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Abstract

Chamorro J., A.; Feitosa, R. Q. (Advisor); Costa, G. A. O. P. (Co-
Advisor). Semi-Automatic Monitoring of Deforestation in
the Brazilian Amazon and Cerrado Biomes: Uncertainty
Estimation and Characterization of High Uncertainty Ar-
eas. Rio de Janeiro, 2023. 145p. Tese de doutorado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Official monitoring of deforestation in the Brazilian Amazon has relied tra-
ditionally on human experts who visually evaluate remote sensing images
and label each individual pixel as deforestation or no deforestation. That
methodology is obviously costly and time-consuming due to the vast moni-
tored area. The reason for not using fully automatic methods for the task is
the need for the highest possible accuracies in the authoritative deforesta-
tion figures. In this work, a semi-automatic, deep learning-based alternative
is proposed, in which a deep neural network is first trained with exist-
ing images and references from previous years, and employed to perform
deforestation detection on recent images. After inference, the uncertainty
in the network’s pixel-level results is estimated, and it is assumed that
low-uncertainty classification results can be trusted. The remaining high-
uncertainty regions, which correspond to a small percentage of the test
area, are then submitted to post classification, e.g., an auditing procedure
carried out visually by a human specialist. In this way, the manual labeling
effort is greatly reduced.
We investigate various uncertainty estimation strategies, including
confidence-based approaches, Monte Carlo Dropout (MCD), deep ensem-
bles and evidential learning, and evaluate different uncertainty metrics.
Furthermore, we conduct a comprehensive analysis to identify the char-
acteristics of forest areas that contribute to high uncertainty. We illus-
trate the main conclusions of the analysis upon 25 selected polygons on
four target sites, which exemplify common causes of uncertainty. The tar-
get sites are located in challenging study areas in the Brazilian Amazon
and Cerrado biomes. Through experimental evaluation on those sites, we
demonstrate that the proposed semi-automated methodology achieves im-
pressive F1-score values which exceeds 97%, while reducing the visual au-
diting workload to just 3% of the target area. The current code is available
at https://github.com/DiMorten/deforestation_uncertainty.
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Resumo

Chamorro J., A.; Feitosa, R. Q.; Costa, G. A. O. P.. Monito-
ramento Semiautomático do Desmatamento nos Biomas
Brasileiros Amazônia e Cerrado: Estimativa de Incerteza
e Caracterização de Áreas de Alta Incerteza. Rio de Janeiro,
2023. 145p. Tese de Doutorado – Departamento de Engenharia Elé-
trica, Pontifícia Universidade Católica do Rio de Janeiro.

O monitoramento oficial do desmatamento na Amazônia brasileira tem de-
pendido tradicionalmente de especialistas humanos que avaliam visualmente
as imagens de sensoriamento remoto e rotulam cada pixel individual como
desmatamento ou não desmatamento. Essa metodologia é obviamente cara
e demorada devido à vasta área monitorada. A razão para não utilizar méto-
dos totalmente automáticos para a tarefa é a necessidade da maior precisão
possível nos números oficiais de desmatamento. Neste trabalho é proposta
uma alternativa semi-automática baseada em aprendizagem profunda, na
qual uma rede neural profunda é primeiro treinada com imagens existen-
tes e referências de anos anteriores, e empregada para realizar detecção de
desmatamento em imagens recentes. Após a inferência, a incerteza nos re-
sultados em nível de pixel da rede é estimada e assume-se que os resultados
da classificação com baixa incerteza podem ser confiáveis. As demais regiões
de alta incerteza, que correspondem a uma pequena porcentagem da área
de teste, são então submetidas à pós-classificação, por exemplo, um pro-
cedimento de auditoria realizado visualmente por um especialista humano.
Desta forma, o esforço de etiquetagem manual é bastante reduzido.
Investigamos várias estratégias de estimativa de incerteza, incluindo abor-
dagens baseadas em confiança, Monte Carlo Dropout (MCD), conjuntos
profundos e aprendizagem evidencial, e avaliamos diferentes métricas de in-
certeza. Além disso, conduzimos uma análise abrangente para identificar as
características das áreas florestais que contribuem para a elevada incerteza.
Ilustramos as principais conclusões da análise em 25 polígonos seleciona-
dos em quatro locais-alvo, que exemplificam causas comuns de incerteza.
Os sítios-alvo estão localizados em áreas de estudo desafiadoras nos biomas
brasileiros da Amazônia e do Cerrado. Através da avaliação experimen-
tal nesses locais, demonstramos que a metodologia semi-automática pro-
posta atinge valores impressionantes de pontuação F1 que excedem 97%, ao
mesmo tempo que reduz a carga de trabalho de auditoria visual para apenas
3% da área alvo. O código desenvolvido para este estudo está disponível em
https://github.com/DiMorten/deforestation_uncertainty.
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1
INTRODUCTION

1.1
Motivation

The Brazilian Amazon biome boasts a remarkable diversity of vegeta-
tion types, encompassing various forest typologies, including but not limited
to traditional forest, dense forest, forests adorned with vines, bamboo-infused
forests, campinarana, dry forest, Várzea forest, Igapó forest, Mangrove forest,
and meadow [6]. Likewise, the Brazilian Cerrado biome is the second largest
biogeographic region in South America and is considered the savanna forma-
tion with most biodiversity in the world [7]. This rich tapestry of ecosystems
renders the task of mapping deforestation particularly intricate and demand-
ing. The Amazon Deforestation Monitoring Project (PRODES), developed and
operated by the Brazilian National Institute for Space Research (INPE), has
provided consistent annual deforestation reports since 1988 [8]. Likewise, the
entire Cerrado biome is monitored by PRODES [7]. In the current PRODES
methodology, deforestation is visually inspected and manually annotated over
satellite images covering the entire Brazilian Legal Amazon, which spans an
area of 5 million km2 (∼60% of the Brazilian territory). However, PRODES
detects deforestation only in the areas originally covered by forest phytophys-
iognomies, corresponding to 4 million km2. In the case of the Cerrado biome,
PRODES monitoring manually inspects and annotates the entire biome area,
corresponding to approximately 2 million km2 (∼24% of the Brazilian terri-
tory) [9]. Although costly and time-consuming, the option for such a method-
ology derives from the high accuracies requirement – the 2022 PRODES re-
port achieved an overall accuracy of 98.8% for the Brazilian Legal Amazon,
corresponding to an F1-score of 87.1% for the deforestation class [8, 10, 11].
Likewise, high accuracy requirements occur for deforestation detection in the
Brazilian Cerrado biome, where PRODES report achieved an accuracy of 93.4,
corresponding to an F1-score of 87.4% for the deforestation class [11]. It must
be noted that according to the PRODES methodology, after the interpreters
have identified the deforestation polygons, a team of expert auditors checks
the mapped polygons and looks for omissions in the visual classification.
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Notwithstanding, many studies have focused on automatic deforestation
detection from remote sensing imagery. Recent works used fully convolutional,
deep neural networks for deforestation detection, having as inputs pairs of
Sentinel-2 or Landsat-8 multispectral images from consecutive years (e.g., [12–
14]). Although those works delivered considerably high accuracies, in the order
of 79.6 to 81.7% in terms of F1-Score, they do not indicate the uncertainties
in their predictions, which may be over or under confident.

Modern deep neural networks tend to produce over-confident outcomes at
their output due to the networks’ increasing complexity and parameter count.
Such uncalibrated confidence is not an adequate measure of the network’s
reliability [15]. Uncertainty estimation enables the evaluation of the network’s
trustworthiness during inference.

Nevertheless, various uncertainty estimation techniques have been pro-
posed in the context of deep learning-based methods [16]. Monte Carlo Dropout
(MCD) [17] has been employed in many of such techniques. Dropout is com-
monly used during the training phase of deep neural networks to prevent over-
fitting and co-adaptation. It works by randomly turning off some of the network
neurons during the training iterations. MCD prescribes using dropout at test
time to produce slightly different outcomes for the same input. In that way,
statistical uncertainty measures can be computed from a predefined number
of inference runs. The method is particularly efficient because the deep neural
network needs to be trained only once. Another alternative is to derive un-
certainty values from the outcomes of an ensemble of networks trained with
different random weight initializations and minibatch selections. In that case,
however, the training procedure must be carried out multiple times. A more
recent alternative is evidential deep learning [18]. Committee-based approaches
such as MCD and ensembles are computationally expensive due to the need to
train or run inference multiple times. Conversely, evidential learning estimates
uncertainty using a single training run and a single forward pass. It considers
the predictions of a single deterministic network as a subjective opinion and
explicitly models the weight uncertainties.

This thesis addresses the challenge of substituting manual pixel-wise re-
ports, such as the deforestation mapping procedure carried out by PRODES in
the Brazilian Amazon and Cerrado biomes since 1988, with a semi-automatic
procedure. The aim is to explore the feasibility of using semantic segmentation
models for this task. However, it is acknowledged that the current models fall
short of achieving the necessary accuracies for such a demanding application,
where the implications of inaccurate outcomes could have significant opera-
tional and economic consequences. First, we propose a way to use uncertainty
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estimation to boost the accuracy of semantic segmentation tasks through a
semi-automatic methodology. Although the methodology was assessed in the
context of deforestation mapping from remote sensing imagery, it can be ap-
plied to any semantic segmentation task. In short, it is assumed that most
classification errors concentrate on high-uncertainty predictions. So, an uncer-
tainty map can be used to separate the pixel-level classification outcomes into
low-uncertainty and high-uncertainty predictions. The low-uncertainty predic-
tions are considered definitive, whereas expert human auditors should revise
only the high-uncertainty predictions, which are expected to correctly classify
the respective regions. With that approach, it is intended to expressively re-
duce the need for human intervention in the deforestation mapping processes
while achieving a very high classification accuracy. Indeed, in our experimen-
tal results for deforestation detection, the auditing process was restricted to a
mere 3% of the total area of the study areas, and, assuming that the human
specialist is always right, F1 scores considering the whole test areas were of up
to 97.2%.

The above-mentioned results were obtained in a real-world operational
setup, in which images and references from the past years were used for training
the classifier, which was then applied to a pair of recent anniversary images.
Results are presented for two sites in the Brazilian Amazon biome, in the states
of Pará and Mato Grosso, and for two additional sites in the Cerrado biome,
in the states of Mato Grosso do Sul and Piauí.

The second objective of this study is to investigate the factors contribut-
ing to the high uncertainty observed in some predictions. That involves examin-
ing the characteristics of forest fragments that exhibit such uncertainty levels.
In other words, by exploring the uncertainty estimates, this study seeks to ex-
tract pertinent information that surpasses the conventional binary forest/non-
forest classification, ultimately improving the understanding of different types
of deforestation.

In conclusion, this work proposed a way to exploit uncertainty estimation
in semantic segmentation tasks, and was specifically assessed for deforestation
detection using satellite imagery. Multiple uncertainty estimation methods
were assessed, including confidence-based approaches, MCD, ensembles, and
evidential learning. For the dense classification model, a fully convolutional
architecture model was used.

1.2
Objectives
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1.2.1
General Objective

The general objective of this work is to propose a methodology that
exploits uncertainty measures derived from deep learning-based semantic
segmentation models, which can deliver very high accuracies in semantic
segmentation tasks through a semi-automatic procedure that relies on little
human intervention. Particularly, it is proposed to reduce human intervention
by indicating the areas to be audited, reducing auditing efforts from 100% of
the test area to significantly smaller percentages. Additionally, it is proposed
to produce an analysis to determine the causes of uncertainty. The proposed
methodology is assessed for deforestation detection from satellite images in the
Brazilian Amazon and Cerrado biomes.

1.2.2
Specific Objectives

The specific objectives of this work are the following:

1. Propose an operational methodology that exploits uncertainty estimation
in semantic segmentation tasks, aiming at strongly reducing human
intervention in the execution of those tasks.

2. Evaluate uncertainty estimation methods such as confidence-based ap-
proaches, multi-output approaches, and evidential learning, and compare
different uncertainty metrics such as predictive entropy, predictive vari-
ance, mutual information, and Kullback-Leibler divergence.

3. Evaluate the proposed methodology for deforestation detection from
satellite images in the Brazilian Amazon and Cerrado biomes.

4. Provide a detailed interpretation analysis of the estimated uncertainty
maps from the point of view of the user (i.e., the annotating and auditing
experts).

1.3
Contributions

The main contributions of this work are the following:

1. A semi-automated methodology for semantic segmentation tasks, which
significantly reduces the burden on human interpreters while maintaining
high accuracy, comparable to traditional visual interpretation.
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2. An evaluation of the proposed methodology in deforestation mapping,
using four distinct study areas within the Brazilian Amazon rainforest
and the Cerrado biome.

3. A comprehensive evaluation of different uncertainty estimation tech-
niques specifically tailored to achieve the aforementioned objectives.

4. An empirical study that investigates the characteristics of forest areas
exhibiting high degrees of uncertainty, according to the semi-automated
deforestation detection method.

1.4
Organization of the remaining parts of this thesis

Chapter 2 describes the related work available in the literature for uncer-
tainty estimation using confidence-based approaches, multi-output approaches
and evidential learning, and the use of uncertainty maps for aiding the anno-
tating procedure.

Chapter 3 provides the fundamental concepts and theory for a better
understanding of the proposed method.

Chapter 4 introduces and explains the preliminary proposed method
for aiding the annotating and auditing process using MCD and ensembles
as uncertainty estimation techniques.

Chapter 5 presents the datasets employed in the preliminary study, the
experimental protocol followed in the experiments, and the preliminary results
obtained for the different uncertainty methods in deforestation detection.

Chapter 6 summarizes the conclusions derived from the performed exper-
iments and provides directions for the development of the proposed method.



2
RELATED WORK

Recent works have used fully convolutional neural networks (CNNs) for
deforestation mapping [12–14, 19]. In those works, the input to the CNNs was
the concatenation of the optical images acquired at different dates, i.e., T−1

and T0, in a so-called early fusion scheme. In [12], an encoder-decoder fully
convolutional network model based on the ResUnet [20] delivered the best
results when compared to different CNN architectures used for deforestation
detection in the Brazilian Amazon. The preceding studies have shown promis-
ing accuracies ranging from 79.6% to 81.7% in terms of F1-Score. However,
when considering the overarching goal of replacing manual reporting processes
across the Brazilian Amazon and Cerrado biomes, these accuracies still fall
short in comparison to the benchmark set by PRODES reports, which accura-
cies were estimated as 87.1% and 87.4% for the Amazon and Cerrado biomes,
respectively [8, 10, 11]. Unlike prior research endeavors, this study proposes the
utilization of uncertainty estimation techniques to streamline manual auditing
efforts. The primary objective is to achieve accuracies matching or surpassing
the PRODES standards, while concurrently reducing the auditing effort from
100% to significantly lower percentages.

Uncertainty in machine learning models can be divided into aleatoric or
data uncertainty and epistemic or model uncertainty. Data uncertainty de-
scribes the confidence of the data, and it is related to the inherent random-
ness of the input data. Data uncertainty cannot be reduced by increasing the
amount of training samples. Model uncertainty describes the confidence of the
prediction, and it can be reduced by collecting more training data.

2.1
Confidence-based approaches

Various approaches have been proposed to estimate uncertainty in deep
learning models. The first group is confidence-based approaches, which esti-
mate uncertainty directly on the outcome of a single inference run. Multiple
works used confidence-based approaches for uncertainty estimation [21–23]. In
[21], entropy was used as an uncertainty measure for the prediction of a hydro-
logic variable. In [22], a comparison of confidence-based approaches was made
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for entropy, maximum margin, and least confidence in an active learning set-
ting, where the three approaches performed similarly for image classification.

2.2
Multiple-outcome approaches

Alternatively, multiple-outcome uncertainty estimation methods rely on
multiple training or inference runs to estimate the uncertainty related to a
neural network’s weights. These approaches measure the level of disagreement
among multiple outcomes for the same input.

2.2.1
Ensembles

The first multiple-outcome approach trains an ensemble of networks and
computes statistical measures that consider the different predictions of the
individual networks that compose the ensemble [24–31]. In [24], the authors
first used ensembles as an uncertainty method. Their method expressed higher
uncertainty for samples outside the training distribution for multiple regres-
sion and classification datasets. They also found that random weight initial-
ization and training dataset shuffling introduced sufficient variability for reli-
able uncertainty estimates. In [26], a comparison was made between multiple
uncertainty estimation methods, including deep ensembles and MCD under
dataset shift. They found that both accuracy and the quality of uncertainty
degraded with the increase of dataset shift. They found that traditional cal-
ibration methods, such as temperature calibration, were significantly outper-
formed by methods that estimated epistemic uncertainty under increased shift.
They also concluded that deep ensembles performed the best and most ro-
bustly under increasing dataset shift across multiple datasets such as CIFAR-
10 and ImageNet. The superiority of ensembles to other techniques was further
studied in [29], where it was found that ensembles with random initialization
produced a better diversity-accuracy trade-off, resulting in more meaningful
uncertainty compared to single training approaches for well-known datasets
such as CIFAR-100 and ImageNet. Similarly, ensembles outperformed MCD
in multiple classification and regression tasks in [27].

Multiple works have used deep ensembles for semantic segmentation
[25, 27, 30–33]. In [32], a comparison between multiple uncertainty estima-
tion methods was made for 3D semantic segmentation of point clouds. The
authors concluded that deep ensembles outperformed the remaining methods
in terms of classification accuracy and calibration, defined as a measure of how
reliable the prediction probability was. In [30], a deep ensemble was used for
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uncertainty estimation on the Cityscapes autonomous driving dataset. They
used a student-teacher distillation training approach. They trained a teacher
model with higher complexity and parameter count, and then the student en-
semble members were trained to replicate the teacher’s outcomes while having
lower complexity and parameter count. The resulting ensemble outperformed
the teacher network in terms of accuracy while producing similar uncertainty
results in terms of mIoU for the low-uncertainty samples under multiple uncer-
tainty thresholds. Similarly, in [31], a deep ensemble with predictive variance
was used for uncertainty estimation in autonomous vehicle scene understand-
ing using a teacher-student approach. First, a teacher ensemble of networks
was trained. Then, a single student network was trained using the dataset
ground truth, the teacher’s classification outcome, and the teacher’s uncer-
tainty estimates as inputs to the training loss. The student network had two
output heads: A classification and an uncertainty estimation head, allowing to
estimate uncertainty using a single forward pass. They found that their ap-
proach was a good predictor of incorrectly labeled pixels and that uncertainty
robustly detected out-of-distribution samples. In [33], deep ensembles were
used for uncertainty estimation in road segmentation from Synthetic Aperture
Radar (SAR) data. Ensembles outperformed the compared methods in terms
of accuracy and uncertainty usefulness. Although deep ensembles have con-
sistently produced the best metrics across the multiple-outcome approaches,
training multiple models is computationally expensive.

