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Abstract 

 

Although the technological advances that led to the development of fast 

computers, the direct numerical simulation of turbulent flows is still prohibitively 

expensive to most engineering and even some research applications. The CFD 

simulations used worldwide are, therefore, based on averaged quantities and 

heavily dependent on mathematical turbulence models. Despite widely used, such 

models fail to proper predict the averaged flow in many practical situations, such 

as the simple flow in a square duct. With the re-blossoming of machine learning 

methods in the past years, much attention is being given to the use of such 

techniques as a replacement to the traditional turbulence models. The present work 

evaluated the use of Neural Networks as an alternative to enhance the simulation of 

turbulent flows. To this end, the Stereoscopic-PIV technique was used to obtain 

well-converged flow statistics and velocity fields for the flow in a square duct for 

10 values of Reynolds number. A total of 10 methodologies were evaluated in a 

data-driven approach to understand what quantities should be predicted by a 

Machine Learning technique that would result in enhanced simulations. From the 

selected methodologies, accurate results could be obtained with a Neural Network 

trained from the experimental data to predict the nonlinear part of the Reynolds 

Stress Tensor and the turbulent eddy viscosity. The turbulent simulations assisted 

by the Neural Network returned velocity fields with less than 4% in error, in 

comparison with those previously measured.  
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Resumo 

 

Apesar dos recentes avanços tecnológicos e do surgimento de computadores 

extremamente rápidos, a simulação numérica direta de escoamentos turbulentos 

ainda é proibitivamente cara para a maioria das aplicações de engenharia e até 

mesmo para algumas aplicações de pesquisa. As simulações utilizadas são, no geral, 

baseadas em grandezas médias e altamente dependentes de modelos de turbulência. 

Apesar de amplamente utilizados, tais modelos não conseguem prever 

adequadamente o escoamento médio em muitas aplicações, como o escoamento em 

um duto quadrado. Com o reflorescimento do Aprendizado de Máquina nos últimos 

anos, muita atenção está sendo dada ao uso de tais técnicas para substituir os 

modelos tradicionais de turbulência. Este trabalho estudou o uso de Redes Neurais 

como alternativa para aprimorar a simulação de escoamentos turbulentos. Para isso, 

a técnica PIV-Estereoscópico foi aplicada ao escoamento em um duto quadrado 

para obter dados experimentais de estatísticas do escoamento e campos médios de 

velocidade de 10 casos com diferentes números de Reynolds. Um total de 10 

metodologias foram avaliadas para entender quais grandezas devem ser previstas 

por um algoritmo de aprendizado de máquina para obter simulações aprimoradas. 

A partir das metodologias selecionadas, excelentes resultados foram obtidos com 

uma Rede Neural treinada a partir dos dados experimentais para prever o termo 

perpendicular do Tensor de Reynolds e a viscosidade turbulenta. As simulações 

turbulentas auxiliadas pela Rede Neural retornaram campos de velocidade com 

menos de 4% de erro, em comparação os dados medidos. 
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Figure 4.15 - Comparison of the vertical component of the velocity vector: v 
obtained from the SPIV after data conditioning (a) and the DNS data 
(b) of Pinelli et al. (2010). 84 

Figure 4.16 - Comparison of the component Rzz of the Reynolds Stress 
Tensor, obtained from the SPIV after conditioning (a) and the DNS data 
(b) of Pinelli et al. (2010). 85 

Figure 4.17 - Comparison of the component Ryy of the Reynolds Stress 
Tensor, obtained from the SPIV of the present work (a) and the DNS 
data (b) of Pinelli et al. (2010). 85 

Figure 4.18 - Comparison of the component Rxx of the Reynolds Stress 
Tensor, obtained from the SPIV of the present work (a) and the DNS 
data (b) of Pinelli et al. (2010). 86 

Figure 4.19 - Comparison of the component Rxy of the Reynolds Stress 
Tensor, obtained from the SPIV of the present work (a) and the DNS 
data (b) of Pinelli et al. (2010). 86 

Figure 4.20 - Comparison of the component Rxz of the Reynolds Stress 
Tensor, obtained from the SPIV of the present work (a) and the DNS 
data (b) of Pinelli et al. (2010). 87 

Figure 4.21 - Comparison of the component Ryz of the Reynolds Stress 
Tensor, obtained from the SPIV of the present work (a) and the DNS 
data (b) of Pinelli et al. (2010). 87 

Figure 4.22 – Comparison of (a) streamwise component of the vorticity 
vector and different vortex identification criteria: (b) Q criterion, (c) Δ 
criterion and (d) λ2 criterion. Vectors represent the averaged in-plane 
components (u and v) of the velocity vector. 91 

Figure 4.23 – Procedure for vortex detection: (a) colormap of the λ2 criterion,  
(b) vortex identified by the λ2 criterion using 0 as threshold, (c) vortex 
after erosion and dilatation procedures and (d) vortex core 
identification. 92 

Figure 4.24 – Iso-contours of the normalized averaged streamwise velocity 
vector  (w/wbulk) and in-plane movements for Reynolds number of (a) 
7,000; (b) 20,000; (c) 30,000 and (d) 40,000. 94 

Figure 4.25 – Pressure drop measurements (blue) and from the literature 
(orange) at the square duct. Distance is related to the most downstream 
measurement tap. 95 

Figure 4.26 – Mean Streamwise velocity profile in wall units for Case 1 at 
the channel centerline (x/H = 0). 96 

Figure 4.27 – Variation of wall shear stress along the bottom wall of the 
square duct for Case 1. 97 

Figure 5.1 – Grid used during the CFD simulations of the present work.103 
Figure 5.2 – Comparison of the streamwise (w) and vertical in-plane (v) 

velocity fields obtained from the SPIV experiment and the simulation 
using the k-ε model. Results for Re = 7000. 107 

Figure 5.3 – Comparison between (a) Rzz, (b) Rxx, (c) Rxz, and (d) Rxy 
obtained from the SPIV experiment and the k-ε model. Due to 
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Figure 5.4 – Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 1, for Case 1 (Re = 7000). Streamwise 
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and vertical wall-normal components of the velocity vector are 
presented. 110 

Figure 5.5 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 1, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 111 

Figure 5.6 - Comparison of  (a) experimental results and (b) simulation  
performed using Methodology 2, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 113 

Figure 5.7 - Comparison of  (a) experimental results and (b) simulation  
performed using Methodology 2, for Case 1 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 114 

Figure 5.8 - Comparison of the (a) experimental results and (b) simulation  
performed using Methodology 3, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 116 

Figure 5.9 - Comparison of the (a) experimental results and (b) simulation  
performed using Methodology 3, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 117 

Figure 5.10 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 4, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 119 

Figure 5.11 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 4, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 120 

Figure 5.12 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 5, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 123 

Figure 5.13 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 5, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 124 

Figure 5.14 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 6, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 125 

Figure 5.15 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 6, for Case 1 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 126 

Figure 5.16 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 7, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 127 

file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125197
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125197
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125198
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125198
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125198
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125198
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125199
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125199
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125199
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125199
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125200
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125200
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125200
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125200
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125202
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125202
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125202
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125202
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125203
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125203
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125203
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125203
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125204
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125204
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125204
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125204
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125207
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125207
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125207
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125207
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125208
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125208
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125208
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125208


 
 

Figure 5.17 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 7, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 128 

Figure 5.18 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 8, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 130 

Figure 5.19 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 8, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 131 

Figure 5.20 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 9, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 132 

Figure 5.21 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 9, for Case 10 (Re = 44500). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 133 

Figure 5.22 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 10, for Case 1 (Re = 7000). Streamwise 
and vertical wall-normal components of the velocity vector are 
presented. 135 

Figure 5.23 - Comparison of the (a) experimental results and (b) simulation 
performed using Methodology 10, for Case 10 (Re = 44500). 
Streamwise and vertical wall-normal components of the velocity vector 
are presented. 136 

Figure 5.24 - Streamwise velocity profile and error obtained at Case 1 for 
Methodologies 4, 6, 7, 8, 9 and 10 for x/H = 0 (a), x/H = -0.3 (b), x/H = 
-0.6 and x/H = -0.9. 141 

Figure 5.25 - Streamwise velocity profile and error obtained at Case 10 for 
Methodologies 4, 6, 7, 8, 9 and 10 for x/H = 0 (a), x/H = -0.3 (b), x/H = 
-0.6 and x/H = -0.9. 142 

Figure 6.1 – Comparison of predicted and true values of the source term of 
the Spalart-Allmaras model for one of the simulations of Tracey et al. 
(2015). 144 

Figure 6.2 – Neural network architecture proposed by Ling et al. (2016).
 146 

Figure 6.3 – Enhanced results obtained with Random Forest by Wang et al. 
(2017a) for one component of the  Reynolds Stress Tensor at (a) 
Square Duct and (b) Periodic Hills. 147 

Figure 6.4 – Comparison of the spanwise velocity component from the DNS 
of Huser et al. (1993), observation data, baseline RANS simulation and 
results obtained with the strategy proposed by Xiao et al. (2016). 149 

Figure 6.5 - Comparison of the mean velocity field obtained with the RANS 
simulation and injection of R and t predicted by a Neural Network for 
Re = 6400, with DNS data. 150 

file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125210
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125210
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125210
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125210
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125214
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125214
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125214
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125214
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125216
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125216
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125216
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125216
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125223
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125223
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125223


 
 

Figure 6.6 - Comparison of the results obtained by Wu et al. (2018) of the 
secondary flow in the SD from the baseline RANS simulation, DNS and 
ML.  Re = 7000. 151 

Figure 6.7 - Comparison of the 3 components of the velocity field obtained 
from the baseline RANS simulation (left), DNS of Pinelli et al. (2010) 
(right) and corrected simulation with the procedure proposed by 
Macedo et al. (2020). 153 

Figure 7.1 - Architecture of an Artificial Neuron, k. Adapted from Haykin 
(2009). 157 

Figure 7.2 - Fully connected Neural network with 2 hidden layers, 5 inputs 
and  3 outputs. 158 

Figure 7.3 - Behavior of the following activation functions: ReLu (a), 
hyperbolic tangent (b) and sigmoid function (c). 164 

Figure 7.4 - Error variation on training and cross-validation with the increase 
in the Neural Network complexity. 167 

Figure 7.5 - Learning curves of Neural Networks with a high Bias, ideal one 
and high variance. 168 

Figure 8.1 – Schematic of how the enhanced velocity fields are obtained 
from the low-fidelity RANS simulations. 171 

Figure 8.2 – Different components of the divergence of the Strain rate 
tensor. 172 

Figure 8.3 – Training and validation loss after 35 epochs before optimizaton, 
using the hyper-parameters of Macedo et al. (2020), and after 
optimization, with the hyper-parameters presented in table 8.4. 
Reference case is that of Methodology 7. 175 

Figure 8.4 – Turbulent viscosity obtained from the k-ε model, solving 
equations 2.27 and 2.28 with the velocity fields obtained from the SPIV 
experiment, and the same quantity obtained from the trained Neural 
Network. Results for case 3. 178 

Figure 8.5 – Comparison between 𝑅𝑧𝑧┴ (a), 𝑅yy┴ (b), 𝑅xz┴ (c) and 𝑅xy┴ 
(d) obtained from the SPIV experiment using equation 5.23 and NN.
 179 

Figure 8.6 – Comparison of the streamwise velocity profile obtained from 
the SPIV experiment, from the data-driven described in chapter 5 and 
with injected quantities obtained from the NN for x/H = 0 (a), x/H = -0.3 
(b), x/H = -0.6 and x/H = -0.9. Results presented for case 3. 180 

Figure 8.7 – Contour plots of the normalized streamwise and vertical 
components of the velocity vector obtained from the SPIV experiment, 
data-driven direct approach and with the injected quantities obtained 
from the NN. Results presented for case 3 and methodology 7. 182 

Figure 8.8 - Comparison between 𝑡𝑧┴ (a), 𝑡x┴ (b), and the turbulent viscosity 
(c) obtained from the SPIV experiment using equation 5.25 and from 
the Neural Network of Methodology 8. 184 

Figure 8.9 - Contour plots of the normalized streamwise and vertical 
components of the velocity vector obtained from the SPIV experiment, 
data-driven direct approach and with the injected quantities obtained 
from the NN. Results presented for case 3 and methodology 8. 186 

Figure 8.10 - Contour plots of the normalized streamwise and vertical 
components of the velocity vector obtained from the SPIV experiment, 

file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125224
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125224
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125224
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125225
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125225
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125225
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125225
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125226
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125226
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125227
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125227
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125228
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125228
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125229
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125229
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125230
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125230
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125231
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125231
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125232
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125232
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125233
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125233
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125233
file:///C:/Users/Leonardo/OneDrive%20-%20puc-rio.br/Laboratorio/Producao%20cientifica/Tese%20Doutorado/Doutorado%20-%20Leonardo%20Fernandes.docx%23_Toc155125233


 
 

data-driven direct approach and with the injected quantities obtained 
from the NN. Results presented for case 3 and methodology 10. 188 

  



 
 

List of Tables 

Table 2.1 - Constants used in the k-ε model. 46 
Table 2.2 - Different wall regions in a wall-bounded turbulent flow. 47 
Table 3.1 - Particle´s diameters at the images for different cameras 

apertures. 68 
Table 3.2 - Summary of the measured cases 72 

Table 4.1 – Vortex core centers and swirl intensity for experiments with 
different Reynolds numbers. 93 

Table 4.2 – Comparison of the averaged wall shear stress calculated using 
SPIV data and theoretical values. The closest point to the wall, in wall 
units, is also presented. 98 

Table 4.3 – Uncertainty estimate for different quantities for Case 1. 
Measured values were taken as most representative values at the 
square duct experiment. 101 

Table 5.1 - Comparison of theoretical and simulated pressure gradient 
obtained with Methodology 1. 112 

Table 5.2 – Comparison of theoretical and simulated pressure gradient 
obtained with Methodology 4. 121 

Table 5.3 - Comparison of theoretical and simulated pressure gradient 
obtained with Methodology 7. 129 

Table 5.4 - Comparison of theoretical and simulated pressure gradient 
obtained with Methodology 9. 134 

Table 5.5 – Summary of the different methodologies evaluated. 137 

Table 5.6 – Root mean error of the streamwise component of the velocity 
vector, calculated using equation 5.32 for different methodologies. 139 

Table 8.1 – Neural Network inputs proposed by Cruz et al. (2019). 172 
Table 8.2 – Neural Network inputs used in the present work. 173 
Table 8.3 – Neural Network setup used as starting point (before 

optimization). 174 

Table 8.4 – Hyper-parameters used at the optimized NN for each 
methodology. 176 

Table 8.5 - Hyper-parameters used at the optimized NN for the BC of 
methodologies 8 and 10. 177 

Table 8.6 – Errors of the streamwise component of the velocity vector 
obtained with the data-driven direct injection and with the NN injection.
 181 
 

 



 
 

List of Latin Symbols  

Ap Averaged area, in pixels, occupied by one particle 

bk Bias vector of the k-th neuron of a layer of a NN 

B𝑖𝑗
┴  Orthogonal matrix 

Bij A
H  In-phase matrix 

B̃ij A Out-of-phase matrix 

𝐶𝜇 Constant used in the k-ε model 

𝐶1𝜀 Constant used in the k-ε model 

𝐶2𝜀 Constant used in the k-ε model 

C Von Kármán Constant 

C Particle´s concentration 

dp Diameter of the seeding particles 

ddiff Particle diameter due to refraction at the lenses of the camera 

𝑑𝑖𝑚
∗  Particle diameter recorded at the image, in pixels 

D Dimension 

Dh Hydraulic diameter 

𝑒𝑘
𝑆 Any of the three eigenvectors of S 

�̇�𝑘
𝑆 Material derivation of any of the three eigenvectors of S 

Ei Error between quantities i from experiment and high-fidelity data 

𝑓 Friction coefficient 

f# Lenses aperture (f-number) 

I Turbulence Intensity 

𝐼 ̿ Identity matrix 

𝐽 Cost function 

k Turbulent kinetic energy 

K Von Kármán Constant 

L Characteristic dimension of the flow 

mpart Mass of a single particle 

Mn Magnification 



 
 

Mpart Total mass of particles 

Ncorr Corrected number of samples for error analysis 

n Power-law empiric exponent 

npart Number of particles added to the solution 

Nef Number of non-correlated samples 

Ns Source density 

p Pressure 

ppp Averaged number of particles per pixel 

P Non-persistence of strain tensor 

Q Vortex identification criteria 

r Reynolds force vector 

𝑟┴ Perpendicular Reynolds force vector 

R Positive Reynolds Stress Tensor without the density (𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ) 

R* Reynolds Stress Tensor 

𝑅𝑚𝑜𝑑
∗  Modelled Reynolds Stress Tensor 

𝑅𝐻𝐹
∗  Reynolds Stress Tensor obtained from a high-fidelity source 

Re Reynolds number 

𝑅𝑒𝜏 Friction Reynolds number 

𝑅𝑒𝐷ℎ Reynolds number based on the hydraulic diameter 

R┴ Perpendicular Reynolds Stress Tensor 

S Flow strain rate tensor 

�̇� Material derivative of the flow strain rate tensor 

𝑆𝑡 Stokes number 

𝑡┴ Modified perpendicular Reynolds force vector 

t Time 

tcomp Compensated modified Reynolds force vector 

T Stress tensor 

T Modified Reynolds force vector 

u Component of the velocity vector associated with the direction “x”  

𝑢𝑖
′ Instantaneous velocity fluctuation of the i-th compoment 

𝑢𝑘 Characteristic velocity of the smaller scales 

𝑢𝜏 Friction velocity 

𝑢+ Component of the velocity associated with the direction “x” in wall units 



 
 

U Principal component of the velocity vector 

v Component of the velocity vector associated with the direction “y” 

Vsol Volume of the solution 

w Component of the velocity vector associated with the direction “z” 

wk Synaptic weight of the k-th neuron of a layer of the NN 

�̂� Relative rate of rotation tensor 

W Vorticity tensor 

𝑊𝑓 Weight factor 

𝑦+ Distance to the wall in wall units 

 



 
 

List of acronym  

ADAM Adaptative Moment Estimation 

AI Artificial Intelligence 

AR Aspect Ratio 

ASGD Averaged Stochastic Gradient Descent 

BFGD Broyden-Fletcher-Goldfarb-Shanno algorithm 

BP Back-Propagation 

BC Boundary Condition 

CCD Charged-Coupled Device 

CFD Computational Fluid Dynamic 

CMOS Complementary metal-oxide semiconductor 

DIC Diagonal-based Incomplete Cholesky 

DILU Simplified Diagonal-based Incomplete LU  

DNS Direct Numerical Simulation 

DT Decision Tree 

FFT Fast Fourier Transformation 

FP Forward Propagation 

GAMG Geometric Agglomerated Algebraic Multigrid Preconditioner 

IDE Integrated Development Environment 

ISGD Implicit Stochastic Gradient Descent 

L-BFGS Limited-memory BFGS 

LES Large Eddy Simulation 

ML Machine Learning 

MLP Multi-Layer Perceptrons 

NLEVM Non-Linear Eddy Viscosity Models 

MME Mean Momentum Equations 

NLT Non-linear terms 

NN Neural Network 

NS Navier-Stokes 



 
 

OF OpenFOAM 

PBiCGStab Preconditioned bi-conjugate gradient Stabilized 

PCG Preconditioned Conjugate Gradient 

PIV Particle Image Velocimetry 

PH Periodic Hills 

PTV Particle Tracking Velocimetry 

RANS Reynolds Averaged Navier-Stokes 

RF Random Forest 

RFV Reynolds Force Vector 

RMSprop Root Mean Square Propagation 

SD Square Duct 

SGD Stochastic Gradient descent  

SIMPLE Semi-Implicit Method for Pressure-Linked Equations 

SPIV Stereoscopic Particle Image Velocimetry 

STB Shake the box 

SVM Support Vector Machine 

URANS Unsteady Reynolds Averaged Navier-Stokes 

 



 
 

List of Greek Symbols 

α Learning rate of a Neural Network 

𝛼𝐷0 Model coefficient obtained from a-priori analysis 

𝛼𝐷1 Model coefficient obtained from a-priori analysis 

𝛼𝐷2 Model coefficient obtained from a-priori analysis 

𝛼𝐷3 Model coefficient obtained from a-priori analysis 

𝛿𝑖𝑗 Kronecker delta 

δ Relevant flow length 

δ Half width of the Square Duct 

𝛿 Measurement uncertainty 

𝛿𝑣 Viscous Length Scale 

𝛿𝑧 Field of view 

𝛥 Vortex identification criteria 

𝛥𝑝𝑖𝑥𝑒𝑙 Physical size of one pixel 

Δz Thickness of the laser light sheet 

ε Energy dissipation 

ε Roughness of the pipe 

ε Indicates a quantity obtained from the SPIV experiment 

𝜂𝑘 Size of the smaller vortices in the Kolmogorov scale 

λ Regularization parameter 

𝜆 Diffracted wavelength 

λi i-th Tensor invariant  

λ2 Vortex identification criteria 

µ Dynamic viscosity 

µ𝑡 Turbulent dynamic viscosity 

𝜇𝑒𝑓 Effective viscosity  

μi Average of the quantity “i” 

𝜈 Kinematic viscosity 

𝜌 Cross-correlation coefficient  



 
 

ρ Fluid density 

𝜌𝑝𝑎𝑟𝑡  Density of the seeding particle 

𝜎 Standard deviation 

σk Constant used in the k-ε model 

σε Constant used in the k-ε model 

σi Standard deviation of the quantity “i” 

𝜏̿ Viscous stress tensor 

𝜏𝑘 Characteristic time of the Kolmogorov scale 

τw Wall Shear Stress 

𝜏𝑝𝑎𝑟𝑡 Characteristic time of the seeding particle 

𝜏𝑓𝑙𝑜𝑤 Characteristic time of the flow 

𝜑 Activation function 

Φ�̇� In-phase component of �̇� 

Φ̃�̇� Out-of-phase component of �̇� 

Φ̃�̇�,𝑆 Out-of-phase component of �̇� in the basis of the eigenvectors of S 

𝛺𝑖𝑗
𝑆  Rate of rotation of the eigenvectors of the tensor 

 

 

 

 

 

 

 

  



 
 

 

 

 

 

 

 

 

 

 

“ Turbulence remains the last great unsolved  

problem of classical Physics. ” 

 

       Richard Feynman, Nobel laureate in Physics 

 



 
 

1 
Introduction 

A famous quote attributed to the Nobel laureate in physics Richard Feynman 

states that “Turbulence remains the last great unsolved problem of classical 

physics”. Whether Feynman actually said those words is unclear, but the fact is that 

decades after his death, the proper understanding of the turbulence phenomenon is 

yet to be achieved. Maybe unluckily, most flows are turbulent and it is exactly 

turbulence the driving physics behind many processes. Around 50% of the surface 

friction for airplanes, 70% for submarines and almost 100% of the internal friction 

for long pipelines, related to the total resistance, are due to turbulent flows (Wang 

et al., 2000). The heat exchanging due to convection is way more pronounced in 

turbulent flows (Bejan, 2013), as well as gas and polluting dissipations. It has a 

major hole in avoiding blood clotting (Bessa et al., 2021), dictating river directions 

and even astrophysical movements (McDonough, 2007). 

The observations and studies of turbulence dates back to the 16th century, 

from the qualitative description available at Leonardo da Vinci notebooks (Figure 

1.1a). The notorious evolution of computational power aligned with the relatively 

easy accessibility of high-speed lasers and digital cameras achieved in the last 

couple decades allowed the development of several non-intrusive techniques able 

to quantify the once qualitative flow visualizations. The traditional planar 2D-

Particle Image Velocimetry (PIV) (Raffel et al., 2018) evolved to time-resolved 

three-dimensional techniques capable of capturing all flow features, such as the 

multi-plane Stereo-PIV (Foucaut et al., 2016), Tomographic PIV (Elsinga et al., 

2005) and the state-of-the-art Particle Tracking Velocimetry (PTV) Shake The Box 

(STB algorithm (Schanz et al., 2013). Figure 1.1 present the evolution of the flow 

observation, from Leonardo da Vinci notebooks to the state-of-the-art shake the box 

PTV technique.  
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Across the last 2 centuries, several attempts to describe the unsteady and 

three-dimensional characteristics of the turbulence phenomena were proposed, 

ranging from statistical to deterministic approaches (McDonough, 2007). In the 

end, turbulence can be defined as the chaotic solution that emerges from the laminar 

flow stability loss caused by some initial perturbation. A common practice, 

however, is to divide the turbulence study in two: “wall turbulence”, which is the 

study of the turbulence in the presence of walls, usually imposing a no-slip 

boundary condition and “free turbulence”, in the absence of boundaries (Hinze, 

1975). Along with the development of better measurement techniques described in 

the last paragraph, came the knowledge that turbulence is not completely stochastic, 

but formed by coherent structures that are responsible for the maintenance of the 

turbulence. Such quasi-periodic patterns interact with each other in a complex self-

sustaining mechanism, that forms somehow some order in the turbulent chaos.  

Figure 1.1 - Observations of the turbulent motion taken from Leonardo da Vinci´s 

notebook showing vortices of different sizes at a water sink and behind an object 

(a) and streamlines with vorticity contours at a free jet obtained with the PTV-STB 

algorithm (adapted from LaVision website). 
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Since the pioneer work of Theodorsen (1952), many authors tried to explain the 

organization and interaction of near-wall turbulence structures (Hinze, 1975; Zhou 

et al., 1999). Adrian (2007) proposed that hairpin packages are originated at the 

wall due to a random disturbance and then are intensified and stretched due to the 

streamwise flow, as presented in figure 1.2. The relative velocity of the hairpin 

creates a lift mechanism making the vortex evolve from a hairpin-shape to an 

omega-shape (Uc3) vortex. This pattern induces a strong three-dimensional ejection 

that generates a new hairpin (Uc2) upstream the original old one. Both packets might 

even generate a tertiary hairpin package (Uc1).  In Adrian (2007) mechanism, the 

low/high speed streaks as well as ejections/sweeps are explained simply due to the 

passage of the hairpin packets. Despite the general agreement that coherent 

structures do exists, there is an extensive discussion in the literature (Pope, 2000; 

del Álamo et al. 2006; Stanislas et al. 2008, Foucault et al. 2011) regarding its 

general aspects and how important is the role of such structures for the turbulence 

self-sustaining mechanism. While the analysis of few instantaneous velocity fields 

can explain some of the observed turbulence organization, the representability of 

such models for the flow, in general, remains unclear (Martins et al. 2019).    

 

 

Despite the recent advances in wall-turbulence studies described in the last 

paragraph, the proper Computational Fluid Dynamics (CFD) simulation of 

Figure 1.2 – Sketch of the mechanism proposed by Adrian (2007) to explain the 

organization of coherent turbulent structures near the wall. Uc1, Uc2 and Uc3 are the 

packets convection velocities. 
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turbulent flows remains a challenge. Nowadays there is a consensus that the Navier-

Stokes equation properly dictates the behavior of the turbulent flow of a Newtonian 

fluid. However, solving such equations without any modelling, the so-called Direct 

Numerical Simulations (DNS), demands computational capacities that makes its 

use prohibitively expensive for most industrial and research applications. In this 

context, different simulation alternatives were proposed, such as the Large Eddy 

Simulation (LES), where the small turbulent structures (vortices) are modelled 

while the bigger swirls are solved, and the most traditional and widely used 

Reynolds Averaged Navier-Stokes (RANS) simulations. In this last approach, the 

interaction of all turbulence scales with the mean flow is modelled, what 

significantly decreases the required computational power. Given the fact that most 

CFD industrial applications demand simulation of numerous cases, RANS became 

by far the most widely used approach. 

 Due to the significant simplification of the turbulence phenomenon used by 

the RANS methodology, there are many applications that such models return bad 

results, specifically in those where equilibrium of turbulence production and 

dissipation, a baseline of the RANS approach, does not occur. Some examples are 

non-parallel flows (secondary flows in ducts), flows with adverse pressure gradient 

leading to separation, streamline curvatures, among others (Hoffman et al., 1985; 

Craft et al., 1996; Wilcox, 2006). A list with sources of RANS errors is presented 

by Duraisamy et al. (2019): 

1) Mathematical simplification of the Mean Momentum Equations (MME); 

2) Proper choice of the turbulence model; 

3) Coefficients used at the chosen turbulence model; 

The large errors associated with the traditional turbulence RANS models (see 

section 2.2) encouraged the development of alternative approaches that are not 

based on a linear relationship between the Reynolds Stress Tensor (R*) and the flow 

strain rate tensor (S). Figure 1.3 presents an evaluation of 6 different turbulence 

models, performed by Nieckele et al. (2016), comparing the value obtained for R* 

with that obtained from a DNS simulation for plane channel flow and from an 

experimental boundary layer flow. The quantity ϕ is an indirect measurement of the 

error between the modelled R* (𝑅𝑚𝑜𝑑
∗ ) and that obtained from the high-fidelity data, 

either the DNS or the experiment (𝑅𝐻𝐹
∗ ), given by equation 1.1. 
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ϕ = 1 −
2

π
cos−1 (

‖Rmod
∗ ‖

‖RHF
∗ ‖

)  (1.1) 

As one can expect, the closer ϕ is to 1, the smaller are the differences between the 

modelled and high-fidelity Reynolds Stress Tensor.  

 

The difficulty to find turbulence models that are computationally cheap, 

accurate and numerically stable, aligned with the continuous use of the RANS 

approach, have encouraged the use of Machine Learning (ML) techniques as an 

alternative method for the link between low-fidelity flow simulations and more 

accurate results. The use of Machine Learning in the context of turbulence 

modelling enhancement will now be discussed.  

 

1.1. Machine Learning for Fluid Mechanics 

The concept of Machine Learning dates back to the 1950s/1960s and was 

tailored by two major ideas: the development of a system capable of emulating the 

human thinking process, called cybernetics (Wiener, 1965), and the use of 

techniques to automate process as regression and classification (Rosenblatt, 1958). 

The enthusiasm generated by the use of perceptrons for classification problems, 

however, was crunched by the severe limitations posed by the computational power 

of that time, that have restricted its application to single-layer perceptrons that were 

only capable of learning linearly separated forms. This led to a significant decrease 

in the interest in Artificial Inteligence (AI), especially after the so-called Lighthill 

Figure 1.3 – Comparison of the performance of the traditional turbulence model 

(model I) with more complex approaches. Adapted from Nieckele et al. (2016) 
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report, in 1974, that posed several critics to AI programs, leading to a funding 

reduction known as “AI winter”.  

The 1970s situation, however, significantly changed in the past years. The 

advances in the computational power aligned with the enormous volume of data 

available today boosted the development of sophisticated algorithms to get mankind 

into the “age of data”, where AI is playing a major role in using data-driven 

approach to enhance productivity and medical diagnostics, facilitate negotiations, 

suggest books/movies and, why not, improve physical modelling. When it comes 

to Machine Learning algorithms, it is common to divide them into supervised 

learning, where training is performed with labeled data a-priori defined; 

unsupervised learning, where no labelled data is provided and semi-supervised 

learning, where training happens with partially labelled data or by interactions 

within the environment (reinforcement learning). Figure 1.4 provides a general 

view of some categorized ML algorithms. 

 

Regarding fluid mechanics, it is probable that the first application of ML dates 

back to the work of Rechenberg (1964). The author used a random number 

generator and a positive/negative feedback mechanism to make a system of 5 linked 

plates discover the optimum angle configuration between them that would 

minimize the drag of the structure inside a wind tunnel. A first application of what 

today would be called reinforcement learning. With the re-blossoming of ML 

application of the past years and the proven performance of deep learning 

architectures in regressing extremely non-linear data with multiple inputs/outputs, 

Figure 1.4 – Most used Machine Learning algorithms divided into supervised, semi-

supervised and unsupervised categories. Adapted from Brunton et al. (2020). 
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there is a constant search for the use of ML to predict flow features, reduce 

modelling orders, process experimental data, control machines and, the theme of 

the present work: enhance turbulence modelling (Brunton et al., 2020).  

 

1.2. Motivation and objective 

The simulation of turbulent flows with the RANS methodology is widely used 

in the industry and research fields. However, as described before, despite the 

usability of such methodology, there are many situations where good results depend 

heavily on the chosen turbulence model among those available in the RANS 

approach. This situation can become very challenging when the necessity is to 

produce a flow simulation for a new fluid mechanics application. Therefore, there 

is, a necessity to develop better turbulence models and methodologies that would 

return more accurate results, regardless of the application. This is the focus of the 

present work.  

