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Abstract

Batista, Evelyn Concei¢ao Santos; Caarls, Wouter (Advisor). A frame-
work for automated visual inspection of underwater pipelines.
Rio de Janeiro, 2023. 90p. Tese de Doutorado — Departamento de En-
genharia Elétrica, Pontificia Universidade Catélica do Rio de Janeiro.

In aquatic environments, the traditional use of divers or manned under-
water vehicles has been replaced by unmanned underwater vehicles (such as
ROVs or AUVs). With advantages in terms of reducing safety risks, such as
exposure to pressure, temperature or shortness of breath. In addition, they are
able to access areas of extreme depth that were not possible for humans until
then.

These unmanned vehicles are widely used for inspections, such as those
required for the decommissioning of oil platforms. In this type of inspection, it
is necessary to analyze the conditions of the soil, the pipeline and, especially,
if an ecosystem was created close to the pipeline. Most of the works carried
out for the automation of these vehicles use different types of sensors and
GPS to perform the perception of the environment. Due to the complexity of
the navigation environment, different control and automation algorithms have
been tested in this area. The interest of this work is to make the automaton
take decisions through the analysis of visual events. This research method
provides the advantage of cost reduction for the project, given that cameras
have a lower price compared to sensors or GPS devices.

The autonomous inspection task has several challenges: detecting the
events, processing the images and making the decision to change the route in
real time. It is a highly complex task and needs multiple algorithms working
together to perform well. Artificial intelligence presents many algorithms to
automate, such as those based on reinforcement learning, among others in the
area of image detection and classification.

This doctoral thesis consists of a study to create an advanced autonomous
inspection system. This system is capable of performing inspections only by
analyzing images from the AUV camera, using deep reinforcement learning to
optimize viewpoint planning, and novelty detection techniques. However, this
framework can be adapted to many other inspection tasks.

In this study, complex realistic environments were used, in which the

agent has the challenge of reaching the object of interest in the best possible



way so that it can classify the object. It is noteworthy, however, that the
simulation environments utilized in this context exhibit a certain degree of
simplicity, lacking features like marine currents or collision dynamics in their
simulated scenarios.

At the conclusion of this project, a Visual Inspection of Pipelines (VIP)
framework was developed and tested, showcasing excellent results and illus-
trating the feasibility of reducing inspection time through the optimization of
viewpoint planning. This type of approach, in addition to adding knowledge to
the autonomous robot, means that underwater inspections require little pres-
ence of a human being (human-in-the-loop), justifying the use of the techniques

employed.

Keywords
Deep Reinforcement Learning; Anomaly Detection; Viewpoint planning;
Classification; Autonomous Robot; AUV; ROV:; Framework.



Resumo

Batista, Evelyn Concei¢do Santos; Caarls, Wouter. Um framework
para inspecao visual automatizada de dutos subaquaticos. Rio
de Janeiro, 2023. 90p. Tese de Doutorado — Departamento de Engenharia
Elétrica, Pontificia Universidade Catdlica do Rio de Janeiro.

Em ambientes aquaticos, o uso tradicional de mergulhadores ou veiculos
subaquaticos tripulados foi substituido por veiculos subaquaticos nao tripula-
dos (como ROVs ou AUVs). Com vantagens em termos de reducao de riscos
de seguranca, como exposicao a pressao, temperatura ou falta de ar. Além
disso, conseguem acessar areas de extrema profundidade que até entdo nao
eram possiveis para o ser humano.

Esses veiculos nao tripulados sdo amplamente utilizados para inspegoes,
como as necessarias para o descomissionamento de plataformas de petréleo.
Neste tipo de fiscalizacdo é necessario analisar as condi¢des do solo, da tu-
bulagao e, principalmente, se foi criado um ecossistema proximo a tubulagao.
Grande parte dos trabalhos realizados para a automacao desses veiculos utili-
zam diferentes tipos de sensores e GPS para realizar a percep¢ao do ambiente.
Devido a complexidade do ambiente de navegagao, diferentes algoritmos de
controle e automacao tém sido testados nesta area. O interesse deste trabalho
é fazer com que o automato tome decisoes através da analise de eventos visuais.
Este método de pesquisa traz a vantagem de reducao de custos para o projeto,
visto que as cameras possuem um preco inferior em relagdo aos sensores ou
dispositivos GPS.

A tarefa de inspecao auténoma tem varios desafios: detectar os eventos,
processar as imagens e tomar a decisio de alterar a rota em tempo real. E
uma tarefa altamente complexa e precisa de varios algoritmos trabalhando
juntos para ter um bom desempenho. A inteligéncia artificial apresenta diversos
algoritmos para automatizar, como os baseados em aprendizagem por reforgo,
entre outros na area de detecgao e classificacao de imagens.

Esta tese de doutorado consiste em um estudo para criagao de um sistema
avancado de inspecao autonoma. Este sistema ¢é capaz de realizar inspec¢oes
apenas analisando imagens da cidmera AUV, usando aprendizado de reforco
profundo para otimizar o planejamento do ponto de vista e técnicas de detecgao
de novidades. Contudo, este quadro pode ser adaptado a muitas outras tarefas

de inspeccao.



Neste estudo foram utilizados ambientes realistas complexos, nos quais o
agente tem o desafio de chegar da melhor forma possivel ao objeto de interesse
para que possa classificar o objeto. Vale ressaltar, entretanto, que os ambientes
de simulacao utilizados neste contexto apresentam certo grau de simplicidade,
carecendo de recursos como correntes maritimas ou dindmica de colisao em
seus cenarios simulados.

Ao final deste projeto, o Visual Inspection of Pipelines (VIP) framework
foi desenvolvido e testado, apresentando excelentes resultados e ilustrando
a viabilidade de reducdo do tempo de inspecao através da otimizacao do
planejamento do ponto de vista. Esse tipo de abordagem, além de agregar
conhecimento ao rob6 autéonomo, faz com que as inspecoes subaquaticas exijam
pouca presenga de ser humano (human-in-the-loop), justificando o uso das

técnicas empregadas.

Palavras-chave
Aprendizado por Reforco Profundo; Deteccao de anomalia; Planeja-
mento de ponto de vista; Classificacdo; Robd Autéonomo; AUV; ROV;

Framework.
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1

Introduction

Currently, the demand for services in the area of automated inspection
(1) (2) (3) (4) (5) (6) (7) (8) (9) is evident. These autonomous intelligent
inspection systems are being widely used to make inspections faster, more
effective and safer as they do not require a human in hazardous environments.

In aquatic environments, the traditional use of divers or manned under-
water vehicles has been replaced by unmanned underwater vehicles (such as
ROVs or AUVs). While ROVs (Remotely Operated Underwater Vehicles) need
an operator to control them remotely, AUVs (Autonomous Underwater Vehi-
cles) have the ability to explore deep waters by following pre-programmed tra-
jectories, while also having the capacity to make adaptive decisions during the
mission, showcasing a remarkable degree of independence and self-sufficiency.

Inspections executed by ROVs are usually recorded for later analysis by
specialists, because despite having the possibility of transmitting data in real
time, ROVs have a more limited operation compared to AUVs, since they have
a lower speed, mobility and space range.

Unmanned underwater vehicles (UUVs) have advantages in terms of
reducing safety risks, such as exposure to pressure, temperature or shortness
of breath. They also have the ability to access areas of extreme depth that
were not possible for humans until then. Furthermore, the costs involved in
inspections using UUVs are lower than manned underwater vehicles, exceeding
them in the number of underwater operations.

These vehicles are of great importance in various industries and in envi-
ronmental monitoring. In Brazil, where the primary source of oil extraction is
from pre-salt reservoirs, these vehicles are indispensable to the oil industry, be-
cause they enable the inspection of equipment, marine life, and environmental
impacts associated with offshore operations.