2.2.2
Monte Carlo Dropout (MCD)

A Bayesian network learns the posterior distribution for a network’s
trainable weights, allowing it to compute the principled predictive uncertainty.
However, Bayesian techniques have been proven unpractical for deep neural
networks due to the large amount of data needed, proportional to the number
of network parameters [16].

The most common approximation for Bayesian networks is Monte Carlo
Dropout (MCD). It has been demonstrated that MCD can be viewed as having
a mathematical equivalence to Bayesian networks [1, 17]. Dropout is commonly
used during training as a regularization technique. MCD additionally uses
dropout at inference, producing a different outcome in each inference run.
Uncertainty is then estimated by calculating statistical measures like variance
and entropy over a predefined number of inference runs.

Multiple works have used MCD in classification problems [24, 34–39]. In
[34], MCD was used for uncertainty estimation in the classification of electroen-
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cephalogram (EEG) signals. Uncertainty histograms showed a correlation be-
tween high uncertainty and incorrect samples for the Brain-Computer Interface
(BCI) Competition IV dataset. They proposed to reject high uncertainty pre-
dictions, obtaining lower error rates for classification. In [24], a comparison was
made for MCD and deep ensembles in the image classification datasets SVHN,
MNIST, and ImageNet. In all cases, deep ensembles outperformed MCD re-
garding classification accuracy, network calibration, and out-of-distribution de-
tection. In [36], MCD was used for medical image classification. They proposed
an uncertainty metric based on the overlap between the top-2 predicted class
distributions, which outperformed the predictive variance metric. In [35], MCD
was used to select high-uncertainty samples for further inspection in medical
image classification.

Recently, various works have used MCD for uncertainty estimation in
semantic segmentation applications that rely on deep learning models. Many
of those works used U-Net [40] based networks, and employed MCD at inference
time to approximate a Bayesian network. Such an approach has been employed
in many application areas such as urban mapping with aerial and satellite
images [33, 41], medical image segmentation [42, 43], and fingerprint ROI
segmentation [44]. MCD was also used in [45] to estimate uncertainty in the
semantic segmentation of video frames. In all the above-mentioned works,
however, the estimated uncertainty maps were only used in the analysis of
the corresponding models’ predictions, i.e., they were not employed in further
processing steps.

In the medical image segmentation field, multiple works have used MCD
[25, 46–58]. In [48], MCD with predictive variance as uncertainty metric
was used for tumor volume estimation. They compared using dropout at
different stages of the network and found that using dropout in every layer
produced the most stable variance estimates. In [51], MCD was used to obtain
uncertainty for a safety-critical image segmentation task. They managed to
detect segmentation errors that demanded expert review automatically.

In [52], uncertainty was estimated using MCD for Optical Coherence
Tomography (OCT). They found a correspondence between high-uncertainty
regions and inaccurate segmentations. In [53], a relationship was found between
high uncertainty estimates from MCD and regions of high inter-observer vari-
ability, which measures the disagreement occurring among multiple expert an-
notators. Inter-observer variability is inherent in medical image segmentation
applications. The results were assessed for brain tumor cavity segmentation.
Similarly, in [50], MCD was used to obtain uncertainty estimates for multiple
sclerosis lesion segmentation. They found high uncertainty values in small le-
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sions and lesion boundaries, which corresponded with typical human-annotator
variability sources.

The authors in [54] used uncertainty from MCD as an input to a post-
processing refinement strategy and found that it outperformed Conditional
Random Fields (CRF). The refinement strategy trains an additional Graph-
Convolutional Network (GCN) on the high-confidence voxels to reclassify and
refine the outcome. In [55], uncertainty from MCD was used for anatomic
anomaly detection in retinal tomography segmentation. They found that epis-
temic uncertainty was higher for regions whose appearance differed signifi-
cantly from training data, achieving high accuracy in the anomaly detection
task, with anomalies corresponding to diseased samples. Furthermore, they
found high uncertainty values in other deviations in normal scans, such as cut
edge artifacts. In [25], deep ensembles and MCD were compared for brain,
heart, and prostate magnetic resonance imaging (MRI) image segmentation.
They used average entropy as an uncertainty metric. They found a correlation
between segmentation quality and uncertainty values, and they also found that
the average entropy could be used for effectively detecting out-of-distribution
samples. For comparison, they employed scoring rules, which assess the qual-
ity of uncertainty estimation by rewarding properly calibrated probabilistic
forecasts. They found that ensembles outperformed MCD.

In [58], uncertainty was estimated using MCD for MRI image segmen-
tation. Consistently with other works, they found a correlation between high
uncertainty and erroneous areas. In [57], epistemic uncertainty was estimated
by using MCD at inference, and stochastic Gaussian noise was added to the
input image for additional variability. They used uncertainty to guide the selec-
tion of pseudo-labels in an unsupervised setting, disregarding the pseudo-labels
with high uncertainty. Additionally, they used uncertainty in the unsupervised
training loss to select the most certain samples for optimization. Similarly, [56]
incorporated uncertainty using MCD to a semi-supervised training loss by us-
ing a student-teacher model and allowing the student model to learn from the
more reliable targets guided by the teacher model’s uncertainty.

In [59], the resulting uncertainty map estimated using MCD was used
as an additional input to train a second U-Net network. The map was
concatenated with the original input image for the semantic segmentation of
scanned historical maps.

2.2.3
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Test-Time Augmentations (TTA)

Alternatively, Test-Time Augmentations (TTA) trains a single determin-
istic network and uses random data augmentation operations at test time, al-
lowing to obtain a different outcome in each inference run. As in MCD and
ensembles, uncertainty is obtained by calculating a statistic over the inference
repetitions [60]. TTA differs from the previous multiple-outcome approaches
in that it exclusively calculates the data uncertainty. In [37], TTA was used
in combination with MCD for skin lesion classification. They found that com-
bining both approaches improved the classification metrics compared to only
using MCD.

2.3
Single-Outcome Deterministic Approaches

Multiple-outcome methods are computationally expensive because they
require training or inferring multiple times. Single-run deterministic methods
have been proposed as an alternative to multi-output approaches. In these
approaches, uncertainty is determined using a single forward pass. Such
methods are divided into two groups: In the first group, a single network
is explicitly designed and trained with the aim of quantifying uncertainty
[18, 61–68]. In the second group, additional components are used to compute
uncertainty, generally as a post-processing step for already trained networks,
having no effect on the network predictions [69–72]. Both groups are called
internal and external, respectively.

2.3.1
Internal Deterministic Approaches

Many internal methods followed the idea of predicting a distribution over
the possible outcomes instead of a point-wise estimation. Evidential deep learn-
ing [18] is an alternative that estimates model uncertainty with a single training
and inference run. It is based on the Dempster-Shafer theory of evidence [73].
It assumes that the outcome of a single deterministic network is a subjective
opinion and learns the function leading to those opinions as a Dirichlet distri-
bution by directly estimating the Dirichlet parameter α at the output of the
network. Their work performed similarly to multiple-outcome approaches while
being less computationally expensive. In [74], evidential learning was used for
action recognition in an open set problem, where new classes not observed
during training come about at inference, whose uncertainty is expected to be
high. Their results outperformed the remaining approaches. In [75], eviden-
tial learning was used for chest radiograph image classification. Similar to our
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work, they assessed classification metrics for varying levels of high-uncertainty
coverage. In [76], evidential learning was extended by separating the output ev-
idence into vacuity and dissonance to better separate between in-distribution
and Out-Of-Distribution (OOD) samples. Two datasets containing overlap-
ping classes and OOD samples were integrated into the framework to achieve
this. In [66], a modification of evidential learning was proposed to maximize
the representation gap in OOD samples by additionally using OOD samples
during training. More recently, [77] demonstrated the limitations of eviden-
tial learning for unbalanced datasets. They suggested the implementation of a
data augmentation method during the training phase, along with a post-hoc
calibration process on a validation dataset, in order to mitigate bias stemming
from the imbalanced data distribution.

Similarly, in [61], a contemporary variation of evidential learning called
prior networks was used to estimate uncertainty modeling the point-wise
predictions’ distribution as a Dirichlet distribution. Different from evidential
learning, they used OOD samples during training. They trained the network
to produce a sharp Dirichlet distribution focused on the correct class for
in-distribution samples and a flat Dirichlet distribution for OOD samples
by minimizing the expected KL-divergence. They explicitly calculated the
distributional uncertainty, representing the difference between the training
and testing distributions. In contrast, in the Bayesian networks, distributional
uncertainty is considered a part of model uncertainty. As an extension, in
[62] they argued that when data uncertainty is high, the posterior behaves
as an undesired multi-modal distribution. As a solution, they formulated
the loss as a reverse KL-divergence. In [63], they assumed that the point-
wise estimates were sampled from an unknown distribution, and they argued
that using a mixture of Dirichlet distributions offered greater flexibility for
approximating this unknown distribution. In [64], they eliminated the need
for OOD samples during training by learning the classes’ distribution over a
latent space. During inference, the sample was mapped into this latent space,
and class-specific densities in the latent space were utilized to parameterize a
Dirichlet distribution.

Besides Dirichlet distribution-based approaches, other internal determin-
istic methods have been proposed. In [65], the authors proposed a modified
softmax called inhibited softmax, which introduced an inhibition parameter
to calibrate the softmax outcomes, compensating the deep networks’ typical
over-confidence and producing more accurate uncertainty values. Their results
were similar to MCD, requiring a single training and inference run. In [78],
Radial Basis Functions (RBF) achieved competitive accuracy and good uncer-
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tainty results. RBFs learn a linear transformation on the logits and classify a
sample based on the distance between the transformed logits and the centroids
associated with learned classes.

Recent works have used evidential learning for uncertainty estimation in
semantic segmentation [79–85]. In [79], an FCN is used for evidential learning
by replacing the softmax layer with ReLU and attaching a Dirichlet layer at
the outcome, which produced the Dirichlet parameters α at the output. They
estimated uncertainty for the semantic segmentation of underwater imagery.
Their approach was the same as in this work, although the application field
differed. Although they qualitatively observed a correspondence between low
accuracy and high uncertainty, they did not quantify the benefits of using
uncertainty. In [82], evidential learning was used for uncertainty quantification
in medical image segmentation. They argued that despite recent advances in
semantic segmentation, clinicians remain skeptical of its uses due to its black-
box nature. Estimating uncertainty enhanced the reliability and explainability
of their system. They found a correspondence between out-of-distribution
samples and high uncertainty values. They also applied their approach to real-
world clinical safety applications.

In [83], evidential learning was applied for brain tumor 3D segmentation,
and compared with ensemble and MCD. They concluded that ensembles and
MCD produced higher accuracies and better calibration outcomes in raw
images. Even so, evidential learning resulted in a higher overlap between
uncertainty and error areas. Similarly, in [84], a comparison of evidential
learning was made with other uncertainty estimation methods, including MCD,
ensembles, and probabilistic U-Net, which learns a conditional probability of
the train data with a variational autoencoder and obtains uncertainty values
as distances to the train distribution. The methods were assessed for 3D
brain tumor segmentation. They observed the performance of all uncertainty
methods to decay in the presence of increasing levels of Gaussian noise.
As expected, evidential learning produced the lowest inference times due to
the need for multiple sampling at inference by the MCD, ensembles, and
probabilistic methods. They also found their framework to be competitive
with the compared approaches. In [85], evidential deep learning was compared
with other uncertainty estimation methods such as MCD and ensembles for
CityScapes and KITTI datasets. They compared in terms of classification
accuracies, qualitative uncertainty maps, and out-of-distribution detection.
They separated uncertainty into aleatoric and epistemic components. They
concluded that evidential learning produced inferior results compared to
MCD in terms of epistemic uncertainty estimation, and they argued that it
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was difficult to approach a rich Dirichlet distribution only by encouraging
the network to produce a uniform distribution for low-accuracy samples.
Their best accuracy outcomes were obtained with deep ensembles in terms
of mIoU. They also found the deep ensembles to be the best choice for
epistemic uncertainty estimation. In [80], evidential learning was used for class
incremental learning, where a previously trained network is extended with new
classes. The authors modeled the occurrence of an unknown class (background)
as the estimated uncertainty. The proposed approach outperformed other
state-of-the-art methods for incremental learning. In [81], instead of estimating
evidence from a learned distribution (model-based), they used a distance-
based approach, where the mass functions were obtained based on distances
to prototypes. In sum, the network summarizes the training set by a small
number of prototypes and calculates evidence as the proximity from an input
vector to such prototypes.

2.3.2
External Deterministic Approaches

Among the external deterministic approaches, which don’t modify the
network training procedure, [69] argued that estimating the prediction and
uncertainty from the same network results in biased outcomes. Thus, they
used two networks: One to produce the predictions, and another to produce the
uncertainty values using the first network’s outcomes as input. In this instance,
uncertainty was not assessed concerning the classification outcome but rather
focused on discerning variations in opinions among multiple annotators. In
other words, they estimated the annotators’ uncertainty with respect to the
ground truth reference. In the second network, they proposed to estimate
uncertainty as a supervised task in a problem with noisy labels. They used the
level of disagreement among multiple annotators as a ground truth reference
for the supervised training of the uncertainty values. Similarly, [70] used two
networks to separately obtain predictions and uncertainty. The uncertainty
network was trained to detect the prediction network’s errors and takes as
input the prediction statistics of neighboring points in the representation space.
In [68], the softmax outcome was decomposed as the quotient of the class
probability and the domain probability, allowing them to address the network’s
over-confidence problem for OOD detection.

2.4
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Active Learning

Active learning aims to select the most relevant samples from annotated
data to be annotated by a human oracle. The AL solution consists of a loop
of actions executed iteratively until some quality criterion is achieved. At each
AL cycle, a small subset of the non-annotated image pool is selected based
on the outcome of a given segmentation module. The selected images are
then added to the training set after being annotated by an analyst. Finally,
the segmentation module is retrained upon the new training set. This closes
one AL loop, which can run iteratively until a stopping criterion is reached.
Incrementing the training set makes the segmentation module more accurate
with each AL cycle run, to the point where the performance gains become so
small that the effort involved in more AL cycles is no longer worth it.

In a way similar to our work, multiple methods have used confidence-
based approaches, MCD, ensembles and evidential learning for uncertainty
estimation in an active learning scheme, although they were devised for dif-
ferent application fields [86–99]. Besides, the majority of their approaches cor-
responded to image-level classification. Instead, our work addresses semantic
segmentation (i.e., pixel-level classification). In [86], maximum margin was
proposed as an uncertainty measure in AL for multi-class image classification.
Their approach outperformed random sampling. Similarly, in [87], the most in-
formative samples were queried using confidence-based uncertainty methods,
including least confidence, maximum margin, and entropy from a single in-
ference run for image classification using CNNs. In [88], the most informative
samples were selected in each AL loop using uncertainty from ensembles and
Mutual Information (MI) as uncertainty metric.

In the context of active learning, a two-step procedure has been used.
First, the most informative samples (i.e., those with the highest uncertainty)
are usually preselected. However, the group of samples with the highest
uncertainty is likely to contain too similar samples. Thus, a second step selects
the most representative (or diverse) samples within the preselected group,
which are sent to the oracle for annotation in each AL cycle.

In [89], a confidence-based approach (maximum margin) was used to se-
lect the most relevant samples in Natural Language Processing (NLP) and
image classification tasks. The authors did not assess other uncertainty esti-
mation methods. In that work, first, the samples with the highest uncertainty
were preselected. Then, the preselected set was applied to a clustering K-Means
algorithm with the number of clusters equal to the desired amount of selected
samples. The final selection corresponded to the samples closest to each cluster
center. In [92], the most informative samples were selected using uncertainty
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from MCD. Diversity across the selected samples was achieved by considering
the correlations between data points in each acquisition batch. In [90], the
authors inferred on test data, estimated the uncertainty maps using MCD,
and sent samples with the highest uncertainty to an expert who manually an-
notated them. Then, the network was retrained, and the cycle was repeated
for multiple iterations. They also proposed a method to reduce uncertainty
in the predicted polygons’ borders. That work was employed in the semantic
segmentation of histology data.

Similarly, [91] used MCD to compute uncertainty metrics for active learn-
ing in the context of image classification; the proposed method was evaluated
on the MNIST dataset and biomedical data. In [93], MCD was used to com-
pute a guiding metric for active learning in object detection tasks by annotating
and fine-tuning the network with the highest-ranked test samples according to
their uncertainty scores. They evaluated the method using pedestrian detection
datasets. In [100], deep ensembles and MCD were compared for uncertainty
estimation in an AL setting. Deep ensembles consistently outperformed MCD
in MNIST, CIFAR-10, and a medical image classification application. They
argued that the performance of MCD was lower due to reduced outcome vari-
ability and model complexity.

In [95], a two-step procedure was used in an AL scheme for biomedical
image segmentation. First, ensembles were used for preselecting the most
informative images, measured by the highest uncertainty. Then, a subgroup
of the preselected samples was obtained, corresponding to the group with
the highest similarity to the preselected group. Different from our work, they
selected a specific number of images for an auditor to annotate. Instead, we
select image regions within a remote sensing raster for an auditor to re-
annotate. In [96], uncertainty was measured through gradient embeddings,
and diversity was calculated through the k-MEANS++ sampling technique,
which computes the distance from the unlabeled samples to the already
annotated ones and gives a higher selection probability to samples with
maximum distance to the annotated set. In [97], evidential deep learning
was used for active learning. Their approach outperformed multiple-outcome
approaches like MCD and ensembles. However, they only did experiments
with image classification. Instead, our work estimates uncertainty for semantic
segmentation.

In [23], a comparison of multiple uncertainty estimation techniques,
including confidence-based methods, MCD, and ensembles, was made for active
learning in image classification tasks. They found that none of the methods
performed significantly better than the others.
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Table 1 presents a summary of the related works grouped by classification
task (i.e., sequence classification, image classification and semantic segmenta-
tion), uncertainty method, and publication year. Diverging from prior efforts,
this thesis specifically tackles the challenge of semantic segmentation, tailor-
made for scenarios demanding the replacement of entirely manually generated
reports, such as deforestation mapping in the Brazilian Amazon and Cerrado
biomes. The objective is to employ a semantic segmentation network, albeit
one that has yet to attain the precision levels achieved through meticulous
manual inspection. In this context, our approach significantly diminishes the
auditing effort from a full 100% to substantially lower percentage values.