The main goal of this work is to use Machine Learning (or more specifically, 

a Neural Network), to predict a quantity to be injected into the RANS equations 

using data obtained from the low-fidelity RANS simulation itself. There are many 

works available in the literature (see chapter 6) with this same objective, usually 

using the Square Duct (SD) or Periodic Hill (PH) flow geometries, given the known 

fact that the traditional RANS model returns inaccurate results for such applications 

and the availability of high-fidelity data for those flows. The main difference of this 

work is that the training data for the ML is obtained from an experiment in a Square 

Duct using the Stereoscopic-PIV (SPIV) technique, not from a DNS database. This 

allows the use of a low-fidelity database with significantly higher Reynolds number 

than those of the works of Cruz et al. (2019) and Brener et al. (2023), among others.  

Since the uncertainties in the measured quantities are significantly higher than 

those obtained from the DNS, an important part of this work is dedicated to 

understand what are the quantities obtained from the SPIV experiment that, when 

injected into the mean-momentum balance equations, return the most accurate 

results. The most obvious choice would be to direct inject the measured Reynolds 

Stress Tensor. However, as pointed out by Thompson et al. (2016), due to a bad-

conditioning of the RANS equations, the small errors of the Reynolds Stress Tensor 

obtained from most of the DNS’ data available in the literature are amplified when 
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such quantity is injected into the RANS equations, resulting in poor velocity fields. 

This behavior is illustrated in figure 1.5, where ()̂ indicates any variable obtained 

direct from the DNS and ()̃ any variable obtained from a conservative equation. 

One can observe from figure 1.5(a) and (b), there is a good agreement in the 

Reynolds Stress Tensor component Rxy when such quantity is obtained from the 

DNS velocity field or time-averaging the product of the velocity fluctuation at each 

time step. The opposite, however, is observed when retrieving the velocity field 

injecting Rxy, as observed in figure 1.5(c) and (d). Such analysis was performed 

using the DNS of Lozano-Durán and Jiménez (2014), Lee and Moser (2015) and 

Bernardini et al. (2014).  

 

Figure 1.5 – Comparison of Rxy component of the Reynolds Stress Tensor obtained 

time-averaging the DNS fluctuation data and directly from the DNS mean velocity 

field (a), as well as its associated error (b). The retrieved velocity field when Rxy is 

injected into the RANS equations and that extracted directly from the DNS is 

presented in (c), as well as its associated errors (d). Results obtained from 3 DNS’ 

databases. Adapted from Thompson et al. (2016). 

 

 As observed by Andrade et al. (2018), the use of longer time-averaging 

periods for the DNS data enhances the retrieved velocity field, indicating that the 

problem is, indeed, a bad-conditioning of the RANS equations. Because of that, 
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many velocity data were used in the present work to obtain well-converged fields 

for the Reynolds Stress Tensor. Nevertheless, 9 other methodologies to inject 

different quantities obtained from the SPIV experiment, were also evaluated. 

 

1.3. Work Organization 

The present work is organized in 9 chapters. 

The present chapter 1 introduces the thesis, with a brief review of turbulence 

and Machine Learning, followed by the description of where the present work is 

inserted and what are its goals.  

In chapter 2, a more detailed discussion of the turbulence phenomenon is 

performed, along with the mathematical description of the RANS approach, the 

traditional turbulence k-ε model and alternative attempts to model turbulence. The 

chapter finishes with a description of the Square Duct Flow, that will be used as a 

benchmark in the present work. 

Chapter 3 is dedicated to the description of the Square Duct Experiment, 

assembled at the Laboratory of Fluid Engineering at PUC-Rio, with all the 

equipment necessary to use the Stereoscopic PIV technique and the measurements 

of the pressure gradient along the channel. A significant part of the chapter is 

dedicated to the explanation of the working principles of the PIV technique, 

finishing with the experimental procedure adopted at the 10 measured cases. 

The results obtained by applying the Stereoscopic PIV to the Square Duct 

flow are presented in chapter 4. First, raw results without the use of the symmetry 

of the channel are presented, returning a significantly noisy secondary flow, given 

the difference in order of magnitude to the streamwise to wall-normal/spanwise 

components. The symmetry of the SD in quadrants or octants are then used, 

returning significantly improved results. The main flow quantities are presented, 

using Case 1 as the base-case.  

The evaluation of which flow quantity can be obtained in the SPIV 

experiment and injected into a CFD environment to obtain enhanced RANS 

simulations is performed at chapter 5. A total of 10 different methodologies are 

proposed and evaluated at cases 1 and 10. The results of the baseline RANS 

simulations using the k-ε model are also presented. 
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Chapter 6 is dedicated to the bibliography revision of different works who 

used Machine Learning to enhance turbulent flow simulations. Since this is a hot 

topic, there are many articles being published in this area every year, so it can only 

be considered properly updated to the date of this work.      

Chapter 7 presents the description of the Neural Networks, the ML technique 

chosen to be used in the present work. The concept of a single artificial neuron is 

presented, followed by the Neural Networks architectures themselves, along with 

all its hyper-parameters and main training algorithms. The chapter is closed with an 

explanation of how to optimize a NN.  

The a-priori and a-posteriori results obtained using ML, as well as its final 

architectures and the procedure followed to obtain an optimum NN setup are 

presented in Chapter 8. The chapter is finished with a discussion about the 

limitations of employing the NN generated in this work. 

Finally, Chapter 9 present the conclusions of this thesis and suggestion for 

future works.  

  

 

 

 

 



   

 

 
 

2 
Turbulence 

This chapter presents a brief introduction of the most important concepts, 

equations and quantities regarding the understating of the turbulence phenomenon 

and its modelling. More details can be found in the books of Pope (2000) or Wilcox 

(2006). 

Nowadays there is a consensus that the Cauchy momentum equations, as 

presented in equation 2.1, properly describe the movement of any particle flow 

when the continuum hypothesis is not violated.  

ρ [
𝜕�⃗� 

𝜕𝑡
+ �⃗� ∙ ∇⃗⃗ �⃗� ] =  𝜌𝑓 + ∇ ∙ �̿�  (2.1) 

Or using Einstein´s summation notation: 

ρ [
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
] =  𝜌𝑓𝑖 + 

𝜕𝑇𝑖𝑗

𝜕𝑥𝑗
 (2.2) 

where ρ is the density of the fluid, 𝑇 is the stress tensor and 𝑓 is the vector 

containing all body forces applied to the fluid and 𝑢 is the velocity. All quantities 

can vary with time (t) and position (𝑥𝑗). Equations 2.1 and 2.2 are known as Cauchy 

Momentum Equation, and can be applied to every substance (i.e., fluid, elastic solid, 

plastic solid, etc.). The momentum equation is nothing more than Newton´s second 

law, relating the rate of momentum variation (left side of equations) to the forces 

applied to the fluid, whatever is its origin. In fluid mechanics, it is a common 

practice to separate the stress tensor into an isotropic part caused only by the 

pressure and other terms caused by viscous stresses: �̿� =  −𝑝𝐼 ̿ + 𝜏̿, where 𝐼 ̿is the 

identity matrix. The body forces (usually gravitational ones) can be incorporated in 

the pressure term.  Equations 2.1 and 2.2 then become equations 2.3 or 2.4, that 

even when coupled with the continuity (mass-conservation) equation, presents a 

system with more variable than equations, which is, of course, impossible to solve.

ρ [
𝜕�⃗� 

𝜕𝑡
+ �⃗� ∙ ∇⃗⃗ �⃗� ] =  −∇⃗⃗ 𝑝 + ∇ ∙ 𝜏̿  (2.3) 
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ρ [
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
] =  −

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (2.4) 

It is important, therefore, to stablish a relation between the viscous stress and flow 

characteristics. Those relations are called constitutive equations and depend on the 

material flowing, being a rheological challenging object of study. There is, 

however, a special class of fluids called the Newtonian fluids, where the constitutive 

equation is given by 

𝜏̿  = 2µ𝑆̿ − 𝜆 𝐼 ̿∇ ∙ �⃗�   (2.5) 

 𝜏𝑖𝑗 = 2µ𝑆𝑖𝑗 − 𝜆𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
 (2.6) 

where 𝛿𝑖𝑗 is the Kronecker delta (1 when i = j or zero otherwise), λ is the second 

viscosity coefficient (equal to 
2

3
𝜇 for most practical situations) and S is the 

instantaneous strain rate tensor, given by 

𝑆𝑖𝑗  =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
 ) (2.7) 

The proportionality factor µ is the dynamic viscosity, which for a Newtonian fluid 

is independent of flow characteristics. The combination of equations 2.7 and 2.5/2.6 

with equations 2.3 or 2.4 gives the Navier-Stokes (NS) equations, which for an 

incompressible fluid can be written as follows: 

ρ [
𝜕�⃗� 

𝜕𝑡
+ �⃗� ∙ ∇⃗⃗ �⃗� ] =  −∇⃗⃗ 𝑝 +  μ∇2�⃗�   (2.8) 

ρ [
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
] =  −

𝜕𝑝

𝜕𝑥𝑖
+  μ

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
 (2.9) 

The Navier-Stokes present a set of 3 differential equations with 4 variables (3 

components of the velocity vector and the pressure) and, therefore, cannot be solely 

solved. The system is closed with the addition of the continuity equation, as 

presented in equations 2.10 and 2.11. 

𝜕ρ

𝜕𝑡
+ ∇ ⃗⃗  ⃗ ∙ (ρ�⃗� ) = 0  (2.10) 

𝜕𝜌

𝜕𝑡
+ 

𝜕𝜌 𝑢𝑖

𝜕𝑥𝑖
= 0 (2.11) 
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Performing a simple evaluation of the Navier-Stokes equation and assuming 

a steady state flow for simplicity, one can simplify equation 2.8 to the point where 

pressure terms (driving forces) balance the convective term (second term on the 

left) and viscous terms (last term on the right). Given the additional mathematical 

challenge imposed by the non-linearity of the convective term, it is important, from 

the point of view of an engineer, to understand when this term can be neglected. In 

this context, appears probably the most important non-dimensional number of the 

fluid mechanics: the Reynolds Number, which is exactly the relation between 

advective and diffusive terms, as presented in equation 2.12. 

𝑅𝑒 =
𝜌 𝑈 𝐿

µ
 (2.12) 

The term 𝐿 represents a characteristic dimension of the flow, while 𝑈 is the 

characteristic flow velocity. When the Reynolds number is small, any perturbation 

in the flow is dissipated by viscous effects. This is the so-called Laminar Flow. A 

whole different scenario happens when the Reynolds number is increased. The 

mechanisms of turbulence generation, as well as its maintenance and propagation 

to different regions of the flow are still not fully understood and is a field of constant 

study (Adrian, 2007; Martins, 2016).  

 Probably the first scientist to perform experiments to understand when a 

transition from laminar to turbulent pipe flow would occur was Osborne Reynolds 

in 1883, who noticed that when the number which nowadays has his name reached 

a value around 3000, the flow changed from apparently organized to chaotic 

(Kundu et al. 2016).  The laminar threshold of the Reynolds number when transition 

to turbulent flow occurs differs for different applications, being around 2000-3000 

to internal flows and up to 106 for the flow over a flat plate. Figure 2.1 presents an 

image of the transition from laminar to turbulent flow over an inclined plate. 
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Figure 2.1 – Actual image of the transition from laminar to turbulent flow (Van 

Dyke, 1982). 

 

2.1. The turbulence phenomenon 

It is interesting to note that despite most people have not deep studied the 

turbulence phenomenon, the word is used in the quotidian to express something 

chaotic, without order. Even though there are many definitions of what a turbulent 

flow is (Davidson, 2003), this idea of a random/irregular system is always present.  

Turbulent flow is inherently three-dimensional, with the velocity oscillations 

being maintained by the stretching/squeezing of vortices lines, what cannot happen 

in a two-dimensional flow. The so-called vortex stretching mechanism is a 

dissipative phenomenon, where bigger vortices (see chapter 4.4) stretch smaller 

vortices and so on, giving birth to the several turbulent flow scales, with energy 

being transferred from bigger to smaller scales where it is finally dissipated in the 

form of heat by the viscosity. Turbulent flows are, therefore, dissipative, and require 

a continuous energy supply to be maintained.  

The process of energy transferring from the bigger to the small flow scales is 

commonly called energy cascade and was first mentioned by Richardson (1922), 

who wrote: 

 

“big whirls have little whirls that feed on their velocity, and little whirls 

have lesser whirls and so on to viscosity – in the molecular sense” 

 

Both simulations and experimental data of different turbulent flows support the 

energy cascade theory (George, 2013).  
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 The first author to estimate the size of the smaller flow whirls was 

Kolmogorov (1941), who assumed that on the microscales where dissipation 

occurs, the Reynolds number is approximately unitary (i.e., inertial and viscous 

effects are equivalent) and the characteristic velocity of the smaller scales is given 

by 𝑢𝑘 = 𝜈/𝜂𝑘 , where 𝜂𝑘  is the size of the smaller vortices and 𝜈 =  µ/𝜌 is the 

kinematic viscosity .  

 The energy dissipation mentioned before is given by the rate of 

“destruction” of turbulent kinetic energy (k) and was estimated by Kolmogorov, 

using dimensional analysis, as presented in equation 2.14. 

𝜀 =  −
𝑑𝑘

𝑑𝑡
 (2.13) 

𝜀 ≅
𝑢𝑘

𝜂𝑘
 (2.14) 

The so-called Kolmogorov length, time and velocity scales, characteristic of 

the dissipative eddies of the flow, can therefore be calculated using dimensional 

analysis as: 

𝜂𝑘 = (
𝜈3

𝜀
)

1/4

  , 𝑢𝑘 = (𝜈 𝜀)1/4       ,      𝜏𝑘 = (
𝜈

𝜀
)
1/2

 (2.15) 

As one can observe, the statistics of the smaller scales of the flow depend only on 

the dissipation rate and the kinematic viscosity. The a-priori estimation of the 

dissipative rate, however, is not straightforward. In fact, the proper calculation of 

the rate of dissipation of turbulent kinetic energy for a Newtonian incompressible 

fluid is given in equation 2.16 (Foucaut et al. 2016), where the superscript line 

indicate that the derivatives are time-averaged (i.e., the dissipative rate is a 

statistical quantity). 

𝜀 =
𝜈

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 

𝜕𝑢𝑗

𝜕𝑥𝑖
)

2

 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (2.16) 

A common approach to estimate the size of the Kolmogorov scales without 

information about the smaller scales itself is to compute it in the form of the flow 

characteristic velocity and length of the bigger scales: 

𝜀 ≅
𝑈3

𝐿
 (2.17) 
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Using this approach, it is interesting to calculate the ration between the bigger and 

the smaller flow scales: 

𝐿

𝜂𝑘
 ~  𝐿 (

𝜀

𝜈3
)
1/4

~ (
𝐿3𝑈3

𝜈3
)

1/4

 ~ 𝑅𝑒3/4 (2.18) 

 

Equation 2.18 clearly demonstrate the wide-range of flow scales present in a 

turbulent flow. For illustration, one can imagine water flowing with an average 

velocity of 1m/s in a Square Duct with a side of 40cm. While the bigger scales have 

obviously the same order of magnitude of the side of the duct (40cm), the smaller 

scales have approximately 0.015mm, almost 3000 time smaller.  

 

2.2.Mathematical description of turbulence 

As mentioned before, turbulence is a chaotic phenomenon, so the most-

intuitive way to describe it is statistically. A common approach is to decompose the 

relevant quantities into a time-averaged term plus a fluctuating term, the so-called 

Reynolds decomposition (Pope, 2000). Equation 2.19 present the decomposition 

applied to the velocity vector, while the time-averaged procedure for a flow quantity 

ø is described in equation 2.20, 

𝑢𝑖(𝑥, 𝑡) =  𝑢�̅�(𝑥, 𝑡) + 𝑢𝑖
′(𝑥, 𝑡) (2.19) 

ø̅(𝑥) =  lim
𝑇→𝑇1

1

𝑇
∫ ø(𝑥, 𝑡)𝑑𝑡

𝑇

0

 
(2.20) 

 

where T1 is a time large enough to proper represent the average of each quantity. It 

is important to emphasize that in steady-state RANS applications this time can be 

assumed as infinity, what is not true for Unsteady RANS (URANS), where such 

time must be smaller than the average flow transients. 

The stochastic variation of a velocity in a turbulent flow can be observed in  

figure 2.2, adapted from Davidson (2015). Two different measurements of the 

streamwise velocity of a flow past a cylinder are performed at a distance xo 

downstream the cylinder. Despite the completely different velocity signal with 

time, the time-averaged velocity remains the same. This behavior continues no 

matter how many measurements are performed. 
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 Using the Reynolds decomposition described in equation 2.19 on the 

pressure and velocity quantities, and following some mathematical manipulation, 

the incompressible Navier-Stokes equation becomes: 

ρ [
𝜕𝑢�̅�

𝜕𝑡
+ �̅�𝑗

𝜕𝑢�̅�

𝜕𝑥𝑗
] =  −

𝜕�̅�

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(μ

𝜕𝑢�̅�

𝜕𝑥𝑗
− ρ 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) (2.21) 

An extra term  (−ρ 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  ) appears on the right side of the equation, the so-called 

Reynolds Stress Tensor, which will be referred in this work as R* when negative 

and multiplied by the density or R = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  . It is important, however, to emphasize 

that the Reynolds Stress Tensor is not a proper stress, but a term to quantify how 

turbulent instantaneous fluctuations of the velocity influence on the mean quantities 

and vice-versa (Davidson, 2015).   

 

Figure 2.2 - Turbulent velocity fluctuations observed downstream a cylinder. 

Adapted from Davidson (2005). 

 

Equation 2.21 is the base of the so-called RANS - Reynolds Averaged Navier-

Stokes model, which will be better described in section 2.2.1. In this approach, all 

scales of the turbulence phenomenon are modelled and incorporated inside the 

Reynolds Stress Tensor. Other common approach is the Large Eddy Simulation - 

LES, where a sub-grid tensor is incorporated into the mean-momentum equations, 

modelling the smaller structures of the flow, while bigger vortices are captured and 

solved. If the RANS and LES approaches are turbulence models, the Direct 
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Numerical Simulations – DNS of the Navier-Stokes equation solves all turbulent 

scales without a model, being considered an exact source of flow data. DNS’ 

solutions, however, require meshes and time steps refined up to the Kolmogorov 

scales, being, still nowadays, prohibitively expensive to most industrial applications 

(Pope, 2000; Wilcox, 2006; Cruz et al., 2019). 

 

2.2.1. Turbulence Modelling: RANS and the Boussinesq Hypothesis 

RANS models are based on the averaged equations presented in equation 

2.21. Usually, when the problem to be solved involves a transient phenomenon of 

the mean flow (i.e., the first term on the left cannot be disregarded), the model is 

called Unsteady Reynolds-Averaged Navier-Stokes (URANS), while RANS 

usually refers to steady state simulations.  

The direct solution of the Navier-Stokes and mass-conservation equations 

requires a solution for a determined system with 4 unknowns (u, v, w, and p) and 4 

equations. On the other hand, the RANS approach poses 6 additional terms of the 

Reynolds Stress Tensor, what changes the system to indeterminate. This is the 

closure problem of turbulence, which imposes the necessity of additional equations 

or relations to solve any problem using a RANS approach.  

The traditional approach to model the tensor R* was proposed by  

Boussinesq (1877), being commonly referred as “The Boussinesq Turbulent 

Hypothesis”. It consists in applying an analogy of the deviatoric part of the 

Reynolds Stress Tensor R* to the deviatoric part of the Viscous Stress Tensor τ, as 

presented for an incompressible fluid in equations 2.22 and 2.23. While the 

proportionality parameter between τ and the Strain Rate S is the molecular viscosity 

of the fluid, for R* is a quantity called turbulent viscosity (µ𝑡). 

𝑑𝑒𝑣(𝜏𝑖𝑗) = 2µ𝑆𝑖𝑗 =  𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.22) 

𝑑𝑒𝑣(𝑅 𝑖𝑗
∗ ) = 2µ𝑡𝑆�̅�𝑗 = 𝜇𝑡 (

𝜕𝑢�̅�

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) 

(2.23) 

The tensor R*, however, cannot be solely modelled by its deviatoric part. In fact, if 

that was the case, the trace of R* (its first invariant) would be −𝜌𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅ = 2𝜇𝑡 (
𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑖
) , 

which, for an incompressible fluid is equal to zero, what is not reasonable. The 
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missing isotropic part is governed by the turbulent kinetic energy, 𝑘 =
1

2
𝑢𝑖

′𝑢𝑖
′̅̅ ̅̅ ̅̅ , 

representing the dynamic pressure associated to the eddies. The final model for the 

Reynolds Stress Tensor, for an incompressible fluid, is presented in equation 2.24. 

𝑅𝑖𝑗
∗ = 𝜇𝑡 (

𝜕𝑢�̅�

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗 

(2.24) 

The final form of the Reynolds-averaged Navier-Stokes equations, applying the 

Boussinesq hypothesis is presented in equation 2.25. The isotropic part of R*, as 

well as all body forces are written inside the modified pressure term (p*).   

ρ [
𝜕𝑢�̅�

𝜕𝑡
+ �̅�𝑗

𝜕𝑢�̅�

𝜕𝑥𝑗
] =  −

𝜕𝑝∗̅̅ ̅

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(μ𝑒𝑓 (

𝜕𝑢�̅�

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
)) (2.25) 

Instead of determining the 6 different terms of R*, the closure problem now 

simplifies to establish the effective viscosity 𝜇𝑒𝑓 =  𝜇 + 𝜇𝑡, or the turbulent 

viscosity itself.   

 The different approaches to calculate the turbulent viscosity departed from 

the Boussinesq hypothesis are known as turbulence models. The simplest model is 

to assume a constant turbulent viscosity in the flow, what does not return reasonable 

results. More reasonable models are those based on 1 differential equation, such as 

the Spalart-Allmaras model (Spalart and Allmaras, 1992), specially designed for 

aerodynamic applications, or those based on 2 differential equations, such as the  

k-ε model (Jones and Launder, 1972; Launder and Sharma, 1974) and the k-ω 

model (Wilcox, 1988). For engineering applications, the most widely used model 

is the k-ε (Wilcox, 2006), given its robustness and reasonable results commonly 

found when comparing it to known data. More attention, therefore, will be given 

here to this model.  

 

2.2.1.1. The k-ε model 

The basis of the k-ε model is to assume that the turbulent viscosity can be 

calculated using k and ε, as presented in equation 2.26. 

𝜇𝑡 = 𝐶𝜇𝜌
 𝑘2

𝜀
    (2.26) 
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The scalars k and ε are obtained by transport equations, derived manipulating the 

momentum conservation equation, which for an incompressible fluid are given by 

equation 2.27 and 2.28 (Jones and Launder, 1972),  

𝜌
𝜕𝑘

𝜕𝑡
+ 𝜌𝑢�̅�

𝜕𝑘

𝜕𝑥𝑗
= 𝑃𝑘 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] − 𝜌𝜀    (2.27) 

𝜌
𝜕𝜀

𝜕𝑡
+ 𝜌𝑢�̅�

𝜕𝜀

𝜕𝑥𝑗
=  

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + (𝐶1𝜀𝑃𝑘 − 𝐶2𝜀𝜌𝜀)

𝜀

𝑘
     (2.28) 

where Pk is the production of turbulent kinetic energy, given by equation 2.29. 

   𝑃𝑘 = 𝜇𝑡 (
𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
)

𝜕�̅�𝑖

𝜕𝑥𝑗
 (2.29) 

Finally, one can see that there are many constants used in the equations for k and ε, 

and different values are found in the literature. The most common ones are 

presented in Table 2.1.  

        

Table 2.1 - Constants used in the k-ε model. 

𝐶𝜇 𝐶1𝜀 𝐶2𝜀 𝜎𝑘 𝜎𝜀 

0.09 1.44 1.92 1.0 1.3 

 

Despite a degree of empiricism innate to the k-ε model, it generally provides 

reasonable and useful results, with a low computational cost (Mohammadi and 

Pironneau, 1993). It is important, however, to emphasize that close to the wall, 

viscous effects are predominant, so the model requires additional treatment using 

the so-called laws of the wall (Bradshaw and Hung, 1995; Pope, 2000). The friction 

velocity is then defined as  

   𝑢𝜏 = √
𝜏𝑤

𝜌
 (2.30) 

where τw is the wall shear stress. With the friction velocity, the viscous length scale 

is defined: 

   𝛿𝑣 =
𝜈

𝑢𝜏
 (2.31) 

where 𝜈 =
𝜇

𝜌
 is the kinematic viscosity. The distance to the wall and the mean 

velocity vector can then be measured in terms of viscous dimensions, also called 
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wall units: 𝑦+ =
𝑦

𝛿𝑣
 and 𝑢+ = 

𝑢

𝑢𝜏

̅
. The friction Reynolds number can also be defined 

as 𝑅𝑒𝜏 =
𝑢𝜏𝛿

𝜈
 , where δ is a flow relevant length (such as the boundary layer 

thickness or the side of a square duct).  

 Depending on the distance to the wall and on Reτ (i.e., depending on y+), 

viscous or inertial effects dominate. While close to the wall, in the so-called viscous 

sublayer, the relation 𝑢+ = 𝑦+holds, for a considerable larger region, a logarithmic 

relation 𝑢+ =
1

𝑘
ln(𝑦+) + 𝐶 prevails. The different regions are summarized in table 

2.2, adapted from Pope (2000). 

 

Table 2.2 - Different wall regions in a wall-bounded turbulent flow. 

Region Location Property 

Viscous sublayer y+ < 5 

Reynolds stresses are negligible. Viscous 

stresses dominate and the linear relation 

𝑢+ = 𝑦+can be used. 

Buffer layer 5 < y+ < 30 

 

Both viscous and Reynolds stresses 

control the flow. 

 

Log-law region y+ > 30 / y < 0.3δ 

Viscous stresses are negligible and 

Reynold stresses dictates the flow. The 

velocity is given by the log-law  

𝑢+ =
1

𝐾
ln(𝑦+) + 𝐶, where 𝐾 and 𝐶 are 

the von Kármán empirical constants. 

 

Frequently, in CFD the buffer layer is neglected and the von Kármán constants used 

are K = 0.4 and C = 5.5. The universality of those constants with the Reynolds 

number and flow geometry, however, is still an open discussion (George, 2007).  

In the wall region, expressions for k and ε are also required. While it can be 

proved that k is approximately constant close to the wall, ε is obtained from an 

assumption that the production rate is equal to the dissipation rate (𝑃𝑘 = 𝜌 𝜀). The 

final equations are: 
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𝜕𝑘

𝜕𝑦
= 0        and      𝜀 =

𝐶𝜇
3/4

𝑘3/2

𝐾𝑦
   (2.32) 

where y is the direction perpendicular to the wall. There are other approaches 

available in the literature to deal with the flow close to the wall, such as the low-

Reynolds k- ε model, where dumping functions are applied close to the wall, to 

artificially decrease the turbulence intensity at those regions. Those models are not 

the focus of this work and, therefore, will not be presented here. An interested 

reader can find more information in the dissertation of Murad (2018) or in the works 

of Lam and Bremhorst (1981), Launder et al. (1977) and Michelassi et al. (1993), 

among others.  

 

2.2.2.Turbulence Modelling: alternative RANS modelling approaches 

Although the use of the Boussinesq hypothesis to model the Reynolds Stress 

Tensor is the most traditional and commonly used closure solution to solve the 

RANS equations, it fails in situations of rapid dilatation, accentuated streamlines 

curvatures, secondary flows, adverse pressure gradients, sudden variations in the 

mean strain rate, among others (Wilcox, 2006). 

One popular alternative to the Boussinesq hypothesis to model R*, is called 

Non-linear eddy viscosity models (NLEVM). The usual structure of these models 

is presented in equation 2.33, where NLTij are the Non-linear terms (Gatski et al., 

2000; Wallin and Johanson, 2002). 

   𝑑𝑒𝑣(𝑅𝑖𝑗
∗ ) =  2µ𝑡𝑆�̅�𝑗 + 𝑁𝐿𝑇𝑖𝑗 (2.33) 

There are many models available in the literature, such as the Lien Cubic Model 

(Lien et al., 1991), or those proposed by Zhang et al. (2012) and Park et al. (2003). 

All of them based on several empirical constants.  

 A different path to model the Reynolds stress tensor has been developed in 

the last decade, following the work of Thompson (2008). There, the author presents 

two different methodologies of orthogonal decomposition for a matrix. In the first 

methodology, a generic matrix Aij can be decomposed in a part linear to a generic 

tensor Bij (𝛼𝐴𝐵) plus a part orthogonal to the tensor Bij (A𝐵
┴ ), as presented in 

equation 2.34.  

   𝐴𝑖𝑗 = 𝛼𝐴𝐵 + A𝐵
┴  (2.34) 
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In the second methodology, the matrix is decomposed into an in-phase component 

ϕA
B,, which has the same eigenvectors of B, and an out-phase component ϕ̃A

𝐵, with 

different eigenvectors of B, as presented in equation 2.35. The subspace generated 

using this approach is larger than using the linear and perpendicular terms of 

equation 2.34 (i.e., a broader number of tensors can be represented).  

   𝐴𝑖𝑗 = ϕA
B,H + ϕ̃A

𝐵,𝐻
 (2.35) 

The superscript H indicates that the terms are all written using the eigenvalues of a 

generic matrix Hij. Using this last definition, and the Cayley-Hamilton theorem, 

Thompson et al. (2010) proposed different turbulent models based on mean 

kinematic quantities, which were later evaluated using a-priori analysis by Nieckele 

et al. (2016) and a-posteriori analysis by Murad et al. (2018) and dos Santos et al. 

(2022). From the different models proposed, the best agreement obtained by all 

authors is for the model presented in equation 2.36, where 𝛼𝐷0, 𝛼𝐷1, 𝛼𝐷2 and 𝛼𝛽 are 

model coefficients, obtained from the a-priori analysis of Nieckele et al. (2016), 

from noble DNS data. 

𝑑𝑒𝑣(𝑅𝑖𝑗) =  𝛼𝐷0𝛿𝑖𝑗 + 𝛼𝐷12𝑆�̅�𝑗 + 𝛼𝐷2𝑆�̅�𝑗
2 + 𝛼𝛽𝑃𝑖𝑗    (2.36) 

The tensor Pij is the non-persistence of strain tensor (Thompson and Mendes, 2005), 

a kinematic quantity capable of quantifying the capacity of a fluid to avoid being 

stretched by the flow. It is given by equation 2.37, 

𝑃𝑖𝑗 = 𝑆𝑖𝑘𝑊𝑘𝑗
̂ − 𝑊𝑖�̂�𝑆𝑘𝑗 (2.37) 

where 𝑊𝑖�̂� is the relative rate of rotation tensor, a more consistent way of evaluating 

flow rotation (Pereira et al., 2020) and given by: 

𝑊𝑖�̂� = 𝑊𝑖𝑗 − 𝛺𝑖𝑗
𝑆  (2.38) 

The tensor Wij is the vorticity tensor given by  

𝑊𝑖𝑗 =
1

2
(
𝜕�̅�𝑖

𝜕𝑥𝑗
−

𝜕�̅�𝑗

𝜕𝑥𝑖
) (2.39) 

and 𝛺𝑖𝑗
𝑆  is the rate of rotation of the eigenvectors of the tensor Sij, given by: 

𝛺𝑖𝑗
𝑆 = �̇�𝑘

𝑆𝑒𝑘
𝑆   (2.40) 

where 𝑒𝑘
𝑆 is any of the three eigenvectors of S and �̇�𝑘

𝑆 is its material derivation. This 

methodology to calculate P has an intrinsic problem: the quantity ΩS is not always 

uniquely determined and easy to compute. An alternative and more elegant 

procedure is proposed by Thompson et al. (2010) using the in-phase and out-of-
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phase decomposition described in equation 2.35 for the material derivative of S  

(�̇� = Φ�̇� + Φ̃�̇�). The procedure is as follows: 

 

1) Calculate �̇�, the material derivative of the strain rate S. 

