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Abstract

Marin Sepulveda, Luis Fernando; Gattass, Marcelo (Advisor); Cor-
rea Silva, Aristofanes (Co-Advisor). Generalization of the Deep
Learning Model for Natural Gas Indication in 2D Seismic
Image Based on the Training Dataset and the Operational
Hyper Parameters Recommendation. Rio de Janeiro, 2024.
158p. Tese de Doutorado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

Interpreting seismic images is an essential task in diverse fields of geo-
sciences, and it’s a widely used method in hydrocarbon exploration. However,
its interpretation requires a significant investment of resources, and obtaining
a satisfactory result is not always possible.

The literature shows an increasing number of Deep Learning, DL, meth-
ods to detect horizons, faults, and potential hydrocarbon reservoirs, never-
theless, the models to detect gas reservoirs present generalization performance
difficulties, i.e., performance is compromised when used in seismic images from
new exploration campaigns. This problem is especially true for 2D land surveys
where the acquisition process varies, and the images are very noisy.

This work presents three methods to improve the generalization perfor-
mance of DL models of natural gas indication in 2D seismic images, for this
task, approaches that come from Machine Learning, ML, and DL are used.
The research focuses on data analysis to recognize patterns within the seismic
images to enable the selection of training sets for the gas inference model based
on patterns in the target images. This approach allows a better generalization
of performance without altering the architecture of the gas inference DL model
or transforming the original seismic traces.

The experiments were carried out using the database of different exploita-
tion fields located in the Parnaíba basin, in northeastern Brazil. The results
show an increase of up to 39% in the correct indication of natural gas according
to the recall metric. This improvement varies in each field and depends on the
proposed method used and the existence of representative patterns within the
training set of seismic images.

These results conclude with an improvement in the generalization perfor-
mance of the DL gas inference model that varies up to 21% according to the F1
score and up to 15% according to the IoU metric. These results demonstrate
that it is possible to find patterns within the seismic images using an unsu-
pervised approach, and these can be used to recommend the DL training set



according to the pattern in the target seismic image; Furthermore, it demon-
strates that the training set directly affects the generalization performance of
the DL model for seismic images.

Keywords
Deep Learning; Generalizability; Training Dataset recommendation; 2D

Seismic onshore image; Clustering; Gas indication.



Resumo

Marin Sepulveda, Luis Fernando; Gattass, Marcelo; Correa Silva,
Aristofanes. Generalização do modelo de aprendizado pro-
fundo para indicação de gás natural em dados sísmicos 2D
com base no conjunto de dados de treinamento e recomen-
dação de hiperparâmetros operacionais. Rio de Janeiro, 2024.
158p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

A interpretação de imagens sísmicas é uma tarefa essencial em diversas
áreas das geociências, sendo um método amplamente utilizado na exploração de
hidrocarbonetos. Porém, sua interpretação exige um investimento significativo
de recursos, e nem sempre é possível obter um resultado satisfatório.

A literatura mostra um número crescente de métodos de Deep Learning,
DL, para detecção de horizontes, falhas e potenciais reservatórios de hidro-
carbonetos, porém, os modelos para detecção de reservatórios de gás apre-
sentam dificuldades de desempenho de generalização, ou seja, o desempenho
fica comprometido quando utilizados em imagens sísmicas de novas explorações
campanhas. Este problema é especialmente verdadeiro para levantamentos ter-
restres 2D, onde o processo de aquisição varia e as imagens apresentam muito
ruído.

Este trabalho apresenta três métodos para melhorar o desempenho de
generalização de modelos DL de indicação de gás natural em imagens sísmicas
2D, para esta tarefa são utilizadas abordagens provenientes de Machine Learn-
ing, ML e DL. A pesquisa concentra-se na análise de dados para reconhecer
padrões nas imagens sísmicas para permitir a seleção de conjuntos de treina-
mento para o modelo de inferência de gás com base em padrões nas imagens
alvo. Esta abordagem permite uma melhor generalização do desempenho sem
alterar a arquitetura do modelo DL de inferência de gás ou transformar os
traços sísmicos originais.

Os experimentos foram realizados utilizando o banco de dados de difer-
entes campos de exploração localizados na bacia do Parnaíba, no Nordeste do
Brasil. Os resultados mostram um aumento de até 39% na indicação correta
do gás natural de acordo com a métrica de recall. Esta melhoria varia em cada
campo e depende do método proposto utilizado e da existência de padrões
representativos dentro do conjunto de treinamento de imagens sísmicas.

Estes resultados concluem com uma melhoria no desempenho de gener-
alização do modelo de inferência de gases DL que varia até 21% de acordo
com a pontuação F1 e até 15% de acordo com a métrica IoU. Estes resulta-
dos demonstram que é possível encontrar padrões dentro das imagens sísmicas



usando uma abordagem não supervisionada, e estas podem ser usadas para re-
comendar o conjunto de treinamento DL de acordo com o padrão na imagem
sísmica alvo; Além disso, demonstra que o conjunto de treinamento afeta dire-
tamente o desempenho de generalização do modelo DL para imagens sísmicas.

Palavras-chave
Aprendizado profundo; Generalização; Recomendação de conjunto de

dados de treinamento; Imagem sísmica 2D em terra; Agrupamento; Indicação
de gás.
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1
Introduction

1.1
Background

Seismic image analysis is widely used in hydrocarbon exploration and
applied in marine, terrestrial, and transition zone environments. However, its
interpretation requires a significant amount of time and the result depends
on the experience of the professionals in charge of the analysis (Azzam et al.,
2018; Lou et al., 2022; Sarhan and Safa, 2019; Trani et al., 2022).

A technique used for seismic surveying is based on an energy impulse
generation that propagates through the Earth’s subsoil. The wave generated
is reflected by the different layers of rock, being captured by several devices
known as receivers that record the wave amplitude with respect to the arrival
time. After the acquisition campaign, seismic processing transforms the data
captured by the receivers into a vertical trace that represents the internal
structures of a vertical section of land. By concatenating several consecutive
equally spaced traces, a 2D seismic image is produced (Alsadi, 2017).

Methods based on Machine Learning, ML, have recently been developed
for the analysis of seismic data to accomplish specific tasks ranging from
data interpretation to detection of specific anomalies or events, these methods
represent help for professionals, who otherwise require large amounts of time
to perform the analysis, and whose results often present discrepancies when
compared to those of other professionals (Bai and Tahmasebi, 2021; Dell et al.,
2020; Sarhan and Safa, 2019; Trani et al., 2022; Zhang et al., 2022b; Zhao et al.,
2022).

Specifically, methods based on Deep learning models, DL, have been used
for the analysis of seismic images in order to obtain interpretations that help in
the exploration of hydrocarbon deposits, these methods are applied to different
environments that have specifics and particular features. Within these models
are those developed for the indication of natural gas reservoirs in 2D seismic
images (Alfarhan et al., 2020b,a; Andrade et al., 2021; Fernando Santos et al.,
2020; Pan et al., 2021a; Wang et al., 2018).
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1.2
Motivation

This work is motivated by the need to use DL-based models created for
gas inference in 2D seismic images from different exploration fields.

Normally, when creating a DL-based model for gas inference, a set of
seismic images, which come from a single exploitation field, and have labels
indicating the position of the gas reservoir within each seismic image, are
used as training. The DL model is then tested and adjusted until acceptable
performance on the gas inference task is achieved, tested on images that come
from the same exploitation field, but that were not used in the training process.

The process of creating the DL model described can be carried out using
more than one exploitation field, but there is a need to use the resulting model
in seismic images that come from new exploration fields, in which there are
no marking labels to carry out a retraining process. However, when using
the model trained on new seismic images, there are performance losses that
indicate that the new images have features that the DL model is not able to
recognize.

In this situation and depending on the number of fields with training
sets available, it is possible to create multiple DL models based on the same
or even different architectures, but a problem arises in this situation, and that
is how to determine which model can recognize the features of the new target
seismic images.

Different alternatives arise, such as using the models that were trained
using the closest seismic images in terms of terrain distance to the new seismic
images. Another option is to carry out new training using only the closest
seismic images, regardless of whether they belong to different exploitation
fields. These options are based on the hypothesis that seismic from nearby
areas have similar features. However, this may not be true in all cases, since
there may be changes in the composition of the terrain (Mustafa and AlRegib,
2021; Rollmann et al., 2022; Zhang et al., 2022a).

There is also the possibility of using professional services to select seismic
images that are most similar to the new target seismic image. Although this
option requires time and makes the method depend on the experience of the
professional in charge.

These approaches demonstrate that there is a need to identify the features
within the new seismic images that allow the identification of the gas reservoir
using DL-based models, in other words, it is necessary to identify a method
that allows adapting the creation of DL-based models according to the features
of seismic images that come from new explorations fields.
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1.3
Problem Statement

When using DL-based models on seismic images, it is observed that when
the training data and the target data are collected by the same company and
come from the same specific geological region, the results obtain satisfactory
performance. However, there is a problem with the performance when these
models are used on new data that comes from regions with different geological
conditions or is collected by different teams.

This problem is not exclusive to models developed to work with seismic
images, in general, it refers to model performance losses caused by differences
between the training data and the new data, also known as a model general-
ization performance (Chang et al., 2021; Wang et al., 2022).

There are several alternatives to face this problem. One option is to use
professional expert services to label the new seismic images allowing re-training
of the models under new features. However, this option is costly in time and
human resources (Huang et al., 2019; Li et al., 2019; Sudharshan et al., 2019;
Yu et al., 2017).

A second option is to use Domain Adaptation, DA, a field associated with
ML and has different approaches. Some of these modify the models to obtain
the ability to extract features common to training and the new data, which
allows fulfilling the aiming task (Jin et al., 2021; Li et al., 2021; Sanodiya et al.,
2021). A third option is Transfer Learning, TL, which uses models developed
to solve a different but related task, i.e., it seeks to transfer the knowledge
acquired by a model trained with a different type of data than the target
data, but whose task is the same. Transfer learning takes advantage of original
model layers by freezing some activation map values and then retraining the
model with new data (Duong et al., 2021; Hermessi et al., 2019; Soudani and
Barhoumi, 2019). A fourth option considers the situation where there is more
than one model available, each created with different data. Here each model
will have a different performance depending on the features of the data to be
processed. This approach aims to identify the most appropriate model to use
with the target data (Rollmann et al., 2021).

In this work, a DA-based approach is used, focused on the analysis of the
training data and how the representativeness of different seismic features affects
the generalization performance of gas inference models in 2D seismic images.
This approach is chosen because there is a large amount of seismic images
available to train gas inference models, yet performance with new target data
decreases, indicating the existence of multiple patterns that are not correctly
recognized by the DL models.
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1.4
Research Aim

This work aims to develop three methods to improve the generalization
performance of gas reserve inference DL methods on 2D seismic images, com-
pared to the performance of the reference method trained using all available
training data.

1.4.1
Research Questions

Main Question:
How to alter DL-based methods for gas inference in 2D seismic images

to adapt them to specific patterns of new seismic images allowing better
generalization performance?

It is clarified that DL-based methods refer to a complete method that
uses a DL model and not just a DL architecture.
Subsequent Questions:

First, compared to the results obtained with the default DL model on
seismic images, how can the available data be used to allow better general-
ization performance of the DL model? This question addresses the use and
manipulation of the available data, without modifying the existing DL model,
that is, it seeks to improve the model’s performance on new data but without
altering it.

Second, how to identify patterns within seismic images to allow a com-
parison that establishes similarities or domains, which improve the indication
of natural gas reserves? This question refers to how to extract features that
allow different seismic images to be compared, and that these features are also
relevant for identifying natural gas.

1.5
Methodology

To carry out this work, three methods are developed, in which techniques
based on ML and DL are explored, observing their impact on the generalization
performance of the gas reserve inference model.

The research is based on the following work sequence that results in the
three proposed methods:

• The components involved in the creation of a DL-based natural gas in-
ference method applied to 2D seismic images are identified and analyzed.

• Experiments are performed to determine which components have the
greatest influence on the generalization performance of the models.
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• A first proposed method is created that modifies a base gas inference
model. The effects on generalization performance are evaluated and the
limitations of the proposed method are identified.

• Two new proposed methods are created, each seeks to overcome the lim-
itations found in the previous method and achieve better generalization
performance.

• For each of the three proposed methods, experiments are carried out,
and their implication within the research objective is analyzed, as well
as their advantages and disadvantages.

• Finally, a comparative analysis is carried out between the proposed
methods, showing properties and limitations.

1.6
Contributions

There are different contributions to the state of the art, made for the
three methods proposed in this work:

• Establishment of a basis for the comparison of seismic image features.

This work presents evidence that there are patterns within seismic images
that can be identified through feature extraction and that can also
be used to compare and establish similarities between different seismic
images. These patterns can be considered domains. Furthermore, this
work presents three feature extraction methods focused on recognizing
these patterns.

• Three methods are introduced to compare features extracted from seis-
mic images that allow the creation of clusters containing a set of seismic
images with similar patterns.

Three different ways are established to compare seismic features and
create clusters based on their similarity.

• Three methods are presented that allow recommending the training
dataset for a gas inference DL model, based on similarity with the target
seismic images.

This work presents evidence that it is possible to select seismic images
from the training database that exhibit similar features to the target
seismic images and that the recommended set also affects generalization
performance.
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• An automatic selection of operational hyper parameters is established
for the DL gas inference model.

The conducted experiment demonstrates that a tuning process needs to
be performed to identify the appropriate DL operational hyper parame-
ters. This means that it is necessary to modify the hyper parameter of the
DL model to allow recognizing the features that represent the different
domains.

• Three methods are presented that enable better generalization perfor-
mance for gas inference DL methods.

The result showed that for all three proposed methods, there is an
improvement in generalization performance compared to the traditional
approach that used all available data as training for the DL model.
This demonstrates that within the context of seismic imaging, it is
important to identify the specific domain of the target images to select
the appropriate training data.

1.7
Document Organization

This thesis is structured as follows. Chapter 2 presents the main techniques
used for the construction of the proposed method. Chapter 3 shows the
analysis carried out in the search for the state of the art. Chapter 4 shows the
first proposed generalization method. Chapter 5 shows the second proposed
generalization method. Chapter 6 shows the third proposed generalization
method. Chapter 7 presents the methods comparison. Chapter 8 presents the
conclusion, contribution, future work and scientific productions.



2
Theoretical Foundation

This chapter shows the theoretical foundations used by the three pro-
posed methods, explaining the type of data, presenting several techniques that
are used for the extraction, grouping, and classification of features, as well as
the relevance analysis methods used on the extracted features.

2.1
Seismic Image Data

Seismic Image is a spatio-temporal sampling of the backscattered seismic
wavefield that is collected by seismic surveys or seismic imaging techniques.
This data is an ordered collection of traces. It can be considered as a 2/3-
D matrix, which is used to help scientists and geophysicists understand the
interior structure of the Earth and is commonly used in geophysics and the
hydrocarbon industry (Gupta, 2021).

There are different ways to create seismic images, one of them, seen
from an elevated perspective, uses waves sent through the earth to create
a seismic trace, which is a logarithmic measure of disturbances (particle
velocity/acoustic pressure), Vel.log, of waves reflected from the subsurface over
time. Traces record in a waveform the intrinsic attributes of amplitude, phase,
frequency, polarity, arrival time, and velocity of a reflection signal.

This technique uses a source wave generator and several receivers that
collect waves reflected by underground layers. The attributes of the waves are
indicators of the rock’s composition and the depth at which they are found.

By integrating the data it is possible to obtain the reflection coefficient,
Rc, that is, the amplitude of the reflected wave with respect to the incident
wave (initial seismic wave), constituting a single vector called seismic trace.
By joining different traces, a 2D matrix is created, which is a seismic image
called 2D seismic images (Alsadi, 2017; Nanda, 2016).

Figure 2.1 presents a simplified process for obtaining seismic trace data,
showing its collection and processing to obtain a seismic trace and Figure 2.2
shows an example of creating a 2D seismic image, starting from a seismic trace
and its interpretation as an image, until showing the result of concatenating
several consecutive equally spaced traces.
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Figure 2.1: Simplified seismic images acquisition process. Adapted from Alsadi
(2017) and Nanda (2016).

Figure 2.2: Example of trace and 2D seismic image.

2.2
Generalization Performance

This section introduces the concept of Generalization and also presents
several learning techniques that are used to alter the generalization of learning
models.

Generalization performance is related to the learning model’s perfor-
mance when used with out-of-sample data (Sammut and Webb, 2017a).

Section 1.3 introduces the problem that is studied in the presented work,
this is related to the generalization of performance, but this problem is related
to the assumption that any pattern recognition technique has, which is that
the new data used for inference has the same distribution as the training set
(Ghosh et al., 2020).

An example of this situation within the context of gas reservoir identifi-
cation is that a trained model can only be used on data that has been collected
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using the same equipment and parameterization used to collect the training
set, it may even be necessary that the terrain have a similar composition.

Within ML there is a subarea focused on emulating the human ability to
adapt pre-existing concepts to new environments by transferring the knowledge
acquired in previous tasks to a new one or adapting to new data that has similar
but not the same features.

This subarea is known as Transfer Learning and has different approaches,
some focus on the data, and others on the learning model (Venkateswara and
Panchanathan, 2020).

2.2.1
Transfer Learning

Transfer learning is a branch of machine learning and is defined as:
Given a source domain, DS and a source leaning task TS, a target domain

DT and a target learning task TT , transfer learning aims to improve the target
predictive function fT (.) using DS and TS, where DS ̸= DT , or TS ̸= TT (Pan
and Yang, 2010).

To put the above definition in a seismic context, we can consider the
situation where DS refers to data that was collected using a specific equipment
model, and DT refers to a new set of data that is collected using a different
model. This difference can produce data that vary in resolution, size, or other
features, even if both equipment produce the same kind of data.

Another situation may be that the data from both domains were collected
by the same equipment but TS indicates the location of natural gas reserves,
and the new TT was intended to indicate the location of the oil reserve.

In both situations, the transfer learning aim is to improve performance
in the target domain but using data available from the source domain.

Several types of transfer learning can be applied depending on the avail-
able data or the specific task in which an improvement in model performance
is sought.

To understand the different types of transfer learning, the main types and
their characteristics are introduced, contextualizing them within the seismic
area:

2.2.1.1
Multitask Learning

In Multitask Learning type, multiple target tasks exist, but the domains
are considered the same or related. It seeks to create an algorithm that can be
applied to K tasks simultaneously, using datasets that come from all domains,
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to improve generalization.
A formal definition considers K different tasks, this means that T =

{T1, T2, · · · , TK}, where the data for each task are sampled from K different
domains D = {D1, D2, · · · , Dk} respectively. In this case, each domain has
labeled data, which means a supervised learning process where the dataset is
presented as n tuples, Xl = {xi, yi}n

i=1, where xi ∈ X and X represent the
feature space of the data, and where yi ∈ Y and Y represent the set labels. In
multitask learning there is also the restriction that it may not be possible to
estimate a reliable empirical probability distribution P̂k (X, Y ) for kth domain
using only data from the kth domain Dk = {xi

k, yi
k}nk

i=1, xi
k ∈ Xk and yi

k ∈ Yk

(Caruana, 1997; Venkateswara and Panchanathan, 2020).
Within the seismic context, we can consider the source domain as the

seismic images that were collected over time to perform different tasks such as
indicating gas, oil, and water deposits, considering that this data already has
labels that indicate the deposit location.

In this example, we have several tasks T that are unrelated to each other,
but all use the same type of data (seismic) that belong to the same domain
D. Multitask Learning aims to take all the datasets with labels from D and
create an algorithm that can be used to find gas, oil, and water deposits in
new seismic images.

2.2.1.2
Self-Taught Learning

In this type of learning the aim is to use a model that was trained in
a source domain DS different from the target DT and without labels, which
means unsupervised learning. The resulting trained model is then fine-tuned
using labeled data from the target domain DT . The general idea of Self-Taught
Learning is to use a model that was trained to extract representational features
from a large unlabeled dataset and then apply another training with the target
data to tune the feature extraction to the target domain (Venkateswara and
Panchanathan, 2020).

From the seismic perspective, Self-Taught Learning can be considered
a technique that allows transferring a feature extraction model trained using
data that does not even belong to the seismic domain. For example, consider
a feature extraction model trained using 2D satellite imagery and then tune
that model for use on 2D seismic images.
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2.2.1.3
Sample Selection Bias

This is the case where the source data DS used for model training, and
even the target data DT available for tuning, do not correctly represent the
target domain or task. This lack of representation may occur simply because
there is insufficient data to recognize the specific task pattern.

For a definition there exists a sample labeled dataset D = {xi, yi}n
i=1.

Transfer learning in Sample Selection Bias aims to determine the joint dis-
tribution P̂ (X, Y ) which is a true approximation to the joint distribution
P (X, Y ) of the population using D. Since D is only a tiny subset of the entire
population, the approximate P̂ (X, Y ) is not the same as P (X, Y ). This may
be because the tiny subset D may lead to an incorrect estimation of the true
marginal distribution P (X) with P̂ (X) ̸= P (X). It could also be due to an
incorrect estimate of the class prior with P̂ (Y ) ̸= P (Y ) which then leads to an
incorrect estimate of the class conditional P̂ (Y |X) ̸= P (Y |X) (Venkateswara
and Panchanathan, 2020).

In a seismic context, consider the example of the case when a model is
used to find oil reserves, but the new data presents geological faults that alter
the underground layer shape. This specific peculiarity of new seismic images
can be considered a bias if there are few or no geologically faulted seismic
images in the training dataset. In this case, the model is strongly influenced
to learn to identify the pattern that allows finding oil reserves in data without
geological faults.

2.2.1.4
Lifelong Machine Learning

In this type of learning the aim is to use a model that was previously
trained for several tasks and train it to perform a new one, but without
forgetting the previous tasks. This type of transfer learning is different from
Multitask learning because new tasks are learned one at a time and not all at
the same time.

In Lifelong Machine Learning, a learning model that was trained for the
tasks {T1, T2, · · · , TK} is updated to learn the task TK+1 with data DK+1.
The idea is that learning the K +1th task is easier since the model has already
learned the {T1, T2, · · · , TK} tasks, this approach uses knowledge accumulation
(Fei et al., 2016; Venkateswara and Panchanathan, 2020).

From a seismic perspective, this type of learning can be illustrated with
the example of using a model that was trained for gas indication and then is
trained again with new data for the oil indication task, the expected result is
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a model that can indicate both oil and gas reserves.

2.2.1.5
Zero-Shot and Few-Shot Learning

This type of transfer learning can be seen as an extreme case because
these approaches attempt to learn to recognize new categories of data using a
minimal number of samples. The key idea is the ability to transfer knowledge
of previously learned categories to learn to recognize the boundaries that allow
discriminating a new one. The advantage of Zero-Shot and Few-Shot Learning
is that it allows recognition of a new category using only a few (or no) labeled
examples. In this case, the model uses a blended learning strategy, which uses
a tuple consisting of data and his description for training, then the trained
model can use only the description of a new category to learn to recognize it
(Fei-Fei et al., 2006; Goodfellow et al., 2016).

Within the seismic context, the following example can be considered:
a model for rock type classification was trained using as samples a tuple of
2D images taken at high resolution and a vector containing the compositional
features.

To apply Zero-Shot and Few-Shot Learning to the trained model, it must
be able to perform a new training using only the description vector, to finally
be used to classify a new set of 2D rock images without vector description.

2.2.1.6
Domain Adaptation

In the DA approach, knowledge transfer occurs between two or more
domains, source and target. The source domains DS are different from the
target domain DT , but the aim of DA is to solve a common task T = {Y, f (.)}.
Typically, in DA there are a large number of source data points and no labeled
data (or few samples) in the target dataset, so it is difficult to estimate the
joint distribution P̂ (X, Y ). DA approximates P̂T (X, Y ) using the source data
distribution estimate P̂S (X, Y ) , which is possible since the two domains
are correlated (Chattopadhyay et al., 2012; Venkateswara and Panchanathan,
2020).

DA is also used for learning to classify where relevant examples are
sampled from the source data to train a classifier that can also classify
target samples. Another approach projects data points into feature subspaces
common to the source and target datasets, the classifier is trained to obtain
the features in the common space of the source data. In these approaches, the
source and target feature representations are predetermined and alignment
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techniques are applied to reduce the domain distribution difference between
domains. They can also be called shallow domain adaptation (Long et al.,
2013, 2014; Venkateswara and Panchanathan, 2020).

In the seismic context, DA presents a solution to the situation where a
model for indicating oil reserves was trained using data from a specific layer
distribution but wants to be used in other regions that have a different layer
distribution. In this case, the task is the same (indication of oil reserves), but
there are differences between the training source and the target data.