Table 1: Summary of related works grouped by classification task, uncertainty
method and publication year.

Task Method Year

Sequence classification Confidence 1973 [21]
MCD 2021 [34]

Image classification

Confidence 2014 [22], 2022 [23]
Ensembles 2017 [24], 2019 [26, 29], 2020 [27]

MCD
2016 [17], 2017 [24, 35],
2019 [36], 2020 [37, 38],

2023 [39]
TTA 2020 [37]

Deterministic

2018 [18, 61, 65], 2019
[62, 63, 69], 2020

[64, 66, 68, 70, 76, 78],
2021 [74, 75], 2022 [77]

AL

2009 [86], 2011 [88], 2016
[87], 2017 [91], 2019

[89, 90, 92, 93, 96], 2021
[94], 2022 [97]

Semantic segmentation

Ensembles 2020 [25, 27, 32], 2021
[31, 33], 2023 [30]

MCD

2017 [1, 46], 2018
[45, 47–49, 51–53], 2019

[55, 56], 2020
[25, 43, 50, 54, 57], 2021
[33, 41, 42, 44], 2022 [58]

TTA 2019 [60]
Deterministic 2020 [85], 2021 [81], 2022

[79, 83, 84], 2023 [80, 82]
AL 2017 [95], 2020 [99], 2023 [98]



3
FUNDAMENTALS

This chapter presents the theoretical foundations on which the proposals
presented in subsequent chapters are based. It is organized into two sections.
The first section presents the concept of uncertainty. The second section
presents the literature’s most widely used uncertainty assessment approaches.

3.1
Uncertainty

Although deep neural networks have produced high accuracies in a vast
range of applications, as a consequence of their increasing complexity and
parameter count, their predictions tend to suffer from over or under-confidence,
meaning they are badly calibrated. As a result, neural networks do not offer a
method to determine whether a test outcome is reliable or not [15]. Uncertainty
estimation allows us to assess the network’s reliability at inference.

There are multiple sources of uncertainty in a classification task. Depend-
ing on the input data domain, uncertainty can be divided into three groups:
In-domain, Domain-shift and Out-of-domain uncertainty [2]. In-domain refers
to uncertainty for an input drawn from within the training distribution. Such
In-domain uncertainty may also be divided into two sub-groups: Model (Also
known as epistemic) and data (Also known as aleatory). Model uncertainty
refers to shortcomings during the modeling process, such as errors during train-
ing (e.g., an inadequate selection of batch size, optimizer, learning rate, dropout
rate, stopping criteria, regularization), a model with an inadequate complexity
(over- or under-fitting), or a lack of knowledge due to an insufficient amount
or relevance of the training samples, resulting in a bad coverage of the training
distribution. Model uncertainty may be improved by increasing the training
set as a decreasing number of possible models become a plausible fit. Model
uncertainty may also be reduced by modifying the model architecture and
training strategy.

On the other hand, data uncertainty represents the inherent fluctuation
present in the input data. This variability is inherent to the data and cannot
be reduced by increasing the amount of training samples. Data uncertainty
is higher when the input data is noisy. In the context of remote sensing,



Chapter 3. FUNDAMENTALS 44

data uncertainty may occur due to low spatial resolution, which may make
it challenging to recognize fine details and smaller objects, due to ambiguity
at the pixels corresponding to object boundaries, due to labeling noise, due
to data obstructions such as cloud-covered portions in optical images, among
others.

Figure 1 presents sample aleatoric and epistemic uncertainty for a
sample image in semantic segmentation for autonomous driving [1]. Aleatoric
uncertainty is higher in objects far from the camera and in boundaries between
class predictions. Polygon C represents a region far from the camera, presenting
a high aleatoric uncertainty. Epistemic uncertainty is higher in semantically
and visually challenging regions, as illustrated in polygons A and B. Polygon
B is difficult to classify due to the color similarity between the footpath and
street classes. In polygon A, the network produced an error, which resulted
in high model uncertainty. Such error may be reduced by increasing training
data for its input pattern.

Figure 1: Visualization of data and model uncertainty for a sample image in
autonomous driving. A, B and C are polygons of interest. A and B: High model
uncertainty. C: High data uncertainty. Taken from [1]

Figures 2 and 3 illustrate data and model sources of uncertainty for a
binary classification task. Data uncertainty occurs when samples from differ-
ent classes overlap in the representation space, making the overlapping area
difficult to classify correctly. Model uncertainty may be measured by training
multiple models (Two models in the example) and measuring their level of
disagreement. If both models agree on the classification outcome, model un-
certainty is low. If each model produces a different outcome, model uncertainty
is high. It is important to note that in the assessed application of deforesta-
tion detection, the data exhibits a high degree of imbalance, introducing an
additional challenge when identifying different sources of uncertainty.
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Figure 2: Visualization of data uncertainty. Samples from contiguous classes
overlap in the intermediate region, resulting in higher data uncertainty. Taken
from [2]

Figure 3: Visualization of model uncertainty. Areas where multiple models
disagree imply higher model uncertainty. Taken from [2]

Domain-shift uncertainty occurs when the input is drawn from a shifted
distribution compared to the training distribution. This shift occurs due to the
inherent variability of the real-world scenarios. In remote sensing applications,
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domain shift in the temporal dimension occurs when training in an image from
a particular date and testing in images from future dates, with a larger domain
shift being expected for larger time differences. Domain shift also occurs in the
spatial dimension when training in a specific geographical region and testing in
places different from the training area, with distribution shifts occurring due
to multiple factors, including changes in ecological conditions such as types of
vegetation and biome types.

Out-of-domain uncertainty represents the uncertainty from an input
drawn from an unknown distribution, where the input distribution is different
and far from the training distribution. Different from domain-shifted data,
where useful information can still be learned in the presence of a distribution
shift, in-domain knowledge cannot be extracted from out-of-domain samples.
For example, in a network trained to classify between cat and dog images,
a domain-shifted sample may be a blurred image of a dog. In contrast, an
out-of-domain sample may be a bird, which the network is unable to explain.
Figure 4 presents sample out-of-domain images for an autonomous driving
application (e.g., the network was not trained on anomalous samples such
as unwanted animals or airplanes on the road). Figure 5 presents out-of-
distribution uncertainty for the binary classification problem in the feature
representation space. Out-of-distribution data is outside the original training
distribution without the occurrence of any overlapping.

3.2
Uncertainty Assessment Approaches

We group uncertainty estimation into

– confidence-based,

– multiple-outcome-based, and

– evidential deep learning (EDL),

methods as detailed in the following.

3.2.1
Confidence-Based Approaches

The first group of methods depends on the model’s confidence in its
prediction. Below, we briefly present the most widely used metrics computed
from the discrete probability distribution at a model’s output.

In the following, we denote with y = [y1, ..., yK ] the K-dimensional vector
representing the discrete probability distribution assigned by the model for a
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Figure 4: Sample out-of-distribution occurrences in an autonomous driving
application, corresponding to unseen examples during training such as unex-
pected animals and airplanes on the road [3].

Figure 5: Visualization of out-of-distribution uncertainty. Taken from [2]
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given input. It is assumed that y is a simplex, i.e., yk ≥ 0 for all k ∈ {1, ..., K}
and that {yk}K

k=1 add up to one.

Entropy:
The most widely used metric for a classifier’s confidence is entropy defined

as

h(y) = −
∑

k

yk ∗ log(yk). (3-1)

The highest model confidence corresponds to the lowest entropy value
(h(y) = 0) when the model assigns probability equal to one to one particular
class and probability zero to all other classes. Conversely, the highest entropy
value is reached when the model gives equal probabilities to all classes,
corresponding to the lowest confidence.

Figure 6 illustrates the confidence estimation for two sample softmax
outcomes. Confidence is lower in the rightmost entropy, where the class
probabilities are closer to being equal.

Figure 6: Visualization of two sample softmax outputs and their confidence
values obtained as entropy [3].

Maximum Margin:
Margin-based confidence [101] corresponds to the difference between the

highest and the second most likely class, formally:

MaxMargin(y) = ya − yb. (3-2)
where ya and Yb are the scores assigned to the first and the second most likely
class labels, respectively.

The margin-based confidence method is illustrated in Figure 7 for two
classification outcomes. The rightmost one presents a lower margin compared
to the leftmost example, indicating lower confidence.

Most Likely Label:
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Figure 7: Visualization of the margin-based method. The lowest margin is in
the rightmost example, indicating lower confidence [3].

In this approach, one takes as confidence the raw predicted probability
value of the most likely class label, formally

MaxL(y) = max({yk}K
k=1). (3-3)

Notice that MaxL(y) ranges from 1/K to 1.

Figure 8 illustrates the most likely label method. The rightmost example
presents the lowest confidence.

Figure 8: Visualization of the most likely label method. The highest uncertainty
is in the rightmost example [3].

Table 2: Comparison of confidence-based approaches. Correlation refers to
whether the method has direct or inverse correlation with the uncertainty
measure.

Approach Equation Ranges Correlation
Entropy −∑

k yk ∗ log(yk) - Direct
Maximum Margin ya − yb 1/K to 1 Inverse
Most Likely Label max({yk}K

k=1) 0 to 1 Inverse
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3.2.2
Multiple-Outcome Approaches

The methods introduced in the previous subsection are simple to im-
plement and require a single training and inference run. Differently, the
consistency-based uncertainty estimates rely on outcomes of multiple infer-
ence runs corresponding by either considering multiple random initialization
values during training (e.g., ensembles), creating randomness at inference (e.g.,
Monte Carlo Dropout), or using the same network on augmented versions of
the same input data (Test-Time Augmentation). In the following, we introduce
the consistency-based methods.

To accommodate multiple outcomes for the same input, we denote
hereafter with y(i) = [y(i)

1 , ..., y
(i)
K ] the K-dimensional vector representing the

discrete probability distribution assigned by the i-th model for a given input,
where i ∈ {1, ..., n}, and n is the number of outcomes.

The so-called final prediction is given by the average probability vector
computed over the n outcomes, formally:

µ = 1
n

n∑
i=1

y(i). (3-4)

3.2.2.1
Monte Carlo Dropout (MCD)

Transforming a neural network into a Bayesian model involves replacing
fixed weight values with random samples drawn from a prior distribution
denoted as p(w), with w being the network weights. As data is observed,
it provides fresh perspectives on the weights, leading to the creation of a
posterior distribution p(w|D), with D being the training dataset. With this
posterior distribution, Bayesian inference computes a predictive distribution
for the outputs y of an unseen data point x∗ by integrating over all conceivable
weight values.

p(y|x∗,D) =
∫
p(y|x∗, w)︸ ︷︷ ︸

Data

p(w|D)︸ ︷︷ ︸
Model

dw (3-5)

Equation 3-5 describes the network uncertainty [16]. The expression
p(w|D) is termed the posterior distribution for the model parameters, rep-
resenting the uncertainty associated with these parameters when considering
a training dataset D.

In accordance with Bayes’ theorem,
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p(w|D) = p(D|w)p(w)
p(D)

p(w|D) = p(D|w)p(w)∫
p(D|w)p(w)dw

Unfortunately, calculating this value analytically is not feasible because
of the intractable integral in the denominator. To tackle this problem, MCD
offers a solution by approximating the true posterior p(w|D), with q(w), where
the act of sampling weights w ∼ q(w) is achieved by implementing dropout
within the network. As a consequence, the resultant predictive distribution is
as follows:

q(y|x∗) =
∫
p(y|x∗, w)q(w)dw (3-6)

With the predictive distribution described in Equation 3-6, we can derive
an impartial estimator by employing Monte Carlo sampling:

q̂(y|x∗) = 1
n

n∑
i=1

p(y|x∗, ŵi), ŵi ∼ q(w)

The network parameters, denoted as ŵi, are drawn from the dropout
distribution, for a predetermined number of iterations n [17, 36].

Dropout is a technique commonly used in the training phase to reduce
overfitting. All the forward and backward connections with a dropped node
are temporarily removed, thus creating a new network architecture out of the
parent network. The set of dropped-out nodes is randomly selected at each
forward/backward pass. Usually, at inference time, all nodes remain active.
Figure 9 illustrates dropout for a fully connected neural network. Each dropout
calculation randomly drops a predefined percentage of units from the original
network, resulting in a different outcome.

MCD differs from the conventional Dropout because the strategy is
applied also in the inference step. In MCD, the inference is carried out n
times, each time with a different set of dropped-out neurons, resulting in a
different outcome at each run. It can be proved that this procedure is an
approximation of Bayesian inference [17]. It corresponds to sampling from the
posterior distribution in each inference run.

The uncertainty value is obtained by calculating uncertainty metrics over
the n predictions. This calculation is carried out in semantic segmentation for
each image pixel, producing an uncertainty map. In Subsection 3.2.2.4, we
describe different ways to compute uncertainty metrics from these n results.

Conventional dropout’s effectiveness diminishes when applied to images
due to the strong correlation among adjacent pixels. Even if pixels are
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Figure 9: Dropout in a neural network. For simplicity, the figure represents an
uni-dimensional feature space. The left figure represents a standard network
with two hidden layers. The right figure represents a thinned net by applying
dropout to the leftmost network. Removed units are represented as crossed.
Taken from [4]

randomly dropped, their likely values can still be reasonably inferred by
observing the surrounding pixels. Hence, opting to drop entire feature maps
could be more congruent with the initial purpose of the dropout technique.
Such a technique is called spatial dropout [102]. Figure 10 illustrates this
concept.

Figure 10: Standard and spatial dropout. Spatial dropout is better suited for
images, dropping entire channels instead of individual pixels. Taken from [5].

Figure 11 illustrates MCD. Computing n inference runs over a single net-
work results in n different values using dropout at inference, where uncertainty
is calculated as their level of disagreement.
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Figure 11: Visualization of MCD. A single network is trained, and n inference
runs are obtained using dropout at inference, from which uncertainty is
computed [3].

3.2.2.2
Ensembles

Ensemble methods combine the predictions of several different deter-
ministic networks at inference. In line with Equation 3-5, ensembles aim to
approximate the posterior distribution for the model weights p(w|D), which
represent model uncertainty, by training multiple sets of parameters and then
averaging the outcomes from these distinct models.

A key issue in designing network Ensembles is diversity. In other words,
the errors of each ensemble member should concentrate on different regions of
the feature space. The reason for this is that we want to assess the uncertainty
stemming from divergent opinions among various classification models. Diver-
sity can be achieved in different ways. In Deep Learning, it is common practice
to create ensembles by training the same basic network architecture starting
from different random initializations [24]. So, each training run produces a
different ensemble member.

This is the strategy adopted in our research. Therefore, we obtain n

distinct networks, obtaining n different results for each input. As with the
Dropout strategy, uncertainty is calculated upon the multiple outcomes, using
different metrics, as described in Subsection 3.2.2.4.

It is worth noticing that this method is more computationally expensive
than MCD, because it involves training n networks, whereas MCD requires
training a single network. However, in an operational application inference
time is more relevant, where both MCD and Ensembles present the same
computational cost.

Figure 12 presents the ensemble method. Multiple repetitions of the same
base network are trained using the same input data during training. Then,
at inference, each network produces a different output, and uncertainty is
calculated as the level of disagreement.

Figure 13 presents the parameter space and the model’s convergence
areas for different uncertainty estimation methods including single-outcome
confidence-based approaches (i.e., deterministic networks), Bayesian networks
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Figure 12: Visualization of ensemble. A defined number n of training repe-
titions results in n different values at inference, from which uncertainty is
computed [3].

(Approximated in this work by MCD) and deep ensembles. For simplicity,
the figure represents an uni-dimensional parameter space. The horizontal axis
represents the network parameters ω and the vertical axis the loss value. ω∗

1,
ω∗

2, and ω∗
3 represent multiple optimal parameter values for the training loss.

A deterministic network learns a single point estimate in the parameter space.
Instead, the Bayesian network also considers the surrounding of a single point.
The ensemble networks consider multiple optimal points in the parameter
space, each corresponding to a different training run [2].

3.2.2.3
Test-Time Augmentation

Test-Time Augmentation (TTA) [60] is one of the simplest uncertainty
estimation techniques, and it relies on a single network. First, a single deter-
ministic network is trained. At test time, data augmentation is applied to each
test sample (e.g., rotation, flip, mirror, and scaling). Then, the disagreement
between the different outcomes from the sample augmentations is calculated
using one of the uncertainty metrics described in Subsection 3.2.2.4.

TTA is different from the previous approaches because it estimates the
so-called aleatoric (data) uncertainty caused by variations in the input caused
by various noise sources. MCD and ensembles capture uncertainty linked to
the models themselves, the so-called epistemic or model uncertainty.
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Figure 13: Visualization of the parameter space for different approaches includ-
ing deterministic networks (Single point estimate), Bayesian networks (In this
work approximated by MCD), and ensembles (Multiple point estimates). For
simplicity, the figure represents an uni-dimensional parameter space. Taken
from [2].

3.2.2.4
Uncertainty Metrics

This subsection describes the metrics used in this research to estimate
the uncertainty from the n results produced by MCD, Ensembles, or TTA.

Predictive Entropy:
In a few words, the Predictive Entropy H(y) is the entropy, as defined

in eq. 3-1, computed upon the final prediction defined in eq. 3-4 [60, 103]. So,
the definition of predictive entropy is given by:

H(y) = −1
k

K∑
k=1

µklog(µk).

where µk is the mean probability across inference runs for class k, K is the
number of classes, and [µ1, µ2, ..., µK ] corresponds to the final prediction µ (eq.
3-4). Predictive entropy captures the total uncertainty, including the model and
data uncertainty [61]. Additionally, we assessed other uncertainty metrics as
an ablation study.

Predictive Variance:
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The Predictive Variance is the average variance computed over the K
classes [95]. Recall that the k-th component µk of the final prediction vector
µ (eq. 3-4) is given by

µk = 1
n

n∑
i=1

y
(i)
k .

So, the variance of the n predictions for class k can be computed as

σ2
k = 1

n

n∑
i=1

(y(i)
k − µk)2.

The Predictive Variance σ2 is the average of class variances, specifically:

σ2 = 1
K

K∑
k=1

σ2
k.

Mutual Information:
The Mutual Information MI(y) assesses the similarity between a set

of random variables that were sampled simultaneously. It informs how much
information from one random variable is present in another [104]. Its value is
the difference between the predicted entropy computed on the final prediction
and the average of the entropy of each prediction:

MI(y) = H(y) − 1
nK

n∑
i=1

K∑
k=1

y
(i)
k log(y(i)

k ).