2) Use the matrixes Q and Q-1, that diagonalizes S to write �̇� in the basis of the 

eigenvectors of S (i.e., �̇�𝑆 = 𝑄−1 ∙ �̇� ∙ 𝑄). 

3) Remove the elements from the diagonal of �̇�𝑆. It can be proved that the remaining 

tensor is equal to the out of phase tensor Φ̃�̇�,𝑆 = −(𝑆 ∙ 𝛺𝑆 − 𝛺𝑆 ∙ 𝑆), in the basis 

of the eigenvectors of S. 

4) Use the matrixes Q and Q-1, that diagonalizes S to write the out of phase tensor 

in the cartesian basis (Φ̃�̇� = Q ∙ Φ̃�̇�,𝑆 ∙ 𝑄−1
 ). 

5) Calculate the non-persistence of strain tensor from equation 2.41. 

𝑃 = 𝑆 ∙ �̂� − �̂� ∙ 𝑆 = 𝑆 ∙ 𝑊 − 𝑊 ∙ 𝑆 + Φ̃�̇� (2.41) 

More details about the procedure above can be found in the works of Thompson 

(2008) and Thompson et al. (2010).  

Despite the recent advances in turbulence modelling, as described above, 

there is a difficulty to find models that are numerically stable, accurate and 

computationally cheap. Even though some of the alternative models described 

return satisfactory results for applications where the traditional models based on the 

Boussinesq hypothesis fails, they either require too much computational power or 

are hard to converge. The recent advances in artificial intelligence and Machine 

learning provides a new tool that can help enhancing turbulence modelling. This 

theme will be better discussed in chapter 6 and is the purpose of this work.  

 

2.3. Turbulent Square Duct Flow 

The square duct flow is one type of internal flow: when the fluid is confined 

in a closed conduit with height and width equal to 2δ (the aspect ratio, AR, is equal  

to 1). In this section, some relevant quantities of this special type of flow will be 

presented. Downstream of approximately 40D of the entrance of the channel, the 

flow can be considered hydrodynamically fully developed (Rohsenow and Hartnett, 

1973) and statistically invariant with the streamwise direction (i.e., all derivatives 
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of averaged quantities in the streamwise directions are zero). In this work, the 

Reynolds number used to characterize the flow will be based on the hydraulic 

diameter of the channel (Dh ≡ 4 area / perimeter = 2δ), where δ was defined as half 

width of the square duct.  

Probably the main interesting feature of the square duct flow is the presence 

of 4 pairs of counter-rotating vortices that appears close to the vertices of the square 

duct, in the mean flow as presented schematically in figure 2.3. This flow movement 

is commonly referred as Prandtl flow of second kind (Vinuesa et al., 2014) and 

appears due to imbalances in the spanwise and wall-normal terms of the Reynolds 

Stress Tensor Ryy and Rzz (Wang et al., 2017; Wu et al., 2018) that cannot be 

captured by the traditional linear-eddy viscosity modelling. For this reason, this 

flow geometry is commonly used by authors seeking to improve turbulence 

modelling.  

 

 

Figure 2.3 – Square duct recirculation regions close to the corners of the channel. 

  

Regarding the axial pressure drop in a square duct, a simple force balance 

in a control volume returns the following equation: 

−
𝑑�̅�

𝑑𝑧
= 2

𝜏𝑤

𝐻
 (2.42) 

In the hydrodynamic developed region, the negative and constant mean pressure 

drop is balanced by the shear stress at the wall.  

 The friction-coefficient for a flow is commonly defined as 
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𝑓 =
𝜏𝑤

1
2𝜌�̅�2

 
(2.43) 

where �̅� is the average streamwise velocity, calculated as �̅� =
1

𝐴
∫𝑢𝑑𝐴, being A 

the cross-sectional area of the flow.  

By combining equations 2.42 and 2.43, one reaches the widely known 

Darcy-Weisbach equation, written in equation 2.44 using half size of the square 

duct as a reference. 

−
𝑑𝑝𝑤̅̅̅̅

𝑑𝑧
= 𝑓 𝜌 

�̅�2

𝐻
 (2.44) 

There are many relationships for the friction factor available in the literature, such 

as the Colebrook-White implicit equation for a round pipe: 

1

√4𝑓
=  −2 log10 (

𝜀

3.7𝐷ℎ
+

2.51

𝑅𝑒√4𝑓
 ) (2.45) 

where ε is the roughness of the pipe (ε = 0 for smooth pipes). Care must be taken 

when one uses the equations above. The way equation 2.44 and 2.45 are written,  

f is the fanning friction factor, which is 4 times the Darcy friction factor, also 

commonly used. Also, it is worth saying that specific correlations shall be used for 

specific flow geometries. 

 Finally, the averaged turbulent velocity profile in the centerline of a square 

duct can be approximated by the empiric turbulent power-law (Fox. et al., 2020): 

�̅�

�̅�𝑚𝑎𝑥

=  (
𝑦

𝐻
)
1/𝑛

  
 

(2.46) 

Where �̅�𝑚𝑎𝑥 is the maximum averaged streamwise velocity in the square duct and 

n is an empiric exponent that increases with the Reynolds number (i.e., the more 

turbulent the flow is, the flatter is the velocity profile). 

 

 

 



   

 

 
 

3 
The Square Duct Experiment 

In this chapter, a detailed description of the square duct experiment will be 

presented. The test section is discussed first, along with a review of the PIV 

technique and its variation used in the present work: The Stereoscopic PIV 

technique. The application of this measurement technique and the system used to 

measure the pressure gradient along the square channel experiment are both 

detailed. Finally, a description of the experimental procedure is presented. 

 

3.1. General description of the test section  

The test section consists of a square channel, made entirely of Plexiglass, with 

4 meters long and cross-section of 40x40 mm2, leading to a total length equivalent 

to 100 hydraulic diameters. Figure 3.1 presents a schematic view of the test section. 

The square channel was built on a Bosch aluminum structure, what guaranteed 

stiffness to the assembly, and allowed its proper leveling. Two plenum chambers 

with 300x300x300mm3 were installed both upstream and downstream of the square 

channel with the function to attenuate possible transient effects generated by the 

pump. During the experiments, the plenum chambers remained filled approximately 

80% with the working liquid and 20% with air. A set of screens with 1x1 mm2 were 

installed inside the upstream chamber, with the double function of accelerating the 

statistical development of the turbulent flow and breaking large-scale vortices that 

could be generated due to the bend of the inlet hoses and the changes in the pipe 

geometry (from the inlet hose to plenum chamber). The connection between the 

return hose and the square channel was made through a convergent nozzle, installed 

inside the downstream plenum chamber. With the aim to measure axial pressure 

gradients,1mm holes were installed along all the test section. Those pressure taps 

were equally spaced of 250 mm and positioned at the upper wall of the square 

channel. It is important to state that the test section was already available at the 

Fluids Engineering Laboratory, at PUC-Rio, and was modified by the author of the 



   

 

 
 

present work to perform the necessary Stereoscopic PIV and pressure gradient 

measurements.

 

 

 

Since the experiment was designed to work not only with pure water, but also 

with water containing drag reducing polymers, highly subjected to mechanical 

degradation, a progressive cavity pump was chosen, instead of a centrifugal pump. 

The progressive cavity pump not only imposes less shear stress stresses on the fluid 

than the centrifugal pump, but also eliminates the need of a flowmeter (as long as 

the pump operational curve is known). In this experiment, a Netszch progressive 

cavity pump model NM031 was used, driving liquid from a 400L open reservoir 

(Alpina 400L tank) to the test section. A WEG CRE-04 frequency invertor was used 

to control of the rotation of the pump motor and, consequently, the liquid flowrate 

through the square duct. Data was acquired for a Reynolds number (based on the 

hydraulic diameter of the channel) range of 7000 up to 44500, at the maximum 

operating point of the channel. Flow rates above this limit were avoided due to risks 

of leakage and damage to the adhesive bonds of the Plexiglas walls of the channel, 

due to an excessive internal pressure.  

Figure 3.1 - Tridimensional draw of the test section. Laser and cameras are not 

illustrated.  
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The optical measurement station was positioned 2.5m downstream of the inlet 

plenum box, guaranteeing a development length of 63 hydraulic diameters, longer 

than the approximately 40 diameters usually suggested in the literature (Rohsenow 

and Hartnett, 1973). This long development length allied with the screens installed 

inside the inlet plenum chamber were enough to guarantee a fully developed 

turbulent flow at the measurement station, independent of inlet effects.  

 

3.2. The PIV technique 

The measurement of velocity vector fields has evolved along the years. 

Despite having a high accuracy, the traditional point measurement techniques (e.g., 

hot-wire/hot-film probes and Laser Doppler velocimetry) can only provide local 

velocity vector (Goldstein, 1996). Since several quantities of interest such as the 

shear stress and the vorticity are calculated based on spatial derivatives, the 

assessment of those quantities using point-wise measurements would require the 

use of multiple probes, such those used by Tuktun et al. (2009). The high 

complexity and cost of those assembles allied with the possibility of disturbing the 

flow is a relevant drawback of this kind of arrangement, giving room to the more 

recent multi-dimensional techniques, such as Particle Image Velocimetry and its 

variations. 

The PIV technique is an experimental technique capable of measuring 

velocity fields based on the processing of image pairs, obtained with a known time-

interval. These images capture the light refracted by seeding particles, added to the 

flow, and are acquired by an image acquisition system, working in synchronization 

with the illumination system.  

The illumination system is formed by a light source and a set of lenses, 

capable of forming a light sheet with high energy and controlled width. According 

to Raffell et al. (2018), lasers are usually used as light sources due to its capacity of 

generating monochromatic light, with high energy and controlled time intervals. In 

some applications, however, other sources such as LED (Light Emitting Diode) and 

Xenon Lamps are also used, presenting a major advantage of having low costs and 

higher safety. 

The image acquisition system is formed by one or more cameras (the number 

of cameras varies depending on the variation of the PIV technique being used). 
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There are mainly two types of cameras, based on it sensor´s technology: those with 

CCD (Charge-coupled device) and with CMOS (Complementary metal-oxide 

semiconductor). The difference between both sensors lies on its electronic 

architecture. On CMOS sensors, each pixel (or photosensitivity element) of the 

camera sensor has a dedicated electronic circuit. This structure allows each pixel to 

be assessed independently, enabling the user to modify the camera resolution as it 

is convenient. The CCD sensors do not have a dedicated electronic circuit to each 

pixel, what implies on the necessity of a reading time after the images are acquired, 

decreasing the maximum sampling frequency that the camera can operate.   

The illumination and image acquisition systems are both controlled by a 

synchronizer, what guarantees that the laser fires when the camera shutter is opened, 

at well controlled time intervals.  

 

Figure 3.2 - Working principle of the PIV technique. Adapted from Dantec 

dynamics. 
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The working principle of the PIV technique is schematically presented in 

figure 3.2. Initially, a pair of images of particles seeded to the flow is acquired, with 

a known time interval. The images are then divided in different regions called 

interrogation windows, with a particle pattern inside of it. The velocity vector field 

is then obtained by the cross correlation of the particle patterns inside each 

interrogation window of the first image with interrogation windows dislocated in 

the second image. This procedure produces a correlation map, such as the one 

illustrated in figure 3.3. The displacement of the particle pattern is given by the 

cross-correlation peak. Several interpolation techniques such as parabolic and 

Gaussian adjustment are commonly used here to increase the resolution on the 

determination of such maximum point up to 0.01 pixels (Adrian and Westerweel, 

2001), significantly increasing the accuracy of the PIV technique. 

 

 

 

 

 

 

 

 

 

 

 The cross-correlation between two functions is equal to the product of the 

conjugated complex pair of the Fast Fourier Transformation (FFT) of the functions. 

Therefore, it is common to use interrogation windows with 2n pixels, so one can use 

the symmetry properties of the FFT to decreases the time necessary to process the 

images. A detailed revision on the application of FFT to signal processing can be 

found in Haykin and Van Veen (2002). 

 

Figure 3.3 – Typical cross correlation map. Adapted from Almeida (1997). 
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3.2.1. The Stereoscopic PIV technique  

The Stereoscopic PIV (Stereo-PIV, SPIV) technique is an evolution of the 

traditional 2D-PIV. While the traditional technique can only measure 2 components 

of the velocity vector in a plane (the so-called 2D-2C, two-dimensions and two 

components), the SPIV is capable of measuring all three-components of the velocity 

vector, also in a plane. It is the so-called 2D-3C technique. 

The Stereo-PIV technique working principle is similar to the human vision. 

Our brain is capable of merging the two images obtained by both of our eyes into 

one, presenting us with a three-dimensional notion. Comparably, in SPIV two 

cameras provide image pairs of the flow, from two different perspectives. The 

cross-correlation between those image pairs provide vectors which are 

mathematically combined to infer the three-dimensional displacement of the 

particle pattern: Δx, Δy e Δz (Prassad, 2000). 

Figure 3.4 illustrate how the cameras are usually arranged in a common 

SPIV assembly. Such configuration, called by Prassad (2000) of rotational 

configuration, provides easy access to the measurement region (object plane). To 

ensure that all measurement region is equally focused, the planes formed by the 

camera sensor (image plane), by the camera lenses and by the object must be rotated 

among each other so that they intercept at a single line. Such condition, also 

illustrated in figure 3.4 is called Scheimpflug´s condition.  

 

 

 

 

 

 

 

 

 

 

Since in the typical camera arrangement for SPIV measurements, the object 

plane is rotated in relation to the image plane, the magnification along the image is 

Figure 3.4 - Typical camera arrangement for SPIV applications (Prassad, 2000). 
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not constant. The magnification (Mn) is defined in equation 3.1 as the ratio between 

the image size at the camera sensor and the real size of the object.   

  𝑀𝑛 =  
𝐼𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒

𝑅𝑒𝑎𝑙 𝑠𝑖𝑧𝑒
  (3.1) 

As discussed previously, the Stereo-PIV technique requires a mathematical 

function do infer, indirectly, the three-dimensional displacement of the particles 

pattern. The literature presents several approaches to determinate such 

mathematical function. Some examples are: geometric reconstruction (Prasad and 

Adrian, 1993), when the geometric characteristics of the system are known; and 2D 

calibration (Willert, 1997) or 3D calibration (Soloff et al., 1997).  

In this work, the software Insight 4G by TSI was used both to acquire and 

to process the images. The software employs the 3D calibration methods, which 

consists in generating a mapping function from images of a calibration target 

positioned at equally-spaced planes, along the measurement region and parallel to 

the laser light sheet. The mapping function is a polynomial expression that 

correlates the spatial coordinates (x, y and z) to the image coordinates (X,Y), 

according to equation 3.2.  

𝐹𝑥,𝑦
𝑖 = 𝑋𝑖 , 𝑌𝑖 = 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑥

2 + 𝑎5𝑥𝑦 + 𝑎6𝑦
2 +

𝑎7𝑥𝑧 + 𝑎8𝑦𝑧 + 𝑎9𝑧
2 + 𝑎10𝑥

3 + 𝑎11𝑥
2 𝑦 + 𝑎12𝑥𝑦2 + 𝑎13𝑦

3 +

𝑎14𝑥
2𝑧 + 𝑎15𝑥𝑦𝑧 + 𝑎16𝑦

2𝑧 + 𝑎17𝑥𝑧2 + 𝑎18𝑦𝑧2                       

(3.2) 

The superscripts “i” indicate each camera. The coefficients “a” are obtained 

by the least square method, using the images of the calibration target. At the end, 

there are in total 4 equations, one for each coordinate X and Y of each camera. 

The spatial and actual displacement of the particles (s) correlates with the 

recorded displacement of them at the images (S) according to equation 3.3, which 

is approximated to equation 3.4. 

  𝛥𝑆 = 𝐹(𝑠 +  𝛥𝑠) − 𝐹(𝑠)  (3.3) 

  𝛥𝑆 =  𝛻𝐹(𝑠)𝛥𝑠  (3.4) 

Since the coordinate s is a function of the spatial coordinates x,y and z; equation 

3.4 is written in the form of a matrix product, as shown in equation 3.5. 
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  [

∆𝑋1
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∆𝑌2
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(2)
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𝜕𝐹𝑥
(2)

𝜕𝑧

𝜕𝐹𝑦
(2)

𝜕𝑥

𝜕𝐹𝑦
(2)

𝜕𝑦

𝜕𝐹𝑦
(2)

𝜕𝑧 ]
 
 
 
 
 
 
 

[
∆𝑥
∆𝑦
∆𝑧

]  (3.5) 

As one can verify, equation 3.5 is a super-dimensioned system, with 3 

variables and 4 equations. However, due to natural errors presented in the system, 

the equations are not linearly dependent, and can, therefore, be utilized together 

with a least-square regression to minimize measurements uncertainties.  

Finally, as can be inferred from the paragraphs above, the vectors combined 

during the three-dimensional reconstruction must be obtained at the same spatial 

region. Such condition, given the variation of magnification along the images or 

even the lack of camera´s symmetry, is not always easily satisfied. Different 

approaches to address this issue are described by Lin (2006), involving the 

distortion of the cross-correlation grid from the image plane to the object plane, 

distorting vectors from the image plane onto the object plane and interpolating it in 

a common grid, or distorting the image to the object´s plane. This later approach is 

the one chosen in the present work, as it has the main advantage the fact that the 

cross-correlation is performed in an image with a constant magnification, making 

it easier to distinguish flow from wall regions.  

 

3.3.  Measurement station 

Going back to the Square Duct channel, the measurement station is located 

2.5m (63 hydraulic diameters) downstream of the inlet plenum chamber. At this 

region, a visualization prism, filled up with water, was assembled around the square 

channel, as illustrated in figures 3.5 and 3.6. This is a common practice when 

performing PIV measurements of liquid flows, due to the optical distortions caused 

by the refraction of the light. Such effect is significantly attenuated by orienting the 

cameras lenses perpendicular to the prism surface while filling up the inner part of 

it with the same liquid within the flow (Van Doorne and Westerweel, 2007). 

The image acquisition system is formed by 2 Phantom Miro M340 cameras 

(2560x1600 pixels at 800 frames/second), assembled on a LaVision Scheimpflug 
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adaptor, with expansion rings and 55mm lenses with an aperture equals to f#16. 

Equipped this way, focused images of all transverse section of the square channel 

were obtained.  

The illumination system consisted of an evergreen laser (200mJ/pulse at 

15Hz), that in combination with spherical and cylindrical lenses were capable of 

generating a laser light sheet with a thickness of approximately 2mm, illuminating 

the whole transverse section of the channel, as illustrated in figure 3.5. Since the 

flow direction is perpendicular to the laser light sheet and the in-plane movements 

are order of magnitudes smaller than the streamwise velocity, the time-interval 

between consecutive image pairs were relatively high. Therefore, to minimize 

particle´s loss between image pairs, the laser light thickness used was considerably 

large. Both cameras and the laser were controlled by a 610036 synchronizer, by 

TSI. 

 

Specifically, at the measurement region, the upper part of the channel was 

built in such a way that it could be easily removed, providing quick access to the 

interior of the square channel, as detailed in figure 3.6. Such characteristic promotes 

not only an easy cleaning of the measurement region, avoiding that seeded particles 

Figure 3.5 - Schematic drawing of the measurement station, presenting the laser 

beam and light sheet, both cameras and the visualization prism. 



  62 
Chapter 3.    The Square Duct Experiment 
  

 

 
 

deposited at the wall influenced the visualization of the flow, but also the insertion 

of a calibration target, as will be discussed in section 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - Cameras assembled around the optical prism. One can see that the upper 

part of the channel at the visualization region can be removed. 

Figure 3.7 - Images of the test section downstream (a) and upstream (b) of the 

measurement region, during data acquisition. 
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Figures 3.7 (a) and 3.7 (b) present different views downstream and upstream 

of the measurement section, respectively. Figure 3.8 show, in details, the 

visualization prism and the laser light sheet during data acquisition. 

 

 

 

3.4. Calibration  

The calibration target consisted of a series of equally-spaced points, printed 

on a transparent sheet and fixed to an acrylic support, as illustrated in figure 3.9a. 

The acrylic support was attached to a translational stage, connected to a Mitutoyo 

micrometer head, with a spatial resolution of 10µm, as illustrated in  

figure 3.9b. A set of bearings were used to isolate movable from fixed parts, 

allowing the whole structure to be firmly attached with screws to the square 

channel, while at the same time, enabling the target to be moved. It is important to 

highlight that due to cameras positioning at opposite sides of the laser light sheet, a 

transparent target was required.   

Figure 3.8 - Visualization prism during data acquisition. 
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A total of 5 images of the calibration target, placed inside the square channel 

and equally spaced of 0.5mm were acquired. Cold lamps were positioned 

symmetrically to the cameras, at the opposite side of the prism, to provide back 

illumination. The acquired images were than treated to highlight the target points, 

binarized, and then used to determinate the coefficients of equation 3.2. The 

determination of the coefficients was performed using the software Insight 4G, by 

TSI, while the image treatment and binarization was performed with the software 

imageJ. 

Despite all the effort to position the target parallel to the laser light sheet, 

small miss-alignments were inevitable. To minimize such problem, a self-

calibration procedure (Bjorkquist, 2002) was performed, to enhance equation 3.2 

accuracy. This procedure was performed using images of the flow with a small 

concentration of seeded particles. 

 

  

3.5. Stereo-PIV optimization 

3.5.1. Seeding Particles 

The seeding particles used during the PIV technique must accomplish two 

opposite characteristics. They must be small enough to properly follow the flow, 

without interfering on it, and must be big enough to scatter light, allowing it 

Figure 3.9 - Images of the calibration target (a) and of the structure to support the 

micrometer head (b). 
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detection by the cameras. Despite antagonistic, given the relative popularity of the 

PIV technique, those characteristics are, nowadays, easily accomplished.  

To ensure a good detection by the cameras, particles are usually coated with 

some material that can enhance light scattering, such as silver. In this work, Potter 

Industries (SH400S20) particles, with 20% weight in silver, diameter of 13μm and 

density of 1.6g/cm3 were used. By evaluating the acquired images, it is clear even 

by the human eyes that the particles are properly captured by the cameras. The ratio 

of the light intensity from pixels with particles from those without particles, at the 

acquired images, was usually higher than 10, showing that particles can be easily 

detected, even with the noisy background of CMOS cameras.  

The capacity of a given particle to properly follow the flow is given by its 

Stokes number, as given in equation 3.6, 

𝑆𝑡 =
𝜏𝑝𝑎𝑟𝑡

𝜏𝑓𝑙𝑜𝑤
 (3.6) 

where 𝜏 is a characteristic time of the particle or of the flow (Raffel et al., 2018). 

This last one is given by equation 3.7, where dp and ρpart are the diameter and density 

of the particle and µf is the viscosity of the fluid (continuous phase).  

𝜏𝑝𝑎𝑟𝑡 = 𝑑𝑝
2

𝜌𝑝𝑎𝑟𝑡 

18 µ𝑓 
 (3.7) 

The characteristic time of the particles used in this work was approximately 

15µs. The characteristic time of the flow was calculated using the hydraulic 

diameter of the square channel and the averaged streamwise velocity. At the 

maximum Reynolds number measured in this experiment, the Stokes number was 

approximately 4.2x10-4. Since seeding particles are considered perfect tracers when 

the Stokes number tends to zero, the chosen particles are considered adequate to the 

experiment.      

 

3.5.2. Time interval between laser pulses 

The tune of the time interval between laser pulses is one of the parameters 

to be defined when using the PIV technique. As one can expect, the cross-

correlation between interrogation windows from image pairs present better results 

for small particle´s displacements, reaching its maximum when the cross-
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correlation is the auto-correlation of the image itself, i.e., when the particles are not 

moving at all. The uncertainty of the cross-correlation, therefore, decreases when 

the time-interval between laser pulses decreases. On the other hand, the uncertainty 

on the determination of the particle´s displacement increases when the time-interval 

between image pairs decreases. There must be, therefore, a compromise between 

those two different sources of errors, to decrease the global uncertainty of the 

experiment.  

Besides what was described above, given the fact that the cross-correlation 

algorithms usually employ the Fast Fourier Transformation (FFT) to speed up the 

process, if particle´s displacements are higher than half of the interrogation window, 

violating Nyquist criteria, aliasing issues are expected. To avoid such problem, 

Adrian and Westerweel (2011) recommend the maximum particle´s displacement 

to be one-quarter of the size of the interrogation window. Also, with the cameras 

and laser configuration used in the present work, another limiting factor is the fact 

that the light sheet is perpendicular to the streamwise direction of the flow  

(figure 3.5). At such conditions, in case the time interval between image pairs is too 

big, particle´s lost between image pairs due to out-of-plane displacements would 

increase the number of spurious vectors at the final processed vector field.  

The time interval between laser pulses was adjusted to guarantee a 

maximum out-of-plane displacement of 0.4mm, equivalent to 20% of the thickness 

of the laser light sheet, minimizing particle´s loss. Given the fact that cross-

correlation was performed with a multi-pass algorithm starting with an 

interrogation window of 64 pixels, aliasing issues would be mitigated if the 

maximum displacement was smaller than 16 pixels. Figure 3.10 present the pixel 

displacements throughout the transverse section of the square channel. One can 

clearly see that the maximum displacement is way below 16 pixels. It is also 

interesting to note that there are two main factors influencing the recorded particles 

displacements at the images: velocity variations (higher velocity components at the 

center of the channel results in higher displacements) and magnification effects that, 

given the observation angles, cause particle´s on the right of the image to have 

smaller displacements (also smaller magnifications) than particles at the left.  
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3.5.3. Lenses apertures 

The lenses apertures, given by the f# (or f-number), directly influences the 

particles diameters at the images. The particle´s size at the acquired images depend 

both on the light diffraction at the lens apertures and on the image magnification, 

according to equation 3.8, 

 𝑑𝑖𝑚
∗ = 

√(𝑀𝑛 𝑑𝑝)2+𝑑𝑑𝑖𝑓𝑓
2

𝛥𝑝𝑖𝑥𝑒𝑙
 (3.8) 

where dp is the actual diameter of the particles, ddiff is the diameter due to refraction 

at the lenses and Δpixel is the physical size of one pixel (10μm to the Phantom Miro 

Camera). Given the fact that the minimum size of a particle at an image is given by 

the size of the sensor (in this case, the pixel), equation 3.8 was re-written and 

resulted in equation 3.9. 

 𝑑𝑖𝑚
∗ =  𝑚𝑎𝑥 (1  ,

√(𝑀𝑛 𝑑𝑝)2+𝑑𝑑𝑖𝑓𝑓
2

𝛥𝑝𝑖𝑥𝑒𝑙
) (3.9) 

Figure 3.10 - Average particles displacements, in pixels, at each interrogation 

window throughout the transverse section of the square 
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 The contribution of the diffraction to the image formation is given by 

equation 3.10 (Raffel et al., 2018), where 𝜆 is the light diffracted wavelength. 

𝑑𝑑𝑖𝑓𝑓 = 2.44𝑓#[𝑀𝑛 + 1] 𝜆 (3.10) 

Table 3.1 summarizes the particle´s diameters at the images, in pixels, for a 

magnification of 0.1 and wavelength of 532nm, approximated values of the present 

work. According to Westerweel (1997), the uncertainties in the determination of 

the subpixel’s displacements, cross-correlation maps, is smaller when particle 

images have approximately 2 pixels. The closest to this value, in table 3.1 is the 

camera aperture correspondent to a value of f# = 16, what was chosen in the present 

experiment.  

 

Table 3.1 - Particle´s diameters at the images for different cameras apertures. 

d*(pixel) f# 

3.17 22 

2.3 16 

1.59 11 

1.16 8 

1 5,6 

1 4 

1 2,8 

1 1,8 

 

After the definition of f#, it is necessary to calculate the field of view, defined as 

the thickness of an imaginary plane into which all particles are in focus, to check if 

focused images of all particles within the laser light sheet could be obtained. 

According to Raffel et al. (2018), the field of view is given by equation 3.11. 

𝛿𝑧 = 2 𝑓# 𝑑𝑑𝑖𝑓𝑓

[𝑀𝑛 + 1]

𝑀𝑛2
 (3.11) 

In this work, with the f# value of 16, the calculated field of view was 6mm, larger 

than the laser thickness of approximately 2mm and, therefore, an acceptable value. 

 



  69 
Chapter 3.    The Square Duct Experiment 
  

 

 
 

3.5.4. Seeding mass 

One important parameter to be defined when applying the PIV technique is 

the amount of particles (mass of particles) to be added to the flow to get the 

optimum particle´s concentration. Usually the source density, Ns, is used to 

quantify the particle´s concentration in the image, being defined as the theoretical 

number of particles presented in an imaginary cylinder with the same thickness as 

the laser light sheet (Adrian et al. 1985). According to Martins (2016), the source 

density can be calculated according to equations 3.12 and 3.13, 

Ns = 𝐶𝛥𝑧
𝜋

4
(
𝑑𝑖𝑚

∗ 𝛥𝑝𝑖𝑐𝑒𝑙

𝑀𝑛
)
2

    (3.12) 

N𝑠 = 𝐴𝑝 𝑝𝑝𝑝    (3.13) 

where C is the particle´s concentration, ppp the averaged number of particles per 

pixel, Δz the thickness of the laser light sheet and Ap the averaged area, in pixels, 

occupied by one particle, as given by equation 3.14. 

A𝑝 =
π

4
(𝑑𝑖𝑚

∗ )2    (3.14) 

Combining equations 3.12, 3.13 and 3.14, the particles concentration is then given 

by equation 3.15. 

𝐶 = (
𝑀𝑛

𝛥𝑝𝑖𝑥𝑒𝑙
)
2

𝑝𝑝𝑝

𝛥𝑧
    (3.15) 

A more direct approach to obtain particles concentration is simply using the number 

of particles added (npart) and the total volume of the solution (Vsol), as given in 

equation 3.16. 

C =
npart

Vsol
    (3.16) 

Just like the concentration, the number of particles can be obtained from the total 

mass of solid particles (Mpart) and the mass of a single particle (mpart), as given in 

equation 3.17, while the mass of a single particle can be inferred from equation 3.18 

n𝑝 =
M𝑝𝑎𝑟𝑡

m𝑝𝑎𝑟𝑡
    (3.17) 

𝑚𝑝𝑎𝑟𝑡 =
ρ𝑝𝑎𝑟𝑡 𝜋 𝑑𝑝3

6
    (3.18) 

Finally, by combining equations 3.15, 3.16, 3.17 and 3.18, the total mass to be 

added to the solution is given by equation 3.19. 
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Mpart = (
𝑀𝑛

𝛥𝑝𝑖𝑥𝑒𝑙
)
2

𝑝𝑝𝑝

𝛥𝑧
 𝑉𝑠𝑜𝑙 

ρ𝑝𝑎𝑟𝑡 𝜋 𝑑𝑝3

6
   (3.19) 

According to Raffel et al. (2018), the ideal particle´s concentration in ppp when 

employing the Stereo-PIV technique shall be around 0.1. With the volume of 

distilled water used in this work, this corresponds to around 5g of particles. It is 

important to emphasize, however, that particle´s concentration considerably 

decrease during the experiments, either due to settling or attachment to the pipe test 

section walls. One must, therefore, keep adding particles to maintain the ideal 

concentration throughout the experiment. Equation 3.19 must be used only as an 

initial estimate of the order of mass to be added to the flow.  

 

3.6. Pressure gradient measurement system   

As discussed in section 3.1, the whole test section (except the prism 

visualization region) was equipped with pressure taps, equally spaced of 250mm.  

A hydraulic system was assembled to measure the pressure gradient along the 

test section. The pressure tap just downstream of the visualization prism, and 

500mm upstream of the outlet plenum chamber was used as a reference tap, 

connected directly to the low pressure entrance of a pressure transducer. The high-

pressure transducer entrance was directly connected to switching device that was 

specially built so that all pressure taps upstream of the measurement regions could 

be connected to the device at the same time. A quick switch of valves would connect 

the hydraulic circuit to a different pressure tap, enabling quick verification of the 

pressure differential at different positions. The results obtained will be presented in 

chapter 4. A needle valve was installed between the high and low-pressure 

transducer entrances, to serve as a bypass and avoid possible high pressure loads 

during the startup of the test section, that could damage the membrane of the 

manometer.  