Some vehicles have a disadvantage, they have no autonomy to make
decisions and often their routes are already planned (10) (11) (12). This is
an impediment when the vehicle identifies events of interest and is unable to
capture necessary images or focus at that point without the order of a human
controller. This results in the repetition of an inspection or the loss of the
event of interest. The cost involved in running these vehicles is quite high, so
the industry is looking for solutions to this problem, in order to be able to
make these decisions in real time.

Furthermore, most of the work presented for automating the perception
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of the environment for automata is done through sensors of different types
and GPS (13) (14) (15). Due to the complexity of the navigation environment,
different control and automation algorithms have been tested in this area.
In this work, the interest is that the automaton decision is taken through
the analysis of visual events. Only a small part of the surveyed literature
uses images to automate and make decisions about the routes (16) (17) (18),
because of the complexity of the environments and the time it can take to
process the images for decision-making.

Artificial intelligence (Al) in recent years has developed algorithms that
allow autonomy. An example is the self-driving car, which is at a very advanced
level of development and has allowed for an important advance in this area
(19). These AI algorithms can be used in the area of underwater vehicles in
order to give some degree of autonomy, so as to make real-time decisions, such
as if the vehicle has observed events of interest and needs to change its route.
This would make it possible to optimize the time and costs of these vehicles.

The autonomous inspection task has several challenges: detecting the
events, processing the images and making the decision to change the route in
real time. It is a highly complex task and needs multiple algorithms working
together to perform well. Artificial intelligence presents several algorithms for
autonomy, such as those based on reinforcement learning and several others in
the area of image detection and classification.

One example is anomaly detection task, which is already well-known in
various fields, such as maintenance and monitoring (20)(21), process automa-
tion (22), video surveillance (23) (24), defect detection (25), supply chain (26),
time series (27) and others. However, as previously mentioned, the focus of
this study lies in underwater inspections, which poses additional challenges
since the underwater images usually have a very similar appearance due to
low lighting and the uniformity of the ground. Sunlight decrcases significantly
as it penetrates the water, and most colors are absorbed at lower depths. As
a result, underwater images often have a blue or greenish tone, can be tur-
bid, and colors are generally less vibrant than on the surface (28), making it
difficult to discern objects in the underwater environment.

Another vital aspect in AUV operations is viewpoint planning, a crucial
task that enables AUVs to optimize their course and position in order to
achieve optimal perspectives of targets of interest. By meticulously planning
the viewpoints from which the AUV captures data, it can ensure the acquisition
of high-quality images and information, facilitating accurate and detailed
analysis, allowing the agent to perform inspection tasks faster and more

accurately, saving valuable time and resources for the petroleum industry (29)
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(30) (31) (32).

Viewpoint planning involves a combination of advanced algorithms and
intelligent decision-making processes. AUVs utilize their onboard sensors, such
as sonar, cameras, and other specialized equipment, to detect and identify
potential targets. The data collected from these sensors is then analyzed to
determine the optimal viewpoints from which the AUV should capture images

or gather specific information (33). Carcful viewpoint selection is critical for
many computer vision and robotic tasks (34) (35) (36) (37) (38).

1.1
Problem Definition

One of the most important inspections is carried out for the decommis-
sioning of oil platforms. Abandonment or decommissioning occurs when the
platform, after a certain period, reaches its final stage of production. This can
happen when the production of oil and gas is disadvantageous, resulting in
the closure of activities, cleaning and removal of structures and environmental
recovery of the site, which are operations with a high cost and high potential
for generating environmental impacts.

Brazil is the ninth largest oil producer in the world and its main reserves
are offshore, which is why inspection of equipment and the environment
by AUV is essential. In the case of offshore platforms, some ecosystems
are created on top of or close to underwater structures. When this occurs,
the structures will be partially removed, as the ANP (National Agency of
Petroleum, Natural Gas and Biofuels) does not allow the removal in case
there is marine life around it. Therefore, inspections to assess the presence
of marine life in the decommissioning process of offshore platforms become
highly cautious procedures. It is necessary to conduct a careful assessment of
the area, identifying and documenting the species present, as well as evaluating
the potential impact of removing the structures on these marine communities.
All of this requires advanced techniques, such as the use of Autonomous
Underwater Vehicles (AUVs), capable of collecting precise and detailed data
in complex underwater environments.

Currently, decommissioning inspections are recorded to enable later
analysis by experts, such as biologists, in order to identify potential impacts
on wildlife and flora during equipment removal. However, these videos often
have a duration of over 48 hours, leading to significant fatigue for the experts
who analyze them. This prolonged viewing period can, in some cases, result in
errors due to human fatigue. Given the sensitive nature of this operation, it is

imperative that such errors be minimized or avoided.
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1.2
Proposed Solution: An Novel Autonomous Inspection Framework

The use of a camera instead of GPS and sensors for AUV (Autonomous
Underwater Vehicle) control has been the subject of recent research due to its
significant cost reduction. A camera has a considerably lower cost compared to
other devices. Studies, as exemplified by (39) (40) (41) (42) (43), investigate
the use of images captured by cameras or sonars, employing detection or
segmentation methods to guide and plan the trajectory of the AUV. Thus, this
study also delves into the field of computer vision as a means of controlling
the AUV.

This work consists of an autonomous inspection framework that elimi-
nates the need for experts to monitor videos for extended periods. However, it
is crucial to emphasize that human interventions are still required in specific
operations, such as readjusting the SVM model after an inspection, or in the
event that the AUV does not properly identify the pipeline. This characterizes
a human-in-the-loop approach, where human involvement plays an essential
role in optimizing and correcting the system.

This system is also capable of automatically capturing the most rele-
vant angles of the objects under analysis, significantly reducing the likelihood
of needing to do a new inspection due to the loss of some important detail.
Furthermore, upon completing the inspection, the system automatically gen-
erates a detailed report, providing valuable support to the experts involved in
the process.

This VIP framework (Figure 1.1) is capable of performing underwater in-
spections just by analyzing images from the AUV camera, using deep learning,
reinforcement learning and novelty detection. However, this framework can be
adapted to many other inspection tasks. The VIP framework consists of steps
that allow an AUV an autonomy capable of detecting objects of interest and
tracing optimized routes that make it possible to record images of these objects
for their classification.

The Figure 1.1 presents the simplified framework that will be presented
in this study. As can be seen, the automaton first performs a step, which is the
equivalent of following the duct to be inspected, then it checks if the image
obtained by the automaton camera contains any anomalies. In case an anomaly
is found, the automaton will have to approach the object in the best way, in
order to capture the best images of the anomaly. Finally, if the inspected object
is considered unknown, the SVM model will be retrained with the collected
images from it, and return to the saved current position. At the end of the

inspection, a report is generated, containing relevant information about the
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objects found, such as their coordinates, for example.

Go to recorded
position

Novehy Retrain the
detection class

SV detected?

Viewpoint planning
with reinforcement
learning and classification

Detected
anomalies?

Save current
position

Figure 1.1: Simplified Visual Inspection of Pipelines (VIP) framework diagram

This study contributes to the creation of a VIP framework responsible
for controlling an AUV during a pipeline inspection while simultaneously
searching for anomalies and learning to classify them using only images
from the autonomous camera. To achieve this goal, the study incorporates a
novelty detection model, allowing the system to quickly and accurately identify
novelties in real-time. Additionally, the study also integrates a dedicated model
to reduce inspection time in viewpoint planning, resulting in time savings for
the experts involved in the process. This innovative approach provides a more
efficient inspection and more accurate detection of anomalies in underwater
pipelines.

It is important to emphasize that in this work, the focus is on Artificial
Intelligence models, rather than control algorithms, which are addressed in a

relatively simplified manner in this study.

1.3
Thesis Organization

This thesis will be divided into chapters as follows:

Chapter 2: Theoretical background — introduces concepts about Deep
Learning, Deep Reinforcement Learning, Novelty detection, Viewpoint plan-
ning and other relevant subjects to this study.

Chapter 3: Methodology - explains the system proposed for this thesis.