MI(y) can be interpreted as the difference between the total uncertainty,
captured by the predictive entropy H(y), and the expected data uncertainty,
captured by the expected entropy of each individual inference run. Considering
the total uncertainty as the sum of model and data uncertainty, MI(y)
captures model uncertainty [61].

Expected Kullback-Leibler Divergence:
This Kullback-Leibler (KL) Divergence measures the divergence between

two probability distributions [105]. In this context, the Expected KL Diver-
gence (EKL) measures the average (expected) KL divergence between the final
and the individual predictions, formally:

EKL(y,µ) = − 1
n

n∑
i=1

K∑
k=1

µklog(µk/y
(i)
k ).
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3.3
Evidential Deep Learning (EDL)

Multiple-outcome approaches are computationally expensive due to the
need to train or infer multiple times. Evidential Deep Learning (EDL) is an
alternative uncertainty estimation method that allows to obtain uncertainty
using a single training run and a single inference step [18].

Let us assume that each winning class elected by one of the aforemen-
tioned multi-output approaches represents a sample drawn from some under-
lying categorical distribution parameterized by a probability vector p. Intu-
itively, if one of those classes often comes about, this is an indication of low
uncertainty. On the other hand, if more than one class occurs with similar
frequency, this is a strong indication of high uncertainty.

Going a step further, we assume that each probability vector p is drawn
from some other higher-order distribution.

EDL seeks to learn the parameters of such high-order distributions. So,
instead of drawing samples from distributions, EDL aims at learning the distri-
bution over these distributions, called hereafter evidential distribution, directly
from the data. Therefore, a sample drawn from the evidential distribution de-
fines itself as a distribution over the data.

Let us assume that a class label L ∈ {1, ..., k} is a sample drawn from a
likelihood function of the categorical form parameterized by probability vector
p, i.e.,

L ∼ categorical(p)

As in [18], we further assume that the discrete probability distribution p

can be estimated using a Dirichlet prior:

p ∼ D(α)

The Dirichlet prior is itself parameterized by a set of K (the number of classes)
parameters, here denoted α. A sample drawn from the Dirichlet distribution
is a realization of the distribution probabilities p.

The equation for the Dirichlet distribution is the following:

D(p|α) =


1

B(α)
∏K

i=1 p
αi−1
i for p ∈ SK ,

0 otherwise,

where SK is the K-dimensional unit simplex:
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SK =
{

p|
K∑

i=1
pi = 1 and 0 ≤ p1, ..., pK ≤ 1

}
. (3-7)

and B(α) is the K-dimensional multinomial beta function.
Figure 15 illustrates the K-dimensional unit simplex for a sample K = 3

(S3). It can be observed that every possible value of y is contained in the
simplex defined by Equation 3-7.

Figure 14: Illustration for the K-dimensional unit simplex defined in Equation
3-7, for K = 3. Each node of the simplex represents one class [3].

EDL divides uncertainty into the data, model, and additionally estimates
the distributional uncertainty. Distributional uncertainty refers to the overlap
between the train and test distributions, and a high value indicates the sample
is Out-Of-Distribution (OOD).

Figure 15 presents sample class probabilities for deterministic networks,
placed as point samples in the K-th dimensional simplex for K = 3, with a
point in the corner representing a probability of 100% for the corresponding
class and a point in the center meaning equal predicted probability for all
classes. Instead of representing a single point (i.e., a single probability vector
p), the resulting αi parameters from the evidential distribution describe all the
possible probability vectors at the network’s output, which can be represented
as a density function in the K-th dimensional simplex, as presented in Figure
16. In that figure, low uncertainty results in high concentrated values near one
of the simplex corners (left image). High data uncertainty results in highly
concentrated values near the simplex’s central region (center image), and high
distributional uncertainty results in highly dispersed values covering a large
portion of the simplex (right image). In terms of the Dirichlet parameters,
high data uncertainty is represented as equal or similar α values for all classes
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(e.g. α = [50, 50, 50]) and high distributional uncertainty is represented as α

values close to 1 for all classes (e.g. α = [1.5, 1.5, 1.5]), and it indicates an
OOD sample due to not having any belief in any of the output classes.

Figure 15: Class probabilities from deterministic networks are illustrated as
point samples from the K-th dimensional simplex (K = 3). 4 point samples
are presented [3].

Figure 16: Desired behaviors of a Dirichlet distribution for the K-th dimen-
sional simplex (K = 3). The left image represents a sample with low uncer-
tainty. The center image represents high data uncertainty. The right image
represents high distributional uncertainty, indicating an OOD sample. Image
from [2]

Typical neural networks have a softmax function at the last layer to
produce class probabilities {yk}K

k=1 from the logits at its inputs produced by
the network, as shown in Figure 17.

Figure 17: Typical CNN architecture with a softmax attached to the last layer
[3].
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In an evidential network, instead, the network computes the so-called
evidences ek, with the evidences being obtained by replacing the softmax
activation with an activation function (e.g., ReLU) that ensures non-negative
values while not applying the softmax constrain. To elaborate, the primary
dissimilarity between evidence and softmax lies in the constraints imposed on
their values. Softmax constrains its values to represent probabilities, ensuring
that the sum of probabilities across all classes equals 1. Conversely, evidence is
not bound by such probability normalization constraints; its only requirement
is to maintain a non-negative value. Evidence values are applied to the last
layer to compute the parameters of the Dirichlet distribution α = [α1, ..., αK ],
as αk = ek + 1, rather than a single probability distribution y = [y1, ..., yK ]
(see Figure 18).

Figure 18: EDL approach: the CNN computes the evidences from which the
Dirichlet parameters are computed. The belief mass and the uncertainty are
directly computed from the Dirichlet parameters. Image from [3].

The uncertainty and class probabilities can be directly computed from
the Dirichlet parameters as follows.

Let bk, be the belief mass for class k ∈ {1, ..., K} and u the uncertainty
mass, where

u+
K∑

k=1
bk = 1,

with u ≥ 0 and bk ≥ 0. The belief mass can be computed from the evidence ek

for class k (provided from the network output), as

bk = ek

S
,

u = K

S
,

where S = ∑K
k=1(ek + 1).

Additionally, the expected probability for the k-th class is the mean of
the corresponding Dirichlet distribution and computed as

yk = αk

S
,
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where ∑K
k=1(yk) = 1.

The equations above are easily differentiable and bring no difficulty
to the backpropagation of the error gradient. The loss function for training
the network is composed of up to three terms that take into account the
cross-entropy to minimize the prediction error, the variance of the Dirichlet
experiment generated by the neural network, and the Kullback-Leibler (KL)
divergence as a regularization term.

The training loss is presented in Equation 3-9, where the first term is
the sum of squares loss and the second term corresponds to the Dirichlet
distribution function.

Li(Θ) =
∫

∥yi − pi∥2
2

1
B(αi)

K∏
i=1

p
αij−1
ij dpi,

Li(Θ) =
K∑

j=1
E
[
y2

ij − 2yijpij + p2
ij

]
=

K∑
j=1

(
y2

ij − 2yijE [pij] + E
[
p2

ij

])
. (3-8)

Then by applying the identity:

E
[
p2

ij

]
= E [pij]2 + V ar(pij),

the training loss is obtained in an interpretable form:

Li(Θ) =
K∑

j=1
(yij − E [pij])2 + V ar(pij),

=
K∑

j=1
(yij − αij/Si)2 + αij(Si − αij)

S2
i (Si + 1) ,

=
K∑

j=1
(yij − p̃ij)2 + p̃ij(1 − p̃ij)

(Si + 1) . (3-9)

The loss over a batch of samples is computed by summing the loss for each
sample within the batch. During training, the model is expected to generate
high evidence for repeating input patterns that match specific ground truth
classes. For example, in a digit recognition problem (e.g., MNIST), a circular
pattern may produce high evidence for a sample with a class label 0. This
means that the outcome of the network, corresponding to the evidence values,
should be increased when the network observes such a pattern during training.
On the other hand, when counter-examples are observed, such as the same
circular pattern for a class label 6, the network’s parameters should be tuned
to produce smaller amounts of evidence for this pattern (At the output of class
0) while minimizing the training loss, as long as the overall loss also decreases.

However, when counter-examples are limited, decreasing the magnitude
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of the generated evidence in the counter-examples may increase the overall loss,
even if the loss decreases for the individual sample, consequently generating
some unwanted evidence for the incorrect class. Such undesired evidence would
not be a problem if the sample is correctly classified (if the evidence for
the correct class is still larger than the remaining classes). Even so, the
authors preferred the evidence of the incorrect samples to shrink to zero.
Note that Dirichlet distribution with zero total evidence corresponds to the
uniform distribution with an α value of 1 for all classes: D(pi| ⟨1, ..., 1⟩), and
total uncertainty (u = 1). They achieved this by incorporating a Kullback-
Leibler (KL) regularization term in the training loss function, which minimizes
the evidence from the losing classes (i.e., the incorrect classes) to 0 by
approximating their corresponding Dirichlet parameters α to 1. The resulting
training loss function is:

Li(Θ) =
K∑

j=1
Li(Θ) + λt

K∑
j=1

KL [D(pi|α̃i)||D(pi)| ⟨1, ..., 1⟩] , (3-10)

where λt = min(1.0, t/10) ∈ [0, 1] is the annealing coefficient, t is the training
epoch, D(pi| ⟨1, ..., 1⟩) is the uniform Dirichlet distribution. In this context,
α̃ = yi + (1 − yi) ∗ αi represents the predicted Dirichlet parameters following
the removal of non-misleading evidence from the predicted parameters αi

associated with sample i. In other words, α̃i corresponds to αi after modifying
the Dirichlet parameter value for the winning class to 1, with the objective of
only modifying the Dirichlet parameters from the non-winning classes in the
KL regularization term.

The KL divergence term equation is:

KL[D(pi|αi)||D(pi)|1]

= log

(
Γ(∑K

k=1 α̃ik)
Γ(K)∏K

k=1 Γ(α̃ik)

)
+

K∑
k=1

(α̃ik − 1)
[
ψ(α̃ik) − ψ

(
K∑

k=1
α̃ik

)]
, (3-11)

where 1 denotes a parameter vector consisting of K ones. Additionally, Γ(·)
refers to the gamma function, while ψ(·) represents the digamma function.

As indicated at the beginning of this explanation, this approach involves
training a single network and a single inference step to compute class proba-
bility distributions and uncertainty.



4
UNCERTAINTY ESTIMATION TO REDUCE THE MAN-
UAL ANNOTATION EFFORT

This chapter describes the design of experiments to evaluate the impact
of uncertainty estimation to aid the annotation and auditing process in
deforestation mapping in the Amazon rainforest, using Monte Carlo Dropout
(MCD), ensembles, Evidential Deep Learning (EDL), and a single confidence
measure, i.e., the entropy. The next chapter reports and discusses the results
of these experiments.

The following sections describe the adopted methodology, which includes
adding the distance from the past deforestation maps to the input data.
Besides, in a second protocol, the training relies only on labeled training data
from earlier dates, avoiding manual labeling of parts of the target image for
training the network.

4.1
Deep Neural Network (DNN)

Figure 19 describes the network architecture used in this work. The
proposed methodology can be applied to any Deep Neural Network (DNN)
designed for semantic segmentation. Noteworthy examples of such networks
include UNet [40], ResUNet [12, 20], DeepLabV3+ [106], and Swin UNet [107].
In the case of MCD, following previous works [41–43], it may be beneficial
to add dropout layers to each encoding and decoding stage for UNet-like
architectures.

To detect the deforestation changes from time T−1 to T0, the input to
the network is the concatenation of Sentinel-2 images corresponding to both
dates (S2T−1 : S2T0), where T0 is the current date, T−1 is the date from one
year before the current date, S2T0 is the Sentinel-2 image for the current date,
and S2T−1 is the Sentinel-2 image for the previous year.

4.2
Temporal distance to past deforestation

A recent study indicated that deforestation tends to occur in spatial
proximity to areas that were deforested in preceding years. The study con-
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Figure 19: Base architecture for deforestation detection. Input is the concate-
nation of T−1 and T0. Output is the segmentation map with detected defor-
estation changes from T−1 to T0.

sistently demonstrated enhancements in results by incorporating information
about deforestation in previous years as an input [108].

In this work, we leverage the information about past deforestation taken
from PRODES [8] and use it as an additional input feature map concatenated
to the input Sentinel-2 image pair. We define the temporal distance to past
deforestation map DT0(x, y) as:

DT0(x, y) = T0 − deforestation_year(x, y) + 1

where T0 is the current year, and deforestation_year(x, y) is the year of de-
forestation for the pixel at location (x, y). We set deforestation_year(x, y)
to T0 in pixel locations where deforestation has not occurred. If we trained
and tested on the most recent image pair, the input tensor comprised
(DT−1(x, y), S2T−1 , S2T0), where T0 and T−1 correspond to the current and pre-
vious year acquisition dates, and S2T0 and S2T−1 represent the corresponding
Sentinel-2 images for T0 and T−1 dates, respectively. Figure 20 illustrates the
resulting input tensor using temporal distance map to past deforestation as
an additional input. The temporal distance map was normalized, ensuring the
values were between 0 and 1 before concatenating it to the input image.

4.3
Uncertainty to Aid the Auditing Process

As mentioned, the experiments used as ground truth were the deforesta-
tion reports published by PRODES. In PRODES’s methodology, 100% of the
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Figure 20: Illustration of the distance to past deforestation map as input for
deforestation detection.

non-deforested area until the current year is visually inspected and audited by
INPE’s personnel in each upcoming year. In this work, we propose an alter-
nate semi-automatic workflow where we first train a neural network on image
pairs from previous years and then run the inference on a recent image pair
(as explained in Section 4.4).

So, we consider a methodology to reduce the labeling/auditing effort that
involves two steps. The first step consists of running an automatic classification
using a deep learning model trained as outlined before. Beyond delivering a
deforestation map, the first step computes the uncertainty associated with
the classification of each pixel. In the second step, the photo interpreter only
audits the areas whose uncertainty computed in step 1 exceeds a user-selected
threshold. We leave for future works the specific details in which such areas to
be audited are presented to the auditor.

The challenge of deforestation detection, where the methodology will
be assessed, is a binary classification problem, inherently characterized by a
pronounced class imbalance. Typically, the identified deforested areas represent
less than 1% of the dataset. This substantial imbalance renders straightforward
metrics, such as accuracy, unsuitable. Accuracy, which measures the percentage
of correctly classified samples, becomes misleading when applied to imbalanced
datasets, as achieving 99% accuracy is possible by simply predicting all
outcomes as non-deforestation in the case of a 1% detection rate. To address
this issue, our study adopts the F1-score as a more suitable classification
metric for imbalanced scenarios. The F1-score effectively balances precision
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and recall, offering a comprehensive evaluation of the model’s performance in
deforestation detection.

As classification metrics, we obtain F1low
as the F1-score metric for

test samples with low uncertainty and F1high
as the F1-score metric for test

samples with high uncertainty. We call the percentage of test samples (i.e.,
test pixels) with high uncertainty the Alert Area (AA). We expect that
F1low

> F1 >> F1high
, where F1 refers to classification metrics prior to applying

the uncertainty methodology.

The final deforestation report results from joining:

– on the pixels with low uncertainty, the classes assigned by the model

– on the pixels with high uncertainty, the classes assigned by the photo-
interpreter

F1audit
represents the classification metrics (i.e. the F1-score on the entire

test set) after the expert auditor has correctly re-annotated the samples (i.e.,
the pixels) with high uncertainty corresponding to the AA percentage.

Figure 21 illustrates the threshold selection criteria. The expert photo-
interpreter selects the desired percentage of pixels to be audited from the test
set (AA), which defines the uncertainty threshold value, considering there is
an inverse correlation between AA and uncertainty. Figure 22 illustrates sam-
ple classification metrics for multiple uncertainty threshold values. Depending
on the selected AA and corresponding uncertainty threshold, samples which
uncertainty is lower than the threshold are expected to present higher clas-
sification accuracy and samples with higher uncertainty than the threshold
are expected to present lower classification accuracy, separating the samples
that can be trusted from the samples that need to be re-annotated. Note that
the auditing of the high uncertainty pixels may require analyzing their neigh-
borhoods. Future works may also specify a minimum area for the resulting
high-uncertainty polygons to be presented to an auditor. Similarly, the auditor
could also neglect high uncertainty polygons in the form of thin lines, as occurs
on the edges of deforestation polygons. That procedure may be addressed in
future works.
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Figure 21: Sample uncertainty threshold vs. Audit Area (AA). The photo-
interpreter selects the percentage of test samples (i.e., test pixels) with high
uncertainty for auditing (AA), corresponding to an uncertainty threshold
value. In this work, results are presented for AA = 3%.

4.4
Assessing Uncertainty For Deforestation Detection

Recent works in deforestation detection used an image from the same date
to train and test by dividing the raster into non-overlapping tiles and setting a
percentage of those tiles to train and test within the same image [12]. However,
in a real-world application, collecting ground truth data for each upcoming
date would be costly and unfeasible. More specifically, collecting ground truth
data for the target date would be equivalent to performing manual inspection
in a large enough percentage of the image in order to perform training,
contradicting the primary objective of this work, which is to reduce the need
for manual inspection for each upcoming year. In this work, we propose an
operational solution where we train the network a date pair from the past and
infer on a new upcoming date that was not seen during training. Formally, we
trained on (S2T−2 , S2T−1 , DT−2(x, y)) and inferred on (S2T−1 , S2T0 , DT−1(x, y)),
where S2 corresponds to a Sentinel-2 image. T0 corresponds to the image from
the current date, T−1 to the previous year date, and T−2 to the second year
before T0. Notice that this approach does not need annotated ground truth for
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Figure 22: Classification metrics for multiple uncertainty thresholds. F1low

corresponds to accepted samples with low uncertainty. F1high
corresponds to

not accepted samples with high uncertainty. F1audit
corresponds to metrics after

auditing the high uncertainty samples. In this work, results are presented for
AA = 3.

the target date T0. In this way, the proposed approach could directly be applied
in a real-world application. The aforementioned training scheme is presented
in Figure 23. An operational application could adopt the suggested approach
of training on a prior date and inferring on the subsequent date, by executing
the training procedure annually. Notice that training in an earlier pair of dates
and testing in a current pair of dates may result in a difference between the
train and test distributions, which may result in lower classification metrics
compared to the ideal case of training and testing on the same date. Future
works may further improve classification metrics by using additional training
data from additional earlier years, leveraging PRODES reference since 1988.