In the present work, an Omega pressure transducer was used, with full scale 

of 10 inches of water and uncertainty of 0.08% of the full scale. The equipment was 

connected to a National Instrument Data Acquisition board, responsible for 

converting the output value, in volts, into a digital signal. A subroutine developed 
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in Labview registered the instantaneous pressure difference and automatically 

calculated its averaged value, updating it at every 5 seconds.  

 

3.7. Experimental procedure 

A total of 10 different cases, varying the Reynolds number from 7000 to 

44500 were measured, as summarized in Table 3.2. Case 1 was chosen to match the 

DNS data available in Pinelli et al. (2010) and, therefore, validate the result obtained 

for this base case. The number of independent vector fields measured for each case 

was defined based on the minimum requirement to guarantee that all components 

of the Reynolds Stress Tensor were statistically well-converged. This value was 

obtained based on a sensitivity analysis performed for each case. Figure 3.11 

presents this analysis for case 1, where the normalized maximum difference 

between consecutive 200 samples clearly shows that, after approximately 6500 

vector fields, experimental accuracy will no-longer increase (or uncertainties will 

no longer decrease) when increasing the number of samples and the errors are 

dominated by the uncertainties of the measurement itself.  

 

 

   

 

 

Figure 3.11 – Variation of the normalized maximum difference with number of 

samples on the different components of the Reynolds stress tensor for Case 1. 
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Table 3.2 - Summary of the measured cases 

Case 
Reynolds 

number 

Number of acquired 

vector fields  

Streamwise average 

velocity (m/s) 

1 7000 9500* 0.17 

2 10000 7000 0.24 

3 15000 8000 0.37 

4 20000 9000 0.50 

5 22500 9500 0.54 

6 25000 10000 0.61 

7 30000 11000 0.75 

8 35000 12000 0.86 

9 40000 13000 0.99 

10 44500 14000 1.11 

  *Acquired number was higher than necessary, see figure 3.11. 

 

The Reynolds number was calculated based on the hydraulic diameter, as per 

equation 3.20. 

                     𝑅𝑒 =
�̅�𝐷ℎ

𝜈
   (3.20) 

For the Square Channel, the hydraulic diameter is equal to the side of the 

square (40mm). During the experiments, the water in the tank was kept at a constant 

temperature of 20oC. At such conditions, water kinematic viscosity is equal to  

1.1x10-6 m2/s. The averaged streamwise velocity component was calculated by 

integrating the measured velocity field. Differences between the obtained value and 

that of the calibration curve of the positive displacement pump were less than 1% 

for all measured cases.  

 

3.7.1. Images processing and velocity fields determination  

The large number of images obtained for each case were acquired in separated 

samples of approximately 750 images pairs per camera. This results in a 

considerably large acquisition time (from 8 to 12h per case). In the scenario, it is 

expected that the power of the laser would oscillate throughout the acquisition. If 
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the traditional pre-processing technique that are employed in PIV measurements of 

subtracting the images minimum/averages were used in this context, some images 

would still be contaminated with background noise while an excess of information 

would be removed from others. To deal with that, an algorithm was developed in 

Matlab to calculate the moving-average of light intensity for every 500 consecutive 

images. Each image was subtracted, therefore, from the mean value obtained from 

250 images acquired before it and 250 images after it. The first and the last 250 

images of the acquired series were discarded. This procedure considerably 

improved the performance of the cross-correlation algorithm, decreasing the 

number of spurious vectors obtained.  

After pre-processing, images were dewarped by a third-order polynomial 

obtained during the calibration procedure. Cross-correlation was then performed 

employing a multi-pass scheme, going from 64x64 pixels2 to 32x32 pixels2 

interrogation windows, with 50% of overlap. The final grid had a resolution of 

approximately 0.53x0.53 mm2, totalizing this way around 5500 valid vectors, for 

each case. All procedures listed in this paragraph were performed using the software 

Insight 4G, by TSI. 

Finally, the averaged velocity field and other statistical quantities of the flow 

were obtained from the measured instantaneous velocity fields. Averaged velocity 

calculations, velocity fluctuations, Reynolds stress tensor, vorticity, among other 

quantities were all calculated using subroutines developed by the author in Matlab. 
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4 
Square Duct Experimental Results 

This chapter present the results obtained from the Stereoscopic-PIV 

experiment at the square duct in the Laboratory of Fluid Engineering, at the 

Mechanical Engineering Department of PUC-Rio. Given the similarity of the base 

case (Case 1) with all other measured cases, the velocity fields and statistical 

quantities presented at section 4.1 and 4.3 are all for the base case (Re = 7,000).  

This chapter produced the following publication: 

 

Fernandes, L.F., Azevedo, L.F.A. (2021). Stereo-PIV Measurements of Turbulent 

Flow in a Square Duct. In 26th International Congress of Mechanical Engineering 

– Virtual Congress, Brazil. 

 

4.1. Raw results 

Figure 4.1 presents the comparison of the averaged streamwise velocity 

component (w) normalized by the mean (bulk) velocity obtained from the DNS of 

Pinelli et al. (2010) and from the Stereoscopic PIV measurements, both for a bulk 

Reynolds of 7000 (Case 1). Typical experimental results are not as smooth as 

numerical simulations, due to limitations of the measurement techniques. 

Nevertheless, from a qualitative point of view, the contours presented at figure 4.1 

are quite similar. A more quantitative view is presented in the streamwise velocity 

profile of figure 4.2. Again, good agreement is verified, with a small deviation at 

the upper part of the channel. 

 



Chapter 4.    Square Duct Experimental Results 
  75 
  

 

 
 

 

Figure 4.1 – Comparison of the streamwise velocity contour obtained from the 

SPIV of the present work (a) and the DNS data (b) of Pinelli et al. (2010). 

 

 

Figure 4.2 – Comparison of the streamwise velocity profile obtained from the SPIV 

of the present work and the DNS data of Pinelli et al. (2010) at the channel 

centerline (x/H = 0). 

 

Figure 4.3 presents a comparison of the in-plane velocity fields described in 

section 2.3 of the data obtained from the DNS of Pinelli et al. (2010) with the SPIV 
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of the present experiment. The pairs of counter-rotating vortex close to the corner 

due to the imbalances of Ryy and Rzz are clearly visible. Despite the qualitative good 

comparison, one can see that there are regions with spurious vectors, such as that 

close to the wall at X / h = -1, where the horizontal component of the velocity vector 

should be either 0 or positive. This discrepancy between the experimental and 

numerical data can be seen in figures 4.4 and 4.5, where it becomes clear that the 

deviations are higher for the horizontal component. This can be explained due to a 

comparably higher cross-correlating uncertainty of this term, associated with the 

differences in magnification due to the cameras’ arrangement and, consequently, 

particles’ displacement in pixels, as already illustrated in figure 3.10. 

 

 

Figure 4.3 – Comparison of streamwise and in-plane components of the velocity 

vector obtained from the SPIV of the present work (a) and the DNS data (b) of 

Pinelli et al. (2010). 
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As illustrated in figure 3.11, the Reynolds Stress Tensor components were 

used to identify how many independent samples were needed to obtain well-

converged statistics of the flow. The comparison of those measured statistical 

Figure 4.5 - Comparison of the vertical component of the velocity vector: v obtained 

from the SPIV of the present work (a) and the DNS data (b) of Pinelli et al. (2010). 

Figure 4.4 - Comparison of the horizontal component of the velocity vector: u 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et al. 

(2010). 
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quantities with the DNS data are presented in figures 4.6 to 4.11. For case 1, a total 

of 9500 independent samples were used to compute the flow statistics and averages 

(see table 3.2). 

 

 

Figure 4.6 – Comparison of the component Rzz of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 

 

 

Figure 4.7 - Comparison of the component Ryy of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 
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Figure 4.8 - Comparison of the component Rxx of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 

 

 

Figure 4.9 - Comparison of the component Rxy of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 
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Figure 4.10 - Comparison of the component Rxz of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 

 

Figure 4.11 - Comparison of the component Rvz of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 

 

 By analyzing the results presented so far, one can reach some conclusions. 

Firstly: there is an expected symmetry at the square duct, already illustrated in  

figure 2.3. that can be used to separate the flow into quadrants or octants, depending 

on the quantity of interest. Secondly, despite having the same qualitative behavior 

of the DNS, the measured quantities associated with in-plane movements (u, v, Rxx, 
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Ryy, Rxy, Rxz and Ryz) are too noisy to be directly used for practical applications, 

especially that where feeding the results to numerical models is intended, as it is the 

case of the present work. Given the convergence results obtained from the 

experimental data illustrated in figure 3.11, it can be concluded that more samples 

would not improve the results. In fact, since the magnitude of in-plane velocity 

fields for the square duct are approximately only 2-3% of the mean streamwise 

velocity component, measuring secondary flows is indeed a difficult task. The 

Stereoscopic-PIV technique measures the three-components of the velocity vector 

using the laser light sheet as a reference, so even small miss alignments between 

the laser plane and the plane perpendicular to the channel cross-section would 

generate a contamination of the in-plane measurements by a decomposed part of 

the streamwise component. As a rule of thumb, a small miss alignment of the order 

of 1o would generate a projection of the order of sin(1o) of the steamwise velocity 

on the in-plane measurements, which is 1.75% of its magnitude. This projection is 

of the same order of magnitude as the in-plane components. The strategy used to 

address this limitation is described in section 4.2 below.  

 

4.2. Data conditioning 

The issue of the streamwise velocity decomposition, contaminating the in-

plane measurements was solved using the symmetry of the square channel. Firstly, 

an equally spaced grid was created by rounding down the number of elements 

presented and guaranteeing a perfect grid symmetry along all quadrants and octants 

of the square duct. Secondly, all measured quantities were interpolated into this new 

grid. Thirdly, the flow symmetry in quadrants (for u, v, Ryy, Rxx, Rxz and Ryz) and 

octants (for w, Rzz and Rxy) was used to average all quantities into one single 

quadrant, here chosen as quadrant 3. By doing so, a positive decomposition of the 

streamwise velocity into one quadrant/octant is compensated by the proportional 

negative decomposition into another quadrant/octant for most measured quantities. 

This procedure also minimizes errors associated with local measurement bias due 

to optical issues such as excess of light or opacity. Finally, the same symmetry was 

used to transfer the results from a single quadrant to the whole square channel. The 

results obtained are presented in section 4.3, where significant improvements were 

achieved. 
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It is important to emphasize that the methodology described above artificially 

introduces a symmetry to the experimental results, what is not necessarily true due 

to imperfections of the test section geometry. Additionally, if one carefully observes 

the DNS data presented, there is also a small asymmetry on it. Since the final 

objective of this work, however, is to enhance the RANS modelling, there is no 

problem in applying the symmetry to improve the results obtained. 

 

4.3. Post-processed Results 

Figure 4.12, 4.14 and 4.15 present the comparison of the 3 components of the 

velocity vector after the data conditioning described at section 4.2. The 

improvement on the results is remarkable and one can clearly see that not only data 

is significantly less noisy when comparing to the DNS, but the spurious vectors 

observed closed to the wall disappeared. The position of the recirculation regions 

is also in agreement with the DNS. Using the third quadrant as a reference, the 

counterclockwise vortex is located at a position of x/H = -0.55 and y/h = -0.8. 

Symmetrically, the clockwise vortex is located at a position of x/H = -0.8 and  

y/H = -0.55 . From figure 4.13 it is interesting to see that the SPIV data after 

conditioning and the DNS data present a better agreement at the bottom part of the 

channel than at the upper part. Given the fact that, after conditioning, the SPIV data 

is symmetric across the square duct, this is another indication of the lack of 

symmetry at the DNS data discussed before. 
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Figure 4.12 - Comparison of streamwise and in-plane components of the velocity 

vector obtained from the SPIV after data conditioning (a) and the DNS data (b) of 

Pinelli et al. (2010). 

Figure 4.13 - Comparison of the streamwise velocity profile obtained from the SPIV 

after data conditioning and the DNS data of Pinelli et al. (2010) at the channel 

centerline (x/H = 0). 
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Figures 4.16 to 4.21 present the 6 components of the Reynolds Stress Tensor 

after data conditioning. One can clearly see a significant improvement in the data, 

especially for the in-plane Rxy component (figure 4.19), that can now be used to 

feed numerical models (see chapter 5).  

 

Figure 4.14 - Comparison of the horizontal component of the velocity vector: u 

obtained from the SPIV after data conditioning (a) and the DNS data (b) of Pinelli 

et al. (2010). 

Figure 4.15 - Comparison of the vertical component of the velocity vector: v 

obtained from the SPIV after data conditioning (a) and the DNS data (b) of Pinelli 

et al. (2010). 
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Figure 4.16 - Comparison of the component Rzz of the Reynolds Stress Tensor, 

obtained from the SPIV after conditioning (a) and the DNS data (b) of Pinelli et al. 

(2010). 

Figure 4.17 - Comparison of the component Ryy of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 
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Figure 4.18 - Comparison of the component Rxx of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 

Figure 4.19 - Comparison of the component Rxy of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 
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Figure 4.20 - Comparison of the component Rxz of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli et 

al. (2010). 

Figure 4.21 - Comparison of the component Ryz of the Reynolds Stress Tensor, 

obtained from the SPIV of the present work (a) and the DNS data (b) of Pinelli 

et al. (2010). 
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4.4. Vortices 

Despite the lack of a proper mathematical definition or universal acceptance 

of what a vortex is (Chakraborty et al., 2005), there are many vortex identification 

criteria based on velocity data, available in the literature. Probably the most widely 

used are the Q-criterion (Hunt et al., 1988), λ2-criterion (Jeong and Hussain, 1995) 

and the Δ-criterion (Chong et al., 1990), which will be further discussed here.  

 

4.4.1. Q-criterion 

The Q-criterion identifies vortices based on the second invariant of the 

velocity gradient tensor ∇⃗⃗ 𝑣 , defined as 𝑄 = 1
2⁄ ((tr(∇⃗⃗ 𝑣 ))

2

− tr ((∇⃗⃗ 𝑣 )
2
 )). For an 

incompressible fluid (∇⃗⃗ ∙ 𝑣 = 0), expanding the velocity gradient tensor in its 

symmetric and non-symmetric part (∇⃗⃗ 𝑣 =  𝑆̿ +  �̿�) and after some mathematical 

manipulation, the second invariant becomes 

                     𝑄 =
1

2
(‖𝑊‖2 − ‖𝑆‖2)   (4.1) 

where ‖𝑊‖ = 𝑡𝑟(𝑊𝑊𝑇)1/2 and ‖𝑆‖ = 𝑡𝑟(𝑆𝑆𝑇)1/2, commonly referred as the 

Frobenius norm. It can be inferred from equation 4.1 that the Q criterion stablishes 

an excess of the rotation rate in relation to the strain rate. Vortices are, therefore, 

identified as regions with a positive value of Q (Q>0). Hunt et al. (1988) also 

proposed that the region identified as part of a vortex should also have a lower 

pressure than the ambient surrounding it, although this second criterion is 

commonly ignored (Jeong and Hussain, 1995; Chakraborty et al., 2005; Dubief and 

Delcayre, 2000). In this work, this additional condition was also suppressed.  

 As demonstrated by Chen et al. (2015), for a 2D velocity gradient tensor, 

equation 4.1 can be simplified to equation 4.2 below. 

                     𝑄 = 
∂u

∂x

∂v

∂y
− 

∂u

∂y

∂v

∂x
−

1

2
(
𝜕𝑢

𝜕𝑥
+

∂v

∂y
)
2

   (4.2) 

Given the lack of streamwise derivatives of the averaged quantities measured in the 

present work (i.e. fully developed flow), equation 4.2 was used to identify vortices 

using the Q-criterion. 
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4.4.2. λ2-criterion 

The λ2-criterion is formulated neglecting viscous and unsteady effects in the 

incompressible Navier-Stokes equations, that becomes 𝑣 ∙ ∇⃗⃗ 𝑣 =  −
1

𝜌
(∇𝑝). By 

applying the gradient to both sides of the equation and after some mathematical 

manipulation, equation 4.3 is obtained. 

                     −𝜌 (𝑆̿2 + �̿�2) =  ∇⃗⃗ (∇⃗⃗ 𝑝)      (4.3) 

The gradient of the pressure gradient (right side of equation 4.3) is called the 

pressure Hessian. The regions of a local minimum pressure in a plane (associated 

with a vortex core) are defined as the regions with at least two positive eigenvalues 

of the pressure Hessian. When ordering the eigenvalues of the symmetric tensor  

𝑆̿2 + �̿�2 in λ1
 ≤ λ2 ≤ λ3, this is equivalent to regions with λ2 < 0, being this the 

identification criteria.  

 For a 2D gradient tensor, Chen et al., (2015) demonstrated that λ2
 can be 

written as in equation 4.4 below, which was used in the present work. 

 

4.4.3. Δ-criterion 

The Δ-criterion uses the fact that in a non-rotating reference frame 

translating with a fluid particle (Lagrangean framework), the pattern observed for 

the streamlines is defined based on the eigenvalues of ∇⃗⃗ 𝑣 . When two eigenvalues 

of ∇⃗⃗ 𝑣  are a pair of complex conjugate numbers, the streamlines present a spiraling 

form, associated with a vortex. For an incompressible fluid, the characteristic 

equation for ∇⃗⃗ 𝑣  is given by equation 4.5, where Q is the second invariant already 

defined in equation 4.1 and R is the third invariant, defined as 𝑅 = −Det(∇⃗⃗ 𝑣 ).  

                     𝜆3 + 𝑄𝜆 + 𝑅 = 0         (4.5) 

 

 

 

                        𝜆2 = (
∂u

∂y

∂v

∂x
−

∂u

∂x

∂v

∂y
) +

1

2
(
𝜕𝑢

𝜕𝑥
+

∂v

∂y
)
2

… 

                       +
1

2
|
𝜕𝑢

𝜕𝑥
+

∂v

∂y
|√(

𝜕𝑢

𝜕𝑥
−

∂v

∂y
)
2

+ (
𝜕𝑢

𝜕𝑦
+

∂v

∂x
)
2

   

     (4.4)   
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The discriminant of equation 4.5 is given by: 

                     𝛥 = (
1

2
𝑅)

2

+ (
1

3
𝑄)

3

            (4.6) 

Whenever the discriminant Δ is larger than zero, a pair of complex conjugate is 

observed at the eigenvalues of ∇⃗⃗ 𝑣 , being this criterion (Δ>0) used to identify 

vortices. One can see that the Q-criterion is more restrictive than the  

Δ-criterion (the later identify more vortices).  

 Again, for a 2D gradient tensor, Chen et al., (2015) demonstrated that the 

Δ-criterion can be written as: 

                     𝛥 =  4 (
∂u

∂y

∂v

∂x
−

∂u

∂x

∂v

∂y
) + (

𝜕𝑢

𝜕𝑥
+

∂v

∂y
)
2

           (4.7) 

However, differently from the cubic equation for a 3D gradient tensor (eq 4.6), for 

a 2D gradient tensor (eq 4.7), negative values of Δ (Δ<0), instead of positive ones,  

generate a pair of complex-conjugate at ∇⃗⃗ 𝑣  eigenvalues, being identified as vortices 

regions.  

   

4.4.4. Vortices in the Square Duct 

The different vortex identification criteria presented above were used to 

identify the pair of counter-rotating vortex, as previously discussed. These results 

applied to the base case (Case 1), as well as the vorticity vector, are presented in  

figure 4.22. Given the symmetry of the flow after the data conditioning described 

in section 4.2, only the third quadrant will be presented from now on. Despite the 

magnitude of the streamwise vorticity vector being indeed higher at the 

recirculation regions, one can clearly see that it is also higher close to the walls  

(x/H = -0.6 or y/H = -0.6), due to the high shear at those points, disqualifying the 

magnitude of the vorticity vector as good indication for vortex identification. As 

discussed above, the Q criterion seeks to segregate vorticity due to fluid rotation 

and shear, better identifying the pair of counter-rotating vortex. The Δ and the λ2 

criterion are more restrictive in identifying a vortex and, in the present work, 

returned better results. The latter will, therefore, be used to identify the vortices at 

the different Reynolds number of this work. 
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Figure 4.22 – Comparison of (a) streamwise component of the vorticity vector and 

different vortex identification criteria: (b) Q criterion, (c) Δ criterion and (d) λ2 

criterion. Vectors represent the averaged in-plane components (u and v) of the 

velocity vector. 

 

Despite being able to identify the vortex at the square duct flow, the λ2 

criterion requires additional data treatment to get the position of the vortex core. 

The simple use of a 0 threshold at the λ2 scalar field, where when λ2 < 0 the region 

is identified as part of a vortex, return a binary noisy field, as presented in  

figure 4.23(b). The option of optimizing the threshold value, used in the literature 

by several authors (Ganapathisubramani et al., 2006; Lin, 2006; among others) was 

choosen not to be used here. Instead, a simple image treatment procedure 

comprising of an erosion followed by a dilatation, using a 3x3 grid diamond 

element, filtered out the noisy scalar field, significantly improving the vortex 

identification, as presented in figure 4.23(c). Finally, the vortex core was identified 

as the position of the centroids, as presented in figure 4.23(d). 
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Table 4.1 presents the position of the center of the clockwise and counter-

clockwise recirculating regions (vortex core), as well as the swirl intensity 

measured by the λ2 criterion. One can see that there are no significant variations on 

the wall-normal distances of the center of the vortices for the different cases studied. 

Indeed, the center of the vortices were found within the range x/H (y/H) = -0.75 to 

-0.80 for the clockwise (counter-clockwise) vortices. In the spanwise direction, 

however, the variation is way more significant, varying from y/H (x/H) = -0.37 to  

-0.57 for the clockwise (counter-clockwise) vortex. There seems to be no 

connection between the vortex center and the Reynolds number. This was also 

observed in the DNS obtained by of Pirozzoli et al., (2018). In fact, the similarity 

Figure 4.23 – Procedure for vortex detection: (a) colormap of the λ2 criterion,  

(b) vortex identified by the λ2 criterion using 0 as threshold, (c) vortex after erosion 

and dilatation procedures and (d) vortex core identification.  
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between the vortex centers obtained by the two works is remarkable. For case 1  

(Re = 7000), the counter-clockwise vortex center at the present work was detected 

at (x/H, y/H) = (-0.54, -0.81), while in the work of Pirozzoli et al., (2018),  

at (x/H, y/H) = (-0.55, -0.82). Table 4.1 also present the intensity of the recirculating 

regions, here measured by the λ2 criterion. It significantly increases with the 

Reynolds number, indicating that the recirculation intensifies with the Reynolds 

number increment. Its effect on the mean streamwise velocity field will be 

discussed in the next section. 

 

Table 4.1 – Vortex core centers and swirl intensity for experiments with different 

Reynolds numbers. 

Reynolds 
Clockwise Counter-clockwise  

x/H y/H x/H y/H λ2 

7000 -0.79 -0.57 -0.54 -0.81 -0.2 

10000 -0.76 -0.44 -0.43 -0.77 -0.1 

15000 -0.75 -0.37 -0.38 -0.75 -0.5 

20000 -0.76 -0.39 0.40 -0.76 -0.9 

22500 -0.75 -0.44 -0.43 -0.75 -1.0 

25000 -0.77 -0.39 -0.38 -0.77 -1.9 

30000 -0.79 -0.41 -0.42 -0.78 -2.8 

35000 -0.77 -0.45 -0.45 -0.77 -3.8 

40000 -0.76 -0.37 -0.37 -0.76 -4.6 

44500 -0.77 -0.46 -0.47 -0.78 -6.4 

 

 

4.5. Secondary motion effect on mean streamwise velocity field 

As widely reported in the literature, the in-plane movements (Prandtl flow of 

second kind) modifies the streamwise velocity component (Pinelli et al., 2010; 

Zhang et al., 2015; Pirozzoli et al., 2018). Figure 4.24 presents iso-contour lines of 

the normalized streamwise component of the velocity vector and in-plane 

movements. One can check that the amount of distortion is non-monotonic with the 

Reynolds number. This behavior was also observed by Pirozzoli et al. (2018). 
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Maybe more interesting is to observe the bulging of the iso-contours lines close to 

the corner with the increase in the Reynolds number due to fluid with higher 

momentum being transferred from the bulk of the flow to that region, along the 

corner bisector, by the pair of counter-rotating vortices. The same vortices that thins 

the wall layer close to the corner thickens it close to the wall bisector (x/H = 0 or 

y/H = 0). This behavior tends to increase the wall shear stress close to the corner 

and decrease it close to the wall bisector. This topic will be better discussed in the 

next topic. 

 

 

Figure 4.24 – Iso-contours of the normalized averaged streamwise velocity vector  

(w/wbulk) and in-plane movements for Reynolds number of (a) 7,000; (b) 20,000; 

(c) 30,000 and (d) 40,000. 
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4.6.Pressure gradient and wall shear stress 

As described in section 3.6, the square duct test section is equipped with 

pressure measurement taps, equally spaced along its length, what allowed axial 

pressure gradient calculation at multiple points. Figure 4.25 presents a comparison 

of the measured pressure drop between the most downstream pressure tap and 

different points upstream of it. For clarity, only cases 1 to 4 are presented. One can 

clearly see that there is an excellent agreement between the literature pressure drop, 

calculated using equations 2.44 and 2.45, and the measured values. The small 

discrepancies between the curves are within the manometer uncertainty described 

in section 3.6. 

 

 

The excellent agreement described above indicates that the flow is fully 

developed at the whole square duct, even for the smaller Reynolds number of the 

experiment. This is a crucial information for this work, since the numerical 

simulation described in chapter 5 uses a periodic boundary condition at the 

streamwise direction, what is physically representative of the phenomenon under 

investigation only if the flow quantities are independent of the streamwise direction 

(or, in a fluid mechanics point of view, hydrodynamically developed). From now 
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Figure 4.25 – Pressure drop measurements (blue) and from the literature (orange) 

at the square duct. Distance is related to the most downstream measurement tap. 
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on, the pressure gradients referred in the work will be those calculated from 

equations 2.44 and 2.45. 

With the pressure gradient measured and calculated above, the perimeter-

averaged wall shear stress can be calculated and so the friction velocity, as 

described in equation 2.30. The measured streamwise velocity profile at the center 

of the square duct (x = 0) for Case 1 is plotted in wall units in figure 4.26. It is 

interesting to note that the first experimental point is located just above the viscous 

sublayer, at approximately y+ = 5.9, and the measured streamwise velocity, in wall 

units, at this point is w+ = 6.0, remarkably close to the viscous sublayer theoretical 

law w+ = y+. 

 

Given the secondary motion described in section 4.5 and the lack of symmetry 

when moving along the spanwise direction in the square duct, the wall shear stress 

varies along the wall of the channel (Pirozzoli et al., 2018). Figure 4.27 present the 

variation of wall shear stress calculated using equation 2.6 at the bottom wall of the 

Figure 4.26 – Mean Streamwise velocity profile in wall units for Case 1 at the 

channel centerline (x/H = 0). 
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square channel. The effect of the vortices is evident, increasing axial momentum 

close to the wall at x / H = ±0.8 and decreasing it at x /H ± 0.5.  

 

                     𝜏𝑤̅̅̅̅  =
1

2𝐻
 ∫  𝜏𝑤 𝑑𝑥

𝐻

−𝐻
           (4.8) 

For case 1, the value obtained for  𝜏𝑤̅̅̅̅   was 0.11 Pa, while the value obtained from 

the literature is 0.12 Pa. Unfortunately, the difference between the integrated wall 

shear stress obtained with SPIV and the literature value systematically increase with 

the increase in the Reynolds number. While for Case 1 the closest point to the wall 

is located at y+ = 5.9, it increases up to y+ = 31.1 for Case 10, way above the viscous 

sublayer and, therefore, in a position where the direct application of equation 2.6 

will not return accurate values. Table 4.2 summarizes the difference between the 

wall shear stress obtained from the literature, the value calculated from the SPIV 

data using equation 2.6 and the closest point to the wall used for the calculation, in 

The value obtained for the wall shear stress from the pressure gradient is, therefore, 

an averaged value, that can be obtained from the SPIV measurements by integrating 

the local measured wall shear stress, as presented in equation 4.8 below. 

Figure 4.27 – Variation of wall shear stress along the bottom wall of the square duct 

for Case 1. 
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wall units. It is clear that a careful attention must be taken, regarding the wall 

distance in wall units, when wall shear stress is calculated. Table 4.2 can be used as 

a reference for several authors that insist on calculating wall shear stress from PIV 

data even when the closest point to the wall is not inside the viscous sublayer. An 

option is to use the Clauser´s Method (Clauser, 1956; Wei et al., 2005), which uses 

the least-square method to fit the experimental data to the universal logarithmic wall 

equations (see table 2.2). If the von-Kármán constants are obtained from the 

literature (for instance, from George, 2007), one can obtain an estimative for the 

wall shear stress at the wall. This method was successfully employed by Fernandes 

et al. (2023) in a different flow application to obtain 𝜏𝑤̅̅̅̅  without pressure 

measurements.  

 

Table 4.2 – Comparison of the averaged wall shear stress calculated using SPIV 

data and theoretical values. The closest point to the wall, in wall units, is also 

presented.  

Reynolds 
𝜏𝑤̅̅̅̅   (Pa)  

y+ 

Literature SPIV Error (%) 

7000 0.12 0.11 8.3 5.9 

10000 0.23 0.16 30.4 8.1 

15000 0.48 0.27 43.8 11.7 

20000 0.82 0.42 48.8 15.3 

22500 0.97 0.51 47.4 16.6 

25000 1.19 0.52 56.3 18.0 

30000 1.69 0.63 62.7 21.9 

35000 2.16 0.75 65.3 24.8 

40000 2.76 1.01 63.4 28.0 

44500 3.40 1.13 66.8 31.1 

 

4.7. Uncertainty analysis 

The uncertainty of a measured data is formed by its random and systematic 

uncertainty components, also known as type A and type B components (ISO-GUM., 

2018), as written below for a generic quantity X. 
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               𝛿𝑥 = √𝛿𝑥,𝐴
2 + 𝛿𝑥,𝐵

2  (4.9) 

The uncertainty of the measured velocity data was estimated neglecting light 

pulse interval and image calibration uncertainties, in comparison to the uncertainty 

on the calculation of the particles displacement (Sciacchitano and Wieneke 2016; 

Sciacchitano 2019). The random (type A) uncertainty of the different components 

of the velocity vector was calculated as suggested by Sciacchitano and Wieneke 

(2016), based on the standard deviation of the SPIV measurements, as per equation 

4.10 below, 

             𝛿𝑢,𝐴 =
𝜎𝑢

√𝑁𝑒𝑓
 (4.10) 

where Nef is the number of non-correlated samples used to compute the average 

(see table 2.2) and 𝜎𝑢 = √
1

𝑁
∑ (𝑢𝑖 − �̅�)𝑁

𝑖=1
2
   is the standard deviation of the 

velocity measurements. An attempt to estimate the systematic (type B) component 

cross-correlating particle images with no flow in the square duct was performed, 

but natural convection effects were clear, probably due to difference in temperature 

of the laboratory air and water heated up by the progressive cavity pump. The type 

B uncertainty was, therefore, estimated from another experiment with a similar 

SPIV setup and the same processing software, based on the comparison of the 

measured laminar liquid flow data with the expected parabolic solution (Fernandes 

et al., 2018). The type B uncertainty was estimated as ±2.5% of the measured value 

for the in-plane components (u and v) and ±1.5% for the streamwise out-of-plane 

component (w).  

 The uncertainty of the Reynolds Stress Tensor is calculated differently for 

the diagonal and off-diagonal terms, as proposed by Sciacchitano and Wieneke 

(2016). For the diagonal term, the type A and type B uncertainties are given by 

equations 4.11 and 4.12, 

             𝛿𝑅𝑖𝑖,𝐴
= 𝑅𝑖𝑖√

2

𝑁𝑒𝑓
 (4.11) 

             𝛿𝑅𝑖𝑖,𝐵
= 𝛿

𝛿𝑢,𝑖
2̅̅ ̅̅ ̅ (4.12) 

where 𝛿
𝛿𝑢,𝑖

2̅̅ ̅̅ ̅ is the uncertainty of the velocity fluctuations mean square of the 

component i, which will be, in this work, assumed to be equal to the square 
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uncertainty of the mean velocity of the same component (𝛿𝑢,𝑖
2 ). For the off-diagonal 

terms, the type A and B uncertainties will be given by equation 4.13 and 4.14. The 

same assumption for the type B uncertainty applies.  