Chapter 4: Experiments - introduces the environments used in the tests

and explains each experiment performed.
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Chapter 5: Results - reveals the results of tests performed in the previous

chapter.
Chapter 6: Conclusions - presents conclusions drawn after observing the

results of the experiments and shows where the solutions of this work will be

applied in future work.



2
Theoretical background

2.1
Deep learning

In this work neural network models and deep learning are used in
some learning tasks, in the following sections the models and techniques
based on neural networks used in this project will be introduced. Neural
networks are models inspired by biological brains. Its components simulate
the interactions between axons and dendrites, which emit and receive nerve
impulses, respectively. Neural networks have shown good results when used in
very complex problems, such as: segmentation of objects in images or videos,

description of scenes or semantic extraction of words.

2.1.1
Convolutional Neural Network

As stated by Mohammad Mustafa Taye in (44), convolutional neural
networks (CNNs) are one of the main types of neural networks used for
image recognition and classification. CNNs serve various purposes, including
the identification of objects, image manipulation, computer vision tasks,
and facial recognition. These networks take image data as input, and their
distinctive capability lies in autonomously acquiring a hierarchy of features,
subsequently employed for classification, eliminating the need for manual
feature engineering.

A convolution is a mathematical operation between two functions f and
h, which produces a third function seen as a modified version of f as a function
of h. In this work, f is delimited as a sequence of vectors and h is a linear filter
that makes each new element of the output a weighted sum of the elements
in the context of each element processed in the sequence. Thus, in the input
sequence (or in the previous convolution outputs) a set of linear filters with
the same weights for the entire sequence is applied, in the case of convolutional
networks, learned by back-propagation. This achieves certain properties in the
output sequence, one of the most important being translation invariance.

When there is an input f and a filter h, each element (7, j) of the output
g of a convolution is defined as g(i, j) = > ; f(ik, jl)h(k, 1), where k and [ are
the height and width of the filter respectively. Figure 2.1 shows an example of

this operation.
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Figure 2.1: 2D convolution

Regarding the first advantage, the interaction parameters between each
input and output are shared, causing there to be more interactions than pa-
rameters. As a result, memory requirements decrease and correlations between
neighboring pixels are learned.

CNNs offer several significant scientific advantages in the field of com-
puter vision and image processing. One key advantage is their ability to au-
tomatically learn hierarchical representations from raw data, such as images.
CNNs employ a series of convolutional layers that apply filters to extract fea-
tures like edges, textures, and shapes, progressively learning more abstract
features in deeper layers. This mimics the human visual system’s hierarchical

processing, allowing CNNs to capture complex patterns efficiently.

2.1.2
Fully Connected Layers (FC)

FC layers work like a traditional neural network and contain approx-
imately 90% of the network parameters (45). The 1D output vector of the
network is usually of predefined length. For example, for an image classifica-
tion task, it will be of length equal to the number of categories (classes) that
are taken.

As this type of network handles a large number of parameters, it is very
expensive to train them, since they require a large computational load to
train them. For this reason, many authors defend reducing the connections
between the neurons of these layers using some kind of method, as in the case
of GoogleLeNet (46), reducing their number, or even eliminating them (47).

The most complex part when working with this type of architecture is
training. If it is decided to use a supervised strategy, both in feedforward
and backpropagation, computers with high computational capacity will be

required.
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2.1.3
Loss function

In machine learning, the acquired knowledge is evaluated through loss
functions. If the predictions deviate too much from the actual results, the loss
function will return a very large number. The optimization function (48) uses
this loss to adjust the model’s parameters during the training process, reducing
the error and improving the model’s performance.

In general, loss functions can be classified into two main categories
depending on the type of learning task we are dealing with: Regression
Losses and Classification Losses. In this work, more emphasis will be given

to classification losses, which are introduced below.

2.1.3.1
MSE
The Mean Squared Error (MSE) is a widely used metric to quantify the
dissimilarity between two sets of values. The MSE is calculated as the average
of the squared differences between the two sets (2-1).
ij\i1(yi — 4i)°

MSE(y,9) = N

(2-1)
Where:

— N is the total number of data points or observations
— y; represents the actual (ground truth) values

— 1); represents the predicted values.

A lower MSE value indicates better similarity between the two sets of

values, with a value of 0 indicating perfect similarity.

2.1.3.2
SSIM

The Structural Similarity Index (SSIM) is a more comprehensive metric
that not only considers pixel-wise differences but also takes into account
structural information, luminance, and contrast. SSIM measures the structural

similarity between two images and is defined as 2-2.

(2uypy + C1) (2045 + Ca)

SSIM(y, §) =
(:9) (12 + 12+ C1)(02 + 02 + Cy)

(2-2)
Where:

— 1y and py are the means of the sets of values y and ¢ respectively.
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— 04 and oy are the standard deviations of values in sets y and § respec-

tively.
— 0y is the covariance between the two sets of values.

~ C) and Cy are constants added for stability, typically C; = (k;L)? and
Cy = (kzL)z, where L is the dynamic range of values, and k; and k9 are

constants.

A higher SSIM value indicates better similarity between the two images,

with 1 indicating perfect similarity.

2.1.4
Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) is an algorithm based on the work
of David Rumelhart in 1986 (49). RNNs are known for their ability to process
sequential data, recognize patterns, and predict the end result. Therefore, video
analysis, image subtitling, natural language processing and music analysis
depend on the capabilities of recurrent neural networks. Unlike other artificial
neural networks, which assume independence between input data, RNNs
actively capture their sequential and temporal dependencies.

The RNN operates in a recurrent manner, where at each time step, it
takes an input data point and combines it with the internal memory/state
from the previous time step. This combination is passed through a set of
mathematical operations, which include weights and activation functions, to
produce an output and update the internal state.

The key idea is that the internal state of the RNN serves as a kind of
memory, storing information about previous time steps. This allows the RNN
to capture patterns and dependencies in sequential data, making it suitable
for tasks like natural language processing, speech recognition, and time series

forecasting.

2.1.4.1
Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network
(RNN) used in machine learning and deep learning. LSTMs are designed to
process and make predictions based on sequences of data, such as time series

or natural language text.
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Figure 2.2: LSTM cell

LSTMs work by maintaining a memory cell that can store information
over long sequences. This memory cell (Figure 2.2) has some key components:
an input gate, a forget gate, and an output gate. These gates control the flow

of information in and out of the cell. They are described below:

— 1 - Forget Gate: The forget gate decides which information from the

previous memory cell state should be forgotten or remembered;

— 2 - Input Gate: The input gate decides which information from the

current input should be stored in the memory cell;

— Update Memory Cell: Using the input gate, the LSTM updates the
memory cell by adding new information to it, and using the forget gate

it decides which old information to discard;

— 3 - Output Gate: The output gate decides what information from the
updated memory cell should be used to generate the output at the current
time step. It takes the current input and the previous hidden state as

input and calculates the output value.

LSTMs offer several advantages in sequential data processing. Their
ability to capture and retain long-term dependencies makes them well-suited
for tasks where context from distant past inputs is critical, such as natural
language processing and speech recognition. Their versatility allows them to

handle various types of sequential data, from text to time series, making
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them a valuable choice for a wide range of machine learning applications.
Furthermore, LSTMs are robust in managing sequences of varying lengths,

providing flexibility and reliability in modeling sequential data.

2.2
Novelty detection

Novelty detection or anomaly detection is the detection of rare items,
events, or observations that arouse suspicion because they are different from
most data (50). By establishing a baseline of normal behavior, novelty detec-
tion algorithms can help detect deviations or irregularities that might indicate
fraud, faults, or unusual events. Designing a novelty detector presents an im-
mensely intricate challenge, primarily because of the inherent unpredictability
of novelties and their unavailability for training purposes. These factors un-
derscore the fundamentally unsupervised nature of the problem at hand.