A comparison of MCD, deep ensembles, and EDL is presented for the Re-
sUnet base network. Besides, entropy from a single forward run is also assessed
as a baseline method. In the latter case, we calculated entropy from n different
training runs and present the best and worst case in terms of F1low

. Further-
more, an analysis from the point of view of computational cost is presented
by comparing training and inference times on each method and study areas in
Subsection 5.3.5. Then, a summary of the quantitative analysis is presented in
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Figure 23: Network scheme training on samples from past date pairs, and
inferring on an unseen date.

Subsection 5.3.6 along with a recommendation of which uncertainty method
and metric to use for deforestation detection applications according to the
results obtained in this work. Finally, uncertainty interpretation is presented
correlating the high uncertainty regions with specific forest characteristics and
ongoing deforestation processes that could have caused the elevated levels of
uncertainty.



5
EXPERIMENTAL ANALYSIS

This chapter reports the experiments carried out in order to validate the
method proposed in the previous chapter. First, the datasets used in the ex-
periments for deforestation detection are presented. Then, the experimental
protocol followed for the proposed methodology is described, and the param-
eter setup is detailed. Finally, the results obtained in the experiments are
reported.

5.1
Study Areas

We evaluated the proposed method in two study areas in the Brazilian
Legal Amazon (Figure 24), and two study areas in the Brazilian Cerrado
biome (Figure 25). Both sites in the Amazon have a mixed land cover.
The first Amazon site is located in the Para state (PA), with an area of
92 × 177Km2. This site is mainly composed of dense evergreen forest and
pasture. For the single date pair experiments, we used [T−1, T0] = [2018, 2019].
For the experiments training with past dates, we trained with the [T−2, T−1] =
[2017, 2018] date pair and tested on a new upcoming image using [T−1, T0] =
[2018, 2019]. The second Amazon site is located in the Mato Grosso state (MT),
with an area of 134 × 208Km2. This site is mainly composed of dense forests,
soy fields, and pastures. We used [T−1, T0] = [2019, 2020]. For the multiple date
pair experiments, we trained with the [T−2, T−1] = [2018, 2019] date pair.

The remaining two sites are located in the Cerrado biome. The first
Cerrado site is located in the Mato Grosso do Sul state (MS), with an area
of 195 × 186Km2. This site is mainly composed of wooded savanna. In the
single-date experiments, we used [T−1, T0] = [2019, 2020]. For the experiments
training on an earlier date, we trained on [T−2, T−1] = [2018, 2019] and tested
on an upcoming date [T−1, T0] = [2019, 2020]. The second Cerrado site is
located in the Piauí state (PI), with an area of 208 × 194Km2. The site is
mainly composed of wooded savanna. In the single-date experiments, we used
[T−1, T0] = [2019, 2020]. In the experiment training with an earlier date, we
trained on [T−2, T−1] = [2018, 2019] and tested on [T−1, T0] = [2019, 2020].

Tables 3, 4, 5, 6 shows the image acquisition dates, vegetation typologies,
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coordinates, and deforestation pixel counts for the four sites. In the Amazon
sites, all but the 60m resolution bands of the Sentinel-2 images were used.
Due to computational limitations in the Cerrado sites, related to their larger
spatial extent, the NIR-R-G-B bands were used in those sites (Bands 8, 4, 3,
and 2). The 20m resolution bands were up-sampled to 10m with the nearest
neighbor method in all cases.

Table 3: Detailed PA study area information: location coordinates, vegetation
typology, acquisition dates, and class distribution. Previous deforestation
pixels were not considered.

Study areas PA

Coordinates 6° 27’ 10.512” S - 8° 3’ 33.192” S
55° 36’ 47.4084” W - 54° 46’ 24.3624” W

Vegetation Dense ombrophilous forests and pasture
Date T−2 July [21, 26], 2017
Date T−1 July [21, 26], 2018
Date T0 July [21, 26], 2019

Deforestation pixels (T−2, T−1) 1861735 (1.1%)
No-deforestation pixels (T−2, T−1) 103173071 (63.3%)

Previous deforestation pixels (T−2, T−1) 58081194 (35.6%)
Deforestation pixels (T−1, T0) 1838508 (1.1%)

No-deforestation pixels (T−1, T0) 100903598 (61.9%)
Previous deforestation pixels (T−1, T0) 60373894 (37%)

Table 4: Detailed MT study area information: location coordinates, vegetation
typology, acquisition dates, and class distribution. Previous deforestation
pixels were not considered.

Study areas MT

Coordinates 10° 48’ 43.8012” S - 12° 42’ 5.976” S
55° 12’ 39.384” W - 53° 57’ 49.7916” W

Vegetation Sparse ombrophilous forests, soy fields and pastures
Date T−2 July [26, 28, 31], 2018
Date T−1 August [02, 05] 2019
Date T0 August [04, 06, 09, 11], 2020

Deforestation pixels (T−2, T−1) 1900166 (1.1%)
No-deforestation pixels (T−2, T−1) 99070749 (56.6%)

Previous deforestation pixels (T−2, T−1) 74032985 (42.3%)
Deforestation pixels (T−1, T0) 2271496 (1.3%)

No-deforestation pixels (T−1, T0) 109996296 (62.9%)
Previous deforestation pixels (T−1, T0) 62736108 (35.8%)

5.2
Experimental Protocol

The train, validation, and test areas were selected by splitting the site
into non-overlapping tiles and selecting 40% for training, 10% for validation,
and 50% for testing (See Figures 26 and 27). The tile size was 23 × 35.4Km2,
26.8 × 41.6Km2, 39 × 37.2Km2, and 41.6 × 38.8Km2 for the PA, MT, MS and
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Table 5: Detailed MS study area information: location coordinates, vegetation
typology, acquisition dates, and class distribution. Previous deforestation
pixels were not considered.

Study areas MS

Coordinates 17° 55’ 50.952” S - 19° 37’ 58.7316” S
54° 10’ 50.916” W - 52° 18’ 40.6872” W

Vegetation Wooded savanna
Date T−2 July [23, 25], 2018
Date T−1 August [07, 09] 2019
Date T0 July [22, 24], 2020

Deforestation pixels (T−2, T−1) 473296 (0.1%)
No-deforestation pixels (T−2, T−1) 99618511 (27.5%)

Previous deforestation pixels (T−2, T−1) 262333593 (72.4%)
Deforestation pixels (T−1, T0) 506597 (0.1%)

No-deforestation pixels (T−1, T0) 99008239 (27.3%)
Previous deforestation pixels (T−1, T0) 262910564 (72.5%)

Table 6: Detailed PI study area information: location coordinates, vegetation
typology, acquisition dates, and class distribution. Previous deforestation
pixels were not considered.

Study areas PI

Coordinates 9° 14’ 33.3024” S - 10° 59’ 37.7484” S
46° 4’ 54.174” W - 44° 10’ 26.7348” W

Vegetation Wooded savanna
Date T−2 July [16 - 31], 2018
Date T−1 August [03, 08] 2019
Date T0 August [07 - 22], 2020

Deforestation pixels (T−2, T−1) 2816544 (0.7%)
No-deforestation pixels (T−2, T−1) 256247610 (63.5%)

Previous deforestation pixels (T−2, T−1) 144294046 (35.8%)
Deforestation pixels (T−1, T0) 2619484 (0.6%)

No-deforestation pixels (T−1, T0) 253287547 (62.8%)
Previous deforestation pixels (T−1, T0) 147451169 (36.6%)

PI sites respectively. For training, we extracted overlapping sub-images of size
128 × 128 with 70% overlap from the training regions. We selected only the
sub-images with at least 2% of the deforestation class for training. As explained
in Section 4.4, results are presented for the ideal case of training and testing
on the same pair of dates and for the more operational case of training on an
earlier pair of dates. We used online data augmentation by randomly applying
rotations and horizontal and vertical flips on each training batch.

Following recent works on deforestation detection in the Brazilian Ama-
zon, in this work a modified version of the fully convolutional ResUnet from
[12] was implemented. We used the same parameter configuration as in [12]
for the network architecture, and we added dropout in each decoder stage fol-
lowing recent works [41–43]. We used spatial dropout in all cases (Subsection
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Figure 24: Geographical location of the study areas in the Amazon biome, and
RGB composition of the corresponding Sentinel-2 images acquired at T−1.

Figure 25: Geographical location of the study areas in the Cerrado biome, and
RGB composition of the corresponding Sentinel-2 images acquired at T−1.

3.2.2.1) [102]. The parameter configuration is presented in Table 7. We used
Max-pooling as a down-sampling operator and nearest-neighbor up-sampling.
We used a dropout rate of 0.25 in all cases. We used batch size 32. In the
multi-output approaches we used Adam optimizer with learning rate 1e-4, and
weighted categorical cross entropy with weights of 0.1 for non-deforestation, 0.9
for deforestation, and 0 for not-considered areas, including past deforestation
and cloudy regions. Past deforestation refers to areas identified as deforested
in years predating the training date. These regions are excluded from both
the training and testing phases since their detection is established beforehand.
The network’s output is focused solely on polygons newly identified on the
designated detection date. In EDL, following [18], the network’s softmax layer
was replaced by ReLU. Samples from the non-considered areas were ignored.
For the accuracy assessment, we ignored pixels within a spatial buffer of 2px



Chapter 5. EXPERIMENTAL ANALYSIS 74

(26(a)) PA site (26(b)) MT site

Figure 26: Train (gray tiles), validation (white tiles) and test (black tiles) mask
for (a) PA site and (b) MT site

(27(a)) MS site (27(b)) PI site

Figure 27: Train (gray tiles), validation (white tiles) and test (black tiles) mask
for (a) MS site and (b) PI site

surrounding the ground truth deforestation polygons, and also pixel clusters
predicted as deforestation with an area smaller than 6.25ha in the Brazilian
Amazon sites, and smaller than 4ha in the Cerrado sites. The former rule aims
to avoid misregistration problems, considering that PRODES references have
a spatial resolution equivalent to Landsat multispectral bands. The reason for
the later rule was that 6.25ha and 4ha are PRODES minimum mapping units
in the Amazon and Cerrado biomes.

We used ten inference runs (n = 10) for uncertainty estimation using
MCD. Correspondingly, we used ten training runs for uncertainty estimation
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Table 7: Network architecture for the ResUnet-based FCN. C: Convolution,
DS: Down-sampling, RB: Residual block, D: Dropout, US: Up-sampling. Con-
volution layers are parametrized as (kernel_width×kernel_height,#filters)

Encoder Bottleneck Decoder Output
DS(RB(3×3, 32))

3× RB(3×3, 128)
D(US(C(3×3, 128)))

DS(RB(3×3, 32)) D(US(C(3×3, 64))) Softmax(C(1×1, #classes))
DS(RB(3×3, 32)) D(US(C(3×3, 32)))

using ensembles. We compared results for multiple uncertainty metrics and
selected the best overall performing metric. For the EDL method, which
requires a single inference run to produce an uncertainty map, we repeated
the experiment 10 times and presented results for the average values, as well
as the worst and best scenarios with respect to F1low

. We present entropy from a
single inference run for comparison purposes, where we also present results for
the averaged values, along with the worst and best performing single inference
run from 10 repetitions, with respect to F1low

. Experiments were carried out
in an NVIDIA RTX 2080 Ti GPU.

5.3
Results

In Subsections 5.3.1, 5.3.2, 5.3.3, and 5.3.4, we present results for the
proposed methodology in the PA, MT, MS, and PI study areas, respectively.

5.3.1
Uncertainty Estimation Results in PA Site

Table 8 presents results when training and testing on the same date
pair, which is a common procedure in recent works [12]. Among the multiple
outcome approaches, the best performing method was Ensemble, with an F1

score of 85.8%. Its improvement over MCD may be related to an enhanced
generalization based on multiple locally optimal solutions instead of a single
one in the parameter space (Figure 13).

As a baseline comparison, we present results for using entropy from a
single inference run. We show the worst and best-performing cases since we
repeated this experiment 10 times. Results presented a high variance. Such
variability may have occurred due to the single inference run method coming
from a single optimal solution during training, different from multi-output
solutions which consider either multiple optimal solutions (e.g. ensembles)
or the surrounding solutions around a single optimal value (e.g. MCD), as
explained in Subection 3.2.2.2. Although the best-case scenario produced
results slightly better compared to Ensemble in terms of F1low

, results from
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single inference run, the high variance in results from a single inference run
makes it unreliable compared to the more robust MCD and Ensemble methods.

Likewise, the worst, mean, and best results for EDL are presented.
EDL presented a lower variance in F1 compared to Single run. The mean
performance metrics were similar to Single run, although generally lower. This
indicates the need for further research in EDL for deforestation detection. A
possible cause for the lower EDL performance may be related to the high-
class imbalance in deforestation detection, considering that EDL can produce
unwanted evidence for the incorrect class when counter-examples are limited
[18].

Table 8: Results for PA site obtained by training and testing on a pair of
images from 2018/2019 with AA = 3%. Values are presented in percentages
(%). First, second, and third best results in each column are highlighted in
red, blue and green respectively

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

84.1

95.3 61.0 96.9
Predictive Variance 90.9 77.5 96.2
Mutual Information 88.2 34.0 89.3

Expected KL 87.2 26.7 88.0

Ensemble

Predictive Entropy

85.8

96.9 62.3 97.9
Predictive Variance 95.6 72.3 97.5
Mutual Information 92.2 31.3 93.1

Expected KL 90.9 25.6 91.7

Single run
Entropy (Worst) 83.4 94.1 66.7 96.5
Entropy (Mean) 86.2 95.9 68.7 97.5
Entropy (Best) 87.4 97.0 74.7 98.3

EDL
Worst 80.0 91.4 51.3 93.3
Mean 83.1 93.1 59.9 94.9
Best 83.6 94.8 59.5 96.2

We also present results for multiple uncertainty metrics in MCD and
Ensemble approaches. In both cases, the best-performing metric was the
predictive entropy, with increase in F1low

of up to 8.1% compared to the other
metrics. The predictive variance was the second-best metric in both MCD and
Ensemble.

In the case of the best-performing multiple-output method (Ensemble)
and the best metric (Predictive entropy), we obtained an average F1 score
of 85.8%. After applying the proposed uncertainty-based methodology for an
Audit Area (AA) of 3%, we obtained an increased F1 of 96.9% for the samples
with low uncertainty. At the same time, F1high

was much lower (62.3%), which
indicates that our methodology succeeded in separating the samples whose
results we can trust from the samples that we do not know if they are correct.
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If we audited the samples with high uncertainty, we would obtain a F1audit
of

97.9%, with a significantly smaller auditing effort (3% of the image) compared
to the current auditing procedure, where 100% of the image needs to be
audited.

Figure 28 presents results for different uncertainty threshold values in
the PA site when training and testing in the same date pair, corresponding
to a range of AA from 0% to about 10%. Results correspond to the best-
performing multiple-output method and the corresponding best uncertainty
metric. F1 before applying the uncertainty methodology is presented in yellow
for comparison. F1low

increased when increasing AA until a peak value for an
AA of approximately 6%, where its value started to decline. This suggests
that the uncertainty threshold needs to be adequately selected to obtain the
desired outcomes in the proposed methodology. In contrast, F1audit

increased
monotonically when increasing AA. Both F1low

and F1audit
got close to 100%

even for small values of AA.

Figure 28: Classification metrics for multiple uncertainty threshold values in
PA site. Training and testing in [2018, 2019]. Uncertainty method: Ensemble.
Uncertainty metric: Predictive Entropy. A sample AA threshold of 3% is
highlighted in gray.

The results in Table 9 correspond to training with date pairs from the
past and inferring on a new date unseen during training, representing a more
realistic operational setting. In this case, the best multiple-output uncertainty
method was also Ensemble, and the best-performing uncertainty metric was
also the predictive entropy.

In terms of F1, results were comparable to the upper bound case of
training and testing on the same date, with an F1 of 81.4%. For an Audit Area
(AA) of 3.0%, F1low

improved to 94.4%, while F1high
was 63.9%, which indicates

that the proposed uncertainty methodology was also capable of discerning
between samples whose results we can trust and samples we do not know if
they are correct in the case of training with past date pairs and inferring on
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Table 9: Results for PA site obtained by training on a pair of images from
2017/2018 and testing on a pair of images from 2018/2019 with AA = 3%.
Values are presented in percentages (%). First, second, and third best results
in each column are highlighted in red, blue and green respectively

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

78.0

92.0 60.3 96.0
Predictive Variance 84.8 73.7 95.0
Mutual Information 86.0 34.2 88.6

Expected KL 84.6 29.4 87.0

Ensemble

Predictive Entropy

81.4

94.4 63.9 97.2
Predictive Variance 91.7 72.8 96.6
Mutual Information 90.7 46.6 93.3

Expected KL 88.5 38.7 90.8

Single run
Entropy (Worst) 74.5 83.5 52.4 89.0
Entropy (Mean) 80.4 91.2 65.9 97.5
Entropy (Best) 84.9 94.9 68.0 97.1

EDL
Worst 74.6 81.2 57.4 86.2
Mean 79.6 89.8 57.3 92.9
Best 82.6 92.7 61.5 95.1

a new upcoming date. If we audited the high uncertainty samples, we could
get an F1audit

of 97.2%, which is close to what we obtained in the ideal case of
training and testing on the same date, with a slight difference of 0.7%.

In this case, entropy results from a single inference run produced high
variance, with the worst and best F1audit

being 83.5% and 94.9%. The mean
value was similar to the best-performing method. However, such variability is
undesirable in an operational application. Similar results were obtained with
EDL, with slightly lower mean values compared to a Single run, consistently
with training and testing on the same date. Unlike previous works, we also
assessed the variability of EDL for multiple repetition runs. As in Single run,
EDL presented high variability, with the worst and best F1audit

being 86.2%
and 95.1%. Such variability may indicate that a single point estimate was not
sufficient to estimate the underlying distribution of the predicted probabilities
in this case, which is the assumption in EDL [61, 109]. Such an assumption was
made given a sufficient amount of training data, which indicates that increasing
the training dataset with images from additional dates or regions may improve
EDL outcomes.

Figure 29 presents results for different uncertainty thresholds in the PA
site in the more operational case of training with a past date and testing on
an upcoming date. In this case, F1low

and F1audit
increased monotonically when

increasing AA, as expected. Compared to F1 before applying the uncertainty
methodology, F1low

and F1audit
were significantly higher even for small values
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of AA.