        𝛿𝑅𝑖𝑗,𝐴
= √𝑅𝑖𝑖𝑅𝑗𝑗

1+𝜌𝑖,𝑗
2

𝑁𝑒𝑓
  (4.13) 

            𝛿𝑅𝑖𝑗,𝐴
= √𝛿𝑢,𝑖

2 𝛿𝑢,𝑗
2  (4.14) 

The quantity 𝜌𝑖,𝑗 is the cross-correlation coefficient between the velocity 

components u and v.  

 From what was discussed in the last paragraph, it is clear that the uncertainty 

of each quantity varies along the square duct. The in-plane components of the 

velocity vector, for instance, are significant close to the corner, but decrease a lot 

in magnitude at the bulk of the section (see figures 4.14 and 4.15), approaching 

zero. At those regions, the relative uncertainty can be as big as 400% of the 

measured velocity value. Table 4.3 present an estimate of the uncertainty for each 

data, for Case 1, at positions chosen to be most representative of the measured 

quantity (i.e., where the measured quantities were higher in magnitude). As one can 

see, the type B uncertainty (systematic) of the normal components of the Reynolds 

stress tensor are usually significantly smaller than the type A.  

 The proper quantification of the uncertainties of averaged quantities depend 

on the correct identification of the effective number of samples, or number of non-

correlated samples, Nef, as given by equation 4.15 (Sciacchitano and Wieneke, 

2016), 

                                    𝑁𝑒𝑓 =
𝑁

∑ 𝜌(𝑛∆𝑡)𝑛=∞
𝑛=−∞

 (4.15) 

where 𝜌(𝑛∆𝑡) is the auto-correlation coefficient and ∆𝑡 the time interval between 

samples. If the acquisition frequency is low enough so that the acquired data is not 

correlated, the auto-correlation coefficient will be 1 when n = 0 and 0 otherwise, 

implicating in Nef
 = N. On the other hand, if the acquisition frequency is too high, 

the number of data samples might not be enough to proper represent the averaged 

quantity, as data will be too clustered. To avoid such clustering, image acquisition 

was performed in the present work at a frequency of 12Hz due to laser limitations, 

but it was saved in the computer with a frequency of only 1Hz (i.e., for every 12 
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consecutive image pairs, only 1 was saved). For Case 1, the relation Nef
 / N was 

calculated as 92% (i.e., the effective number of samples was 9200). This number is 

higher for other cases, as the flow becomes more turbulent and coherent structures 

have smaller representative times.  

 It is important to highlight that all uncertainties of this work were calculated 

for the SPIV experiment before post-processing. Therefore, one can expect a 

significant reduction in the type A uncertainty after the use of the flow symmetry 

during the post-processing performed in this work. Since it is difficult to stablish if 

the use of 4 or 8 points (quadrants or octants) will really increase the number of 

effective samples by a factor of 4 or 8 folds, the conservative uncertainty estimative 

presented in table 4.3 were maintained.  

 

Table 4.3 – Uncertainty estimate for different quantities for Case 1. Measured 

values were taken as most representative values at the square duct experiment. 

Quantity 
Measured 

value 
Unit 𝛿𝐴 𝛿𝐵 

Combined 

uncertainty 

Expanded 

uncertainty 

Expanded 

relative 

uncertainty 

(%) 

�̅� 0.002 m/s 1.0E-04 5.0E-05 1.1E-04 2.2E-04 10.5% 

�̅� 0.002 m/s 1.0E-04 5.0E-05 1.1E-04 2.2E-04 10.5% 

�̅� 0.16 m/s 1.3E-04 3.1E-03 3.1E-03 6.2E-03 3.9% 

𝑅11 1.5E-04 m2/s2 2.3E-06 4.2E-08 2.3E-06 4.6E-06 3.1% 

𝑅22 1.5E-04 m2/s2 2.3E-06 4.2E-08 2.3E-06 4.6E-06 3.1% 

𝑅33 0.001 m2/s2 1.5E-05 3.8E-05 4.1E-05 8.2E-05 8.1% 

𝑅21 1.0E-5 m2/s2 7.5E-07 1.2E-08 7.5E-07 1.5E-06 15% 

𝑅31 1.0E-04 m2/s2 3.2E-06 1.3E-06 3.4E-06 6.9E-06 6.9% 

𝑅32 1.0E-04 m2/s2 3.2E-06 1.3E-06 3.4E-06 6.9E-06 6.9% 
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5 
Data-driven Numerical Simulation  

This chapter presents the results of a numerical simulation using RANS 

modelling of the turbulent square duct flow, clearly presenting its limitations and 

opening space to the presentation of 10 different methodologies used for injecting 

experimental data to enhance simulations performance. The main goal of this 

chapter is to understand what are the measured quantities that can later be predicted 

by machine learning techniques with the final objective of enhancing turbulence 

modelling. 

All simulations of this work were performed using OpenFOAM (OF), which 

is an open-source software programmed in C++ and executed in Linux. The 

architecture of the OpenFOAM allow user modification on the momentum 

equation, while using the solvers library within the software package.  

 

5.1. Base RANS Simulation of the Square Duct Flow 

For an incompressible fluid with constant viscosity, the mean-momentum 

equation presented in equation 2.21 can be written as: 

𝜕�̅�

𝜕𝑡
+ �̅� ∙ ∇�̅� =  −∇𝑝∗ + 𝜈∇2�̅� +  ∇ ∙ 𝑅 (5.1) 

where p* is the normalized pressure term with all body forces incorporated. The 

discretization scheme implemented in OpenFOAM uses the conservative approach 

of the MMEs,  so the convective term becomes ∇ ∙ (𝜑�̅�), where φ is the flux at the 

boundary of the control volume. When the equation being solved is the momentum 

equation, 𝜑 = �̅�, and ∇ ∙ (�̅��̅�) = (∇ ∙ �̅�)�̅� +  �̅� ∙ ∇�̅�. For an incompressible fluid, 

∇ ∙ (�̅��̅�) = �̅� ∙ ∇�̅� and equation 5.1 can be written in the conservative form as:

𝜕�̅�

𝜕𝑡
+ ∇ ∙ (�̅��̅�) =  −∇𝑝∗ + 𝜈∇2�̅� +  ∇ ∙ 𝑅 (5.2) 

Since the continuity equation is not a conservation equation for the pressure, this 

term cannot be directly obtained. The solution is to obtain a pressure field in a 
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displaced grid, which, when applied to the NS equations, will return a velocity field 

satisfying the continuity equation. This is called the pressure-velocity coupling and 

there are many algorithms available to this end, such as the SIMPLE, SIMPLEC, 

PISO, among others (Patankar, 1980). In this work, the SIMPLE algorithm was 

chosen to perform the pressure-velocity coupling. Also, in this base-simulation, the 

k-ε model with the parameters suggested by Launder and Spalding (1974) and 

detailed in table 2.1 was used to obtain R*.   

  

 

Figure 5.1 – Grid used during the CFD simulations of the present work.  

 

Due to the symmetry of the square duct channel, as discussed in chapter 4, 

only the third quadrant of the square duct was simulated. Figure 5-1 presents the 

final grid used for all simulations performed in this work. It is similar to the mesh 

used by Cruz et al. (2019) and Macedo (2020) and it covers a computational domain 

of 0.02m x 0.02m x 0.002m (real dimensions of the third quadrant of the square 

duct experiment of chapter 3) with 125 x 125 x 1 cells at the X, Y and Z directions, 

resulting in a total of 15625 cells. An element growth ratio of 2 was imposed along 

the wall-normal direction, ensuring that the cell element at the wall is half the size 

of that at the center of the square duct and that the mesh is more refined close to the 

wall, where all gradients are higher. It is important to emphasize that this grid was 

validated by comparing the results of the simulations obtained for the highest 
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Reynolds number of table 2.2 (Case 10) with the mesh described above and another 

one with 12500 x 12500 x 1 cells, with an element growth ratio of 10. There were 

no significant differences between the simulation results (less than 0.1% in the 

absolute mean difference of the streamwise component), except for the fact that the 

simulation with this last grid would take hours to finish instead of minutes of the 

other. 

The simulation performed is that of a fully developed flow, so periodic 

(cyclic) boundary conditions were imposed at the inlet/outlet of the computational 

domain. Since there is only one cell in the streamwise direction, this condition 

automatically transforms the problem into a 3C-2D simulation, which is exactly 

what is measured by the Stereoscopic-PIV technique described in Chapter 3. A 

symmetry boundary condition was imposed at x/H = 0 and at y/H = 0 and walls 

with no-slip conditions at x/H = -1 and y/H = -1. In addition to the no-slip condition, 

the fixed walls also impose a zero pressure gradient at the wall-normal direction 

and wall functions for the turbulent dissipation (ε) and the turbulent kinetic energy 

(k) obtained from the turbulent law of the wall described in section 2.2.1.  

 Given the cyclic boundary condition used, one must provide additional 

information to be able to proper simulate the different cases. This can be done either 

by providing the pressure gradient and obtaining the flowrate or the opposite. Since 

the difference of all cases listed in table 2.2 is, in practice, the flowrate itself, this 

option was chosen. This is implemented in OpenFoam using the momentumSource 

option. At each iteration, the streamwise velocity is averaged across the transversal 

area of the flow and its value is compared with the imposed one. A pressure gradient 

𝜕𝑝∗

𝜕𝑧
 is then calculated and inserted in the mean momentum equations (MMEs). This 

is repeated until the difference between the imposed and calculated bulk velocity is 

below an accepted error (set in this work at 10-4).  

 The initial conditions for the velocity field at each cell out of the boundaries 

were set as 0 for the in-plane velocity components and the averaged bulk velocity 

of the respective simulated case for the streamwise component. An initial null 

pressure field was used. The initial condition for the k and ε parameters were given 

by equations 5.3 and 5.4, based on an approximation for isotropic turbulence and 

following the OpenFOAM user guide, 
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     𝑘 =
3

2
(𝐼 𝑈𝑟𝑒𝑓)

2
  (5.3) 

𝜀 =
𝐶𝜇

0.75𝑘1.5

𝐿
 

(5.4) 

where Uref was assumed as the averaged streamwise velocity and L as half the size 

of the square duct (δ). The turbulence intensity (I) for a fully developed pipe flow 

was estimated as 𝐼 = 0.16𝑅𝑒𝐷ℎ
−1/8

, where 𝑅𝑒𝐷ℎ is the Reynolds number based on 

the hydraulic diameter of the section (ANSYS Inc, 2022). 

 

5.1.1. Numerical Solution 

The numerical discretization performed by OpenFOAM allows the user to 

select different methods for each specific term (example: the time derivative term 

can be discretized by the Crank-Nicholson method, by Euler implicit, etc.). In this 

work, the discretization scheme was selected based on the nature of the specific 

term at the conservation equation, as follows: 

1. Time derivatives: Steady State (i.e., all time derivatives are zero). 

2. Gradient terms: Gauss integration scheme with linear interpolation 

3. Advective terms: Gauss integration with first order upwind scheme 

4. Diffusive terms: Gauss integration scheme with linear interpolation 

5. Source terms: linear interpolation 

6. Pressure-velocity coupling: SIMPLE method 

 

The Gauss integration scheme with linear interpolation, used for gradient and 

diffusive terms, calculates the quantity value at the boundaries of the control 

volumes by interpolation, using the values of the central nodes of the two cells 

separated by the face under evaluation. The use of linear interpolation for advective 

terms might lead to inconsistent results, due to negative discretization coefficients 

(Patankar, 1980). To account for that, the Gauss integration with a first order 

upwind scheme was implemented for those terms. This methodology assumes that 

the mass flux at a generic face value is that of the upstream node, assuring therefore, 

realistic results. It is important to emphasize that the setting of time derivatives to 

zero means only that the transient term of the MME will be discarded. The solution 
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of the equations performed in OF, however, will always advance in time after the 

initial condition.  

 After discretization, the obtained matrices (equations systems) must then be 

solved. For the pressure term, the Preconditioned Conjugate Gradient (PCG) solver 

was used, which, as the name indicates, requires matrix preconditioning, that was 

obtained by the Geometric Agglomerated Algebraic Multigrid Preconditioner 

(GAMG), using the Diagonal-based Incomplete Cholesky (DIC) smoother. The 

velocity, k and ε equations were solved using the Preconditioned bi-conjugate 

gradient (PBiCGStab) with the Simplified Diagonal-based Incomplete LU (DILU) 

preconditioner. The relative tolerance used for all terms between iterations  

was 10-3, while the final tolerance was kept as 10-7. This indicates that the 

simulation will advance a time step when the residual is below 10-3 and stop when 

it is below 10-7. For a steady state simulation, this approach helps decreasing 

computational time, as it decreases the time at the beginning of the simulation, when 

the results are still strongly depedent on the initial conditions. The solvers and 

discretization options used in this work are similar to those of Cruz et al. (2019) and 

Macedo (2020), that also simulated the square duct flow using OpenFOAM.  

 

5.1.2. Simulation results with k-ε model 

As already discussed, the k-ε and other traditional turbulence models fail to 

proper predict the flow structure in a square duct flow. This can be clearly seen by 

the comparison of the streamwise (w) and vertical wall-normal (v) components of 

the velocity field obtained from the SPIV experiment and a simulation with the k-ε 

model presented in figure 5.2. The model fails to predict the secondary flow, 

generating a streamwise velocity field more similar to that of a round pipe than that 

of the square duct itself. Maybe even worse for practical engineering applications, 

is the large error obtained for the pressure gradient using the k-ε model. For case 1, 

while the literature and measured normalized pressure gradient (−
∂p∗

∂z
) are 

approximately 0.012 m/s2, the value obtained from the k-ε model is 0.028 m/s2, a 

difference of approximately 142%. This issue is due to the fact that models based 

on the Boussinesq hypothesis cannot properly predict the Reynolds Stress Tensor 

in many applications. In fact, for a fully developed flow, the streamwise derivatives 
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of averaged components are zero, so equation 2.23 indicates that 𝑑𝑒𝑣(𝑅𝑧𝑧) = 0. 

The comparison of the modelled R with the values measured with the SPIV 

technique is presented in figure 5.3. One can see that despite some reasonable 

qualitative prediction for the Rxz term (and therefore, Ryz), other components of R 

are completely different. An interesting observation is that all three components of 

the main diagonal of R (Rxx, Ryy and Rzz) are exactly the same, given the fact that 

the model predicts that  
𝜕𝑢

𝜕𝑥
= 

𝜕�̅�

𝜕𝑦
= 

𝜕�̅�

𝜕𝑧
=  0. This information is not so clear in 

figure 5.3 due to the different scales used for the different components of R. In fact, 

those terms are not equal to zero only due to the turbulent kinetic energy. From 

equation 2.24, it becomes clear that for such application of the k-ε model, 𝑅11 =

𝑅22 = 𝑅33 =
2

3
𝑘. 

 

Figure 5.2 – Comparison of the streamwise (w) and vertical in-plane (v) velocity 

fields obtained from the SPIV experiment and the simulation using the k-ε model. 

Results for Re = 7000. 
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 The results presented so far clearly confirm the affirmation that the 

traditional turbulence models fail to provide good results even for simple 

applications, such as the flow in a Square Duct. This fact opens space to the study 

of Machine Learning as a tool to enhance turbulence modelling. It is conceivable 

that a Neural Network could create the link between an easily obtained flow 

quantity and some other quantity, such as the accurate Reynolds Stress tensor itself, 

that can be used to obtain more accurate velocity and pressure fields. The next 

topics of this chapter are dedicated to assess what are the best quantities that can be 

obtained from experimental data that, if proper predicted by some Machine 

Learning technique, would improve the simulation results. 
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Figure 5.3 – Comparison between (a) Rzz, (b) Rxx, (c) Rxz, and (d) Rxy obtained from 

the SPIV experiment and the k-ε model. Due to symmetry of the flow, Ryz and Ryy 

are not presented. Results for Re = 7000. 
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5.2. Methodology 1 – Injecting Rε 

Probably the most intuitive measured quantity to be injected into a numerical 

simulation to enhance turbulence modelling is the Reynolds Stress Tensor itself. In 

this methodology, the 6 components of R are obtained from the SPIV experiment 

and injected into equation 5.2. From now on, to avoid confusion between injected 

and solved quantities, the subscript ε will be used to indicate that the quantity comes 

from the SPIV experiment. The final equation to be solved is therefore 

∇ ∙ (�̅��̅�) =  −∇𝑝∗ + 𝜈∇2�̅� +  ∇ ∙ 𝑅𝜀. The results for Case 1 and 10 (Re = 7000 and 

44500) in comparison with the measured velocity field are presented in figures 5.4 

and 5.5. One can clearly see that the injection of R significantly increased the 

Figure 5.4 – Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 1, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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accuracy of the results obtained for Case 1 (see comparison with figure 5.2). The 

same behavior, however, was not observed for Case 10.  

 

With the increase in the Reynolds number from Cases 1 to 10, the turbulent scales 

get smaller and the uncertainty of the SPIV measurements increase, especially for 

the components of R. The results for cases with high Reynolds number could be 

significantly improved if a camera with a larger number of pixels was used during 

the experiment. In this case, the interrogation windows used in the SPIV experiment 

would be physically smaller, what would refine the experimental grid and smaller 

turbulent structures could be better captured. This, however, was not possible to be 

implemented with the available equipment for this thesis.  

Figure 5.5 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 1, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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 Table 5.1 presents the comparison of the obtained pressure gradient with the 

simulation performed using Methodology 1 and the literature pressure gradient of 

the Square Duct obtained from Colebrook-White correlation. As expected, the error 

increases with the increase in the Reynolds number, due to the same reason 

described in the paragraph above.  

  

Table 5.1 - Comparison of correlation (literature) and simulated pressure gradient 

obtained with Methodology 1. 

Case 
Correlation 

Pressure gradient 
(m/s2) 

Simulated  
Pressure gradient 

(m/s2) 
Error (%) 

1 0.0123 0.0115 -7.0% 

2 0.0233 0.0202 -13.5% 

3 0.0482 0.0398 -17.6% 

4 0.0818 0.0601 -26.5% 

5 0.0968 0.0726 -25.0% 

6 0.1193 0.0859 -27.9% 

7 0.1689 0.1163 -31.1% 

8 0.2161 0.1389 -35.7% 

9 0.2765 0.1792 -35.2% 

10 0.3398 0.20995 -38.2% 

 

 

5.3. Methodology 2 – Injecting tε 

Methodology 2 is based on the fact that it is the divergence of R* the quantity 

driving the velocity field in the RANS equations, not the Reynolds Stress Tensor 

itself (Perot, 1999). Being a second order statistical quantity, it is more difficult to 

get well-converged results for R* than for the velocity field itself. Thompson et al. 

(2016) first noted that, even for DNS data, if one injects the components of R* 

obtained from different DNS databases, the retrieved velocity field would differ 

from that of the DNS simulation. This observation was confirmed by Poroseva et 
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al. (2016). The authors noted that discrepancies smaller than 1% in R could reflect 

in an error in the mean velocity field above 20% for high Reynolds DNS databases. 

In a work about turbulence modelling enhancement using DNS databases and 

Machine Learning techniques, Cruz et al. (2019) proposed to call the divergence of 

R* as Reynolds Force Vector, RFR (𝑟 = ∇ ∙ 𝑅∗). The authors noted that this term 

could be modified to incorporate the pressure terms, generating the Modified 

Reynolds Force Vector (𝑡 =  −∇p∗ + 𝑟). The main advantage of this last term is 

that it could be obtained directly from the DNS averaged velocity field or, in this 

work, from the averaged SPIV velocity results, as can be observed in equation 5.5.  

𝑡𝜀  =  ∇ ∙ (𝑢𝜀̅̅ ̅ 𝑢𝜀̅̅ ̅) − 𝜈∇2𝑢𝜀̅̅ ̅ (5.5) 

The final equation to be solved, when injecting t is therefore: 

∇ ∙ (�̅��̅�) − 𝜈∇2�̅� =  𝑡𝜀 − ∇𝑝𝑎𝑑𝑗
∗  (5.5) 

The last term (∇p𝑎𝑑𝑗
∗ ) is added to the mean-momentum equation to allow  

Figure 5.6 - Comparison of  (a) experimental results and (b) simulation  performed 

using Methodology 2, for Case 1 (Re = 7000). Streamwise and vertical wall-normal 

components of the velocity vector are presented. 
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for the pressure velocity coupling and to assure that the continuity equation is 

satisfied. It can be interpreted as the error to the actual pressure gradient due to 

experimental and numerical uncertainties. As expected, one drawback of this 

methodology is that the pressure gradient cannot be directly obtained from the 

numerical simulation. 

The results of methodology 2 are presented in figures 5.6 and 5.7 for cases 

1 and 10, in comparison with the respectively measured velocity field. Differently 

from the results of Cruz et al. (2019), the results obtained with the use of the 

Reynolds Force Vector from the velocity field were less accurate than with the 

injection of R. A plausible explanation to that is based on the fact that the DNS 

results used by Cruz at al. (2019) were available in a more refined grid than those 

of the current SPIV experiment, what decreases the uncertainties on the derivatives 

Figure 5.7 - Comparison of  (a) experimental results and (b) simulation  performed 

using Methodology 2, for Case 1 (Re = 44500). Streamwise and vertical wall-

normal components of the velocity vector are presented. 
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and therefore, the error propagation when using methodology 2 with DNS data, in 

comparison with SPIV.  

 

5.4. Methodology 3 – Inject tε,comp 

As described before, the relatively larger distances between grid points used 

in the SPIV experiment, in comparison with those used in DNS, increase the 

uncertainty of the velocity derivatives originated from the experiment. This fact 

results in a velocity field that is not divergence-free, despite the fluid being 

incompressible, what can be interpreted as an experimental/numerical-

compressibility. As it was discussed in section 5.1, the convective term of the mean-

momentum equation is written in OpenFOAM as ∇ ∙ (�̅��̅�), which is only equal to 

the actual term at the RANS equations (�̅� ∙ ∇�̅�) if ∇ ∙ �̅� = 0, what is not true, 

however, for the experimental data.  

Methodology 3 is a modification of Methodology 2, to compensate the 

experimental/numerical-compressibility of the SPIV data. The injected quantity is, 

therefore, the compensated Reynolds Force Vector modified (tcomp), obtained from 

equation 5.7: 

                 𝑡𝑐𝑜𝑚𝑝,𝜀  =  ∇ ∙ (𝑢𝜀̅̅ ̅ 𝑢𝜀̅̅ ̅) − 𝜈∇2𝑢𝜀̅̅ ̅ − (∇ ∙ 𝑢𝜀̅̅ ̅)𝑢𝜀̅̅ ̅ (5.7) 

The equation to be solved during the simulation then becomes: 

                 ∇ ∙ (�̅��̅�) − 𝜈∇2�̅� =  𝑡𝑐𝑜𝑚𝑝,𝜀 − ∇𝑝𝑎𝑑𝑗
∗  (5.8) 

The comparison of the results obtained from Methodology 3, presented in figures 

5.8 and 5.9 for cases 1 and 10, with Methodology 2, clearly indicates an 

improvement. The results, however, still deviate from the experimental ones. For 

both cases, the following observations can be made:  

(1) the magnitude of the streamwise velocity component close to the corner 

of the square duct (x/H = y/H = -1) is larger for SPIV data than for the simulation 

with Methodology 3. This can be explained because the vertical (v) component of 

the velocity vector in the SPIV measurements is also higher in magnitude at those 

points. This in-plane movement is driving fluid from the bulk of the flow to the 

corner. Since the simulation with Methodology 3 fails to proper capture it, it also 

fails to proper capture the streamwise component distribution at such point. 
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 (2) Methodology 3 fails to predict the fact that the larger magnitude of the 

streamwise velocity component is at the center of the Square duct (x/H = y/H = 0). 

This can be explained because, in the end, this methodology relies on proper 

calculating convective and diffusive terms, which are based on the divergence and 

laplacian mathematical operations. At the center of the Square Duct, such terms are 

smaller and, therefore, its uncertainties become higher.  

Again, the quality of the predicted results with the simulation decreases with 

the increase of the Reynolds number (results are better for Case 1 than for Case 10). 

 

 

Figure 5.8 - Comparison of the (a) experimental results and (b) simulation  

performed using Methodology 3, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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5.5. Methodology 4 – Inject 𝑹𝜺
┴ and 𝝂𝒕,𝜺 

As discussed above, even small deviations in the Reynolds Stress Tensor 

generate a significant impact in the mean velocity field obtained when such 

quantities are injected in the mean-momentum equations. This fact poses a 

significant barrier to the use of Machine Learning to enhance RANS modelling 

(Wang et al., 2017; Duraisamy et al., 2019), given the approximate nature of such 

technique. While Cruz et al. (2019) proposed the use of the Reynolds Force Vector 

presented in Methodologies 2 and 3 to circumvent such problem, Wu et al. (2018) 

used the formulation described by Thompson (2008) in equation 2.34 for a generic 

tensor into the Reynolds Stress Tensor. In their approach, R* is modelled as linear 

Figure 5.9 - Comparison of the (a) experimental results and (b) simulation  

performed using Methodology 3, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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dependent on the Strain Rate (S), with the turbulent viscosity as the proportional 

parameter (classical Boussinesq hypothesis) and with an additional  perpendicular 

(non-linear) term, here named Perpendicular Reynolds Stress Tensor (R┴). Such 

model of R* is presented in equation 5.9. 

                 R∗ =  2ν𝑡𝑆 + R┴ (5.9) 

Since R┴ is perpendicular to R* and to S,  R: R┴ = 𝑅┴: 𝑆 = 0, where “:” denotes the 

double dot inner product. The quantities ν𝑡,𝜀 and R𝜀
┴ can then be obtained from the 

experimental database by equations 5.10 and 5.11: 

             ν𝑡,𝜀 = 
1

2

𝑅𝜀
∗:𝑆𝜀

𝑆𝜀:𝑆𝜀
 (5.10) 

                 R𝜀
┴  =  𝑅𝜀

∗ − 2ν𝑡,𝜀𝑆𝜀  (5.11) 

Due to experimental or numerical uncertainties, the sole use of equation 5.10 can 

return negative values of the turbulent viscosity, what is not reasonable. To avoid 

such absurd, equation 5.10 is re-written as: 

             ν𝑡,𝜀 = max (
1

2

𝑅𝜀
∗:𝑆𝜀

𝑆𝜀:𝑆𝜀
, 0) (5.12) 

Methodology 4 is based, therefore, on injecting ν𝑡,𝜀 and R𝜀
┴

  into the mean-

momentum equations. Going back some steps, equation 5.2 can be re-written in a 

steady-state regime as: 

           ∇ ∙ (�̅��̅�) =  −∇𝑝∗ +
1

𝜌
∇ ∙ 𝜏 +  ∇ ∙ 𝑅∗  (5.13) 

Which can be combined with equations 5.9 and 2.5 

       ∇ ∙ (�̅��̅�) =  −∇𝑝∗ + ∇ ∙ (2𝜈𝑆)  + ∇ ∙ (2ν𝑡𝑆 + R┴) (5.14) 

and rearranged for an incompressible fluid as equation 5.15. 

      ∇ ∙ (�̅��̅�) =  −∇𝑝∗ + ∇ ∙ (2(𝜈 + ν𝑡)𝑆) +  ∇ ∙  R┴ (5.15) 

Wu et al. (2019) noted that conditioning of the system formed by equation 5.15 and 

continuity is enhanced if the linear part of the Reynolds Stress Tensor (2ν𝑡𝑆) is 

treated implicitly. The final form of the equations to be solved using Methodology 

4 is then presented in equation 5.16. 

 

        ∇ ∙ (�̅��̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀)(∇�̅� + ∇𝑇�̅�)) =  −∇𝑝∗ + ∇ ∙  R𝜀
┴  (5.16) 
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All terms on the left are treated implicitly, while the term ∇ ∙  R𝜀
┴ on the right is 

explicitly discretized.  

 The results of Methodology 4 are presented in figures 5.10 and 5.11 for 

cases 1 and 10, respectively.  

 

One can see a significant improvement when comparing with the previous 

methodologies. The clearest discrepancy is observed at Case 10 close to the square 

duct corner. The simulation returned a larger in-plane component, what seems to 

drive fluid with higher momentum to regions close to the corner, increasing the 

streamwise velocity component at such location. It is important, however, to 

highlight that even the SPIV data at such location, for Case 10, is not as smooth as 

Figure 5.10 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 4, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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one expects, probably due to the high velocity gradient observed at such point. This 

could possibly be improved with the use of cameras with better pixel resolution. 

The results in general are, however, really promising.  

 

The use of both the Reynolds Stress Tensor and the measured velocity fields 

originally proposed by Wu et al. (2018), in the form of injecting 𝑅𝜀
┴ and 𝜈𝑡,𝜀, 

significantly improved the simulation results. Therefore, this is so far the better 

Methodology to be used together with a Machine Learning technique to enhance 

turbulence modelling. The drawback of this Methodology is that it required 7 

different quantities (6 terms of 𝑅𝜀
┴ and 𝜈𝑡,𝜀) to be predicted with Machine Learning, 

in comparison with 6 terms for methodology 1, and 2 terms for methodologies 2 

Figure 5.11 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 4, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 



Chapter 5.    Data-driven Numerical Simulation 
  121 
  

 

 
 

and 3. The next Methodologies will, therefore, not focus only on improving the 

results, but also on decreasing the required number of independent quantities to be 

injected. 

It is interesting to note, however, that the pressure gradient errors were 

somehow similar, if not even larger than those obtained using Methodology 1, as 

presented in Table 5.2. Despite the fact that Methodology 4 can better predict the 

mean flow, from equation 2.42 it becomes clear that the driving force balancing the 

pressure gradient is the wall shear stress. Since the velocity gradients are very steep 

close to the wall and the experimental grid cannot be refined, the higher 

uncertainties at the velocity data at such points seems do propagate to increase the 

error on the mean pressure gradient. One more time, this could only be verified and 

possibly solved with the use of cameras with a great number of pixels. 

 

Table 5.2 – Comparison of correlation (literature) and simulated pressure gradient 

obtained with Methodology 4.  

Case 
Correlation 

Pressure gradient 
(m/s2) 

Simulated  
Pressure gradient 

(m/s2) 
Error (%) 

1 0.0123 0.0116 -5.6% 

2 0.0233 0.0202 -13.2% 

3 0.0482 0.0379 -21.5% 

4 0.0818 0.0622 -24.0% 

5 0.0968 0.0713 -26.4% 

6 0.1193 0.0782 -34.4% 

7 0.1689 0.1066 -36.9% 

8 0.2161 0.1244 -42.4% 

9 0.2765 0.1705 -38.3% 

10 0.3398 0.1982 -41.7% 
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5.6. Methodology 5 – Inject 𝒕𝜺
┴ and 𝝂𝒕,𝜺  

Methodology 5 was originally proposed by Brener et al. (2021) and combines the 

strong points of Methodologies 2 and 4. The idea here is to reduce the use of the 

measured Reynolds Stress Tensor, since this quantity has higher associated 

uncertainties. By applying the same decomposition of R* into a linear and an 

orthogonal part, one can define a Perpendicular Reynolds Force Vector (𝑟┴) and a 

Modified Perpendicular Reynolds Force Vector (𝑡┴) as per equations 5.17 and 5.18 

below: 

                    r┴ = ∇ ∙  R┴  (5.17) 

                    𝑡┴ = ∇ ∙  𝑅┴   − ∇p∗   (5.18) 

While 𝜈𝑡,𝜀 is still calculated with equation 5.12, 𝑡𝜀
┴  is calculated from equation 5.19 

and does not require the use of the measured Reynolds Stress Tensor.  

          𝑡𝜀
┴  =  ∇ ∙ (𝑢𝜀̅̅ ̅ 𝑢𝜀̅̅ ̅) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀)(∇𝑢𝜀̅̅ ̅ + ∇𝑇�̅�𝜀))  (5.19) 

The final equation to be solved during the simulations is, therefore: 

           ∇ ∙ (�̅� �̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀)(∇�̅� + ∇𝑇�̅�)) =  𝑡𝜀
┴ − ∇𝑝𝑎𝑑𝑗

∗     (5.20) 

with all terms on the left implicitly treated.  

