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Abstract 
 

Castro, Tiago Lima d’Albuquerque e; Pereira, Marcos Venicius Soares 

(Advisor). Elliptical curve method for fatigue life prediction of structural 

steels under multiaxial loadings. Rio de Janeiro, 2023. 96p. Tese de 

Doutorado - Departamento de Engenharia Química e de Materiais, Pontifícia 

Universidade Católica do Rio de Janeiro. 

A direct relation where fatigue life 𝑁𝑓 can be determined as function of 

macroscopic normal and shear stress amplitudes 𝜎𝑎 and 𝜏𝑎 is established. Using the 

Carpinteri & Spagnoli (C&S) criterion as a survey tool, elliptical level curves in the 

𝜎𝑎 × 𝜏𝑎 domain were revealed and further generalised, providing means to 

determine the number of cycles to failure 𝑁𝑓 for any given (𝜎𝑎, 𝜏𝑎) combination. 

Predictions obtained through the elliptical curve method (E) were compared to 

experimental observations, as well as to predictions obtained from adapted versions 

of popular fatigue criteria, namely Findley (F), Matake (M), McDiarmid (McD), 

Susmel & Lazzarin (S&L), Carpinteri & Spagnoli (C&S) and Papadopoulos (P). 

The proposed model delivered predictions in fair agreement with experimental 

observations and its predictive capability was seen to be the best among all the 

considered criteria. Finally, a slight bias towards conservativeness was attenuated 

with the introduction of an adjusting parameter, further improving the predictive 

capability of the model. 
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Resumo 
 

Castro, Tiago Lima d’Albuquerque e; Pereira, Marcos Venicius Soares 

(orientador). Método da curva elíptica para previsão da vida em fadiga de 

aços estruturais sob carregamentos multiaxiais. Rio de Janeiro, 2023. 96p. 

Tese de Doutorado - Departamento de Engenharia Química e de Materiais, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Uma relação direta onde a vida em fadiga 𝑁𝑓 pode ser descrita como função 

das amplitudes macroscópicas de tensão normal e cisalhante, 𝜎𝑎 e 𝜏𝑎, é obtida. 

Utilizando o critério de Carpinteri & Spagnoli (C&S) como uma ferramenta de 

inspeção, foram obtidas curvas de nível elípticas sobre um domínio 𝜎𝑎 × 𝜏𝑎. A 

expressão das curvas de nível obtidas foi generalizada, proporcionando uma 

ferramenta capaz de prever o número de ciclos para falha 𝑁𝑓 associado a qualquer 

combinação (𝜎𝑎, 𝜏𝑎). As previsões obtidas através do método da curva elíptica 

foram comparadas às observações experimentais, bem como a previsões obtidas a 

partir de versões adaptadas de modelos consagrados na literatura, a saber: Findley 

(F), Matake (M), McDiarmid (McD), Susmel & Lazzarin (S&L), Carpinteri & 

Spagnoli (C&S) e Papadopoulos (P). O modelo proposto forneceu previsões em boa 

concordância com as observações experimentais, e sua capacidade de avaliar o 

comportamento em fadiga se revelou o melhor dentro todos os critérios 

considerados. Por fim, uma leve tendência conservadora do modelo foi atenuada 

através da introdução de um parâmetro de ajuste, melhorando ainda mais sua 

capacidade de avaliação de comportamento em fadiga. 
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1. Introduction 

Fatigue is a mechanism of failure where mechanical components accumulate damage due 

to the application of time-varying loads. Even though engineering designs are conceived 

to maintain structures within the elastic regime, defects and geometrical features of the 

components introduce stress concentrators that may locally raise stress levels, thus 

promoting fatigue damage. Considering that mechanical components such as railroad 

wheels, crankshafts, axles and turbine blades are subjected to cyclic loadings throughout 

long service lives, repetition of such stress levels contributes to accumulation of damage, 

eventually leading to crack nucleation [1], [2]. 

In engineering applications, mechanical components are commonly subjected to time-

varying multiaxial stress-states. As such, evaluation of high cycle fatigue behaviour of 

metallic materials under time-varying multiaxial stresses can be achieved by using 

appropriate fatigue damage criteria. These criteria can be typically divided into three 

different groups: stress-based, strain-based and energy-based models [3]. While each 

group presents its own characteristics and applications, stress-based approach has been 

popularly adopted in high-cycle fatigue analysis. The large number of models pertaining 

to this approach can be typically classified into four divisions based on: empirical 

equivalent stress, stress invariants, average stress and critical plane stress. Several reviews 

of these models can be found in the literature [4]–[8]. 

 

1.1. Background and mechanical component description 

Fatigue failures of motor crankshafts operating in thermoelectric power plant 

environments are being recently reported, where some of the failures were revealed to 

take place within less than one year of operation. Since thermoelectric power corresponds 

to a significant share of the Brazilian energetic matrix [9], the ability to properly assess 

the fatigue behaviour of components as well as the capability of adequately designing 

against such phenomenon becomes of great importance. 

The crankshafts in question (Fig. 1) are large components used to generate power from 

the combustion of fossil fuels. The energy released from the combustion reaction inside 
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the cylinder bores is converted into rotary motion, which is in turn further converted 

electromechanically into electrical power.  

 

Figure 1 – Crankshafts used in the thermoelectric power plant environments 

 

Such crankshafts present a total of ten crankpin journals, each one containing a couple of 

connecting rods. One extreme of the connecting rod is clamped to its corresponding 

crankpin journal while the other end is connected to its piston. The crankpin journals are 

offset to the main journal’s centreline in such a way that, when the entire crankshaft is 

subjected to rotary motion, the crankpin journals revolve describing circles of their own. 

Each crankpin journal is positioned according to a given angular position in order to 

establish a certain firing sequence, designed to better distribute the stresses along the 

crankshaft’s length within a loading cycle. Fig. 2 illustrates the crankshafts in question 

evidencing the different angular position of the crankpin journals, each with their 

respective counterweights. The firing sequence is displayed in Fig. 3.  
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Figure 2 – Illustration of the crankshaft 

 

 

 

Figure 3 – Firing sequence 

 

It was revealed that all the failed crankshafts presented similar cracking patterns, as all 

cracks were initiated at critical points of the crankpin journals where geometric features 

of the component introduced stress concentration, as depicted in Fig. 4. In addition, Fig. 

5(a) further details the crankpin journals, evidencing the location of the critical points, 

while Fig. 5(b) exemplifies the aesthetics of a generic crankshaft, assembled with one 

connecting rod per crankpin journal. 
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(a) (b) 

Figure 4 – Crankshaft failure: (a) crack nucleation site and (b) crack extension 

 

 

 

(a) (b) 

Figure 5 – (a) Detailed illustration of a crankpin journal; (b) generic crankshaft (source: turbosquid.com) 

 

1.2. Preliminary considerations on stress-based criteria 

As previously mentioned, stress-based criteria have been popularly used in light of 

infinite fatigue-life approach for assessing the fatigue behaviour of components that are 

expected to endure long service-lives. As such, critical plane-based models play an 

important role within the stress-based criteria group, hence justifying their application 

throughout this work. 

In general terms, critical-plane stress-based criteria take into account loading histories 

and material properties to determine whether or not fatigue failures are to be expected. In 

this sense, attention is focused on guaranteeing a good margin of safety against failure by 
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admitting loading conditions in proximity with the fatigue resistance limit, above which 

fatigue failure can occur and below which fatigue life extends over a very high number 

of cycles (theoretically infinite). Some of the popular critical plane-based criteria were 

considered in this work, namely Findley (F) [10], Matake (M) [11], McDiarmid (McD) 

[12], Susmel & Lazzarin (S&L) [13] and Carpinteri & Spagnoli (C&S) [8]. Despite 

particular characteristics of each, all models are applicable in a similar manner: stresses 

must be computed for a large number of material planes in order to determine which plane 

experiences the greatest fatigue damage. Accordingly, only after determining the critical 

plane orientations and their corresponding stresses can the critical plane-based models be 

applied.  

In addition to the critical plane-based criteria, the present work also takes into 

consideration the criterion proposed by Papadopoulos (P) [5], which is also a very well-

established model. By adopting a mesoscopic scale approach, the criterion aims to 

evaluate the accumulated crystal plastic strain, thus being independent of critical plane 

determination. In contrast to critical plane-based models, Papadopoulos only takes into 

account the macroscopically applied loads and material properties to assess the fatigue 

behaviour of the component in question. 

 

1.3. Motivation and objectives 

Although effective, the aforementioned models as described above are limited to 

assessing whether or not failures are to be expected, therefore lacking the ability of 

predicting the number of cycles endured by the component prior to its failure. In 2013, 

Carpinteri & Spagnoli proposed a modification to their own work, enabling their criterion 

to deliver fatigue-life predictions [14]. This was achieved by substituting in the model’s 

expression the fixed values of fatigue resistance limits by the corresponding Basquin’s 

expressions, which are dependent on the number of cycles to failure. 

Nevertheless, the adapted version of the C&S criterion delivers a non-linear final 

expression that presents no analytical solution, which therefore must be solved 

numerically. Accordingly, it is to be remembered that all the previous steps required for 

the application of the C&S criterion, i.e., determination of critical plane and 

corresponding stresses, are still indispensable. Therefore, although feasible, fatigue-life 
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prediction as proposed by C&S may involve non-negligible efforts. In this sense, the 

proposal of a simpler fatigue-life prediction method becomes very desirable, especially if 

it reveals itself to be independent of critical plane determination. 

A natural first step would be to verify whether it is possible to consider a macroscopic 

relation where the number of cycles to failure could be determined as function of the 

macroscopically applied stresses. Considering loading conditions where fully-reversed 

combined synchronous sinusoidal normal and shear stresses are applied to a specimen, 

one could verify if it is possible to equate the number of cycles to failure 𝑁𝑓 to a function 

𝐺(𝜎𝑎 , 𝜏𝑎), where 𝜎𝑎 and 𝜏𝑎 respectively correspond to the nominal normal and shear 

stress amplitudes. As one would expect, obtaining function 𝐺 is the main goal of the 

present work. 

In order to verify such hypothesis, a good starting point would be to investigate the 

domain of such a function using the modified version of the C&S criterion as a survey 

tool. If successful, one may obtain a collection of coordinate points associated with a 

given constant fatigue-life, eventually building a level curve. Once such contour line is 

determined, it may be possible to further generalise such curve, allowing one to straight 

forwardly predict the number of cycles to failure 𝑁𝑓 for any given (𝜎𝑎, 𝜏𝑎) combination 

without the need of critical plane determination. 
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2. Overview of basic concepts 

2.1. Relevant concepts of tensor algebra 

2.1.1. Vectors and bases 

Vectors are quantities with specified magnitude, direction and orientation in three-

dimensional space, typically represented in minuscule bold-face roman symbols [15]. 

When a Euclidean vector space is taken into consideration, vectors in ℝ3 can be 

frequently arranged as a 3 × 1 column matrix, as show in 

[𝒗] = {

𝑣1

𝑣2

𝑣3

} ∈ ℝ3, (1) 

where [𝒗] is addressed to as the matrix representation of 𝒗. As one would expect, a vector 

in ℝ3 can be decomposed into a summation of three linearly independent vectors 𝒆1, 𝒆2 

and 𝒆3, each multiplied by scale factors. This provides an algebraic representation of the 

vector 𝒗, as given by [16] 

𝒗 = 𝑣1𝒆1 + 𝑣2𝒆2 + 𝑣3𝒆3 . (2) 

Accordingly, vector 𝒗 is therefore expressed in terms of the basis determined by 𝒆1, 𝒆2 

and 𝒆3. The scalar quantities 𝑣1, 𝑣2 and 𝑣3 are the components of the vector 𝒗 in the same 

basis. 

Vectors with unit magnitude are called unit vectors and three linearly independent vectors 

generate ℝ3. Three mutually perpendicular unit vectors 𝒊, 𝒋 and 𝒌 constitute a right-

handed orthonormal basis, provided that [15] 

𝒊 × 𝒋 = 𝒌,            𝒋 × 𝒌 = 𝒊,             𝒌 × 𝒊 = 𝒋, (3) 

(𝒊 × 𝒋) ∙ 𝒌 = 1. (4) 

In order to obtain a more concise notation, any given basis {𝒆1, 𝒆3, 𝒆3} will be henceforth 

addressed to as {𝒆𝑖}. Accordingly, the components are in turn addressed to as 𝑣𝑖, where 

the subscript 𝑖 ranges from 1 to 3. 
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2.1.2. Index notation 

2.1.2.1. Summation convention 

The index notation aims to promote a more concise writing, which facilitates 

mathematical derivations that could otherwise be presented as long and repetitious in 

matrix representation. The notation is mainly based on the summation convention, where 

any repeated index implies a sum. 

As such, vectors 𝒂 and 𝒃 can be represented using an abbreviated notation form, as given 

by [15] 

𝒂 = 𝑎1𝒆1 + 𝑎2𝒆2 + 𝑎3𝒆3 = 𝑎𝑖𝒆𝑖 (5) 

𝒃 = 𝑏𝑗𝒆𝑗  . (6) 

Any unrepeated index is a free index, and the final dimension of the quantity in question 

is associated with the number of free indices present in such quantity. Assume 𝒗 is a 

vector resulting from a linear transformation 𝑨 which receives the vector 𝒖 as input. In 

matrix representation, this operation would be presented as 

{

𝑣1

𝑣2

𝑣3

} = (
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) {

𝑢1

𝑢2

𝑢3

} , (7) 

which would result in three independent expressions, as given by 

𝑣1 = 𝐴11𝑢1 + 𝐴12𝑢2 + 𝐴13𝑢3 (8) 

𝑣2 = 𝐴21𝑢1 + 𝐴22𝑢2 + 𝐴23𝑢3 (9) 

𝑣3 = 𝐴31𝑢1 + 𝐴32𝑢2 + 𝐴33 . (10) 

Expressions (8)-(10) can be reduced to 

𝑣1 = 𝐴1𝑗𝑢𝑗 (11) 

𝑣2 = 𝐴2𝑗𝑢𝑗 (12) 

𝑣3 = 𝐴3𝑗𝑢𝑗  , (13) 
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where 𝑗 is a repeated index where a sum is implied. Accordingly, this set of equations can 

be finally reduced to [15] 

𝑣𝑖 = 𝐴𝑖𝑗𝑢𝑗 . (14) 

Since the free index 𝑖 can assume values from 1 to 3, 𝑣𝑖 thus corresponds to the three 

components of a vector 𝒗 ∈ ℝ3. Free indices on each term of an equation must agree, 

hence the above expression could be rewritten as  𝑣𝑘 = 𝐴𝑘𝑗𝑢𝑗 . It is important to mention 

that no index may appear more than twice within a given term in any expression. 

 

2.1.2.2. Kronecker delta and inner product 

The Kronecker delta (𝛿𝑖𝑗) is defined by the inner (dot) product between two unit base 

vectors, as shown in [15] 

𝛿𝑖𝑗 = 𝒆𝑖 ∙ 𝒆𝑗 = {
1,       𝑖 = 𝑗,
0,       𝑖 ≠ 𝑗.

(15) 

Using the definition above, the dot product between vectors 𝒂 and 𝒃 can be expressed in 

index notation. Let 

𝒂 = 𝑎𝑚𝒆𝑚 ,       𝒃 = 𝑏𝑘𝒆𝑘 , (16) 

the dot product is therefore given by 

𝒂 ∙ 𝒃 = 𝑎𝑚𝒆𝑚 ∙ 𝑏𝑘𝒆𝑘 . (17) 

Scalars can be brought to evidence, leading to 

𝒂 ∙ 𝒃 = 𝑎𝑚𝑏𝑘(𝒆𝑚 ∙ 𝒆𝑘) = 𝑎𝑚𝑏𝑘𝛿𝑚𝑘 . (18) 

Expression (18) leads to an interesting identity of the Kronecker delta known as the 

transfer property [15]. In this identity, the Kronecker delta acts replacing one of the 

indices by the other, i.e., in  𝑎𝑚𝑏𝑘𝛿𝑚𝑘 either replacing the index 𝑚 by 𝑘 or replacing 𝑘 

by 𝑚. Dummy indices can be altered without modifying the expression, resulting in 

𝒂 ∙ 𝒃 = 𝑎𝑚𝑏𝑘𝛿𝑚𝑘 = 𝑎𝑚𝑏𝑚 = 𝑎𝑘𝑏𝑘 . (19) 
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2.1.3. Second-order tensors 

While some quantities in mechanics are well represented by vectors, other physical 

quantities such as stress and strain are better represented in terms of linear 

transformations, building the notion of second-order tensors [15]. 

More specifically, a tensor is a higher order mathematical object that acts correlating two 

directions in space. Let 𝑨 be a second-order tensor, 𝒖 and 𝒗 respectively the input and 

output vectors of a linear transformation. Using index notation, the three quantities are 

related, as previously presented in expression (14), by 𝑣𝑖 = 𝐴𝑖𝑗𝑢𝑗  . 

Considering that 𝒖 and 𝒗 are vectors in space, the second-order tensor 𝑨 used to establish 

the relation between the input and output vectors must be constituted by nine components, 

as can be observed in equation (7). Each component 𝑣𝑖 of the linear transformation is 

therefore determined using the summation convention, leading to 

𝑣𝑖 = 𝐴𝑖1𝑢1 + 𝐴𝑖2𝑢2 + 𝐴𝑖3𝑢3 , (20) 

where the matrix representation of the second-order tensor 𝑨 is therefore given by [15] 

[𝑨] = (
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) . (21) 

Considering that tensors are linear applications, the properties below are satisfied [17]: 

➢ 𝑻(𝒖 + 𝒗) = 𝑻(𝒖) + 𝑻(𝒗); 

➢ 𝑻(𝛼𝒖) = 𝛼𝑻(𝒖), where 𝛼 is a scalar. 