Novelty detection requires something that records an event, something
like a memory or, more recently, represented in deep autoencoders. In general,
the novelty methods build some model of a training set that is selected to
contain no examples (or very few) of the important (i.e., novel) class (51) (52).

There are several applications in the anomaly detection area, such as
video surveillance (53) (54) (55) (56), video inspections (57) (58) (59) (60),
medical images (61) (62) (63) (64) (65) and fraud detection (66) (67) (68)
(69) (70). In this study, as well as in some of the previously mentioned
references that address video inspections and fraud detection, we will employ

the autoencoder model.

2.2.1
Autoencoder

In the case of this study, an autoencoder was used. An autoencoder is a
neural network architecture class that aims to learn how to compress/reduce
a data (step known as an encoder) and then learn to reconstruct the data
from the version that was previously reduced (step known as a decoder). It
is expected that the reconstructed data will suffer some (preferably minimal)
information loss during the process (measured by the reconstruction loss).
There are some types of autoencoder (Figure 2.3), in this work we use two of
them: Dense Autoencoder (dAE) and Convolutional Autoencoder (cAE).

— dAE: It is an autoencoder that contains dense and convolutional layers.
Duec to the presence of dense layers, the size of the representation
generated by the encoder depends solely on the number of neurons used

in the last dense layer of the encoder;
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— cAE: It is an autoencoder network consisting only of convolutional
layers, which results in the size of the representation generated by the
encoder being equivalent to the widthx height x dimension of the output

from the last convolution.
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Figure 2.3: An overview of different autoencoder frameworks: Dense autoen-
coder (a) and Convolutional autoencoder (b).

2.3
Reinforcement learning

Reinforcement learning (RL) (71) is an area within machine learning
dedicated to the development of algorithms that allow an agent to achieve
a goal, maximizing an accumulated reward value. Some examples of RL
algorithms include Q-Learning (72), which estimates action quality in discrete
action spaces; Deep Q-Networks (DQN) (73), which handles high-dimensional
state spaces using deep neural networks; and Deep Deterministic Policy
Gradients (DDPG) (74) for continuous action spaces.

There are a few things to define in reinforcement learning that are
fundamental to the subject. First, there is a concept of reward. This is what

differentiates reinforcement learning algorithms from other types of machine
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learning algorithms. An agent will try to maximize not only its immediate
reward, but future rewards as well. Reinforcement learning algorithms have
often found new ways to accomplish this.

In RL, an agent can be an instance of different types, for example a robot
or simply a system. There is a large number of practical applications for these
types of problems, where the main advantage is that it does not require an
expert to find the solution to the problem, but simply the problem must be
properly formulated, specifying the rewards or penalties for the agent to learn
it.

The purpose of an agent during reinforcement learning is to find a
strategy that leads to choosing the best action and obtaining the highest
cumulative reward expected in any state. An agent is considered to have
learned an optimal strategy, usually called optimal policy, when it is able to
accumulate the highest possible reward for the specified task. Often, finding a

policy close to optimal is enough to solve the task properly.

2.3.1
Markov decision process (MDPs)

Markov Decision Processes (MDPs) are the most used models to deter-
mine the reinforcement learning problems. MDPs can be considered as a type
of sequential decision process, where the Markov properties are fulfilled. (75).

The MDP is defined through the tuple < S, A, f,R > , following a
notation similar to that presented by Sutton and Barto (76), where S is a
set of states, where s, € S the state in which the agent is at the moment ¢,
A is the set of actions that the agent can perform when it is in the state s;,
where a; € A(s;) a action that the agent processes at the instant ¢ when it was
in the state s;, f is a transition function and finally, R is a reward function.

The agent is tasked with finding the policy 7 : S x A — [0, 1], where
7 (s, a) indicates the probability that the agent selects the action @ in the s

state, in order to maximize the reinforcement parameter.

23.1.1
Markov property

A stochastic process is said to have the Markov property if the conditional
probability of the next state of the process, s;y1, depends only on the state in
which the agent was positioned, s;, and of the action performed in this state
in a.

A finite MDP can be defined by its set of actions, states and state

transition functions and reinforcements, so according to the Markov property,
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we can obtain the state transition function, as shown in the equation 2-3:

f(s,a,8") = Pr{si1=5|st =s,a; = a} (2-3)
where Pr is the probability distribution over the next state of the system
given the current state and the action taken by the agent.
It is verified that Vs € S,Va € A, Y, c5 f(s,a,s;) = 1, since the function
f determines a distribution of probabilities.
In the equation 2-4, the reward function is displayed, in which E defines

an expectation about the amount to be received.
R(s,a) = E{riii|st = s,a; = a} (2-4)

2.3.2
Policies

The policy 7 is used for the agent to choose the action to perform in each
state. When an agent follows a policy 7, it means that, at any instant k& and
state sy, the action performed will be given by ay = 7(sy).

If the policies perform a mapping between states and distributions in
the action space, ™ : S x A — [0, 1], they will be stochastic, respecting the

following conditions for each state s € S (equations 2-5 and 2-6).

m(s,a) >0 (2-5)

> 7(s,a) =1 (2-6)
acA
The policy is part of the agent, and in general, the goal of RL algorithms

is to find an optimal policy (77). An example of how a policy works can
be given as follows: assuming an MDP where an initial state distribution,
I:S — [0,1], defines the probability that the system starts in the statesy, the
policy 7 is then used, so the action performed by the agent will be ay = 7(s¢)
and as a consequence of this action, according to the transition function f, a
transition to the state s; = f(sg, ap) and then the agent will receive a reward
ro = R(s,a,sg).

The process described above will be repeated, generating the trajectory
S0, @, To, S1, 01,71, S2, Ag, ... In the case of an episodic problem, the trajectory
will end in a terminal state Sierm € Sierm, Where Sier, € S, and then a new
sequence will start with a state determined by I. If the problem is continuous,

the trajectory can be extended indefinitely.
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2.3.3
Value function and Bellman equations

Reinforcement learning algorithms mostly aim to try to obtain the =
action policy by approximating the value functions. Such functions evaluate
the agent’s benefit of being in a state or the agent’s benefit of performing
an action from a state. Therefore, there are two types of value function, the
state-action value function () and the state-value function V.

The function @ of a policy 7 , @™ : S x A — R is equal to the return
obtained when, from a state s and the action a, follows the policy 7 (equation
2-7)

Q7 (s,a) = > v"R(sk, ax, 50) (2-7)
k=0
Another expression is the optimal policy. It is one that in each state

selects the action with the highest value of the optimal () function, maximizing

the return obtained (equation 2-8)

7 (s) = argmazx,Q(s,a) (2-8)
where argmazx,g(a) for any function g(.) returns the value of a that gives
the maximum of the function g(a).

For any given function @), a policy 7 satisfying the equation 2-9

7(s) = argmazr,Q(s,a) (2-9)

is considered greedy about (). Therefore, a possible way to find the

optimal policy is to first calculate Q* and then apply 7*(s) = argmaz,Q*(s, a)
to get a greedy policy towards Q*.

Through the Bellman optimality equation, the optimal value functions Q*
can also be characterized recursively. The aforementioned equation determines
that the optimal value of performing an action a in a state s is equal to the sum
of the immediate reward obtained plus the value of @*, which was obtained

by the optimal action in the subsequent state (equation 2-10)
Q*(s,) = R(s,a) + 7 max Q" (f(s, ), ao) (2-10)
2.3.4

Deep Q-Network (DQN)

Q-learning (72) is a reinforcement learning algorithm used to find the
optimal action-selection policy for a Markov decision process. The Q-learning

update rule is used to iteratively update the Q-values, which represent the
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expected cumulative rewards of taking a particular action in a particular state.

The update rule is as follows (equation 2-11):

Q(s,0) + Qs,a) +a- (R maxQso, a0) = Qls,0)) (2-11)

In this equation:

— (s, a) represents the Q-value for taking action a in state s.

— « is the learning rate, which controls the step size of the updates. It’s a

value between 0 and 1.