 The results obtained with Methodology 5 are presented in figures 5.12 and 

5.13, respectively. One can see that as in methodology 3, the results close to the 

corner of the square duct are considerable different even for Case 1. Before 

discarding the approach used here in favor of Methodology 4, it is important to 

emphasize 2 points: 

 (1) there is a significant reduction in the number of quantities that are 

injected in the mean-momentum equation using the approach described here in 

comparison with Methodology 4 (from 7 to 4 quantities). Since reducing the 

number of parameters to be predicted by Machine Learning is desired, it is worth 

trying to improve the results obtained with this methodology.  

 (2) As discussed in Methodology 3 (see section 5.4), the term ∇ ∙ (�̅��̅�) is 

only equal to the actual term at the RANS equations (�̅� ∙ ∇�̅�) if ∇ ∙ �̅� = 0. Again, 

the fact that in the SPIV data, the measured velocity fields are not completely 

divergence-free due to the discussed experimental/numerical-compressibility, helps 



Chapter 5.    Data-driven Numerical Simulation 
  123 
  

 

 
 

explaining the lack of accuracy between the measured and simulated velocity fields 

with Methodology 5.  

The above discussion give space to the definition of Methodology 6. 

 

 

Figure 5.12 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 5, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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Figure 5.13 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 5, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 

 

5.7. Methodology 6 – Inject 𝒕𝜺,𝒄𝒐𝒎𝒑
┴  and 𝝂𝒕,𝜺 

The difference from Methodology 5 to 6 is the same of Methodology 2 to 3: 

a term is inserted into 𝑡𝜀
┴ to assure that what is given to the mean-momentum 

equation is always �̅� ∙ ∇�̅� (there is a compensation for the experimental/numerical-

compressibility). This new term is called 𝑡𝜀,𝑐𝑜𝑚𝑝
┴  and is calculated as equation 5.21 

below: 

𝑡𝜀,𝑐𝑜𝑚𝑝
┴  =  ∇ ∙ (𝑢𝜀̅̅ ̅ 𝑢𝜀̅̅ ̅) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀)(∇𝑢𝜀̅̅ ̅ +  ∇𝑇�̅�𝜀)) − (∇ ∙ 𝑢𝜀̅̅ ̅)𝑢𝜀̅̅ ̅    (5.21) 
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The final equation to be solved then have the form of equation 5.22: 

      ∇ ∙ (�̅� �̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀)(∇�̅� + ∇𝑇�̅�)) =  𝑡𝜀,𝑐𝑜𝑚𝑝
┴ − ∇𝑝𝑎𝑑𝑗

∗     (5.22) 

The results obtained with Methodology 6 are presented in Figures 5.14 and 

5.15 for cases 1 and 10, respectively. Despite not being able to retrieve the mean 

velocity field with the same quality of Methodology 4, the results are also quite 

good. It is important to highlight that this approach uses only 4 injected terms (3 

components of 𝑡𝜀,𝑐𝑜𝑚𝑝
┴  and 𝜈𝑡,𝜀), while Methodology 4 injects 7 terms. This 

Methodology is kept, so far, as a candidate to be used with M.L. techniques to 

enhance turbulence modelling. 

 

Figure 5.14 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 6, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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5.8. Methodology 7 – Inject 𝑹𝜺,𝒌−𝜺
┴  and 𝝂𝒕,𝒌−𝜺 

In Methodology 4, the turbulent viscosity was obtained from experimental 

data using equation 5.10. By doing so, the measured Reynolds Stress Tensor was 

used both to obtain 𝑅𝜀
┴ and 𝜈𝑡,𝜀. The idea behind Methodology 7 is to obtain the 

turbulent viscosity from the traditional k-ε model, but instead of using the turbulent 

viscosity obtained with the poorly predicted velocity fields presented in figure 5.2, 

k and ε were obtained by solving equations 2.27 and 2.28 using the measured 

velocity field as an input. The turbulent viscosity is then obtained through  

equation 2.26 (𝜇𝑡 = 𝐶𝜇𝜌
 𝑘2

𝜀
). This newly obtained turbulent viscosity will be 

Figure 5.15 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 6, for Case 1 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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referred as 𝜈𝑡 𝜀,𝑘−𝜀. The Perpendicular Reynolds Stress Tensor is then obtained by 

equation 5.23. 

                 R𝜀,𝑘−𝜀
┴  =  𝑅𝜀

∗ − 2ν𝑡,𝑘−𝜀𝑆𝜀  (5.23) 

The equation to be solved using Methodology 7 is, therefore: 

∇ ∙ (�̅��̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀 𝑘−𝜀)(∇�̅� + ∇𝑇�̅�)) = −∇𝑝∗ + ∇ ∙  R𝜀,𝑘−𝜀
┴  (5.24) 

The results obtained with Methodology 7 are presented in figures 5.16 and 5.17 for 

cases 1 and 10, respectively. Qualitatively, the agreement seems even better than 

the one obtained using Methodology 4, specially for Case 10. The approach 

proposed in this methodology is an original contribution of the present work.   

 

Figure 5.16 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 7, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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It is important to emphasize that, despite being obtained from the k-ε model, the 

turbulent viscosity in Methodology 7 is still a parameter that needs to be predicted 

somehow and, together with R𝜀
┴, be injected into the mean-momentum equation. 

Therefore, the total number of injected quantities is 7, the same as Methodology 4. 

Despite the qualitative improvement in the mean-velocity fields, the difference 

between the literature and simulated pressure gradient is still considerably high, as 

presented in Table 5.3. Again, this can be explained due to the not-refined 

experimental grid close to the wall, which results in a higher experimental 

uncertainty at such points.  

 

Figure 5.17 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 7, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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Table 5.3 - Comparison of correlation (literature) and simulated pressure gradient 

obtained with Methodology 7.   

Case 
Correlation 

Pressure gradient 
(m2/s2) 

Simulated  
Pressure gradient 

(m2/s2) 
Error (%) 

1 0.0123 0.0113 -8.5% 

2 0.0233 0.0196 -15.9% 

3 0.0482 0.0374 -22.6% 

4 0.0818 0.0613 -25.0% 

5 0.0968 0.0699 -27.8% 

6 0.1193 0.0860 -27.9% 

7 0.1689 0.1183 -30.0% 

8 0.2161 0.1474 -31.8% 

9 0.2765 0.1833 -33.7% 

10 0.3398 0.2201 -35.2% 

 

 

5.9. Methodology 8 – Inject 𝒕𝜺,𝒌−𝜺 𝒄𝒐𝒎𝒑
┴  and 𝝂𝒕,𝒌−𝜺 

The idea behind Methodology 8 is exactly the same of Methodology 6, with the 

sole difference that here the turbulent viscosity is obtained by the same way as in 

Methodology 7: from the k-ε model. The quantity 𝑡𝜀,𝑘−𝜀 𝑐𝑜𝑚𝑝
┴   is calculated from 

equation 5.25 and does not require the use of the measured Reynolds Stress Tensor.  

𝑡𝜀,𝑘−𝜀 𝑐𝑜𝑚𝑝
┴  =  ∇ ∙ (𝑢𝜀̅̅ ̅ 𝑢𝜀̅̅ ̅) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀 𝑘−𝜀)(∇𝑢𝜀̅̅ ̅ + ∇𝑇�̅�𝜀))

− (∇ ∙ 𝑢𝜀̅̅ ̅)𝑢𝜀̅̅ ̅ 

(5.25) 

The final equation to be solved during the simulations is, therefore: 

∇ ∙ (�̅� �̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝜀 𝑘−𝜀)(∇�̅� + ∇𝑇�̅�))

= 𝑡𝜀,𝑘−𝜀 𝑐𝑜𝑚𝑝
┴ − ∇𝑝𝑎𝑑𝑗

∗  
(5.26) 

The results obtained with Methodology 8 are presented in figures 5.18 and 5.19, for 

cases 1 and 10 respectively. One can see that the results are not as good as those 

obtained with Methodology 7. The number of injected quantities used in this 
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approach, however, is reduced to 4, the same number used in Methodology 6, with 

the difference that the results obtained here are closer to the measured ones. 

Methodology 8, therefore, is also maintained as a good candidate to be used with 

Machine Learning techniques to enhance turbulence modelling. As Methodology 

7, the approach used in Methodology 8 is an original contribution of this work.  

 

 

Figure 5.18 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 8, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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Figure 5.19 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 8, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 

 

5.10. Methodology 9 – Inject only 𝑹𝜺,𝒌−𝜺
┴  

The idea of obtaining the Perpendicular Reynolds Stress Tensor from the  

k-ε model, as described in Methodology 7, poses a question: once 𝑅𝜀,𝑘−𝜀
┴  is obtained 

from equation 5.23, is it necessary to inject the turbulent viscosity as in 

Methodology 7? Or the turbulent viscosity can be obtained from the k-ε model? 

Methodology 9 is proposed as an approach into which only 𝑅𝜀,𝑘−𝜀
┴  is injected, and 

the mean-momentum equation presented in equation 5.27 is solved together with 
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the equations for k and ε (equations 2.27 and 2.28) at each time step. The turbulent 

viscosity 𝜈𝑡,𝑘−𝜀 is updated at each time step by equation 2.26. 

∇ ∙ (�̅��̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝑘−𝜀)(∇�̅� + ∇𝑇�̅�)) = −∇𝑝∗ + ∇ ∙ R𝜀,𝑘−𝜀
┴  (5.27) 

 The results obtained with Methodology 9 are presented in figures 5.20 and 

5.21 for cases 1 and 10, respectively. One can see that the results seem, qualitatively 

as good as those obtained by Methodology 7. The main difference is that, despite 

the fact that the turbulent viscosity obtained by the k-ε model using the measured 

velocity field as an input is used to calculate 𝑅𝜀,𝑘−𝜀
┴ , only this last quantity is injected 

into equation 5.27. This reduces the number of independent quantities to be 

predicted by a Machine Learning technique from 7 (Methodology 7) to 6 

(Methodology 9).  

 

Figure 5.20 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 9, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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The comparison of the obtained pressure gradient by the numerical simulation 

using Methodology 9, with values from the literature is presented in table 5.4. In 

general, one can observe a decrease in the error in comparison with Methodology 7 

(with exception of Case 1, into which there is a considerable increase in the error). 

The improvement, however, was not much significant. As in the previous 

methodologies, this results are expected to be significantly improved with the use 

of cameras with higher pixel resolution, what would allow a more refined 

experimental grid.  

 

 

 

Figure 5.21 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 9, for Case 10 (Re = 44500). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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Table 5.4 - Comparison of correlation (literature) and simulated pressure gradient 

obtained with Methodology 9.   

Case 
Correlation 

Pressure gradient 
(m2/s2) 

Simulated  
Pressure gradient 

(m2/s2) 
Error (%) 

1 0.0123 0.0094 -24.1% 

2 0.0233 0.0207 -11.3% 

3 0.0482 0.0421 -12.7% 

4 0.0818 0.0682 -16.7% 

5 0.0968 0.0756 -21.9% 

6 0.1193 0.0958 -19.7% 

7 0.1689 0.1358 -19.6% 

8 0.2161 0.1961 -9.3% 

9 0.2765 0.2010 -27.3% 

10 0.3398 0.223465 -34.2% 

 

 

5.11. Methodology 10 – Inject only 𝒕𝜺,𝒌−𝜺 𝒄𝒐𝒎𝒑
┴   

The idea behind Methodology 10 is the same as in Methodology 9: inject a 

quantity obtained with the turbulent viscosity originated by the solution of the k-ε 

model having the experimental velocity fields as inputs, but not injecting the 

turbulent viscosity in the mean-momentum equations. Instead, the turbulent 

viscosity is updated every iteration by the k-ε model. The difference is that in 

Methodology 10 the quantity to be injected is the Modified Perpendicular Reynolds 

Force Vector, obtained by equation 5.25. The final equation to be solved is then 

given by equation 5.28 below: 

∇ ∙ (�̅� �̅�) − ∇ ∙ ((𝜈 + 𝜈𝑡,𝑘−𝜀)(∇�̅� + ∇𝑇�̅�)) = 𝑡𝜀,𝑘−𝜀 𝑐𝑜𝑚𝑝
┴ − ∇𝑝𝑎𝑑𝑗

∗  (5.28) 

Again, 𝜈𝑡,𝑘−𝜀 indicate that the turbulent viscosity is obtained by the k-ε model at 

every iteration.  

 The results obtained with Methodology 10 are presented in figures 5.22 and 

5.23 for cases 1 and 10, respectively. When comparing with methodology 9, the 
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results obtained are similar for case 1, while one can clearly see a lower agreement 

for case 10. Methodology 10, however, is the only one that injects only 3 quantities 

(3 components of 𝑡𝜀,𝑘−𝜀 𝑐𝑜𝑚𝑝
┴ ) with realistic results. For this reason, this 

Methodology will be maintained as an option. 

 

 

Figure 5.22 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 10, for Case 1 (Re = 7000). Streamwise and vertical 

wall-normal components of the velocity vector are presented. 
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5.12. Summary of the different Methodologies 

Throughout this chapter, 10 different methodologies to inject measured 

quantities into the RANS equations to enhance turbulence modelling were 

evaluated, as summarized in table 5.5.  

The most obvious approach, to inject the measured Reynolds Stress Tensor 

(Methodology 1) did not return good results for the higher Reynolds number. As 

defined by Thompson et al. (2016), the error Ew(y+) between the obtained 

streamwise velocity profile when injecting R*
 and that originated from a high-

fidelity source is given by equation 5.30, 

Figure 5.23 - Comparison of the (a) experimental results and (b) simulation 

performed using Methodology 10, for Case 10 (Re = 44500). Streamwise and 

vertical wall-normal components of the velocity vector are presented. 
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             𝐸𝑊(𝑦+) =  �̃�+(𝑦+) − �̂�+(𝑦+) =  ∫ 𝐸𝑅∗(𝑦′)𝑑𝑦′
𝑦+

0
    (5.30) 

where ( )̂ indicates a quantity obtained from a high-fidelity source such as DNS and 

( )̃ indicates a quantity obtained from a conservative equation using high-fidelity 

data as input. The error between streamwise velocity components originates from 

the cumulative error 𝐸𝑅, which is defined as in equation 5.31 

𝐸𝑅(𝑦+) =  �̃�𝑥𝑦
∗+(𝑦+) − �̂�𝑥𝑦

∗+(𝑦+) = 1 −
𝑦+

𝑅𝑒𝜏
−

𝑑�̂�+

𝑑𝑦+
− �̂�𝑥𝑦

∗+(𝑦+) (5.31) 

From equation 5.30, it becomes clear that to avoid high errors at the mean velocity 

field when injecting the Reynolds Stress Tensor, the quantity 𝐸𝑅(𝑦+) should be 

very small, because even relative small errors when integrated into the physical 

domain will imply on high errors in the mean velocity field. What was observed for 

several DNS data (Thompson et al., 2016; Poroseva et al., 2016) and for the present 

work, is that 𝐸𝑅(𝑦+) is not small enough. 

 

Table 5.5 – Summary of the different methodologies evaluated. 

Methodology Injected quantities 
Number of injected 

quantites 
Reference 

1 R* 6 Wang et al. (2017) 

2 t 3 Cruz et al. (2019) 

3 tcomp 3 Cruz et al. (2019) 

4 R┴ 
 and νt 7 Wu et al. (2018) 

5 t┴  and νt 4 Brener et al. (2021) 

6 t𝑐𝑜𝑚𝑝
┴

 and νt 4 Brener et al. (2021) 

7 R┴ 
 and νt 7 Present work 

8 t𝑐𝑜𝑚𝑝
┴ and νt 4 Present work 

9 R┴ 
  6 Present work 

10 t𝑐𝑜𝑚𝑝
┴  3 Present work 

 

As pointed out by Brener et al. (2021), when the approach is to somehow 

correct the turbulent viscosity and inject it into the RANS equations, the new value 

for 𝐸𝑊(𝑦+) is given by equation 5.32, where 𝜈𝑡
∗ =

�̂�𝑡

𝜈
 is the normalized turbulent 

viscosity. 
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             𝐸𝑊(𝑦+) =  �̃�+(𝑦+) − �̂�+(𝑦+) =  ∫
𝐸𝑅∗(𝑦′)

1+𝜈𝑡
∗(𝑦′)

𝑑𝑦′
𝑦+

0
    (5.32) 

Given the fact that the turbulent viscosity is always positive, one can expect a 

decrease in the errors in the mean velocity field. This helps explaining the better 

results obtained with Methodologies 4 to 10, since all of them are based on using, 

at some moment, an enhanced turbulent viscosity.  

 By only evaluating the contour plots presented for the different 

Methodologies at sections 5.2 to 5.11, it is rather difficult to choose a better one. 

Despite being clear that the results obtained at Methodologies 1, 2, 3 and 5 are not 

good, the proper selection of the better among 4, 6, 7, 8, 9 and 10 is not an easy 

task. The most intuitive way to obtain a global error for a given methodology is to 

calculate the root-mean deviation between the velocity field obtained with the 

chosen methodology and that originated from a high-fidelity source. This was the 

procedure employed by Cruz et al. (2019). The problem with this error calculation 

procedure is that very small deviations at regions where the velocity component 

under evaluation is very small, results in large percentage errors. When this 

procedure is applied at the whole square duct, the global error is dominated by the 

error close to the wall that, in some cases, is irrelevant compared to the error in the 

bulk of the square duct. In this work, a weight factor 𝑊𝑓(𝑖) =
𝑊exp(𝑖)

𝑊𝑒𝑥𝑝,𝑚𝑎𝑥
 is proposed 

to attenuate this effect, where 𝑊𝑒𝑥𝑝(𝑖) is the measured streamwise velocity 

component at a “i” given location and Wexp,max is the maximum measured value of 

the streamwise velocity component at the square duct. The root mean error for the 

streamwise component is therefore given by equation 5.33,  

             𝐸𝑟𝑚𝑠 = √ 1

𝑁𝑐𝑜𝑟𝑟
∑ (

𝑊𝑀𝑒𝑡(𝑖)−𝑊𝑒𝑥𝑝(𝑖)

𝑊exp(𝑖)
)
2

𝑊𝑓(𝑖)
𝑁
𝑖=1     (5.33) 

where i represents one numerical grid point from a total of N. Obviously, the 

experimental grid must be interpolated into the numerical one (or vice-versa) to 

perform this error analysis. Since the weight factor is introduced, the division 

number can no longer be equal to N as in the traditional procedure. Instead, a 

corrected number of samples (Ncorr) is used, given by equation 5.34. 

             𝑁𝑐𝑜𝑟𝑟 = ∑
𝑊exp(𝑖)

𝑊𝑒𝑥𝑝,𝑚𝑎𝑥

𝑁
𝑖=1     (5.34) 
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The results obtained using the error calculation methodology described 

above are presented in table 5.6.  

 

Table 5.6 – Root mean error of the streamwise component of the velocity vector, 

calculated using equation 5.32 for different methodologies. 

Methodology 

Case 1 Case 3 Case 5 Case 7 Case 10 

Root mean 

error (%) 

Root mean 

error (%) 

Root mean 

error (%) 

Root mean 

error (%) 

Root mean 

error (%) 

4 1.7 3.3 3.4 8.7 9.0 

6 5.4 4.8 4.1 5.9 5.6 

7 0.9 2.6 2.4 5.0 4.7 

8 2.2 2.7 2.2 3.8 2.8 

9 2.1 2.7 2.6 6.1 5.2 

10 2.4 3.2 2.4 5.3 3.5 

 

It seems that the methodologies that use more dependent on the Reynolds 

Stress Tensor at the injected quantities, such as methodologies 4, 7 and 9, have an 

associated error that increases with the Reynolds number, probably due to the 

increase in the uncertainty of R*. It is noted, however, that for the cases with a 

relative low Reynolds number, the better results among all methodologies are 

obtained using Methodology 7. On the other hand, the errors obtained with 

methodologies 8 and 10 seem to be less dependent on the Reynolds number and are 

in general, not only smaller than those obtained with other methodologies, but also 

use less injected quantities. In the end, the following methodologies were selected 

to be evaluated together with Machine Learning techniques described in the next 

chapter: 

• Methodology 7: despite using 7 injected quantities as input, it is worth 

checking if the smaller errors obtained for the cases with low Reynolds 

number can be achieved, since the errors obtained at the cases with higher 

Reynolds numbers could be reduced using higher pixel resolution cameras.  

• Methodology 8: this methodology is the one with smaller errors when 

evaluating all different cases. Since the Reynolds Stress Tensor is not used, 
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the root mean error is not significantly influenced by the Reynolds number 

(i.e., root mean error is almost constant for all cases). 

• Methodology 10: despite having an error slightly above Methodology 8, this 

methodology only uses 3 injected quantities, while 4 are required for 

Methodology 8. Therefore, it is worth checking its performance when the 

injected quantities are originated from a Machine Learning algorithm. 

 

Figures 5.24 and 5.25 present the comparison of the velocity profile obtained at 

Methodologies 4, 6, 7, 8, 9 and 10 at x/H = 0, x/H = -0.3, x/H = -0.6 and x/H = -0.9 

for cases 1 and 10, respectively. One can observe that the information obtained at 

table 5.6 somehow repeats: for case 1, Methodology 7 present the better results 

while for case 10 the better agreement is observed at Methodologies 8 and 10.  
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Figure 5.24 - Streamwise velocity profile and error obtained at Case 1 for 

Methodologies 4, 6, 7, 8, 9 and 10 for x/H = 0 (a), x/H = -0.3 (b), x/H = -0.6 and 

x/H = -0.9. 
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Figure 5.25 - Streamwise velocity profile and error obtained at Case 10 for 

Methodologies 4, 6, 7, 8, 9 and 10 for x/H = 0 (a), x/H = -0.3 (b), x/H = -0.6 and 

x/H = -0.9.
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6 
Turbulence Modelling Assisted by Machine Learning  

As discussed in chapter 2, the high cost associated with resolving all scales in 

CFD simulations makes the truncation of small turbulent scales, using RANS, LES 

or equivalent procedures, the only applicable approach for many engineering 

situations. Despite the alternative turbulent modelling procedures described in 

section 2.2.2, the use of Machine Learning techniques to enhance turbulence 

modelling is a new area under constant development (Duraisamy et al. 2019). The 

recent advances obtained in this field will be discussed in this chapter.  

 

6.1. Literature Review 

One of the pioneer works to use a data-driven approach with supervised 

learning to enhance turbulence modelling was that of Tracey et al. (2015). The 

authors developed neural networks (NN) with two hidden-layers and fifty neurons 

each, with the goal of predicting the non-dimensional source term of the Spalart-

Allmaras turbulence model. The authors chose different calibrated simulations 

(tuned simulations based on the knowledge and experience of the authors) of flows 

over a flat plate, channel, and airfoil to train the NN. In the end, the NN acts as a 

model to predict the source terms from flow features at every simulation step. The 

results obtained, evaluated over quantities such as the skin-friction coefficient Cf 

were promising. It was also mentioned the importance of proper selecting the loss 

function to be used during training that will penalize regions that require more 

accuracy (i.e., will have a bigger impact on the final results when the mean-

momentum equations are solved). In the present work, this information was used to 

penalize more heavily regions close to the wall, during the training of the Neural 

Networks, as discussed in section 8.1. 

An interesting consideration pointed out by Tracey et al. (2015) is that good 

predictions of the source term can be considered a requirement, but not a sufficient 
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condition to yield good results when such quantity is injected into the CFD 

environment. The opposite can also be true, but it is strongly dependent of the nature

of the injected quantity (i.e., if the quantity is very small, large deviations can lead 

to small errors in the final result). Given the fact that the training of the NN is 

performed with the converged data, when the same is used to predict the source 

term at every iteration during the simulations, it can negatively impact on the 

simulation convergency and, therefore, on the mean velocity field obtained. Figure 

6.1 presents a comparison of the predicted source term obtained by the NN of 

Tracey et al. (2015) with its expected value. Despite the remarkable agreement, this 

is one of the cases that the authors described poor agreement with the obtained 

velocity field when the computation started from the initial condition.  

 

 

Figure 6.1 – Comparison of predicted and true values of the source term of the 

Spalart-Allmaras model for one of the simulations of Tracey et al. (2015).  

 

The methodology used by Tracey et al. (2015) differs from that of the present 

work because the idea here is to use features obtained from the low-fidelity k-ε 

RANS simulation as input for the NN. This means that the NN will be only used 

one time and not at all simulation steps.  

In a different approach, Ling and Templeton (2015) explored the use of 

Machine Learning (ML) to identify flow regions where the uncertainties of the 

RANS simulations are high. The authors used 7 simulations of different flows with 
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high-fidelity data available to train three ML algorithms: Support Vector Machine 

(SVM), Adaboost Decision Trees (DTs) and Random Forests (RF). The goal of the 

supervised learning was to provide a marker of true and false to identify flow 

regions where at least one of the following RANS eddy viscosity assumptions 

failed: the linearity of the Reynolds Stress Tensor with S, the non-negativity of the 

turbulent viscosity and its isotropy. The authors mentioned that more robust and 

computational expensive models for R* could be used at those regions, such as those 

presented in section 2.2.2, although this was not implemented in their work. Ling 

and Templeton (2015) showed that better results were obtained with the use of 

Random Forest with non-dimensional inputs, also demonstrating that supervised 

ML can perform good generalization for different flows, a requirement if one wants 

to develop a NN, RF or other ML algorithm that can be used to enhance turbulence 

modelling in general.  

One of the first works to use Deep Learning with the goal of enhancing 

turbulence modelling was that of Ling et al. (2016). It is very interesting to note 

that the authors went deep into the literature, back to the work of Pope (1975), to 

create a special neural network architecture which automatically satisfies Galilean 

invariance. As it was demonstrated by Pope (1975), the normalized deviatoric part 

of the Reynolds Stress Tensor can be written as a linear combination of 10 tensors, 

as presented in equation 6.1, 

             𝑏 =  
𝑅∗

2𝑘
−

1

3
𝐼 =  ∑ 𝑔(𝑛)(λ1, . . , λ5)𝑇

(𝑛)10
𝑛=1    (6.1) 

where g is a scalar function of five tensor invariants λ1,.., λ5. Equations 6.2 and 6.3 

present the 10 tensor and 5 invariants, respectively. 

    

 𝑇(1) = 𝑆 𝑇(6) = 𝑊2𝑆 + 𝑆𝑊2 −
2

3
𝐼 ∙ 𝑇𝑟(𝑆𝑊2)

 𝑇(2) = 𝑆𝑊 − 𝑊𝑆 𝑇(7) = 𝑊𝑆𝑊2 − 𝑊2𝑆𝑊

𝑇(3) = 𝑆2 −
1

3
𝐼 ∙ 𝑇𝑟(𝑆2)

    𝑇(4) = 𝑊2 −
1

3
𝐼 ∙ 𝑇𝑟(𝑊2)

𝑇(5) = 𝑊𝑆2 − 𝑆2𝑊

𝑇(8) = 𝑆𝑊𝑆2 − 𝑆2𝑊𝑆

𝑇(9) = 𝑊2𝑆2 + 𝑆2𝑊2 −
2

3
𝐼 ∙ 𝑇𝑟(𝑆2𝑊2)

𝑇10 = 𝑊𝑆2𝑊2 − 𝑊2𝑆2𝑊

       (6.2) 

 

             𝜆1 = 𝑇𝑟(𝑆2), 𝜆2 = 𝑇𝑟(𝑊2), 𝜆3 = 𝑇𝑟 (𝑆3),   

𝜆4 = 𝑇𝑟(𝑊2𝑆), 𝜆5 = 𝑇𝑟(𝑊2𝑆2) 
(6.3) 
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 The idea in the work of Ling et al. (2016) is to create a NN architecture that 

receive as input the tensor invariants λ and predicts the scalars g at the final hidden 

layer. The result is then multiplied by the tensors at equation 6.2 to result in the 

normalized deviatoric part of the Reynolds Stress Tensor. Figure 6.2 present the 

schematic of this novel NN. The authors used Bayesian optimization (Snoek et al., 

2012) to optimize the hyper-parameters of the NN. Better results were obtained 

with 8 hidden layers with 30 neurons each. 

 

Figure 6.2 – Neural network architecture proposed by Ling et al. (2016). 

 

 The NN developed by Ling et al. (2016) was trained using high fidelity DNS 

or well-resolved LES as outputs and low-fidelity RANS as inputs. Both a-priori 

comparisons with R* and a-posteriori results after injection into the RANS 

equations revealed better results than those obtained using both linear and quadratic 

eddy-viscosities models for flows in a square duct and periodic hills. It would be 

very interesting to check how this NN architecture would behave if it was trained 

using high-fidelity data both as input and output: i.e., the NN would be forward 

propagated at every iteration and would act as a non-linear turbulence model. This 

analysis, however, was not performed by the authors.  

 A different and maybe more intuitive idea was proposed by Wang et al. 

(2017a). The authors used the Random Forest technique and ten invariant flow 

features as input to build a supervised model capable of predicting the discrepancy 
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(error) of the Reynolds Stress Tensor, represented by its magnitude, shape and 

orientation from eigen-decomposition. Wang et al. (2017a) showed that the RF 

could enhance the predictions of R* for both flows in a Square Duct and Periodic 

Hills, as presented in figure 6.3. The authors, however, could not propagate the 

improved R* back into the MMEs to improve the mean velocity field. As 

demonstrated by Poroseva et al. (2016) and Thompson et al. (2016), even small 

discrepancies at R* when propagated by the NS equations, lead to significant high 

errors at the mean velocity fields, what explains the failure of Wang et al. (2017a) 

in getting better averaged fields.  

 

Figure 6.3 – Enhanced results obtained with Random Forest by Wang et al. (2017a) 

for one component of the  Reynolds Stress Tensor at (a) Square Duct and (b) 

Periodic Hills.  
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 The same RF approach used by Wang et al. (2017a) was applied by Wang 

et al. (2017b) to improve the predicted value of R* in a square duct flow, using the 

DNS data from Pinelli et al. (2010) for both training and testing. Despite the authors 

claim that they could see improvements in the mean velocity field with the RF 

architecture developed, as in Ling et al. (2016), only Square Duct (SD) in-plane 

velocities fields were presented. It remains the question about how accurate was the 

streamwise velocity comparison using the ML proposed.  

 The capabilities of using observation data of the flow of interest to enhance 

RANS simulations was explored by Xiao et al. (2016). The authors created an open-

box Bayesian framework to introduce deviations into the Reynolds Stress Tensor. 

The values of R* with the deviations are compared with the a-priori flow 

information at specific points and propagated to the whole domain using iterative 

statistical procedures, until convergence at the known-data is obtained. In summary: 

the statistical procedure developed adjusted the deviations introduced at R* until 

convergence was achieved at the observation points. The results obtained show 

improvements at both the periodic-hills and square duct flows, being the latter 

presented in figure 6.4. As in Wang et al. (2017b), however, only results for in-

plane velocity fields for the square duct were presented. The approach proposed by 

Xiao et al. (2016) is interesting because it does not require a previous dataset that 

shall be learned by a NN, RF or other ML technique. Instead, the statistical 

procedure makes use of data of the flow of interest itself and physical/numerical 

constrains to improve the baseline RANS results. An obvious drawback is the fact 

that it is difficult to use such approach for predicting results in novel applications. 

The authors claims that similar flows could be used for such cases (for instance: use 

a smaller/bigger Reynolds number and a similar flow-geometry), however, such 

analysis was not executed.  
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Figure 6.4 – Comparison of the spanwise velocity component from the DNS of 

Huser et al. (1993), observation data, baseline RANS simulation and results 

obtained with the strategy proposed by Xiao et al. (2016).  

 

 So far, all works discussed were based somehow on a better prediction of 

the Reynolds Stress Tensor with the final goal of enhancing the RANS results. This 

in general requires a-priori good data of R*. Since such values from the available 

DNS in the literature are not fully converged, as demonstrated by Thompson et al. 

(2016), a different path was suggested by Cruz et al. (2019). The authors noted that 

it is not the Reynolds Stress Tensor the driving force of the RANS equations, but 

its divergence, the so-called Reynolds Force Vector. Since the pressure terms are 

not present at the DNS available in the literature, the pressure gradient was 

incorporated into the RFV, generating the modified RFV, which can be obtained by 

the well-converged mean velocity field.  