In addition, the zero tensor 𝑶 and the identity tensor 𝑰 can be defined, as given by [15] 

➢ 𝑶𝒗 = 𝟎, where 𝟎 is a vector where all components are nil; 

➢ 𝑰𝒗 = 𝒗, where 𝑰 transforms 𝒗 into itself. 

Lastly, two tensors 𝑺 and 𝑻 are equal if they output the same vector when transforming 

an input vector 𝒗, i.e., [15]. 

𝑺𝒗 = 𝑻𝒗. (22) 
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2.1.4. Components of a vector and a second-order tensor 

The components 𝑤𝑖 of a vector 𝒘 can be obtained by projecting 𝒘 onto the direction of 

𝒆𝑖. Let 𝒘 be represented by 𝑤𝑗𝒆𝑗  (instead of 𝑤𝑖𝒆𝑖) in order to avoid the excessive 

repetition of the index 𝑖. Such operation can be derived as follows. 

𝒘 ∙ 𝒆𝑖 = (𝑤𝑗𝒆𝑗) ∙ 𝒆𝑖 = 𝑤𝑗(𝒆𝑗 ∙ 𝒆𝑖) = 𝑤𝑗𝛿𝑗𝑖 = 𝑤𝑖 (23) 

The components of a second-order tensor can be accordingly determined. Assuming 𝒗 is 

a vector obtained from the linear transformation of the vector 𝒖, i.e., 𝒗 = 𝑨𝒖, its 

components 𝑣𝑖 can be obtained by projecting both sides of such expression to the direction 

of 𝒆𝑖. 

𝑣𝑖 = 𝒆𝑖 ∙ 𝒗 = 𝒆𝑖 ∙ 𝑨𝒖                         

= 𝒆𝑖 ∙ 𝑨(𝑢𝑗𝒆𝑗) = [𝒆𝑖 ∙ 𝑨𝒆𝑗]𝑢𝑗 . (24) 

Since 𝑣𝑖 = 𝐴𝑖𝑗𝑢𝑗 , as previously presented in expression (14), the component 𝐴𝑖𝑗 of the 

second-order tensor 𝑨 therefore corresponds to [15] 

𝐴𝑖𝑗 = 𝒆𝑖 ∙ 𝑨𝒆𝑗  . (25) 

An additional consideration regarding the application of the second-order tensor 𝑨 acting 

on a basis vector 𝒆𝑖 must be made. When a given second-order tensor is applied to 

transform either 𝒆1, 𝒆2 or 𝒆3, the output equals the corresponding column vector of the 

linear transformation tensor 𝑨, as given by 

𝑨𝒆1 = (
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) {
1
0
0
} = {

𝐴11

𝐴21

𝐴31

} ,              𝑨𝒆2 = (
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) {
0
1
0
} = {

𝐴12

𝐴22

𝐴32

}, 

𝑨𝒆3 = (
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) {
0
0
1
} = {

𝐴13

𝐴23

𝐴33

} . (26) 

When 𝑨 transforms a basis vector 𝒆𝑖, the output vector presents components 𝐴𝑗𝑖 for each 

direction 𝒆𝑗. The free index shifts to the second position, and the relation is thus given by 

𝑨𝒆𝑖 = 𝑨𝑗𝑖𝒆𝑗  . (27) 
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2.1.5. Product between tensors 

The product between tensors in index notation is defined as follows. Let tensor 𝑪 be the 

result from the product between tensors 𝑨 and 𝑩, i.e.,  𝑪 =  𝑨𝑩. The components 𝐶𝑖𝑗 are 

𝐶𝑖𝑗 = 𝒆𝑖 ∙ 𝑪𝒆𝑗 = 𝒆𝑖 ∙ (𝑨𝑩)𝒆𝑗                       

= 𝒆𝑖 ∙ 𝑨(𝑩𝒆𝑗) = 𝒆𝑖 ∙ 𝑨(𝐵𝑘𝑗𝒆𝑘)

= 𝐵𝑘𝑗(𝒆𝑖 ∙ 𝑨𝒆𝑘) = 𝐵𝑘𝑗(𝐴𝑖𝑘)      

= 𝐴𝑖𝑘𝐵𝑘𝑗 ,                                      (28)

 

where the number of columns of the first tensor corresponds the number of rows of the 

second. 

 

2.1.6. Transpose tensor and change of basis 

To every tensor 𝑺, a transpose tensor 𝑺𝑇 is associated, where the property below is 

fulfilled [17].  

𝒗 ∙ 𝑺𝒖 = 𝒖 ∙ 𝑺𝑇𝒗 (29) 

The proof is derived using index notation, as presented in sequence.  

𝒗 ∙ 𝑺𝒖 = (𝑣𝑖𝒆𝑖) ∙ 𝑺(𝑢𝑗𝒆𝑗)                                                     

= 𝑢𝑗(𝒆𝑖 ∙ 𝑺𝒆𝑗)𝑣𝑖 = 𝑢𝑗(𝑆𝑖𝑗)𝑣𝑖 = 𝑢𝑗  𝑆𝑗𝑖
𝑇 𝑣𝑖

= 𝒖 ∙ 𝑺𝑇𝒗                                                        (30)

 

It can also be shown that the result of transposing a multiplication of two second-order 

tensor (𝑺𝑻)𝑇 corresponds to 𝑻𝑇𝑺𝑇, as shown in 

𝒗 ∙ (𝑺𝑻)𝒖 = 𝑣𝑗𝒆𝑗 ∙ (𝑺𝑻)𝑢𝑖𝒆𝑖 = 𝑢𝑖{𝒆𝑗 ∙ 𝑺𝑻𝒆𝑖}𝑣𝑗                           

= 𝑢𝑖{𝒆𝑗 ∙ 𝑺𝑻𝑘𝑖𝒆𝑘}𝑣𝑗 = 𝑢𝑖𝑇𝑘𝑖{𝒆𝑗 ∙ 𝑺𝒆𝑘}𝑣𝑗

= 𝑢𝑖𝑇𝑘𝑖𝑆𝑗𝑘𝑣𝑗 = 𝑢𝑖 𝑇𝑖𝑘
𝑇  𝑆𝑘𝑗

𝑇  𝑣𝑗                      

= 𝒖 ∙ (𝑻𝑇𝑺𝑇)𝒗.                                            (31)

 

 

The concept of transpose tensor useful for changing the basis of a given system. Let {𝒆𝑖} 

be an orthonormal basis that coincides with the initial orientation of the reference system. 
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Let {�̅�𝑖} be a second basis with different orientation. Tensor 𝑸 corresponds to the linear 

transformation that correlates both basis, as given by [15] 

�̅�𝑖 = 𝑸𝒆𝑖 . (32) 

Different notations are employed in the literature, and the above expression could be 

rewritten in terms of a certain tensor 𝑴 that transforms the basis from its final orientation 

back to its initial position, 𝒆𝑖 = 𝑴�̅�𝑖. Accordingly, it is clear that both approaches are 

identical as the linear transformation 𝑴 is equal to the inverse transformation employed 

by tensor 𝑸, i.e., 𝑴 = 𝑸−1. Nevertheless, the present work utilises the notation as 

presented in expression (32). 

Considering that 𝑸 is an orthonormal transformation, its inverse 𝑸−1 corresponds to its 

transpose 𝑸𝑇. Accordingly, 𝑸𝑇𝑸 = 𝑰, which is stated in index notation as [15] 

𝑄𝑘𝑖 𝑄𝑘𝑗 = 𝑄𝑖𝑘
𝑇  𝑄𝑘𝑗 = 𝛿𝑖𝑗  . (33) 

From the definition presented in equation (15), the Kronecker delta precisely corresponds 

to all nine components of the identity tensor 𝑰. Furthermore, it can be shown that the 

resulting basis {�̅�𝑖} retains the orthonormal characteristic initially presented by {𝒆𝑖}, prior 

to the change of basis [15]. 

�̅�𝑖 ∙ �̅�𝑗 = (𝑸𝒆𝑖) ∙ (𝑸𝒆𝑗)                                              

= 𝑄𝑘𝑖𝒆𝑘 ∙ 𝑄𝑙𝑗𝒆𝑙 = 𝑄𝑘𝑖(𝒆𝑘 ∙ 𝒆𝑙)𝑄𝑙𝑗 

= 𝑄𝑘𝑖 𝛿𝑘𝑙 𝑄𝑙𝑗 = 𝑄𝑘𝑖 𝑄𝑘𝑗 = 𝑄𝑖𝑘
𝑇 𝑄𝑘𝑗

= 𝛿𝑖𝑗                                                     (34)

 

 

2.1.6.1. Components of vectors and tensors after changing the basis 

A given vector 𝒖 exists regardless of the basis used to describe it. Changing the basis of 

the system requires that the components 𝒖 must be rewritten in terms of the new basis 

{�̅�𝑖}. Such components can be obtained by projecting 𝒖 onto �̅�𝑖, as given by 

𝒖 = 𝑢𝑖𝒆𝑖 = �̅�𝑖�̅�𝑖 (35) 
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Accordingly, 

�̅�𝑖 = 𝒖 ∙ �̅�𝑖 = (𝑢𝑗𝒆𝑗) ∙ (𝑸𝒆𝑖) = 𝑢𝑗(𝒆𝑗 ∙ 𝑸𝒆𝑖)

= (𝒆𝑗 ∙ 𝑸𝒆𝑖)𝑢𝑗 = 𝑄𝑗𝑖𝑢𝑗                            

= 𝑄𝑖𝑗
𝑇  𝑢𝑗  .                                                    (36)

 

 

Considering that the vector 𝒖 expressed in terms of its new basis {�̅�𝑖} can be represented 

as �̅�, the above derivation results in [15] 

�̅� = 𝑸𝑇𝒖 . (37) 

Changing the basis of the system also modifies the components of a second-order tensor. 

The modified components �̅�𝑖𝑗 are therefore given by [15] 

�̅�𝑖𝑗 = �̅�𝑖 ∙ 𝑨�̅�𝑗 = (𝑸𝒆𝑖) ∙ 𝑨(𝑸𝒆𝑗)                              

= (𝑄𝑘𝑖𝒆𝑘) ∙ 𝑨(𝑄𝑙𝑗𝒆𝑙) = 𝑄𝑘𝑖(𝒆𝑘 ∙ 𝑨𝒆𝑙)𝑄𝑙𝑗

= 𝑄𝑖𝑘
𝑇  𝐴𝑘𝑙 𝑄𝑙𝑗 ,                                                 (38)

 

resulting in 

�̅� = 𝑸𝑻𝑨 𝑸 . (39) 

 

2.1.6.2. Components of the change of basis tensor 𝑸 

As presented in equation (32), the change of basis can be carried out by employing the 

expression �̅�𝑗 = 𝑸𝒆𝑗 . The quantities presented on both sides of this expression can be 

projected to {𝒆𝑖}, as given by [15] 

 𝒆𝑖 ∙ �̅�𝑗 = 𝒆𝑖 ∙ 𝑸𝒆𝑗 = 𝒆𝑖 ∙ (𝑄𝑘𝑗𝒆𝑘)           

= 𝑄𝑘𝑗(𝒆𝑖 ∙ 𝒆𝑘) = 𝑄𝑘𝑗𝛿𝑖𝑘

= 𝑄𝑖𝑗 .                                 (40)

 

Expression (40) states that the components of the change of basis tensor correspond to 

the inner product between components of the basis {𝒆𝑖} and components of the new basis 



  22 
 

{�̅�𝑗}. Considering that the bases are orthonormal, all the involved vectors are therefore 

unitary. The components of the tensor 𝑸 can be obtained according to [15] 

𝑄𝑖𝑗 = |𝒆𝑖| |�̅�𝑗| cos(𝜃) = cos(𝜃) . (41) 

The change of basis as presented above corresponds to an anticlockwise rotation to the 

reference system of a certain angle 𝜃 with respect to a certain axis that remains unaltered. 

Expression (42) exemplifies a rotation to the reference system of a certain angle 𝜃 with 

respect to 𝒆3, as presented in Fig. 6. 

 

[𝑸] = (

cos(𝒆1, �̅�1) cos(𝒆1, �̅�2) cos(𝒆1, �̅�3)

cos(𝒆2, �̅�1) cos(𝒆2, �̅�2) cos(𝒆2, �̅�3)

cos(𝒆3, �̅�1) cos(𝒆3, �̅�2) cos(𝒆3, �̅�3)
) 

[𝑸] = (
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

)                       (42) 

Figure 6 – Anticlockwise rotation 

of 𝜃 to the reference system 

 

2.1.7. Dyadic product 

The dyadic product between two vectors 𝒖 and 𝒗 is a second-order tensor 𝑨, as presented 

in [15] 

𝒖 ⊗ 𝒗 = (

𝑢1𝑣1 𝑢1𝑣2 𝑢1𝑣3

𝑢2𝑣1 𝑢2𝑣2 𝑢2𝑣3

𝑢3𝑣1 𝑢3𝑣2 𝑢3𝑣3

) = 𝑨. (43) 

In terms of components, it can be stated that 

𝐴𝑖𝑗 = 𝑢𝑖𝑣𝑗  . (44) 

Since 𝑨 is a linear operator itself, 𝑨 could be applied to a vector 𝒘 in order to obtain an 

output vector 𝒎, as presented in 

𝒎 = 𝑨𝒘 = (𝒖 ⊗ 𝒗)𝒘. (45) 
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The components 𝑚𝑖 can be expressed as 

𝑚𝑖 = 𝐴𝑖𝑗𝑤𝑗 = (𝑢𝑖𝑣𝑗)𝑤𝑗

= (𝑣𝑗𝑤𝑗)𝑢𝑖 .         (46)
 

Considering that 𝑣𝑗𝑤𝑗 corresponds to the inner product between vector 𝒗 and 𝒘, one 

obtains that 𝒎 is therefore given by 

𝑚𝑖𝒆𝑖 = (𝑣𝑗𝑤𝑗)𝑢𝑖𝒆𝑖  , (47) 

leading to 

𝒎 = (𝒗 ∙ 𝒘)𝒖. (48) 

By comparing expressions (45) and (48), one obtains that the dyadic product between 𝒖 

and 𝒗 modifying 𝒘 also corresponds to [15] 

(𝒖 ⊗ 𝒗)𝒘 = (𝒗 ∙ 𝒘)𝒖, (49) 

which is an essential definition for the adequate comprehension of Cauchy’s theorem, to 

be discussed in following stages of this overview. 

 

2.2. Additional mathematical concepts 

2.2.1. Considerations on several-variable function 

In general terms, physical quantities are often dependent on multiple variables. As such, 

basic concepts concerning single variable functions may be extended to a context where 

functions receive several variables as input parameters. 

For instance, the temperature 𝑇 in a room may be expressed in terms of the coordinates 

(𝑥, 𝑦, 𝑧), as well as being function of time 𝑡, leading to a 4-input variable expression such 

as 𝑇 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡). Likewise, assuming that dimensions remain constant in time, the 

volume of a cylinder can be expressed as 𝑉(𝑟, ℎ) = 𝜋𝑟²ℎ, where 𝑟 is the radius and ℎ is 

the height. Despite the difference in notation, where 𝑇 omits the input variables while 

𝑉(𝑟, ℎ) evidences them, both constitute functions which depend on more than one 

variable as inputs.  
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Regarding the context of the present work, attention is turned towards two-variable 

functions, where both input parameters as well as the output parameter are real numbers. 

Such function 𝑓 of two variables can be defined as a rule that assigns each ordered pair 

of real numbers (𝑥, 𝑦) in a set 𝐷 a unique real number denoted by 𝑓(𝑥, 𝑦). The set 𝐷 is 

the domain of 𝑓, while its range is the set of values that 𝑓 takes on [18]. 

 

2.2.1.1. Level curves 

A level curve consists of a set of coordinate points pertaining to the domain which are 

associated with a fixed value of the function in question. In other words, considering the 

case of two-variable functions 𝑦 = 𝑓(𝑥, 𝑦), contour lines (or level curves) are defined as 

a set of curves pertaining to the domain which satisfies the expression 𝑓(𝑥, 𝑦) = 𝑘, where 

𝑘 is a constant. 

Fig. 7 presents a graph relative to the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦², along with a number 

of level curves in the 𝑥𝑦 plane associated with generic values of 𝑘.  

  

Figure 7 – Level curves relative to an arbitrary function  

 

Much can be learned about a function from inspecting the behaviour of its level curves. 

In many cases, if the expression to one or more level curves are determined, further 

generalisation may lead to identifying the expression to the original function itself.  
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2.2.2. Eigenvalues and eigenvectors 

Let 𝒙 be a vector pertaining to ℝ𝑛 and 𝑨, a linear operator with dimension 𝑛 × 𝑛. Vector 

𝒙 is said to be an eigenvector of 𝑨 if it satisfies [17] 

𝑨𝒙 = 𝜆𝒙 (50) 

for some scalar 𝜆 ∈ ℝ. The scalar 𝜆, in turn, is said to be an eigenvalue of the linear 

transformation 𝑨. The above expression corresponds to a system of linear equations 

presenting 𝑛 variables and 𝑛 equations. It can equivalently be rewritten as 

𝑨𝒙 − 𝜆𝒙 = 𝟎. (51) 

By introducing the identity operator 𝑰 in the second term, the expression becomes 

𝑨𝒙 − 𝜆𝑰𝒙 = 𝟎, (52) 

(𝑨 − 𝜆𝑰)𝒙 = 𝟎. (53) 

Considering the case where 𝒙 ∈ ℝ3, the linear system corresponds to 

(

𝐴11 − 𝜆 𝐴12 𝐴13

𝐴21 𝐴22 − 𝜆 𝐴23

𝐴31 𝐴32 𝐴33 − 𝜆
) {

𝑥1

𝑥2

𝑥3

}  =  {
0
0
0
} . (54) 

If the number of variables corresponds to the number of linearly independent linear 

equations, the system admits a single trivial solution, given by 𝒙 = 𝟎. In order to obtain 

different solutions, the above expression must satisfy [17] 

det(𝑨 − 𝜆𝑰) = 0, (55) 

as this allows the system to remain consistent, with infinitely many solutions. In fact, 

expression (54) cannot admit an inverse matrix to (𝑨 − 𝜆𝑰), as this would lead to 

𝒙 = (𝑨 − 𝜆𝑰)−𝟏 𝟎, which is not acceptable as the zero vector cannot be transformed into 

anything other than the zero vector itself. Accordingly, equation (55) thus leads to a 

characteristic polynomial expression of third degree, where each value of 𝜆 that satisfies 

this expression is therefore an eigenvalue of the system. Vectors associated with 

eigenvalues correspond to the eigenvectors of the system. 
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2.3. Relevant concepts of mechanical behaviour of solids 

Forces arising from the interaction between a solid body Ω and its surrounding 

environment are essentially of two kinds: contact forces 𝒉 and body forces 𝒃 [19]. Contact 

forces 𝒉, with units in force per area, act on the boundary surface 𝜕Ω of the solid. Body 

forces, in turn, correspond to forces exerted by the environment on interior points within 

the volume Ω, typically due to force fields such as gravity or electromagnetic fields [19], 

thus presenting units of force per volume. 