There are variants of DA that introduce restrictions or have different
characteristics:

1. Supervised or Semi-Supervised Domain Adaptation

In this type of DA, the source dataset has labels for each sample, but the
target domain only has a few samples with labels, which is insufficient
to create a training model without the help of the source domain.

The source domain has the dataset labeled DS = {xs
i , ys

i }ns

i=1 and the
target domain consists of the dataset DT = {xt

i, yt
i}

nt

i=1∪{xt
i}

nt+nu

i=nt+1, where
nt are labeled samples and nu are unlabeled, and nt ≪ nu. With the
small number of labeled samples (nt) it is not possible to estimate the
joint distribution PT (X, Y ) without the risk of overfitting, but the source
domain has a large number of samples labeled nt ≪ ns, which can be used
to perform training and align the distribution between the source and
target domains (Venkateswara and Panchanathan, 2020; Venkateswara
et al., 2015).

From a seismic perspective, this is the case when there is a large amount
of seismic images coming from a field that has already been analyzed
and has labeled data, but now there is a new field in which there is some
seismic images that were verified by exploration wells. In this case, the
available seismic images from the new field are not enough to train a
model and it is necessary to use both the dataset that has large labeled
data, and the available data from the new field.

2. Unsupervised Domain Adaptation

In this type of DA there are no labels for the target domain, which means
that all the training data for the target task comes from the source
domain, for this reason, the more similar the domains are, the easier
the adaptation will be. However, in cases where the domains are very
different, it is necessary to use several techniques to identify a common
representation space for both domains.
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In unsupervised DA, the source domain has data labeled DS = {xs
i , ys

i }ns

i=1

and the target domain consists of unlabeled data DT = {xt
i}

nt

i=1. The
aim is to align the domains to approximate the target joint distribution
PT = (X, Y ) that allows the labels for the target domain to be estimated
(Venkateswara and Panchanathan, 2020).

Within the seismic context, unsupervised DA can be explained by
considering the case where a model for gas inference in 2D seismic images
is trained using data coming from an exploitation field that was labeled
by a professional expert, but the model needs to be used in another field
that only has 2D seismic images without labels. In this case, there are
differences between the field data such as the type of terrain, the team,
and the equipment used to collect the data, which make it necessary to
adapt the knowledge obtained from the exploitation field to the new one.

3. Unconstrained Label Spaces Domain Adaptation

In the standard form of DA, the source and target domains have
identical label spaces, meaning that the task of both domains has a
similar label class, for example, identifying a single object or performing
a classification with the same number of classes. In an unrestricted
adaptation, the source and target label spaces can be different, even
the target domain can have an extended label space.

There are variants of this approach, the first called Partial DA is an
approach in which the source label space is a superset of the target label
space, this means that the source dataset has all the categories of the
target dataset YT ⊂ YS. Another approach called Openset DA has an
intersection between the label space of the source and target domains
YT ̸⊂ YS, YS ̸⊂ YT and YS ∩ YT ̸= ∅. There even exists a variant that
considers the source space like a subset of the target label space YS ⊂ YT

(Cao et al., 2018; Geng et al., 2021; Saito et al., 2018).

From a seismic perspective, Unconstrained label space domain adapta-
tion can be used when there is a model that was trained for rock classi-
fication and needs to be adapted for use with a new set, which contains
part of the rocks from the source domain, but they also present new types
of rocks. In this case, the new model can take advantage of the feature
extraction and part of the classification layer included in the original
model.

4. Multisource Domain Adaptation



Chapter 2. Theoretical Foundation 15

In this type of DA there is K source domain DS = {D1, D2, · · · , DK}
and a target domain T , in this case there are multiple source datasets
with labels to train the model and the target domain has a new (and
unseen) dataset. The joint distribution P̂T (X, Y ) is different from each
element of P̂S =

{
P̂Si

(Xi, Yi)
}K

i=1
, the aim of Multisource DA is to align

the feature space representation between domains to reduce domain shift
and enable knowledge transfer to approximate P̂T using the source joint
distribution estimate P̂S (Venkateswara and Panchanathan, 2020; Zhao
et al., 2020).

Within Multisource DA there are approaches that use the source domains
labeled datasets to adapt the new model to be used with the target
data, however, there are approaches that consider the fact that the
source datasets are not accessible, these approaches focus on performing
adaptation using only the models trained in each domain (Ahmed et al.,
2021).

Within the seismic context, Multisource DA can be used in situations
where there are multiple seismic datasets from different exploited gas
fields that were used to train multiple gas inference models. Still, there
is no guidance on which model may enable better performance or even
whether it exists. In this case, there are several source datasets with
different domains within them, from which DA can learn to create a
new model for gas inference considering the features of the new seismic
images.

The above list presents only some of the transfer learning methods used
in the area of ML. Figure 2.3 shows a summary.

2.2.2
Connection of Transfer Learning with the Proposed Work

This section presents several features of the problem under study from
a computer science perspective, which allows the problem to be placed within
an ML context to determine the subarea on which the proposed solution is
focused.

2.2.2.1
Target Task

For each field, the task is to indicate the location of the gas reservoir
within the 2D seismic images. This means the model aims to recognize patterns
within the training data to indicate gas reserves in new 2D seismic images.
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Figure 2.3: Types of Transfer Learning described.

According to the problem described in Section 1.3, this task has the
restriction of not having labels for the 2D seismic images of the target field,
so it is not possible to train a model using data from the same field, that is,
all training data must come from other fields suggesting unsupervised learning
process.

From a computer science perspective, this means that each field shares
the same task, with an unsupervised learning process, but the study data
needs to be analyzed to correctly identify the problem from a computer science
perspective.
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2.2.2.2
Dataset Characteristics

The problem described in Section 1.3 shows that datasets from different
exploitation fields have related features, but there are important differences
that do not allow the model trained on a specific field to maintain performance
when used in data from another field.

This difference can be explained by the collection process described in
Section 4.2.1, which shows that the data was collected on different dates by
five collection teams, which also used unknown equipment parameterization,
in addition, the fields may have unknown terrain variations.

Considering this dataset’s characteristics is possible to affirm that there
exist different source domains that may be used to train a new model to be
used in a single target field.

2.2.2.3
Problem Characterization

Considering Sections 2.2.2.1 and 2.2.2.2 it can be concluded that there
are different domains but they all have the same common task, and the general
aim is to use all the available data from the training fields to apply them on
the new unlabeled data.

This describes a case with multiple source domains with a single target
domain that share the same task, and the aim is to adapt the knowledge of
the source domains to generalize the performance of a learning model applied
to the target domain.

According to Section 2.2, the type of learning technique that is closest
to the previous conclusion is Multisource Domain Adaptation. Figure 2.4
highlights this type of learning within the classification described in the
Figure 2.3.

2.3
Classification Techniques

The methods for the indication of natural gas include a classifier based
on deep learning, which is trained using seismic traces, in this section the
networks used are presented.

2.3.1
Long Short Term Memory Networks, LSTM

LSTM is a special type of recursive network, so data can be persisted
by creating loops in the network diagram, allowing it to remember previous
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Figure 2.4: Learning technique closest to the problem under study.

states and use this information to decide the next states. LSTM was specifically
designed to address the problem of long-term dependency, whereby information
is remembered for a long period, for which it can remember, and decide what
to forget and how much to learn or ignore from new data (Hochreiter and
Schmidhuber, 1997; Ranjbar and Toufigh, 2022). Figure 2.5 present a LSTM
cell example.

Figure 2.5: LSTM cell example, Adapted from Ranjbar and Toufigh (2022).

2.3.2
Gated Recurrent Unit, GRU

GRU is a variation of LSTM that has two gates, update and reset.
The update gate indicates how much to keep from the previous cell, and the
reset gate defines how much to incorporate from the new input. The GRU
network compared to LSTM has fewer parameters, as it reduces the number of
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gates, which allows training to be faster (Cho et al., 2014; Wang et al., 2022).
Figure 2.6 present a GRU cell example.

Figure 2.6: GRU cell example, Adapted from Wang et al. (2022).

2.4
Feature Extraction

In this section, features that represent each seismic image are extracted
using different techniques, this was selected taking into consideration the
ability to characterize attributes and affinity with the type of data under study,
in addition to ensuring that each technique captures a different aspect or scale
of seismic images.

2.4.1
Phylogenetic Index

Originally used in Biology, phylogenetic indices based on the diversity
of species is a technique that allows quantifying the relationships between
different individuals and species of a community. Diversity is a term frequently
used in the area of ecology, where an index of diversity describes the variety
of species present in a community or region, phylogeny is a branch of biology
responsible for the study of the evolutionary relationships between the species
in order to determine possible common ancestors (Magurran, 2004; Baxevanis
and Ouellette, 2004).

Given the similarity of data format between the images and 2D seismic
images, it is possible to use this technique as a feature extractor to measure the
relationships between different seismic amplitudes (species) and the amount of
each amplitude (individuals) in a seismic image (community) (da Cruz et al.,
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2020; de Carvalho Filho et al., 2018; de Sousa Costa et al., 2018). To use
this approach in images or seismic 2D data, it is necessary to make an analogy
between its properties. Table 2.1 shows the correspondence between the terms.

Table 2.1: Matching Terms Proposed Between Biology and Image Processing.
Biology Image processing Seismic
Community Image Seismic image
Species Level of intensity Intensity
Individual Pixel or voxel Wave magnitude

Histogram is the base for the extraction of features of phylogenetic
indices, Figure 2.7 shows an example of a histogram to be used to explain
the terminology used in phylogenetic indices equations, The total number of
different levels of amplitudes for this example is 9, represented by the s, the
value of each amplitude is presented by the axis named "Amplitude". An axis
called "Abundance" presents the amount of occurrence of each amplitude. This
value is represented by the xi, where i is the specific amplitude. For example for
amplitude 1 (value -1.00), its abundance is x1 = 5. w represents the distance
that exists between two amplitudes, for example, w1,2 = 0.25, indicates that the
distance magnitude between amplitudes 1 and 2 is 0.25. Finally, n represents
the sum of all xi for i = (0, ..., s).

Figure 2.7: Seismic histogram and phylogenetic indices nomenclature example.

Taxonomic Diversity Index, ∆
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Quantifies the average taxonomic distance between all amplitude pairs,
which means that ∆ quantifies how closely related the amplitudes are in a
seismic image, ∆ is computed by Equation (2-1).

∆ =
∑ ∑

i<j wijxixj

n (n − 1) /2 (2-1)

Mean Phylogenetic Distance, MPD
Represents the distance relationship between all pairs of individuals of

different amplitudes and the number of individuals in each pair. This distance
quantifies the separation that exists between the amplitudes in a seismic image.
MPD is calculated using Equation (2-2).

MPD =
∑ ∑

i<j wijxixj∑ ∑
i<j xixj

(2-2)

Intensive Quadratic Entropy, I
Constitute the taxonomic relationship of amplitudes, which measures

the relationship between the amplitudes without considering the number of
individuals in each one. I is of special relevance when used in normalized
images that present the same amplitudes since it is influenced only by their
separation. I can be computed by Equation (2-3).

I =
∑

i,j wi,j

s2 (2-3)
Extensive Quadratic Entropy, E

Presents the magnitude of distance between all the amplitudes. This
measurement is affected by the number of different amplitudes and their
histogram distance, which means that the more amplitudes, or the further
the amplitudes are, the greater the magnitude E. Equation (2-4) defines E.

E =
∑
i,j

wi,j (2-4)

Average Taxonomic Distinction, AvTD
Considers the average of all distances between a pair of amplitudes to the

total number of different amplitudes in the seismic image without considering
the number of individuals. When used between the first and last amplitude,
AvTD measures how tight the amplitudes are in spectral space. Equation (2-5)
defines AvTD.

AvTD =
∑ ∑

i<j wij

s (s − 1) /2 (2-5)

Total Taxonomic Distinction, TTD
Represents the sum of the average distances between all amplitudes in

the seismic image, TTD is calculated using Equation (2-6).
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TTD =
∑

i

∑
i ̸=j wij

s − 1 (2-6)

Pure Diversity Index, PDI
Calculate the sum of the distances between each amplitude and its closest

neighbor. PDI is given by Equation (2-7).

PDI =
∑

wimin (2-7)
Mean Nearest Neighbor Distance, MNND

Calculate the mean sum of the distances between each amplitude and its
nearest neighbor relative to the number of amplitudes. Equation (2-8) defines
MNND.

MNND =
∑

wimin

s
(2-8)

2.4.2
Local Binary Pattern, LBP

Allows to extract a binary representation that maps the features of local
texture in a image, applying a division mesh to the original image and then
performing a component-by-component analysis to the central value of each
subdivision (Kar and Banerjee, 2021; Mehmet Bilal, 2021; Pan et al., 2021b;
Shu et al., 2021).

LBP performs a seismic image division and, from each subdivision,
extracts a binary representation of the texture features created by comparing
the value of the central amplitude with the neighboring amplitudes according
to a comparison radius. Operationally, LBP uses Equation (2-9) to extract a
binary representation of each subdivision:

LBPP,R =
P −1∑
p=0

b(fp − fc) × 2P , b(x) =

1, x ≥ 0
0, x < 0

(2-9)

where P identifies the amplitudes members used within each subdivision, R is
the distance radius that identifies the sample amplitude, fc is the equidistant
central amplitude of radius R within the sample P , fp(p = 0, ..., P ) is the
neighboring amplitude that is at a distance R of fc, and b(x) is the comparison
operator that assigns the value of 1 to neighboring amplitudes that have a value
greater than or equal the central amplitude and 0 otherwise.

However, to refine the extracted features, a uniformity descriptor is
applied the Equation (2-10):

U(LBPP,R) =| b(fP −1−fc)−b(f0−fc) | +
P −1∑
p=1

| b(fp−fc)−b(fp−1−fc) | (2-10)
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Finally, LBP considers the extraction of features that are invariant to
the rotation of the image, using Equation (2-11).

LBP riu2
P,R =


∑P −1

p=0 b(fp − fc), if U(LBPP,R) ≤ 2
P + 1 otherwise

(2-11)

where the superscript riu2 reflects the use of rotation-invariant "uniform"
patterns that have a U-value of at most 2.

2.4.3
Discrete Fourier Transform, DFT

DFT is a discrete transform that is part of the Fourier analysis, which
allows transforming a function f(x) belonging to the time domain to obtain its
representation F (x) in the frequency domain, using equation (2-12) (Ahmadi
et al., 2021; Chui et al., 2021; Osgood, 2019; Qi et al., 2021; Sandwell, 2021;
Wu et al., 2021).

F (x) =
∫ ∞

−∞
f (x) e−i2πkxdx (2-12)

where i is the imaginary component, x is the distance and k is the wave number,
where k = 1/λ and λ is the wavelength.

Feature extraction by DFT refers to the extraction of the frequencies that
are present after the transformation of the seismic trace within the frequency
space, as well as the number of times it occurs, this is equivalent to taking the
histogram of the traces after performing the DFT transformation.

2.5
Feature Analysis

When using multiple methods to perform feature extraction, the poten-
tial for redundant data arises, so it is viable to use feature analysis techniques
to reduce unrepresentative data.

The feature extraction process is carried out to identify attributes in the
data that result in quantitative information of interest and allow differentiation
of one object class from another, this process is also known as characterization.

The extraction of features in images seeks to obtain insensitivity to
capture and lighting noise, in the same way, it must be independent of certain
variations such as translation, rotation, scale, and transformations. Image
characterization can be used in processes that require segmentation of ele-
ments that make up the image or can also be used to extract data that allows
a classification of the entire image (Gonzalez and Woods, 2008).

Principal Component Analysis, PCA
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The PCA has the purpose of transforming a set of variables, calls of
originals, into a new set of variables called principal components. The new
variables are linear combinations and are constructed according to the order
of importance in terms of the total variability that they collect from the sample
(Jolliffe, 2002).

The concept of more information is related to that of greater variability
or variance. The greater the variability of the data (variance), is considered
that there is more information. That is, the greater its variance, the greater the
amount of information that this component has incorporated. For this reason,
the one with the highest variance is selected as the first component, while the
last component is the one with the lowest variance (Jolliffe, 2002).

After using PCA to perform principal component extraction, a trained
model is also created that can be used to extract principal components from
new data, in the same way, this model is called the PCA model.

2.6
Performance Metrics

The performance metrics used for natural gas indication are Accuracy,
F1 Score, Intersection Over Union, Precision, and Recall. To assess the quality
of the clustering, the silhouette coefficient is used.
Accuracy

Accuracy refers to the degree to which the predictions made by a model
match the reality that is modeled, it is applied when the test data is labeled,
it can be calculated as the number of classified objects correctly divided over
the total number of objects. Table 2.2 shows the confusion matrix, on which
Equation 2-13 is based to calculate the accuracy (Sammut and Webb, 2017b).

Table 2.2: Confusion Matrix.
Predicted Class

Positive Negative

True Class Positive TP FN
Negative FP TN

In Seismic the accuracy indicates how well all the pixels in the Gas and
No Gas classes were classified, however, given the great imbalance that exists
between these classes, it is not possible to use only this metric to evaluate the
performance of the DL model, since a correct classification of the pixels of the
"No gas" class hides the true performance of the "Gas" interest class.

Accuracy = TP + TN

TP + FP + TN + FN
(2-13)
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where TP are the true positive cases, TN are the true negative cases, FP are
the false positive cases and FN are the false negative cases.
Intersection Over Union, IoU

IoU is normally used in object detection. It is used to determine true
positives and false positives in a set of predictions, based on Equation 2-14
(Rezatofighi et al., 2019).

IoU = TP

TP + FP + FN
(2-14)

Precision
Precision represents the ability of the predictor to correctly identify

positive cases in relation to the total positive cases predicted by the model.
Precision is defined in Equation 2-15 (Sammut and Webb, 2017b). In seismic
Precision indicates how successful the model is in indicating the location of
natural gas, a low precision generally indicates the high presence of false
positives.

Precision = TP

TP + FP
(2-15)

Recall
Represents the estimator’s ability to correctly identify cases that are

considered true positives, represented in Equation 2-16 (Sammut and Webb,
2017b). In seismic, Recall determines how much natural gas the DL model
is able to indicate correctly, disregarding false positives, that is, a high recall
indicates that the model inferences match the geoscientist’s marking labels.

Recall = TP

TP + FN
(2-16)

F1 score
The F1 score metric takes into account FP and FN to calculate the

weighted average of Precision and Recall. It is used when classes are not bal-
anced, its interpretation indicates that high values mean greater classification
Precision. A high value indicates that the model performs indications that
match the gas marking labels and at the same time has a low number of false
positives. F1 score is represented by Equation 2-17 (Powers, 2011).

F-measure = 2 ∗ Precision ∗ Recall

Precision + Recall
(2-17)

Silhouette coefficient, S
The silhouette coefficient is used to measure how compact and well-

separated the clusters are, using the Equation 2-18 (Rousseeuw, 1987).

S (i) = b (i) − a (i)
max {a (i) , b (i)} (2-18)
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Where a (i) represents the mean distance of the ith element from all others in
the same clusters, and b (i) represents the mean distance of the ith element
from all elements in the nearest cluster. The resulting value of S (i) will be
between [−1, 1], where values close to 1 indicate very good clustering. Values
around 0 indicate that there is an intersection between the clusters. Values
close to -1 indicate a bad grouping or that the samples are not in any cluster.



3
Related Works

When searching in the state of the art, it was not possible to find works
that had the same objective on the same type of data as those proposed in
the present work, however, the selected approach to address the generalization
problem implies various processes such as the seismic features extraction and
clustering, which makes it possible to find works that present solutions to these
processes.

3.1
Report of the Analysis of the State of the Art

This section presents the results of applying the literature review.

3.1.1
Principal Findings of Literature Review

The findings after carrying out the review of the state of the art, point
to various paths that contribute to the solution of the problem posed, which
in turn has various implications that are discussed:

1. The first finding is summarized in the fact that a method wasn’t found
to solve the problem posed by the specific data, this means that it was
not possible to find a method that addresses the generalization problem
of DL models designed for 2D seismic images.

2. When considering the various components of a DL model and its training
phases, various strategies arise that can be applied to address the research
problem, in this way, although a work that solves the investigation
problem has not been found in the state of the art., it is possible to
find multiple works that focus on each component and that seek to solve
similar problems although with different data.

3. To face the problem, two different types of strategies are perceived, the
first focuses on the analysis and transformation of the training data and
the new data. The second strategy seeks to modify the DL models so
that they adapt to data with new features.
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4. Within the data analysis and transformation strategy, there is a tendency
to use adversarial methods, to make the new data acquire features of the
training data without losing relevant information.

5. Within the DL model modification strategy, there is a tendency to
interpret features to find a common space that preserves the relevant
features of both the training data and the new data. This means that in
the first stages of execution of the DL models, data from the common
space is extracted from the new data.

6. Some works propose the use of multitasking networks, which allow a
grouping of data according to their features, although these works are
not focused on improving the generalization of DL models, the use of
data grouped by their features to carry out the training of the DL models
offers a first approximation to address the research problem.

3.1.2
Generalization Works

In the review of the state of the art was possible to find generalization
studies of DL models for geological data, although, with different tasks, that is
why in this section a comparison is made focused on the processes, techniques
and data management that allow generalization and not on the metrics that
each study achieves since these are not comparable when dealing with different
tasks:

In Xu et al. (2022) an adversarial Autoencoder-based method is proposed
to contrast discrepancies in seismic data that allows feature extraction for the
identification of lithological properties, which allows real-time interpretation
of seismic data in well drilling, achieving the performance of 70.4% on average.
This method seeks to obtain features of the latent space that ignore the
particular properties of each domain, understanding by domain a certain
and known depositional environment and recording equipment, which allows
obtaining a generalization of the DL model for lithological identification.

The work of Xu et al. presents similarities with the methods proposed
in the present work, in the first place, it is recognized that the data that are
available for training, although they are of the same type, there are differences
called domains that originate from the distribution of the field, and by the
registry capture equipment and its configuration, secondly, the extraction of
features that are representative for all types of domains is proposed, at this
point, a difference between the works is presented, since Xu et al. has data
that allows the available seismic images to be grouped in several domains,
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however, the present work does not have these domain labels, which makes it
impossible to use a contrastive approach in the way proposed by Xu et al.,
although the methods proposed in this work can be used as a feature extractor
for lithological identification.

Another difference is the way of using the proposed methods since Xu
et al. is designed to be used in real-time in well drilling, while the methods
proposed in this work are designed as an interpretation aid tool that allows
indicate the location of gas reservoirs, which leads to the drilling of wells. This
is an important difference since Xu et al.’s method did not use the seismic
data of the new target region to build the model as such data is not available,
whereas the present work uses these data as a basis of comparison for defining
the training data that allow a generalization of the DL model.

The most significant difference in the way feature extraction is performed
between both methods is that Xu et al. takes advantage of available domain
data so that Autoencoder’s feature extraction model can ignore features
associated with the particulars of the domain that do not represent relevant
data for lithological identification, in comparison the methods proposed in this
work, lacking domain annotation, focuses on the creation of a latent space that
represents seismic images regardless of which domain they belong to.

All methods have the same type of limitation in terms of their general-
ization capacity, given by the representativeness limited only to the samples
present in the training data, this means that although both methods are capa-
ble of extracting representative features from a latent space, their effectiveness
when used for new data will be limited to the existence of representative sam-
ples within the training data, in other words, they depend on the existence of
samples within the training data that belong to the same domain as the new
samples.

Zhu et al. (2020) presents a method to improve the generalization of DL
models to detect earthquake signals in seismic data by augmenting the training
data, the results show data augmentation can mitigate the bias in training data
and improve the performance of a dataset with different statistics. Zhu et al.
reaffirm the dependence that exists in DL models with the diversity of training
data to achieve good performance, in the same way, it shows the limitation that
exists due to the lack of a large set of high quality training data, or the high cost
associated with its construction considering good labeling and quality control.
This method uses small training data sets to perform transformations that
increase the number of samples and their variability, obtaining larger training
data sets, however, Zhu et al. highlights the fact that not all transformation
processes, commonly used in computer vision can be applied to seismic data,
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since some of these processes violate the physical properties of the waveform
data of interest, for this reason, it focuses only on those techniques compatible
with seismic signals.

Although the form of data collection and the purpose of the model
developed in Zhu et al. (2020) are different from the methods proposed in
this work, there are similarities that allow a comparison, the most significant
being that both methods do not require modification of DL models since they
both focus on processing the training data.

Similarly, both methods consider that the quality of the labeling and the
variability are factors that influence the generalization of the models, that is,
there are different properties that make the training samples have features that
allow establishing subsets, despite the fact that all samples belong to the same
data type, however, the methods address these properties differently, which
can be complementary for both works.

