ⟨xn⟩)wT

d,n

+ wd,n(xn − ⟨xn⟩)T AT
d ⟩, (B-11)

since wd,n has zero mean and is uncorrelated with the state vector xn, and
since the control law is deterministic, we can rewrite Pn+1 as

Pn+1 = AdPnAT
d + W. (B-12)

B.3
Recursive least-squares estimator

Linear recursive estimators are powerful tools for parameter estimation
[61, 62, 75]. They are particularly advantageous for systems linear in their
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parameters ak, expressed as

dnx(t)
dtn

=
n−1∑
k=0

ak
dkx
dtk

, (B-13)

where m ∈ N, 0 ≤ m ≤ n − 1. Consider the simplest scenario, the measurement
equation applied to a constant vector a in the presence of white noise md,n

with zero mean and covariance M,

yn = Cda + md,n. (B-14)

The linear recursive estimation ân of a is expressed as

ân = ân−1 + Kn(yn − Cdân−1), (B-15)

where Kn is the estimator gain matrix. The estimation error en and its mean
⟨en⟩ are given by, respectively,

en = a − ân = a − ân−1 − Kn(yn − Cdân−1)

= (I − KnCd)(a − ân−1) − Knmd,n, (B-16)

and

⟨en⟩ = (I − KnCd)⟨a − ân−1⟩ − Kn⟨md,n⟩

= (I − KnCd)⟨en−1⟩. (B-17)

From Eq. (B-17), it is noteworthy that once ⟨em⟩ = 0, ⟨en⟩ = 0 for all
n > m, independently of Kn. This results indicates that optimal estimation,
once achieved, persists within a single time-step of the update in the prediction.
However, to successfully produce these predictions, an explicit expression for
Kn is necessary. To this end, we define the criteria to be optimized. The least-
square method minimizes the quadratic cost-to-go criteria, the same presented
in Section 3.1 for the LQR. The criteria for the step n, L(en), can be written as

L(en) = ⟨(a − ân)T (a − ân)⟩

= ⟨eT
n en⟩

= ⟨Tr (eneT
n )⟩

= Tr Pn, (B-18)

where Pn is the estimation error covariance matrix. Its recursive formulation is
given by

Pn = (I − KnCd)Pn−1(I − KnCd)T + KnMKT
n . (B-19)

Now, it remains to encounter the adaptation of Kn to minimize L. By
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taking ∂Ln

∂Kn
and applying the relation ∂Tr(ABAT)

∂A = 2AB, applicable when B is
symmetric, a condition that holds true for Pn, we find

Kn = Pn−1CT
d (CdPn−1CT

d + M)−1, (B-20)

concluding the formulation for the least squares estimator.



C
1550 nm setup characterizations

This appendix is dedicated to document characterizations and results
which were left out of Chapter 5.

C.1
Noise characterization

Prior to conducting the all electrical cooling experiment, the high power
laser source (RIO Orion + Keopsys CEFA-C-BO-HP-SM) was characterized in
the absence of any nanoparticles. This characterization aimed to assess both the
noise floor levels provided by the employed detectors (Newport 2117-FC) and
the overall intensity noise of the laser light source. These results are summarized
in Table C.1.

Configuration ζ̄x
2(V2/Hz) ζ̄y

2(V2/Hz) ζ̄2
z (V2/Hz)

Detection 1.52 × 10−10 1.73 × 10−10 4.96 × 10−11

Detection
+high power laser source 1.13 × 10−9 1.57 × 10−9 1.30 × 10−10

Table C.1: Noise floor levels of detection and laser source.
Results were obtained after capturing 10000 traces of 40 ms.
These values represent the noise floor in a frequency bandwidth
ranging from 20 kHz to 1 MHz. The optical source characteriza-
tion was conducted with the amplifier operating at an output
power of 2.82 W (34.5 dBm). The notation ζ̄i follows the same
convention used in the supplementary material section of Chap-
ter 5.