If the solid body is in equilibrium, as shown in Fig. 8(a), then the resulting force is nil, as 

given by [19] 

∫ 𝒉 𝑑𝐴
𝜕Ω

+ ∫ 𝒃 𝑑𝑉
Ω

= 𝟎. (56) 

Equilibrium is also valid for parts of the solid body. However, since different parts are 

subjected to different sets of forces, equilibrium can only be achieved if different parts of 

the material interact exerting forces upon each other. The internal forces acting on a given 

part 𝑝 are represented in Fig. 8(b) by Cauchy’s stress vector 𝒕, with units in force per area.  

  

(a) (b) 

Figure 8 – (a) Contact and body forces; (b) equilibrium of part 𝑝 due to internal forces 𝒕 
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2.3.1. Cauchy’s postulate 

From a more localised perspective, consider a point 𝑃 (with coordinates given by the 

vector 𝒙) pertaining to the boundary surface of a given part 𝑝 well within the solid body. 

Considering that the surface of 𝑝 is subjected to a given distribution of internal forces, 

point 𝑃 itself experiences the stress vector 𝒕. Nevertheless, it is to be pointed out the solid 

can be partitioned in infinitely many ways, where point 𝑃 can simultaneously be part of 

different boundaries associated with different parts, for instance parts 𝑝1 and 𝑝2. This 

indicates that the stress vector 𝒕 acting on 𝑃 is therefore independent of the selected part 

𝑝. 

As such, Cauchy assumed that the stress vector 𝒕 depends on the location of the point 𝑃 

as well as on the orientation of the tangent plane at point 𝑃. Such hypothesis implies that, 

upon two different material parts 𝑝1 and 𝑝2, the stress vector 𝒕 acting on 𝑃 is the same, 

even though 𝑝1 and 𝑝2 may be subjected to different sets of forces. Fig. 9 exemplifies the 

described situation, where 𝒏 corresponds to the unitary normal vector associated with the 

material plane tangent to both 𝑝1 and 𝑝2 at 𝑃. 

  

Figure 9 – Cauchy’s hypothesis  

 

Changing the orientation of the tangent plane accordingly modifies the stress vector 𝒕, as 

𝒕 is function of the position and the normal vector of the material plane, as given by 

𝒕 = 𝒇(𝒙, 𝒏). (57) 
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2.3.2. Cauchy’s theorem 

2.3.2.1. Part I: the stress tensor 

Consider an elementary volume, as presented in Fig. 10(a), where all sides of the solid 

are subjected to normal and shear stresses. If the solid is in equilibrium, so are smaller 

partitions of it. As illustrated in Fig. 10(b), a tetrahedral part (obtained by slicing the 

elementary volume, as shown) is considered where an internal stress vector 𝒕(𝒏) acting 

on PQR is revealed in order to maintain the part in equilibrium, as is the whole solid. The 

adopted notation 𝒕(𝒏) aims to emphasise that 𝒕 is a function of the material plane uniquely 

described by its normal unitary vector 𝒏 [19]. 

  

(a) (b) 

Figure 10 – (a) Entire solid in equilibrium; (b) part in equilibrium 

 

By imposing equilibrium, the resultant force is nil, accordingly leading to 

𝒕(𝒏)Δ𝐴 − 𝒕𝑥Δ𝐴𝑥 − 𝒕𝑦Δ𝐴𝑦 − 𝒕𝑧Δ𝐴𝑧 + 𝒃Δ𝑉 = 𝟎, (58) 

where Δ𝐴, Δ𝐴𝑥, Δ𝐴𝑦 and Δ𝐴𝑧 correspond the areas upon which 𝒕(𝒏), −𝒕𝑥, −𝒕𝑦 and −𝒕𝑧 

respectively act. Accordingly, −𝒕𝑥, −𝒕𝑦 and −𝒕𝑧 each correspond to a combination of 

normal stress and to two components of shear stress, equivalent to what is shown in Fig. 

10(a). In addition, 𝒃 is the body force acting on the tetrahedral.  
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Any given area ΔA can be expressed in terms of its normal vector. Accordingly, from a 

vectorial perspective, the quantity Δ𝐀 can be expressed as 

Δ𝑨 = Δ𝐴 𝒏. (59) 

Considering that the areas Δ𝐴𝑥, Δ𝐴𝑦 and Δ𝐴𝑧 correspond to the projection of Δ𝐀 towards 

𝒆𝑥, 𝒆𝒚 and 𝒆𝒛, one straightforwardly obtains  

Δ𝐴𝑥 = (Δ𝐴 𝒏) ∙ 𝒆𝒙 = ΔA(𝒏 ∙ 𝒆𝑥)

Δ𝐴𝑦 = (Δ𝐴 𝒏) ∙ 𝒆𝒚 = ΔA(𝒏 ∙ 𝒆𝑦)

Δ𝐴𝑧 = (Δ𝐴 𝒏) ∙ 𝒆𝒛 = ΔA(𝒏 ∙ 𝒆𝑧). (60)

 

In addition, the volume of the tetrahedral is given by 

Δ𝑉 =
1

3
ΔℎΔ𝐴, (61) 

where Δh is the distance between O and the surface PQR (Fig. 10). 

Equilibrium can therefore be rewritten as [19] 

𝒕(𝒏)Δ𝐴 − ΔA(𝒏 ∙ 𝒆𝑥)𝒕𝑥 − ΔA(𝒏 ∙ 𝒆𝑦)𝒕𝑦 − ΔA(𝒏 ∙ 𝒆𝑧)𝒕𝑧 + 𝒃
1

3
ΔℎΔ𝐴 = 𝟎. (62) 

Since Δ𝐴 is a common factor different than zero, the entire expression can be divided by 

this quantity. Considering the limiting case when Δℎ tends to zero, its corresponding term 

may be disregarded. Accordingly, the expression becomes [19] 

𝒕(𝒏) = (𝒏 ∙ 𝒆𝑥)𝒕𝑥 + (𝒏 ∙ 𝒆𝑦)𝒕𝑦 + (𝒏 ∙ 𝒆𝑧)𝒕𝑧 . (63) 

By using the definition of the dyadic product presented in expression (49), one obtains 

𝒕(𝒏) = (𝒕𝑥 ⊗ 𝒆𝑥)𝒏 + (𝒕𝑦 ⊗ 𝒆𝑦)𝒏 + (𝒕𝑧 ⊗ 𝒆𝑧)𝒏, (64) 

where 𝒏 can be evidenced, leading to 

𝒕(𝒏) = (𝒕𝑥 ⊗ 𝒆𝑥 + 𝒕𝑦 ⊗ 𝒆𝑦 + 𝒕𝑧 ⊗ 𝒆𝑧)𝒏. (65) 

Finally, one can conclude that [19] 

𝒕(𝒏) = 𝑻𝒏, (66) 
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where 𝑻 corresponds to Cauchy’s stress tensor as given by 

𝑻 = 𝒕𝑥 ⊗ 𝒆𝑥 + 𝒕𝑦 ⊗ 𝒆𝑦 + 𝒕𝑧 ⊗ 𝒆𝑧 . (67) 

From the first part of Cauchy’s theorem, it can be straightforwardly concluded that the 

stress-state acting on a given location is fully determined if the stress vectors acting on 

three mutually orthogonal planes are known. In addition, the stress-tensor can be 

interpreted as a mathematical object that, provided a material plane, the stress-tensor 

delivers the stress vector 𝒕 acting the plane of interest, allowing one to straightforwardly 

obtain the associated normal and shear stresses. 

 

2.3.2.2. Part II: symmetry of the stress tensor 

The elementary volume is a cubic solid with dimensions Δ𝑥, Δy and Δz subjected to forces 

that impose moments to the body. The symmetry of the stress tensor is a consequence of 

the equilibrium of moments [19]. As presented in Fig. 11, it is assumed that normal and 

shear stresses are applied at the centre of their respective surfaces, while body forces are 

assumed to be applied at the centre of the elementary volume.  

  

(a) (b) 

Figure 11 – Forces acting on elementary volume (a) contact forces and (b) body forces 

 

The following derivation evaluates the moments with respect to the 𝑧 axis. As one would 

expect, forces parallel to 𝒆𝑧 do not result in torques about the 𝑧 axis. In addition, given 
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that the elementary volume is assumed to be in equilibrium, the resulting moment is nil. 

The analysis is broken down into four smaller steps. 

 

Step 1 considers the effect of the body forces, as presented in Fig. 12. The moment due 

to body forces 𝑀𝑏 is given by 

𝑀𝑏 = [
Δ𝑥

2
𝒆𝑥 × 𝑏𝑦(Δ𝑥Δ𝑦Δ𝑧)𝒆𝑦] + [

Δ𝑦

2
𝒆𝑦 × 𝑏𝑥(Δ𝑥Δ𝑦Δ𝑧)𝒆𝑥]

=
Δ𝑥

2
𝑏𝑦(Δ𝑥Δ𝑦Δ𝑧)𝒆𝑧 −

Δ𝑦

2
𝑏𝑥(Δ𝑥Δ𝑦Δ𝑧)𝒆𝑧 .                   (68)

 

 

  

(a) (b) 

Figure 12 – Moments produced by body forces (a) general view and (b) top view 

 

 

Step 2 considers the moment produced by normal forces 𝑀𝑛, as presented in Fig. 13. 

Such expression is given by 

𝑀𝑛 = [
𝛥𝑥

2
𝒆𝑥 × 𝜎𝑦𝑦(𝛥𝑥𝛥𝑧)(−𝒆𝑦)] +                           

+ [
Δ𝑥

2
𝒆𝑥 × (𝜎𝑦𝑦 +

𝜕𝜎𝑦𝑦

𝜕𝑦
Δ𝑦) (𝛥𝑥𝛥𝑧)𝒆𝑦] +

+ [
𝛥𝑦

2
𝒆𝑦 × 𝜎𝑥𝑥(𝛥𝑦𝛥𝑧)(−𝒆𝑥)] +                   

+ [
Δ𝑦

2
𝒆𝑦 × (𝜎𝑥𝑥 +

𝜕𝜎𝑥𝑥

𝜕𝑥
Δ𝑥) (𝛥𝑦𝛥𝑧)𝒆𝑦],   (69)
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where terms in different colours cancel out, leading to 

𝑀𝑛 = [
Δ𝑥

2
 
𝜕𝜎𝑦𝑦

𝜕𝑦
(Δ𝑥Δ𝑦Δ𝑧)] 𝒆𝑧 − [

Δ𝑦

2
 
𝜕𝜎𝑥𝑥

𝜕𝑥
(Δ𝑥Δ𝑦Δ𝑧)] 𝒆𝑧 . (70) 

  

(a) (b) 

Figure 13 – Moments produced by normal forces (a) general view and (b) frontal view 

 

 

Step 3 considers the moments 𝑀𝑠,1 produced by shear forces acting on 𝑧 planes, as shown 

in Fig. 14. 

  

(a) (b) 

Figure 14 – Moments produced by shear forces acting on 𝑧 planes (a) general view and (b) frontal view 
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The corresponding expression is given by 

𝑀𝑠,1 = [
Δ𝑥

2
𝒆𝑥 × 𝜏𝑧𝑦(Δ𝑥Δ𝑦)(−𝒆𝑦)] +                                 

+ [
Δ𝑥

2
𝒆𝑥 × (𝜏𝑧𝑦 +

𝜕𝜏𝑧𝑦

𝜕𝑧
Δ𝑧) (Δ𝑥Δ𝑦)(𝒆𝑦)] +

+ [
Δy

2
𝒆𝑦 × 𝜏𝑧𝑥(Δ𝑥Δ𝑦)(−𝒆𝑥)] +                       

+ [
Δy

2
𝒆𝑦 × (𝜏𝑧𝑥 +

𝜕𝜏𝑧𝑥

𝜕𝑧
Δ𝑧) (Δ𝑥Δ𝑦)(𝒆𝑥)],     (71)

 

where terms in different colours cancel out, leading to 

𝑀𝑠,1 = [
Δ𝑥

2
 
𝜕𝜏𝑧𝑦

𝜕𝑧
(Δ𝑥Δ𝑦Δ𝑧)] 𝒆𝑧 − [

Δ𝑦

2
 
𝜕𝜏𝑧𝑥

𝜕𝑧
(Δ𝑥Δ𝑦Δ𝑧)] 𝒆𝑧 . (72) 

 

 

Step 4 considers the moments 𝑀𝑠,2 produced by shear forces acting on 𝑥 and 𝑦 planes, as 

presented in Fig. 15. It is important to mention that 𝜏𝑥𝑦 and 𝜏𝑦𝑧 do not produce moments 

as the perpendicular distance to the 𝑧 axis is nil. 

 

  

(a) (b) 

Figure 15 – Moments produced by shear forces acting on 𝑥 and 𝑦 planes (a) general view and (b) top 

view  
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The corresponding expression is 

𝑀𝑠,2 = [(𝛥𝑥) 𝒆𝑥 × (𝜏𝑥𝑦 +
𝜕𝜏𝑥𝑦

𝜕𝑥
𝛥𝑥) (𝛥𝑦𝛥𝑧) 𝒆𝑦] +           

+ [(𝛥𝑦) (𝒆𝑦) × (𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥

𝜕𝑦
𝛥𝑦) (𝛥𝑥𝛥𝑧) 𝒆𝑥] , (73)

 

leading to  

𝑀𝑠,2 = [𝜏𝑥𝑦(𝛥𝑥𝛥𝑦𝛥𝑧)𝒆𝑧] + [(
𝜕𝜏𝑥𝑦

𝜕𝑦
𝛥𝑥) (𝛥𝑥𝛥𝑦𝛥𝑧)𝒆𝑧] +        

−[𝜏𝑦𝑥(𝛥𝑥𝛥𝑦𝛥𝑧)𝒆𝑧] − [(
𝜕𝜏𝑦𝑥

𝜕𝑦
𝛥𝑦) (𝛥𝑥𝛥𝑦𝛥𝑧)𝒆𝑧] . (74)

 

 

Equilibrium is obtained when the sum of the terms 𝑀𝑏, 𝑀𝑛, 𝑀𝑠,1 and 𝑀𝑠,2 equals zero 

[19]. Dividing by Δ𝑥Δ𝑦Δ𝑧 (and omitting 𝒆𝑧), the whole expression becomes 

(
Δ𝑥

2
𝑏𝑦 −

Δ𝑦

2
𝑏𝑥) + (

Δ𝑥

2
 
𝜕𝜎𝑦𝑦

𝜕𝑦
−

Δ𝑦

2
 
𝜕𝜎𝑥𝑥

𝜕𝑥
)

+(
Δ𝑥

2
 
𝜕𝜏𝑧𝑦

𝜕𝑧
−

Δ𝑦

2
 
𝜕𝜏𝑧𝑥

𝜕𝑧
) + (𝜏𝑥𝑦 +

𝜕𝜏𝑥𝑦

𝜕𝑦
𝛥𝑥 − 𝜏𝑦𝑥 −

𝜕𝜏𝑦𝑥

𝜕𝑦
𝛥𝑦) = 0. (75)

 

In the limiting case where both Δ𝑥 and Δ𝑦 tend to zero, one obtains 

𝜏𝑥𝑦 − 𝜏𝑦𝑥 = 0, (76) 

from where it can be concluded that  

𝜏𝑥𝑦 = 𝜏𝑦𝑥 . (77) 

Analogously to this derivation, one may carry out the same procedure with respects to 

axes 𝑥 and 𝑦, leading to 

𝜏𝑥𝑧 = 𝜏𝑧𝑥  (78) 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 , (79) 

where one can conclude that the stress tensor is symmetric [19]. 
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2.3.2.3. Part III: satisfying the equation of motion  

The final part of Cauchy’s theorem states that the stress-tensor satisfies the equation of 

motion. Consider a body subjected to contact and body forces, as presented in Fig. 16.  

 

Figure 16 – Solid body where part p and corresponding forces are evidenced 

 

As previously discussed, a given part 𝑝 experiences its own contact forces 𝒕 acting on the 

boundary 𝜕𝑝 as well a body forces 𝒃𝑝 acting upon its volume. According to Newton’s 

second law, the resultant force corresponds to the product between mass and acceleration. 