— R is the immediate reward received after taking action a in state s.

v is the discount factor, which represents how much importance is given

to future rewards. It’s also a value between 0 and 1.

— S¢ is the next state that the agent transitions to after taking action a in

state s.

— ag represents the action that maximizes the Q-value in the next state sg.

This method makes it possible to represent, in a very precise way, the
value of the long-term rewards that can be obtained in each state for each of the
available actions. However, this representation also implies a very important
problem: increasing the complexity of the state also increases the size of the
Q table, but exponentially.

The objective is to create a model that can handle a large @) table
while fitting within memory constraints. This approach involves using a
neural network to approximate the () function, a technique within Deep
Reinforcement Learning (DRL) which combines principles from reinforcement
learning and deep learning. A notable application of this method was in
the 2013 project "Playing Atari with Deep Reinforcement Learning" by the
DeepMind team (73), where they employed Deep Q-Networks (DQN).

DQN uses experience buffer to improve the stability and efficiency of
training. This method consists of storing tuples of the form < s,a,r, sy > in
replay memory (a memory that stores past transitions), where s is the state
current, a action taken, r reward obtained and sy next state; and during the
training of the network, a set of tuples selected randomly among all stored
ones. That way, the network could train using samples in a different order in
which they occurred.

The algorithm in Algorithm 1 operates as follows:
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Algorithm 1 Deep Q-Learning algorithm with experience replay

1: Initialize replay memory D to capacity N

2: Initialize action-value function () with random weights

3: Create ¢ function to resize and normalize images

4: for episode = 1, M do

5. Initialize sequence s; = {x1} and preprocess sequence ¢, = ¢(s)
6: fort=1,Tdo

7: With probability € select a random action a;, otherwise select a; =
argmazx,Q*(o(se), a; 0)

8: Execute action a; in simulator and observe reward r, and image x;,1

9: Set $441 = Si, T¢y1 and Preprocess ¢y = ¢(S111)

10: Store transition (¢, a;, 1, ¢py1) in D

11: Sample random minibatch of transitions

12: B ={(¢, 05,75, 8})... (b, Qjr, Tjar, Fj ) 725277 C D

13: for each sequence € B do

14: Set y; = r; for terminal state

15: Set y; = rj + ymazyQ(¢}, a; ) for non-terminal state

16: Calculate £; = (y; — Q(¢j,a,;0))?

17: Perform a gradient descent step on L;

18: end for

19: end for
20: end for

2.3.5
Deep Recurrent Q-Network (DRQN)

One of the biggest problems faced by a DQN (section 2.3.4) is the partial
knowledge of the environment (78). A DQN works with a Markov decision
process (MDP) (79), which is a good formalism, but in the field that concerns
this project, it is not possible to implement this pattern. In the environments
considered here, there is missing information for optimal decision-making. For
example, the AUV when looking at a single image, may not be able to make
the best decision.

The proposed solution to this problem is to give the agent the ability
to temporally integrate the observations (78). The intuition behind this is: if
information from a single moment is not enough to make a good decision, then
acquiring enough temporal information is probably the best option.

Within the context of Reinforcement Learning, there are different ways

of achieving temporal integration. One of the solutions is proposed in (80),
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where instead of giving the neural network a single input image, an external
buffer is created in which the 4 previous images that were used are kept.

Some articles (73) (80) suggest that better performance can be obtained if
more than the last 4 frames are used, but the experience buffer used consumes
much more memory for the groups of 4 or more images, and also, it requires
more weights, leading to slower training and possible overfitting. To deal with
these issues more robustly, the use of recurrent neural networks (RNN) is
proposed (Algorithm 2).

An RNN has the particularity that the connections between its nodes
form a directed graph based on a temporal sequence. This allows it to display
dynamic temporal behavior and learn temporal dependencies. Unlike other
networks, an RNN can use its internal state (memory) to process input
sequences. The characteristic recurrent block of an RNN can be integrated
into the DQN architecture. By doing this, the resulting agent can receive
unique images of the environment and the network will change the output
depending on the temporal pattern of observations it receives. This is achieved
by maintaining a hidden state that is computed every cycle. The recurring
block can be provided with the hidden state, acting as an enhancement that
informs the network what happened before. Agents of this type are called Deep
Recurrent Q-Networks (DRQN) (78). In this study, the RNN chosen to be used
was the LSTM described in 2.1.4.1.
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Algorithm 2 Deep Recurrent Q-learning algorithm with experience replay

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
Initialize action-value function parameters 6, with random weights
Set target action-value function parameters 6~ < 6,
Create ¢ function to preprocess images with SVM
for episode = 1, M do
Initialize sequence s; = {x;} and preprocess sequence ¢; = ¢(s1)
fort =1, T do
With probability € sclect a random action a;, otherwise select a; =
maz,Q*(P(sy), a; 0)
Execute action a; in simulator and observe reward r; and image x;,1

Set s.41 = 5¢, 2,41 and Preprocess ¢11 = ¢(S141)

Store transition (¢y, as, ¢, ¢411) in D
if 1 % freeze interval == 0 then

0~ « 0
end if

Sample random minibatch of sequences
B={(¢j, 5,75 85)--(Bjrs Qjrrrs Tjpr, @y )} 57677 C D
for each sequence € B do
hj—1 <0
for k=j4..7+7do
Update the hidden state hy = Q(¢x, ag, hig—1; 6;)
end for

Set y; = r; for terminal state

/

Set y; = rj + ymazyQ(¢}, a}, hy; 0) for non-terminal state
Calculate £; = (y; — Q(¢j,a;,hj_1;0))?
Perform a gradient descent step on £;
end for
end for
end for

DRQN has been successfully applied in various domains. In video games,

it has been used to train agents that achieve state-of-the-art performance in
games like Atari 2600 (78). In robotics, DRQN has been employed for tasks

such as robot navigation (81) and grasping objects (82). It has also been used

in financial applications, such as stock trading (83) (84), where the sequential

nature of financial data makes DRQN a suitable choice for modeling and

decision-making.
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2.4
Viewpoint planning

In the oil industry context, viewpoint planning in Autonomous Undersea
Vehicles (AUVs) plays a crucial role in monitoring and detecting information
during underwater inspections. Viewpoint planning allows AUVs to optimize
their course and position to obtain optimal perspectives of targets of interest,
such as subsea pipelines, drilling rigs, or underwater structures. By carefully
planning the viewpoints, the AUV can capture high-quality images and data,
ensuring accurate and detailed analysis. In addition, viewpoint planning also
increases the efficiency of operations, allowing the AUV to perform inspection
tasks faster and more accurately, saving valuable time and resources for the
petroleum industry (85) (32) (31) (30).

Robot navigation is an extremely important technology for performing
various tasks. Navigation is generally performed while robots move around
and estimate their positions and orientations using information from various
sensors and /or cameras.

For tasks containing 3D objects, creating a plan from multiple viewpoints
at runtime is essential when there is no prior information about them or their
environments. The goal of viewpoint planning is to get better images of the
object and acquire knowledge about the invisible parts of it. At the same time,
the agent is positioned in the best way, obtaining the best focus, line of sight,
and collision avoidance.

In the case of recognition and inspection of 3D objects (86) (87) (88),
a good image facilitates this task. For this, several views of the object are
usually required. Typically, rather simplistic methods or assumptions (e.g.,
steps with fixed angles) are made when selecting viewpoints. The benefits
include improved quality and efficiency if a priori or online views can be
determined.

For a better view planning, some studies use Reinforcement Learning
algorithms (88), others only image classification (89) or object detection (86).
In this research, was trained an SVM to classify objects and use its output as

a feedback mechanism during the deep reinforcement learning process.