Figure 29: Classification metrics for multiple uncertainty threshold values in
PA site. Training in [2017, 2018] and testing in [2018, 2019]. Uncertainty
method: Ensemble. Uncertainty metric: Predictive Entropy. A sample AA
threshold of 3% is highlighted in gray.

Figures 30 and 31 present classification results and the corresponding
uncertainty map for PA site when training in an earlier date for the entire
study area. Most of the deforestation polygons were correctly classified. Error
areas usually correspond to high uncertainty values. A high uncertainty
accumulation in the lower right area which does not correspond to error areas,
corresponded with an occlusion in the T0 image. Further qualitative analysis
will be presented in Section 5.3.7.

5.3.2
Uncertainty Estimation Results in MT Site

Table 10 presents classification results for MT site in the traditional
scenario, where the network is trained and tested on the same date. As in
the PA site, the best multiple-output uncertainty method was Ensemble,
with an increase of 2.2% in F1 compared to MCD. In this case, the best
uncertainty metric was the predictive variance in terms of F1low

and F1audit
.

For the Ensemble method and the predictive variance metric, applying the
proposed uncertainty methodology, for an AA of 3%, the F1low

improved to
91.7%, while F1high

produced a significantly lower value, indicating that the
methodology was able to separate between predictions whose results we can
trust and predictions that the network does not know, similarly to PA. If we
audited the samples with high uncertainty, we could get a F1audit

of 94.8%
with minimal auditing effort. Consistently with the PA site, entropy from a
single inference run produced results with high variance, with the worst case
scenario being 7% lower compared to MCD and the best outcome 0.2% higher
compared to Ensemble in terms of F1low

. Such a result suggests that using a
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Figure 30: Classification results for PA site. Training in [2017, 2018] and testing
in [2018, 2019]. Uncertainty method: Ensemble. Uncertainty metric: Predictive
Entropy.

single inference run may be less reliable and robust compared to the MCD and
Ensemble approaches. Consistently with the PA site, EDL performed similarly
to Single run with slight decreases in all metrics. Reasons may also be related to
the large class imbalance, which was not addressed in [18]. EDL again presented
high variance among repetition runs, with a standard deviation in the same
range as single run. As explained in the PA analysis, this may indicate that
more than a single point estimate may be needed in EDL.

Table 11 presents results in a more challenging scenario, which is closer
to a real operational setting, for the MT site. As in PA, we trained on an image
pair from past dates [T−1, T0] = [2018, 2019] and tested on a new upcoming date
[T−1, T0] = [2019, 2020]. Results were similar to previous experiments, with
Ensemble producing the best results compared to MCD. The best-performing
uncertainty metric was predictive entropy. In this operational setting, we
obtained an F1 of 81.0% with the best-performing approach, which represented
a minor drop of 0.4% compared to the ideal case of training and testing case
on the same date pair.

Using our proposed methodology to aid the auditing process, for an AA
of 3%, we obtained F1low

of 93.8%, with a much lower F1high
, which reinforces
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Figure 31: Uncertainty results for PA site. Training in [2017, 2018] and testing
in [2018, 2019]. Uncertainty method: Ensemble. Uncertainty metric: Predictive
Entropy.

Table 10: Results for MT site obtained by training and testing on a pair of
images from 2019/2020 with AA = 3%. Values are presented in percentages
(%). First, second, and third best results in each column are highlighted in
red, blue and green respectively

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

79.2

91.7 57.7 94.8
Predictive Variance 92.2 64.0 95.9
Mutual Information 89.3 43.3 92.0

Expected KL 87.8 39.4 90.4

Ensemble

Predictive Entropy

81.4

94.1 63.8 96.6
Predictive Variance 95.1 69.0 97.7
Mutual Information 93.5 61.4 96.0

Expected KL 93.1 60.3 95.6

Single run
Entropy (Worst) 78.6 84.7 66.4 89.8
Entropy (Mean) 79.9 91.9 62.4 95.0
Entropy (Best) 83.0 95.3 66.2 97.3

EDL Worst 78.2 81.8 66.6 85.7
Mean 78.4 85.5 60.3 89.4
Best 84.4 91.0 72.4 94.2

our initial hypothesis that uncertainty estimation can help us separate the
samples whose results we can trust from the samples the network does not
know if they are correct. After auditing the high uncertainty samples, we got
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Table 11: Results for MT site obtained by training on a pair of images from
2018/2019 and testing on a pair of images from 2019/2020 with AA = 3%.
Values are presented in percentages (%). First, second, and third best results
in each column are highlighted in red, blue and green respectively

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

77.4

90.2 54.4 94.3
Predictive Variance 83.7 70.4 92.4
Mutual Information 81.8 39.9 83.8

Expected KL 79.9 32.5 81.3

Ensemble

Predictive Entropy

81.0

93.8 63.0 96.7
Predictive Variance 92.6 71.0 96.9
Mutual Information 92.3 59.7 95.4

Expected KL 91.7 56.6 94.8

Single run
Entropy (Worst) 72.9 87.0 58.7 94.3
Entropy (Mean) 78.8 90.4 57.3 94.4
Entropy (Best) 78.9 92.8 55.6 96.1

EDL
Worst 72.4 75.1 55.9 79.2
Mean 76.7 82.0 56.3 85.9
Best 80.6 87.2 57.7 89.9

an F1audit
of 96.7%, which is close to the ideal case where we trained and tested

on the same date pair. These results were consistent with the ones from PA
site.

In the more operational setting of training and testing with different
dates, results for entropy from a single inference run were worse compared
to MCD and Ensemble methods, even for the best-performing case. This
reinforces the hypothesis that the robustness of multiple-inference approaches
was more critical in the operational case.

In Figures 32 and 33 we present the classification metrics for multiple
uncertainty threshold values when training and testing on the same date
and when training and testing on different dates, respectively. These results
correspond to the best-performing approach in each case. We present F1 before
applying the uncertainty methodology in yellow for comparison. We observe a
similar behavior to PA site, with F1low

and F1audit
increasing when increasing

AA. The auditor might select a low AA such as 3% and still get high F1

values, or use a more conservative approach and select a higher AA with
correspondingly higher F1 metrics.

Figures 34 and 35 present classification results and the uncertainty map
for MT site in the entire study area, respectively. Across the entire site, the
uncertainty map presented high uncertainty values in the error areas. Two
main regions with error areas can be observed in the upper right corner and the
image center. Correspondingly, both cases represent high uncertainty regions.
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Figure 32: Classification metrics for multiple uncertainty threshold values in
MT site. Training and testing in [2019, 2020]. Uncertainty method: Ensemble.
Uncertainty metric: Predictive Variance. A sample AA threshold of 3% is
highlighted in gray.

Figure 33: Classification metrics for multiple uncertainty threshold values in
MT site. Training in [2018, 2019] and testing in [2019, 2020]. Uncertainty
method: Ensemble. Uncertainty metric: Predictive Entropy. A sample AA
threshold of 3% is highlighted in gray.

5.3.3
Uncertainty Estimation Results in MS Site

The Cerrado areas were characterized for having a much lower percentage
of deforestation polygons compared to the Amazon sites. For comparison, the
Amazon sites had a percentage of deforestation pixels of 1.1% and 1.3% for
the target date T0 in the PA and MT sites, while the Cerrado sites had a
percentage of deforestation pixels of 0.1% and 0.6% for the target date in the
MS and PI sites.. Despite that, results in MS site were similar to the Amazon
regions. Table 12 presents results for all uncertainty methods when training and
testing on the same date pair (2019/2020). In general, all methods presented
similar results, with Ensemble and Single run producing the highest outcomes.
Particularly, Single run produced slightly better outcomes than Ensemble for
the best case. However, on average, Ensemble produced the best results with
values of 96.9% F1low

and 97.9% F1audit
, which are higher than the current
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Figure 34: Classification results for MT site. Training in [2018, 2019] and
testing in [2019, 2020]. Uncertainty method: Ensemble. Uncertainty metric:
Predictive Entropy.

metrics obtained by manual inspection. Consistently with previous results,
EDL performed similarly to Single run with slight decreases.
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Figure 35: Uncertainty results for MT site. Training in [2018, 2019] and testing
in [2019, 2020]. Uncertainty method: Ensemble. Uncertainty metric: Predictive
Entropy.

Table 12: Results for MS site obtained by training and testing on a pair of
images from 2019/2020 with AA = 3%. Values are presented in percentages
(%). First, second, and third best results in each column are highlighted in
red, blue and green respectively.

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

84.1

95.3 61.0 96.9
Predictive Variance 90.9 77.5 96.2
Mutual Information 88.2 34.0 89.3

Expected KL 87.2 26.7 88.0

Ensemble

Predictive Entropy

85.8

96.9 62.3 97.9
Predictive Variance 95.6 72.3 97.5
Mutual Information 92.2 31.3 93.1

Expected KL 90.9 25.6 91.7

Single run
Entropy (Worst) 83.4 94.1 66.7 96.5
Entropy (Mean) 86.2 95.9 68.7 97.5
Entropy (Best) 87.4 97.0 74.7 98.3

EDL
Worst 80.8 85.9 49.2 87.2
Mean 86.9 92.0 56.1 92.8
Best 91.0 94.5 69.1 95.2

Table 13 presents results for the more realistic scenario of training
with an earlier date pair (2018/2019) and testing with an upcoming date
pair (2019/2020). In this case, results also surpassed the desired metrics for
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an operational implementation. In this more challenging scenario, Ensemble
produced the best F1low

and F1audit
outcomes in general, which indicates

the importance of multiple training runs when testing in a scenario that is
further from the training distribution. Specifically, the MI and Predictive
Variance metrics produced the best F1low

and F1audit
respectively, indicating the

importance of measuring model disagreement among the ensemble members.
In terms of uncertainty metrics, EDL produced very similar results to Single
run. However, EDL produced higher average and best F1 values compared to
Single run and the best F1 overall. This may indicate the potential of EDL for
future research works. Consistently with previous results, Single run and EDL
presented high variability in their outcomes, indicating that multiple-output
approaches may be more reliable and robust.

Table 13: Results for MS site obtained by training on a pair of images from
2018/2019 and testing on a pair of images from 2019/2020 with AA = 3%.
Values are presented in percentages (%). First, second, and third best results
in each column are highlighted in red, blue and green respectively.

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

83.2

91.8 70.0 95.4
Predictive Variance 85.2 79.3 94.4
Mutual Information 89.9 44.4 92.2

Expected KL 89.1 34.6 90.8

Ensemble

Predictive Entropy

80.4

94.0 62.5 96.5
Predictive Variance 93.0 69.1 96.7
Mutual Information 94.9 39.3 96.2

Expected KL 94.4 29.3 95.5

Single run
Entropy (Worst) 80.1 88.5 69.1 93.4
Entropy (Mean) 78.2 90.6 62.4 94.4
Entropy (Best) 78.2 93.5 63.3 96.6

EDL
Worst 71.3 88.5 69.1 93.4
Mean 78.9 86.2 52.2 87.9
Best 87.4 91.7 65.2 93.0

Figures 36 and 37 present results for multiple AA values for the best-
performing approach, while training with a current or an earlier date pair
respectively. In both cases, the largest uncertainty-related improvements can
be already achieved with AA values as low as 3%. The auditor may choose to
increase the AA threshold for added slight improvements.

Figures 38 and 39 present classification results and the uncertainty map
for the entire study area. The amount of deforestation polygons in the MS site
was much lower compared to the Amazon sites. For comparison, the percentage
of deforestation pixels in the image was 0.1%, compared to 1.1% and 1.3% in
the Amazon sites of PA and MT. Due to the uncertainty metric being Mutual
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Figure 36: Classification metrics for multiple uncertainty threshold values in
MS site. Training and testing in [2019, 2020]. Uncertainty method: Ensemble.
Uncertainty metric: Predictive Entropy. A sample AA threshold of 3% is
highlighted in gray.

Figure 37: Classification metrics for multiple uncertainty threshold values in
MS site. Training in [2018, 2019] and testing in [2019, 2020]. Uncertainty
method: Ensemble. Uncertainty metric: Mutual Information. A sample AA
threshold of 3% is highlighted in gray.

Information, its absolute value is generally lower compared to the predictive
entropy-related results. Even so, error areas tend to present higher uncertainty
values.
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Figure 38: Classification results for MS site. Training in [2018, 2019] and testing
in [2019, 2020]. Uncertainty method: Ensemble. Uncertainty metric: Mutual
Information.

Figure 39: Uncertainty results for MS site. Training in [2018, 2019] and testing
in [2019, 2020]. Uncertainty method: Ensemble. Uncertainty metric: Mutual
Information.



Chapter 5. EXPERIMENTAL ANALYSIS 89

5.3.4
Uncertainty Estimation Results in PI Site

Table 14 presents results for PI site when training and testing on the same
date pair (2019/2020). Compared to the remaining sites, absolute performance
was lower in the PI site. The highest F1 was achieved by the best Single Run,
with F1 = 77.9%. However, Single run presented high variability, with its worst
result being 19.9% lower than the best result in terms of F1low

. Likewise, high
variability was obtained in EDL, although average metrics for EDL were higher
than Single run, with F1 and F1low

being 4% and 4.3% higher respectively.

Table 14: Results for PI site obtained by training and testing on a pair of
images from 2019/2020 with AA = 3%. Values are presented in percentages
(%). First, second, and third best results in each column are highlighted in
red, blue and green respectively

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

73.5

83.5 30.6 86.0
Predictive Variance 87.3 44.3 90.2
Mutual Information 82.1 36.0 84.6

Expected KL 80.8 35.3 83.2

Ensemble

Predictive Entropy

77.5

88.7 28.6 90.5
Predictive Variance 90.3 47.3 92.5
Mutual Information 85.1 48.1 87.6

Expected KL 84.0 49.6 86.5

Single run
Entropy (Worst) 55.8 66.9 9.7 69.3
Entropy (Mean) 68.9 77.2 25.9 79.5
Entropy (Best) 77.9 86.8 35.5 88.6

EDL
Worst 53.0 62.0 13.2 63.7
Mean 71.8 80.7 32.3 82.7
Best 77.5 85.1 44.9 87.7

Without considering Single run and EDL due to their high variability,
the best-performing method in terms of F1low

for AA = 3% was Ensemble
with the Predictive Variance metric, closely followed by MCD with Predictive
Variance. With F1audit

= 92.5%, its result still matches the PRODES accuracy
from manual annotation, which was estimated as 87.1%. The auditor may
increase the AA threshold for further accuracy improvements.

Table 15 presents results for the more realistic scenario of training with
an earlier date pair (2018/2019) and testing with an upcoming date pair
(2019/2020). As expected, absolute values are lower compared to the ideal
scenario of training and testing on the same date pair, with a decrease of
14.3% for the best F1 without considering Single run or EDL due to their
high variability. The best-performing method in terms of F1low

was Ensemble
with Predictive Variance, reaching F1audit

= 81.2% which, different from the
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remaining study areas, is below the accuracy required by PRODES to replace
manual annotation. This result is further discussed in Section 5.3.7.

Table 15: Results for PI site obtained by training on a pair of images from
2018/2019 and testing on a pair of images from 2019/2020 with AA = 3%.
Values are presented in percentages (%). First, second, and third best results
in each column are highlighted in red, blue and green. respectively

Method Uncertainty Metric F1 F1low
F1high

F1audit

MCD

Predictive Entropy

61.7

71.4 26.2 76.2
Predictive Variance 74.3 34.1 80.3
Mutual Information 69.8 27.3 74.6

Expected KL 68.6 27.1 73.3

Ensemble

Predictive Entropy

63.2

73.4 25.3 78.0
Predictive Variance 75.8 33.1 81.2
Mutual Information 71.8 31.4 76.9

Expected KL 70.3 31.9 75.3

Single run
Entropy (Worst) 51.5 59.6 17.8 64.5
Entropy (Mean) 59.0 67.2 24.7 71.3
Entropy (Best) 63.1 72.6 32.2 77.2

EDL
Worst 50.8 59.8 22.8 64.1
Mean 55.9 64.4 21.9 67.5
Best 58.7 69.8 20.8 72.8

Figures 40 and 41 present results for varying AA threshold values. In
both cases, the auditor may select a larger AA value for improved outcomes.
The desired PRODES accuracy (87.1% F1-score) would be attained using
AA = 8.2% when training in an earlier date pair.

Figure 40: Classification metrics for multiple uncertainty threshold values in
PI site. Training and testing in [2019, 2020]. Uncertainty method: Ensemble.
Uncertainty metric: Predictive Variance. A sample AA threshold of 3% is
highlighted in gray.

Figures 42 and 43 present classification results and the uncertainty map
for the entire study area in the PI site. False positive error areas (Blue in
the classification map) presented high uncertainty values. For example, a false
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Figure 41: Classification metrics for multiple uncertainty threshold values in PI
site. Training in [2018, 2019] and testing in [2019, 2020]. Uncertainty method:
Ensemble. Uncertainty metric: Predictive Variance. A sample AA threshold of
3% is highlighted in gray.

positive error area in the lower center extreme presents high uncertainty values.
However, different from previous sites, many of the false negative outcomes
(Orange in the classification map) did not present high uncertainty.

Figure 42: Classification results for PI site. Training in [2018, 2019] and testing
in [2019, 2020]. Uncertainty method: Ensemble. Uncertainty metric: Predictive
Variance.

5.3.5
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Figure 43: Uncertainty results for PI site. Training in [2018, 2019] and testing
in [2019, 2020]. Uncertainty method: Ensemble. Uncertainty metric: Predictive
Variance.

Computation time analysis

The proposed method is expected to be applied on large scale to entire
Brazilian biomes such as the Amazon and Cerrado biomes. For such large-
scale applications, computational complexity at training and inference is
important when deciding which uncertainty estimation method to apply.
Hence, this section presents a comparison of training and inference times for
each uncertainty estimation method. Measurements are based on the more
realistic case of training on an earlier date pair. Table 16 presents training
times for the PA, MT, MS, and PI sites for the MCD, Ensemble, Single Run,
and EDL uncertainty estimation methods.

Table 16: Training times for the assessed uncertainty estimation methods in
the assessed study areas. Values are presented in minutes. Results training on
a pair of images from an earlier date.