Zhu et al. focuses on the lack of data with enough variability to train a DL
model, unlike the present work that focuses on recognizing the features of such
variability that allow the creation of clusters. This difference is crucial since in
the case of the Zhu et al. method the variability is increased, but the problem
of how representative the data used in the training is about the new objective
data continues since the DL model is trained to try to recognize all properties
within variability, instead of focusing only on those that are most representative
for the new data. In contrast, the methods proposed in the present work focus
on recognizing the patterns that characterize the variability of the training
set and comparing them with those of the new samples to propose a new
training set, however, this approach is based on the premise that there is a
set of samples that are significantly representative of the new target sample
within the training set, and that are sufficient to train the DL model.

When comparing the limitations of all methods, it is found that they
can be complementary, making this study a proposal to be developed in future
works.

Mustafa and AlRegib (2021) presents a method that improves the
generalization of a DL model for seismic phase segmentation, using an active
learning approach. In this method, a generalization of the DL model with
an Encoder-Decoder architecture is achieved by integrating an Autoencoder
branch in the segmentation model, which, starting from the latent space
created by the Encoder, adds a parallel Decoder branch for the reconstruction
of the input data, in this way the model is trained for the segmentation task
and at the same time the capacity of the model to process each data based on
the reconstruction error is qualified, which allows the model to request that
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the data with a high reconstruction error be labeled, since the representation
of this data in the model is assumed to be weak, and more data with markup
labels are required. This method achieved the mean Intersection-Over-Union
value of 0.773 was tested in the Netherlands F3 block study.

At first, it could be considered that the method proposed by Mustafa
and AlRegib does not have much similarity with the present work, however,
both focus on the processing of training data and identify the properties of
the samples that allow a clustering, in addition to providing the DL model
with the most representative samples. Even so, both methods have different
ways of working, the method proposed by Mustafa and AlRegib, identifies the
samples that have different features, within the training process of the DL
model for the fulfillment of the specific task of segmentation of seismic phases,
which implies a modification of the original DL model, which differs from the
methods proposed in this work, which performs the identification of features
for each sample independently of the DL method for gas indication, which
makes both tasks independent.

Each approach brings different properties, in the case of Mustafa and
AlRegib, the method requests which specific samples it needs to be tagged,
which involves active training, but thanks to this it makes the markup tags
more representative for the DL model, on the other hand, the methods
proposed in the present work uses unsupervised learning to identify the features
of the training samples, separating the samples into clusters, in this way the
method can be applied independently of the model DL selected but does not
offer any consideration about the lack or not of the marking labels.

Another important difference is the way the generalization is achieved,
the Mustafa and AlRegib method, obtains a model that was trained to
recognize all the representative properties of the different domains found within
the training database, on the other hand, the methods proposed in this work
focuses on training a different model for each set of new seismic samples, giving
the model the ability to recognize the dominant representative properties in
the new seismic samples, in this way the resulting model focuses in recognizing
the features that are present in the objective data.

Quamer Nasim et al. (2020) presents a method for seismic phase segmen-
tation that allows generalization by domain adaptation using transfer learning.
This method proposes a network architecture based on U-net that also uses
residual blocks and transposed residual blocks for the phase segmentation task,
using the labeled data of the source domain to perform the training and evalua-
tion of the loss function. On the other hand, it integrates a Siamese architecture
that is evaluated using a loss function based on the alignment correlation for
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domain adaptation, which seeks to minimize the differences between the data
extracted from the source domain and the target domain, in this way the DL
model learns to extract data that ignores the particularities of each domain,
but is still representative for the seismic phase segmentation task, and at the
same time achieve a generalization of the model for the target domain. The
test was made on the public F3 block 3D dataset from offshore Netherlands
and Penobscot 3D survey data from Canada, the maximum class accuracy
achieved was 99% for Penobscot class 2 with > 50% overall accuracy.

Quamer Nasim et al. presents a method that offers the opportunity to
compare the methods proposed in this work from a more traditional point
of view regarding the problem of generalization of DL models. Both methods
require new training for each new domain, in the same way for both methods
there is no certainty that the new data really belongs to an unknown domain
and that they are not represented within the training database, but it is known
that there are no markup labels for the new data. Another similarity is that
both methods seek, in addition to a generalization, to fulfill a specific task
using seismic images, recognizing that the training samples have particular
features that depend on factors such as the distribution of the terrain, which
vary depending on the density, type of rock, porosity and permeability of the
earth.

However, the methods have significant differences: first, Quamer Nasim
et al.’s method requires modifying the original model to include the domain-
adaptive Siamese network, which causes the generalization process to be
performed at training time, compared to the methods proposed in this paper,
which does not require original DL model modification, this difference has
implications in the way the training is performed, since for the Quamer
Nasim et al. method, it is necessary to generalize the model for each new
seismic sample, in comparison with the methods proposed in this work, it
performs training data clustering independently of the DL model for gas reserve
indication, this means that only the model for gas search is trained based on
the training data selected for each new set of seismic samples, which does not
require repeating the original training database clustering process. A second
difference is that the Quamer Nasim et al. method can perform generalization
even when the new samples belong to a domain that is not represented in the
training database, compared to the methods proposed in the present work,
it can only recommend training samples that are closest to the new seismic
samples features.

Another difference is that Quamer Nasim et al. defines a domain about
the original data region, in this way it does not consider that multiple domains
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can exist within a region, in this way when training the DL model, it is not
done the separation of the samples based on their features to then carry out a
domain adaptation. Considering this difference, the methods proposed in the
present work could be used as a pre processing, identifying the samples that
belong to a single domain and then carrying out the adaptation, which would
facilitate learning by the DL model, this new application could be considered
for future studies.

3.1.3
General Report of Related Works

Table 3.1 - Table 3.3 present the most relevant works found in the review
of the state of the art.
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Table 3.1: Data collected by reviewing the state of the art.
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Table 3.2: Data collected by reviewing the state of the art.
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Table 3.3: Data collected by reviewing the state of the art.

Fi
rst

Au
th

or
Pu

bli
ca

tio
n

so
ur

ce
Da

te
Pa

pe
rN

am
e

M
ain

to
pic

ar
ea

Se
ar

ch
Te

rm
s

Re
se

ar
ch

qu
es

tio
n/

iss
ue

St
ud

y
da

ta
M

ain
te

ch
niq

ue
su

se
d

M
ain

co
nt

rib
ut

ion
Si-

Bo
Zh

an
g

Pe
tro

leu
m

Sc
ien

ce
20

22
A

com
pa

ris
on

of
de

ep
lea

rni
ng

me
tho

ds
for

sei
sm

ic
im

pe
da

nc
ei

nv
ers

ion
(Z

ha
ng

et
al.

,2
02

2c)
sei

sm
ic

inv
ers

ion
pro

ble
m.

au
toe

nc
od

er
AN

D
sei

sm
ic

AN
D

da
ta

De
ep

lea
rni

ng
is

wi
de

ly
use

df
or

sei
sm

ic
im

pe
da

nc
ei

nv
er-

sio
n,

bu
tf

ew
wo

rk
pro

vid
es

in-
de

pth
res

ear
ch

an
da

na
lys

is
on

de
sig

nin
gt

he
arc

hit
ect

ure
so

fd
eep

ne
ura

ln
etw

ork
sa

nd
ch

oo
sin

gt
he

ne
tw

ork
hy

pe
rpa

ram
ete

rs.

3D
sei

sm
ic

wa
ve

am
pli

tud
ed

ata
mu

lti-
sca

le
arc

hit
ect

ure
Ne

tw
ork

arq
uit

ec-
tur

ac
om

pa
ris

on

Sm
ith

W
.A

.C
an

chu
-

mu
ni

Co
mp

ute
rs

&
Ge

osc
ien

ces
20

19
To

wa
rds

ar
ob

ust
pa

ram
ete

riz
ati

on
for

con
dit

ion
-

ing
fac

ies
mo

de
ls

usi
ng

de
ep

va
ria

tio
na

la
uto

en
-

co
de

rs
an

de
nse

mb
le

sm
oo

the
r(

Ca
nc

hu
mu

ni
et

al.
,

20
19

)

con
str

uc
tio

no
fa

con
tin

uo
us

pa
ram

ete
riz

a-
tio

no
ffa

cie
s

au
toe

nc
od

er
AN

D
sei

sm
ic

AN
D

da
ta

En
sem

ble
-ba

sed
me

tho
ds

ha
ve

be
en

ap
pli

ed
wi

th
rem

ark
-

ab
le

suc
ces

sf
or

da
ta

ass
im

ila
tio

ni
ng

eos
cie

nc
es.

Ho
we

ver
,

the
y

som
eti

me
sf

ail
to

pre
ser

ve
the

geo
log

ica
lr

eal
ism

of
the

mo
de

l,w
hic

hi
sp

art
icu

lar
ly

ev
ide

nt
in

res
erv

oir
sw

ith
com

ple
xf

aci
es

dis
tri

bu
tio

ns.

Sy
nte

tic
ch

an
ne

liz
ed

fac
ies

mo
de

l
con

vo
lut

ion
al

va
ria

tio
na

la
uto

en
co

de
ra

nd
the

en
sem

ble
sm

oo
the

rw
ith

mu
ltip

le
da

ta
ass

im
ila

-
tio

n

Mu
ltip

le
da

ta
ass

im
-

ila
tio

n

Ste
fan

os
Ni

ko
lop

ou
los

En
gin

eer
ing

Ap
pli

cat
ion

so
fA

rti
fic

ial
In-

tel
lig

en
ce

20
22

No
n-i

ntr
usi

ve
sur

rog
ate

mo
de

lin
gf

or
pa

ram
etr

ize
d

tim
e-d

ep
en

de
nt

pa
rti

al
diff

ere
nti

al
eq

ua
tio

ns
usi

ng
con

vo
lut

ion
al

au
toe

nc
od

ers
(N

iko
lop

ou
los

et
al.

,
20

22
)

Mo
de

lin
gd

iffe
ren

tia
le

qu
ati

on
au

toe
nc

od
er

AN
D

sei
sm

ic
AN

D
da

ta
Re

cen
ta

dv
an

ces
in

the
fie

ld
of

com
pu

tat
ion

al
me

ch
an

ics
ha

ve
all

ow
ed

res
ear

ch
ers

to
de

vel
op

hig
h-fi

de
lity

mo
de

ls
of

com
ple

xp
hy

sic
al

sys
tem

st
ha

te
mu

lat
et

he
ir

be
ha

vio
r.

W
ith

thi
sa

pp
roa

ch
,t

he
res

po
nse

of
as

yst
em

un
de

ri
nv

es-
tig

ati
on

can
be

effi
cie

ntl
yp

red
ict

ed
via

com
pu

ter
sim

ula
-

tio
ns

in
lie

uo
fc

om
pu

tat
ion

all
yc

ost
ly

an
dt

im
e-c

on
sum

ing
ex

pe
rim

en
ts.

Ho
we

ver
,c

ert
ain

ap
pli

cat
ion

so
fp

rac
tic

al
in-

ter
est

suc
ha

so
pti

mi
zat

ion
,u

nc
ert

ain
ty

qu
an

tifi
cat

ion
an

d
pa

ram
ete

ri
de

nti
fic

ati
on

req
uir

ea
lar

ge
nu

mb
er

of
mo

de
l

run
s.

diff
ere

nti
al

eq
ua

tio
nf

un
tio

ns
Au

toe
nc

od
er

+
ML

P
Fe

atu
re

ex
tra

cti
on

Ti
ng

Xu
Jo

urn
al

of
Na

tur
al

Ga
sS

cie
nc

ea
nd

En
gi-

ne
eri

ng
20

22
Do

ma
in

gen
era

liz
ati

on
usi

ng
con

tra
sti

ve
do

ma
in

dis
cre

pa
nc

yo
pti

mi
zat

ion
for

int
erp

ret
ati

on
-w

hil
e-

dri
llin

g(
Xu

et
al.

,2
02

2)

Ge
ne

ral
iza

bil
ity

do
ma

in
AN

D
gen

era
liz

ati
on

Th
ec

oll
ect

ed
log

gin
gd

ata
ha

st
he

sam
ep

rob
ab

ilit
yd

ist
ri-

bu
tio

ne
ven

ifi
tc

om
es

fro
m

diff
ere

nt
we

lls.
In

thi
sw

ay,
the

mo
de

lt
rai

ne
d

on
mu

ltip
le

dri
lle

d
we

lls
cou

ld
be

dir
ect

ly
use

di
na

ne
w

we
ll.

Ho
we

ver
,t

his
ass

um
pti

on
is

inv
ali

di
n

pra
cti

ce
sin

ce
the

re
is

alw
ay

sa
lar

ge
diff

ere
nc

ei
nd

ep
osi

-
tio

na
le

nv
iro

nm
en

ta
nd

log
gin

ge
qu

ipm
en

t.

Se
ism

ic
we

lld
ata

Co
ntr

ast
ive

do
ma

in
dis

cre
pa

nc
y

ba
sed

ad
ver

-
sar

ial
au

toe
nc

od
er

(C
DD

-A
AE

)
Ad

ver
sar

ial
Au

toe
n-

co
de

r

Wa
ng

,Y
ing

yin
g

Ge
op

hy
sic

s
20

20
Se

ism
ic

tra
ce

int
erp

ola
tio

n
for

irr
egu

lar
ly

spa
-

tia
ls

am
ple

dd
ata

usi
ng

con
vo

lut
ion

al
au

toe
nc

od
er

(W
an

ge
ta

l.,
20

20
a)

Se
ism

ic
tra

ce
int

erp
ola

tio
n

au
toe

nc
od

er
AN

D
sei

sm
ic

AN
D

da
ta

Se
ism

ic
tra

ce
int

erp
ola

tio
n

is
an

im
po

rta
nt

tec
hn

iqu
ea

s
irr

egu
lar

or
ins

uffi
cie

nt
sam

pli
ng

da
ta

alo
ng

the
spa

tia
ld

i-
rec

tio
nm

ay
lea

dt
oi

ne
vit

ab
le

err
ors

in
mu

ltip
le

sup
pre

s-
sio

n,
im

ag
ing

an
di

nv
ers

ion
.

Sy
nth

eti
ca

nd
fie

ld
sei

sm
ic

tra
ce

Au
toe

nc
od

er,
tra

nsf
er

lea
rni

ng
Se

ism
ic

cor
rup

td
ata

rec
on

str
uc

tio
n

We
iqi

an
gZ

hu
Ad

va
nc

es
in

Ge
op

hy
sic

s
20

20
Se

ism
ic

sig
na

la
ug

me
nta

tio
nt

oi
mp

rov
eg

en
era

liz
a-

tio
no

fd
eep

ne
ura

ln
etw

ork
s(

Zh
ue

ta
l.,

20
20

)
Ge

ne
ral

iza
bil

ity
mo

de
lA

ND
gen

era
liz

ati
on

A
suffi

cie
ntl

y
lar

ge
an

d
com

ple
te

tra
ini

ng
da

ta
set

is
a

req
uir

em
en

t
tha

t
can

be
diffi

cu
lt

to
me

et
du

e
to

the
sig

nifi
can

te
ffo

rt
an

dt
im

ei
nv

olv
ed

in
da

ta
col

lec
tio

na
nd

lab
eli

ng
.

Ea
rth

qu
ak

ew
av

efo
rm

s
Da

ta
Au

gm
en

tat
ion

Fil
ter

sf
or

da
ta

au
g-

me
nta

tio
n

sp
eci

fic
for

sei
sm

ic

Yo
un

gb
in

Ah
n

Jo
urn

al
of

Pe
tro

leu
m

Sc
ien

ce
an

d
En

gi-
ne

eri
ng

20
22

Re
lia

ble
ch

an
ne

lre
ser

vo
irc

ha
rac

ter
iza

tio
na

nd
un

-
cer

tai
nty

qu
an

tifi
cat

ion
usi

ng
va

ria
tio

na
la

uto
en

-
co

de
ra

nd
en

sem
ble

sm
oo

the
rw

ith
mu

ltip
le

da
ta

ass
im

ila
tio

n(
Ah

na
nd

Ch
oe

,2
02

2)

ch
an

ne
lr

ese
rvo

ir
ch

ara
cte

riz
ati

on
an

d
un

-
cer

tai
nty

qu
an

tifi
cat

ion
au

toe
nc

od
er

AN
D

sei
sm

ic
AN

D
da

ta
Re

ser
vo

ir
ch

ara
cte

riz
ati

on
is

ess
en

tia
lf

or
rel

iab
le

pe
rfo

r-
ma

nc
ep

red
ict

ion
an

dd
eci

sio
nm

ak
ing

.
2D

ch
an

ne
lr

ese
rvo

ir
mo

de
ls

va
ria

tio
na

l
au

toe
nc

od
er(

VA
E)

an
d

en
sem

ble
sm

oo
the

rw
ith

mu
ltip

le
da

ta
ass

im
ila

tio
n(E

S-
MD

A)

EA
V

Re
sul

tin
gV

ec-
tor

En
ha

nc
em

en
t

Us
ing

ES
-M

DA

Ze
ng

ma
oW

an
g

IE
EE

Tr
an

sac
tio

ns
on

Ne
ura

lN
etw

ork
s

an
dL

ear
nin

gS
yst

em
s

20
20

Do
ma

in
Ad

ap
tat

ion
W

ith
Ne

ura
l

Em
be

dd
ing

Ma
tch

ing
(W

an
ge

ta
l.,

20
20

b)
Do

ma
in

ad
ap

tat
ion

do
ma

in
AN

D
ad

ap
tat

ion
Ho

w
to

tra
nsf

er
inf

orm
ati

on
fro

m
the

sou
rce

do
ma

in
to

the
tar

get
do

ma
in

wh
ere

lab
ele

dd
ata

is
sca

rce
?

Im
ag

es
of

nu
mb

ers
an

do
bje

cts
.

Ne
ura

le
mb

ed
din

gm
atc

hin
g(

NE
M)

Pr
og

res
siv

e
Le

arn
-

ing
Zh

en
jia

oJ
ian

g
Ge

oth
erm

ics
20

21
Co

mb
ini

ng
au

toe
nc

od
er

ne
ura

l
ne

tw
ork

an
d

Ba
yes

ian
inv

ers
ion

to
est

im
ate

he
ter

og
en

eou
sp

er-
me

ab
ilit

y
dis

tri
bu

tio
ns

in
en

ha
nc

ed
geo

the
rm

al
res

erv
oir

:
mo

de
l

de
vel

op
me

nt
an

d
ver

ific
ati

on
(Ji

an
ge

ta
l.,

20
21

)

Pe
rm

eab
ilit

yd
ist

rib
uti

on
inf

ere
nc

e
au

toe
nc

od
er

AN
D

sei
sm

ic
AN

D
da

ta
De

ter
mi

nin
g

pe
rm

eab
ilit

y
dis

tri
bu

tio
ns

in
res

erv
oir

s
is

cri
tic

al
for

the
ma

na
gem

en
to

fl
im

ite
d

ear
th

res
ou

rce
s.

W
hil

eh
yd

rau
lic

fra
ctu

rin
gi

sw
ide

ly
use

dt
oe

nh
an

ce
the

pe
rm

eab
ilit

yo
fd

eep
geo

the
rm

al,
ga

sa
nd

oil
res

erv
oir

s,
it

rem
ain

sc
ha

lle
ng

ing
to

inf
er

he
ter

og
en

eou
sd

ist
rib

uti
on

so
f

pe
rm

eab
ilit

y.

Sy
nte

tic
3D

im
ag

eo
ffr

act
ure

pro
ba

bil
ity

ne
ura

ln
etw

ork
+

Ba
yes

ian
inv

ers
ion

alg
ori

thm
ba

sed
on

Ma
rko

vC
ha

in
Mo

nte
Ca

rlo
(M

CM
C)

Ne
ura

l
ne

tw
ork

+
Ba

yes
ian

in-
ver

sio
n

alg
ori

thm
ba

sed
on

Ma
rko

v
Ch

ain
Mo

nte
Ca

rlo
(M

CM
C)



4
Generalization of Natural Gas Reserve Indication Deep Learn-
ing Model Based on Four Feature Extraction Techniques and
Training Dataset Recommendation - Method 1

This method analyzes training data based on features extracted by
four techniques, creating multiple training clusters based on similarity. A
recommendation model is then used to select clusters that have the most
similar features to the target seismic images. This method is proposed to
provide a solution to the problem presented in Section 1.3, which is addressed
as a generalization performance problem according to Section 2.2.

The specific contributions of method 1 to the state of the art are: First,
the creation of a method to cluster seismic images based on the similarity
of their features in an unsupervised manner. This clustering improves the
performance of DL models on target images that is different from that used in
the training process but shares some features. This approach does not require
modifying the original network architecture for gas indication. Secondly, a
method is developed to extract features in seismic images, introducing the
technique of phylogenetic indices and Short-Time Fourier Transforms for each
seismic trace. Third, a basis is established for the seismic features comparison
that allows measuring similarity in multiple domains. This is possible because
the four extraction techniques allow different features of the seismic images
to be measured. Fourth, from the point of view of DL training models,
method 1 presents evidence that supports the importance of training sets
analysis, showing that not all the data are suitable, which affects generalization
performance. Finally, the proposed method 1 improved the generalization
performance of the DL model.

4.1
Proposed Method

This section describes the method, techniques, and models used to detect
gas in 2D seismic images, based on the use of resources that belong to both
ML and DL.

Figure 4.1 provides an overview of the proposed method 1, which consists
of three sub-processes: clusterization, recommendation, and classification. The
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first two processes are considered ML algorithms to select the training data
used in the last DL-based natural gas indication process. Note that clusteri-
zation and recommendation processes are independent of the DL model. This
independence allows the DL model to be changed without having to rebuild
the training data set.

Figure 4.1: Proposed method 1 for generalization based on dataset recommen-
dation.

4.1.1
Clusterization Process

The creation of clusters is the basis of the method 1. These clusters
seek to group seismic images with similar features. The challenge here is that
clusters are unknown, i.e., there is no ground truth to train a DL model to find
them. In short, this section proposes a method that takes all available seismic
images as input and produces a training dataset as output, Figure 4.2 present
the pipeline.

4.1.1.1
Pre processing

This step aims to prepare the original seismic images for the feature
extraction process, through the selection of study subregions and normalizing
the amplitude.

This step performs three operations on the original seismic images. The
first step is to divide the seismic image in the horizontal direction according
to the region of interest. This region is obtained through an analysis of the
geology, which reveals the region where gas reserves are likely to exist. The
professional responsible for labeling delimits an area between two horizons, one
close to the surface and another deeper. The region between these horizons is
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Figure 4.2: Clusterization process pipeline.

also called the region of interest, ROI, it is in this region where the studies will
be carried out.

The second split each seismic image according to the exploration field,
i.e., we divide the 2D seismic image vertically so that each sub-image belongs
to only one exploration field, Figure 4.3 presents an example showing how a
seismic image contains traces that belong to more than one field. By separating
the image into subregions, sets of traces that belong to a single field are
obtained.

The third operation is on the amplitude scale. The seismic amplitude
varies according to unknown parameters in the acquisition of seismic images
(see Section 4.2.1). For this reason, it is also necessary to apply normalization
to put each image on the same scale. Here all amplitudes are scaled to fit in
the interval [−1, +1] using the Equation (4-1).

N (x) = 2 x − min x

max x − min x
− 1 (4-1)
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where x is the 2D image and N (x) is the 2D image normalized between [-1,1].

Figure 4.3: Seismic image: (a) original seismic crossing multiple fields, (b)
segmented seismic.

4.1.1.2
Feature Extraction

In this section, features that represent each seismic image are extracted
using four techniques: Phylogenetic index that extracts 8 features, Local Binary
Pattern that extracts 10 features, Fourier that extracts 2 features, and Short
Time Fourier that extract 3 features, presented in Section 2.4. Techniques
were selected, taking into consideration the ability to characterize attributes
and affinity with the type of data under study, in addition to ensuring that
each technique captures a different aspect or scale of seismic images. In total,
23 features are obtained from each seismic image, stored in a single vector.

4.1.1.3
Feature Analysis

The extracted feature vectors for each seismic image are analyzed to
concentrate the features and reduce the size of the vectors, this process is
carried out to identify more representative features, using the PCA technique
described in Section 2.5.

As a preprocessing step, the feature vector must be centralized in zero
and normalized. The PCA algorithm then reduces the size of the feature vector
and produces a model that is saved for the analysis of new images.

4.1.1.4
Clustering

This section aims to create several clusters of seismic images that are
similar based on their extracted features. Likewise, a clustering model is
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created that allows new seismic images to identify which cluster they belong
to.

The reduced feature vectors created in section 4.1.1.2 are then separated
into clusters of similar features. The idea of using a cluster as a training set is
based on the hypothesis that a DL model trained in one cluster yields better
results for images in the same cluster. In this way, when using the DL gas
inference model on images coming from a new exploration field, First, the
cluster with similar features is determined and then the training is carried out
with the seismic images contained in the cluster.