2.5
Support vector machine (SVM)

Support vector machine (SVM) (90) is a popular supervised learning
algorithm for classification and regression analysis. SVM works by creating a
hyperplane that separates the data into different classes. The goal is to find the

hyperplane that maximizes the margin, the distance between the hyperplane
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and the nearest data points from each class. SVM is effective in handling
high-dimensional data. It can handle non-linear data by using kernel functions
to transform it into a higher-dimensional space where they can be linearly
separable. SVM is widely used in diverse areas, including image recognition,
text classification, and bioinformatics.

The SVM output for classification is a decision boundary that maximizes
the margin between two classes in a feature space. It identifies a hyperplane
that best separates the data points into distinct categories, with the goal of
minimizing classification error. The output consists of the equation of this
hyperplane, for example, for the linear kernel we have: w * z + b = 0, where
w is a weight vector, x is the input data, and b is a bias term. To classify
new data points, SVM assigns them to one of the two classes based on which
side of the hyperplane they fall. This decision boundary is determined by the
support vectors, which are the data points closest to the hyperplane, ensuring
robustness and generalization of the classification.

There are several advantages in using SVM as a supervised learning al-
gorithm, as demonstrated by Pin Wang et al. in their comparative study (91):
it is well-known that traditional machine learning achieves better results on
small sample datasets, while deep learning structures achieve higher recogni-
tion accuracy on large datasets. Therefore, in this study, which does not have
a large dataset, the SVM approach proves to be advantageous.

To train an SVM, you can use the "one-vs-one" and "one-vs-rest' strate-
gies. The SVM’s "one-vs-one" strategy trains a binary classifier for each unique
pair of classes in order to solve multiclass classification issues. All binary clas-
sifiers” votes are tallied during classification, and the class with the most votes
is selected as the output class. The "one-vs-rest" approach, on the other hand,
entails training a binary classifier for each class, treating the first one as the
positive class and the rest as the negative class. The example is categorized
by classifying it into the one whose binary classifier yields the highest confi-
dence score. Both strategies are frequently used in SVM to address multiclass
classification issues, and each has pros and cons of its own. The "one-vs-rest”

approach was used in this work.

2.6
Image tracking

In recent years, image tracking technology has gained a prominent role in
various fields. Image tracking refers to the ability to locate and track specific
objects or patterns in an image or sequence of images in real time. This

technology has revolutionized the way we interact with the digital world and
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is opening up new possibilities in a variety of applications.

Image tracking is based on computer vision and image processing tech-
niques. Its systems use advanced algorithms to identify specific reference points
or patterns in an image. These reference points can be unique features such
as edges, colors, textures, or even pre-defined markers. Based on these points,
the system is able to track the position and movement of the object of interest
as the camera captures new images.

In this study, we employed the Median Flow tracker (92). This algorithm
is renowned for its speed and effectiveness in scenarios where the moving
object maintains a relatively constant appearance and lighting variations are
not excessive — characteristics that align with the conditions present in our
application. Here, tracking is exclusively utilized when the object is in close
proximity to the agent, mitigating any concerns regarding significant lighting
changes. Furthermore, given the agent’s slow movement, changes in the object
from one frame to another are minimized, contributing to even more stable

results.

2.7
Proportional control

Proportional control is a fundamental and widely used technique in the
field of control engineering for dynamic systems. Playing a crucial role in the
stability and accuracy of these systems, it allows for behavior adjustment
according to specific needs. This work explores the concept of proportional
control, highlighting the benefits it offers.

Proportional control is a control strategy that adjusts the action pro-
portionally to the error between the desired value and the actual value of the
system. The larger the error, the greater the applied correction. This propor-
tion is determined by the proportional gain.

There are several advantages associated with proportional control.
Firstly, it contributes to the system’s stability since the control action is di-
rectly proportional to the error. This avoids excessive oscillations and non-
linear responses, promoting more stable behavior.

Furthermore, proportional control enables greater precision, allowing for
a quick and accurate response of the system to external variations. By adjusting
the control action according to the error, it ensures efficient adaptation to real-
time conditions.

Another significant advantage is the simplicity of proportional control
compared to other control techniques. Its implementation and understanding

are relatively straightforward, requiring fewer adjustments and being less prone
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to instability issues. This facilitates its application in a variety of systems and
makes it more accessible.

In summary, proportional control is a valuable strategy for controlling
dynamic systems, offering stability, precision, and simplicity. Its widespread use

highlights its effectiveness and importance in the field of control engineering.



3
Methodology

The number of inspections carried out by autonomous robots has been
increasing due to the development of technology. As a result, there is an
increase in studies focused on the area of autonomous inspections, whether
underwater or not.

Some of these studies only use sensors like LIDAR (15) or other sensors
(5) to control the automata during the inspection. Other studies use, in
addition to sensors, cameras installed in robots (93) (94). Some just follow
pre-selected routes, reporting only if there is a problem along the route (95).
And some studies prefer to focus only on image processing, not controlling the
automaton (96).

Unlike the studies mentioned, this work focuses on the creation of a
framework that allows an inspection using mostly images captured by the
camera installed in the automaton.

The complexity of this work is in executing the inspection and controlling
the robot only from images. For this to be possible, three different models will
be trained: an autoencoder network to find anomalies, and a classification
model and decp recurrent Q network to perform viewpoint planning in order
to go to the found anomaly and inspect it, capturing the best images.

Details of the developed framework can be found in the next sections.

3.1
Proposed framework

In order to find objects other than the pipeline, rocks or soil on the
seabed, the following Visual Inspection of Pipelines (VIP) framework was
created to automate the inspection process by an AUV.

While the AUV follows the pipeline using images and proportional control
(3.1.2), the system checks for any anomalies through an autoencoder network
(Figure 3.3 - 1). If an anomaly is detected, the system needs to save the current
position (Figure 3.3 - 2) and navigate towards the object for a more detailed
observation, utilizing viewpoint planning (Figure 3.3 - 3).

However, the process of selecting viewpoints can be slow and consume
many computational resources, limiting the practical applicability of this
technique. A solution to speed up the viewpoint planning process is the use
of Deep Recurrent Q-Networks, an extension of conventional neural networks

with an architecture that allows them to process sequences of inputs, such
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as sequences of images. This feature makes DRQNs suitable for sequence
processing tasks like viewpoint planning.

The main focus of viewpoint planning in this work is to determine
whether the object is known or unknown to the model, that is, whether the
agent should continue searching for better viewpoints or if it has already
reached a conclusion: known or unknown object, and can stop moving. By
default, the agent should move towards the object of interest and circle it using
a tracking algorithm and a proportional control, capturing images at each step
(Figure 3.1) and ultimately classifying the object. However, this path can be
shortened through the use of DRQN.

1) "

agent camera

Figure 3.1: Proposed path to analyze an object

In order to achieve this, an SVM model (One-vs-Rest) is trained (Figure
3.3 - 4) using the images captured by the agent during the inspection process.
This enables the SVM to learn information about the objects. This informa-
tion is then passed from the SVM to the DRQN model through entropy and
confidence metrics (Figure 3.2). In other words, the DRQN leverages informa-
tion from the SVM to classify whether the agent should take another step (if
the action is "continue") or stop searching for better images (use known and
unknown consistently). The difference between entropy at ¢t — 1 and ¢ and also
between confidence at ¢ — 1 and ¢ is calculated for a better data analysis over
time, and also used as input to the DRQN. That is, the DRQN entries from the
SVM are: confidence, confidence difference, entropy, entropy difference and the
image number. The SVM output was chosen to be used in the DRQN (instead
of using images directly) due to the fact that the SVM simplifies the input of
the DRQN. This results in faster training of the DRQN, as well as allows for
more efficient retraining since only the SVM needs to be readjusted.

This retraining of the SVM is necessary since the agent may initiate the
inspection without prior knowledge of the anomalous objects it will encounter

along the way. Thus, the system needs to acquire knowledge about these
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objects, and this learning is accomplished through the SVM, which is retrained
whenever a new object is detected to better understand it.

At the end of the inspection, a report is generated, containing information
about all objects, including their coordinates, the path to the captured images,
and an indication of whether the object is known to the system or not. This
allows experts to analyze the results effectively and easily access inspection-

related information.