Accordingly, balance of linear momentum takes the form [19] 

∫ 𝒕 𝑑𝐴
𝜕𝑝

+ ∫ 𝒃𝑝 𝑑𝑉
𝑝

= ∫ 𝜌
𝑑

𝑑𝑡
(𝒗) 𝑑𝑉

𝑝

. (80) 

Using expression (66), which states that 𝒕 = 𝑻𝒏, expression (80) becomes 

∫ 𝑻𝒏 𝑑𝐴
𝜕𝑝

+ ∫ 𝒃𝑝 𝑑𝑉
𝑝

= ∫ 𝜌
𝑑

𝑑𝑡
(𝒗) 𝑑𝑉

𝑝

. (81) 

By using the divergence (Gauss) theorem, one obtains 

∫ [ 𝑑𝑖𝑣(𝑻) + 𝒃𝑝 ] 𝑑𝑉
𝑝

= ∫ 𝜌
𝑑

𝑑𝑡
(𝒗) 𝑑𝑉

𝑝

, (82) 

which can be reduced to  

 𝑑𝑖𝑣(𝑻) + 𝒃𝑝  = 𝜌
𝑑

𝑑𝑡
(𝒗) (83) 
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For a body in equilibrium, the term on the right-hand side turns out to be nil, leading to 

[19] 

𝑑𝑖𝑣(𝑻) + 𝒃𝑝  = 𝟎. (84) 

Expression (84) corresponds to a three-dimensional equation, which in cartesian 

coordinates corresponds to [19] 

 
𝜕

𝜕𝑥
(𝜎𝑥𝑥) +

𝜕

𝜕𝑦
(𝜏𝑥𝑦) +

𝜕

𝜕𝑧
(𝜏𝑥𝑧) + 𝑏𝑝,𝑥 = 0 

  
𝜕

𝜕𝑥
(𝜏𝑥𝑦) +

𝜕

𝜕𝑦
(𝜎𝑦𝑦) +

𝜕

𝜕𝑧
(𝜏𝑦𝑧) + 𝑏𝑝,𝑦 = 0 

𝜕

𝜕𝑥
(𝜏𝑥𝑧) +

𝜕

𝜕𝑦
(𝜏𝑦𝑧) +

𝜕

𝜕𝑧
(𝜎𝑧𝑧) + 𝑏𝑝,𝑧 = 0. (85) 

 

2.3.3. Principal stresses and spectral decomposition 

For a generic stress-state 𝝈 the normal stress 𝒕 can be obtained using Cauchy’s theorem, 

as given by 𝒕 = 𝝈𝒏. Accordingly, the normal stress component 𝑡𝑛 can be obtained by 

projecting 𝒕 to the normal direction 𝒏, as shown in 

𝑡𝑛 = 𝒏 ∙ (𝝈𝒏). (86) 

In order to obtain the maximum (and minimum) value of normal stress, one must find 𝒏 

that maximises the above expression, restricted to 𝒏 being a unit vector, leading to  

𝒏 ∙ 𝒏 = 1. (87) 

Optimisation can be achieved by using Lagrange multipliers, where the Lagrangean 

function can be presented as 

ℒ(𝒏) = 𝒏 ∙ (𝝈𝒏) − 𝜆(𝒏 ∙ 𝒏), (88) 

where 𝜆 is the Lagrange multiplier.  
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Maxima and minima values are obtained when the partial derivatives of ℒ with respect to 

its arguments equal zero. Accordingly,  

𝜕

𝜕𝒏
{ℒ(𝒏)} = 2𝝈𝒏 − 2𝜆𝒏 = 𝟎, (89) 

leading to 

𝝈𝒏 = 𝜆𝒏, (90) 

which is in full agreement with expression (50). 

The spectral decomposition theorem states that, for any given symmetric second-order 

tensor 𝝈 exists a right-handed orthonormal basis {𝒆𝑖
′} constituted of its eigenvectors [15]. 

Within the context of mechanical behaviour of solids, the eigenvalues 𝜆𝑖 correspond to 

the values of the maximum stresses and in terms of the basis {𝒆𝑖
′}, the stress tensor 𝝈′ in 

matrix representation is thus given by 

𝝈′ = (
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

) , (91) 

where 𝜎1, 𝜎2 and 𝜎3 correspond to the principal stresses, with 𝜎1 being by convention the 

highest value and 𝜎3, by convention, being the lowest. 

 

2.3.4. Hydrostatic and deviatoric stresses 

The Cauchy stress-tensor 𝝈 can be decomposed into a sum of two parts, as presented in 

[15] 

𝝈 = 𝝈𝐷𝑒𝑣 + 𝜎𝐻𝑰, (92) 

where 𝝈𝐷𝑒𝑣 corresponds to the deviatoric stress-tensor, 𝜎𝐻 is the hydrostatic stress and  𝑰 

is the identity tensor. The hydrostatic stress is defined as [15] 

𝜎𝐻 =
1

3
𝑡𝑟(𝝈) =

1

3
𝜎𝑖𝑖 =

1

3
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧), (93) 
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where the operation 𝑡𝑟(𝝈) is the trace of the tensor, which can be represented in index 

notation as 𝜎𝑖𝑖. Accordingly, the deviatoric stress-tensor can be obtained as [15] 

𝝈𝐷𝑒𝑣 = 𝝈 − 𝜎𝐻𝑰, (94) 

which corresponds in matrix representation to 

𝝈𝐷𝑒𝑣 =

[
 
 
 
 
 
2𝜎𝑥𝑥 − 𝜎𝑦𝑦 − 𝜎𝑧𝑧

3
𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦

2𝜎𝑦𝑦 − 𝜎𝑥𝑥 − 𝜎𝑧𝑧

3
𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧

2𝜎𝑧𝑧 − 𝜎𝑥𝑥 − 𝜎𝑦𝑦

3 ]
 
 
 
 
 

. (95) 

 

2.4. Relevant concepts of fatigue  

2.4.1. Uniaxial fatigue 

2.4.1.1. Wöhler curves and fatigue resistance limit  

In the 19th century, fatigue was already a well-known technical problem as several failures 

of metallic structures were being reported. It had already been recognised that a single 

load far below the ultimate tensile strength of the material exerted no damage to the 

structure, but repetition of this load could eventually induce complete failure [1]. 

Wöhler thus proposed a method of presenting fatigue data by means of a plot that 

correlated the applied stress amplitudes against number of cycles to failure [20]. Such 

approach via S-N curves is still popular to this day and is used to assess and design against 

fatigue behaviour of materials. The S-N curves (or Wöhler curves) are commonly 

determined for normal push-pull condition, typically relating the stress amplitude with 

the observed fatigue-life. Most determinations of the fatigue properties of materials have 

been made to fully reversed loadings, where mean stress is nil [20]. 

Accordingly, from a theoretical perspective, fluctuating loads are commonly modelled as 

sinusoidal expressions, as given by 

𝜎(𝑡) = 𝜎𝑚 + 𝜎𝑎 sin(𝜔𝑡) , (96) 
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where 𝜎𝑚 corresponds to the mean stress and 𝜎𝑎 corresponds to the stress amplitude [20]. 

Fig. 17(a) exemplifies loading histories modelled as sinusoidal curves, with and without 

mean stress, while Fig. 17(b) presents a generic SN curve for a metallic material. 

  

(a) (b) 

Figure 17 – Loading histories 𝜎(𝑡) as sinusoidal curves, with and without mean stress 

 

As one may observe, stress amplitude 𝜎𝑎 and the number of cycles to failure 𝑁𝑓 are related 

via a power function, as given by Basquin’s expression [21] 

𝜎𝑎 = 𝐴𝑁𝑓
𝑚 , (97) 

where 𝐴 and 𝑚 are experimentally determined material constants. For some metallic 

materials, notably plain-carbon and low alloy steels, the S-N presents an asymptotic 

behaviour [22]. The value to which the S-N curve converges is known as the endurance 

limit (or fatigue resistance limit) 𝑓−1, where stress amplitudes below such level are 

insufficient to drive the material into failure, and the fatigue life is theoretically expected 

to be infinite. 

Analogously, fatigue analysis can also be carried out for pure torsion. The fatigue data 

can be accordingly presented in a T-N plot, where the relation between shear stress 

amplitudes and fatigue-life also follows the Basquin expression, as given by [21] 

𝜏𝑎 = 𝐴′𝑁𝑓
𝑚∗, (98) 

where 𝐴’ and 𝑚 ∗ are material constants. The fatigue resistance limit in pure torsion is 

addressed to, in the present work, as 𝑡−1. 
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2.4.1.2. Effect of mean stress on fatigue 

Fatigue data available in the literature has been predominately determined and made 

available for conditions of fully reversed loadings. Nevertheless, many in-service 

conditions are in practice found to present a combination of time-varying loads 

superimposed to static stresses [20]. 

Goodman proposed a relation where the limiting range of stress decays linearly with the 

presence of a mean stress, as given by [1] 

𝜎𝑎
𝑅≠−1 = 𝜎𝑎,𝑒𝑞

𝑅=−1 (1 −
𝜎𝑚

𝜎𝑢
) , (99) 

where 𝜎𝑎
𝑅≠−1 corresponds to a stress amplitude fluctuating around a certain mean value, 

𝜎𝑎,𝑒𝑞
𝑅=−1 corresponds to an equivalent stress amplitude under fully reversed condition, 𝜎𝑚 

corresponds to the mean stress value and 𝜎𝑢 corresponds to the ultimate tensile strength 

of the material. 

The above relation can be visualised in the plot presented in Fig. 18, where the admissible 

stress amplitude 𝜎𝑎 (for a given fatigue-life) linearly decreases with the increase of the 

mean stress 𝜎𝑚. 

 

Figure 18 – Goodman plot 

 

It is important to point out that such behaviour is only valid for the case of alternating 

axial or bending with static normal stress, as well as for the case of alternating torsion 

with static tension [20], [23]. It is well-established that a superimposed static torsion does 

not influence the fatigue resistance limit provided that the elastic regime is not exceeded. 
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2.4.2. Multiaxial fatigue  

2.4.2.1. Stresses acting on material plane 

The stress-state acting on a small volume of material in a body is described with the use 

of six stress components, namely 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧 and 𝜏𝑦𝑧, acting on three 

orthogonal planes (Fig. 19). Considering that such stress components fluctuate in value 

over time, the associated stress-tensor is also a function of time, as given by 

𝝈(𝑡) = (

𝜎𝑥𝑥(𝑡) 𝜏𝑥𝑦(𝑡) 𝜏𝑥𝑧(𝑡)

𝜏𝑥𝑦(𝑡) 𝜎𝑦𝑦(𝑡) 𝜏𝑦𝑧(𝑡)

𝜏𝑥𝑧(𝑡) 𝜏𝑦𝑧(𝑡) 𝜎𝑧𝑧(𝑡)

).     (100) 

 

 

Figure 19 – Time-varying stresses acting 

on a small volume of material 

 

Assume that a material plane Δ, defined uniquely by its unit vector described in spherical 

coordinates, intercepts the elementary volume as presented in Fig. 20(a) [24]. From 

Cauchy’s theorem, the stress vector 𝒕 acting on Δ can be obtained by applying the stress-

state tensor 𝝈 to the plane’s normal vector 𝒏. The resulting stress vector 𝒕 is also a 

function of time, as follows 

𝒕(𝑡) = 𝝈(𝑡) 𝒏. (101) 

The normal stress vector 𝑵(𝑡) can be obtained by projecting the stress vector 𝒕(𝑡) to the 

direction of 𝒏. The inner product delivers a scalar quantity that corresponds to the 

magnitude of 𝑵(𝑡), which can be simply referred to as 𝑁(𝑡). The normal stress vector 

𝑵(𝑡) is therefore obtained by multiplying 𝒏 by its corresponding magnitude 𝑁(𝑡), as 

given by [5], [8] 

𝑵(𝑡) = (𝒕 ∙ 𝒏)𝒏. (102) 
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Accordingly, the shear stress vector 𝑪(𝑡) can be obtained by subtracting the normal 

component 𝑵(𝑡) from the stress vector 𝒕(𝑡), as shown in 

𝑪(𝑡) = 𝒕(𝑡) − 𝑵(𝑡). (103) 

Such decomposition is depicted in Fig. 20(b). 

  

(a) (b) 

Figure 20 – (a) Material plane Δ; (b) Normal and shear stress vectors 

 

In practical terms, stresses of interest are often not aligned with the coordinate axes. 

Performing a coordinate transformation is usually a convenient approach to obtain the 

stress values with respect to material plane Δ in question [25]. 

Fig. 21(a) depicts the change of basis given by an anticlockwise rotation of 𝜑 with respect 

to the 𝑧 axis, followed by a clockwise rotation of 90° − 𝜃 with respect to the position 

where the 𝑦 axis landed after the first rotation. Fig. 21(b) presents the final orientation of 

the reference system in terms of (𝜃, 𝜑). 

  

(a) (b) 

Figure 21 – (a) Rotations applied to the reference system; (b) final orientation of the reference system 
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The transformation consists of a two-step procedure, with the first corresponding to the 

anticlockwise rotation of 𝜑 with respect to 𝑧, modifying the stress-tensor as follows 

�̅� = 𝑸1
𝑇 𝝈 𝑸1. (104) 

For the second step, the transformation corresponds to a clockwise rotation with respect 

to the direction where the 𝑦 axis landed after the first transformation. Such expression 

corresponds to 

𝝈′ = 𝑸2
𝑇 �̅� 𝑸2                          

= 𝑸2
𝑇 (𝑸1

𝑇 𝝈 𝑸1) 𝑸2    

= (𝑸2
𝑇𝑸1

𝑇) 𝝈 (𝑸1𝑸2)  

= (𝑸1𝑸2)
𝑇 𝝈 (𝑸1𝑸2) (105)

 

where 𝑸1 and 𝑸2 are respectively given by 

𝑸1 = (
cos(𝜑) − sin(𝜑) 0

sin(𝜑) cos(φ) 0
0 0 1

),        𝑸2 = (
sin(𝜃) 0 − cos(𝜃)

0 1 0
cos(𝜃) 0 sin(𝜃)

) . (106) 

 

The product 𝑸1𝑸2 is given by 

𝑸1𝑸2 = (

cos(𝜑) sin(𝜃) − sin(𝜑) − cos(𝜑) cos(𝜃)

sin(𝜑) sin(𝜃) cos(𝜑) − sin(𝜑) cos(𝜃)

cos(𝜃) 0 sin(𝜃)
) , (107) 

 

and, accordingly, 𝑸2
𝑇𝑸1

𝑇 is therefore given by 

𝑸2
𝑇𝑸1

𝑇 = (𝑸1𝑸2)
𝑇

= (

cos(𝜑) sin(𝜃) sin(𝜑) sin(𝜃) cos(𝜃)

− sin(𝜑) cos(𝜑) 0

− cos(𝜑) cos(𝜃) − sin(𝜑) cos(𝜃) sin(𝜃)
) . (108) 

 

Finally, let 𝑨 correspond to (𝑸1𝑸2)
𝑇. The stresses acting on the material plane are 

therefore given by [25] 
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𝑁 = 𝜎𝑥𝑥𝑎11
2 + 𝜎𝑦𝑦𝑎12

2 + 𝜎𝑧𝑧𝑎13
2 +                                                            

+2(𝜏𝑥𝑦𝑎11𝑎12 + 𝜏𝑥𝑧𝑎11𝑎13 + 𝜏𝑦𝑧𝑎13𝑎12) (109)
 

       𝐶𝑥′𝑦′ = 𝜎𝑥𝑥𝑎11𝑎21 + 𝜎𝑦𝑦𝑎12𝑎22 + 𝜎𝑧𝑧𝑎13𝑎23 + 𝜏𝑥𝑦(𝑎11𝑎22 + 𝑎12𝑎21) +      

+𝜏𝑦𝑧(𝑎12𝑎23 + 𝑎13𝑎22) + 𝜏𝑥𝑧(𝑎13𝑎21 + 𝑎11𝑎23) (110)
 

𝐶𝑥′𝑧′ = 𝜎𝑥𝑥𝑎11𝑎31 + 𝜎𝑦𝑦𝑎12𝑎32 + 𝜎𝑧𝑧𝑎13𝑎33 + 𝜏𝑥𝑦(𝑎11𝑎32 + 𝑎12𝑎31) +

+𝜏𝑦𝑧(𝑎12𝑎33 + 𝑎13𝑎32) + 𝜏𝑥𝑧(𝑎13𝑎31 + 𝑎11𝑎33), (111)
 

 

where 𝑎11, 𝑎12, 𝑎13, 𝑎21, 𝑎22, 𝑎23, 𝑎31, 𝑎32 and 𝑎33correspond to the components of 𝑨, 

given in matrix representation as 

𝑨 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (

cos(𝜑) sin(𝜃) sin(𝜑) sin(𝜃) cos(𝜃)

− sin(𝜑) cos(𝜑) 0

− cos(𝜑) cos(𝜃) − sin(𝜑) cos(𝜃) sin(𝜃)
) . (112) 

 

 

2.4.2.2. Shear stress amplitude and maximum value of normal stress 
acting on 𝚫 

For a time-varying stress-state 𝝈(𝑡), the corresponding normal and shear stresses, 𝑵(𝑡) 

and 𝑪(𝑡), associated with a material plane Δ are also described as function of time. 

Determination of quantities associated with the normal stress component 𝑁(𝑡) is usually 

very straightforward as it can be treated as a scalar. Consequently, direct inspection within 

a loading cycle with a period of 𝑇 allows one to obtain the values of normal stress 

amplitude 𝑁𝑎 and mean normal stress 𝑁𝑚, as follows [5] 

𝑁𝑎 =
1

2
{max

𝑡 ∈ 𝑇
𝑁(𝑡) − min

𝑡 ∈ 𝑇
𝑁(𝑡)} (113) 

𝑁𝑚 =
1

2
{max

𝑡 ∈ 𝑇
𝑁(𝑡) + min

𝑡 ∈ 𝑇
𝑁(𝑡)} . (114) 

 

On the other hand, determination of the shear stress amplitude can be far more 

complicated as the shear stress vector 𝑪(𝑡) may change both in magnitude and in direction 
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throughout a loading cycle [13]. Fig. 22 depicts a closed path described by a generic time-

varying shear stress vector 𝑪(𝑡). 

 

Figure 22 – Closed path described by the shear stress vector on material plane Δ within a loading cycle 

 

Several different approaches to determine the shear stress amplitude have been discussed 

in the literature. Two of the most popular methods correspond to the minimum 

circumscribed circumference (MCC) [5], [13] and to the maximum rectangular hull 

(MRH), respectively illustrated in Fig. 23(a) and (b) [26]. 