After proving that the modified RFV could be successfully injected into the 

MME and propagated to obtain improved velocity fields, Cruz et al. (2019) 

generated a Neural Network with 2 hidden layers with 100 neurons each to compare 

the results obtained when the NN is trained to predict the modified RFV and the 

Reynolds Stress Tensor itself. The inputs of the NN for both cases were 72 

quantities obtained from tensors and vectors from the low-fidelity RANS 

simulation. The results obtained for the 3 components of the velocity vector for a 

Reynolds number of 6400 are presented in figure 6.5. The results with the modified 
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RFV indicates a significantly improvement in the RANS results, way better than 

using R*. 

   

It is important to highlight that even with the separation done by Cruz et al. 

(2019) of the data available into training, validating, and testing, the variations in 

the Reynolds number was significantly small. The DNS performed by Pinelli et al. 

(2010) and used by Cruz et al. (2019) varied the Reynolds number from 4400 to 

7000 only. At such situations, it is hard to say if the Neural Network developed was 

not simply overfitting both the training and validating data, instead of proper 

generalizing it. The similarity between training, validating, and testing data can also 

be an explanation for why only 2 hidden layers were enough to get satisfactory 

results. Nevertheless, the approach proposed by Cruz et al. (2019) was evaluated 

with the data obtained at this work at Methodologies 2 and 3.  

With the same idea of using ML to predict different quantities then R*, Wu 

et al. (2018) decomposed the Reynolds Stress Tensor in its linear and non-linear 

part with S, as demonstrated in equation 5.9. After demonstrating that the turbulent 

Figure 6.5 - Comparison of the mean velocity field obtained with the RANS 

simulation and injection of R and t predicted by a Neural Network for Re = 6400, 

with DNS data. 
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viscosity and the difference between the linear and non-linear parts of R* 

(equivalent to R┴) could be successfully injected into the RANS equation to get 

enhanced results, the authors trained a RF to predict such quantities using vectors 

and tensors obtained from the Launder-Gibson Reynolds stress transport model 

(Gibson and Launder, 1978). The results obtained by Wu et al. (2018) were also 

satisfactory, as presented in figure 6.6. It is interesting to observe that the non-linear 

turbulence model used can predict the secondary flow at the SD, differently than 

the k-ε model used in the work of Cruz et al. (2019). The recirculation intensity, 

however, is higher than that observed at the DNS. 

The approach proposed by Wu et al. (2018) is that of methodology 4 of the 

present work, where the suggestion of discretizing implicitly the linear part of S, to 

get better results was followed. The authors mentioned as a limitation of their work 

the fact that the training and testing Reynolds number were too close. As in Cruz et 

al. (2019), the DNS data from Pinelli et al. (2010) was used for both training and 

testing, so it is difficult to assure that the ML algorithm trained was proper 

generalizing or not the results (i.e., it was not simply overfitting both training and 

testing data, given their similarity).  

 

With the goal of identifying the quantities injected into the RANS equations 

that return better results, as well as the better implicitly/explicitly discretization 

strategy (conditioning of RANS equations), Brener et al. (2021) ran simulations of 

the following methodologies: 

Figure 6.6 - Comparison of the results obtained by Wu et al. (2018) of the secondary 

flow in the SD from the baseline RANS simulation, DNS and ML.  

Re = 7000. 
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• Methodology 1: the usual data-driven approach. 

• Methodology 2/3: the methodology proposed by Cruz et al. (2019). 

• Methodology 4 with explicit discretization of the linear and non-linear parts 

of R*. 

• Methodology 4 with implicit discretization of the linear part of R* and explicit 

discretization of the non-linear part. 

• Methodology 4 with the turbulent viscosity varying at each iteration and 

implicit treatment of the linear part of R. This approach is similar to that of 

methodology 9, with the difference that the perpendicular part of R is updated 

at every iteration depending on the turbulent viscosity, while in methodology 

9 this term was a-priori defined.  

• Methodology 5/6 with implicit discretization.  

 

All data used by Brener et al. (2021) for the SD flow was based on the DNS 

of Pinelli et al. (2010). The authors obtained lower errors for Methodology 5/6 with 

implicit discretization. Also, it was demonstrated that the sole discretization of the 

linear part of R implicitly does not necessarily enhance the system conditioning. To 

do so, it is necessary to use the velocity data to obtain S and the turbulent viscosity, 

as in methodology 4 of the present work. 

More recently, Macedo at al. (2020) modified the transport equation of the 

Reynolds Stress Tensor given by Thompson et al. (2019) to ensure numerical 

stability and convergence. The final version has the form of equation 6.4, where Г̂ 

is a source-term composed of all terms that require modelling and the production 

terms. 

             𝑢 ∙ ∇𝑅∗ = ∇ ∙ ((𝜈 + 𝜈𝑡)∇𝑅∗ + Г̂   (6.4) 

The coupling of equation 6.4 with the MME and the continuity equation consist of 

a set of 10 partial differential equations and 10 variables (6 terms of R*, 3 terms of 

the velocity and the pressure).  

The procedure proposed by Macedo at al. (2020) is to use a Neural Network 

to predict the source term Г̂, obtained from the DNS of Pinelli et al. (2010) with 

equation 6.5.  

             Г̂ =  𝑢𝐷𝑁𝑆 ∙ ∇𝑅𝐷𝑁𝑆
∗ − ∇ ∙ ((𝜈 + 𝜈𝑡)∇𝑅𝐷𝑁𝑆

∗ )   (6.5) 
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The turbulent viscosity and the inputs of the NN are obtained from a low-fidelity 

RANS model. After predicting the source-term, the authors solved the set of 10 

partial different equations to retrieve all components of the velocity field for the SD 

flow, as presented in figure 6.7 below. 

 

Despite the good results obtained by Macedo et al. (2020), its procedure 

relies on the use of the Reynolds Stress Tensor more times than Methodology 9, 

while the same number of quantities (6) must be predicted. Since the Reynolds 

Stress Tensor is a high source of uncertainties when measuring high Reynolds 

Number with SPIV, the procedure proposed by Macedo et al. (2020) was not 

evaluated in the present work.  

The data-driven methodologies discussed by Brener et al. (2021) were 

evaluated using Random Forest at Brener et al. (2022) for both periodic hills and 

the SD flow. The authors proposed a novel procedure to enforce Euclidean 

Figure 6.7 - Comparison of the 3 components of the velocity field obtained from 

the baseline RANS simulation (left), DNS of Pinelli et al. (2010) (right) and 

corrected simulation with the procedure proposed by Macedo et al. (2020). 
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invariance in the RF, by expressing all quantities used both as inputs and outputs of 

the RF on the basis of the unitary eigenvectors of the strain rate tensor S, obtained 

from the low-fidelity RANS simulations. Being S Euclidean invariant (and so its 

eigenvectors and eigenvalues), this quantity can be used to train a ML technique 

such as RF or NN in a frame of reference that deforms together with the flow. As 

discussed by Hamba (2006), Euclidean invariance is necessary to assure 

generalization of the model (i.e., the results obtained at one flow configuration can 

be used at other). The results obtained by Brener et al. (2022) corroborated the 

findings of Brener et al. (2021) that lower errors were obtained using 

Methodologies 5/6 of the present work, among those evaluated by Brener et al. 

(2021). 

 

6.2. State-of-the-art 

The obvious choice of using Machine Learning as an alternative technique 

to obtain the Reynolds Stress Tensor from flow quantities was found to be 

challenging. Many authors (Thompson et al., 2016; Poroseva et al., 2016; Wu et al., 

2019 and Brener et al., 2021) concluded that the RANS equations are bad-

conditioned, i.e. small errors in R when propagated result in large discrepancies in 

the mean velocity field. This situation combined with the difficulty to obtain well-

converged data of high-order statistics is a major drawback for data-driving 

numerical simulation of turbulent flows using the traditional approach. The 

possibility of using high-resolution DNS (Vrenan and Kuerten, 2014) and calculate 

the time-averaged quantities using longer periods (Andrade et al, 2018) would 

increase even more the already high computational time of DNS, making it 

unfeasible with the current computational power. Instead, a different path is to inject 

other quantities than R* into the MME, that can more easily be obtained from DNS 

simulations or well-controlled experiments. At the same time, it is worth dedicating 

some time to understand which terms must be implicitly or explicitly described, to 

enhance RANS conditioning. The advances in investigating the better quantities to 

be injected into the MME and predicting them with ML was described in this 

chapter and it is the state-of-the-art of data-driven turbulence modelling with ML. 

Specifically, for this work, the approach chosen was to obtain the desired 

quantities using a trained NN with input data from low-fidelity RANS simulations, 
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but ML could also be trained to obtain the desired quantity from the high-fidelity 

data. In such case, one would have to embed the ML structure into the CFD solver, 

and check if good results would be achieved when the injected quantities are 

updated at every iteration at the low-fidelity simulation, i.e., one would have to 

check if a good high-fidelity model could be used in a low-fidelity model and if this 

approach would not result in an ill-posed system.  
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7 
Neural Networks  

Artificial Neural Network is a flexible class of Machine Learning technique, 

especially useful when dealing with non-linear problems. Despite generally being 

considered a classification algorithm (see figure 1.4), Neural Networks are also 

commonly used in regression tasks (Bishop, 2006; Goodfellow et al. 2016). In fact, 

in the recent literature many researchers used the regression capabilities of the 

Neural Network exactly to enhance turbulence modelling, such as Ling et al. 

(2016), Cruz et al. (2019), Macedo (2020) and Brener et al. (2021). This chapter is 

dedicated to explaining the Neural Network: how it works, its main characteristics, 

definitions and good practices to be used during its development. 

 

7.1. Neuron: An Artificial Approach 

The basic structure of an Artificial Neural Network is the artificial neuron. 

Despite the reasonable questionability of the biological comparison with an actual 

neuron (Bishop, 2006) and general discussions whether it is possible or not to actual 

model the human-brain, artificial and biological neurons share at least one common 

feature: both are structures capable of generating a manipulated output when 

stimulated by different inputs (synapses).  

Probably the first attempt to model a neuron was developed by Mcculloch 

and Pitts (1943). The authors proposed a structure that would give an output of 1 or 

0 depending on the summation of the received synapses. Somehow similar, the 

typical structure of a modern artificial neuron is presented in figure 7.1. To 

minimize computational cost, the artificial neuron works by vectors/matrix 

multiplication. It receives as input (synapse) a m-length vector 𝑥 = [𝑥1, 𝑥2, … 𝑥𝑚], 

which is multiplied element-by-element by a synaptic weight vector  

𝑤𝑘 = [𝑤𝑘1, 𝑤𝑘2, …𝑤𝑘𝑚]. The product of the synapse input and the synapse weight 

is then summed with a bias scalar bk, resulting in the scalar 𝜈𝑘, that goes through a 

mathematical manipulation by an activation function 𝜑(𝜈𝑘), finally resulting in the
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scalar output of the Neural Network: 𝑦𝑘. The different types of activation function 

will be further discussed in section 7.2.3, when discussing about hyper parameters 

of the Neural Network. It is important to emphasize that both the weight vector and 

the bias are properties of the neuron i.e., in a neural network with multiple neurons, 

each one has its own weight vector and bias. The training of a neural network, which 

will be further discussed, is exactly the tuning of those values.  

 

The procedure above described is summarized at equations 7.1, which is 

written in a matrix form. 

             𝑦𝑘 =  𝜑(𝑤𝑘
𝑇𝑥 + 𝑏𝑘)   (7.1) 

At this point is important to emphasize that some authors/courses in the literature 

write the bias inside the weight function. In those cases, both the weight and the 

input vectors would be a m+1-length vector, with the additional component being 

1 at the input and exactly the bias value at the weight vector. In the end, the scalar 

𝜈𝑘 is the same. 

The use of a neuron and the adjustment of its weights and bias to a 

classification problem (or logistic regression) was first proposed by Rosenblant 

(1958), who developed the first learning machine, which was named as Perceptron. 

It was later demonstrated by Rosenblant (1961) that the perceptron was able to 

apply the already proposed learning algorithm (error correction algorithm), to learn 

Figure 7.1 - Architecture of an Artificial Neuron, k. Adapted from Haykin (2009). 
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how to proper classify linearly separable patterns. The interest generated in the 

Perceptron after Rosenblant (1961) was, however, decreased due to some 

limitations highlighted in many works after it. To illustrate, Minsky and Papert 

(1969) noted that the Single-layer Perceptron is not capable of learning the XOR 

function, what significantly comprises its classification ability. It is also worth 

mentioning its difficulty to provide generalized results. Despite the fact that it was 

known back then that those issues could be overcome by using more layers 

(Brunton et al., 2020), the computational limitations of the time discouraged 

continuous research in the field for decades. Recently, however, it was 

demonstrated that results once unachievable can be obtained by arranging 

perceptrons/neurons in series and parallel (Bishop, 2006; Haykin, 2009; Marsland, 

2011). Those new structures are now named Multi-layer Perceptrons (MLP) or, in 

a more general definition, Neural Networks. 

 

7.2. Multi-layer Perceptrons / Neural Networks 

As discussed in the previous topic, a Neural Network (or Multi-layer 

Perceptron) is divided into layers, namely input layer, hidden layers, and output 

layer, each one containing a defined number of neurons (perceptrons). The general 

structure of a Neural Network is presented in figure 7.2. One can see that every 

neuron is connected to all neurons present at the subsequent layer, what is called a 

fully connected Neural Network 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 - Fully connected Neural network with 2 hidden layers, 5 inputs and  

3 outputs.  
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The input layer does not perform any mathematical operation, but is just an 

input vector. All the mathematical manipulations are performed at the hidden and 

output layers. Also, the number of neurons at the input/output layer must be exactly 

the number of input/outputs of the Neural Network itself. It is usual to use N as the 

number of neurons at the hidden layers and L the total number of layers (note that 

L is always bigger or equal to 2 and when L = 2 the neural network has no hidden 

layer).  

 

7.2.1. Forward propagation 

The Neural Network (or a MLP) is commonly referred as a forward 

propagation (FP) system because information is always going from the left to the 

right, or from the input to the outputs. This allows a vectorization treatment of the 

system. At this section, subscripts k will denote the k-th neuron out a total of N, 

while superscripts l will denote the l-th layer out a total of L (first layer is not 

considered).  

Obviously, the outputs of the input layer are the same as the inputs of the NN. 

Each hidden/output layer l has a matrix of weights 𝑤𝑙 whose lines are the weights 

of each neuron present in the layer. The vector 𝜈𝑙 is then obtained by the product 

𝑤𝑙  𝑦𝑙−1 in addition with the bias vector 𝑏𝑙 (one can note that the weight matrix is 

formed by the transpose of the weight vector of each neuron). The output vector of 

the layer 𝑦𝑙 is then obtained by applying the activation function to 𝜈𝑙. This 

procedure is repeated until l = L, when the output layer is reached, and the outputs 

are exactly the results of the Neural Network. 

The use of vectorization at the forward propagation implementation 

significantly decreases the required computational time to use a Neural Network. 

While simply using a NN is considerably fast, its training requires much more 

computational effort. This topic will be discussed now.  

 

7.2.2. Neural Network training 

At this point, one can observe that simply using a Neural Network is really 

easy and only a matter of matrix multiplication from the input layer until an output 

is obtained. Not very different from a first order equation where x is inputted to 
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obtain y. The question now is how to obtain the multiplying matrixes or, in other 

words, the weights and bias of the NN. Using the same analogy of the first order 

equation, getting the weight and bias of the NN is equivalent to obtain the linear 

and angular constants that would best fit a series of data using a minimum-square 

procedure or equivalent. This procedure is called the training of the Neural 

Network, which will be better discussed now.  

 

7.2.2.1. Cost function 

Before developing an optimization procedure for any mathematical model or 

tool, one must be able to quantify the error obtained with such approach. In Machine 

Learning, this error is usually called the Cost Function (or Loss Function), here 

denoted as J, and its mathematical formulation depends on the ML use. While for 

classification applications the log loss function is usually applied (Hastie et al. 

2009), the sum of the squares error is very common for regression applications, as 

presented in equation 7.2. 

             𝐽(𝑦, �̂�) =
1

2𝑛
∑ (𝑦 − �̂�)2𝑛

𝑖=1     (7.2) 

The term �̂� is used to denote the desired output of the Neural Network, while y is 

the actual output. Since y is, in the end, a function of the parameters of the NN, one 

can note that the cost function is actually a function of the weights and bias of the 

NN: 𝐽 = 𝐽(𝑤1,1
1 , 𝑤1,2

1 , …𝑤𝑁,𝑗
𝐿 , 𝑏1

1, … 𝑏𝑁
𝐿 ), where j denote the j-th input received by 

the neuron. The number 2 at the denominator of J is used to divide only by n when 

applying partial derivatives to the cost function, what will simplify the use of the 

back-propagation algorithm, which will be now described.  

 

7.2.2.2.The backpropagation and gradient descent algorithms 

The backpropagation algorithm is a technique to compute the gradients of the 

cost function in relation to the weights of the NN by backpropagating the errors 

obtained from the output layer up to the first hidden layer. This technique can then 

be used together with an optimization methodology to update the weight values of 

the neurons. This is the so-called training of the Neural Network.  
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Usually, the update of the weight functions is performed by the Stochastic 

Gradient Descent (SGD) algorithm, commonly used together with the 

backpropagation scheme (Goodfellow et al. 2016). The weight and bias of each 

neuron is updated by equations 7.3 and 7.4 below,  

             𝑤𝑘,𝑗
𝑙 = 𝑤𝑘,𝑗

𝑙 − 𝛼
𝜕𝐽

𝜕𝑤𝑘,𝑗
𝑙    (7.3) 

             𝑏𝑘
𝑙 = 𝑏𝑘

𝑙 − 𝛼
𝜕𝐽

𝜕𝑏𝑘
𝑙       

(7.4) 

where α is the learning rate of the Neural Network, working exactly as a relaxation 

parameter at typical numerical solution scheme. From the numerical definition of 

the gradient, it is clear from equations 7.3 and 7.4 that the minus sign allows the 

iteratively “movement” towards the steepest direction, with the final goal to find 

the weight and bias parameters that minimize the cost function.  

 The gradient of the loss function with respect to the weights and biases of 

the NN (∇𝐽) is presented in equation 7.5. 

             ∇𝐽 = [
𝜕𝐽

𝜕𝑤1,1
1 ,

𝜕𝐽

𝜕𝑤1,2
1 ,

𝜕𝐽

𝜕𝑏1
1 , … 

𝜕𝐽

𝜕𝑤𝐾,𝑗
𝐿 ,

𝜕𝐽

𝜕𝑏𝐾
𝐿 , ]   (7.5) 

It can be demonstrated that the gradient terms representing derivatives with relation 

to the weight and bias can be calculated according to equations 7.6 and 7.7, 

respectively. 

             
𝜕𝐽

𝜕𝑤𝑘,𝑗
𝑙 = 𝑦𝑙−1𝛿𝑘

𝑙   (7.6) 

             
𝜕𝐽

𝜕𝑏𝑘
𝑙 = 𝛿𝑘

𝑙      (7.7) 

where δ is a function defined to simplify the calculations, as per equations 7.8. 

             𝛿𝑘
𝑙 = {

𝜑′(𝜈𝑘
𝑙 )(𝑦 − �̂�)                𝑖𝑓 𝑙 = 𝐿

𝜑′(𝜈𝑘
𝑙 )∑ (𝛿𝑎

𝑙+1𝑤𝑘,𝑎
(𝑙+1)

)𝑁
𝑎=1         𝑖𝑓 1 < 𝑙 < 𝐿      

  (7.8) 

The derivative of the activation function (𝜑′) is intentionally represented in a 

generic form because it will be different depending on the used activation function 

in the NN (see section 7.2.3). 

Despite apparently complicated, the backpropagation algorithm is simply 

an application of the chain rule of calculus to determinate what happens to the error 

of the NN when a weight/bias parameters are modified. The backpropagation 

algorithm has its name because as one can observe from equation 7.8, to calculate 
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the delta function at the layer l, the value at layer l+1 must be known, so the 

calculation goes from the right to the left of a NN. Despite not being clear which 

author first derived it, its usefulness was demonstrated by Rumelhart et al. (1986) 

and is, nowadays, the workhorse of learning procedures in Neural Networks. 

At this point, one can understand the training of a Neural Network simply 

as an optimization problem with the final goal to minimize the cost function. Being 

J, however, function of all weights and bias of the NN, it becomes clear how 

challenging this training might become. For gradient descent, for instance, the 

proper definition of the learning rate is challenging. Setting it too high can cause 

divergence of the training, while setting it too low can lead the algorithm to 

converge to a local minimum, instead of the global one (Goodfellow, 2016). Despite 

the work of Spall (2005), which presents a guidance on how to choose the learning 

rate, different methodologies to account for this issue, here classified as extensions 

of the gradient descent, are available in the literature. The weight function can be 

implicitly updated based on the gradient of the next iteration, what significantly 

decreases the learning rate problem (Toulis and Airoldi, 2017). Such variant is 

usually named as Implicit Stochastic Gradient Descent (ISGD). Another option is 

to use the average of the weight parameters along the iterations, instead of the last 

value of them, a procedure named Averaged Stochastic Gradient Descent (ASGD), 

proposed by Polyak and Juditsky (1992). The use of moving averages is also very 

common, such as in the Root Mean Square Propagation (RMSProp) algorithm 

(Tieleman and Hinton, 2012) or in the Adaptative Moment Estimation (Adam) 

algorithm (Kingma and Ba, 2014).  

Up to this point, only the gradient descent algorithm and its variances have 

been discussed. There are, however, alternative procedures that can be employed 

along with the backpropagation algorithm for NN training, such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher and 

Goldfarb, 1970; Shanno, 1970). Despite being very useful to problems into which 

the cost function is highly non-linear, the high computational cost of it (high 

memory requirements) makes its practical use limited to relatively small NN. A 

modification of the original algorithm was proposed by Nocedal (1980) to decrease 

the computational requirements: the L-BFGS (Limited-memory BFGS). Yet, the 

computational cost still makes it inappropriate for larger NNs. 
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7.2.2.3.Regularization 

To finish the discussion of Neural Network training, it´s worth mentioning a 

technique called regularization. The quest to minimize the cost function during 

training can lead to an overfitting of the Neural Network (see section 7.3 for a better 

discussion around overfitting), what will decrease the generalization capabilities of 

the model. The idea behind regularization is to avoid this issue by applying a 

penalization that tends to maintain the weights of the neurons at smaller values. A 

common approach is to add an extra term to the cost function, as presented in 

equations 7.9a and 7.9b for L1 and L2 regularization, respectively, where λ is the 

regularization parameter. 

             𝐽(𝑦, �̂�) =
1

2𝑛
∑ (𝑦 − �̂�)2𝑛

𝑖=1 + 𝜆 ∑ |𝑤𝑎|𝑎    (7.9a) 

             𝐽(𝑦, �̂�) =
1

2𝑛
∑ (𝑦 − �̂�)2𝑛

𝑖=1 + 𝜆 ∑ 𝑤𝑎
2

𝑎    (7.9b) 

The last term on the right is a summation around all the neuron´s weight of the NN. 

As one can expect, this term will tend to minimize the weights of the neurons during 

training. This will result in a less complex NN, with a positive effect that it will 

have better generalization capability, since instead of trying to fit all data points, 

the model will be forced to learn the general pattern during training (Goodfellow et 

al. 2016). The L2 regularization is also known as weight decay (Bishop, 2006). 

Another regularization approach is to simply limit the absolute value of the weights 

and bias of the NN, with the advantage that the cost function will already give an 

idea of the average error of the NN at every iteration. This last approach was used 

in the present work. 

 

7.2.3. Activation function 

As mentioned before, the output of a single neuron is given by an activation 

function. From what was previous discussed, one can infer that the activation 

function must be continuous in its domain, as well as its derivatives (see equation 

7.8). Common activation functions described in the literature are the ReLu function, 

which output ranges from [0,∞), the hyperbolic tangent function (tanh), with output 

ranging from (-1,1) and the sigmoid function, with outputs ranging from (0,1). 
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Those functions are presented in equations 7.10, 7.11 and 7.12, respectively, and its 

behavior at figure 7.3. 

             𝑅𝑒𝐿𝑢 = max (0, 𝜈𝑘)  (7.10) 

   tanh(𝜈𝑘) =
𝑒𝜈𝑘−𝑒−𝜈𝑘

𝑒𝜈𝑘+𝑒−𝜈𝑘
 (7.11) 

             𝜎(𝜈𝑘) =
1

1+𝑒−𝜈𝑘
     (7.12) 

 

7.2.4. Hyper-parameters  

At this stage, it is important to present a commonly used definition in Machine 

Learning: the hyper-parameters. Basically, hyper-parameters are quantities that are 

user-inputted and are not modified during the training of the ML model. 

Specifically referring to Neural Networks, the already presented hyper parameters 

are the number of neurons per layer (N), the number of layers (L), the activation 

function (φ) and the learning rate (α). The proper choice of those hyper-parameters 

are discussed in section 7.3, along with a discussion of bias and variance of a NN. 

Other hyper-parameters not discussed so far, but very important at the training 

stages of a NN are the batch size and the number of epochs. Following Marsland 

(2011), the batch size is defined as the number of training samples which are 

forward propagated to calculate the cost function, before backpropagation takes 

place and the weight functions of the NN are updated. Complementary, an epoch is 

defined as a cycle of NN parameters updated after all batches are FP and BP. By 

setting the maximum number of epochs, one can define when the training must be 

interrupted. A simple example is to imagine a NN with 1000 training samples. If a 

batch size is defined as 20, then there will be 50 batches. An epoch will occur, 

Figure 7.3 - Behavior of the following activation functions: ReLu (a), hyperbolic 

tangent (b) and sigmoid function (c). 
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therefore, after all the 50 batches are FP and BP, which will result in 50 parameters 

updates.  

The definition of the ideal size of a batch is a hard choice. Bigger batches 

make training faster because the parameters of the NN are updated less frequent. 

Also, the use of more data to calculate the cost function makes the gradient estimate 

more accurate, providing a better convergence. On the other hand, bigger batches 

require more memory and make the training slower. As one can expect the 

advantages/disadvantages invert for smaller batches. Those are less prompt to get 

stuck in local minima and requires less memory, but with the drawdown of a slower 

training with noisier cost gradients, which can lead do divergences issues.  

 

7.2.5. Feature scaling 

A good practice when using Machine Learning regression methodologies is 

to scale the variables so that the inputs of the model are not significantly different 

in value. A practical example to understand why feature scaling is necessary, is to 

imagine a Neural Network being trained to predict housing prices. If one of the 

inputs is the size of the house in m2 and the other is the number of bedrooms, such 

difference in magnitude might lead to biases in the model that will negatively affect 

its accuracy or even make the training to diverge.  

To account for the above issue, a standard procedure in NN is to perform the 

feature scaling of the inputs. There are different methodologies to perform this 

normalization, but a commonly used is given in equation 7.13, where i is an input 

family (for instance, the size of the house in the above example) with a μi mean and 

a standard deviation σi.  

             X𝑛𝑜𝑟𝑚,𝑖 =
𝑋𝑖−𝜇𝑖

𝜎𝑖
   (7.13) 

The result is that all inputs of the NN will have a zero mean and unit standard 

deviation. The scaling procedure applied to the input quantities is usually also 

applied to the output. Therefore, if one wants to retrieve the proper value of the 

output, the inverse procedure must be applied, as presented in equation 7.14. 

             Y𝑖 = 𝑌𝑛𝑜𝑟𝑚,𝑖𝜎𝑖 + 𝜇𝑖   (7.14) 
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One must assure that the same mean and standard deviation values used during 

training are used during data-retrieving after NN prediction.  

There are different feature scaling equations in the literature, such as the one 

suggested by Ng (2015), who instead of dividing by the standard deviation, divides 

by the difference between maximum and minimum, limiting values to [-1,1]. In the 

end, however, the idea is the same: put all quantities in the same scale. 

 

7.3. Neural Network optimization  

The optimization of a Neural Network lies on creating a trade-off between 

two important concepts: bias and variance (Ng, 2015; Goodfellow et al. 2016). A 

high bias (or underfitting) happens when the model is too simple, with few inputs 

or neurons. It is the equivalent of trying to fit a third-order polynomial with a 

straight-line equation. The opposite is a high variance (or overfitting), that happens 

when the model is too complex, being the equivalent to fit a straight-line using a 

third order polynomial. A NN with high variance will be able to decrease the cost 

function at the training data to very small values, but it will have a high error when 

predicting outputs from never-seen inputs. It is the biological-equivalent of a 

memorization of the data, instead of a really understanding of it (Bishop, 2006). 

Following what was already discussed during this chapter, the following 

actions can be taken if a NN is not performing accordingly, depending whether the 

problem is high bias or variance: 

 

• High BIAS 

Add more inputs (if possible) 

Add polynomial terms at input data (Ex: if x is an input, add x2, x3, etc.) 

Decrease the regularization parameter λ 

Increase the number of hidden layers 

Increase the number of neurons per layer 

Use smaller batches 
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• High Variance 

Increase training data (if possible) 

Decrease inputs 

Increase the regularization parameter λ 

Decrease number of hidden layers 

Decrease number of neurons per layer 

Use bigger batches 

 

The above discussion opens a question: how is it possible to check if the NN 

is overfitting? In fact, this is impossible using only the training data, since the more 

complex the model gets, the smaller the cost function on the training data becomes. 

To proper evaluate the variance problem, the NN must be checked against data that 

was not used during training. This is called cross-validation (or simply validation) 

of the NN. As illustrated in figure 7.4, there is an ideal complexity of the model that 

minimizes the cross-validation error, or, on other words, maximizes the 

generalization/prediction capacity of the Neural Network, being the perfect balance 

between Bias and Variance. The data separation into train, test and validation 

batches will be now discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 - Error variation on training and cross-validation with the increase in the 

Neural Network complexity. 
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7.3.1.Train, test, and validation steps  

As already discussed, it is important to separate some data to perform the 

cross-validation of the model, avoiding overfitting. The train and validation data 

are, therefore, used to proper select the hyperparameters of a single Neural 

Network. To compare different NNs, it is also important to separate some data to 

check how different models perform against never-seen data. This is called testing 

of the model. According to Ng (2015), it is a good practice to divide 60% of the 

data to training, 20% to validating and 20% to testing. It depends, however, on the 

total amount of data available.  

 

7.3.2.Learning curves 

At this point, it is clear that a good Neural Network must meet the perfect 

balance between Bias and Variance. A good way to check it is to plot how the cost 

function (or error) of the NN varies with the training epochs, the so-called learning 

curves, as presented in figure 7.5. 

  

Despite being very easy to identify the difference between the curves in figure 

7.5, in practice it can be very hard to just see a curve and understand if the NN is 

with high bias/variance or not. A good approach is to start the training procedure 

with a simple NN that will probably have a high bias, and then follow the steps 

described in section 6.3 to go to the ideal one (Ng, 2015). Of course, the checking 

Figure 7.5 - Learning curves of Neural Networks with a high Bias, ideal one and 

high variance. 
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of the learning curve while doing so is a continuous work, to avoid passing the ideal 

point (moment where the training and validation curves will start diverging).  

 

7.4. Other good practices using Neural Networks 

Along this chapter, several good practices on how to avoid an overfitting or a 

bias problem were already discussed. To finish the discussion on Neural Networks, 

it is worth mentioning how to proper initialize the weights of the neurons and 

choose good values of the regularization parameter λ.  

Regarding weights initialization, according to Ng (2015), it can be proved 

that if all weight parameters of the NN are equal (not necessarily equal to zero), the 

whole network is equally updated during training, leading to a high Bias. A good 

practice, therefore, is to start-up the training with randomly weight values restricted 

to a given interval of [-ε,ε], being ε a small number such as 10-3
 or 10-4.  

 Finally, regarding the regularization parameter, a good approach is to start 

with 0 (no regularization) and then, if the NN is overfitting, increase to 0.01 and 

then in multiples of 2 (λ = 0.02, 0.04, 0.08).
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8 
Neural Network Results and Enhanced Simulations 

This chapter presents the results obtained using Neural Networks to enhance 

the simulations of the Square Duct flow. The Neural Network setup definitions, 

training procedure and its optimization are first shown, followed by the a-priori 

results and, finally the results obtained when injecting the predicted quantities into 

the mean-momentum equations for each of the 3 methodologies defined in  

Chapter 5.  

 

8.1. Neural Network Setup 

As already described, the idea of the present work is to use a Neural Network 

to predict a quantity that can be injected into the mean-momentum equation of a 

turbulent flow to enhance its results, when comparing to the traditional k-ε model. 