Method / Site PA MT MS PI
MCD 12.5 8.2 3.6 12.4

Ensemble 124.7 81.5 35.9 124.4
Single run 12.5 8.2 3.6 12.4
Evidential 17.7 9.5 5.0 15.6

Training times are presented as an average value over n = 10 repetitions
for MCD, Single run, and Evidential methods. As expected, Ensemble resulted
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in nearly n times larger training times compared to the remaining methods,
representing a computational disadvantage despite having presented the best
accuracy outcomes. Nevertheless, it is essential to emphasize that, in contrast
to inference, the training phase occurs only once. Therefore, the additional time
invested in training ensembles may not pose a significant concern in practical
operational applications. On the flip side, employing multiple trained models
during inference could potentially lead to increased utilization of RAM or GPU
memory, depending on the specific implementation. In general, the remaining
single-training methods presented similar average training times in each study
area, with EDL having slightly higher training times due to converging on a
later epoch. The differences in training times among study areas are related
to the number of overlapping training patches extracted from each site, which
is correlated to the amount and size of deforestation polygons in the ground
truth mask due to having selected only patches with a minimum percentage
of the deforestation class during training. The duration of training may also
depend on the complexity of the dataset at each site, which may influence the
resulting early stopping epoch. For completeness, the amount of training and
validation patches in each site are presented in Table 17. The lowest training
times obtained in the MS site correspond with the lowest number of training
patches.

Table 17: Number of training and validation patches for each study area.
Results training on a pair of images from an earlier date.

N. of patches / Site PA MT MS PI
Training 3369 2962 1539 5495

Validation 1184 623 328 1422

Table 18: Inference times for the assessed uncertainty estimation methods in
the assessed study areas. Values are presented in minutes.

Method / Site PA MT MS PI
MCD 11.0 11.0 24.2 29.8

Ensemble 11.1 11.3 23.6 23.4
Single Run 1.0 1.1 2.1 2.3

EDL 1.1 1.1 2.4 2.3

Table 18 presents inference times for the PA, MT, MS, and PI sites and
all the assessed uncertainty estimation methods. As expected, the multiple
inference approaches MCD and Ensemble took approximately n times more
time to obtain inference compared to the single inference approaches Single
Run and EDL, where n was the number of inferences, and it was equal to 10 in
our experiments. This difference in execution time motivates further research in
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the EDL method, such as exploring variations as in [77, 83], with the objective
of improving its performance so that it reaches the same accuracy outcomes
as the best performing method in this study, namely the Ensemble approach,
and reducing the computational complexity in an operational scenario. Due to
the larger spatial extension, the Cerrado sites (MS and PI) presented larger
inference times compared to the Amazon sites (PA and MT).

5.3.6
Summary of Uncertainty Estimation Results

This subsection presents a summary of the outcomes obtained in the
previous subsections as well as providing advise on which uncertainty method
to use for deforestation detection applications in an operational scenario.

Regarding accuracy, the best results were consistently obtained with
Ensemble in both the Amazon and Cerrado biomes. Ensemble produced the
best outcomes for the base metric F1 and the uncertainty-related metrics F1low

and F1audit
. Such superiority may be related to an enhanced generalization

due to multiple training runs resulting in multiple locally optimal solutions
instead of a single one within the parameter space (Figure 13). As presented
in Subsection 5.3.5, Ensembles are computationally expensive, resulting in n

times larger training and inference times. Such increased times may prove
impractical in a real-world, large-scale operational context, primarily due to
economic and time constraints. However, good results were achieved with a
low amount of training and inference runs (n = 10), which may not represent
such a significant overhead. Such computational costs may be overcome by
further exploring more recent single-outcome approaches such as EDL in
future works. Considering that the most critical factor for the operational
implementation of a semi-automatic deforestation detection system is related
to the high accuracy requirements currently achieved by manual annotators,
the recommended uncertainty estimation method, according to the results in
this work, is Ensemble. Regarding the uncertainty metric, the best choice
varied across study areas. Out of 8 total experiments presented (training in
a current and an earlier pair of dates for 4 study areas), 50% of the times,
Predictive Entropy produced the best result, followed by Predictive Variance
(37.5%) and MI (12.5%). Particularly, in the more operational scenario of
training with an earlier date, two sites obtained the best result with predictive
entropy, corresponding to the Amazon sites. The remaining Cerrado sites
obtained the best results with MI and Predictive Variance. However, in
both cases, the winning metric was closely followed by Predictive Entropy,
with differences of 0.9% and 2.4% for MS and PI sites, respectively. Thus,
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across experiments and sites, the most consistent uncertainty metric was the
Predictive Entropy, which is recommended in an operational scenario. In the
following section, uncertainty interpretation is performed on the recommended
uncertainty method: Ensembles with Predictive Entropy as an uncertainty
metric.
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5.3.7
Uncertainty Interpretation

The results shown in the previous section indicate that it is possible
to increase the productivity of the auditing process by focusing on areas
characterized by high uncertainty levels. In order to further analyze those
results, a team of PRODES auditors examined the uncertainty maps and tried
to associate them with specific forest characteristics or ongoing processes that
might have caused the high uncertainty levels.

One of the hypotheses explored in this analysis is the potential of high
uncertainty as an early warning sign for ongoing deforestation processes.
This hypothesis pertains to regions experiencing prolonged deforestation over
multiple years, becoming identified as deforested by PRODES only at a later
stage when detection certainty is higher. Such areas may be difficult to classify
and therefore may produce high uncertainty, which may in turn be correlated
to early warning areas. To examine this hypothesis, the auditors adopted
deforestation reports referring to the year after the detection date assumed
in our previous experimental analysis. Henceforth, the year after the detection
date is denoted as T1, while T0 and T−1 refer to the detection date and the
prior year. The analysis was limited to the outcomes of the classifier trained
on a previous pair of dates, i.e., T−2 and T−1.

5.3.7.1
PA site

Figures 44 and 45 show image snippets covering parts of the PA site.
The first rows of the figures display the input Landsat 8 images (Vegetation
analysis composition with SWIR 1, NIR and red bands [110]), which are the
same ones used for the PRODES report. The acquisition dates of such images
are the so-called PRODES dates.

Deforested polygons for date T0 are highlighted with red borders, while
those for the future date T1 are highlighted with yellow borders. In both cases,
deforested polygons correspond to the PRODES ground truth reference. The
black areas represent past deforestation (i.e., which occurred before T0) and are
irrelevant to the analysis. The second rows of the figures show the classification
results for the detection date T0. Specifically, they show a map depicting the
predicted probabilities for the deforestation class on the left, followed by the
prediction results on the center (white and black for non-deforestation and
deforestation, blue and orange for false positive and true positive errors),
and the uncertainty map on the right. Places of interest are indicated with
uppercase letters within each snippet.
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Figure 44: Qualitative results for PA site. The first row presents optical image
snippets from T−1, T0, and T1, at the PRODES dates. Deforested polygons
for date T0 are highlighted with red borders, and for the future date T1, with
yellow borders. The black areas represent past deforestation. The second row
presents classification and uncertainty results for deforestation in T0. Trained
on an earlier pair of dates (T−2 and T−1). Uncertainty method: Ensemble.
Uncertainty metric: Predictive Entropy.

As expected, misclassified pixels are typically found in areas with higher
uncertainty values, whereas accurately classified pixels are associated with
lower uncertainty values. Additionally, the borders of deforestation polygons
exhibit high uncertainty. That observation is not unexpected, as at the polygon
borders occur the transition between different land cover classes.

Place of interest A (Figure 44): On T−1 (2018), the region was covered
by intact forest without visible signs of degradation. By T0 (2019) most
parts of the area suffered complete vegetation removal (smooth texture and
reddish color), exposing the soil on the detection date. However, certain
portions of the area kept clusters of preserved trees and riparian forests.
The deforested regions underwent a complete removal of arboreal vegetation.
In those regions, the classification was associated with low uncertainty. The
automatic classification results closely resemble those reported by PRODES.
Moreover, the areas encompassing remaining riparian forests with preserved
canopies displayed low uncertainty and were not regarded as deforested in the
PRODES report. However, some clusters of remaining trees exhibited high
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Figure 45: Qualitative results for PA site. The first row presents optical image
snippets from T−1, T0, and T1, at the PRODES dates. Deforested polygons
for date T0 are highlighted with red borders, and for the future date T1, with
yellow borders. The black areas represent past deforestation. The second row
presents classification and uncertainty results for deforestation in T0. Trained
on an earlier pair of dates (T−2 and T−1). Uncertainty method: Ensemble.
Uncertainty metric: Predictive Entropy.

uncertainty, indicating their degraded nature. In those cases, there were minor
discrepancies between the classification results of this study and those found
in the PRODES report.

Place of interest B (Figure 44): The image captured on T−1 (2018) shows
no signs of degradation at place B. On the detection date, T0 (2019), however,
we can identify stains with advanced degradation characterized by a mix of
reflectance typical of tree remnants and herbaceous (pasture), which may have
given rise to the high observed uncertainty values. There were false positives
in two areas near place B. We also verified that PRODES regarded most of the
degraded areas on T0, for which high uncertainty was observed, as deforestation
in the following year (T1). Once again, the high uncertainty was associated with
an ongoing degradation process. The smooth textured polygon below place B
indicates complete vegetation removal, with exposed soil on the detection date
(T0). Uncertainty was low at that location, and the detection results were
consistent with the PRODES report.

Place of interest C (Figure 45): On the T−1 (2018) image, forest areas
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characterized by a dark green hue and rough texture can be observed, indicat-
ing an absence of apparent degradation. By the detection date T0 (2019), vege-
tation was absent, revealing exposed soil over most of the polygon, represented
by a smooth texture. The automatic classification exhibited high confidence
at that location, as evidenced by the low uncertainty. Remarkably, the detec-
tion outcome was closely aligned with the findings reported by PRODES. Cer-
tain regions containing remnants of riparian forests, characterized by preserved
canopies, displayed low uncertainty and were identified as deforestation by nei-
ther PRODES nor the network. In contrast, areas with high uncertainty within
that location were degraded, encompassing clusters of remaining trees. Minor
discrepancies emerged between the automatic classification and PRODES re-
sults in those areas.

Place of interest D (Figure 45): The image captured on T0 (2019) contains
degraded forest areas accompanied by adjacent pastures and signs of recent fire
occurrence. However, no openings in the canopy can be observed in the image.
Such a configuration may have led to the medium to high uncertainty values
in some stretches. The PRODES report for the subsequent year T1 (2020)
classified that area as "deforestation due to progressive degradation." In this
case, the high uncertainty served as an indication of ongoing deforestation
processes.

Place of interest E (Figure 45): In the earlier image (T−1), we observe a
forest area with no signs of degradation. By the detection date T0, a smooth
texture indicates complete vegetation removal, accompanied by exposed soil.
The automatic classification predictions in those regions exhibited low uncer-
tainty and were closely aligned with the findings reported by PRODES. Never-
theless, some areas with clusters of preserved trees presented high uncertainty
due to the presence of both tree individuals and exposed soil. The automatic
classification did not detect deforestation in those small areas, contrary to
PRODES. That is consistent with the hypothesis that areas characterized by
high uncertainty corresponded to the error-prone classification results.

5.3.7.2
MT site

Figures 46 and 47 present qualitative results for the MT site. As in the
PA figures, the first row presents Landsat 8 images for T−1, T0, and T1, with
black areas representing past deforestation areas. Deforestation polygons in
T0 and T1, according to PRODES, are highlighted with red and yellow edges,
respectively. The second row presents the automatic classification outcomes
and uncertainty estimates for T0. In the classification predictions (second
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row, second column), white and black represent correctly classified non-
deforestation and deforestation classes, while blue and orange represent false
positive and true positive errors.

Figure 46: Qualitative results for MT site. The first row presents optical image
snippets from T−1, T0, and T1, at the PRODES dates. Deforested polygons
for date T0 are highlighted with red borders, and for the future date T1, with
yellow borders. The black areas represent past deforestation. The second row
presents classification and uncertainty results for deforestation in T0. Trained
on an earlier pair of dates (T−2 and T−1). Uncertainty method: Ensemble.
Uncertainty metric: Predictive Entropy.

Figure 46 shows a region with many false negatives. Accordingly, the
respective uncertainty map shows high values for the misclassified locations and
significantly lower values for correctly classified ones. On the other hand, the
region shown in Figure 47 was almost perfectly classified, which is consistent
with the low uncertainty values found. As expected, areas at the border of the
deforestation polygons presented high uncertainty values.

Place of interest F (Figure 46): We identify slight signs of degradation on
the T−1 image snippet (2019). In contrast, the vegetation was entirely cleared
on T0 (2020), with the soil becoming apparent. That must have led to the
observed low uncertainty values. The detection outcome was closely consistent
with the PRODES report for that date. Unlike what we observed in other spots,
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in this case the low-intensity degradation in the year preceding the detection
did not contribute to heighten uncertainty.

Place of interest G (Figure 46): On the T−1 (2019) image, one can ob-
serve degraded forest associated with pastureland, rendering apparent canopy
openings indiscernible. The lighter green color and smoother texture indicate
degradation compared to non-degraded forests. The degradation persisted on
T0 (2020), with signs of fire intentionally set to facilitate complete clearing.
The smooth texture indicates the loss of canopy cover. Consequently, PRODES
classified this area as "deforestation due to progressive degradation." That type
of deforestation occurs when selective wood removal and successive fires over
several years lead to complete canopy opening, resulting in structural collapse,
loss of the forest’s ecological functions, and capacity for self-regeneration [111].
The uncertainty associated with that area was generally low, as the introduc-
tion of fire for complete clearing is easily detectable. Degradation without ap-
parent canopy openings in the year preceding detection (2019) did not result
in heightened uncertainty. For the most part, detection results were consistent
with PRODES findings. However, some unburned areas within the polygon
exhibited high uncertainty and were misclassified. Those particular areas hold
significant interest for expert auditors because the canopy loss is not so obvious
in the Landsat image used for the PRODES report.

Place of interest H (Figure 46): Covers areas of degraded forest with
apparent canopy openings and exposed soil on T−1 (2019). In the following
year, T0 (2020), degradation reached its final stage, leading PRODES to classify
the region as "deforestation due to progressive degradation." The automatic
classification result showed high uncertainty, possibly because individual trees
often occur in such cases, as observed in that polygon (indicated by a rough
texture). The combination of degradation with exposed soil in the previous
year and deforestation characterized by predominantly exposed soil, but with
remaining individuals of trees on T0 (2020), favored the increased uncertainty.
The classification results diverged from PRODES in areas with a slightly denser
cluster of trees, leading PRODES to detect more deforestation polygons in
those regions.

Place of interest I (Figure 46): Like at place H, degraded forest areas
with associated pasture can be observed on T−1 (2019). No apparent canopy
openings are evident. The degradation is indicated by a lighter green color and
smoother texture compared to the non-degraded forest. By T0 (2020), degra-
dation reached its final stage, leading PRODES to regard it as "deforestation
due to progressive degradation." The observed high uncertainty values in those
regions were most probably due to the characteristic association of exposed soil
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and pasture. Despite the absence of canopy, the degradation of the previous
year, combined with the presence of exposed soil and pasture on T0 (2020),
increased uncertainty. Nevertheless, the automatic detection results were close
to the corresponding PRODES classification.

Place of interest J (Figure 46): On T−1 (2019), the region showed
degraded forest areas with associated pasture, making it impossible to identify
canopy openings. No significant changes in the degradation process were
noticed on T0 (2020) and T1 (2021), which caused PRODES not to regard
it as deforestation. Only in 2022 was the area identified as "deforestation
due to progressive degradation," which is consistent with the high uncertainty
observed two years earlier.

Place of interest K (Figure 46): Also, at this place, there is no sign of
degradation on T−1 (2019). However, before T0 (2020), the area was affected
by fire from the deforested area to the south. The fire-induced degradation
without complete deforestation is evident, as the forest still retained its canopy
and potential for self-regeneration. That history led to high uncertainty at the
detection date (2020). By T1 (2021), complete deforestation occurred in the
area.

Place of interest L (Figure 47): Selective geometric cutting is clearly
visible on T−1 (2019), indicating selective logging conducted according to a
management plan with prior planning, as the logging activity exhibited a reg-
ular pattern. On T0 (2020), complete vegetation removal with exposed soil
became evident. The associated low uncertainty values can be easily under-
stood since complete deforestation with the removal of arboreal vegetation,
indicated by the smooth texture and exposed soil, is easily detectable. The
automatic detection results mostly agreed with PRODES observations.

Place of interest M (Figure 47): On T0 (2020), a newly affected area with
selective cutting became evident, highlighting logged areas. In that case, spots
with medium to high uncertainty occurred here and there. It is worth noting
that the forest in the same area was completely cleared in T1 (2021).

Place of interest N (Figure 47): The region corresponds to non-degraded
forest in all the assessed years (2019, 2020, and 2021). As expected, uncertainty
was low in the area.

5.3.7.3
MS site

Similar to what was done for the Amazon sites, this section provides a
visual analysis of the MS site, which is located in the Cerrado biome. The
uncertainty results are interpreted across six points of interest, illustrated in
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Figure 47: Qualitative results for MT site. The first row presents optical image
snippets from T−1, T0, and T1, at the PRODES dates. Deforested polygons
for date T0 are highlighted with red borders, and for the future date T1, with
yellow borders. The black areas represent past deforestation. The second row
presents classification and uncertainty results for deforestation in T0. Trained
on an earlier pair of dates (T−2 and T−1). Uncertainty method: Ensemble.
Uncertainty metric: Predictive Entropy.

Figures 48, 49, 50, 51, and 52. Following the established convention for the prior
sites, the figures show input images from T−1 and T0 dates in the first row.
Each figure includes an optical image corresponding to one year ahead (T1).
The visual representations are derived from the RGB composition of Sentinel-
2 satellite imagery. Deforested polygons (which correspond to the PRODES
reference) from T0 are outlined with red borders, while polygons associated
with T1 are showed with yellow borders. The lower row of the figures present the
predicted probabilities for the deforestation class, the classification outcomes,
and the corresponding uncertainty map.

In general, there was a stronger alignment between uncertainty and
challenging-to-audit areas in the Amazon biome compared to the Cerrado
biome. Given that deforestation polygons in MS were smaller and more isolated
than those in the Amazon sites, each point of interest is presented in a distinct
figure.

Place of interest O (Figure 48): Suppression of herbaceous vegetation,
revealing exposed soil on the date of detection. The network generated a false
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Figure 48: Qualitative results for MS site. Place of interest O. The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

negative error for the entire polygon. While uncertainty was generally low in
the error region, small areas of high uncertainty were notable in the southern
portion. Additionally, some high-uncertainty sections in the polygon’s vicinity
aligned with subsequent deforestation in T1.