  

(a) (b) 

Figure 23 – Determination of the shear stress amplitude: (a) MCC; (b) MRH 

 

The MCC method consists of circumscribing the shear stress path with a circumference, 

where the shear stress amplitude 𝐶𝑎 for the material plane Δ in question corresponds to 

the radius of the circumference [5], i.e., 𝐶𝑎 = min{𝑅}. The MRH method consists of 
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employing axes rotations within the material plane Δ to encounter the rectangular hull 

that maximises the value of the shear stress amplitude [26], as given by 𝐶𝑎 = √𝑆1
2 + 𝑆2

2, 

where the quantities 𝑆1 and 𝑆2 corresponds to the half-length of the sides of the 

rectangular hull. 

The MRH method was proposed to overcome a limitation presented by the MCC method. 

Such limitation refers to the fact that the MCC may indicate that two different loading 

paths (respectively produced by non-proportional and proportional loadings) may result 

in the same shear stress amplitude even though the fatigue damage itself may be 

physically different. 

Fig. 24 illustrates two different loading paths, Ψ1 (non-proportional) and Ψ2 

(proportional), associated with two different loading conditions, where the latter is 

typically the case of synchronous sinusoidal in-phase normal and shear stress loadings. 

As one may observe in Fig. 24(a), both shear stress paths are circumscribed by the same 

circumference therefore resulting, according to the MCC method, in the same shear stress 

amplitude. Fig. 24(b), on the other hand, presents how the aforementioned paths result in 

different prismatic hulls, therefore illustrating the sensitivity of the MRH method to non-

proportionality. 

  

(a) (b) 

Figure 24 – (a) Drawback on shear stress amplitude estimation; (b) sensitivity to non-proportionality 
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2.4.2.3. Specimens subjected to combined normal and shear stresses 

Papadopoulos [5] analytically described the stresses acting on a material plane Δ. 

Considering hourglass specimens, the reference system is positioned on the free surface 

where the cross-sectional area is minimum, with the 𝑥 axis aligned with the longitudinal 

direction of the specimen (Fig. 25). 

 

Figure 25 – Positioning of the reference system relative to an hourglass specimen 

 

For combined synchronous sinusoidal normal and shear stresses, the stress-state is 

expressed as [5] 

𝝈(𝑡) = (

𝜎𝑥𝑥(𝑡) 𝜏𝑥𝑦(𝑡) 0

𝜏𝑥𝑦(𝑡) 0 0

0 0 0

) . (115) 

The normal and shear stress components, 𝜎𝑥𝑥(𝑡) and 𝜏𝑥𝑦(𝑡), are modelled as sinusoids, 

as given by 

𝜎𝑥𝑥(𝑡) = 𝜎𝑚 + 𝜎𝑎 sin(𝜔𝑡) (116) 

𝜏𝑥𝑦(𝑡) = 𝜏𝑚 + 𝜏𝑎 sin(𝜔𝑡 − 𝛽) , (117) 

where 𝜎𝑎 and 𝜏𝑎 correspond to macroscopically applied normal and shear stress 

amplitudes, while 𝜎𝑚 and 𝜏𝑚 correspond to mean normal and shear stresses. The 

parameter 𝛽, in turn, corresponds to the phase-difference between the normal and shear 

stresses. As presented in the expressions above, 𝜏𝑥𝑦 is delayed of 𝛽 with respect to 𝜎𝑥𝑥. 

Accordingly, the stresses acting on any material plane Δ are dependent on such plane’s 

orientation, which is in turn oriented relative to the specimen in terms of angles (𝜃, 𝜑), 
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as shown in Fig. 26(a). A top view including the normal and shear stresses, 𝑵(𝑡) and 

𝑪(𝑡), acting on Δ is presented in Fig. 26(b). 

 

 

(a) (b) 

Figure 26 – Material plane Δ and free surface of the specimen: (a) free view; (b) top view 

 

For the case of combined synchronous normal and shear loadings, the stresses acting on 

Δ can be analytically determined and expressed in terms of 𝜎𝑎, 𝜏𝑎, 𝜎𝑚, 𝜏𝑚 and 𝛽. The 

normal stress quantities are therefore given by [5]  

𝑁𝑎 = sin2(𝜃) |cos(𝜑)|√𝜎𝑎
2 cos2(𝜑) + 4𝜏𝑎

2 sin2(𝜑) + 2𝜎𝑎𝜏𝑎 sin(2𝜑) cos(𝛽) (118) 

𝑁𝑚 = sin2(𝜃) [𝜎𝑚 cos2(𝜑) + 𝜏𝑚 sin(2𝜑)]. (119) 

For critical plane-based models, the maximum value attained by the normal stress 𝑁𝑚𝑎𝑥 

is a quantity of interest. As such, the 𝑁𝑚𝑎𝑥 can be evaluated as [5] 

𝑁𝑚𝑎𝑥 = 𝑁𝑎 + 𝑁𝑚. (120) 

In regard to the other quantity of interest, the shear stress amplitude 𝐶𝑎 is given by [5] 

𝐶𝑎 = √
𝑓2 + 𝑔2 + 𝑝2 + 𝑞2

2
+ √(

𝑓2 + 𝑔2 + 𝑝2 + 𝑞2

2
)

2

− (𝑓𝑞 − 𝑔𝑝)2, (121) 



  49 
 

where 𝑓, 𝑔, 𝑝 and 𝑞 are auxiliary functions given by 

𝑓 = sin(𝜃) [−
𝜎𝑎

2
sin(2𝜑) + 𝜏𝑎 cos(2𝜑) cos(𝛽)] (122) 

𝑔 = −sin(𝜃) [𝜏𝑎 cos(2𝜑) sin(𝛽)] (123) 

𝑝 = −
1

2
sin(2𝜃) [𝜎𝑎 cos2(𝜑) + 𝜏𝑎 cos(2𝜑) cos(𝛽)] (124) 

𝑞 =
1

2
sin(2𝜃) [𝜏𝑎 sin(2𝜑) sin(𝛽)]. (125) 

 

2.4.2.4. Multiaxial fatigue criteria  

Five popular critical plane-based criteria, namely Findley (F), Matake (M), McDiardmid 

(McD), Susmel & Lazzarin (S&L), Carpinteri & Spagnoli (C&S) are considered in the 

present work. Their corresponding expressions are respectively given by [8], [10]–[13] 

𝐶𝑎 + 𝑘 𝑁𝑚𝑎𝑥  ≤ 𝑓 ∗ (126) 

𝐶𝑎 + 𝜇 𝑁𝑚𝑎𝑥 ≤ 𝑡−1 (127) 

𝐶𝑎 +
𝑡−1

2 𝜎𝑢
 𝑁𝑚𝑎𝑥 ≤ 𝑡−1 (128) 

𝐶𝑎 + [𝑡−1 −
𝑓−1

2
]
𝑁𝑚𝑎𝑥

𝐶𝑎
 ≤ 𝑡−1 (129) 

√𝑁𝑚𝑎𝑥
2 + (

𝑓−1

𝑡−1
)
2

𝐶𝑎
2 ≤ 𝑓−1, (130) 

where 𝐶𝑎 and 𝑁𝑚𝑎𝑥 are, respectively, the shear stress amplitude and the maximum value 

attained by the normal stress within a loading cycle, both acting on the critical plane. The 

constants 𝑓−1, 𝑡−1 and 𝜎𝑢 are material properties, where the first two respectively 

correspond to fatigue resistance limits for fully reversed bending and fully reversed 

torsion, while the latter corresponds to the ultimate tensile strength of the material. The 

remaining parameters 𝑘, 𝑓 ∗ and 𝜇 are constants which can be directly evaluated from 𝑓−1 

and 𝑡−1, as shown in 
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𝑘 =
2 − (

𝑓−1

𝑡−1
)

2√
𝑓−1

𝑡−1
− 1

 (131) 

𝑓 ∗=  √
𝑓−1

2

4 (
𝑓−1

𝑡−1
− 1)

 (132) 

𝜇 =  2 (
𝑡−1

𝑓−1
) − 1. (133) 

In addition, the criterion proposed by Papadopoulos [5] is also a very well-established 

model. By adopting a mesoscopic scale approach, the criterion aims to evaluate the 

accumulated crystal plastic strain, thus being independent of critical plane determination. 

The fatigue behaviour is assessed by considering both material properties and 

macroscopically applied loads. Its expression is given by 

√(
𝜎𝑎

2

3
+ 𝜏𝑎

2) + 𝛼 𝜎𝐻,𝑚𝑎𝑥 ≤ 𝑡−1, (134) 

where 𝜎𝑎 and 𝜏𝑎 respectively correspond to the macroscopic normal and shear stress 

amplitudes, 𝜎𝐻,𝑚𝑎𝑥 corresponds to the maximum value attained by the hydrostatic stress 

within a loading cycle and 𝛼 is a constant that can be directly evaluated from 𝑓−1 and 𝑡−1, 

as shown in [5] 

𝛼 =

𝑡−1 − (
𝑓−1

√3 
)

𝑓−1

3

. (135) 

Application of the aforementioned critical-plane models depends on the prior 

identification of their respective critical planes, where fatigue damage can occur leading 

to crack nucleation. In order to determine critical planes, one must investigate the stresses 

acting on several different material planes, identifying the plane which experiences the 

maximum fatigue damage according to each model’s definition. Once critical plane 

orientations are determined, the corresponding shear stress amplitude 𝐶𝑎 and maximum 

value of the normal stress 𝑁𝑚𝑎𝑥 according to each criterion can be obtained and therefore 

directly substituted into expressions (126)-(130). The procedure for critical plane 

determination relative to each model is briefly discussed as follows. 
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Findley considers the fatigue damage parameter to be a linear combination of the shear 

stress amplitude 𝐶𝑎 with the maximum value of the normal stress 𝑁𝑚𝑎𝑥. Thus, the critical 

plane (𝜃𝑐, 𝜑𝑐) relative to Findley’s criterion [10] is the one that experiences the maximum 

value of the fatigue parameter 𝐶𝑎 + 𝑘 𝑁𝑚𝑎𝑥. 

As for Matake, McDiarmid and Susmel & Lazzarin, the shear stress amplitude 𝐶𝑎 plays 

a primary role, as fatigue damage is associated with the relative slip between 

crystallographic planes, which occurs due to shear. The presence of normal stress, in turn, 

plays a secondary role as it tends to separate crack surfaces, abbreviating the fatigue-life 

of the component. Therefore, determination of critical plane orientation (𝜃𝑐, 𝜑𝑐) requires 

a two-step procedure, where one must select the one or more planes that experience the 

maximum value of normal stress 𝑁𝑚𝑎𝑥 among a set of pre-selected candidate planes 

where the shear stress amplitude 𝐶𝑎 attains its maximum value [11]–[13]. 

Finally, the procedure for Carpinteri & Spagnoli depends on an additional step as the 

critical plane orientation cannot be directly evaluated from the stresses acting on the 

material planes. Instead, one must first identify the orientation of the fracture plane, where 

the maximum value of normal stress 𝑁𝑚𝑎𝑥 is achieved [12]. For plane stress, at least one 

occurrence of fracture and critical plane takes place at 𝜃 = 90°. Critical and fracture 

planes, respectively 𝜑𝑐 and 𝜑𝑓, differ in their orientations by an angle 𝛿, as given by [8] 

𝛿 =
3𝜋

8
[1 − (

𝑡−1

𝑓−1
)
2

] . (136) 

Accordingly, critical plane orientation 

for the C&S criterion corresponds to 

𝜑𝑐 = 𝜑𝑓 + 𝛿, (137) 

and its orientation relative to the 

fracture plane is illustrated in Fig. 27  

Figure 27 - Critical plane orientation 

Equation (137) is valid for the case where 𝜑 is situated between 0° and 90°. In many cases 

a second 𝜑𝑓 is revealed in between 90° and 180°, which must be adequately treated. 

Application of the involved models are exemplified in Appendix I. 
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2.4.2.5. Modified C&S criterion for fatigue-life prediction 

Although effective, the approach considering infinite fatigue-life stress-based criteria 

lacks the ability of predicting the number of cycles to failure in case of finite fatigue life. 

In this sense, Carpinteri & Spagnoli proposed in 2013 a modification to their own model, 

enabling the criterion to predict the number of cycles to failure [14]. This modification 

consisted of employing the Basquin expressions [21] in place of fixed values of fatigue 

resistance limits. Accordingly, the fatigue strength 𝑓−1
′  for fully reversed normal stress at 

finite life 𝑁𝑓 can be expressed as [14] 

𝑓−1
′ = 𝑓−1 (

𝑁𝑓

𝑁0
)
𝑚

, (138) 

where 𝑁0 is the reference number of loading cycles taken as 2 × 106. The parameter 𝑓−1 

corresponds to the fatigue strength limit and 𝑚 corresponds the slope of the Wöhler curve. 

Likewise, the fatigue strength limit  𝑡−1
′  for pure torsion can be expressed as [14] 

𝑡−1
′ = 𝑡−1 (

𝑁𝑓

𝑁0
)

𝑚∗

, (139) 

where 𝑚 ∗ is the slope of the Wöhler curve for fully reversed shear stress and 𝑡−1 is the 

fatigue resistance limit in pure torsion. Accordingly, for a fatigue life of 𝑁𝑓 cycles, 

equation (130) can be rewritten as [14] 

√[𝑁𝑚𝑎𝑥
2 + (

𝑓−1

𝑡−1
)
2

(
𝑁𝑓

𝑁0
)
2𝑚

(
𝑁0

𝑁𝑓
)

2𝑚∗

𝐶𝑎
2] = 𝑓−1 (

𝑁𝑓

𝑁0
)
𝑚

. (140) 

As one may observe, expression (140) corresponds to a non-linear expression with no 

analytical solution. The solution therefore has to be found through iterative numerical 

procedures, where two of the most popular procedures correspond to Newton-Raphson 

method [27] and to the bisection method [27]. In order to apply any numerical procedure, 

expression (140) must be rearranged to 

𝑁𝑚𝑎𝑥
2 + {[(

𝑓−1

𝑡−1
)
2

𝑁0
2(𝑚∗−𝑚)

] 𝐶𝑎
2}𝑁𝑓

2(𝑚−𝑚∗) − (
𝑓−1

𝑁0
𝑚)

2

𝑁𝑓
2𝑚 = 0, (141) 
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 giving rise to 

𝑃 + 𝑄𝑁𝑓
𝑆 − 𝑅𝑁𝑓

𝑇 = 0, (142) 

where 𝑃, 𝑄, 𝑆, 𝑅 and 𝑇 turn out to be constant values, respectively given by 

𝑃 = 𝑁𝑚𝑎𝑥
2 (143) 

𝑄 = [(
𝑓−1

𝑡−1
)
2

 𝑁0
2(𝑚∗−𝑚)

] 𝐶𝑎
2 (144) 

𝑅 = (
𝑓−1

𝑁0
𝑚)

2

(145) 

𝑆 = 2(𝑚 − 𝑚 ∗) (146) 

𝑇 =  2𝑚. (147) 

Accordingly, expression (142) can be treated as a generic one-variable function, as given 

by 

𝑃 + 𝑄𝑁𝑆 − 𝑅𝑁𝑇 = 𝑦, (148) 

where 𝑃, 𝑄, 𝑆, 𝑅 and 𝑇 are known. The root of this expression satisfies the Modified C&S 

criterion, and therefore corresponds to the number of cycles to failure predicted 𝑁𝑓, as 

presented in Fig. 28. 

  

Figure 28 – Solution to the modified C&S expression 
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Finally, the above-mentioned numerical procedures to solve expression (141) are briefly 

discussed. Starting with Newton-Raphson method, let 𝑓(𝑥) be a function of interest, to 

which the root is unknown. By admitting an initial guess 𝑥𝐺  as a hypothetical root of 𝑓, 

one seeks for the linear curve tangent to 𝑓 at 𝑥𝐺 . Unless the initial guess is an extreme 

value (where the derivative is nil), the linear function is expected to intercept the abscissa 

at a certain value of 𝑥𝐺+1. The value of 𝑥𝐺  is thus updated to the corresponding value of 

𝑥𝐺+1, and the procedure is repeated until the distance between two consecutive steps is 

revealed to be sufficiently small, within a given pre-established tolerance [27]. This 

procedure depends on a good initial guess and solution is very commonly obtained within 

a few iterative steps, usually with quite good precision. However, under some 

circumstances, the procedure may not converge. 

The bisection method consists of defining an initial interval within the domain of 𝑓(𝑥),to 

which the desired root is expected do pertain. The procedure divides the interval in half 

(at 𝑥𝐻) and verifies if, for this particular value of 𝑥𝐻, the signal of the function has 

changed in comparison to the beginning of the interval. If it has, the second half of the 

interval is discarded. If not, then the first half is discarded. The procedure is repeated to 

the remaining part of the interval until the magnitude of the remaining interval is under a 

certain tolerance value [27]. The present works utilises the bisection method. 

  

(a) (b) 

Figure 29 – (a) Newton-Raphson method; (b) bisection method 
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3. Methods 

3.1. Proposition of the elliptical curve method 

Assuming the existence of a function 𝐺, which establishes a direct relation between the 

number of cycles to failure and the loading stress amplitudes, a set of (𝜎𝑎, 𝜏𝑎) 

combinations associated with a fixed value of fatigue life determines a level curve of 𝐺. 

The generalisation of such level curve may provide an expression where any generic 𝑁𝑓 

can be determined as function of 𝜎𝑎 and 𝜏𝑎. 

Using the C&S criterion presented in expression (140) as a survey tool, an iterative 

procedure was thus implemented to identify a set of coordinate pairs associated with fixed 

values of 𝑁𝑓, aiming to build a level curve. The procedure consisted of choosing a 

combination of 𝜎𝑎 and 𝜏𝑎 as input parameters and selecting a fatigue-life value of interest. 