Informations
A~ S - confidence
'S - x model
. : - entropy
inference

Figure 3.2: SVM and DRQN inputs pipeline
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Figure 3.3: Proposed Visual Inspection of Pipelines (VIP) framework diagram

In the next sections, the following items will be explained in detail:

— Simulated environments

— Following the pipeline

— Novelty detection (Figure 3.3 - 1);
— Viewpoint planning (Figure 3.3 - 3).

— Microservices architecture
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3.1.1
Simulated environments

The simulator chosen was AirSim (97), a simulator for drones, cars and
more, built on Unreal Engine (98), a well-known game creation platform.
AirSim has become the best choice compared to using Gazebo, as the images
arc more realistic and as its simulation speced is higher, as it does not
incorporate simulation of elements such as gravity and other physical forces.

As said, the simulation scenarios were built using Unreal Engine. On this
platform initially one environment was created, (Figure 3.4), with a notion of
depth, aquatic background, animals, objects and ducts. The objective is: follow
the pipeline, find objects/animals, inspect and ascertain whether the object is
known or unknown.

It is notable that in the simulations performed, the agent is a drone.
However, as the main objective of this work is the analysis of images combined
with the control of the agent, the type of agent is not important, but
the environment. Therefore, in this work, the drone will be called AUV to
contextualize the study.

Using this simulator, we have the capability to acquire images from the

agent’s cameras for further processing and navigation guidance.

Figure 3.4: Simulated environment

3.1.2
Following the pipeline

To ensure the agent follows the pipeline correctly, it is essential that the
agent’s camera is positioned preferably above the duct. However, in certain
sections, the duct may have curves, requiring the agent to be prepared to
adjust its route. Therefore, a proportional control based on the angle formed

between the duct and the x-axis has been implemented (as illustrated in Figure
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3.5). The ideal value for this angle is 90 degrees. By calculating the difference
between the current angle and 90 degrees, it is possible to perform proportional
control appropriately.

However, since obtaining this information is solely based on images,
certain processing steps are necessary to extract the relevant data. The first
step involves binarizing the image, which entails selecting an appropriate
threshold depending on the specific characteristics of the image at hand. This
process separates the pixels of the pipeline from the rest of the image’s pixels.

Once we have the binarized image, we can identify four points: two upper
extremes and two lower extremes (Figure 3.5, points A, B, C, and D). By
connecting these points, we obtain a polygon of similar size to the pipeline.
By drawing a line through the center of this polygon, we can calculate the
angle (a) formed between this line and the x-axis. This angle will be used
as a parameter for proportional control, as the ideal value is 90 degrees, as
mentioned earlier.

For agent control, the previously calculated angle is used, as well as the
proportional gain of the x-axis, which is calculated in equation 3-1, to perform
lateral displacement. This way, the agent can move at a constant speed by
rotating around its own axis, as well as moving left and right, always trying

to keep its position on top of the pipeline.

pr = M, — width/2 (3-1)
Where M, is the Centroid of X.
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Figure 3.5: Original and processed image to enable the calculation of the
agent’s angle adjustment for proportional control.

3.1.3
Novelty detection

The choice of using autoencoders (99) was motivated by the fact that
most works use these networks to detect novelties. This study tested Dense
Autoencoder and Convolutional Autoencoder to recreate the input image and
then subtract this result from the original image, obtaining the anomaly. These
methods will be presented below.

An autoencoder network is trained in order to detect novelties/anomalies.
The proposal is to train several networks with different depths and latent
space sizes with a dataset that contains only soil, rocks and pipeline images.
After training, the network can be used for inference. As the autoencoder only
learned characteristics from the training dataset images, if there is something
different in the input image, the network decoder will not be able to recreate
the different object (anomaly) in the image. Therefore, given that the output
image has the same dimensions as the input, it is possible to subtract these
images and generate a mask (Figure 3.6), which represents the pixels of the

image anomaly.
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Additionally, we have improved the quality of the generated mask by
climinating any potential noise that may arise during this process. This is
achieved through tests aimed at selecting the most appropriate threshold for

mask creation.

It Reconsiuction Anomaly Mask

Figure 3.6: By subtracting the reconstructed image from the input image, it’s
possible to effectively reveal the anomalous regions present in the image.

3.1.4
Viewpoint planning

This section covers the presentation of the viewpoint planning system’s
development, addressing everything from the essential elements used in train-
ing to details about the system’s functioning in a production environment.

The purpose of this system is the selection of optimal perspectives for
obtaining high-quality images, as well as determining whether the object is
known or not by the DRQN model. As mentioned earlier, the use of DRQN
2.3.5 has the potential to significantly reduce the number of captured images
needed to support a decision, since it has memory.

The DRQN algorithm is composed of the following elements:

Actions: 0 (keep looking for new images), 1 (defines that it is a new
object) and 2 (defines that it is not a new object);

States: Set of 4 consecutive vectors of [confidence, confidence difference,
entropy, entropy difference, image number| from the chosen sequence, deter-
mined by the environment explained in section 3.1.4.1;

Rewards: 1 in case of success, if the object is known or not, and -1 in
case of error. And the reward for each step the agent will take, will be defined
later, which is a fundamental step for the success of the learning process. The
proper selection of each step will allow the agent to explore the environment
more efficiently and maximize the reward obtained, contributing to a better
overall performance of the chosen model.

Output: the approximate @) table for the given state.

Afterwards, it will be explained how the DRQN training will be imple-

mented and how it will work in production.
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3.1.4.1
Python library to run the DRQN environment

Commonly, in algorithms like DQN or DRQN in Python, it is usual to
use libraries such as Gym (100) or PyGame (101) to perform the calculation of
rewards, next states, and final states. However, for this specific study, it became
essential to create a custom library focused on calculating these elements. The
need arose from the lack of a specialized library that employed SVM and
sequences of images to calculate the next state and associated rewards.

This library is responsible for calculating the reward, changing the agent’s
state, and determining the next actions based on the model. Additionally, since
the input to the DRQN consists of information obtained from the SVM, this
library is also responsible for training an SVM with random data sequences
from the dataset for each epoch and providing the trained SVM model to the
DRQN. Furthermore, it randomly selects and provides the image sequence that
will be analyzed by the model.

This  library is  available in  <https://github.com/evysb/
VIP-framework>.

3.1.4.2
Following and analyzing the object

In addition to following the pipeline route, the Autonomous Underwater
Vehicle (AUV) needs to have the capability to approach any detected anoma-
lies. This will enable the AUV to circumnavigate the object of interest in order
to conduct a detailed analysis. To perform this operation efficiently, a propor-
tional control and tracking algorithm is employed.

When the system detects an anomaly using the Novelty Detection model,
a mask is generated, as described in 3.1.3. This mask is used to create a
bounding box (bbox) that will be the input for the tracking algorithm known
as Median Flow (92), which provides the agent with a reference base of the
object, producing as output the coordinates of the bounding box that encloses
the object.

To control the agent, proportional control is used, similar to the one
presented earlier in 3.1.2. This method guides the agent along a predefined
path, encompassing the approach phase to the object and circumnavigation
around it, enabling the acquisition of images from multiple angles.

The agent moves towards the object until it is in the center of the image.
This movement is performed by attempting to balance the distances between
the edges of the bbox and the boundaries of the image, as illustrated in Figure

3.7, where d,; and dj; must be equal to d,» and djs respectively, or have
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a difference of less than 1.2. Then it approaches the object until the area
delimited by the bbox corresponds to 70% of the size of the original image, or

as far as the simulator allows.

Figure 3.7: Object centering control in the image

As for circumnavigating the object, the agent maintains a constant speed,
continuing its movement until the current distance is less than 0.7 the distance
from the point where it started the circumnavigation, and it has already taken

at least 5 steps.