Place of interest P (Figure 49): A visible fire scar was identified on
vegetation primarily composed of herbaceous plants in the undergrowth, on
the date of detection. Despite not being recognized as suppression in PRODES,
the incident generated high uncertainty, and there was concordance between
the classification and PRODES.

Place of interest Q (Figure 50): The suppression of arboreal vegetation,
which is characterized by a closed canopy, occurred due to the introduction
of agriculture on the date of detection. In the northwest portion of the
polygon, despite deforestation taking place in T0 (2020), it only involved partial
vegetation removal, which the classification failed to detect, resulting in a false
negative. Adequately, high uncertainty was observed in the northwest region.
In the southern region, marked by low uncertainty, the classification accurately
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Figure 49: Qualitative results for MS site. Place of interest P . The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

identified areas where vegetation was entirely removed (notable as exposed soil
in the image).

Place of interest R (Figure 51): Vegetation suppression was observed
in both the herbaceous (upper part of the polygon) and arboreal (lower
part) components, marked by the emergence of exposed soil in the southwest
section and the introduction of agriculture in the upper portion on the date of
detection.

Place of interest S (Figure 52): The region, situated around a water-
course, features a blend of shrubbery and herbaceous vegetation. Herbaceous
vegetation has a high seasonality throughout the year, being drier in the dry
period and more vigorous in the wet period. This variation in vegetation vigor
can also occur in the same months but in different years, as some years are
drier than others. In 2019, the vegetation is noticeably drier along the wa-
tercourse in natural areas. Conversely, in 2020, the vegetation appears more
vigorous, and the overall area is more humid, evident in the darker shade of
vegetation. The substantial seasonality of natural herbs between 2019 and 2020



Chapter 5. EXPERIMENTAL ANALYSIS 106

Figure 50: Qualitative results for MS site. Place of interest Q. The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

contributed to elevated uncertainty. The classification process detected false
positives, whereas PRODES did not detect deforestation in the area.
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Figure 51: Qualitative results for MS site. Place of interest R. The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

5.3.7.4
PI site

Classification performance in the PI site was lower compared to the other
study areas. Even so, uncertainty still resulted in significant improvements in
F1. The results are elucidated in six areas of interest depicted in Figures 53, 54,
55, 56, 57, and 58. Similar to MS, where deforestation polygons were smaller
and more isolated compared to the Amazon sites, each area of interest is shown
in a separate figure. Like in the preceding sites, the first row displays the
inference input images T−1 and T0, along with the future date T1. The second
row presents the predicted probability for the deforestation class, followed by
the classification outcomes and the uncertainty map.

Place of interest T (Figure 53): Vegetation suppression, primarily com-
prising herbaceous plants in the undergrowth, was observed, along with the in-
troduction of agriculture on the date of detection. While uncertainty was mini-
mal across most of the error-prone area, an exception existed at the boundaries
between the accurately classified portion and the error region in the northern
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Figure 52: Qualitative results for MS site. Place of interest S. The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

sector.
Place of interest U (Figure 54): There was suppression of vegetation with

a predominance of herbaceous plants in the undergrowth, with the inclusion
of agriculture on the date of detection. As a counter-example, uncertainty was
not high in multiple error areas.

Place of interest V (Figure 55): Many phytophysiognomies in the Cerrado
are predominantly herbaceous. Herbaceous vegetation becomes senescent in the
dry period, and over the years there is an accumulation of combustible material.
Fires have occurred naturally in the Cerrado for thousands of years but
have intensified through human practices [112, 113]. The area of interest was
degraded by fire. The image, however, does not show the burning but rather
the subsequent degradation, with a lighter tone. This type of feature is not
considered deforestation in PRODES, as burning can be considered as a form
of natural management (elimination of dead herbaceous plants accumulated
on the soil) and, after the fire, there is regrowth of the vegetation, which
does not mean removal. False positives were detected in the classification.
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Figure 53: Qualitative results for PI site. Place of interest T . The first row
presents optical image snippets from T−1, T0, and T1, at the PRODES dates.
Deforested polygons for date T0 are highlighted with red borders, and for
the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

High uncertainty was obtained along a large percentage of the described
phenomenon.

Place of interest W (Figure 56): The area is predominantly made up of
degraded wooded savannah. Such vegetation shows seasonality throughout the
year, being drier in the dry period and more vigorous in the wet period. This
variation in vegetation vigor can also occur in the same months but in different
years, as some years are drier than others. In the observed area, a certain level
of degradation of herbaceous vegetation can also be seen. In T−1 (2019) the
vegetation is more vigorous, while in T0 (2020), it is drier. It is observed that
more degraded places have an appearance very similar to exposed soil in 2020.
In multiple areas, a fire occurred sometime between the dates of the 2019
and 2020 images. Such fire areas cannot be seen in the 2020 image anymore.
However, those regions are not deforestation. The phenomenon above leaves
several areas of high uncertainty and false positive detection.

Place of interest X (Figure 57): The area has a predominance of arboreal
vegetation. Regions with high seasonality in 2020 (a drier year compared
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Figure 54: Qualitative results for PI site. Place of interest U . The first row
presents optical image snippets from T−1, T0, and T1, at the PRODES dates.
Deforested polygons for date T0 are highlighted with red borders, and for
the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.

to 2019) to the south presented high uncertainty, and false positives were
detected. Deforestation polygons featuring exposed soil at the time of detection
in 2020 displayed low uncertainty and were classified similarly to PRODES.

Place of interest Y (Figure 58): The area had herbaceous shrub vege-
tation in 2019, which was suppressed in 2020. A region characterized by low
uncertainty occurred in the northern section of the polygon. The area, exhibit-
ing exposed soil in 2020, was accurately classified, mirroring the classification
performed by PRODES. However, the polygon’s most central and southern
portions were highly uncertain and detected only by PRODES. Those error-
prone regions featured less exposed soil, posing a challenge for detection. How-
ever, through visual inspection, one can discern the machinery’s lines in the
false-negative zones.
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Figure 55: Qualitative results for PI site. Place of interest V . The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.
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Figure 56: Qualitative results for PI site. Place of interest W . The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.
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Figure 57: Qualitative results for PI site. Place of interest X. The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.
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Figure 58: Qualitative results for PI site. Place of interest Y . The first
row presents optical image snippets from T−1, T0, and T1, at the PRODES
dates. Deforested polygons for date T0 are highlighted with red borders, and
for the future date T1, with yellow borders. The black areas represent past
deforestation. The second row presents classification and uncertainty results
for deforestation in T0. Trained on an earlier pair of dates (T−2 and T−1).
Uncertainty method: Ensemble. Uncertainty metric: Predictive Entropy.



6
Conclusions

In this study, a semiautomatic methodology based on uncertainty estima-
tion to reduce the effort required for visual photo interpretation was proposed,
aiming at maintaining (or even improving) the accuracy of deforestation re-
ports in the Brazilian rainforest, as traditionally produced by human analysts
since 1988 by the Brazilian National Institute of Space Research (INPE).

The proposed approach involves submitting only high-uncertainty pre-
dictions to a human expert for visual inspection and manual annotation while
keeping the automatically generated low-uncertainty outcomes. One notable
feature such a methodology is the flexibility to determine the trade-off between
auditing effort and final accuracy by selecting the total area to be audited.

The experimental analysis was conducted on data from two sites of the
Brazilian Legal Amazon, and two sites of the Brazilian Cerrado biome, where
the methodology effectively distinguished reliable predictions from those more
likely to be incorrect.

In the experiments we employed the proposed methodology considering
that only 3% of the total imaged area would be audited. As a result, for most
of the sites, the F1-score significantly improved from around 85%, produced
by the fully automatic counterpart, to values exceeding 95%. An exception
occurred on the PI site, where the absolute values were lower despite the
significant improvements: for an audit area rate of 3%, the F1-score improved
from 63.2% to 81.2%.

As mentioned before, the choice of a methodology based on human visual
interpretation stems from the high accuracy requirements to guarantee overall
accuracy as high as PRODES reports, considering [11] reported an overall
accuracy of 98.8% for the 2022 report. However, regarding the F1-score for the
deforestation class, within the Brazilian Legal Amazon, the PRODES accuracy
reaches 87.1%. It should be noted that in this work, the deforestation polygons
extracted from the PRODES database are considered ground truth, so the
accuracy values calculated for the proposed method may not be completely
precise. However, at least for the areas of the study sites considered in this
work, the related errors should be negligible, as INPE’s specialists reassessed
the respective deforestation polygons. Anyway, those numbers indicate that, at
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least for the selected study areas that illustrate typical deforestation patterns
in the region, the accuracy values obtained with the proposed method meet
the high accuracy requirement of PRODES.

Various uncertainty estimation methods were also investigated based on
single or multiple inferences for each input image. From the experiments it was
concluded that multi-inference approaches, such as Monte-Carlo Dropout and
particularly ensembles, attained significantly higher accuracy than alternatives
based on a single result per input. Furthermore, among the tested uncertainty
metrics, the predictive entropy and predictive variance yielded the best results
in the experimental evaluation. Exceptionally, the MI metric yielded the best
performance in the MS site when training on an earlier pair of dates.

Evidential Deep Learning (EDL) was also assessed as a more recent
single-outcome approach, and although it had potential due to its low compu-
tational complexity, further studies need to be done for deforestation detection.
Specifically, the effect of the inherent high class imbalance needs to be further
explored [77]. Different from previous studies, the variability of multiple repe-
tition runs for EDL was also assessed. The high variability among repetitions
was similar to the single run option, suggesting that a single point estimate
may not have been sufficient to approximate the underlying distribution of
the predicted probabilities, which is an assumption in EDL [61, 109]. Such an
assumption was originally made given a sufficiently large training set, which
indicates that increasing the training data with images from additional dates
and regions may improve EDL outcomes.

Moreover, we consulted field experts to interpret the meaning of uncer-
tainty maps and found a correspondence between regions of high uncertainty
and areas of interest for auditing experts. Notably, areas with high uncertainty
may serve as early indicators of future deforestation.

Additionally, areas with non-degraded primary forest cover show low un-
certainty, while forest degradation is usually indicated by high levels of un-
certainty on the map. When clearcut deforestation occurs, characterized by
a total removal of vegetation, there is low uncertainty. However, when defor-
estation due to progressive degradation with the presence of remaining tree
individuals is identified, the maps indicate higher uncertainty. The indication
of polygons with high uncertainty points the auditor to places where there will
often be a need to consult complementary images of higher spatial resolution
to verify whether there was an opening of the forest canopy. In qualitative
terms, sites in the Amazon biome exhibited a stronger alignment between ar-
eas of high uncertainty and those challenging to annotate, in contrast to the
Cerrado biome. This discrepancy may arise from increased year-round season-
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ality in vegetation and a notably greater diversity in deforestation types in the
Cerrado biome.

The study used a fully convolutional network employed in previous works
on automatic deforestation mapping. It is reasonable to expect that even
greater levels of accuracy can be achieved with more suitable deep architectures
tailored to the application. The question regarding the generality and scope
of the analysis, which aimed to characterize the sites where the automatic
model tends to produce results with high uncertainty, remains open for further
investigation. Those issues warrant continued research for devising operational
solutions for deforestation mapping.

During this doctorate research, a total of 8 scientific papers have been
published, including four papers in research journals, and four in international
conferences [114–121]. An additional work containing the results presented in
this document has been submitted for a research journal [122], and is currently
under review.

Future directions

As future directions, multiple research hypotheses may be derived from
this work. First, additional uncertainty estimation methods may be consid-
ered. Particularly, evidential learning may be improved by addressing the high
class imbalance, which is inherent in deforestation detection. The original EDL
work in [18] did not specifically analyze class imbalance. Adapting more recent
work addressing class imbalance in EDL is suggested [77]. Evidential learning
approaches can be divided into model-based (as assessed in this work), and
distance-based [83]. Hence, exploring and assessing distance-based evidential
deep learning approaches is suggested. Furthermore, the combination of pre-
sented uncertainty methods may be explored. Particularly, the combination of
Test-Time Augmentations (TTA) with the best performing approaches (MCD
and ensembles) may bring additional improvements as in [37]. For multiple-
outcome methods, the proposed uncertainty metric from [56] may be assessed,
which measured the overlap between the top-2 predicted class distributions
and showed promising results. Likewise, the Jensen-Shannon Distance may be
explored as an alternative uncertainty metric, which improves the assessed Ex-
pected Kullback-Leibler divergence because it is symmetric and it always has
a finite value [123].

Future works may examine the distinct significance of false negative and
false positive errors in the context of deforestation detection. Notably, in this
application, false positive errors carry considerably greater undesirability com-
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pared to false negative errors, given their potential implications for operational
and legal costs. In the current study, both false positive and true positive er-
rors were treated with equal concern. Future research could explore prioritizing
lower false negative rates when identifying the most relevant areas for audit. In
a similar way, the PRODES team embraces a conservative approach in their
estimations. Specifically, they observe activities within a predefined spatial
buffer (e.g., 15km) surrounding previously identified deforestation polygons
from earlier years. In this line, a possible approach might consider narrow-
ing down areas of interest for auditing to regions within this specified spatial
buffer.

Another future direction is related to active learning. In this work,
samples of high uncertainty were selected for re-annotation by an expert
auditor. Active learning schemes have been proposed for the same purpose,
including two different stages. First, a predefined amount of high-relevance
samples are pre-selected by selecting samples with the highest uncertainty.
Finally, a smaller group of samples with the largest diversity are selected
[89, 95]. Hence, a future direction would be to complement the proposed
methodology with a diversity selection step, aiming at further reducing the
auditing re-annotation effort. Such effort reduction might be reflected in
smaller Alert Area (AA) percentage requirements.

Another direction is temperature scaling [15]. The authors show that
most modern deep networks tend to produce overconfident probabilities, with
the confidence (as in, the largest softmax value among classes) being close
to 100% most of the time. Ideally, the confidence values should match the
true likelihood of being correct. For example, if the average confidence in 100
inference samples is 80%, their corresponding accuracy should also match 80%,
meaning the network should be calibrated. A calibrated network may produce
more trustworthy uncertainty scores, particularly in the baseline confidence-
based approach. Temperature scaling is a post-processing method for network
calibration, which should be explored in future works. It divides the logits in
the softmax function by a learned scalar parameter T , where T is learned from
an additional validation set.

Considering that the best outcomes were obtained with deep ensembles,
another future direction is to train a deep ensemble with a teacher-student
knowledge distillation method as in [31]. This would allow to train an ensemble
as a teacher and then train a single network as a student which learns
the teacher’s uncertainty in a supervised fashion, allowing it to estimate
uncertainty in a single forward pass with similar outcomes to the teacher
ensemble.
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In order to improve absolute classification metrics, alternative base
networks may be compared to the ResUnet-based architecture adopted in
this work. Particularly, vision transformer-based [124] segmentation networks
such as Swin Unet [107] and Dense Prediction Transformers (DPT) [125]
may be worth exploring in conjunction with multiple uncertainty estimation
techniques such as MCD, ensemble, and evidential learning. Transformers
offer the advantage of paying attention to the entire image instead of a pre-
defined neighboring kernel with a fixed size, as in convolutional networks.
Examining the mentioned base networks, we can determine whether the
suggested uncertainty-based methodology consistently yields the intended
results independently of the selected base architectures.

Closely related to uncertainty estimation, out-of-distribution detection
methods detect samples outside the training distribution as unknown outliers,
which may also require re-annotation by an expert auditor. An example of
samples outside the training distribution occurs when inference is made in
geographical areas with modified spatial or temporal characteristics compared
to the original training site (also known as anomaly detection or domain shift
detection) [126]. Another example occurs when new classes different from the
ones seen during training occur at inference (also known as open set learning)
[115, 127]. Future works may combine out-of-distribution detection methods
such as OpenPCS++ [115] with uncertainty estimation to produce more robust
results regarding areas of interest for the auditing annotators in the context of
deforestation detection.

Regarding the uncertainty interpretation analysis presented in this work,
future works may extend such analysis by interpreting both the aleatoric and
model uncertainty independently, and analyzing which sources of uncertainty
belong to each of them. Aleatoric uncertainty may be estimated from Test-
Time Augmentation (TTA).

In this work, the network was trained with an earlier image pair and
tested on an unseen pair of dates. To improve classification accuracy, future
works may add more training data by using multiple pairs of earlier images
as input, taking advantage of the vast amount of ground truth information
reported by PRODES since 1988.

In the Cerrado biome, there is a much larger variability in types of
deforestation compared to the Amazon biome, with nearly ten types of
deforestation [128]. Future works may cluster the training data into those
multiple types of deforestation and balance the number of samples per cluster
presented to the network during training to ensure that the network equally
learns all types of deforestation. Such an approach was already used in the
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context of domain adaptation [129] and may improve the classification accuracy
in the PI site, where the lowest-performing result was obtained.

Finally, future work may implement the proposed uncertainty estimation
strategy in an operational setting, encompassing large spatial areas such as the
entire Brazilian Amazon and Cerrado biomes instead of smaller study areas as
the ones assessed in this work. In this work, it was assumed that the auditing
expert would re-annotate the high-uncertainty samples with 100% accuracy. In
further studies, human auditing experts may be included in the proposed semi-
automatic methodology to validate its usefulness in an operational setting. It
should be noted that the proposed methodology is currently being used in
selected regions of interest for the new PRODES 2023 figures, with human
auditing experts leveraging the proposed uncertainty estimates during their
auditing procedure. The proposed uncertainty assessment methodology may
be added to the currently operational monitoring system Brazil Data Cube
(BDC) [130], as well as taking advantage of the open source time series analysis
tool Satellite Image Time Series (SITS) [131], which accepts data from BDC
as input.
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7
Appendix

In the following figures, the RGB composition for the Sentinel-2 input
images at inference (T−1 and T0) in the PA (Figures 59 and 60), MT (Figures
61 and 62), MS (Figures 63 and 64), and PI (Figures 65 and 66) sites are
presented.
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Figure 59: RGB composition for the S2 image in T−1, for the PA site.
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Figure 60: RGB composition for the S2 image in T0, for the PA site.
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Figure 61: RGB composition for the S2 image in T−1, for the MT site.
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Figure 62: RGB composition for the S2 image in T0, for the MT site.
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Figure 63: RGB composition for the S2 image in T−1, for the MS site.
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Figure 64: RGB composition for the S2 image in T0, for the MS site.
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Figure 65: RGB composition for the S2 image in T−1, for the PI site.



Chapter 7. Appendix 145

Figure 66: RGB composition for the S2 image in T0, for the PI site.
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