While holding one of the input parameters as constant, the procedure iteratively sweeps 

through different values of the other. For each step of the procedure, the critical plane is 

determined as well as the quantities 𝐶𝑎 and 𝑁𝑚𝑎𝑥 and the corresponding value of 𝑁. The 

procedure is then repeated until 𝑁 converges to the desired value of 𝑁𝑓, and the resulting 

(𝜎𝑎, 𝜏𝑎)  combination that delivered such fatigue life is then registered. 

Ten different (𝜎𝑎, 𝜏𝑎)  combinations associated with a fixed value of 𝑁𝑓 are shown in Fig. 

30. The distribution of the coordinate pairs across the 𝜎𝑎 × 𝜏𝑎 domain presents an 

elliptical symmetry, and the relation between 𝜎𝑎 and 𝜏𝑎 for a certain fatigue life can be 

represented by 

𝜎𝑎
2

(𝑓−1
′ )2

+
𝜏𝑎

2

(𝑡−1
′ )2

= 1 (149) 

where the semi-major and semi-minor axes of the ellipse, 𝑓−1
′  and 𝑡−1

′ , respectively 

correspond to uniaxial stress amplitudes for normal and torsional loadings leading to the 

same fatigue life. 

The behaviour described by expression (149) was also perceived by Gough et al. [25], 

[28], [29], where an extensive set of experiments were carried out to determine the fatigue 

resistance limit in combined loading. As a result, they plotted the observed fatigue 

resistance limit for combined loading as a summation of the ratios between stress 
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amplitudes in bending and torsion to their corresponding fixed values of uniaxial fatigue 

resistance limits, also giving rise to an elliptical symmetry. Such a result can be obtained 

by substituting the uniaxial fatigue resistance limits in place of the 𝑓−1
′  and 𝑡−1

′  in 

expression (149). Using Basquin’s relation, 𝑓−1
′  and 𝑡−1

′  can be expressed as 

𝑓−1
′ = 𝐴 𝑁𝑓

𝑚 (150) 

𝑡−1
′ = 𝐴′ 𝑁𝑓

𝑚∗, (151) 

leading to the general equation of the elliptical curve method (E), as given by 

(
𝜎𝑎

𝐴 𝑁𝑓
𝑚)

2

+ (
𝜏𝑎

𝐴′ 𝑁𝑓
𝑚∗)

2

= 1. (152) 

 

Figure 30 – Elliptical level curve associated with a constant fatigue-life 

 

The elliptical curve method does not only establish a boundary between safe and unsafe 

regions in the 𝜎𝑎 × 𝜏𝑎 domain for a given fatigue life, but it also provides a simple method 

of predicting 𝑁𝑓 associated with any given (𝜎𝑎, 𝜏𝑎) combination. The prediction can be 

obtained by enumeration, where one can iteratively sweep through different values of 𝑁𝑓 

until the quadratic sum converges to 1. The precision of the elliptical curve method (E) is 

tested in a set of experiments, where experimentally observed fatigue lives and predicted 

number of cycles to failure are compared.  
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3.2. Adaptation of other stress-based criteria for fatigue-life prediction 

Carpinteri & Spagnoli proposed an adaptation to their own model for fatigue life 

prediction [14] by replacing the fixed values of fatigue resistance limits 𝑓−1 and 𝑡−1, 

associated with a fatigue life 𝑁0 of 2 × 106 cycles, by variable fatigue resistance limits 

𝑓−1
′  and 𝑡−1

′  that are dependent on the fatigue life, as given by expressions (138) and (139), 

or equivalently by expressions (150) and (151). 

By implementing the same approach to the other previously cited criteria, one can 

compare their predictions with those made using the elliptical curve method (E). 

Accordingly, all predictions can thus be compared with experimental results.  

For finite fatigue life 𝑁𝑓, the parameters 𝑘, 𝑓 ∗, 𝜇 and 𝛼, previously mentioned in 

equations (131)-(133) and (135), can be rewritten as 

𝑘′ =

2 − (
𝐴 𝑁𝑓

𝑚

𝐴′𝑁𝑓
𝑚∗)

2√
𝐴 𝑁𝑓

𝑚

𝐴′𝑁𝑓
𝑚∗ − 1

(153)
 

𝑓′ ∗=  √

(𝐴 𝑁𝑓
𝑚)

2

4(
𝐴 𝑁𝑓

𝑚

𝐴′𝑁𝑓
𝑚∗ − 1)

(154)
 

𝜇′ =  2(
𝐴′𝑁𝑓

𝑚∗

𝐴 𝑁𝑓
𝑚 ) − 1 (155) 

𝛼′ =

𝐴′𝑁𝑓
𝑚∗ − (

𝐴 𝑁𝑓
𝑚

√3 
)

𝐴 𝑁𝑓
𝑚

3

. (156) 

Accordingly, expressions (126)-(130) and (134) can thus be rewritten, giving rise to the 

adapted versions of Findley (F), Matake (M), McDiarmid (McD), Susmel & Lazzarin 

(S&L) and Papadopoulos (P), as given by 
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𝐶𝑎 +

[
 
 
 2 − (

𝐴
𝐴′ 𝑁𝑓

𝑚−𝑚∗)

2√𝐴
𝐴′ 𝑁𝑓

𝑚−𝑚∗ − 1]
 
 
 

𝑁𝑚𝑎𝑥 − √
(𝐴 𝑁𝑓

𝑚)
2

4 (
𝐴
𝐴′ 𝑁𝑓

𝑚−𝑚∗ − 1)
= 0 (157) 

𝐶𝑎 + [2
𝐴′

𝐴
𝑁𝑓

𝑚∗−𝑚  − 1]𝑁𝑚𝑎𝑥 − 𝐴′𝑁𝑓
𝑚∗ = 0 (158) 

𝐶𝑎 + [
𝐴′𝑁𝑓

𝑚∗

2 𝜎𝑢
]𝑁𝑚𝑎𝑥 − 𝐴′𝑁𝑓

𝑚∗ = 0 (159) 

𝐶𝑎 + [𝐴′𝑁𝑓
𝑚∗ −

𝐴𝑁𝑓
𝑚

2
]
𝑁𝑚𝑎𝑥

𝐶𝑎
 − 𝐴′𝑁𝑓

𝑚∗ = 0 (160) 

√(
𝜎𝑎

2

3
+ 𝜏𝑎

2) + [
𝐴′

𝐴
𝜎𝑎]𝑁𝑓

𝑚∗−𝑚 − [
√3

3
𝜎𝑎] − 𝐴′𝑁𝑓

𝑚∗ = 0, (161) 

where expression (161) is valid for the case of fully reversed loadings, as the mean normal 

stress 𝜎𝑚 is nil, and hence the maximum hydrostatic stress 𝜎𝐻,𝑚𝑎𝑥 will be given by 

𝜎𝐻,𝑚𝑎𝑥 =
𝜎𝑎 + 𝜎𝑚

3
=

𝜎𝑎

3
. (162) 

Regarding the C&S criterion, the fatigue resistance limits may be obtained by 

extrapolation using expressions (97) and (98) to a fatigue-life of 𝑁0, where 𝑓−1 and 𝑡−1 

respectively turn out to be 𝐴𝑁0
𝑚 and 𝐴′𝑁0

𝑚∗. By squaring both sides of equation (141) 

and by conducting some algebraic manipulation, the C&S criterion becomes 

𝑁𝑚𝑎𝑥
2 + [(

𝐴

𝐴′
)
2

𝐶𝑎
2]𝑁𝑓

2(𝑚−𝑚∗) − 𝐴2𝑁𝑓
2𝑚 = 0. (163) 

Except for the Papadopoulos criterion, given by equation (161), all the other models 

require the prior identification of critical plane, as previously described, to determine the 

shear stress amplitude 𝐶𝑎 and maximum value of the normal stress 𝑁𝑚𝑎𝑥 acting on the 

critical plane. Once these values are known, 𝑁𝑓 according to each model can be 

determined by enumeration by varying its value until expressions (157)-(161) and (163) 

converge to zero. 
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3.3. Material and experimental approach 

The material considered in this work was a DIN 42CrMo4 steel, extracted from a motor 

crankshaft that experienced premature failure due to fatigue while in operation within a 

thermoelectric power plant environment. The crankshaft was sectioned into smaller parts 

and a certain volume of the material was received. A batch of specimens were machined 

following the geometry illustrated in Fig. 31(a), which was designed according to an 

international standard [30]. The machining of the specimens was followed by polishing 

with 220-2000 grit sandpaper to ensure surface roughness 𝑅𝑎 inferior to 0.2 μm.  

Experiments were carried out using an MTS 809 axial/torsional testing system (100 kN / 

1100 Nm), depicted in Fig. 31(b). Tests were performed at room temperature using a 

frequency of 4.5 Hz, which indicates a test duration of 3-6 hours necessary for 

establishing the elliptic arc corresponding to a fatigue life of 40,000 cycles. 

 

 

(a) (b) 

Figure 31 – (a) Adopted specimen geometry (dimensions in mm); (b) MTS 809 axial/torsional testing 

system 
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The mechanical properties of the DIN 42CrMo4 in question are reported in Table 1 [24]. 

 

Table 1 – Mechanical properties of the DIN 42CrMo4 steel 

Yield strength 
𝝈𝒚   (𝑴𝑷𝒂) 

Ultimate Tensile strength 
𝝈𝒖   (𝑴𝑷𝒂) 

Vickers hardness 
𝑯𝑽 

710 900 320 

 

 

Using equation (152), a level curve associated with a fatigue life of 40,000 cycles was 

selected, and a number of (𝜎𝑎, 𝜏𝑎) combinations pertaining to this curve were considered 

for fatigue testing. Such loading conditions were determined by the interception of the 

elliptic arc with fixed 𝜏𝑎 𝜎𝑎⁄  ratios corresponding to ∞, 4, 2, 1, ½, ¼ and 0. An additional 

set of loading conditions that are not associated with any particular fatigue life were also 

selected, where some of the loading conditions follow the 𝜏𝑎 𝜎𝑎⁄   ratios, while others do 

not. All the tested loading conditions are distributed across the 𝜎𝑎 × 𝜏𝑎 domain, as 

illustrated in Fig. 32, and presented in Tables 2 and 3. 

 

Table 2 – Selected stress amplitudes relative to the 40,000-cycle level curve 

Loading 
condition 

𝝉𝒂 𝝈𝒂⁄  𝝈𝒂  (𝑴𝑷𝒂) 𝝉𝒂  (𝑴𝑷𝒂) 

A ∞ 0 346.9 

B 4 85.5 341.8 

C 2 163.9 327.8 

D 1 285.3 285.3 

E  1/2 406.5 203.3 

F  1/4 471.8 117.9 

G 0 501.7 0 
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Table 3 – Additional loading conditions not associated with any particular 𝑁𝑓 

Loading 
condition 

𝝉𝒂 𝝈𝒂⁄  𝝈𝒂  (𝑴𝑷𝒂) 𝝉𝒂  (𝑴𝑷𝒂) 

H ∞ 0 318.7 

I 2 149.7 299.3 

J 1 257.3 257.3 

K  1/2 359.9 179.9 

L 0.58 429.3 247.9 

M 0.65 350.2 227.7 

N 0.39 450 174.7 

 

 

Figure 32 – Loading conditions selected for testing 

 

Lastly, predictions obtained through all the involved criteria are compared to the 

experimental results using the error index I, as defined by 

𝐼 =
𝑁𝑓,𝑡ℎ − 𝑁𝑓,𝑒𝑥𝑝

𝑁𝑓,𝑒𝑥𝑝
× 100%. (164) 

This definition establishes the experimental result as the reference value, thus evaluating 

the deviation of the predictions relative to the experimental observations. 
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3.4. Influence of phase difference 

Up to this point, the elliptical curve method (E) has only been considered for predicting 

the number of cycles to failure 𝑁𝑓 relative to loading conditions that were applied in-

phase. Accordingly, inspecting the influence of the out-of-phaseness over the predictive 

capability of the elliptical curve method therefore arises as a matter of interest. 

The nature of fatigue damage due to combined sinusoidal normal and shear stresses is 

seen to be reduced if the applied sinusoidal normal and shear stresses are out-of-phase 

[25]. As such, by employing the same iterative procedure used to construct the elliptical 

level curve discussed in section 3.1 of the present work, different (𝜎𝑎, 𝜏𝑎) combinations 

associated with the same fatigue-life were obtained for phase differences of 0°, 30°, 45°, 

60°, 90°, 120°, 135³ and 150°. The (𝜎𝑎, 𝜏𝑎) combinations obtained from the procedure 

followed the same 𝜏𝑎 𝜎𝑎⁄  ratios of 4, 2, 1, ½ and ¼. 

Based on what is presented in Fig. 33, the introduction of a phase difference deviates the 

(𝜎𝑎, 𝜏𝑎) combinations from the previously obtained (in-phase) level curve which is in 

agreement with the literature, as stress levels have to be raised in order to compensate for 

the reduction in fatigue damage due to out-of-phaseness. Furthermore, it is seen that the 

maximum deviation occurs along the 𝜏𝑎 𝜎𝑎⁄  ratio of 1 associated with 𝛽 corresponding to 

90°, and phase differences above this value converge back to the ellipsis. 

As such, one can therefore conclude that the elliptic construction as elaborated for in-

phase loading conditions, represented by expression (152), is in fact, a conservative 

approach, where stress levels corresponding to 𝛽 of 90° are approximately 23% higher 

than those associated with a 𝛽 of 0° (Table 4). 

Table 4 – Stress levels as function of 𝛽 for a 𝜏𝑎/𝜎𝑎  ratio of 1 relative to a constant value of fatigue life 

𝜷 (°) 𝝈𝒂 (𝑴𝑷𝒂) 𝝉𝒂 (𝑴𝑷𝒂) 

0 292.7 292.7 

30 300.2 300.2 

45 309.7 309.7 

60 323.2 323.2 

90 359.4 359.4 

120 291.9 291.9 

135 292.2 292.2 

150 292.5 292.5 
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Figure 33 – Influence of phase difference for a given constant fatigue-life 

 

Since 𝛽 corresponding to 90° is the phase difference that produces the highest deviation, 

six different experimental results with such a phase difference were collected from the 

literature [24] and used to provide the required experimental evidence for the influence 

of the phase difference. It is important to mention that the specimens used in the cited 

reference were machined from the same DIN 42CrMo4 steel and extracted from the same 

crankshaft as were the specimens used in the present work. Such loading conditions are 

presented in Table 5, along with their experimentally observed fatigue-lives. 

The adapted versions of Findley (F), Matake (M), McDiarmid (McD), Susmel & Lazzarin 

(S&L), Carpinteri & Spagnoli (C&S) and Papadopoulos (P) criteria, as well as the 

elliptical curve method (E) were applied to such out-of-phase loading conditions. The 

first five models take into consideration the phase difference 𝛽 to determine 𝐶𝑎 and 𝑁𝑚𝑎𝑥 

acting on the critical plane, as discussed in expressions (118)-(125), while the last two do 

not. 

The life diagrams presented in Fig. 34 compare the predicted and the experimentally 

observed [24] fatigue-life values, revealing that the criteria that do not take the phase 

difference 𝛽 into consideration do, in fact, present a better predictive capability for 

loading conditions which are out-of-phase. As one may observe (Fig. 34), 𝛽-dependent 

criteria delivered predictions that were spread across 3 to 4 orders of magnitude, greatly 
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differing from the experimentally observed lives that ranged between 3 × 105 cycles and 

1.7 × 106 cycles. On the other hand, 𝛽-independent criteria produced predictions that 

were in much better agreement with the experiments, where all the predictions remained 

within a range of 2 × 105 to 1.2 × 106 cycles. Therefore, one may conclude that it is 

appropriate to maintain the expression of the elliptical curve method as presented in 

equation (152), without the inclusion of the parameter 𝛽. 

 

Table 5 – Stress levels 𝛽 corresponding to 90° for a 𝜏𝑎/𝜎𝑎 ratio of 1 

Loading 
conditions 

𝜎𝑎 (𝑀𝑃𝑎) 𝜏𝑎  (𝑀𝑃𝑎) 𝛽 (°) 
Experimental 

𝑁𝑓  

P1 230 230 90 771,198 

P2 230 230 90 1,649,979 

Q1 300 150 90 733,995 

R1 320 160 90 750,695 

R2 320 160 90 352,444 

S1 140 280 90 1,039,328 

 

 

Figure 34 – Comparison of the predictive capability of 𝛽-dependent and 𝛽-independent criteria 
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4. Results 

4.1. Uniaxial fatigue tests 

Uniaxial experiments were carried out to determine the Wöhler curves associated with 

the DIN 42CrMo4 steel. The results are presented in Table 6 along with the resulting 

Wöhler curves presented in Fig. 35. The corresponding Basquin equations obtained for 

fully reversed push-pull and torsional experiments are given by 

𝜎𝑎 = 1183.6 𝑁𝑓
−0.081 (165) 

𝜏𝑎 = 1089.4 𝑁𝑓
−0.108, (166) 

leading to 

𝐴 = 1183.6
𝑚 = −0.081
𝐴′ = 1089.4 

𝑚 ∗= −0.108. (167)

 

By extrapolating the curves to 𝑁0 = 2 × 106 cycles, the uniaxial fatigue resistance limits 

for fully reversed normal and shear stresses, respectively 𝑓−1 and 𝑡−1, given by 

expressions (165) and (166) turn out to be 

𝑓−1 = 365 𝑀𝑃𝑎 (168) 

𝑡−1 = 227 𝑀𝑃𝑎. (169) 

 

Table 6 – Results for uniaxial fully reversed tests 

Normal push-pull experiments   Torsional experiments 

𝝈𝒂 (𝑴𝑷𝒂) 𝑵𝒇 (𝒄𝒚𝒄𝒍𝒆𝒔)   𝝉𝒂 (𝑴𝑷𝒂) 𝑵𝒇 (𝒄𝒚𝒄𝒍𝒆𝒔) 

642 1,400  500 1,192 

609 3,395  444 5,493 

573 11,598  413 9,574 

537 34,698  392 11,805 

503 64,748  372 12,261 

466 72,000  351 37,193 

428 156,280       
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Figure 35 – Resulting Wöhler curves and corresponding Basquin expressions 

 

4.2. Multiaxial fatigue predictions 

Table 7 presents the experimental results relative to each of the selected loading 

conditions, as well as the predicted values obtained using the elliptical curve method (E). 