Hierarchical density-based spatial clustering of applications with noise,
HDBSCAN, (Lentzakis et al., 2020; Lin et al., 2019) is used as a clustering
technique taking into account several properties of this technique that satisfy
the limitations of the problem under study. The first property is that does not
require specifying the number of clusters to create, which is necessary since
there is no ground truth that indicates how many clusters it is possible to
separate the seismic images based on their similarity.

The second property is that it does not require specifying the maximum
distance between group samples. This property is essential to deal with the
restriction of not having a ground truth that allows determining this distance
in the feature space.

The third property is that HDBSCAN also identifies samples that do not
fit any cluster and stores them in a cluster as outliers. This property prevents
clusters containing samples that may corrupt the DL training process.

The last property specifies the minimum number of samples that each
cluster must contain, preventing clusters from being too small to be useful in
the DL model training process.

In summary, the HDBSCAN performs two tasks. The first is the sepa-
ration of the seismic images into clusters. The second is the indication of a
cluster that is more similar to a new seismic image.

4.1.2
Recommendation Process

This step aims to extract features from the target seismic images to
compare with each training cluster to identify the most similar seismic images
set, thereby creating a recommended set of training seismic images for the
DL gas inference model. This step describes how the new seismic images are
compared to the clusters to determine the training set for the DL models.

As input data, this step uses clusters and the clusterization model from
Section 4.1.1.4, the PCA model from Section 4.1.1.2, and the target seismic
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images to determine the training set. As a result, the cluster containing the
seismic images recommended as a training set for DL models for natural gas
reserves detection is identified, Figure 4.4.

Figure 4.4: Recommendation process pipeline.

For each seismic image, the recommendation process executes the steps
separately:

1. Feature Extraction: Techniques described in Section 4.1.1.2 are applied
to the target seismic image.

2. PCA Model: The resulting feature vector is subjected to the PCA model,
which produces a new feature vector in the same sample space as that
used in the clustering process, i.e., This step places the target features
in the same representation space as the training features.

3. HDBSCAN Model: Applies the cluster model to the most representative
features vector. As a response, the recommendation of the training cluster
most similar to the target seismic image is obtained.

In this step explained at a high level of abstraction, the HDBSCAN
model determines the Euclidean distance that exists between the new
seismic image and each of the images that make up the clusters (within
the same representation space created by the extracted features), then,
the cluster with the shortest distance to the new seismic is selected.
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In summary, the recommendation process compares features between a
target seismic image and each cluster’s features. It is important to note that
the recommendation is made for each target seismic separately, which implies
that different training clusters can be recommended for different target seismic
images. The individual recommendation implies that it is necessary to perform
new training of the DL models for each recommended cluster.

Finally, up to this section, all the analyses were directed to the seismic
features to determine similarities that would allow the grouping of the seismic
training images and creating clusters. In this process, there is no ground
truth to evaluate the strategy. We can only evaluate the effectiveness of the
recommended clusters through the performance of the DL gas inference model.

4.1.3
Classification Process

This section uses the cluster containing the recommended seismic images
for training a DL model, with the objective of indicating the location of natural
gas reserves in 2D seismic images. Figure 4.5 shows the process carried out for
the classification.

Figure 4.5: Classification process pipeline.
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4.1.3.1
Encoder-Decoder

In this step we use the method proposed by Andrade et al. (2021) for
gas reservoir indication. This method consists of two steps. In the first one,
preprocessing is applied that transforms original seismic images into a readable
dataset for the DL model, performing ROI extraction, class balancing, and data
normalization. The second step uses a DL model based on a recurring neural
network known as LSTM (Section 2.3.1), to carry out a segmentation that
allows obtaining a binary result with gas and non-gas classes.

This method receives as input data a set of seismic images in segy format,
separated into three different folders, representing the training, validation, and
test sets. Additionally, it is necessary to indicate the path where the files that
delimit the ROI and the gas labels for each seismic file are stored, in the same
way, the training parameters of the network must be included. As a result,
the method delivers an image that identifies sections with gas according to
specialist marking, sections where the method makes a correct indication, and
areas where the method indicates gas but does not match the labels. The
results are also delivered about the metrics for each of the seismic images and
the complete set.

The LSTM network used is trained considering a time-based early
stopping technique, an Adam optimizer with a learning rate of 0.0001, and
a weighted categorical cross-entropy-based loss function, the training monitor
uses data loss. of validation, measured concerning the convergence metric F1
score (Sammut and Webb, 2017b).

Although the DL model presents an Encoder-Decoder architecture, the
convolution cells are replaced by LSTM cells, which better handle temporal
sequences by using a memory mechanism. Additionally, a connection layer
called Time Distributed is used that resizes the final encoder data to have the
output layer size. For more details see Andrade et al. (2021).

4.2
Results

This section presents two different experiments in which the same gas
indication method is trained in two ways, firstly with all available seismic
images and secondly using a dataset recommended by method 1 proposed in
this chapter.

The first experiment uses the same DL model (Section 4.1.3.1) to evaluate
two tests that differ from each other only by the training dataset used. These
tests are performed separately for each of the nine available fields, which means
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that the training datasets change for each new target field.
In the first test, the training dataset consists of all seismic images that do

not belong to the target field. This training dataset is labeled as "All except the
target". The second test uses the proposed training cluster recommendation to
determine the training dataset. This test is named "The Cluster".

The second type of experiment uses only the Belo exploration field. The
Belo field is geographically separate from most available fields. Three tests are
carried out, using the same DL model and changing the training set. The first
test uses all the seismic images available in the eight remaining fields as a
training set. The second test uses a training dataset named here as "Expert
Cluster", created specifically for the Belo field by an expert. The expert selected
the training set without the help of selection tools. Finally, we test the cluster
recommendation method proposed here. Note that each new seismic image
uses its own recommended cluster.

The performance metrics used are described in Section 2.6, additionally,
the size of the training set (Train size) is presented, indicating the number of
seismic images that were used in each test.

4.2.1
Seismic Image Database

This chapter presents the seismic image database used as the study ob-
ject, establishes its origins, general properties, and annexes, and describes lim-
itations that introduce challenges from the perspective of pattern recognition.

4.2.1.1
Background

The database used to test was provided by Eneva, a private energy
company in Brazil that operates onshore natural gas. The fields under study
come from the Paleozoic Basin of Parnaíba, located in the northeast of Brazil,
with more than 600,000 km2, Figure 4.6.

The basement of this geological formation is a metamorphic and igneous
rock, with ages that vary from the Archaic to the Neoproterozoic. Most of
these rocks were formed between the Paleoproterozoic and at least the Lower
Cambrian, corresponding to the end of the consolidation of the South American
Platform (De Miranda et al., 2018).

In the last decades, the investments made by the National Petroleum
Agency of Brazil and the concessionaires have elevated the Paraíba Basin to
the category of an important onshore basin producing natural gas (Abelha
et al., 2018).
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Figure 4.6: Production fields in the Parnaiba Basin (ANP, 2012).

Available seismic images come from nine exploration fields, since these
fields are geographically located in the same region, a single seismic image can
cross more than one field, which means that seismic files are duplicated in each
field that the seismic image crosses.

Seismic images are stored in the segy format, developed by the Society
of Exploration Geophysicists, SEG, and contains a 2D matrix that forms
seismic amplitude traces as a function of arrival time. Each file has additional
information that spatially locates the seismic image within the Parnaíba region
and the exploration regions.

In addition, Eneva provides two types of marking label files. The first
identifies a region of interest, ROI, within each original seismic image. This
mark indicates in which area it is most likely to find natural gas deposits, and
therefore it is the region of focus for the studies.

The second marking label refers to the location within the 2D seismic
of the gas reservoirs, which is the basis for training the DL gas indication
models. However, this marking presents a challenge. Although the quality of
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the marking of the location of the natural gas reservoir is supported by studies
of wells and interpretations of geoscientists, the regions with no gas marking
are regions where it is not certain that analysis for natural gas has been carried
out and therefore its content is uncertain. This ambiguity in markup introduces
a challenge from the ML perspective. Figure 4.7 presents an example of the
labels.

Figure 4.7: Example of ROI and Gas reservoirs marking labels.

Gas label brands present a particular challenge. The gas class has a high
level of confidence since they have different analyses and are supported by
well drilling that proves the correct marking, however, confidence in the "No
Gas" class label decreases as the region becomes away from gas marks. This
means that, for the labels of no gas regions, there is no certainty whether there
are indeed no gas reservoirs or whether that specific region has not yet been
analyzed.

4.2.1.2
General Feature Data

The seismic database comprises 313 seismic images with ROI, but
only 168 have gas labels. The seismic images are distributed in the various
exploration fields according to Table 4.1. The variation in the total number is
because there are seismic images whose extension of land crosses more than one
field, creating replicated data. This work will not consider the Gavião Branco
Norte field due to the low number of seismic images. Therefore, the study will
focus on the remaining nine fields.

The data comes from several acquisitions performed by five teams
between 2011 and 2020. This variation in time and the teams introduces
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variations in the data features that can be considered domains. In addition,
each team did not report the technical equipment model, its configuration, and
acquisition parameters, so there was no labeling that identified the different
domains within the training data, also, there are particularities caused by
different types of terrain. However, all seismic images are encoded following
the SEG revision 1 standard.

Seismic images have an average spatial resolution of 15 meters. Never-
theless, given the variability in the acquisition, this resolution may vary within
the limits of the SEG standard.

The distribution of the seismic images according to date and team
acquisition appears in Table 4.1.

Table 4.1: Seismic images by the team, collected data and field (Not Defined,
N/D).

Gavião
Azul Belo Branco Branco Norte Caboclo Carijo Preto Real Tesoura Vermelho

Te
am

1 7 - 5 - - - 6 3 - 6
2 10 - 63 5 21 4 47 46 21 26
3 11 10 - - 6 24 15 - 9 9
4 - - 1 1 - - - - - -
5 - - - - - 10 - - - -

A
cq

ui
sit

io
n

D
at

e 2011 9 - 8 - - - 1 29 - 7
2014 7 - 55 6 21 - 50 18 21 24
2016 - - 5 - - - - - - 7
2017 9 - - - 6 1 16 - 9 -
2019 1 - 1 - - 23 1 2 - 1
2020 - 10 - - - 14 - - - -
N/D 2 - - - - - - - - 2

Total images 28 10 69 6 27 38 68 49 30 41

4.2.2
First Experiment

This experiment consists of two tests, in the first the comparison baseline
is obtained, and in the second the proposed method is applied.

The first test establishes the comparison baseline and is made up of nine
different tests, one for each field of exploration. All of them are performed
following the same pattern and changing only the target field. Firstly, the
seismic images belonging to the field selected as the target are separated,
secondly, all the other seismic images from the rest of the fields are taken
(paying special attention that none cross the target field), and they are divided
into two sets, one with 70% of the images identified as training, and 30%
validation. Finally, the gas inference method described in Section 4.1.3.1 is
used.

For example, if the target is the Belo exploration field, a total of 10
seismic images are used for the DL model test, and in total, we would have
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298 images (after removing the repeats) to separate in training and validation
sets.

The second test uses the proposed training dataset recommendation
method, in this case, one test is also performed for each field. Firstly, the
seismic images belonging to the target field are separated and known as the
test set, secondly, the seismic images of the other fields (that do not intersect
the target field) are taken and lead to the method proposed in this work, which
returns a set of recommended seismic images. Third, the recommended images
are separated into two sets, 70% for the training set and 30% for the validation
set. Finally, it is used in the gas inference method described in Section 4.1.3.1.

For example, for the Belo field, the method proposed recommends using
only 35 seismic images for training the gas inference model, Figure 4.8 shows
the distribution of these seismic images in the fields.

Figure 4.8: Recommended training cluster for Belo exploration field.

Table 4.2 presents the first experiment results, when analyzing the
metrics a similar behavior is observed for Azul, Belo, Branco, Real and Tesoura
fields. For these, the Accuracy metric does not show the change between
the tests, however, a better performance is obtained in the rest of metrics
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Table 4.2: First experiment results.
Field Target Training source Train size Accuracy Precision Recall F1_Score IoU

Gavião Azul All except target 281 0.99 0.45 0.49 0.43 0.30
Cluster 116 0.99 0.46 0.52 0.45 0.32

Gavião Belo All except target 298 0.99 0.54 0.45 0.47 0.35
Cluster 35 0.99 0.60 0.51 0.53 0.41

Gavião Branco All except target 240 0.99 0.45 0.39 0.39 0.26
Cluster 69 0.99 0.47 0.42 0.40 0.27

Gavião Caboclo All except target 282 0.99 0.30 0.38 0.29 0.21
Cluster 95 0.99 0.28 0.43 0.29 0.21

Gavião Carijo All except target 271 0.99 0.29 0.17 0.21 0.13
Cluster 76 0.98 0.31 0.22 0.24 0.16

Gavião Preto All except target 241 0.99 0.28 0.22 0.22 0.15
Cluster 52 0.99 0.29 0.23 0.22 0.15

Gavião Real All except target 263 0.99 0.28 0.24 0.23 0.16
Cluster 19 0.99 0.36 0.26 0.26 0.17

Gavião Tesoura All except target 279 0.99 0.23 0.28 0.24 0.15
Cluster 37 0.99 0.28 0.39 0.31 0.21

Gavião Vermelho All except target 268 0.99 0.45 0.50 0.42 0.29
Cluster 59 0.99 0.49 0.50 0.43 0.30

when using the cluster recommendation method, this translates into a better
inference of regions with gas reservoirs with fewer false positives and false
negatives.

To facilitate the identification of the improvement in the performance
of the metrics when using the proposed method, Table 4.3 is presented. The
Train Size column shows the percentage of the training set that was used
for each field; for example, for Gavião Azul only 41% of all available seismic
images were used for training. The other metrics show the difference between
the performance obtained when using the proposed method and the baseline,
those highlighted in blue represent an improvement, while those highlighted in
pink present an equal or worse result.

Table 4.3: Improvement of metrics in relation to results using all available data
for training.

Field Target Train size Precision Recall F1_Score IoU
Gavião Azul 0.41 0.01 0.03 0.02 0.02
Gavião Belo 0.12 0.05 0.04 0.04 0.05
Gavião Branco 0.29 0.02 0.03 0 0.01
Gavião Caboclo 0.34 -0.02 0.05 0 0
Gavião Carijo 0.28 0.01 0.05 0.03 0.02
Gavião Preto 0.22 0.01 0.01 0 0
Gavião Real 0.07 0.08 0.02 0.02 0.01
Gavião Tesoura 0.13 0.05 0.11 0.07 0.06
Gavião Vermelho 0.22 0.05 0 0.01 0.01

The changes in statistical terms reflect an improvement in the overall
performance of the DL model when using the cluster recommendation method,
but the largest change is observed in the size of the training dataset, for
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example, for the Real field, the first test uses 263 seismic training images,
instead, the recommended cluster is made up of 19 images, which means that
only 7.22% of the original training images are representative of the Real target
field. Likewise, only 41.28% for Azul, 11.74% for Belo, 28.75% for Branco and
13.26% for Tesoura are necessary.

Caboclo field results indicate that by using the cluster recommendation
method, a higher percentage of gas reservoir identification is achieved, how-
ever, a 2% lower precision is also obtained, which translates into more false
positives. Regarding the training dataset size, only 33.69% of images present
representative data for DL model learning when the recommended cluster is
used.

Carijo field shows a 1% loss of Accuracy when using the cluster recom-
mendation method, while at the same time showing better performance on all
other metrics. Given the imbalance of the gas and non-gas classes, and that
Accuracy is calculated based on all classes, this behavior means that a better
identification of the class of interest is obtained, in this case, the gas class,
and a lower performance to identify no gas class. In general, the results show
a better performance of the DL model when the recommended cluster is used,
also only 28.04% of seismic images present relevant information for training.

Tests in the Preto field show an improvement in Recall and Precision
when using the recommended training cluster, which means a better perfor-
mance of the DL model to identify the regions with gas reservoirs and with
fewer false positives, in the same way, only 21.6% of training images present
relevant data.

Finally, for the Vermelho field, tests show that when using the cluster
recommendation method, only 22.01% of images contain relevant information
for DL model training, in the same way, the results show fewer false positives,
which means a better performance of the model.

Figure 4.9 shows the first experiment result for a seismic image belonging
to the Azul field, which shows an improvement in the identification of regions
with a gas reservoir and a reduction in false negatives.

Figure 4.10 shows the result for a different seismic image belonging to the
same field, this shows a deterioration in the identification of regions with gas
reservoirs and an increase in false positives and false negatives, this result is
explained because it not all the seismic images within the Azul field share the
same cluster recommended by the proposed method. The first experiment uses
a single recommended cluster for a set of target seismic images, which has two
implications, the first is that the recommended cluster is selected based on the
number of images in the target set for which the cluster is most representative.
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Figure 4.9: First Experiment example of the improvement in gas reservoir
indication.

For example, if in a set of 10 target seismic images, 8 are represented by
cluster 1, it will be selected to evaluate the 10 target seismic images. The
second implication is that there are images to be evaluated with a cluster that
is not the most suitable for them, as is the case of the 2 seismic images of the
previous example.

Figure 4.10: First Experiment example of deterioration in gas reservoir detec-
tion.

When analyzing the first experiment results in general, there is an
improvement in the gas reservoir identification with a marked reduction of
the training set size. This implies a better generalization of the gas inference
model used.
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4.2.3
Second Experiment

In this experiment, three tests are conducted at Belo field, the first taking
the seismic images from the remaining eight exploratory fields as a training
set. In the second test, a training set built by an expert (without the help
of a recommendation tool and identified as Expert Cluster) is used, taking
as a selection criterion the similarity with Belo field. The last test uses the
proposed method in this work. This test differs from the one performed in the
first experiment in that each recommended cluster is used and not the most
recommended, this means that for each seismic image from the Belo field, a
DL model is trained using the recommended cluster for each image, unlike the
first experiment where a unique DL model was trained with a single selected
cluster to evaluate all the seismic images from the Belo field.

Results presented in Table 4.4 show that by using a specific cluster for
each seismic image, an appreciable improvement is obtained in the metrics,
even higher than those achieved in the first experiment concerning gas reservoir
identification. In the same way, the results using the Expert cluster demon-
strate the high level of difficulty involved in creating an appropriate training
set, since the results obtained do not equate with the metrics achieved in the
remaining tests.

Note that the "Train Size" column is not included in Table 4.4, this
is because the training set recommendation made by the proposed "Cluster"
method is made for each of the target seismic images separately, which implies
that there is no single number of training images that can be compared with
the other tests.

Table 4.4: Second experiment results.
Field Target Training source Accuracy Precision Recall F1_Score IoU

Gavião Belo
All except target 0.99 0.54 0.45 0.47 0.35
Expert Cluster 0.99 0.45 0.29 0.34 0.22
Cluster 0.99 0.58 0.55 0.54 0.43

To facilitate the identification of the improvement in the performance of
the metrics, Table 4.5 is presented. The metrics show the difference between the
performance obtained when using either the dataset proposed by the specialist
or the proposed method and the baseline, those highlighted in blue represent
an improvement, while those highlighted in pink present an equal or worse
result.

Figure 4.11 shows the result of the second experiment for a single seismic
image, which shows a significant improvement in the region with gas reservoir
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Table 4.5: Improvement of Belo field metrics in relation to results using all
available data for training.

Field Target Training source Precision Recall F1_Score IoU

Gavião Belo
Expert Cluster -0.08 -0.16 -0.13 -0.12
Cluster 0.02 0.09 0.06 0.06

identification and a reduction in false positives and false negatives when using
the training cluster recommended by the proposed method.

Figure 4.11: Second experiment example of the improvement in gas reservoir
indication.

Figure 4.12 shows the result for a second seismic image, which shows
a significant improvement in gas reserves identification, but with an increase
in false positives, when using the proposed cluster recommendation method,
this result presents the least favorable case obtained, given the deterioration
in precision, this means that the increase in true positives constitutes an
important improvement in the DL model, however, the increase in false
positives constitutes a problem since when observing the Figure 4.12 it is
interpreted that there are two regions with gas reservoirs.

Finally, Figure 4.13 shows the result for a third seismic image, this
is of special interest since it demonstrates the limitations of the proposed
method, where none of the tests performed achieves a favorable result. Even
when the metrics show an improvement when using the proposed cluster
recommendation method, the improvement is not significant, and in the same
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Figure 4.12: Second experiment example of the improvement in gas reservoir
indication and an increase in false positives.

way, it does not identify gas reserves.

Figure 4.13: Second experiment example without significant changes.

Overall, the results of the second experiment show the utility of using
ML-based techniques in training data analysis and gas reservoir inference.
Similarly, the method proposed in this paper presents a better generalization
of the DL model, compared to the use of all available data for training.
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4.3
Discussion

This section presents discussions about the results obtained, analyzing
their implications at a high level of abstraction. Additionally, important
aspects of the proposed method are presented.

4.3.1
First Experiment Discussion

By analyzing all the results, it is found that the use of the cluster
recommendation method shows an improvement of 3% in precision, 4% in
Recall and 2% in F1 and IoU, requiring only 23% of the original training data,
compared to results using all available training data. These results show from
the seismic point of view, that there are images that are more representative
and that contribute more to learning, when they are accompanied by others
with similar features, in the same way, it is understood that it is possible to
create clusters of images based on its seismic features. From the ML point of
view, it is clear that seismic representatives and their affinity with the target
seismic images are more important for learning than quantity, which also means
that when using seismic images with different features in the same training set,
they make learning difficult.

The use of a single recommended cluster to train a single DL model, which
is used on all seismic images belonging to the same exploration field, presents
an overall improvement in performance metrics for the entire exploration
field, however, it does not ensure that each seismic image presents a better
performance, since each one can have seismic features that coincide with a
different cluster.

Cluster conformation indicates that seismic images that are geographi-
cally located in the same exploration field do not necessarily share features,
which implies that geographic location is not an adequate criterion for training
set selection, and at the same time, that two continuous seismic images may or
may not share features. This analysis can be clearly evidenced in Figure 4.8,
where the target field is Belo, and the seismic images selected to carry out the
model training come from multiple geographically separated fields, and where
it is observed that no image from the Carijo field was selected to be part of
training cluster, despite these closer physically.
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4.3.2
Second Experiment Discussion

When analyzing the results, it is found that the use of the cluster
recommendation method for each seismic image achieves an improvement of
4% in precision, 10% in Recall, 7% in F1, and 8% in IoU, however, this implies
the creation of multiple DL models, each one trained with a different and
specific cluster for each seismic target image.

Although using a specific cluster for each target image involves multiple
training sessions, the results obtained exceed those obtained when using the
cluster recommendation by the exploration field. Almost all seismic images
processed with this approach show improvements in gas and non-gas class
identification, reducing both false negatives and false positives.

The seismic images with which it was not possible to obtain improve-
ments in the performance of the DL model are seismic images that obtain
poor performance in each experiment including the baseline, which may indi-
cate that for the type of features that these seismic images have there are not
enough representative data.

4.3.3
General Analysis of the Results

Seismic image comparison allows the clustering of those that present
similar features, for this process no labeled data is required since the extraction
of features can be carried out using unsupervised ML techniques. Clusters,
made up of seismic images with similar features, represent a training base for
DL models that obtain superior performance in almost all metrics when it is
used in images that share or are located close in the features space, with those
of training clusters.

Concentration of the original training database in multiple clusters has
several consequences, the first is the need to create as many models as clusters,
the second is a marked reduction in the training times necessary for the DL
models, and consequently a reduction in the necessary training data. Finally,
given the developed method, it is possible to identify those seismic images that
do not fit into any cluster which means that the method provides the ability
to identify when there is training data available to find gas reservoirs in new
images, and when seismic images that share features with the new images are
not available, in other words, the proposed method identifies if appropriate
training data is available to be used in new data.

Experiments demonstrate that results in gas reservoir indication improve
when training image features are similar to new explorations data, although
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the amount of this data is markedly less than the available data, which implies
that the unused data introduces into the DL model the ability to recognize gas
reservoirs in seismic images that have different features but make it difficult
to recognize in the target images.

Finally, the generalization of the DL model is improved by introducing
the cluster recommendation method, which although it does not affect DL
model architecture, provides a way to improve its performance by creating
model replicas, but trained with different clusters, highlighting the fact that
recommendation basis is feature similarity.

4.3.4
Important Aspects of the Proposed Method 1

The proposed method 1 includes various ML and DL techniques that
allow pre processing, feature extraction, feature analysis, data clustering, and
inference of gas reservoirs for 2D seismic images.

From a high level of abstraction, in this work two different tasks are
carried out, the first performs the clustering of the seismic images based on
their features, this task focuses on creating sets made up of images that are
considered similar and therefore are more representative for any new seismic
sample that fit into the set. The second task refers to the classification of each
point contained in a 2D seismic image, to determine whether or not it belongs
to the gas class, this task is what makes the gas inference.