While the desired outputs of the NN were defined in chapter 5, when the 

methodologies 7, 8 and 10 were chosen to be evaluated, every regression ML 

technique requires one or more inputs. In this work, it was chosen to follow the 

strategy proposed by Cruz et al. (2019) of using as inputs, quantities obtained 

directly from the low-fidelity k-ε RANS simulation (see section 8.1.1). In this 

context, the chosen ML technique will act indirectly as a correction to the bad 

results obtained by the traditional simulation. Figure 8.1 presents a schematic of 

how the enhanced velocity fields are obtained after the NN is trained. One can see 

that there are two simulation stages: the first, using the traditional k-ε model (or 

equivalent), and the second, using the injected quantities defined for each 

methodology and obtained from the Neural Network. The a-priori comparison of 

the injected quantities predicted from the NN with those from the experimental data 

is also illustrated.  
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The architecture, training and validating of all Neural Networks were built 

using an open source python library called Keras (Chollet et al., 2015), using the 

Spyder extension, in the Anaconda software, as an Integrated Development 

Environment (IDE). The Keras python library is an interface to use the TensorFlow 

library. The large amount of pre-programmed models available in Keras makes the 

development of machine learning scripts much easier, being widely used by users 

seeking to develop AI codes.  

 

8.1.1. Inputs definition 

It was defined in the previous section that the inputs of the NN are originated 

from the low-fidelity RANS simulation of the SD. The definition of exactly which 

quantities from the infinite possible combinations originated from mathematical 

operations with the scalars, vectors and tensors available will now be discussed.  

Starting with the work of Cruz et al. (2019), the authors proposed to use a 

combination of 8 different symmetric tensors and its divergences, resulting in 72 

different input features, as presented in table 8-1. Since the NN is trained to work 

at the whole SD domain, this approach results in 72 different inputs for each of the 

15625 grid points. As there are 10 different measured cases, if 60% of it are used at 

the training stage, there would be 6,750,000 training data to be stored, making the 

Figure 8.1 – Schematic of how the enhanced velocity fields are obtained from the 

low-fidelity RANS simulations. 
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computer RAM memory requirement significantly high. Also, as discussed in 

chapter 7, the use of too many inputs can lead to overfitting, generating a NN with 

high variance.  

 

Table 8.1 – Neural Network inputs proposed by Cruz et al. (2019).  

Tensors Vectors 

𝑆 ∇ ∙ 𝑆 

𝑃 ∇ ∙ 𝑃 

𝑆2 ∇ ∙ 𝑆2 

𝑃2 ∇ ∙ 𝑃2 

𝑆 ∙ 𝑃 + 𝑃 ∙ 𝑆 ∇ ∙ (𝑆 ∙ 𝑃 + 𝑃 ∙ 𝑆) 

𝑆2 ∙ 𝑃 + 𝑃 ∙ 𝑆2 ∇ ∙ (𝑆2 ∙ 𝑃 + 𝑃 ∙ 𝑆2) 

𝑃2 ∙ 𝑆 + 𝑆 ∙ 𝑃2 ∇ ∙ (𝑃2 ∙ 𝑆 + 𝑆 ∙ 𝑃2) 

𝑅 𝑟 =  ∇ ∙ 𝑅 

 

An interesting analysis of each quantity presented in table 8.1 was done by 

Macedo (2020). The author noted that many features proposed by Cruz et al. (2019) 

negatively impacted in the NN predicting capability due to some of the following 

reasons: large variations in the magnitude of different components, fields with 

discontinuity regions (scarce points with local large values) and null values over 

the SD geometry. In fact, as illustrated in figure 8.2 for the divergence of the strain 

rate tensor S, only the streamwise component present values different than 0. It is, 

therefore, pointless to use all 3 components of such vector as input to the NN.  

  

Figure 8.2 – Different components of the divergence of the Strain rate tensor.  
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By removing the same quantities of Macedo (2020) from table 8-1, the list of inputs 

reduces to 19 quantities. As an attempt to identify regions where the balance 

between turbulence production and dissipation does not occur, the gradient vector 

of 𝑘
2

𝜀⁄  was also used as one of the inputs, as suggested by Wu et al. (2018). This 

term was also used by Brener et al. (2023). The final list of inputs is presented in 

table 8-2. One can see that there is a reduction to 21 different quantities, 

significantly decreasing the required RAM memory and computational time.  

 All the input variables used in this work are not Euclidean invariants. This 

means that one can expect the same result if a different NN is trained with the view 

of different observers translated and rotated to the original reference frame. 

Therefore, it is important that the training and testing of the NN is applied in the 

same frame.    

 

Table 8.2 – Neural Network inputs used in the present work.  

Tensor components Vector components 

𝑆𝑥𝑧, 𝑆𝑦𝑧   (∇ ∙ 𝑆)𝑧 

𝑃𝑥𝑥 , 𝑃𝑦𝑦, 𝑃𝑧𝑧 , 𝑃𝑥𝑦   

𝑆𝑥𝑥
2 , 𝑆𝑦𝑦

2 , 𝑆𝑧𝑧
2 , 𝑆𝑥𝑦

2   

𝑅𝑥𝑥 , 𝑅𝑦𝑦, 𝑅𝑧𝑧, 𝑅𝑥𝑦, 𝑅𝑥𝑧 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 

 ∇ (𝑘
2

𝜀⁄ )
𝑥
, ∇ (𝑘

2

𝜀⁄ )
𝑦
  

 

8.1.2. Input and output scaling 

As discussed in section 7.2.5, it is a good practice in neural network 

applications to perform the scaling of the input and output of the network. In this 

work, the inputs are organized in a 15625 x 21 matrix for each case, while the 

outputs consist in a matrix of 15625 x 7, 15625 x 4 and 15625 x 3, for methodologies 

7, 8 and 10, respectively. The inputs and outputs scaling are performed using 

equation 7.13 for every column (every quantity set) of each case, before training 

the NN. The inverse procedure, described in equation 7.14 must, therefore, be 

applied to the predicted quantities before inputting them into the mean-momentum 

equations. 
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8.1.3. Hyper-parameters definitions 

As there is an infinity combination of NN hyper-parameters that can be 

selected, those used by Macedo (2020) were chosen in this work as an initial guess, 

before optimizing the NN. Table 8.3 present the setup of the NN used as starting 

point, which consists of a fully-connected network with 21 inputs (21 neurons in 

the input layer), 2 hidden layers with 100 neurons and one output layer with 7, 4 

and 3 layers for methodologies 7, 8 and 10, respectively. The widely used Adam 

algorithm (Kingman and Ba, 2014) was selected as the learning optimizer tool. 

 

Table 8.3 – Neural Network setup used as starting point (before optimization). 

Number of hidden layers 2 

Neurons per hidden layer 100 

Hidden layer activation function (𝜑) 𝑡𝑎𝑛ℎ 

Output layer activation function (𝜑) Linear 

Batch-size 32 

Starting Learning rate (α) 10-3 

Learning rate decay 0.6 

Epochs without increment to decrease α 5 

Epochs without increment to stop training 20 

Loss function Mean-squared error 

Learning algorithm Adam 

 

Given the fact that Neural Networks work better by interpolating data in 

comparison to extrapolation, cases 1, 4, 6, 8, 9 and 10 were chosen to be used as 

training data, cases 2 and 7 for validation and cases 3 and 5 for testing. Also, as an 

attempt to better predict quantities close to the wall, which accuracy significantly 

impacts the simulation outputs, a weight factor of 5 was used at the 8 cells closest 

to the wall at both X and Y directions. This artificially forces the NN to fit such 

data with more refinement than those at the bulk of the flow, a mathematical tool 

that was also used by Macedo (2020). 

The cost function obtained in the present work, when using the hyper-

parameters of Macedo et al. (2020) was significantly high for both training and 
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validation data. This is an indication that the NN presented a high Bias with such 

configuration. In fact, since the variation in the Reynolds number of the data used 

to train/validate the NN in the present work was significantly larger than that used 

by Macedo et al. (2020), it requires a more robust NN capable of applying deep 

learning to the input data. Figure 8.3 presents a comparison of the cost function 

obtained with the hyper-parameters of Macedo et al. (2020) and those after 

optimization, for methodology 8. One can note that for both NN architectures after 

and before optimization, the loss obtained at the validation data is smaller than that 

at the training data. Despite counter-intuitive in comparison with the traditional 

plots presented in section 7.3.2, this can be explained because the cases with higher 

Reynolds number, with higher uncertainties associated, were used only for the 

training of the NN, but not for its validation. The result is that the training cost 

function increases with the Reynolds number increment. Since cases 8, 9 and 10 

were used for training, it pushes the loss of the training upwards. This difference, 

however, significantly decreased after the hyper-parameters optimization.  
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Figure 8.3 – Training and validation loss after 35 epochs before optimizaton, using 

the hyper-parameters of Macedo et al. (2020), and after optimization, with the 

hyper-parameters presented in table 8.4. Reference case is that of Methodology 7. 
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Nevertheless, instead of using the validation loss as a criterion to choose the better 

NN, in this work the weighted average between training and validation loss was 

used, with the final goal of having a more general NN when it comes to the 

Reynolds number applicable range. One can also note that the increment in the 

complexity of the NN also increases the noise of the data/validation loss during 

training, what is expected. 

 The final structure of the NN for each methodology evaluated is 

summarized in table 8.4. One can see that much more hidden layers and neurons 

per layer were used in comparison to the NN in the work of Macedo et al. (2020), 

what significantly increased the computational power required during the training 

of the NN. With the present configuration, the training of a single NN in a computer 

with 8Gb of RAM memory and 5th generation i-7 processor takes from 20 to 120 

minutes, depending on the methodology. Since the optimization of the NN hyper-

parameters requires hundreds of trials, the proper selection of the NN took almost 

3 months for each methodology.   

 

Table 8.4 – Hyper-parameters used at the optimized NN for each methodology. 

Methodology 7 8 10 

Number of hidden layers 11 11 12 

Neurons per hidden layer 185 400 550 

Hidden layer activation function (𝜑) 𝑡𝑎𝑛ℎ ReLu ReLu 

Output layer activation function (𝜑) Linear Linear Linear 

Batch-size 128 128 128 

Starting Learning rate (α) 0.001 0.001 0.001 

Learning rate decay 0.7 0.7 0.5 

Epochs without increment to decrease α 10 20 20 

Epochs without increment to stop training 30 100 100 

Learning algorithm Adam Adam Adam 

Maximum absolute value for neuron weight 0.61 1.95 1.7 

Maximum absolute value for neuron bias 0.65 0.48 0.35 
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8.1.4. Boundary conditions prediction 

Depending on the data-driven numerical simulation approach, one must also 

provide the boundary condition (BC) for the quantities that are injected into the 

MME. Since the no-slip condition can assure physically that R* at the wall is equal 

to zero, this can be expanded to say that all components of R┴ 
 and νt are also null 

at the wall. Therefore, there is no concern regarding boundary conditions for 

methodology 7. 

The quantities inputted at methodologies 8 and 10, on the other hand, are 

originated from the divergence of R*, which is not equal to zero at the wall (the 

turbulent viscosity at methodology 8, however, can be assumed as 0). This means 

that the BC must be predicted using a NN. Since many of the inputs available from 

the low-fidelity RANS simulations are null at the wall, it was chosen to develop a 

new NN that will be trained to be used only to predict the BCs used for 

methodologies 8 and 10. One can note that since the turbulent viscosity does not 

require a BC, the same NN to predict the BCs of t┴  for methodology 8 can be used 

for methodology 10. The hyper-parameters used in such network are presented at 

table 8-5.  

 

Table 8.5 - Hyper-parameters used at the optimized NN for the BC of 

methodologies 8 and 10. 

Number of hidden layers 10 

Neurons per hidden layer 220 

Hidden layer activation function (𝜑) reLu 

Output layer activation function (𝜑) Linear 

Batch-size 64 

Starting Learning rate (α) 0.001 

Learning rate decay 0.1 

Epochs without increment to decrease α 20 

Epochs without increment to stop training 100 

Learning algorithm Adam 

Maximum absolute value for neuron weight 1.2 

Maximum absolute value for neuron bias 0.8 
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8.2. Methodology 7 results 

The a-priori and a-posteriori results obtained with methodology 7 using the 

NN trained with the hyper-parameters defined in table 8-4 will now be presented. 

Both results presented are those obtained at case 03 (Reynolds equal to 15000). 

 

8.2.1. A-priori results 

The comparison of the turbulent viscosity and the components of the 

perpendicular term of the Reynolds Stress Tensor obtained from the NN after its 

training and such quantities obtained from the SPIV experiment are presented in 

figures 8.4 and 8.5, respectively. As discussed in section 5.8, the turbulent viscosity 

used for training is obtained by solving the transport equations for k and ε 

(equations 2.27 and 2.28) with the measured velocity field as input. Regarding the 

perpendicular terms of R*, since component 𝑅𝑦𝑧
┴  is symmetric to 𝑅𝑥𝑧

┴  along the 

corner bisector and so 𝑅𝑥𝑥
┴  to 𝑅𝑦𝑦

┴ , only the later are presented.  

One can see that the results are qualitatively similar, despite some errors in 

the order of magnitude. Also, since the NN can be considered an advanced 

interpolation technique, it is interesting to check that the results are smother at the 

predictions of the NN in comparison to the original data from the experiment itself. 

In fact, one could think that the results presented in figure 8.5(d) for 𝑅𝑥𝑦
┴  were 

filtered, while it is simply the output of the NN. 

 

Figure 8.4 – Turbulent viscosity obtained from the k-ε model, solving equations 

2.27 and 2.28 with the velocity fields obtained from the SPIV experiment, and the 

same quantity obtained from the trained Neural Network. Results for case 3. 
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Figure 8.5 – Comparison between 𝑹𝒛𝒛
┴  (a), 𝑹𝐲𝐲

┴
 (b), 𝑹𝐱𝐳

┴  (c) and 𝑹𝐱𝐲
┴  (d) obtained 

from the SPIV experiment using equation 5.23 and NN.  
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8.2.2.A-posteriori results 

The relatively good results obtained by the NN when predicting the injected 

quantities of methodology 7 do not guarantee accurate results at the final velocity 

field (Tracey et al., 2015). This fact, however, seems to be strongly dependent on 

the methodology chosen. While very small errors at the R* can propagate to very 

large errors in the final velocity field (Thompson et al., 2016; Poroseva et al., 2016), 

methodology 7 of the present work seems to be way more robust, given the 

remarkable agreement obtained for the streamwise velocity profiles presented in 

figure 8.6. The terminology “Direct Injection” indicates that the velocity field was 

obtained directly from the data-driven approach described in chapter 5, while the 

terminology “Neural Network Injection” indicates that the injected quantities were 

predicted using the trained NN.  

 

Figure 8.6 – Comparison of the streamwise velocity profile obtained from the SPIV 

experiment, from the data-driven described in chapter 5 and with injected quantities 

obtained from the NN for x/H = 0 (a), x/H = -0.3 (b), x/H = -0.6 and x/H = -0.9. 

Results presented for case 3. 
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The contour plots of the normalized streamwise and vertical components of 

the velocity field obtained from the SPIV experiment, from the data-driven direct 

approach and with the quantities obtained from the NN for methodology 7 are 

presented in figure 8.7. Again, one can see a remarkable agreement. The results 

obtained for case 5 were very similar to those of case 3 and, for this reason, are not 

presented here. 

By the simple analysis of figures 8.6 and 8.7 it is hard to understand if the 

errors obtained when the injected quantities are originated from a Neural Network 

are bigger or even smaller, in comparison with those obtained by the data-driven 

direct injection. Table 8.6 present a comparison of the errors obtained for the 

streamwise component of the velocity vector using equation 5.33 for those  

2 different approaches. The SPIV data is used as reference. As expected, there is an 

increase in the final error when the Neural Networks are used. This increment, 

however, is below 2% for both cases 3 and 5, limiting the final error to a value 

below 4%, what is a remarkable agreement.  

 

Table 8.6 – Errors of the streamwise component of the velocity vector obtained with 

the data-driven direct injection and with the NN injection. 

Case 
Error obtained by  

Direct Injection 

Error obtained by  

NN Injection 

3 2.4% 3.6% 

5 2.6% 3.0% 
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Figure 8.7 – Contour plots of the normalized streamwise and vertical components 

of the velocity vector obtained from the SPIV experiment, data-driven direct 

approach and with the injected quantities obtained from the NN. Results presented 

for case 3 and methodology 7. 
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8.3. Methodology 8 results 

The a-priori and a-posteriori results obtained with methodology 8 using the 

NN trained with the hyper-parameters defined in table 8-4 will now be presented. 

While the a-priori results are only presented for case 3, given its similarity with case 

5, the a-posteriori results are significantly different, reason why both are presented.  

 

8.3.1.A-priori results 

The comparison of the perpendicular term of the Reynolds force vector and 

the turbulent viscosity obtained from the NN after its training and such quantities 

obtained from the SPIV experiment are presented in figure 8.8. The turbulent 

viscosity for training is obtained in the same way as in methodology 7, by solving 

the transport equations for k and ε (equations 2.27 and 2.28) using the measured 

velocity field as input. Since the in-plane term of the perpendicular Reynolds force 

vector are mirrored along the corner bi-section, only the component along the x-

direction is presented.  

While the turbulent viscosity obtained from the NN is very similar to that 

obtained with methodology 7, the in-plane components of 𝑡┴are very different. 

Even the measured component obtained from equation 5.25 (figure 8.7b) looks very 

noisy. In fact, if one compares the overall structure of 𝑡𝑥
⟂ presented in figure 8.8 

with that of the work of Cruz et al. (2019), those are quite different (even though 

the Reynolds number is also different). It seems that the propagated uncertainties 

of many partial derivatives calculated using the non-refined SPIV grid with the low-

magnitude in-plane components of the velocity vector lead to a very noisy field, 

which is quite difficult to be proper predicted by the NN developed in this work.  
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Figure 8.8 - Comparison between 𝒕𝒛
┴ (a), 𝒕𝐱

┴
 (b), and the turbulent viscosity (c) 

obtained from the SPIV experiment using equation 5.25 and from the Neural 

Network of Methodology 8. 
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8.3.2.A-posteriori results 

As discussed in chapter 6, a good a-priori agreement does not necessarily 

generate accurate a-posteriori results. However, good predictions from the NN are 

usually a requirement to obtain enhanced simulation results.  

The contour plots of the normalized streamwise and vertical components of 

the velocity field obtained from the SPIV experiment, from the data-driven direct 

approach and with the quantities obtained from the NN for methodology 8 are 

presented in figure 8.9. Despite the good agreement obtained with the data-driven 

direct injection, poor results were obtained when injecting 𝑡⟂ and 𝜈𝑡 obtained from 

the Neural Network of methodology 8. Different approaches were attempted to 

enhance the results, such as: 

1) Injecting the turbulent viscosity predicted from the Neural Network of 

methodology 7 and 𝑡⟂ predicted from the NN of methodology 10. This 

approach was an attempted to minimize possible impacts of the different 

orders of magnitudes of 𝑡⟂ and 𝜈𝑡 into the training/predictions of the NN 

(despite the fact that the feature scaling applied to the inputs/outputs 

already minimize such discrepancies). 

2) Artificially turning the in-plane components of 𝑡⟂ to zero, given the 

significant noisy field obtained for such components. 

Both attempts, however, resulted in similar a-posteriori results as those presented 

in figure 8.9. Methodology 8, therefore, was not capable of proper enhancing the 

simulation results when SPIV data was used to train the NN. 
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Figure 8.9 - Contour plots of the normalized streamwise and vertical components 

of the velocity vector obtained from the SPIV experiment, data-driven direct 

approach and with the injected quantities obtained from the NN. Results presented 

for case 3 and methodology 8. 
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8.4. Methodology 10 results 

Despite the fact that methodology 10 presented higher errors in comparison 

with methodology 8 (see table 5-6), it was decided in chapter 5 to evaluate how it 

would perform with data predicted from the NN, given the fact that it requires only 

3 quantities to be injected. Unfortunately, such required quantities are the 3 

components of the perpendicular Reynolds force vector, which presented a noisy 

experimental field, as illustrated in figure 8.8. Even using a NN dedicated only to 

predict t𝑐𝑜𝑚𝑝
┴ , the output is not very different from that of methodology 8  

(figure 8.8). The result is that the a-posteriori results are also not much different, as 

presented in figure 8.10. One can see that there is some improvement in the in-plane 

components of the velocity vector, probably as a positive impact of injecting less 

quantities than in methodology 8. The macrostructure of the streamwise 

component, however, is pretty much the same of methodology 8, and very different 

of that obtained both at the SPIV experimental results and the data-driven direct 

injection.  

Despite methodologies 8 and 10 did not return satisfactory results in this 

work, the similar approaches of methodology 5 and 6, also based on the 

perpendicular term of the Reynolds force vector were successfully employed by 

Brener et al. (2021) and Brener et al. (2022) to enhance simulations both at the SD 

and Periodic Hills flow. Since the learning environment used at those works were 

based on DNS data, where the derivatives are calculated in a very refined mesh, it 

would be interesting to try methodologies 8 and 10 in such situation. In fact, if one 

observes the contour plots presented there for 𝑡⟂, those are way less noisy than 

those obtained here. The obvious drawback is that the evaluation would be 

restricted to the relatively low Reynolds number available at DNS data. Due to time 

constrains, this test was not performed in this work.  
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Figure 8.10 - Contour plots of the normalized streamwise and vertical components 

of the velocity vector obtained from the SPIV experiment, data-driven direct 

approach and with the injected quantities obtained from the NN. Results presented 

for case 3 and methodology 10. 
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8.5. Summary of the results and limitations of this work 

From the 3 different methodologies chosen to be evaluated, that based on 

injecting the perpendicular term of the Reynolds stress tensor 𝑅⟂ and the turbulent 

viscosity obtained from the k-ε model (methodology 7) returned the best results. 

The Neural Network trained using 21 input quantities obtained from the low-fidelity 

RANS simulation consisted of 11 hidden layers with 185 neurons each and was 

capable of successfully predicting all 7 injected quantities for both cases 3 and 5 

(Reynolds number of 15000 and 22500). For both cases, the error of the streamwise 

velocity field to the SPIV data, calculated using equation 5.33 remain less than 4%, 

being the increase in comparison to the error obtained with the data-driven direct 

injection less than 1%.  

Since the Neural Network obtained in this thesis was trained only with data 

originated from the square duct for different Reynolds numbers, one can expect less 

accurate results if the geometry is changed. In fact, poor results were obtained in a 

test in a rectangular duct (aspect ratio = 1:3). It is important, however, to emphasize 

that the objective of this work was to evaluate methodologies to enhance RANS 

simulations using experimental data and Machine Learning, what was 

accomplished. An interesting continuation of this work would be to create a more 

general NN, training it with data from square duct, rectangular duct, periodic hills, 

etc. An evaluation could also be performed to check if Neural Network or other ML 

technique such as Random Forest (Brener et al. 2022) is the better approach. 

Another limitation of this work is the fact that the trained NN is not Euclidean 

invariant. This means that different results are expected in a frame of reference 

translated or rotated in relation to the original used one. In this context, it would be 

very interesting to re-write all the inputs and outputs of the NN (tensors and vectors) 

in the basis of the unit eigenvectors of S. As suggested by Brener et al. (2022), this 

would enforce Euclidean invariance to the trained NN, as the reference of frame 

would deform with the flow. While the training/prediction of the NN would be 

performed in an invariant reference frame dictated by S, one would simply have to 

transform the output of the NN to the chosen reference frame before injecting it into 

the mean momentum equations. This was not tested in the present work due to time-

constrains.
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9 
Conclusions 

Despite being widely used in countless engineering and research applications, 

the significant advances in the RANS turbulence models seems to have reached a 

plateau. In fact, the traditional approaches available at most commercial software 

such Fluent, CFX and KFX dates at least 2 decades. Among those, the k-ε model 

is, by far the most widely used across many different applications. Despite its 

popularity, the k-ε model and other linear eddy viscosity models fail to proper 

predict the Reynolds Stress Tensor and, therefore, the final velocity field for some 

simple applications. Two examples are the flow in a Square Duct and in a Periodic 

Hill, reason why such geometries are commonly used by researcher seeking to test 

new turbulence models. With the significant computational power available 

nowadays and the re-birth of Artificial Intelligence in the last years, Machine 

Learning is emerging as a promising tool to enhance turbulence modelling. This is 

where this work is inserted.  

All Machine Learning algorithms require somehow a training stage. Different 

from many authors who have used training data from available DNS in the 

literature, it was chosen in this work to obtain such data directly from experimental 

measurements. To this end, the existent Square Duct of the Laboratory of Fluid 

Engineering of PUC-Rio was adapted to the use of the Stereoscopic Particle Image 

Velocimetry technique with simultaneous pressure gradient measurements. A total 

of 10 different cases were measured, with Reynolds number ranging from 7000 to 

44500. The total number of non-correlated samples, acquired with a frequency of 

1Hz, were carefully evaluated for each case to assure that it was enough to obtain 

well-converged components of the Reynolds Stress Tensor.  

Despite all precautions to ensure that the laser light sheet was perpendicular 

to the walls of the square duct, small miss-alignments were inevitable. Given the 

indirect reconstruction of the 3-components of the velocity vector performed by the 

SPIV technique and the fact that a deviation of only 1o would result in a 
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decomposition of the streamwise component of the velocity vector into the laser 

plane with the same order of magnitude of the in-plane, such measured components 

and the associated Reynolds Stress Tensor were too noisy to be used for numerical 

applications. To account for that, the symmetry of the SD flow into quadrants and 

octants was used to average all quantities into the third quadrant of the flow. Despite 

introducing an artificial symmetry to the flow, this procedure significantly 

improved the results, resulting in an excellent agreement with the DNS data 

available in the literature for case 1 (Re = 7000).  

The next step after the experiments were completed was to define which 

quantities could be injected into the RANS mean-momentum equations so that 

improved results could be obtained. A total of 10 different methodologies were 

evaluated, being 4 of them original contributions of the present work. In the end, 

the following methodologies were considered the best and chosen to be evaluated 

with a ML technique:  

 

Methodology 7, which consists of injecting the perpendicular term of the Reynolds 

Stress Tensor (𝑅⟂) and the turbulent viscosity obtained from the k-ε model by 

solving the equations for k and ε feeding the measured velocity field as input; 

 

Methodology 8, which consists of injecting the perpendicular term of the Reynolds 

Force Vector (𝑡⟂) and the turbulent viscosity obtained in the same way as 

methodology 7; 

 

Methodology 10, which consists of injecting only the perpendicular term of the 

Reynolds Force Vector (𝑡⟂). 

 

While the smallest errors in the data-driven approach were obtained for 

Methodology 7 (despite its increment with the Reynolds number), such 

methodology requires 7 injected quantities (6 components of 𝑅⟂ and 𝜈𝑡). For this 

reason, methodologies 8 and 10, that requires less injected quantities, were also 

selected to be evaluated with the Neural Network predictions. It is worth saying that 

while methodology 7 requires a NN (or equivalent ML algorithm) to predict only 

its bulk injected quantities, methodology 8 and 10 also require boundary conditions 
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predictions for 𝑡⟂, what in this work were originated from a different NN, trained 

specific for wall BCs.  

 A Neural Network was trained for each of the 3 different methodologies 

described in the last paragraph. All NNs received 21 different quantities as input, 

originated from the low-fidelity RANS simulation of the SD flow. The NN acts 

somehow as a correction algorithm, trained to predict good inputs from the less 

accurate RANS simulation. Such inputs are then injected into the MME of the 

corresponding methodology to originate enhanced simulation results. Given the fact 

that ML algorithms work better by interpolating than by extrapolating data, cases 

1, 4, 6, 8, 9 and 10 were chosen to be used as training data, cases 2 and 7 for 

validation and cases 3 and 5 for testing.  

 Both a-priori and a-posteriori results obtained with the NN of methodology 

7 were significant accurate, increasing the error obtained for the streamwise 

component of the velocity vector in less than 1%, in comparison with the data-

driven direct approach, and keeping it below 4% for both cases 3 and 5. The results 

obtained with methodology 8 and 10, on the other hand, were not good. A possible 

explanation is the fact that such methodologies use too many derivatives of both 

streamwise and in-plane components of the velocity vector to compute the 

Reynolds force vector, which are not much accurate given the non-refined 

experimental mesh. This fact resulted in a noisy vector field that is very difficult to 

be well predicted by a ML algorithm. An interesting observation is that the NN 

obtained for all methodologies of this work required much more hidden layers than 

those usually described in the literature. A possible and probable explanation for 

this is the fact that Reynolds number range used in this work was much larger than 

the usually reported in the literature, originated from DNS simulation. It seems that 

this requires a deep learning approach.  

 

9.1. Suggestions for future works 

Suggestions for continuations of this work are divided in those to improve the 

NN obtained in this work (also applicable to other ML algorithms that can be further 

developed), to create a more general ML algorithm that can be applicable to 

different geometries and to test a different training approach. 
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9.1.1. Improvement of the Neural Network 

Despite providing good results, there is space for the improvement of the 

Neural Network developed in Methodology 7.  

Firstly, it would be interesting to check if a Neural Network is in fact the best 

Machine Learning technique for such application, since, according to Brener et al. 

(2022), Random Forest provides better results.  

Secondly, the approach of giving a weight factor of 5 to the cells close to the 

wall, during the calculation of the cost function at the training of the NN seems very 

interesting for 𝑅⟂. The turbulent viscosity, on the other hand, is not that important 

at such locations, where its value is close to zero. One could evaluate if improved 

results could be obtained by removing such factor only for the turbulent viscosity. 

Thirdly, it might be worth checking the impact of each of the 7 injected 

quantities on the final result during the data-driven stage. One could increase the 

weight factor of some quantities with higher impacts during the NN training if such 

impact was a-priori known.   

Finally, a physics-informed Neural Network approach could be used to 

incorporate physical knowledge to the NN. Specifically, for the application 

described in this work, one could add the mean-momentum equations to the loss 

function in such a way that the NN would try to minimize a cost function that has 

the physics constrain embedded into it. The derivative terms would, of course, have 

to be provided during its training.  

 

9.1.2. Create a more general Neural Network 

The quest to obtain a general NN that could be used in different geometries 

and applications must necessarily go through at least 2 suggestions. 

Firstly, one must be able to train an Euclidean invariant NN. As suggested by 

Brener et al. (2022), this can be obtained by re-writing all the inputs and outputs of 

the NN (tensors and vectors) in the basis of the unit eigenvectors of S. This simple 

approach would enforce Euclidean invariance to the trained NN, since the reference 

of frame would deform with the flow. While the training/prediction of the NN 

would be performed in an invariant reference frame dictated by S, one would simply 
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have to transform the output of the NN to the chosen reference frame before 

injecting it into the mean momentum equations. 

Secondly, the NN must be trained with data from different flow 

configurations. A suggestion would be to start adding the DNS data of flows in a 

rectangular duct with different aspect ratios and check if the NN was still capable 

of generating good results. If so, one could then add data of Periodic Hills and other 

more complex geometries. It could be the case that more inputs are required to 

improve the generalization capability of the chosen ML algorithm.  

 

9.1.3. Test a different training approach 

The last suggestion for future work is to attempt a modification of the overall 

procedure proposed in this work and by Cruz et al. (2019), Brener et al. (2021), 

Brener et al. (2022), among others. In all these works, the ML algorithm was 

structured to receive quantities originated from low-fidelity RANS simulations as 

input and to predict accurate injected quantities. Despite being capable of 

generating good results at the tested cases, it remains unclear if such approach is 

capable of generalizing a ML algorithm for different applications, what is desired 

for a turbulence model. It could be the case that the low-fidelity RANS simulation 

returns similar results for situations where the injected quantities are completely 

different. This would not only impact on the training of the ML algorithm but also 

result in poor a-posteriori results.  

Perhaps a more intuitive idea is to train a NN (or other ML algorithm) to 

predict the injected quantities with high-fidelity data as input, either from DNS’ 

available or from experiments such as the SPIV of the present work. The final ML 

algorithm should then be embedded within the RANS solver to run at every 

iteration, predicting the injected quantities from the real-time simulation results. 

Since the prediction of the NN after its training is simply a multiplication of matrix, 

it might not impact that much the total simulation time. This approach seems more 

like a turbulence model than the former.  
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