The last column presents the corresponding values of the error index 𝐼 as defined in 

expression (164). Negative 𝐼 values, on the one hand, correspond to conservative 

predictions, once the experimentally observed life exceeds the predicted value. On the 

other hand, positive 𝐼 values correspond to non-conservative situations, where the 

predicted fatigue lives are greater than those observed in fatigue tests. 

In addition, the adapted versions of Findley (F), Matake (M), McDiarmid (McD), Susmel 

& Lazzarin (S&L), Carpinteri & Spagnoli (C&S) and Papadopoulos (P) criteria were also 

applied to the same loading conditions, thus producing predictions of their own. The 

predictive capabilities of all the involved criteria are presented using fatigue life diagrams 

shown in Fig. 36, where a scatter band defined by a factor of 2 is delimited by the diagonal 

dashed lines. Results within this band indicate a fair agreement between predictions and 

experimental observations. 

All predictions were compared to the experimental results by using the definition of error 

index presented in expression (164). The comparison is presented in Table 8, while the 

overall behaviour of each model can be assessed in Fig. 37, where the error indices are 

grouped and presented in the form of frequency histograms. 
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Table 7 – Comparison of predictions obtained via elliptical curve method vs. experimental results 

Loading 
condition 

𝝉𝒂 𝝈𝒂⁄  
𝝈𝒂 

(𝑴𝑷𝒂) 
𝝉𝒂 

(𝑴𝑷𝒂) 

Predicted 
𝑵𝒇 (cycles) 

Experimental 
𝑵𝒇 (cycles) 

Error Index 
(%) 

A ∞ 0 346.9 

40,000 48,561 -18 

40,000 42,644 -6 

40,000 37,193 8 

B 4 85.5 341.8 
40,000 54,890 -27 

40,000 41,458 -4 

C 2 163.9 327.8 
40,000 79,676 -50 

40,000 73,427 -46 

D 1 285.3 285.3 
40,000 73,721 -46 

40,000 71,097 -44 

E  1/2 406.5 203.3 
40,000 60,628 -34 

40,000 86,588 -54 

F  1/4 471.8 117.9 

40,000 102,954 -61 

40,000 32,153 24 

40,000 89,422 -55 

G 0 501.7 0 
40,000 31,376 27 

40,000 64,748 -38 

H ∞ 0 318.7 

87,699 190,806 -54 

87,699 213,990 -59 

87,699 145,776 -40 

I 2 149.7 299.3 
95,021 326,157 -71 

95,021 422,563 -78 

J 1 257.3 257.3 
113,143 107,430 5 

113,143 247,769 -54 

K  1/2 359.9 179.9 153,762 502,399 -69 

L 0.58 429.3 247.9 12,245 28,941 -58 

M 0.65 350.2 227.7 63,038 75,769 -17 

N 0.39 450 174.7 28,939 37,800 -23 
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Table 8 – Deviation of each prediction relative to its corresponding experimental observation 

F (%) M (%) McD (%) S&L (%) C&S (%) P (%) E (%) 

-9 -18 -18 -18 -18 -18 -18 

3 -6 -6 -6 -6 -6 -6 

19 8 8 8 8 8 8 

-45 -53 -39 -46 -25 -42 -27 

-27 -38 -20 -29 -1 -23 -4 

-70 -73 -59 -67 -44 -65 -50 

-67 -71 -55 -64 -39 -62 -46 

-72 -76 -46 -68 -24 -66 -46 

-71 -75 -44 -67 -21 -64 -44 

-60 -66 20 -56 38 -52 -34 

-72 -76 -16 -69 -3 -67 -54 

-66 -70 35 -66 18 -65 -60 

7 -6 322 5 268 9 24 

-62 -66 52 -62 32 -61 -55 

40 27 539 27 365 27 27 

-32 -38 209 -38 125 -38 -38 

-51 -54 -54 -54 -54 -54 -54 

-56 -59 -59 -59 -59 -59 -59 

-36 -40 -40 -40 -40 -40 -40 

-82 -84 -76 -81 -68 -79 -71 

-86 -87 -81 -85 -75 -84 -78 

-46 -51 4 -37 40 -29 5 

-76 -79 -55 -73 -39 -69 -54 

-81 -83 -48 -79 -45 -77 -69 

-75 -80 -30 -73 -7 -72 -58 

-54 -59 16 -47 45 -43 -17 

-45 -52 89 -41 101 -41 -23 
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5. Discussion 

Considering the error indices relative to the elliptical curve method (E) presented in Table 

7, a fair agreement between predicted lives and experimentally observed 𝑁𝑓 values is 

shown to exist. Given that good predictions produce error indices close to nil, and that 

negative error indices correspond to a conservative behaviour of the model, the 

predictions made using the elliptical curve method (E) were found to be predominantly 

conservative, as twenty-three among a total of twenty-seven error indices presented 

negative values. One may also add that two of the positive values are considerably close 

to nil. Furthermore, considering the scatter band defined by a factor of 2, the error indices 

showed that seventeen among twenty-seven predictions (63%) fell within such range, also 

indicating fair accuracy of the elliptical curve method. 

As can be observed in Figs. 36 and 37, as well as in Table 8, the other involved criteria 

also presented fair predictive capabilities, with Findley (F), Matake (M), Susmel & 

Lazzarin (S&L) and Papadopoulos (P) being also biased towards conservativeness. 

Carpinteri & Spagnoli (C&S), in turn, presented nineteen predictions out of twenty-seven 

(70%) within the scatter band of 2, while McDiarmid (McD) presented the same 

seventeen predictions among twenty-seven (63%) as did the elliptical curve method, but 

with the first two (C&S and McD) presenting more scattering than the latter (E).  

Table 9 presents the statistics relative to each criterion, where the elliptical curve method 

was seen to present the best average (-35%) associated with a slight bias towards 

conservativeness, as well as the best standard deviation among all. This result is followed 

by Papadopoulos (P), Findley (F) and Susmel & Lazzarin (S&L), which presented very 

similar results with averages corresponding to -46%, -47% and -48%, with respective 

standard deviations of 29%, 33% and 29%, being in sequence followed by Matake, with 

an average of -53% and standard deviation of 30%. 

The scattering produced by C&S and McD influenced both average and standard 

deviation, as these were the only models to present non-conservative averages (positive 

values corresponding to 17% and 20%) as well as considerably higher standard deviation 

(99% and 136%, respectively) when compared to the other that presented standard 

deviations of approximately 30%. The scattering for McD and C&S can be clearly 

perceived in Fig. 11.   
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Table 9 – Statistics relative to each criterion 

  Avg (%) StdDev (%) Min (%) Median (%) Max (%) Range (%) 

F -47 33 -86 -56 40 126 

M -53 30 -87 -59 27 115 

McD 20 136 -81 -20 539 620 

S&L -48 29 -85 -56 27 112 

C&S 17 99 -75 -7 365 440 

P -46 29 -84 -54 27 111 

E -35 29 -78 -44 27 105 

 

When considering a statistical analysis of the error indices, attention is required to the 

fact that the overall behaviour of a given model cannot be exclusively measured by 

average values, as positive error indices would cancel out with negative ones. Therefore, 

an efficient way to complement the assessment of the predictive capabilities of the criteria 

is to identify the percentage of error indices that fall within a certain range of interest. 

Furthermore, a conservative behaviour of a given criterion is typically preferable over an 

eventual non-conservative tendency, as uncertainties will bias designs towards safety. 

Therefore, it would be interesting to identify the number of error indices that fall within 

the conservative part of the scatter band. The result of this analysis is presented in Fig. 

38, where E and C&S, both presented 13 occurrences (48%) within such range. In 

decreasing order, McD (37%), P and S&L (33%), Findley (26%) and M (22%) presented, 

respectively, 10, 9, 9, 7 and 6 occurrences. In addition, another range of interest 

corresponds to a situation where the error indices are comprehended within a central range 

of ±50%. For this particular case, C&S displays 19 occurrences (70%), while E presents 

17 occurrences (63%) within such range. Once again in decreasing order, McD (56%), P 

and S&L (44%), F (41%) and M (30%) respectively presented 15, 12, 12, 11 and 8 

occurrences within the targeted ±50%. 
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Figure 38 – Percentage of error indices located within the ranges of interest 

 

 

5.1. Adjusting parameter 

Although the elliptical curve method has managed to deliver predictions in fair agreement 

with experimental observations, the predicted 𝑁𝑓 values associated with (𝜎𝑎 , 𝜏𝑎) 

combinations located at the central region of the elliptical arc were seen to be more 

conservative than those located closer to the axes. In fact, the experiments have revealed 

that loading conditions C and D, in Table 7, have driven the specimen to failure after 

approximately 70,000, instead of the initially predicted 40,000 cycles. Therefore, if one 

desires to obtain just 40,000 cycles prior to failure, the stress amplitudes 𝜎𝑎 and 𝜏𝑎 must 

be increased so that the number of cycles to failure decreases from 70,000 cycles to 

40,000 cycles. 

Fig. 39 illustrates how loading conditions C, D and E should be raised to C’, D’ and E’ 

in order to maintain a fatigue life of 40,000 cycles. Accordingly, an experimental 

adjustment parameter 𝐻 may be required, and hence the adjusted elliptical curve can be 

represented by 

(
𝜎𝑎

𝐴 𝑁𝑓
𝑚)

2

+ (
𝜏𝑎

𝐴′𝑁𝑓
𝑚∗)

2

= 1 + 𝐻, (170) 

48% 48%
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further distancing the above expression from Gough’s approach. However, determination 

of an appropriate expression for 𝐻 requires attention, as points A and G, respectively 

located at the 𝜏𝑎 and 𝜎𝑎 axes, correspond to uniaxial loading conditions, and the stress 

amplitudes associated with a fatigue life of 40,000 cycles must remain consistent with 

uniaxial fatigue theory. 

 

Figure 39 – C, D and E shifted along constant 𝜏𝑎/𝜎𝑎 ratios, while A and G are held fixed 

 

In fact, it can easily be verified that the expression of the elliptical curve method (E), 

given by equation (152), is consistent with uniaxial fatigue theory, as one may observe 

that the Basquin’s expressions are restored when either 𝜎𝑎 or 𝜏𝑎 are set to zero. 

Consequently, the adjusting parameter must not be a constant, but a function of the 

variable 𝑠, where 𝑠 is defined as the 𝜏𝑎 𝜎𝑎  ⁄  ratio. It is therefore required that the adjusting 

parameter 𝐻(𝑠) should be effective only in a certain vicinity of 𝜏𝑎 𝜎𝑎 ⁄ = 1, shifting the 

central region of the elliptic arc further away from the origin. Accordingly, 𝐻(𝑠) must 

tend to zero when 𝑠 approaches zero or infinity, not affecting the extremes of the elliptic 

arc. In this sense, a well-known function that meets the above requirements is given by 

[31], [32] 

𝐻(𝑠) =
𝑐1𝑠

𝑠2 + 𝑐2 𝑠 + 1
, (171) 



  75 
 

which corresponds to the expression of a band-pass filter centred in 1, where 𝑐1 and 𝑐2 

are constants associated with overall gain and selectiveness of the filter. This function is 

seen to have applications in mechanical vibrations [31] as well as in analogue electronics 

[32]. The overall expression of the adjusted version of the elliptical curve method is 

therefore given by 

(
𝜎𝑎

𝐴 𝑁𝑓
𝑚)

2

+ (
𝜏𝑎

𝐴′𝑁𝑓
𝑚∗)

2

= 1 +
𝑐1 (

𝜏𝑎

𝜎𝑎
)

(
𝜏𝑎

𝜎𝑎
)
2

+ 𝑐2  (
𝜏𝑎

𝜎𝑎
) + 1

. (172) 

Expression (171) presents two very convenient characteristics. The first convenient 

feature is that it meets the requirement of being centred at 1 as well as decreasing to nil 

when 𝑠 equals zero or when s tends to infinity. This means that, as long as 𝐻(𝑠) presents 

the adequate selectivity, it is expected to rectify predictions associated with (𝜎𝑎, 𝜏𝑎) in 

the corresponding vicinity of 𝜏𝑎 𝜎𝑎⁄  ratio of 1. The second interesting characteristic is 

that 𝐻(𝑠) presents a reciprocal symmetry, i.e., 𝐻(𝑠) and 𝐻(1 𝑠⁄ ) present identical values. 

This means that the adjusting parameter evenly adjusts the elliptical arc to both sides with 

respect to 𝜏𝑎 𝜎𝑎⁄ = 1 without introducing asymmetric distortion, as observed in Fig. 39. 

A generic plot of 𝐻(𝑠) is presented in Fig. 40, where 𝑐1 corresponds to 0.5 and 𝑐2 

corresponds to 1.0. 

 

Figure 40 – Generic plot of a band-pass filter function both in linear and log scale 
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The procedure to determine 𝑐1 and 𝑐2 depends on the experimental data. If equation (152) 

is applied using a certain combination of experimented 𝜎𝑎,𝑖 and 𝜏𝑎,𝑖 values, the right-hand 

side (RHS) equals 1 if the fatigue-life introduced into the expression corresponds to the 

predicted value. However, if one is to consider the same 𝜎𝑎,𝑖 and 𝜏𝑎,𝑖 values while 

inputting the experimentally observed fatigue-life into expression (152), the RHS of this 

expression differs from 1 by a certain residual value 𝐻𝑖, as given by 

[
𝜎𝑎,𝑖

𝐴 (𝑁𝑓,𝑒𝑥𝑝)
𝑚]

2

+ [
𝜏𝑎,𝑖

𝐴′(𝑁𝑓,𝑒𝑥𝑝)
𝑚∗]

2

= 1 + 𝐻𝑖 , (173) 

where 𝑁𝑓,𝑒𝑥𝑝 corresponds to the experimentally observed fatigue life. Accordingly, for 

each experiment 𝑖, the residue 𝐻𝑖 can be determined via expression (174), as given by 

𝐻𝑖 = [
𝜎𝑎,𝑖

𝐴 (𝑁𝑓,𝑒𝑥𝑝)
𝑚]

2

+ [
𝜏𝑎,𝑖

𝐴′(𝑁𝑓,𝑒𝑥𝑝)
𝑚∗]

2

− 1. (174) 

By considering loading conditions pertaining to the inspected elliptical arc (40,000-cycle 

level curve), the residues 𝐻𝑖 associated with loading conditions B-F (Table 7) were 

determined and plotted against 𝑠. The corresponding values of 𝐻𝑖 to each experiment are 

presented in Table 10. 

 

Table 10 – Residues obtained from the experiments associated with a 40,000-cycle fatigue-life 

Loading condition 𝜎𝑎 𝜏𝑎 𝑁𝑓,𝑒𝑥𝑝   𝜏𝑎 𝜎𝑎⁄  𝐻𝑖 

B1 85.5 341.8 54,890  4 0.0702 

B2 85.5 341.8 41,458   4 0.0077 

C1 163.9 327.8 79,676   2 0.1560 

C2 163.9 327.8 73,427   2 0.1363 

D1 285.3 285.3 73,721   1 0.1292 

D2 285.3 285.3 71,097   1 0.1211 

E1 406.5 203.3 60,628    1/2 0.0780 

E2 406.5 203.3 86,588    1/2 0.1498 

F1 471.8 117.9 100,354   1/4 0.1675 

F2 471.8 117.9 32,153   1/4 -0.0361 

F3 471.8 117.9 89,422    1/4 0.1451 
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By fitting the data according to expression (171), the values of 𝑐1 and 𝑐2 were respectively 

revealed to be of approximately 0.379 and 0.725, resulting in the plot of 𝐻(𝑠) presented 

in Fig. 41. At this point, it is important to mention that loading conditions A and G (Table 

7) were excluded from this analysis, as they correspond to uniaxial loadings. As such, the 

adjusted 40,000-cycle level curve indeed corresponds to the one presented in Fig. 39, 

where the central part of the elliptic arc is shifted away from the origin while points A 

and G remain unaltered. 

 

Figure 41 – Curve fitting of 𝐻(𝑠) using residues to obtain the corresponding values of 𝑐1 and 𝑐2 

  

5.2. Additional results and discussion 

The adjusted version of the elliptical curve method was applied to the same loading 

conditions presented in Table 7, and the predictions obtained were compared to 

experimental observations. The resulting error indices are presented in Table 11, and the 

corresponding life diagram and frequency histogram are presented in Fig. 42.  

 

Table 11 – Error indices relative to the adjusted version of the elliptical curve method 

Loading 
condition 

Error 
Index (%)   

Loading 
condition 

Error 
Index (%)   

Loading 
condition 

Error 
Index (%) 

A1 -18  E1 22  H3 -40 

A2 -6  E2 -15  I1 -51 

A3 8  F1 -38  I2 -62 

B1 3  F2 92  J1 102 

B2 36  F3 -31  J2 -13 

C1 -15  G1 27  K1 -44 

C2 -8  G2 -38  L1 -20 

D1 4  H1 -54  M1 59 

D2 8   H2 -59   N1 34 
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(a) (b) 

Figure 42 – Life diagram and frequency history relative to the adjusted elliptical curve method 

 

As one may observe, an improvement on the predictions was revealed, as 22 among a 

total of 27 predictions (81%) were delivered in the scatter band of 2. Such improvement 

can be clearly perceived in the life diagram (Fig. 42), where the results are well correlated 

with the diagonal grey line.  