The following advantages are highlighted:

1. This work is an approach that allows a better generalization of the DL
models for the detection of natural gas in 2D seismic images based on the
recommendation of the training cluster, and that also does not require
altering the architecture of the models or the original data.

2. When carrying out the first experiment, the advantages offered by the use
of the training data recommendation method are demonstrated, which
establishes a basis for the seismic images comparison, which is essential
for the DL model generalization and the natural gas improvement
detection.

3. A combination of unsupervised ML techniques used for seismic image
representation is an advantage offered by the cluster recommendation
process since it allows obtaining a representation from the same seismic
image even when it is not labeled. In other words, the proposed method
does not require labeled seismic image for the creation of recommended
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training clusters, since as the results of the second experiment show,
grouping seismic images by their features is a challenging task.

4. The proposed method makes it possible to improve the generalizability
performance of DL models for the detection of natural gas without
modifying the model architecture and using the available seismic images.
This is made possible by a subspecialization of the model by using a
training data set specifically selected for the target seismic images, which
helps maintain or improve model performance, which is a great challenge.

5. By using the cluster-per-field recommendation method, it is possible to
gain the advantage of significantly reducing the size of the training set
required for the DL model, while maintaining and even improving the
performance of metrics for the entire target field.

6. By using the cluster recommendation method for each seismic image, the
learning of the DL model focuses on those features that are representative
of the target seismic image, this for almost all seismic images leads to
better gas detection and a reduction in false positives and false negatives.

7. Finally, the combination of all the techniques for the creation of the
proposed method allows better detection of gas reserves, as well as a
better generalization of the DL model. According to the results of the
analysis of the state of the art, the present work is the first to use this
combination of ML and DL techniques, applied in the processing of 2D
seismic images.

The proposed method has limitations, the following are highlighted:

1. The DL model generalization performance using the proposed method
completely depends on the available training seismic images, therefore,
generalization performance depends on the existence of images with
features comparable to those of the new target seismic images. To
overcome this limitation, it is possible to consider Domain Adaptation
techniques that seek to modify the input data to fit different domains.

2. The use of different techniques for feature extraction, and clustering also
implies hyperparameter tuning for each of them, this limitation can be
overcome by using hyperparameter optimization methods or by exploring
alternatives for feature extraction in seismic images, however, it will be
explored in future research.
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3. Each seismic image contains within it data representing large tracts of
terrain and depth, however, feature extraction considers the image as a
single specimen, when in fact a subdivision of it could provide a more
detailed comparison of features.

4. The proposed method focuses only on the training dataset recommen-
dation and does not directly interfere with the DL gas inference model,
which must be manually fitted to the training data. To address this lim-
itation, a hyperparameter optimization approach can be used, although
it is outside the scope of this work.

4.3.5
Research implications

This subsection provides information on how the proposed method 1 will
have an impact on current research trends in this area.

This work demonstrates that the analysis of the DL model training data
has an impact on the generalizability. In the same way, it shows that the search
for training data with similar features to that of the new objective seismic
images allows obtaining better performance for natural gas inference, without
modifying the network architecture or the original data.

From the point of view of ML, this work shows that using all the
available training databases in problems with multi-domain unknowns does
not guarantee that the model learns all the features of each domain. From this
point of view, using a set of images grouped according to their features offers
better performance, however, it is necessary to make a comparison with the
objective data to determine the appropriate training set.

4.4
Conclusion

Method 1 is proposed for gas reservoir identification in 2D seismic images
using DL models, which includes a recommendation for a training cluster. To
validate the proposed method, the database provided by O&G Eneva from the
Paleozoic Basin of Parnaíba located in the northeast of Brazil is used.

Experiments results show that the training data directly influence the
generalizability of the DL models, in the same way, it is found that the seismic
images are prone to presenting great variability caused by various factors
during collection campaigns. However, it is possible to establish relationships
between the seismic image features, which creates a basis for comparison.

Experiments show an improvement of 3% in precision, 4% in Recall, and
2% in F1 and IoU, requiring only 23% of the original training data, when the
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proposed method is used to recommend the cluster of training per field and a
4% improvement in accuracy, 10% in Recall, 7% in F1 and 8% in IoU when
using the seismic image training cluster recommendation method, compared to
the performance of the DL method when using all available data for training.
The results obtained show that the proposed method represents a useful tool
for gas detection in 2D seismic images.



5
Generalization of the deep learning model of natural gas re-
serve indication based on feature extraction with Autoen-
coder and recommendation of training dataset and opera-
tional hyper parameters - Method 2

This chapter presents a method that seeks to overcome the main limita-
tions found in the Chapter 4, focusing on improving the generalization perfor-
mance of DL models for the indication of natural gas reservoirs in 2D seismic
images. This method is shown independently of Chapter 4, presenting a new
DL-based feature extraction approach. It also treats the problem described in
Section 1.3 in a more specialized way as a domain adaptation problem accord-
ing to Section 2.2.2.

Method 2 separates the task of analyzing the properties of the seismic
images to make a comparison between the training data and the target data,
from the task of indicating natural gas, that is, a method is proposed that
first performs an analysis of the features of the seismic images to recommend
a training set and then performs the training of the DL model for the specific
task of natural gas indication.

This approach focuses on identifying the seismic images that are most
representative of the target images, considering the feature extraction step
as an unsupervised training problem, it is possible to tackle it using the
unsupervised artificial neural network known as Autoencoder (Jiang et al.,
2022; Kong et al., 2021; Xu et al., 2019).

The specific contributions of method 2 to state of the art are: First,
it introduces an unsupervised DL feature extraction method that allows to
establishment of a basis for comparing seismic training data and creating clus-
ters with concentrated representativeness based on pattern similarity. Second,
a new training data recommendation method for natural gas indication DL
models is presented. Third, an automated method is presented to recommend
operational hyper parameters of natural gas indication DL models. Finally, the
proposed method 2 improved the generalization performance of the DL model.
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5.1
Proposed Method

This section describes the proposed method, as well as the techniques
and models used to improve the DL model generalization performance for gas
indication in 2D seismic images, based on the recommendation of both the
operational hyper parameter and the dataset used for DL model training.

The recommendation process allows feature extraction to compare the
training seismic images (with ground truth) and the new target seismic
images (without ground truth) to choose several representative training sets.
In addition, the recommendation process determines the operating hyper
parameters for the DL model based on the performance of these training sets.
This process is crucial as it provides an automatic way to determine training
data and hyper parameters that may otherwise need to be selected by the user,
depending on user experience, or require multiple tests, leading to a high time
cost.

Figure 5.1 provides a high-level description of the proposed method
composed of three main processes, explained in Section 5.1.1 to Section 5.1.3.

Figure 5.1: Proposed method 2.

5.1.1
Clusterization Process

This process establishes a seismic images comparison base that allows the
creation of several clusters with similar features. There are no ground truth
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labels indicating which seismic images are similar for this task, so the entire
process is executed from an unsupervised approach.

It uses the training set described in Section 4.2.1 as input data and then
creates a seismic images clustering model and a encoder feature extraction
model.

The clustering process consists of three sequential stages, as shown in
Figure 5.2, explained in Section 5.1.1.1 to Section 5.1.1.3.

Figure 5.2: Clusterization process pipeline.
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5.1.1.1
Pre processing

This step aims to separate the original seismic images to create standard-
sized patches, allowing features to be extracted using a DL approach.

The training database consists of 2D seismic images which, when seen on
a geographic map, represent lines of seismic information on the ground. The
data does not have a standard for the land extension represented. Thus, it is
necessary to perform a pre processing to standardize the size of all the seismic
images.

Method 2 uses the ROI indication described in Section 4.2.1, to reduce
the depth size of each image and focus analyzes on a specific region, causing
pattern recognition efforts to be centralized on those representative regions.

Each seismic image has a specific ROI to perform the first pre processing
extraction. Only the information of the upper limit is considered, determining
the depth component q closest to the surface, according to Equation 5-1.

q = min (P (x)) (5-1)
where, P (x) is the set of the depth component of the points of the upper limit
of the ROI.

Then the work area T , which represents the region to be extracted, is
formed by the points that are extracted from q plus depth of interest d, this
is (q + d), for each trace that forms the seismic image, as shown in Equation
5-2. Depth of interest refers to the size of the ROI, to determine its value,
the maximum depth value existing in the entire ROI database is taken as
a reference. Thus, at the end of the first pre processing, a sub region of each
original seismic image is obtained, with a constant depth for the entire database
as shows in Figure 5.3.

T = [(xq, y1) , (xq+1, y2) , (xq+2, y3) , · · · , (xq+d, yn)] (5-2)
where n is the number of traces in the seismic image.

The second pre processing performs a tessellation of T without overlap-
ping and with a size adjustment with zero padding, producing a set of patches
of defined standard size for all seismic images. The padding of zero value is
necessary since the number of traces in each image is nonstandard. This fact
implies the existence of spaces at the end of the seismic image filled with traces
of zero value.

For tessellation, patches of size, (a, b) are created, this size was defined
through experimentation, considering the operational restrictions imposed
by the processing load. For a and b, values of 360 and 6, respectively, are
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Figure 5.3: Example of extracted work area.

recommended.

5.1.1.2
Autoencoder Feature Extraction

This step aims to create a feature extraction method based on Autoen-
coder. This method can be used both to perform feature extraction from train-
ing image patches and from new target seismic image patches.

This stage builds a feature extraction model based on Autoencoder (Jiang
et al., 2022; Kong et al., 2021; Li et al., 2022), which contains two internal
models with an Encoder-Decoder structure. Figure 5.4 shows the proposed
architecture. The Autoencoder is used because it does not require markup
labels to train a model and obtain a lower-dimensional representation of the
input data that can be used as features. Not requiring markup labels is a
necessary quality for the feature extraction process since the training database
described in Section 4.2.1 does not have markup labels that identify each trace
domain. In other words, there is no information about what kind of properties
each trace of each seismic image possesses.

Autoencoder training uses the seismic patches created in Section 5.1.1.1
as input and ground truth for the loss function. In this context, the Decoder
model aims to reconstruct the original input patches from a representation
built by the Encoder model. This representation acts as the features, at the
end of the training, the Encoder Feature Extraction model is obtained and
used for feature extraction, producing a single vector for each patch, which is
stored in an array containing all seismic training patch features.

The Autoencoder model training uses an approach with an early stop,
with an Adam optimizer and a Mean Square Error, MSE, loss function
(Theodoridis, 2020) using one thousand five hundred epochs.
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Figure 5.4: Autoencoder (Encoder-Decoder) model architecture summary.

5.1.1.3
Clustering

This step aims to separate seismic image patches into groups based on
their similarity. Additionally, it creates a clustering model that can be used to
compare target seismic image patches.

This stage uses the features extracted from the patches to train the
model based on the K-means technique (Han et al., 2012; Lloyd, 1982), which
separates the original training set into patch subsets based on similarity and
creates a clustering model to be used on target seismics.

The K-means technique is used given its ability to work with many
samples, which is necessary since dividing the original seismic images into
patches significantly increases the amount of data that it must group. Although
the technique requires reporting the number of desired clusters, it allows
a separation that considers small differences between the patches, which
otherwise would be classified as a single set.

Selecting the number of groups in which the seismic patches will be
separated requires an evaluation of the quality of the clusters created because
it is not known how many domains are in the original seismic database. The
silhouette coefficient measures the quality of a defined number of clusters c. We
selected this technique since its response is within a fixed range which facilitates
the comparison and interpretation of the results (Bhandari and Pahwa, 2023;
Jin et al., 2022; Leng et al., 2022).

The clustering model tests various numbers of clusters, ranging from
three to fifty, to define the appropriate value. Fewer clusters than stated do
not offer enough variability for the seismic images. For example, although
the patches within a seismic may contain different properties, Using only two
clusters to separate the seismic patches would result in an original seismic
image composed of patches belonging to both clusters, which makes clustering
useless. We tested many clusters empirically to define the upper limit, the
results show that fifty is an appropriate limit.

For each value within these limits, K-means separates the entire set of
seismic training patches created in Section 5.1.1.2 into c clusters. Then, the
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silhouette coefficient of all clusters with a different value of c is compared,
selecting the one with the highest silhouette coefficient according to Equation
5-3.

c = max (fSilhoutte (Ci=3) , fSilhoutte (Ci=4) , · · · , fSilhoutte (Ci=50)) (5-3)

where Ci is the assignment of seismic patches in i cluster performed by K-
means.

At the end of the clustering process, it obtains the grouping of seismic
patches in the c cluster. In addition, it produces a trained K-means model,
which can be used in target seismic patches to determine which of the c cluster
is the nearest.

Although the clustering model uses patches of defined size to perform
the grouping, the final clusters comprise the original seismic images. The
assignment of each seismic image to a cluster is carried out by analyzing the
patches that make up the image and their assignment to each cluster, in this
way the cluster to which the most patches have been assigned is selected.
This approach preserves the initial seismic images without altering or cropping
them.

5.1.2
Recommendation Process

This process aims to recommend both the training set and the operating
hyper parameter for a gas inference DL model, based on the similarity of the
target seismic image features to the clusters.

This process takes the target seismic images to indicate the region
containing the gas reserves (data without ground truth), compares the seismic
features to both define the training datasets, and identifies a set of operational
hyper parameters for a specific DL model. The recommendation process can
be applied individually or to a set of seismic images, and includes four stages,
as shown in Figure 5.5, which produce a trained DL model as a response.

This process improves the generalization performance of the DL model
without altering its net architecture, working only on the training data and
performing a comparative analysis between the features of the target seismic
images (without ground truth) and the training seismic database.
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Figure 5.5: Method 2 recommendation process pipeline.

5.1.2.1
Seismic Without Ground Truth Feature extraction

This step aims to represent the target seismic image in the same feature
space of the training set to allow a similarity comparison.

The seismic images described in Section 4.2.1 have general properties,
such as coming from an exploration based on wave propagation reflection,
being 2D data, and using coding based on the Geophysical Exploration Society
standard. However, they contain features that depend on the properties of the
terrain and the technology and the parameterization used to collect them, so
each seismic image has particular features, which in turn allow the comparison
and creation of representative clusters for each feature.



Chapter 5. Generalization through the dataset and operational hyper
parameters recommendation 70

In the same way, the target seismic images (without ground truth)
contain features that allow them to be analyzed and compared with the
clusters. However, these features must be represented in the same space as that
used for the training seismic database, so we perform a treatment similar to
that described in Section 5.1.1.1. This treatment extracts the region of interest
and divides the new seismic image into patches. Then, the Encoder Feature
Extractor model created in Section 5.1.1.2 is applied, resulting in a collection
of features in the form of a vector that represents each patch of each target
seismic in the same representation space as the training seismic database.

5.1.2.2
Datasets Definition

This stage aims to recommend several training sets but with different
numbers of seismic images. These images allow obtaining training sets with
different concentrations of features that are present in the target seismic image.

This stage creates several training datasets for the target seismic images
based on the patch assignment of the clustering model created in Section
5.1.1.3.

The reason for creating multiple training datasets is that the DL model
processes the target seismic image individually to indicate the gas reservoir
location. Thus, the same DL model processes all traces of a single seismic
image. However, it is not common for all traces in the same image to have
the same features and have the same recommended cluster. For example, sixty
percent of the traces that belong to a target seismic image have features that
identify them as part of a C1 cluster, twenty percent belong to the C2 and
the rest belong to the C3. However, the region containing the gas reservoir
occurs in the traces with features similar to C2 for the previous case. If we
select only the cluster with a greater representation as the training dataset, we
will not provide correct representative data for the DL model to learn. On the
other hand, if we take the three clusters and form a single training dataset,
we will provide representative features that the model does not need and will
only hinder the learning process. For this reason, several recommended training
datasets are created, each adding new clusters to provide seismic images with
more features present in the target seismic image. They allow a more nearly
complete representation that may be necessary to indicate the natural gas
location.

In this way, each defined dataset contains seismic lines in which a small
number of features predominate. From the point of view of machine learning,
the model will learn to recognize these features contained in the training
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seismic. Each defined dataset includes new features to learn, which may or
may not be necessary for the gas reservoir search on the target seismic images.

In addition, determining which or how many of the recommended clusters
for new seismic images are relevant would imply having information on where
the gas reserves exist, that is, the unavailable marking labels. So, it must create
multiple training sets containing one or more recommended clusters.

For a single seismic image, the cluster to which the clustering model has
recommended the largest number of patches is taken as the first recommended
dataset. The second recommended dataset contains, in addition to the images
belonging to the first dataset, those belonging to the following recommended
clusters, prioritizing those with the highest number of recommended patches.
The number of defined datasets n to be used can extend to the total number
of clusters.

In the case of a set of target seismic images, the model chooses the
most recommended cluster in common for all target seismic as the first
defined dataset, which implies the creation of an assignment ranking for all
recommended clusters for each seismic. For the second dataset, the model uses
the most recommended clusters and those that follow in the rankings.

5.1.2.3
Training, Validation, and Test Sets Definition

This stage aims to separate each recommended training set into training,
validation and test subsets that will be used for the DL model. Paying special
attention to making the test subset have features as similar as possible to the
target seismic image.

This stage separates the seismic images of each dataset defined in Section
5.1.2.2 into three sets without substitution. This process takes special care to
select the test set based on the similarity of the original training data with
the target seismic images. This step is necessary to define the sets that will
train the gas indication DL model and evaluate its performance to select the
operational hyper parameters.

The seismic from each defined dataset is similar to the target seismic
images since the clustering model selected them. However, some images have
a trace distribution more like the new data. This stage compares them at the
trace level so that the test data is as similar as possible to those of the target
seismic images. It evaluates the similarity through the Mean Absolute Error,
MAE, metric (Sammut and Webb, 2017a), and It selects a number l of seismic
images from the defined dataset without replacement to represent each target
seismic image, where l is the twenty percent of the dataset. Finally, there are
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randomly selects thirty percent of the remaining images in the defined dataset
for the validation set and seventy percent for the training set. It performs this
process n times independently for each defined dataset.

5.1.2.4
Deep Learning Model Training

This stage aims to determine both the operational hyper parameters and
the recommended training set, in addition to creating the gas inference DL
model that will be used in the target seismic image.

This stage introduces the operational hyper parameters of a specific DL
model to indicate gas reservoirs in 2D seismic images. It also identifies which
of the defined datasets contains the most representative features based on the
test sets performance metrics. The result of this stage is a trained DL model
that can be used on the target seismic images.

The developed proposal operates in a way that does not affect the original
architecture of the DL model. For this reason, it is possible to use the proposed
method 2 regardless of the selected classifier model. Two different DL networks
will demonstrate this property. The first model used was proposed by Andrade
et al. (2021) based on an LSTM network. A GRU (Section 2.3.2) replaces the
neural network in the second model.

The choice of operational hyper parameters refers to configuration pa-
rameters that affect how the DL model works without affecting the architec-
ture. It performs this search because these parameters directly affect the ability
of the DL model to learn the specific features of the training data (Amirabadi
et al., 2020; Kannammal et al., 2022; Nematzadeh et al., 2022). Method 2
identified five hyper parameters to tune, as shown in Figure 5.6:

1. Gas Pixel Spacing, Gaspixel: Determines the number of pixels added
above and below the marking label to consider it a gas region. This
enlargement of the original label allows the model to recognize the
patterns that occur before and after the gas reserve areas.

2. Region of Interest Pixel Spacing, ROIpixel: Indicates the number of pixels
to add before the ROI upper bound. The geoscientist usually marks the
upper and lower limit of the region of interest. This mark follows the
natural limits given by the rock structures. This work takes the ROI
point closest to the surface as the upper limit of ROI, and then ROIpixel

is extended towards the surface, allowing the capture of seismic threshold
properties delineated by the geoscientist.
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3. Size of the region of interest, ROIsize: Determines the size of the ROI
extracted from all training data. Although each seismic image contains
an indication of ROI, it is necessary to define a standard size so that the
gas indication DL model can process them.

4. Batch Size: Indicates the number of traces to process in training the gas
indication DL model before applying the loss and feedback function to
adjust the internal weights of the network.

5. Balance: Determines whether to perform a balancing between the seismic
images of each class (Gas, No gas) within the training data set, It is a
Boolean type variable.

Figure 5.6: Hyper parameters example.

If the search for hyper parameters is manual, the result and the time
required will depend on the user’s experience, and the complexity of the task
increases when considering the multiple possible combinations. For this reason,
it uses an optimization technique that allows the search to occur within a
multidimensional space with an iterative adjustment, an adjustable learning
rate, a defined number of iterations, and a focus on reducing the cost function
that allows the production of a reasonable solution. Considering all these
characteristics, this work uses Particle Swarm Optimization, PSO, (George
et al., 2020; Ma et al., 2022; Muisyo et al., 2022; Shi et al., 2022).

PSO performs a defined number of iterations to test various hyper
parameters on the DL model, which implies training and testing the model
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for the indication of gas reservoirs. This process uses all the defined datasets
in Section 5.1.2.3. The training and validation sets teach to the DL model, and
the test set measures performance and provides feedback to the PSO, which
updates the hyper parameters before starting a new iteration.

Since there is more than one defined dataset, it is necessary to identify
which contains the most representative features for the target seismic based
on the test set. Thus, the model cyclically changes the defined dataset used
in each iteration of the PSO. When it has tested all defined datasets, it will
use the first dataset again in the next iteration of the PSO. This process tests
each defined dataset multiple times with different hyper parameters.

When working with DL, three sets (training, validation, and tests)
usually perform the study and validate of results (Lei et al., 2023; Lu et al.,
2022; Maharjan et al., 2022; Waqas and Ahmed, 2022). The DL model is usable
when achieving adequate performance for the objective task. This work defines
these three sets based on the similarity with the new target seismic images to
improve the generalization. Thus, training a new DL model does not require
new marking labels and focuses on identifying the seismic images with the most
representative features for the target seismic images in the original training
database.

At the end of the iterative PSO process, the method identifies the hyper
parameters and the dataset that produces a better indication of the gas
reservoir for the test 2D seismic images within the scope of the PSO heuristic
technique, which implies that the solution found may not be the best within
the entire search space and may be a local minimum. As a result of this stage,
it also obtains a specific trained DL model for the target seismic images.

5.1.3
Gas Inference Process

This process uses the DL model trained in Section 5.1.2.4 for each new
seismic image and indicates the location of the gas reservoirs. Figure 5.7
presents the pipeline.

5.2
Experiments and Results

This section presents the experiments carried out and their results, fol-
lowing the performance comparison when using a DL model for the indication
of natural gas reservoirs in 2D seismic images trained with all the available
data versus the results when using the same DL model architecture trained by
the proposed recommendation method.
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Figure 5.7: Gas indication process pipeline.

The performance metrics used are described in Section 2.6.

5.2.1
First Experiment

This experiment performs tests in two stages using the method proposed
by Andrade et al. (2021) based on an LSTM network architecture to indicate
natural gas reservoirs in 2D data.

The first stage obtains the comparison baseline for the nine study fields
described in Section 4.2.1. This experiment uses all available data to train the
gas indication DL model and then uses it for a specific field. For example, if
Gavião Belo is the target, we will use all the seismic images that belong to
the other fields and that do not intersect with the Gavião Belo field as the
training base for the DL model. We will reserve thirty percent for validation
and seventy percent for training.

In the second stage, the recommendation method proposed in this work
defines the training seismic images and assigns the training, validation, and
test sets. Then, it defines the hyper parameters for the gas indication DL
model. Figure 5.8 presents an example of a set recommended for the Gavião
Belo field.
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Figure 5.8: Training seismic images recommendation for Gavião Belo field.

Table 5.1: First experiment table results.
Field Target Training source Database size Accuracy Precision Recall F1_Score IoU

Gavião Azul
All Database 281 0.99 0.45 0.49 0.43 0.30
Proposed Method 95 0.98 0.32 0.76 0.43 0.29

Gavião Belo
All Database 298 0.99 0.54 0.45 0.47 0.35
Proposed Method 29 0.99 0.56 0.63 0.56 0.44

Gavião Branco
All Database 240 0.99 0.45 0.39 0.39 0.26
Proposed Method 89 0.99 0.40 0.72 0.49 0.35

Gavião Caboclo
All Database 282 0.99 0.30 0.38 0.29 0.21
Proposed Method 72 0.99 0.23 0.50 0.29 0.21

Gavião Carijo
All Database 271 0.99 0.29 0.17 0.21 0.13
Proposed Method 63 0.99 0.22 0.33 0.25 0.16

Gavião Preto
All Database 241 0.99 0.28 0.22 0.22 0.15
Proposed Method 105 0.99 0.26 0.41 0.28 0.19

Gavião Real
All Database 263 0.99 0.28 0.24 0.23 0.16
Proposed Method 49 0.99 0.27 0.49 0.30 0.20

Gavião Tesoura
All Database 279 0.99 0.23 0.28 0.24 0.15
Proposed Method 83 0.99 0.16 0.57 0.23 0.14

Gavião Vermelho
All Database 268 0.99 0.45 0.50 0.42 0.29
Proposed Method 79 0.98 0.35 0.70 0.43 0.30

Table 5.1 presents the performance metrics achieved for the first exper-
iment. Also included is the "Database Size" column, which shows the number
of seismic images used to train the DL model.