The employed detector is equipped with a builtin tunable bandpass filter
and an adjustable amplifier, enabling the removal of harmonic components at
frequencies below 100 Hz. The amplification gain was set to a factor of 100
for all three detectors. The amplification factor was chosen according to the
optimization of the SNR.
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C.2
Resonance frequencies vs optical input power

The Erbium-doped fiber amplifier (EDFA) used in the experiment from
Chapter 5 offers the flexibility of tuning the output power within a range
from 25 dBm (≈ 315 mW) to 35 dBm (≈ 3.15 W) while ensuring that its
internal electric current remains within the operational range specified by the
manufacturer. Through systematic adjustment of the amplifier’s output power,
and consequently, alteration of the optical power entering the vacuum chamber,
its becomes experimentally possible to verify the theoretical expression which
provides the correlation between optical power with the particle’s resonance
frequencies. First, it is necessary to map the relation between the amplifier’s
output and the optical power in the beginning of the all-electrical cooling
setup. Prior to the free-space setup implemented, a series of fibered optical
elements were integrated to facilitate parametric cooling within the existing
experimental setup. These elements are shown in the diagram in Fig. C.1. It
is pertinent to note that these fibered components introduce a power loss,
which was characterized for the range spanning from 300 mW to 500 mW. This
specific interval was defined by the minimal power output of the amplifier and
maximum input power of the employed power meter (Thorlabs 132C).

Figure C.1: Fibered experimental setup. A 1550 nm laser
source (RIO Orion) outputs approximately 12 mW of optical
power which is split into two paths (9 mW/3 mW). The first
is designated for modulation purposes, initially amplified
by EDFA 1 (Tuolima) up to ≈ 60 mW and then sent to
an EOM (Covega Mach-10 063). The second path is sent
to EDFA 2 (Keopsys), where it is amplified to 2.82 W,
and subsequently combined with the modulated part via a
PBS. Fibered polarization controllers are added to maintain
the non-modulated and modulated portions with orthogonal
polarisations.

Figure C.2a) illustrates that within the measured interval the optical
power in free space is linearly related to the output power provided by the
EDFA (Keopsys). This observation leads to the conclusion that variations in
the EDFA’s output power will have a linear effect on the optical power used
for trapping. This linear relationship was extrapolated to encompass the high
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power interval exploited during the experiment. In Fig. C.2b) the experimental
relation between trapping power and resonance frequencies is depicted. The
solid line represents the curve resulting from fitting the theoretical relation
Ωi ∝

√
P .

a) b)

Figure C.2: Resonance frequency dependence with the optical
power. a) Optical power used for trapping measured in free-
space as a function of the output power supplied by the
Keopsys amplifer. b) Dependence between Ωi and P . Each
data point was obtained by fitting a Lorenztian curve to the
averaged PSD of 10000 traces of 40 ms. It is noteworthy that
error bars are included with each point, although they are
found to be negligible.

C.3
EOM and bias-tee for parametric cooling

To effectively implement parametric cooling, two points must be addressed
to. First, for proper use of the EOM showed in Fig. C.1, the curve that relates
its output power with its supply voltage must be examined. This examination
allows us to identify a region where the relationship between these two variables
is approximately linear. Second, upon identifying the linear operating region,
an electronic circuit must be designed to add a bias voltage, VDC , with an
arbitrary radio-frequency signal, VRF , providing a signal VDC + VRF that will
be fed to the EOM. The electronic circuit capable of adding bias to radio-
frequency signals is known as bias-tee. Due to the low value of Ωz measured in
the experiment (which sets the lowest frequency component for modulation),
we opted to implement our own homemade bias-tee, enabling for a flat-band
response at frequencies as low as 2Ωz.

The electronic diagram of the homemade bias-tee is presented in Fig. C.3a).
It was designed and simulated for operation in a frequency range from 30 kHz to
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20 MHz, although with the inclusion of appropriate high-frequency components,
it could be extended for used up to 4 GHz. Figure C.3b) presents the frequency
response by showing the magnitude ratio between output and input for the
frequency interval of interest. By plugging the EOM to an adjustable DC power
supply (Agilent E3645A) and measuring the optical power in the beginning
of the setup from Chapter 5, we constructed the power versus voltage curve,
presented in Fig. C.3. The vertical gray line, situated between 2 V and 4 V,
represents the bias voltage which marks the center of the linear region, where
a modulation ±6 mW is achievable.

a) c)

b)

Figure C.3: EOM characterizations. a) Diagram of the bias-
tee implemented for combining the VDC provided by the DC
power supply and radio-frequency signals. b) Magnitude of the
response of the bias-tee, represented as Vout/VRF , considering
zero bias voltage. c) EOM characterization curve.



D
Code and data availability

The code used to generate the plots presented in this dissertation is
available in the following repositories.

– https://github.com/oscarkremer/dissertation-codes (for Chapters 2, 3, 5
and 6);

– https://github.com/QuantumAdventures/non-linearity-experiment (for
Chapter 4).

Each repository’s main page contains detailed documentation regarding
code structure. Additionally, the FPGA code were made available inside the
same repos, providing files for sources, simulations and Vivado’s project.

https://github.com/oscarkremer/dissertation-codes
https://github.com/QuantumAdventures/non-linearity-experiment
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