The frequency histogram was also revealed to be concise in terms of range, and the 

majority of the results were concentrated in the -25% to 0% range, which is seen as an 

improvement over the other frequency histograms, where the models either 

predominantly delivered error indices within the -75% to -50% range (E, F, M, S&L and 

P) or presented higher levels of scattering (C&S and McD). Regarding the analysis 

presented in Fig. 38, the adjusted model delivered 12 occurrences (44%) within the 

conservative half of the scatter band, as well as 20 occurrences (74%) within the ±50% 

central range. In terms of statistics (Table 12), the adjusted elliptical curve method 

presented an average of error indices corresponding to -4%, which is seen to be a very 

good result. The proximity of that average to the ideal value of 0% was associated with 

an increase to the standard deviation. 

 

Table 12 – Statistics relative to the adjusted version of the elliptical curve method 

  Avg (%) StdDev (%) Min (%) Median (%) Max (%) Range (%) 

Adjusted E -4 43 -62 -13 102 164 
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6. Conclusions 

Based on what is presented within this work, the following conclusions can be drawn: 

➢ A direct relationship between fatigue life and normal and shear stress amplitudes, 

𝜎𝑎 and 𝜏𝑎, in fully reversed cyclic loading was developed. Accordingly, for a 

given number of cycles to failure, (𝜎𝑎, 𝜏𝑎) combinations leading to the same 

fatigue life should pertain to an elliptical curve in the 𝜎𝑎 × 𝜏𝑎 plane. 

➢ Specimens of a DIN 42CrMo4 steel were tested under a selected number of 

combined synchronous sinusoidal fully reversed normal and shear stress loadings 

and the results obtained indicated a fair agreement with the fatigue life predictions 

made by the elliptical curve method. 

➢ Compared to a number of critical plane-based criteria applied to the same steel, 

the elliptical curve method is seen to possess a better predictability. In addition, it 

is much simpler to apply as it does not require prior determination of the critical 

plane. 

➢ The proposed elliptical curve method was found to present a tendency towards 

conservativeness for loading conditions located at central parts of the elliptical 

arc. An adjusting parameter, which is a function of the 𝜏𝑎 𝜎𝑎⁄   ratio, is therefore 

proposed with the purpose of attenuating such a tendency, giving rise to an 

adjusted version of the method. The adjusted version of the elliptical curve method 

delivered 81% of its predictions within the scatter band determined by a factor of 

2. 
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Appendix I – Exemplifying the use of critical plane-based criteria 

Assume a specimen (DIN 42CrMo4 steel) subjected to combined fully reversed 

sinusoidal normal and shear stresses, as presented in Fig. 43(a) and (b). The stress 

amplitudes 𝜎𝑎 and 𝜏𝑎 both correspond to 100 MPa, with a phase difference 𝛽 of 90°. 

 

 

(a) (b) 

Figure 43 – (a) Specimen subjected to normal and shear stresses; (b) loading history 

 

Determining 𝐶𝑎 and 𝑁𝑚𝑎𝑥 for Matake, McDiarmid and S&L 

As discussed in section 2.4.2.3, stresses acting on any material plane Δ can be determined 

in terms of 𝜎𝑎 and 𝜏𝑎, 𝜎𝑚, 𝜏𝑚 and 𝛽 using expressions (119)-(125) for the case of 

combined normal and shear sinusoidal stresses. Given the periodicity of the auxiliary 

functions 𝑓, 𝑔, 𝑝 and 𝑞, it is clear that 𝐶𝑎 attains its maximum values when 𝜃 corresponds 

to 45°, 90° and 135°, allowing one to restrict the inspection for candidate planes to such 

values of 𝜃. 

With respect to 𝜑, inspecting material planes in every 1°-5° usually generally delivers 

good results. For this particular example, steps of Δ𝜑 corresponding to 5° were selected. 

Table 13 presents the quantities of interest 𝐶𝑎 and 𝑁𝑚𝑎𝑥 for all the considered material 

planes, where candidate planes (which maximise 𝐶𝑎) are identified. 

  



  84 
 

Table 13 – Quantities of interest acting on material planes 

𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎)  𝜃 (°) 𝜑 (°) 𝐶𝑎  (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎) 
45 0 70.71 50.00 

 

90 90 100.00 0.00 

45 5 70.18 50.37  90 95 98.86 17.38 

45 10 68.61 51.42  90 100 95.51 34.33 

45 15 66.17 52.93  90 105 90.14 50.45 

45 20 63.17 54.61  90 110 83.07 65.33 

45 25 60.25 56.16  90 115 74.83 78.66 

45 30 58.33 57.28  90 120 66.14 90.14 

45 35 57.74 57.73  90 125 58.11 99.56 

45 40 58.07 57.32  90 130 52.21 106.80 

45 45 58.96 55.90  90 135 50.00 111.80 

45 50 60.22 53.40  90 140 52.21 114.64 

45 55 61.74 49.78  90 145 58.11 115.47 

45 60 63.44 45.07  90 150 66.14 114.56 

45 65 65.21 39.33  90 155 74.83 112.32 

45 70 66.93 32.67  90 160 83.07 109.22 

45 75 68.46 25.22  90 165 90.14 105.85 

45 80 69.67 17.17  90 170 95.51 102.84 

45 85 70.44 8.69  90 175 98.86 100.75 

45 90 70.71 0.00  135 0 70.71 50.00 

45 95 70.44 8.69  135 5 70.18 50.37 

45 100 69.67 17.17  135 10 68.61 51.42 

45 105 68.46 25.22  135 15 66.17 52.93 

45 110 66.93 32.67  135 20 63.17 54.61 

45 115 65.21 39.33  135 25 60.25 56.16 

45 120 63.44 45.07  135 30 58.33 57.28 

45 125 61.74 49.78  135 35 57.74 57.73 

45 130 60.22 53.40  135 40 58.07 57.32 

45 135 58.96 55.90  135 45 58.96 55.90 

45 140 58.07 57.32  135 50 60.22 53.40 

45 145 57.74 57.73  135 55 61.74 49.78 

45 150 58.33 57.28  135 60 63.44 45.07 

45 155 60.25 56.16  135 65 65.21 39.33 

45 160 63.17 54.61  135 70 66.93 32.67 

45 165 66.17 52.93  135 75 68.46 25.22 

45 170 68.61 51.42  135 80 69.67 17.17 

45 175 70.18 50.37  135 85 70.44 8.69 

90 0 100.00 100.00 
 

135 90 70.71 0.00 

90 5 98.86 100.75  135 95 70.44 8.69 

90 10 95.51 102.84  135 100 69.67 17.17 

90 15 90.14 105.85  135 105 68.46 25.22 

90 20 83.07 109.22  135 110 66.93 32.67 

90 25 74.83 112.32  135 115 65.21 39.33 

90 30 66.14 114.56  135 120 63.44 45.07 

90 35 58.11 115.47  135 125 61.74 49.78 

90 40 52.21 114.64  135 130 60.22 53.40 

90 45 50.00 111.80  135 135 58.96 55.90 

90 50 52.21 106.80  135 140 58.07 57.32 

90 55 58.11 99.56  135 145 57.74 57.73 

90 60 66.14 90.14  135 150 58.33 57.28 

90 65 74.83 78.66  135 155 60.25 56.16 

90 70 83.07 65.33  135 160 63.17 54.61 

90 75 90.14 50.45  135 165 66.17 52.93 

90 80 95.51 34.33  135 170 68.61 51.42 

90 85 98.86 17.38  135 175 70.18 50.37 
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Candidate planes are summarised in Table 14, where both planes experience a shear stress 

amplitude 𝐶𝑎 of 100 MPa. Nevertheless, in one case 𝑁𝑚𝑎𝑥 corresponds to 100 MPa, 

while, in the other, 𝑁𝑚𝑎𝑥 corresponds to nil. As such, the first (𝜃, 𝜑) combination is the 

one associated with the critical plane. 

Table 14 – Critical plane selection among pre-selected set of candidate planes for Matake, McDiarmid 

and Susmel & Lazzarin 

 𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎)  

 90 0 100 100 ✓ 

 90 90 100 0 X 

 

It is worth mentioning that, in some cases, there may be more than one critical plane. For 

instance, specimens subjected to pure torsion with a shear stress amplitude corresponding 

to the fatigue resistance limit in shear 𝑡−1 result in two candidate planes where both planes 

are critical (Table 15). Fig. 44 presents the orientation of such planes relative to the 

specimen axes and to its free surface, where the 𝑥-axis corresponds to the londitudinal 

direction of the specimen.  

Table 15 – Critical plane selection among pre-selected set of candidate planes for Matake, McDiarmid 

and Susmel & Lazzarin 

 𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎)  

 90 0 𝑡−1 0 ✓ 

 90 90 𝑡−1 0 ✓ 

 

Figure 44 – Orientation of critical planes in pure torsion 
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Another example is the case where specimens are subjected to uniaxial push-pull with a 

stress amplitude corresponding to the fatigue resistance limit, 𝑓−1. This results in four 

candidate planes (Table 16), where all of them are critical. Fig. 45 presents the orientation 

of such planes relative to the specimen axes and to its free surface, where the 𝑥-axis 

corresponds to the londitudinal direction of the specimen. 

Table 16 – Critical plane selection among pre-selected set of candidate planes for Matake, McDiarmid 

and Susmel & Lazzarin 

 𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎)  

 45 0 𝑓−1 2⁄  𝑓−1 2⁄  ✓ 

 90 45 𝑓−1 2⁄  𝑓−1 2⁄  ✓ 

 90 135 𝑓−1 2⁄  𝑓−1 2⁄  ✓ 

 135 0 𝑓−1 2⁄  𝑓−1 2⁄  ✓ 

 

 

Figure 45 – Orientation of critical planes in uniaxial push-pull 
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Additional comment on Matake 

Matake’s expression 𝐶𝑎 + 𝜇 𝑁𝑚𝑎𝑥 = 𝑡−1 establishes a linear relation between 𝐶𝑎 and 

𝑁𝑚𝑎𝑥, where both quantities act on the critical plane. Given that the examples above (pure 

torsion and push-pull) provide two combinations of (𝑁𝑚𝑎𝑥, 𝐶𝑎), one may plot the linear 

relation establishing a boundary between the safe and unsafe regions, which is useful for 

assessing the fatigue behaviour of a component in light of the infinite fatigue-life concept. 

Fig. 46 presents a plot relative to Matake’s criteria applied to the loading condition shown 

in Fig. 43. 

 

Figure 46 – Matake criterion applied to the loading condition presented in Fig. 43 

 

Finally, by determining 𝐶𝑎 and 𝑁𝑚𝑎𝑥, one may directly substitute such values in 

expressions (158)-(160), which correspond to the adapted versions of Matake, 

McDiarmid and Susmel & Lazzarin aiming to predict fatigue-life. 

 

Determining 𝐶𝑎 and 𝑁𝑚𝑎𝑥 for Findley 

For the case where plane-stress is applied, at least one occurrence of critical plane is 

expected to occur at 𝜃 corresponding to 90°. In the event of multiple critical planes, stress 

levels do not vary from one critical plane to another, meaning that one obtains the desired 

values of 𝐶𝑎 and 𝑁𝑚𝑎𝑥 if one of the critical planes is found. This allows one to restrict the 

inspection for critical planes to those that are perpendicular to the free surface of the 

specimen (𝜃 corresponding to 90°).  



  88 
 

For values of 𝑓−1 and 𝑡−1 respectively corresponding to 365.44 MPa and 227.34 MPa, the 

constant 𝑘 can be determined via expression (131), which turns out to be 0.2518. Shear 

stress amplitude 𝐶𝑎 and maximum value of the normal stress 𝑀𝑚𝑎𝑥 were computed for a 

set of material planes, considering increments of Δ𝜑 of 5°.   

In regard to the loading condition presented in Fig. 43, quantities of interest relative to 

Findley’s criterion are presented in Table 17. A fifth column relative to Findley’s fatigue 

damage parameter 𝐶𝑎 + 𝑘𝑁𝑚𝑎𝑥 was included. Critical planes correspond to those where 

the fatigue damage parameter attains its maximum value. 

Table 17 – Critical plane selection for Findley 

𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎) 𝐶𝑎 + 𝑘𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎) 

90 0 100 100 125.1823 

90 5 98.86277 100.7482 124.2334 

90 10 95.51265 102.8387 121.4098 

90 15 90.13878 105.8543 116.7953 

90 20 83.07335 109.2202 110.5775 

90 25 74.82526 112.317 103.1092 

90 30 66.14378 114.5644 94.99369 

90 35 58.11483 115.4676 87.19219 

90 40 52.21257 114.6389 81.08126 

90 45 50 111.8034 78.15463 

90 50 52.21257 106.797 79.10648 

90 55 58.11483 99.56187 83.18676 

90 60 66.14378 90.13878 88.84277 

90 65 74.82526 78.65903 94.63338 

90 70 83.07335 65.3345 99.52605 

90 75 90.13878 50.44673 102.8424 

90 80 95.51265 34.33468 104.1589 

90 85 98.86277 17.38142 103.2398 

90 90 100 0 100 

90 95 98.86277 17.38142 103.2398 

90 100 95.51265 34.33468 104.1589 

90 105 90.13878 50.44673 102.8424 

90 110 83.07335 65.3345 99.52605 

90 115 74.82526 78.65903 94.63338 

90 120 66.14378 90.13878 88.84277 

90 125 58.11483 99.56187 83.18676 

90 130 52.21257 106.797 79.10648 

90 135 50 111.8034 78.15463 

90 140 52.21257 114.6389 81.08126 

90 145 58.11483 115.4676 87.19219 

90 150 66.14378 114.5644 94.99369 

90 155 74.82526 112.317 103.1092 

90 160 83.07335 109.2202 110.5775 

90 165 90.13878 105.8543 116.7953 

90 170 95.51265 102.8387 121.4098 

90 175 98.86277 100.7482 124.2334 

 

Accordingly, by encountering the critical plane, one obtains the associated values of 𝐶𝑎 

and 𝑁𝑚𝑎𝑥, which can be directly substituted into expression (157) for fatigue-life 

predicting.  
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Determining 𝐶𝑎 and 𝑁𝑚𝑎𝑥 for Carpinteri & Spagnoli 

Application of the C&S model first requires determining fracture plane orientation. For 

combined sinusoidal normal and shear stresses, at least one fracture plane is expected to 

take place at 𝜃 corresponding to 90°, once again allowing one to restrict the inspection 

for 𝜃 = 90°.  

In regard to the loading condition presented in Fig. 43, Table 18 presents the stress levels 

computed for a number of material planes, considering steps of Δ𝜑 of 5°, where fracture 

planes (the ones that experience the maximum value of 𝑁𝑚𝑎𝑥) are identified. 

Table 18 – Fracture plane selection for C&S 

𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎) 

90 0 100 100 

90 5 98.86277 100.7482 

90 10 95.51265 102.8387 

90 15 90.13878 105.8543 

90 20 83.07335 109.2202 

90 25 74.82526 112.317 

90 30 66.14378 114.5644 

90 35 58.11483 115.4676 

90 40 52.21257 114.6389 

90 45 50 111.8034 

90 50 52.21257 106.797 

90 55 58.11483 99.56187 

90 60 66.14378 90.13878 

90 65 74.82526 78.65903 

90 70 83.07335 65.3345 

90 75 90.13878 50.44673 

90 80 95.51265 34.33468 

90 85 98.86277 17.38142 

90 90 100 0 

90 95 98.86277 17.38142 

90 100 95.51265 34.33468 

90 105 90.13878 50.44673 

90 110 83.07335 65.3345 

90 115 74.82526 78.65903 

90 120 66.14378 90.13878 

90 125 58.11483 99.56187 

90 130 52.21257 106.797 

90 135 50 111.8034 

90 140 52.21257 114.6389 

90 145 58.11483 115.4676 

90 150 66.14378 114.5644 

90 155 74.82526 112.317 

90 160 83.07335 109.2202 

90 165 90.13878 105.8543 

90 170 95.51265 102.8387 

90 175 98.86277 100.7482 
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The two occurrences of fracture planes were summarised in Table 19. Such planes are 

symmetrical with respect to the specimen’s longitudinal axis, where the first occurrence 

corresponds to 𝜑𝑓,1 = 35° while the second corresponds to 𝜑𝑓,2 = 145°, as shown in  

Fig. 47. The orientation of the second fracture plane can be equivalently obtained with 𝜑 

corresponding to -35°, evidencing the above-mentioned symmetry.  

 

Table 19 – Critical plane selection for C&S 

𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎) 

90 35 100 100 

90 145 100 100 

 

 

Figure 47 – Illustration of the fracture planes, where the second can also be described in terms of −𝜑𝑓,1 

 

Critical and fracture plane differ in their orientation by an angle 𝛿, which is determined 

via expression (136). For the DIN 42CrMo4 steel in question, 𝛿 corresponds to 41.377°. 

Orientation of the first critical plane 𝜑𝑐,1 is straightforwardly obtained by adding 𝛿 to 

𝜑𝑓,1, as given by expression (137). Nevertheless, in order to maintain symmetrical 

consistency with the first critical plane, the orientation of the second critical plane 𝜑𝑐,2 is 

thus obtained by subtracting 𝛿 out of 𝜑𝑓,2, as shown in Fig. 48. In this illustration, a dog-

bone specimen is presented where normal vectors relative to fracture and critical planes 

are omitted for better visualisation. Nevertheless, the rationale is the same. 
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Figure 48 – Critical planes for C&S 

 

Critical plane orientations are therefore given by 𝜑𝑐,1 and 𝜑𝑐,2, which correspond to 

76.377° and 103.623°, leading to 100 MPa for both 𝐶𝑎 and 𝑁𝑚𝑎𝑥. Such planes are 

therefore listed in Table 20. 

 

Table 20 – Critical plane selection for C&S 

𝜃 (°) 𝜑 (°) 𝐶𝑎 (𝑀𝑃𝑎) 𝑁𝑚𝑎𝑥 (𝑀𝑃𝑎) 

90 76.377 100 100 

90 103.623 100 100 

 

Accordingly, by encountering the critical plane, one obtains the associated values of 𝐶𝑎 

and 𝑁𝑚𝑎𝑥, which can be directly substituted into expression (163) for fatigue-life 

predicting. 

 