To facilitate the identification of the improvement in the performance
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of the metrics when using the proposed method, Table 5.2 is presented. The
Train Size column shows the percentage of the training set that was used
for each field; for example, for Gavião Azul only 34% of all available seismic
images were used for training. The other metrics show the difference between
the performance obtained when using the proposed method and the baseline,
those highlighted in blue represent an improvement, while those highlighted in
pink present an equal or worse result.

Table 5.2: Method 2 first experiment, improvement of metrics in relation to
results using all available data for training.

Field Target Train size Precision Recall F1_Score IoU
Gavião Azul 0.34 -0.13 0.27 0 -0.01
Gavião Belo 0.1 0.02 0.19 0.09 0.1
Gavião Branco 0.37 -0.05 0.33 0.1 0.09
Gavião Caboclo 0.26 -0.07 0.12 0 0
Gavião Carijo 0.23 -0.07 0.16 0.04 0.03
Gavião Preto 0.44 -0.02 0.19 0.06 0.04
Gavião Real 0.19 -0.01 0.25 0.07 0.04
Gavião Tesoura 0.3 -0.07 0.29 -0.01 -0.01
Gavião Vermelho 0.29 -0.1 0.2 0.01 0.01

The results of the first experiment present two types of behavior when
using the proposed method: the first is predominant, obtained by the Gavião
Azul, Gavião Belo, Gavião Branco, Gavião Cabloco, Gavião Carijo, Gavião
Preto, Gavião Real, and Gavião Vermelho fields, which present an increase in
the correct indication of natural gas of 27%, 19%, 33%, 12%, 16%, 19%, 25%,
and 20%, respectively. The metric Precision presents a deterioration in almost
all cases. Compared with the baseline, a variation of -13%, 2%, -5%, -7%, -7%,
-2%, -1%, and -10% appears for each field. Despite the loss of precision, it
obtains a general improvement of the generalization according to the F1 score
metric of 0%, 9%, 10%, 0%, 4%, 6%, 7%, and 1%. The model achieved these
results using only 34%, 10%, 37%, 23%, 26%, 19%, and 29% of the training
data set.

Only the Gavião Tesoura field presents the second behavior. The results
of the proposed method show an increase in the correct indication of natural
gas of 29%. However, there is a loss of precision of 7%, which results in a loss
in the F1 Score Metric of 1% with a reduction of the training set of 70%.

Generally, the results using the proposed method show an increase in the
correct indication of natural gas, leading to a better model DL generalization.
The results based on the performance metrics represent the general trend of
each field. Three images illustrate the effects of the proposed method on the
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seismic images. Figure 5.9 shows an example of the ideal case in which an
improvement occurs in all metrics.

Figure 5.9: First experiment example of improvement in the indication of
natural gas.

Figure 5.10 shows the case that obtains an increase in the correct marking
of natural gas but with a loss of precision.

Figure 5.10: First experiment example of improvement in the indication of
natural gas and precision deterioration.

Finally, Figure 5.11 shows an important case where representative train-
ing seismic imagess do not exist for the target seismic images, so the proposed
method can not lead to a better generalization.

Table 5.3 presents the first experiment’s recommended operational hyper
parameters of the method for each field.

Considering all the fields, when using the proposed method, a percentage
variation of the metrics of −13 ≤ Precision ≤ 2, 12 ≤ Recall ≤ 33,
−1 ≤ F1score ≤ 10, and −1 ≤ IoU ≤ 10. Also, the first experiment’s results
for all cases show an increase in the correct indication of natural gas. These
results demonstrate that the proposed method allows a better generation of
the DL model, even when there is a loss of precision. Likewise, it shows a
marked reduction of the necessary training seismic images, which indicates a
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Figure 5.11: First experiment example of no significant improvement in gener-
alization.

Table 5.3: Operational hyper parameters for the DL model recommended for
each experiment.

Field Target Experiment Gas pixel ROI pixel ROI size Batch size Balance

Gavião Azul
First 17 12 225 38 True

Second 17 12 266 162 True
Third 17 16 264 144 True

Gavião Belo
First 18 12 271 195 True

Second 15 16 34 201 True
Third 11 19 272 155 False

Gavião Branco
First 10 14 250 85 True

Second 12 18 265 83 True
Third 10 16 247 128 True

Gavião Caboclo
First 16 16 92 274 True

Second 16 16 83 265 True
Third 19 15 227 17 True

Gavião Carijo
First 17 11 274 92 False

Second 18 16 266 162 True
Third 13 18 271 76 True

Gavião Preto
First 12 14 271 53 True

Second 15 13 265 83 True
Third 14 15 267 151 True

Gavião Real
First 19 16 266 39 True

Second 18 16 266 162 True
Third 10 12 272 155 True

Gavião Tesoura
First 16 14 250 85 False

Second 15 15 265 83 False
Third 15 13 275 110 True

Gavião Vermelho
First 10 18 202 33 False

Second 12 16 200 32 False
Third 15 13 275 110 True

correct selection of training seismic images that have the relevant features for
the indication of gas in target seismic images.
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5.2.2
Second Experiment

The second experiment differs in the training database pre processing, in
which it delimits the seismic images to the regions that are within the limits of
the exploration fields, that is, for each trace of each training seismic image an
analysis of its geographical location is carried out, discarding all those traces
that are not contained within any of the nine exploration fields described in
Section 4.2.1.2, as an example, Figure 5.12 shows the selected training set for
the Gavião Tesoura field.

Figure 5.12: Training cut images recommendation for Gavião Tesoura field.

This experiment is carried out to reduce the uncertainty that exists in
the labeling of the "No gas" class, since, as mentioned in Section 4.2.1.1, there
is only a high level of confidence in the labels that indicate the position of
natural gas in the 2D data, however for the other areas it is not guaranteed
that there is no natural gas, it is only known that they are areas that have not
been analyzed by geoscientists.

The second experiment uses the results obtained in the first stage of
the first experiment as a comparison baseline, then the method proposed in
method 2 is used to train the method proposed by Andrade et al. (2021) based
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on an LSTM for each field separately, using the new training seismic image
cut base.

Table 5.4: Second experiment table results.
Field Target Training source Accuracy Precision Recall F1_Score IoU

Gavião Azul
All Database 0.99 0.45 0.49 0.43 0.30
Proposed Method/Split 0.99 0.39 0.71 0.47 0.34

Gavião Belo
All Database 0.99 0.54 0.45 0.47 0.35
Proposed Method/Split 0.98 0.31 0.70 0.41 0.29

Gavião Branco
All Database 0.99 0.45 0.39 0.39 0.26
Proposed Method/Split 0.99 0.38 0.69 0.46 0.32

Gavião Caboclo
All Database 0.99 0.30 0.38 0.29 0.21
Proposed Method/Split 0.99 0.22 0.47 0.28 0.20

Gavião Carijo
All Database 0.99 0.29 0.17 0.21 0.13
Proposed Method/Split 0.98 0.26 0.50 0.31 0.21

Gavião Preto
All Database 0.99 0.28 0.22 0.22 0.15
Proposed Method/Split 0.99 0.23 0.42 0.28 0.18

Gavião Real
All Database 0.99 0.28 0.24 0.23 0.16
Proposed Method/Split 0.99 0.25 0.52 0.30 0.19

Gavião Tesoura
All Database 0.99 0.23 0.28 0.24 0.15
Proposed Method/Split 0.99 0.18 0.60 0.27 0.17

Gavião Vermelho
All Database 0.99 0.45 0.50 0.42 0.29
Proposed Method/Split 0.98 0.29 0.64 0.37 0.25

Table 5.4 presents the results of the second experiment. Since the original
training seismic images have been cut, it is not possible to make a comparison
between the number of images used for training, so the "Database size" column
is not included.

To facilitate the identification of the improvement in the performance of
the metrics when using the proposed method, Table 5.5 is presented. In this
experiment it is not possible to make a comparison regarding the number of
seismic images used for training, because this experiment performs a division
of the original seismic images. The metrics show the difference between the
performance obtained when using the proposed method and the baseline, those
highlighted in blue represent an improvement, while those highlighted in pink
present an equal or worse result.

When using the proposed method in the Gavião Azul, Gavião Branco,
Gavião Carijo, Gavião Preto, Gavião Real, and Gavião Tesoura fields, an
improvement in the correct indication of natural gas according to the marking
labels of the geoscientific expert is obtained, with a percentage of 22%, 30%,
33%, 20%, 28%, and 32%, with a deterioration in accuracy that implies an
increase in false positives of 6%, 7%, 3%, 5%, 3 %, and 5%, the results overall
show an improvement of 4%, 7%, 10%, 6%, 7% and 3% respectively based on
the F1 score metric.

The Gavião Belo, Gavião Caboclo and Gavião Vermelho fields present a
similar trend in terms of results when using the proposed method, for these
fields an improvement in the indication of natural gas of 25%, 9% and 14%
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Table 5.5: Method 2 second experiment, improvement of metrics in relation to
results using all available data for training.

Field Target Precision Recall F1_Score IoU
Gavião Azul -0.06 0.22 0.04 0.04
Gavião Belo -0.22 0.25 -0.07 -0.06
Gavião Branco -0.07 0.3 0.07 0.06
Gavião Caboclo -0.08 0.09 -0.01 -0.01
Gavião Carijo -0.03 0.33 0.1 0.08
Gavião Preto -0.05 0.2 0.06 0.03
Gavião Real -0.03 0.28 0.07 0.03
Gavião Tesoura -0.05 0.32 0.03 0.02
Gavião Vermelho -0.16 0.14 -0.05 -0.04

is obtained, with a deterioration of 22%, 8% and 16%, leading to an overall
performance loss of 7%, 1% and 5% respectively of the F1 score metric.

For the second experiment, a new recommendation of operational hyper
parameters is made for the method based on the LSTM model. Table 5.3 shows
the resulting recommendation.

In general, the results of the second experiment show that using the
proposed method it is possible to increase the correct indication of natural gas
in all cases, however, it also shows that cutting the training seismic images
produces a loss of representative traces, which produces a significant loss of
precision in three fields.

5.2.3
Third Experiment

This experiment aims to prove that the method proposed in this work
can be used independently of the DL model used to indicate natural gas in 2D
seismic images. This experiment uses the GRU neural network, which replaces
the LSTM used in the first two experiments.

As in the first experiment, it comprises two stages. The first stage obtains
the comparison baseline using the entire available training database with the
new GRU network for each exploration field. This test ensured that the training
set used no seismic images belonging to the target field.

In the second stage, the proposed method defines the hyper parameters
for the new DL model that uses the GRU neural network. The recommended
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datasets that perform the training for each field are not changed concerning the
first experiment (see Section 5.2.1). This occurs because the training dataset
is defined regardless of the natural gas indication technique.

Table 5.6: Third experiment table results
Field Target Training source Accuracy Precision Recall F1_Score IoU

Gavião Azul
All Database 0.99 0.43 0.52 0.43 0.30
Proposed Method/GRU 0.99 0.41 0.73 0.48 0.35

Gavião Belo
All Database 0.99 0.54 0.46 0.48 0.36
Proposed Method/GRU 0.99 0.54 0.54 0.51 0.40

Gavião Branco
All Database 0.99 0.46 0.41 0.40 0.27
Proposed Method/GRU 0.99 0.40 0.66 0.48 0.34

Gavião Caboclo
All Database 0.99 0.30 0.42 0.32 0.23
Proposed Method/GRU 0.99 0.26 0.54 0.32 0.23

Gavião Carijo
All Database 0.99 0.25 0.14 0.17 0.10
Proposed Method/GRU 0.99 0.23 0.41 0.27 0.17

Gavião Preto
All Database 0.99 0.32 0.19 0.21 0.14
Proposed Method/GRU 0.99 0.25 0.42 0.28 0.19

Gavião Real
All Database 0.99 0.30 0.34 0.28 0.18
Proposed Method/GRU 0.99 0.27 0.50 0.31 0.20

Gavião Tesoura
All Database 0.99 0.21 0.23 0.20 0.12
Proposed Method/GRU 0.99 0.16 0.60 0.23 0.15

Gavião Vermelho
All Database 0.99 0.49 0.50 0.44 0.31
Proposed Method/GRU 0.99 0.42 0.70 0.47 0.34

Table 5.6 shows the results of the second experiment for all fields.
There is an increase in the correct indication of natural gas according to the
geoscientist’s marking labels, which vary from 8% ≤ Recall ≤ 37%. However,
there is an increment of false positives that varies from −7% ≤ Precision ≤
0%, and these results conclude in a generalization improvement according to
the variability of the metric of 1% ≤ F1score ≤ 11% and 0% ≤ IoU ≤ 7%.

Table 5.3 presents the recommended hyper parameters for the third
experiment, which uses a GRU network method.

To facilitate the identification of the improvement in the performance
of the metrics when using the proposed method, Table 5.7 is presented. In
this experiment, the results of the Train Size column do not present changes in
relation to the first experiment, since only the gas inference method is changed.
The other metrics show the difference between the performance obtained when
using the proposed method and the baseline, those highlighted in blue represent
an improvement, while those highlighted in pink present an equal or worse
result.

In general, the results of the third experiment show a single pattern, in
which an improvement in the generalization of the DL model is obtained when
using the proposed method and with a reduction in the size of the required
training data set.
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Table 5.7: Method 2 third experiment, improvement of metrics in relation to
results using all available data for training.

Field Target Train size Precision Recall F1_Score IoU
Gavião Azul 0.34 -0.02 0.21 0.05 0.05
Gavião Belo 0.1 0 0.08 0.03 0.05
Gavião Branco 0.37 -0.06 0.25 0.09 0.07
Gavião Caboclo 0.26 -0.04 0.12 0.01 0
Gavião Carijo 0.23 -0.02 0.27 0.11 0.07
Gavião Preto 0.44 -0.07 0.23 0.07 0.05
Gavião Real 0.19 -0.03 0.16 0.03 0.03
Gavião Tesoura 0.3 -0.06 0.37 0.03 0.02
Gavião Vermelho 0.29 -0.07 0.2 0.03 0.02

5.3
Discussion

This section presents important aspects of the proposed method and
analyzes the implications of the results of each experiment.

5.3.1
First Experiment Discussion

The results of the first experiment show that using the proposed method
increases the correct indication of natural gas that agrees with the geoscientist’s
marking labels. In addition, there is a decrease in precision, which increases
the false positives. Even so, for almost all cases, there is an improvement in the
generalization of the DL model. The analysis of the precision loss concludes
that there are two possible causes. The first indicates traces whose feature
differences allow the classification of the ”Gas” and ”No gas” classes to be
too subtle. Therefore, they evade the learning process, indicating that the DL
model prioritizes the shape of rock structures. The second cause is related
to the uncertainty in the marking labels since, as explained in Section 4.2.1.1,
there is no certainty if the zones outside the marking of the ”Gas” class contain
reserves of natural gas and can be areas where the analysis has not been
performed if so, the loss of precision is due to a lack of marking and not an
indication error of the DL model.

The Gavião Tesoura field shows the only case in which the proposed
method obtains a reduction in the F1 score metric, although it is only 1%. As in
the previous fields, it improves the correct indication of natural gas. However,
for this field, the loss of precision causes a reduction in the general DL model
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performance. When analyzing the causes of this loss, the most likely reason
is that the training set contains images with a large amount of unanalyzed
terrain. However, for the DL model, these zones are marked as part of the “No
gas” class, which may lead to the observed behavior. Figure 5.13 shows the
assignment of seismic images that are used as training, in this, it can be seen
how there are lines that are considerably far from the fields, sections in which
there is no certainty of the presence of gas.

Figure 5.13: Training seismic images recommendation for Gavião Tesoura field.

5.3.2
Second Experiment Discussion

The second experiment shows two types of trends concerning the results.
For six of the nine fields, when using the proposed method, a better general-
ization of the DL model is achieved according to the metrics obtained, in all
these fields a significant improvement is achieved in the correct natural gas in-
dication, which coincides with the marking of the specialist. A loss in precision
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is also noted, however, this is small compared to the improvement in Recall
leading to better overall performance compared to baseline.

The second type of behavior is observed in the Gavião Belo, Gavião
Caboclo, and Gavião Vermelho fields, for which using the proposed method
causes a deterioration in the generalization of the DL model. When analyzing
the cause of this loss, it is found that it is due to the marked deterioration
in precision, even though in all fields an increase in the correct indication of
natural gas is observed.

One of the possible causes of the loss of precision is because, by cutting
the seismic images to preserve only the traces within the fields, the number of
samples of the "No gas" class is reduced, since the samples with cut contain
few representative data of this class, to exemplify this situation Figure 5.14 is
presented, in which a common case with most of the traces belong to the "Gas"
class is observed. Overall, these results emphasize the challenge of handling the
"No gas" class uncertainty of the training data.

Figure 5.14: Seismic cut seismic images and class example.

In those cases where the training cut seismic images offer enough repre-
sentation for the DL model learning from both classes, it is observed that the
precision increases, Figure 5.15 shows an example of this case.

Figure 5.16 shows the case in which using the original traces amount
achieves a better result.

5.3.3
Third Experiment Discussion

This experiment shows a unique type of behavior that demonstrates that
using the proposed method obtains a better generalization performance of the
DL model with GRU neural network for the indication of natural gas.



Chapter 5. Generalization through the dataset and operational hyper
parameters recommendation 87

Figure 5.15: Example of improvement when using the trace cut in seismic.

Figure 5.16: Example of deterioration in generalization when using seismic
trace cutting.

Comparing the performance of the neural networks shows that GRU has
a lower loss of precision with a similar gain of Recall, which produced an
increase in the F1 score. Figure 5.17 presents an example of the comparison of
the performance of both networks. These results occur when considering all the
fields, but there are fields for which the LSTM network has better performance.
Figure 5.18 shows an example of this behavior.

The results of the third experiment indicate that the recommendation of
training data based on feature similarity works regardless of the technique used
to perform the gas indication. Thus, the recommended datasets are valid for
subsequent experiments and do not require reprocessing. However, the same is
untrue for operational hyper parameters since each gas indication DL model
requires tuning.

5.3.4
General Analysis of Results

The comparison of features from seismic images allows the creation of
several clusters based on similarity, each containing seismic images whose
features are similar. This similarity makes them especially representative to
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Figure 5.17: Example of improvement in the indication of natural gas using
the GRU network.

Figure 5.18: Example of improvement in the indication of natural gas using
the LSTM network.

be used in the training of the DL model, whose purpose is to process data
with features like those of the cluster.

Considering the properties inherent to seismic images, various combina-
tions of rock layers cause many possible feature distributions. In addition, the
equipment and capture process and the type of processing used in the data add
particularities. Despite this, it is possible to find patterns that establish simi-
larities. The results show that it is effective to use an unsupervised approach
to extract features that establish similarities between the seismic images and
create training sets that are more representative of the new target seismic
images.

The experiments show that the proposed method can increase the correct
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indication of natural gas reservoirs, leading to a better generalization of the
DL model. This result implies that using training images that share features
with those of the new seismic images performs the DL model better, although
the number of seismic images is much smaller compared to training with all
available data. Likewise, it shows that using a hyper parameter search approach
for the DL model based on an ML technique is effective and eliminates the
dependency on the user experience.

The results also indicate a loss of precision, but for most experiments, it
does not imply a loss in the DL model generalization. Even so, the analysis of
the causes of this increase in false positives reveals two possible factors. The
first is the restriction of not modifying the number of traces of the original
seismic images. The second is the uncertainty in the label of the “No gas”
class since there is no certainty that the false positive indication is correct.

When comparing the results of the first and second experiments, it is
found that, although the recommendation of the training seismic images allows
a better generalization of the model, not completely controlling the traces that
are used affects the performance, this is evidenced when comparing the results
of the Gavião Vermelho field. In other words, using recommended seismic
images whose number of traces is equal to the original seismic image implies
using traces that were not recommended (they were only part of a image whose
higher number of traces was recommended), that is, non-recommended traces
interfere with learning the DL model.

On the other hand, performing a cut of the seismic images to preserve
only the traces that are within the exploration fields causes a significant
reduction in the number of traces of the “No Gas” class, and depending on the
recommended training set they lead to a significant increase in false positives.

In the context of the experiments, generalization performance implies
a better performance of the DL models for indicating natural gas when
used in new seismic images. For this purpose, the proposed method achieves
generalization by specialization. It uses the same architecture as the DL
model but is specifically trained to recognize the relevant domains for new
seismic images. The identification of these domains within the training data is
especially significant, considering that there is no ground truth.

Finally, the results when using the proposed method show an improve-
ment in the generalization of the DL model for natural gas indication, which
does not imply a modification of the architecture and is independent of it.
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5.3.5
Important Aspects of the Proposed Method 2

The proposed method contains various techniques based on both ML and
DL, which perform pre processing, feature extraction, clustering, recommenda-
tion of both training data and hyper parameters, and natural gas indication in
2D seismic images, highlighting the main advantages found in the development
of the method 2:

1. The proposed method allows a better generalization of the DL models
for the indication of natural gas, regardless of the selected DL model.

2. Both the creation of a baseline of seismic features comparison and the
recommendation of the training dataset do not require marking labels,
which implies an unsupervised approach.

3. From an ML point of view, using an unsupervised approach makes better
use of the training data, as it is possible to use all available data to train
the Autoencoder-based feature extraction model.

4. Although the training data directly impacts the performance of the DL
models, just as important are the hyper parameters that configure the
behavior of the models, that is, it is necessary to adjust the hyper
parameters so that the DL model can properly learn from the training
data.

5. There is no reliance on user experience to determine the training set or
choose the operational hyper parameters of the network, which leads to
less user operation time required.

6. The proposed method can be applied regardless of the selected natural
gas indication technique, which implies that modification of the original
architecture is not required to achieve a better generalization.

7. The proposed method presents a comparison basis of seismic features, al-
lowing the creation of representative sets without modifying the original
data.

8. The proposed method demonstrates the importance of the representa-
tiveness of the training seismic images over their quantity.

9. According to the results of the state of the art analysis, method 2 is the
first to use different ML and DL techniques to improve the generalization
for the indication of natural gas in 2D seismic images.
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In the same way, multiple limitations were identified, among them the
following stand out:

1. For each new seismic dataset, it is necessary to perform a new DL model
recommendation.

2. The proposed method improves the generalization based on the seismic
images within the training set that are more representative of new seismic
images. However, if these images do not exist, the generalization will not
present improvements.

3. A complete seismic image is recommended based on most traces belong-
ing to a cluster. This fact implies that not everything recommended as
training data is controlled.

4. Performing the hyper parameter search using the PSO technique implies
an average processing time of sixteen hours.

5.3.6
Research implications

This subsection provides information on how the proposed method will
influence current research trends in this area.

Method 2 shows that the application of the analysis of the training
data used in the DL model affects the generalization, demonstrating that the
selection of representative seismic images about the new study data offers
better performance in the indication of natural gas reserves in 2D seismic
images.

In the same way, the effectiveness of the operational hyper parameters
used in the DL models depends on the domains represented by the features
of the training set. That is, the different sets of features require specific hyper
parameters that allow recognition of the patterns to be learned by the DL
model.

From the point of view of the daily application of the indication of natural
gas, the present work offers an automatic method that allows professionals to
obtain training images that offer greater representativeness for the new target
seismic images. It also selects the hyper parameters used in the DL model.
This data otherwise must be determined manually by professionals.
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5.4
Conclusion

Method 2 demonstrated that within the seismic training data, there
are often unknown domains, and the use of the entire training set does not
guarantee that the DL model learns the patterns of each domain. In this
context, the selection specifies that the training data relative to the features
of the new target seismic images provide better overall model performance.
However, this performance depends on the existence of seismic images that
are representative of the training set. Otherwise, the performance does not
present a significant improvement.

Within the context of generalization performance, the proposed method
does not require the modification of the original data or the DL model for
the indication of natural gas, which shows the importance of analyzing the
available training data. A random selection of the training data in an automatic
learning context does not guarantee the selection of the seismic images that
offer greater representativeness than the objective data.



6
Improving generalization performance in gas inference DL
models for 2D seismic image by recommending both training
seismic patches set and DL model training operational hyper
parameters - Method 3

This chapter presents a method that separates the seismic image to
create a set of standard-sized patches, this seeks to overcome the limitation
presented in Chapter 5 in which a complete seismic image is recommended
as part of the training set, which implies that some traces used to DL model
training were not recommended for the target seismic image. This method is
shown independently of the previous ones, presenting a new DL-based feature
extraction approach focused on patch processing.

The specific contributions of method 3 to state of the art are: First, it
introduces an unsupervised DL patch feature extraction method that estab-
lishes a basis for comparing seismic training data and allow the creation of
clusters with concentrated representativeness based on pattern similarity. Sec-
ond, a new training data recommendation method for natural gas inference
DL models is presented based on patches that standardize the seismic size.
Finally, the proposed method 3 improved the generalization performance of
the DL model.

6.1
Proposed Method

This section presents the proposed method to improve the generalization
performance of the DL model for gas reservoir inference in 2D seismic images.
This method presents a new perspective that uses standard-sized seismic
patches to recommend both the training data set and operational hyper
parameters to train the DL model according to the patterns in the target
seismic image.

As in Chapter 5, the input data is a 2D seismic image set with ground
truth for gas reservoirs, and without ground truth indicating the grouping of
seismic images based on their features domains, as indicated in Section 4.2.1.2.

The proposed method 3 comprises six sub processes that allow analyzing
the seismic images and recommending the training dataset based on the
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similarity of the seismic features with those of the target set. This process is
carried out based on standard-sized seismic patches that seek to overcome the
original size variation between the seismic images. Figure 6.1 provides a high-
level description of the proposed method 3, the sub processes are explained in
Section 6.1.1 to Section 6.1.6.

Figure 6.1: Proposed Method 3.

6.1.1
Tessellation Process

This sub process aims to transform the original seismic images training
set into a collection of standard-size patches, this allows a comparison based on
seismic images with an equal number of traces, which overcomes the variable
size problem that normally exists in seismic images.
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This step takes the 2D seismic image set to transform it into a set
of standard-sized 2D patches. This process requires the segy seismic files as
input data and returns as output a set of standard-sized segy seismic files that
preserve the original indices information following the SEG standard.

The tessellation process consists of two sequential steps, as shown in
Figure 6.2, explained in Section 6.1.1.1 and Section 6.1.1.2.

Figure 6.2: Tessellation Process pipeline.

6.1.1.1
Seismic Size Standardization

This step aims to increase the number of traces of the original seismic
image to allow the extraction of standard-size patches. This means that
depending on the size of the patch to be extracted, it may be necessary to
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add traces with a zero value to the end of the seismic image to avoid the final
patch having a different size due to the trace’s lack.

This step takes as input the original set of training seismic images and
the patch size (defined by the user). The result is a collection of seismic images
with zero-value traces at the end of each image.

Each original 2D seismic image is modified by adding traces (columns,
See Section 2.1) with zero value, this is necessary because there is no indication
of the trace number which a seismic file can have.

The amount of zero traces, Zt, to be added to each seismic image depends
on the patch size, this means that it is necessary to add as many Zt equal to
the division modulus between the trace amount of the seismic image, f |t|,
and the traces amount of the patch size, Patchsize (t), i.e., the value of Zt is
calculate according to the Equation (6-1).

Zti = fi |t| mod Patchsize (t) ∀i ∈ F (6-1)
where F is the seismic images set.

6.1.1.2
Seismic Tessellation

This step aims to extract a set of seismic patches from the seismic
images to create a training standard-size set, this allows to overcome the
problem of seismic comparison with different sizes. This step takes as input the
standardized seismic set with zero trace filling, the specification of the patch
size, and the indication of the ROI marking labels (see Section 4.2.1.1). As
output, a set of seismic image patches of equal size to the ROI is created, this
means that the patches are only extracted from the region delimited by the
ROI, respecting the size defined by the patch size.

Since the ROI size in the depth component is not too extensive, tessel-
lation is only done relative to the number of traces, i.e., each standardized
seismic image is divided into m patches according to Equation (6-2).

mi = fi|t|
P atchsize(t) ∀i ∈ F (6-2)

Note that the number of seismic patches, m, created from each seismic
image may differ and depend on each original seismic size.

As a result of this step, a set of seismic patches is created, each saved
as a unique segy file, identified by using the key name of the original seismic
image from which it came, and adding a unique consecutive number for each
patch.
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6.1.2
Clusterization Process

This section aims to create several clusters that contain the training
patches grouped by the similarity of their features, which allows the creation
of groups with concentrated representativeness, which are useful when selecting
training data for new seismic targets. This section is composed of three sub
processes that create different models for feature extraction, feature analysis,
and patch clustering. The set of training 2D seismic patch set is taken as input
and, as output, three models are created, in addition to the training patch
clusters.

The clustering process consists of three sequential steps, as shown in
Figure 6.3, explained in Section 6.1.2.1 to Section 6.1.2.3.

6.1.2.1
Pre processing

This step normalizes the amplitude value of all traces to allow a compar-
ison between patches regardless of the field they come from. The set of seismic
image patches is taken as input and a set of normalized seismic image patches
is created as output.

Pre processing is necessary since the seismic amplitude varies according
to unknown parameters and characteristics in the seismic image acquisition
(see Section 4.2.1). The normalization is applied to put each seismic patch
on the same scale, using a function that has a response interval of [−1, +1]
(Equation (4-1)), allowing the disparity of positive and negative values of each
trace to be preserved within a defined representation space.

6.1.2.2
Autoencoder Feature Extraction

This step has two objectives, the first is to train a patch feature extraction
model based on Autoencoder, the second is to extract the features from the
training patch set. The set of normalized seismic patches is taken as input and,
as output, a encoder feature extractor model is created, and the set of features
from the training set is obtained. This step allows extracting features from
seismic image patches without ground truth. In other words, this step allows
extracting features that can be used to perform patch comparisons of seismic
images, which constitutes the basis of the present method.

The use of an Autoencoder approach for feature extraction is because it
does not require marking labels, which is necessary since there are no seismic
similarity labels that would allow cluster creation. In addition, as presented
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Figure 6.3: Clusterization Process pipeline.

in Section 4.2.1, there are different and unknown domains that according to
Section 2.2.2 can be considered as DA in which a DL can help recognize the
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different patterns within the seismic patches.
This step builds a feature extraction model based on an Autoencoder con-

cept. However, the architecture is modified by adding two decoding branches
plus batch clustering quality evaluation, this new decoder allows evaluation
of the latent space using different approaches. Furthermore, two branches are
created in the encoder stage to improve feature extraction.

Figure 6.4 presents the Autoencoder-based feature extraction network
used in method 3. The encoder step is performed in two branches that re-
ceive the normalized 2D seismic patch, the first branch applies three convo-
lution blocks consecutive, which transform the input image patch to a low-
dimensional representation space.

The second branch applies a Fourier transform to the original patch
before running three consecutive convolution blocks. The Fourier transform
is used given its compatibility with seismic data, since these are time series. In
addition, the Fourier transform can be inverted, which adapts to the encoder-
decoder concept used for the Autoencoder. Using a second coding branch
allows features to be extracted from the same seismic patch, but in a different
representation space, enriching the latent space.

At the end of the convolution block, both branches are united into a
single vector that contains the seismic features within a latent representation
space. The idea behind this encoder architecture is to allow the extraction of
representative features of the seismic patch by viewing it from different spaces
(time and signal).

Figure 6.4: Autoencoder (Encoder-Decoder) model architecture for method 3.

The decoder step has two branches, both take the feature vector created
in the encoder step as input, the first branch applies three consecutive blocks
of transposed convolutions with the aim of recreating the input seismic patch.
The second branch applies a transposed convolution and then applies a Fourier
transform, then applies two consecutive transposed convolution blocks with the
aim of recreating the input seismic patch with the Fourier transform.

The use of two branches allows evaluating the latent space created by
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the encoder from two different spaces. The main idea is that the representative
space must contain the main features that allow the original entrance to be
recreated but expressed in two different spaces. The first branch performs a
reconstruction of the original seismic patch and its error is quantified using the
MSE loss function. The second branch performs a Fourier transform seismic
reconstruction of the patch and the error is quantified using the MSE loss
function.

There is another performance metric that is applied to the batch of
seismic patches, after a batch is processed, the features extracted by the
encoder are used to create different clusters, using the silhouette coefficient (see
Section 2.6) to evaluate the quality of the grouping. The number of clusters to
be created is automatically calculated based on the silhouette score.

This third metric evaluates the encoder’s ability to extract features that
can be separated based on their similarity. In other words, the ability of the
latent space to extract clusterable features is evaluated and included in the
loss function.

From a high level of abstraction, the loss function is composed of the sum
of two components starting with the MSE. The first corresponds to the loss
of the first branch of the decoder section in which the seismic is represented
as time series plus the clustering score. The second corresponds to the second
branch of the decoder which is the Fourier branch, and which is also affected
by the clustering score. Equation (6-3) present the loss function explained in
a high level of abstraction.

(6-3)

L(Time, Fourier) = MSE (Time) ∗ α (Time)
+ (1 − α (Time)) ∗ (Cluster Score)β

+ MSE (Fourier) ∗ α (Fourier)
+ (1 − α (Fourier)) ∗ (Cluster Score)β

where α and β indicate how much the MSE and clustering score affect the final
loss function, respectively.

The cluster score presents two possible behaviors depending on the value
of the silhouette coefficient. If the silhouette value is close to −1, it is considered
that it is not possible to group the samples based on the extracted features,
and consequently it is necessary for the loss function to cause large changes. On
the contrary, if the value of the silhouette is close to 1, it means that clustering
is possible and the loss function should cause a small change.

Equation (6-4) presents the loss function for the Autoencoder training
process in a more detailed way:
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where x1 is the original seismic patch, x2 is the seismic Fourier transformed
patch, Y is the reconstructed seismic patch, ˆY x1

i is the original seismic patch
and ˆY x2

i is the seismic Fourier transform, SC is the silhouette coefficient, and
n is the number of seismic patches.

If the silhouette coefficient is negative, its effect on the loss function is
reduced by a threshold value of 0.6, this allows the network to learn even in
cases where the extracted features do not allow clustering to be performed.
Also, the silhouette coefficient value is subtracted from one in order to ensure
that small values have a greater effect on the loss function.

Training the Autoencoder model uses an early stopping approach, with
an Adam optimizer and fifteen epochs. The values α and β define the effect
each part has on the loss function. however, a value of 0.5 for α and 0.4 for β

is recommended.
After the creation of the encoder feature extraction model, the normalized

set of 2D seismic patches is processed to extract their features. For each patch
a feature vector is created, producing the set of patch feature vectors.

6.1.2.3
Clustering

This step aims to group the seismic image patches into clusters based on
the feature vectors, two models are also created that analyze the features and
create the clusters. It is in this step where the comparison between seismic
patches is made, seeking to identify similarities between them. This models
are used in the training set recommendation according to the features of the
target seismic images.

To obtain the most relevant features from the vectors set, a feature
analysis is applied using the PCA (Section 2.5) technique. This also allows
the size reduction of each patch feature vector, which implies a reduction in
the seismic image representation space, and facilitates the clustering process.
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This step also creates a PCA model that can be used to analyze the target
seismic image that is represented in the same feature space.

The next step uses the K-means technique to assign each training PCA
patch feature vector to different clusters, and create a clustering model that
can be used to identify clusters that are most similar to the target seismic
image. This step does not present changes with that one presented in Section
5.1.1.3.

6.1.3
Seismic Target Preparation Process

This process aims to transform the target seismic image into seismic
image patches that are in the same representation space as the training set. As
a result of this step, the target seismic patch set is created. This step allows
the target seismic image to be transformed to compare it with the training set.

This step receives the target seismic image and transforms it using the
following steps described in Section 6.1.1. First, size standardization is applied
to the seismic image, allowing standard-sized patches to be extracted. Then,
using the ROI labels and patch size indication, the standardized seismic image
is tessellated, transforming it into a set of seismic patches. Finally the patches
are normalized as in the same way as Section 6.1.2.1.

Figure 6.5 presents the pipeline used to transform the target seismic
image into seismic patches that will be used in both the recommendation
process and the gas inference process.

6.1.4
Recommendation Process

This step aims to train a 2D seismic image gas inference DL model, using
a set of recommended seismic patches that come from clusters that have similar
features to the target seismic image patches, and also using the recommended
operational hyper parameters. It is in this step where the features of the target
seismic image are identified and compared with those of the training set, to
recommend the most appropriate training data and hyper parameters to be
used by the DL model.

The inputs are the set of target seismic patch set created in Section 6.5,
the training clusters and the PCA and clustering methods created in Section
6.1.2.3 and, finally, the encoder feature model created in Section 6.1.2.2.

The recommendation process can be applied to a one or more seismic
images represented as set of patches and includes five steps that produce a
trained DL model as a response, Figure 6.6 presents the pipeline.
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Figure 6.5: Seismic target preparation process pipeline.

6.1.4.1
Target Patches Classification into Clusters

This step aims to assign each target seismic image patch to one of
the training clusters, allowing the identification of the training seismic image
patches that are most similar to the target image patches.

This step takes the set of target seismic patches to extract their features
using the encoder feature extractor model, creating the feature vectors. They
are then analyzed using the PCA model, this allows the target patches to be
placed in the same representation space of the training set.

The next step uses the clustering model to assign each PCA feature target
vector to the most similar cluster. In other words, It identifies the cluster with
the most similar features and assigns the target patch.

Finally, the original target seismic images patches are linked to the
training seismic patches in the selected cluster, this means that the patch
feature vectors are now replaced by the original seismic image patches they
represented.
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Figure 6.6: Method 3 recommendation process pipeline.

6.1.4.2
Training, validation and Test Sets Definition

This step aims to separate the seismic image patches from the selected
clusters to create the training, validation and test subsets, and all the target
patches that were assigned to the same cluster are grouped into a set called
target. In other words, this step prepares the different sets necessary to train
a DL model at the patch level.

The cluster assigned for each seismic patch is separated into training,
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validation, and testing subsets, with seventy, twenty, and ten percent of
training patches respectively. The training and validation subsets are chosen
randomly, but the seismic patches for the test set are selected based on their
similarity to each target seismic patch.

The seismic image patches from the selected cluster are similar to the
target seismic image patch since the clustering model selected them. However,
some patches within the cluster have a trace distribution more like the target
seismic patch. This stage compares them at the trace level so that the test data
is as similar as possible to those of the target seismic image patch. Similarity
is evaluated through the MAE metric.

This process is similar to that in Section 5.1.2.3, and is done because
selecting the test set as similar as possible to the target set allows recommend-
ing a training set for the DL model completely focused on the target seismic
image.

6.1.4.3
Seismic Sample Dataset Definition

This step aims to join the clusters that have patches that come from
the same target seismic image. This process allows joining all the clusters
and their subsets to train the DL model at the patch level, but which is also
representative for the complete target seismic image.

Up to this step, there are training, validation, test, and target subsets
for each cluster in which a target seismic patch was recommended, this means
that all recommendations are made at the patch level.

In this step, the subsets belonging to different clusters are joined if the
recommended target patches come from the same original seismic image, i.e.,
the patches coming from a single seismic image can be assigned to different
clusters, so to recommend a training set for a complete seismic image, it is
necessary to join all clusters that have patches that come from the same seismic
image.

At the end of this step, training set recommendations are made for each
seismic target image.

6.1.4.4
Deep Learning Model Training

This step aims to train the gas inference DL model using the recom-
mended training set, but also recommends operational hyper parameters that
allow the DL model to identify the representative pattern within the training
set.
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This step introduces the operational hyper parameters of a specific DL
model to indicate gas reservoirs in 2D seismic image. The result of this step is
a trained DL model that can be used on the target seismic image.

The choice of operational hyper parameters refers to configuration pa-
rameters that affect how the DL model works without affecting the architec-
ture. The hyper parameters to be tuned are the same selected for method 2
presented in Section 5.1.2.4.

When the search for hyper parameters is manual, the result and the time
required will depend on the user’s experience, and the complexity of the task
increases when considering the multiple possible combinations.

For this reason, the proposed method 3 uses an optimization technique
that allows the search to occur within a multidimensional space with an iter-
ative adjustment, an adjustable learning rate, a defined number of iterations,
and a focus on reducing the cost function that allows the production of a
reasonable solution. Considering all these characteristics, the Particle Swarm
Optimization, PSO, (George et al., 2020; Ma et al., 2022; Muisyo et al., 2022;
Shi et al., 2022) is selected.

PSO performs a defined number of iterations to test various hyper
parameters on the DL model, which implies training and testing the model
for the indication of gas reservoirs. This process uses all the defined datasets
in Section 6.1.4.3. The training and validation sets teach to the DL model, and
the test set measures performance and provides feedback to the PSO, which
updates the hyper parameters before starting a new iteration.

In method 3, the GRU neural network (Section 2.3.2) proposed in Section
5 is used to perform gas inference, it is selected because it presents a better
generalization performance according to the results presented in Sections 5.3.3.

At the end of the iterative PSO process, the hyper parameters for DL gas
inference model training are recommended. It also obtains a specific trained
DL model for the target seismic image.

6.1.5
Gas Inference Process

The aim of this step is to use the trained gas inference DL model on
the target seismic image patches, i.e., this process runs inference on the set of
target patches to obtain a gas indication within each seismic image patch.

This step uses the trained model from Section 6.1.4.4 specific for the
patches that belong to the same seismic image, which is represented as patches
that come from Section 6.1.3. This DL model was trained using the clusters
specifically recommended for the target seismic patches (see Section 6.1.4.3),
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this means that for each seismic image, a different gas inference model may
exist.

The output of the DL inference model is a set of seismic patches with
gas indication. Figure 6.7 presents the pipeline.

Figure 6.7: Gas indication process method 3 pipeline.

6.1.6
Seismic Reconstruction Process

As the input data for the gas inference process are seismic patches, the
outputs are also a set of seismic patches, that is the reason why it is necessary
to apply a seismic reconstruction process to concatenate all the target patches
into a single seismic image.

To concatenate the patches that come from the same seismic image, the
key name described in Section 6.1.1.2 of each patch is used. The patch key
name is separated into the seismic key name and the consecutive identification
number. The name of the seismic key is used to group all the patches that
come from the same seismic image, then the consecutive number indicates the
order to concatenate each patch. Figure 6.8 presents the seismic reconstruction
pipeline.

6.2
Experiments and Results

This section presents the experiments carried out and their results, fol-
lowing the performance comparison when using a gas inference DL model in
2D seismic image trained with all datasets available versus the results when
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Figure 6.8: Seismic reconstruction process pipeline.

using the same DL model architecture trained by the proposed recommenda-
tion method. The performance metrics used in the experiments are described
in Section 2.6.

The experiments perform two-stage tests using the gas inference method
proposed by Andrade et al. (2021) but change the DL network to a GRU
network as described in Section 6.1.4.4.

The first stage obtains the comparison baseline using the entire training
database available with the GRU network for five randomly selected target
fields, this stage is similar to Section 5.2.3. This test is performed taking care
that the DL model does not use any seismic images from the target field for
training.

The baseline performs nine tests, in each one it takes a single field as
the target and uses the others as training, in this way it uses the traditional
approach that randomly assigns the seismic images into three subsets to train
the DL model, that is, 70% as training, 20% as validation and 10% as testing.

In the second stage, the proposed method 3 defines both the hyper
parameters of the DL model used by the GRU network and the clusters of
recommended seismic patches from the training set that will be used according
to the target seismic image. In other words, the proposed method (see Section
6.1) is used which takes all the available training data and the gas inference
model to make a recommendation that adapts the model to the target seismic
images.

The proposed method 3 uses equal-size patches as a comparison basis,
this means that all training seismic images have a standard size. Figure 6.9
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shows an example of the content of the sets recommended for training and
validation for a single seismic belonging to the Gavião Branco field.

Figure 6.9: Patches recommended for DL model training.

The table 6.1 presents the two-stage test result of the experiment. The
table includes the "Patch Amount" column, which refers to the number of
patches used in each test.

For all fields, a reduction in the number of patches required to train
the DL model is observed, varying between 84% and 87%. In almost all tests
there is a reduction in precision which means that the DL gas inference model
reduces its ability to recognize "No gas" class patterns, however, there is a
significant improvement in recall which means that the DL model improves
in the identification of the class "Gas". These results show an improvement in
generalization performance based on the F1 score ranging from 2% to 21%, or
between 1% and 15% based on the IoU score.

To facilitate the identification of the improvement in the performance
of the metrics when using the proposed method, Table 6.2 is presented. The
Train Size column shows the percentage of the training set that was used
for each field; for example, for Gavião Azul only 14% of all available seismic
patches were used for training. The other metrics show the difference between
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Table 6.1: Experiment results
Field Target Training source

Patch
Accuracy Precision Recall F1_Score IoUAmount

Gavião Azul
All Database 891 0.99 0.43 0.52 0.43 0.30
Proposed Method 3 126 0.99 0.40 0.77 0.50 0.37

Gavião Belo
All Database 968 0.99 0.54 0.46 0.48 0.36
Proposed Method 3 133 0.99 0.55 0.70 0.60 0.49

Gavião Branco
All Database 666 0.99 0.46 0.41 0.40 0.27
Proposed Method 3 95 0.99 0.40 0.76 0.50 0.35

Gavião Caboclo
All Database 892 0.99 0.30 0.42 0.32 0.23
Proposed Method 3 131 0.99 0.27 0.57 0.34 0.24

Gavião Carijo
All Database 797 0.99 0.25 0.14 0.17 0.10
Proposed Method 3 123 0.99 0.33 0.53 0.38 0.25

Gavião Preto
All Database 1027 0.99 0.32 0.19 0.21 0.14
Proposed Method 3 161 0.99 0.30 0.54 0.35 0.24

Gavião Real
All Database 1088 0.99 0.30 0.34 0.28 0.18
Proposed Method 3 196 0.99 0.28 0.63 0.35 0.23

Gavião Tesoura
All Database 1017 0.99 0.21 0.23 0.20 0.12
Proposed Method 3 128 0.99 0.20 0.59 0.27 0.17

Gavião Vermelho
All Database 1102 0.99 0.49 0.50 0.44 0.31
Proposed Method 3 203 0.99 0.38 0.78 0.47 0.33

the performance obtained when using the proposed method and the baseline,
those highlighted in blue represent an improvement, while those highlighted in
pink present an equal or worse result.

Table 6.2: Method 3 first experiment, improvement of metrics in relation to
results using all available data for training.

Field Target Train size Precision Recall F1_Score IoU
Gavião Azul 0.14 -0.03 0.25 0.07 0.07
Gavião Belo 0.14 0.01 0.24 0.12 0.14
Gavião Branco 0.14 -0.07 0.35 0.1 0.08
Gavião Caboclo 0.15 -0.03 0.15 0.02 0.01
Gavião Carijo 0.15 0.08 0.39 0.21 0.15
Gavião Preto 0.16 -0.02 0.35 0.14 0.1
Gavião Real 0.18 -0.03 0.3 0.07 0.06
Gavião Tesoura 0.13 -0.01 0.36 0.07 0.05
Gavião Vermelho 0.18 -0.12 0.28 0.03 0.02

Three images illustrate the effects of the proposed method 3 on the
seismic images. Figure 6.10 shows an example of the ideal case in which an
improvement occurs in all metrics.

Figure 6.11 shows the case in which an increase in the correct marking of
natural gas is obtained but with a loss of precision, which is the most common
result according to Table 6.1.

Figure 6.12 shows the case where there are no representative seismic
images within the training set with respect to the target seismic, in these
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Figure 6.10: Example of improvement in the indication of natural gas.

Figure 6.11: Example of Gas indication improvement and precision loss.

cases, the result does not present an improvement in any metric.
Finally, Table 6.3 presents the recommended operational hyper parame-

ter ranges for DL model training. The recommendation is expressed by ranges
since method 3 makes a recommendation for each seismic image, this means
that there are as many recommendations as there are seismic images in each
field.
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Figure 6.12: Example of no significant improvement in generalization perfor-
mance.

Table 6.3: Hyper parameter ranges selected per field
Field Target Gas pixel ROI pixel ROI size Batch size Balance # Epoch
Gavião Azul 10 -18 11 - 18 227 - 276 23 - 587 True - False 10 - 55
Gavião Belo 10 - 20 10 - 20 200 - 280 16 - 800 True - False 10 - 200
Gavião Branco 11 - 16 10 - 17 223 - 278 38 - 799 True - False 20 - 110
Gavião Caboclo 12 - 18 11 - 19 230 - 278 23 - 186 True - False 25 - 200
Gavião Carijo 13 - 19 10 - 19 244 - 278 60 - 192 True - False 20 - 95
Gavião Preto 11 - 18 11 - 18 230 - 273 64 - 188 True - False 20 - 45
Gavião Real 14 - 19 10 - 18 244 - 275 37 - 180 True - False 15 - 200
Gavião Tesoura 14 - 19 12 - 19 232 - 279 90 - 737 True - False 10 - 200
Gavião Vermelho 11 - 19 10 - 19 244 - 273 37 - 172 True - False 10 - 200

6.2.1
Discussion

The experiment results show that the use of the proposed method 3 allows
a significant increase in the correct indication of gas reserves in 2D seismic
images, ranging from 15% ≤ Recall ≤ 39%. This result demonstrates that
within the training set, there are seismic images that are more representative
according to the seismic objective, and it is possible to identify them using an
unsupervised approach.

However, there is an increase in false positives ranging from −7% ≤
Precision ≤ 8%, indicating that there is a persistent challenge in identifying
the "No gas" class, when analyzing the results, different possible causes emerge.
The first is introduced by method 3 itself, the tessellation process allows seismic
comparison with a standard size, but the tessellation does not take into account
the position of the gas reserves within the training seismic images, this means
that there is no criterion that allows balancing the number of pixels of the "Gas"
and "No gas" classes within the patches. The second is related to the class size
imbalance, and the reliability issue with the "No Gas" class, as described in
Section 4.2.1. The reliability problem arises because within each seismic image
all pixels are considered to represent the "No Gas" class unless the specialty
market label indicates otherwise, but this may not be true for the entire seismic
image, since the Pixels of the class "No Gas" may actually belong to an not
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analyzed area and there are no labels that identify them. On the other hand,
the "No Gas" class is dominant in the seismic images, this means that there
are many more different features that the DL model needs to learn, i.e., there
can be many domains within the seismic image and they all belong to the “No
gas” class.

6.2.2
General Analysis of Results

Seismic feature analysis allows the identification of different patterns
that can be used to create clusters containing similar seismic features, that is,
each cluster contains seismic image that is representative of a specific feature
domain. Using a cluster to train DL models results in better generalization
performance when used on target seismics images that have similar features to
the cluster, compared to using a DL models that was trained using the entire
seismic image database.

By using a tessellation approach, it is possible to make a comparison
between seismics with the same size, which makes it easier to identify the
"Gas" class, but presents a challenge for the identification of the "No Gas"
class. This is because only patches containing the "Gas" class are used in the
recommendation process, in this way, the uncertainty that exists in the marking
labels of the "No gas" class is reduced (see Section 4.2.1.1), but there are several
implications. First, since there is no indication of balance on the classes in each
patch, it is possible that the "No Gas" class has weak representation. Secondly,
the spatial context can be lost, i.e. the size of the patch and the position
in which it is applied can cut off the layer structure that helps identify the
spatial context of the gas reservoir. Third, since tessellation works without
overlap, there are fewer patches, which reduces training time but can also
reduce the number of domains that can be represented. Fourth, using only
patches with class "Gas" eliminates the reliability problem since the areas
around the gas reserve have extensive studies carried out by the specialists
who make the marking labels. Fifth, tests show that to extract features from
seismic patches, the traditional Autoencoder approach in which the original
image is reconstructed is not sufficient. To obtain representative features within
the gas inference task, it is necessary to modify the architecture and use new
latent space evaluation criteria.

The reduction in the amount of patch needed to improve generalization
performance indicates that there are patches containing patterns that better
represent the new seismic target. However, there are cases in which there are
no representative patches for the new seismic target. In these cases the results
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are similar to those obtained for training using the entire database.
Finally, in the specific case of gas inference using a DL model on 2D

seismic image, there is a generalization performance losses when a model
trained on a specific field is used on a new seismic field. The experiment shows
that the selection of specific training images affects the performance of the
DL model, which means that comparing seismic image for clustering improves
the overall performance and can be used on seismic image coming from new
explorations. However, new training is necessary and effectiveness depends on
the existence of representative data.

6.2.3
Important Aspects of the Proposed Method 3

The proposed method contains various techniques based on both ML and
DL, which perform pre processing, feature extraction, clustering, recommenda-
tion of both training data and hyper parameters, and natural gas indication in
2D seismic image, highlighting the main advantages found in the development
of the method 3:

1. The proposed method creates a base of standard-sized seismic images
that can be used for feature comparison.

2. The experiment demonstrates that the analysis and selection of the train-
ing dataset have a significant effect on the generalization performance of
the DL model used in seismic images.

3. The proposed method enables better generalization performance of the
DL model for natural gas reservoir indication compared to the traditional
approach using the entire database with random selection for training,
validation and testing sets.

4. Creating the Autoencoder feature extraction and the clustering models
does not require label marking, i.e., an unsupervised learning process.

5. The proposed method introduces a new Autoencoder-based feature ex-
traction model that uses a three-validation approach, including a clus-
tering performance metric.

6. From an ML point of view, using an unsupervised approach makes better
use of the training data, as it is possible to use all available data to train
the Autoencoder-based feature extraction model.

7. Conducting the experiment demonstrated that the operational hyper
parameters affect the ability of the DL model to identify patterns within
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the training set, that is, it is necessary to identify the appropriate
operational hyper parameters that enable the learning process, and these
depend on the training set.

8. The use of tessellation makes it possible to eliminate the problem of
uncertainty in the seismic image because it is possible to use only the
patches that contain gas labels, which are areas with extensive study by
experts who carry out the labeling.

9. The proposed method does not depend on user experience to determine
a DL model training set or the operational hyper parameters selection.

10. The proposed method presents a comparison basis of seismic features, al-
lowing the creation of representative sets without modifying the original
seismic traces.

11. The proposed method demonstrates the importance of the representa-
tiveness of the training seismic images over their quantity.

12. Based on the state of the art analysis results, method 3 is the first
to use a tessellation approach to make a dataset and hyperparameter
recommendation to improve the generalization performance for natural
gas indication in 2D seismic images.

In the same way, multiple limitations were identified, among them the
following stand out:

1. For each target seismic image, it is necessary to train a new DL model
and perform a new search for operational hyper parameters.

2. The proposed method depends on the existence of representative seismic
images within the seismic image database to make a recommendation
that improves the generalization performance of the DL model on target
seismic images. If these images do not exist, generalization will not
present improvements.

3. There is no tessellation policy that ensures a balanced number of pixels
of the "Gas" and "No Gas" classes within each patch. This creates an
imbalanced database of training seismic image patches.

4. To eliminate the uncertainty created by the “No gas” class, all patches
without gas marking labels are discarded.

5. Performing the hyper parameter search using the PSO technique implies
an average processing time of sixteen hours.
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6.2.4
Research implications

This subsection provides information on how the proposed method will
influence current research trends in this area.

Proposed method 3 demonstrates that analysis of the training database
allows the identification of seismic image features which can be used to create
clusters with similar representative seismic image patches.

The experiment shows that it is possible to improve the generalization
performance of the gas inference model by only using seismic image patches
that include gas marking labels, meaning that it is possible to discard training
seismic patches that represent areas that have not been analyzed, and so it
cannot be known with certainty if they have gas reserves or not.

From the DL point of view, method 3 demonstrates that it is necessary to
tune the operational hyper parameters to correctly recognize patterns within
the set of training patches, that is, the performance of the DL model is
susceptible to the operational hyper parameters.

For the geoscience area that works on the analysis of 2D seismic images
to indicate gas reservoirs, the present work offers a technique that can be
integrated with DL-based methods to improve the performance of data coming
from new exploration campaigns. Offering comparative analyses of training
and target data automatically and that do not depend on the experience of
professionals.

6.3
Conclusion

Method 3 demonstrated that the use of standard-size seismic image
patches allows the identification of seismic features and the creation of clusters
based on their similarity. Also, the use of this cluster for the recommendation
of the training set for the gas inference DL model based on the comparison
with target seismic images improves the generalization performance. However,
the improvement depends on the existence of representative patches within
the training set. Otherwise, the performance does not present a significant
improvement.



7
The Three Methods Comparison

In this chapter, a comparison is made between the three proposed
methods from the point of view of their operational application and the results
obtained.

7.1
Operational Application

This section presents the advantages and weaknesses of each method
about its operability from the point of view of its application.
Advantages of the method 1.

• It allows the user more control over the DL model since method 1 only
recommends the training data based on a fixed cluster set. This implies
that the user can manually configure the DL model’s hyper parameters
to indicate natural gas reserves.

• The execution time to obtain a recommended training set is less com-
pared to the other methods. This is because method 1 extracts features
that represent seismic images using four techniques that do not require
training. Furthermore, the extracted features represent a complete seis-
mic image and not just a patch, which means that the size of the database
to be clustered is the same as that of the original seismic images.

• Since the size of the original seismic images training database remains
constant (no tessellation or data augmentation processing is performed),
it is possible to use a clustering method that does not require an auxiliary
technique to determine the number of clusters to create.

Disadvantages of method 1.

• There is no automatic process that verifies the quality of the features ex-
tracted by each technique. This means that no quantification determines
the contribution made by each feature extraction technique to perform
clustering.

• Each feature extraction technique requires a manual hyper parameter
tuning process, this implies that the user needs to perform consecutive
tests.
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• Method 1 has no automatic operative hyper parameter searching for the
gas inference DL model, which means that for each new set of seismic
images, a manual hyper parameter search is required, which can take
months and is completely dependent on user experience.

• Because the feature extractor takes the seismic image as a single element,
seismic images with different numbers of traces are processed similarly,
which implies shallow feature extraction since seismic images do not have
a standard size.

Advantages of method 2.

• For the dataset recommendation process, the seismic image is divided
into patches of the same size, this allows to overcome the problem created
by the different amounts of traces within the seismic images and allows
to consider the structure of each seismic patch for the feature extraction.

• The use of an Autoencoder DL model as a feature extractor for clustering
makes it unnecessary to search for hyperparameters when performing
new training.

• The feature extraction process based on Autoencoder allows evaluating
the quality of the features, through the evaluation of the reconstruction
of seismic images.

• An automatic recommendation of the operational hyper parameters for
the gas inference DL model training is performed, which implies that for
each new seismic image set, it is possible to get both a training set and
DL model hyper parameters recommendation in a quantified period of
time.

Disadvantages of method 2.

• The user loses the ability to intervene in the tuning processes of the
DL models, that is, the user can only define the acceptable ranges for
the hyperparameters, and then method 2 makes a recommendation that
does not require user intervention, unlike method 1 in which the user
participates in each stage of the process.

• Although the training set recommendation is done using a patch ap-
proach, the gas inference process still uses a complete seismic image as a
training sample, this means that the seismic images used in gas inference
contain traces that were not recommended.
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• It is necessary to use a technique to automatically define the appropriate
number of clusters, which increases processing time. This technique is
necessary due to the use of patches, which increase the size of the
database, making it impossible to use the clustering technique used in
method 1.

Advantages of method 3.

• The original seismic image database is transformed into patches by a
tessellation process, the new set of patches is used for both recommen-
dation and gas inference processes. This means that all patches used for
the gas inference process were selected by the recommendation process
according to the traces belonging to the target seismic image.

• Method 3 allows using only patches that have gas marking labels, this
limits the learning process to traces in which there is an analysis carried
out by a specialist.

• Autoencoder’s new feature extraction model enables evaluation of the
representation space using three validation approaches.

Disadvantages of method 3.

• The recommendation of the operational hyperparameters for the gas
inference DL model is made for each new seismic image, which means
that it is necessary to train the DL model for each seismic image.

• There is no tessellation policy to balance classes within each patch. This
produces an imbalanced training set with few samples of the "No Gas"
class.

• The user loses the ability to intervene in the tuning processes of the
DL models, that is, the user can only define the acceptable ranges for
the hyperparameters, and then method 2 makes a recommendation that
does not require user intervention, unlike method 1 in which the user
participates in each stage of the process.

• It is necessary to use a technique to automatically define the appropriate
number of clusters, which increases processing time. This technique is
necessary due to the use of patches, which increase the size of the
database, making it impossible to use the clustering technique used in
method 1.

Table 7.1 presents a comparison of the general characteristics of the
proposed methods.
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Table 7.1: General comparison of the proposed methods.
Criterion Method 1 Method 2 Method 3

User intervention.
Indicates the level of interaction required with the user.

High.
The user is responsible for the definition of hyper
parameters in both the feature extraction process
and the DL gas model inference process.

Low.
The user only defines the allowed parameter
ranges in all processes.

Low.
The user only defines the allowed parameter
ranges in all processes.

Feature Extraction Process
Sample size.
It refers to the image size from which the method can extract features.

Non-standard.
The original size of the seismic image is used, it
may not be standard.

Patch of 360 rows and 16 columns. Patch of 304 rows and 400 columns.

Complexity of feature extraction method.
It refers to the complexity of the algorithms that make up the feature
extraction process.

O(n3).
Non-DL based method.

5.611 trainable parameters.
Autoencoder Model.

18.902 trainable parameters.
Autoencoder Model.

Feature extraction model training time. N/A. 6 Hours. 8.5 Hours
Quality of the feature extraction process.
It refers to whether there is a technique to quantify the quality of the
extracted features.

N/A. Based on Autoencoder reconstruction. Based on Autoencoder two-branch recon-
struction and clustering score.

Clustering Process
Complexity of clustering method.
It refers to the complexity of the algorithms that make up theclustering
process.

O(nlogn) O(n2) O(n2)

Number of images processed.
It refers to the number of seismic images to be clustered.

< 300 < 4.000 < 1.100

Clusters amount definition.
Refers to how the number of cluster created from the training data is
defined.

User-defined. Automatic.
Based on the silhouette coefficient

Automatic.
Based on the silhouette coefficient

Recommended sample.
Refers to the recommended seismic image size to train the DL gas
inference model.

Original seismic images without resizing. Original seismic images without resizing. Standard size seismic image patches.

Gas Inference DL Model Operative Hyper parameters Definition
Complexity of hyper parameter definition method.
It refers to the complexity of the algorithms that search for the opera-
tional hyper parameters of the DL gas inference model.

N/A. O(n) O(n)

Hyper parameter definition time.
Refers to the time required to select the recommended operating hyper
parameters for the DL gas inference model based on the recommended
training set.

Months.
It depends on the user experience and involves
performing multiple tests that can take months.

16 Hours.
Based on PSO technique.

16 Hours.
Based on PSO technique.

7.2
Metric Result Comparison

In this section, a comparison of the results obtained when applying each
method is made.

Table 7.2 presents the results of the methods, where it shows that method
3 presents in all cases an improvement in the correct indication of natural gas
according to Recall metric, likewise it presents a deterioration in precision,
yet for most fields, it shows better generalization performance according to F1
score and IoU metrics.

Figure 7.1 presents an example where method 2 achieves better perfor-
mance compared to method 1, but method 3 presents a higher metric regarding
correct gas indication that produces better generalization. However, method 2
has a higher precision that produces a cleaner result, related to the presence
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Table 7.2: Comparison of results between methods.
Field Target Training source Accuracy Precision Recall F1_Score IoU

Gavião Azul
Method 1 0.99 0.46 0.52 0.45 0.32
Method 2 0.98 0.32 0.76 0.43 0.29
Method 3 0.99 0.40 0.77 0.50 0.37

Gavião Belo
Method 1 0.99 0.58 0.55 0.54 0.43
Method 2 0.99 0.56 0.63 0.56 0.44
Method 3 0.99 0.55 0.70 0.60 0.49

Gavião Branco
Method 1 0.99 0.47 0.42 0.40 0.27
Method 2 0.99 0.40 0.72 0.49 0.35
Method 3 0.99 0.40 0.76 0.50 0.35

Gavião Caboclo
Method 1 0.99 0.28 0.43 0.29 0.20
Method 2 0.99 0.23 0.50 0.29 0.21
Method 3 0.99 0.27 0.57 0.34 0.24

Gavião Carijo
Method 1 0.98 0.31 0.22 0.24 0.16
Method 2 0.99 0.22 0.33 0.25 0.16
Method 3 0.99 0.33 0.53 0.38 0.25

Gavião Preto
Method 1 0.99 0.29 0.23 0.22 0.15
Method 2 0.99 0.26 0.41 0.28 0.19
Method 3 0.99 0.30 0.54 0.35 0.24

Gavião Real
Method 1 0.99 0.36 0.26 0.26 0.17
Method 2 0.99 0.27 0.49 0.30 0.20
Method 3 0.99 0.28 0.63 0.35 0.23

Gavião Tesoura
Method 1 0.99 0.28 0.39 0.31 0.21
Method 2 0.99 0.16 0.57 0.23 0.14
Method 3 0.99 0.20 0.59 0.27 0.17

Gavião Vermelho
Method 1 0.99 0.49 0.50 0.43 0.30
Method 2 0.98 0.35 0.70 0.43 0.30
Method 3 0.99 0.38 0.78 0.47 0.33

of false positives as shown in the figure. In this case the metrics indicate that
method 3 presents better performance, but the seismic image suggests that
method 2 may be more suitable for the geological study.

Figure 7.1: First performance comparison.
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Figure 7.2 shows a case where method 2 achieves the highest gas reservoir
indication based on the recall metric, but also has the lowest precision value.
method 3 presents a better precision value than method 2 and a higher recall
value compared to method 1. However, since method 1 has few false positives,
it offers better generalization based on F1 score and IoU metrics. In this case,
method 1 presents a better inference, which is corroborated when analyzing
the figure, since there is no presence of false positive blocks.

Figure 7.2: Second performance comparison.

Figure 7.3 presents an example where method 3 achieves a higher gas
reservoir indication compared to the other methods, but has more false
positives than method 2. Despite this, the overall performance shows that
method 3 presents a better result.

Figure 7.3: Example of metric improvement using method 3.
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In general, the methods presented focus on improving DL generaliza-
tion performance, and each new method seeks to overcome the limitations
recognized in the previous one. Figure 7.4 presents the comparison of overall
metrics for all methods, including the baseline that uses the entire database as
training for the DL model. The result shows that overall method 3 has higher
performance, except for the Precision metric in which method 1 achieves bet-
ter performance, this could happen because method 1 is not a fully automatic
method, which means that the user was responsible for setting the hyper pa-
rameters.

The results generally show a trend of improvement in the generalization
performance of the DL model with each new method. In particular, the
identification of gas reservoirs presents a significant improvement. However,
the increase in false positives demonstrates that it is necessary to focus new
research on the identification of the "No Gas" class.

7.4(a): Precision. 7.4(b): Recall.

7.4(c): F1 Score. 7.4(d): IoU.

Figure 7.4: Overall metrics comparison.



8
Conclusions

In this work, various methods and techniques related to seismic imaging,
time series, gas indication, generalization performance, performance metrics,
deep learning, and machine learning were discussed. All of them were analyzed
with the aim of improving the performance of deep learning models designed
for gas inference in 2D seismic images, when used in images that come from
new exploration fields.

Experiments carried out using the Gavião Cluster of the Paleozoic
Parnaíba Basin located in northeastern Brazil, allow us to affirm that within
the seismic images there are different patterns that can be considered domains.
These different patterns are created in the collection process and are caused by
various reasons such as equipment, parameterization, terrain properties, time,
and exploration equipment, however, from a computational point of view, most
of the reasons are unknown, i.e., no ground truth identifies each domain or
which seismic images belong to each.

Analysis of seismic images showed that it is possible to extract repre-
sentative features that allow comparison even when no ground truth exists.
These features allow the creation of clusters that contain seismic images that
concentrate representativeness, that is, it is possible to group seismic images
that are similar based on the extracted features. These clusters can be consid-
ered to contain domains that are related. This method allows images from new
explorations to be analyzed to identify the cluster that has the most similar
features. In this way, from the available database it is possible to identify more
representative images for new seismic images.

Experiments show that using recommended clusters allows better gen-
eralization of gas inference DL models, compared to the default DL model
trained with all available data. In other words, the results present evidence
that it is possible to use available seismic data to find representative samples
for images from new fields and that using these samples to train DL models
allows better performance to be achieved.
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8.1
Contributions

This work proposes three methods with the aim of improving the gener-
alization performance of DL models in the inference of gas reserves, the main
contributions of these methods are listed.

• The proposed methods allow improving the generalization performance
of the gas inference DL models without altering the network architecture
or transforming the original seismic images.

• The proposed methods can be used independently of the selected gas
inference DL model.

• A seismic image comparison basis is establish, which is essential for the
DL model generalization performance improvement.

• Three methods are proposed that allow the extraction of unsupervised
seismic features to compare similarities.

• The proposed methods makes it possible to improve the generalization
performance of DL models using the available seismic images. This is
made possible by a specialization of the model by using a training set
specifically selected for the target seismic images, which helps maintain
or improve model performance.

• Three training data set recommendation processes are proposed that
allow identifying seismic images that are more representative for a target
seismic image, this significantly reduces the training set and in the case
of the first proposed process it is possible to identify the cases in which
representative seismic images are not available.

• Two of the proposed methods does not depend on user experience to
determine the operational hyper parameters to be used based on the
features of the specific target seismic image.

• The proposed method demonstrates the importance of the representa-
tiveness of the training images over their quantity.

• Proposed method 3 presents a method to obtain standard size seismic im-
ages that can be used in the gas inference process and then reconstructed
to their original size.

• The proposed method 3 introduces a new Autoencoder-based feature
extraction model that uses a three-validation approach, including a
clustering performance metric.
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• The use of tessellation makes it possible to eliminate the problem of
uncertainty in the seismic image because it is possible to use only the
patches that contain gas labels, which are areas with extensive study by
experts who carry out the labeling.

8.2
Answer to Research Questions

Main Question:
How to alter DL-based methods for gas inference in 2D seismic images

to adapt them to specific patterns of new seismic images allowing better
generalization performance?
Answer:

To adapt these DL-based methods to the specific patterns of new seismic
images, it is possible to add a new process at the beginning of each method
that analyzes the training set to separate it into clusters with similar features.

This process makes it possible to compare the patterns of the new
seismic images with each cluster and select the most representative one. Using
this cluster as a training set for DL-based methods allows learning patterns
that are representative for gas inference in the new seismic image, improving
generalization performance.
Subsequent Questions:

1. Compared to the results obtained with the default DL model on seismic
images, how can the available data be used to allow better generalization
performance of the DL model? This question addresses the use and
manipulation of the available data, without modifying the existing DL
model, that is, it seeks to improve the model’s performance on new data
but without altering it.

Answer:

The available data can be used to create clusters that provide concen-
trated representativeness based on features extracted from seismic im-
ages. By comparing the new seismic image features with the clusters it
is possible to recommend a more representative training set that allows
better generalization performance, compared to the results of the same
DL model using all the data available for training.

The clustering and recommendation process is independent of the DL
model for gas inference, so it does not imply a modification of the model
but rather a careful analysis and selection of the training data.
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2. How to identify patterns within seismic images to allow a comparison
that establishes similarities or domains, which improve the indication of
natural gas reserves? This question refers to how to extract features that
allow different seismic images to be compared, and that these features
are also relevant for identifying natural gas.

Answer:

It is possible to use DL-based methods for feature extraction that repre-
sent seismic image patterns. By grouping these features using clustering
techniques such as HDBSCAN or K-means, clusters with concentrated
representation are obtained, which in turn can be considered domains.

By selecting seismic images that belong to the same domain as the target
seismic images, a training set is obtained that allows the DL gas inference
model to learn more representative patterns, improving generalization
performance.

8.3
Future Works

In the research carried out, challenges arose that were faced by prioritiz-
ing the indication for gas and improving the generalization performance of the
DL gas inference model.

Each of the proposed methods is presented in order to overcome the
challenges encountered, method 3 being the one that is presented in order to
overcome the limitation given by the uncertainty in the labeling of the “No
gas” class, in addition to the difficulties that arise from the comparison between
seismic images of different sizes.

However, it is found that it is necessary as next work to prioritize the
recommendation of representative samples for the “No gas” class. This can be
developed through the use of a tessellation model with superposition, which
would allow preserving the elimination of samples whose uncertainty is high,
but at the same time the number of representative traces would increase.
Likewise, a recommendation approach can be considered that focuses on the
search for a single class, which would imply a double parallel process that
would focus on each class independently.

8.4
Scientific Productions

Table 8.1 presents the scientific articles that are produced based on
present work.
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Table 8.1: Published Articles Based on Proposed Methods
Paper Classification Status

Sepulveda, L. F. M., Gattass, M., Silva,
A. C., Quevedo, R., Michelon, D., Siedschlag,
C., and Ribeiro, R. (2023a). Generalization of
deep learning models for natural gas indica-
tion in 2d seismic data. Pattern Recognition,
141

A1 Published

Sepulveda, L. F. M., Gattass, M., Silva,
A. C., Quevedo, R., Michelon, D., Siedschlag,
C., and Ribeiro, R. (2023b). Seismic data
classification for natural gas detection using
training dataset recommendation and deep
learning. Geoenergy Science and Engineer-
ing, 228. The journal was known until 2022
as Journal of Petroleum Science and Engi-
neering.

A1 Published

Improving generalization performance in gas
inference DL models for 2D seismic image by
recommending both training seismic patches
set and DL model training operational hyper
parameters

A1 In progress
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