3.143
Training viewpoint planning

DRQN training will be performed as follows: the definitions of state,
action, and reward will remain consistent with the DQN model. The main
change now is the need to incorporate a sequence of information as input state.
This sequence is obtained through the environment library (3.1.4.1), which
randomly selects a series of images captured sequentially from a randomly
chosen object.

Furthermore, the library also performs the random selection of an SVM
model. This occurs because, during operation in a production environment, it
is not possible to anticipate whether the examined object has been previously
trained by the SVM. To address this uncertainty and strive for the generaliza-

tion of DRQN training, the model was trained using a dataset that contains
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both the presence and absence of the represented object in the sequence (as
illustrated in Figure 3.8). This approach allows for simulating the system’s
behavior concerning known objects (when the SVM has been trained with the
object image) and unknown objects (when the SVM has not been trained with
the object image).

It is essential to emphasize the importance of these random choices, as
they aim to obtain a generalized model capable of operating efficiently in
various environments and with different classifiers, without the need to waste
time on simulations that are not part of the viewpoint planning strategy in

question.

Reward

Action

Agent
State sen

Exit the loop
and give reward

Random
SVM
Model

Random image
Sequence

Figure 3.8: Training diagram of DRQN

3.1.4.4
Viewpoint planning in production

With the model already trained, it will be possible to perform only the
inference stage of the network (Figure 3.9). The difference in this stage is that
the DRQN will use only the simulation environment (no longer preconceived
image sequences) and an SVM model, which should be retrained (using the
latest images seen by the agent for that object) if the last action taken by the
DRQN results in: "1 - a new object".

Conversely, when the system receives an image similar to a previously

seen object, it will be possible to classify it as "2 - not a new object".



Chapter 3. Methodology 49

Reward

Action

State

Exit the loop
and give reward

SVM
classificator

Figure 3.9: Inference diagram of DRQN

In Figure 3.9, we observe the process wherein the agent selects and
executes an action. Based on the chosen action, the agent progresses by moving
towards the target object (assisted by the mask generated by the anomaly
detector, a tracking algorithm, and proportional control). At this juncture, the
agent captures an image of the object. This image is then subjected to SVM
processing. The resulting information, including entropy and confidence scores,
is employed to feed the DRQN agent. This plays a pivotal role in computing
the subsequent state and determining the associated reward. Thus, at time
t + 1, the agent is poised to calculate and take the next action.

In Figure 3.10, it is possible to observe the input images of the SVM,
the information provided by it to the DRQN (entropy and confidence), and
the output of the DRQN agent (actions). Furthermore, it is an example of the
optimization that the DRQN offers, in this case, with only 3 out of 12 images,

which make it possible to conclude that the object is new.
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Figure 3.10: DRQN model input schema

3.15
Microservices architecture

To enable the utilization of multiple GPUs, given the need to use a
simulator, load 2 models, and (re)train the SVM simultaneously, individual
microservices were created, each utilizing one GPU, which respond to a main
microservice.

The adoption of microservices allows the development of services using
technologies that are more suitable for their specific functionalities. Each
service is responsible for a specific functionality. This promotes decoupling
between services, making it easier to evolve and maintain the system as a
whole. Additionally, the individual scalability of each service allows for better
utilization of available resources, avoiding waste and maximizing efficiency.

An example of this is the microservice responsible for the environment
simulator (Figure 3.11 - 4), which focuses exclusively on executing the Unreal
Engine. It awaits requests containing actions to be performed and, in turn,
returns the images and coordinates of the current state.

The novelty detection microservice (Figure 3.11 - 2) is responsible
for identifying unexpected events or patterns, while the viewpoint planning
microservice (Figure 3.11 - 3) handles the inference of the DRQN network and,
when necessary, performs the (re)training of the SVM. One interesting aspect
is that, thanks to the utilization of microservices, it is possible to perform SVM
training simultaneously while the agent follows the normal inspection flow. In
case the agent encounters a new object to be inspected during training, there
will only be a pause to await the completion of the training.

In the main microservice (Figure 3.11 - 1), on the other hand, the agent’s
control codes are centralized, being responsible for sending requests to the other

microservices.



Chapter 3. Methodology

51

Novelty Viewpoint Simulated
detection planning models

CPU

environment

Figure 3.11: Microservices framework diagram

Furthermore, the Main code is responsible for saving all captured images

for the analysis of each object into separate folders (corresponding to each
object), and generating a report (Figure 3.12) that includes the coordinates
where the object was found, as well as the path of the folder where the images

are stored, and whether the object was considered known or not. This enables

the specialist to read and analyze the results in a more efficient and accurate

manner after the inspection.

Objects
obj 1
obj 2
obj 3
objn

Coordinates
coord x1, y1, z1
coord x2, y2, z2
coord x3, y3, z3
coord x4, y4, z4

Folder Path
/path/to/folder/1
/path/to/folder/2
/path/to/folder/3
/path/to/folder/n

Figure 3.12: Report example

Is new
TRUE
TRUE
FALSE
TRUE

Based on the data analyzed by an expert, it is possible to train a new

SVM model in order to enable the autonomous system to initiate the next

inspection with prior knowledge, using the best available model.



4
Experiments

4.1
Novelty detection

Following this study’s objective, many images were created to test and
train the autoencoders, in order to test the robustness of them. For this, two
datasets were created, one generated from images captured from the AirSim
(102) simulator, which we call Synthetic dataset, and another dataset created

from videos of ROV inspections, which we call Real dataset (Figure 4.1).

(a) Synthetic dataset

(b) Real dataset

Figure 4.1: Dataset images with synthetic (a) and real (b) image.

— Synthetic dataset: composed of 933 color images of 224x224 (50%

anomaly, 50% normal);

— Real dataset: composed of 1475 color images of 640x480 (23% anomaly,
77% normal).

These two datasets were created to test the robustness of the model, both
in simulated environments and in real life. For training, they were divided into
training (only images without anomalies) validation and testing, 70%, 20%

and 10%, respectively.
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4.1.1
The architecture of the network chosen

To choose the best architecture for the model, several autoencoders
with different depths were trained for the two datasets. Furthermore, the
convolutional autoencoder (cAE) networks were based on (103) and the latent
layer size of dense autoencoder (AAE) network was modified from 4 to 1064, in
other words, for each proposed dAE model, there are 9 different architectures
changing only the latent layer. To evaluate the inference of each model, the
Dice similarity coefficient (104) (Equation 4-1) was used.
21X NY|
[ X+ 1Y
Where X and Y represent two sets for which we want to measure the

Dice Score = (4-1)

overlap. |X| and |Y| denote the cardinalities (i.e., the number of elements)
of the sets X and Y, respectively. The intersection of the two sets, denoted
as X NY, represents the elements that are common to both sets, such as
non-anomalies.

For the decision of the best architecture to be used in this work, the
results in the synthetic dataset will be decisive, because the images in it are
closer to what the automaton will see in the simulations. From it, the threshold
of the anomaly masks will also be chosen (Section 4.1.3).

The following encoder architectures (Table 4.1 and Table 4.2) were used
(the decoder is the opposite of the encoder, using Conv2DTranspose). All
of them used Conv2D and Conv2DTranspose (functions from the Tensorflow
library (105)) with stride 2 and 3 x 3 filters.

Table 4.1: Architecture table of trained models with Synthetic dataset. Where
the latent layer size of dense autoencoder (dAE) network was modified from 4
to 1064.

dAE dAE cAE cAE cAE
Model 1 Model 2 Model 1 Model 2 Model 3
Synthetic | Synthetic | Synthetic | Synthetic | Synthetic
dataset dataset dataset dataset dataset
16, 32, 16, 8, 16, 8,
Encoder 16, 8,
32, 64 32, 64, 8, 8, 8, 8,
filters 8, 8
64 8 4
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Table 4.2: Architecture table of trained models with Real dataset. Where the
latent layer size of dense autoencoder (dAE) network was modified from 4 to
1064.

dAE dAE cAE cAE cAE
Model 1 | Model 2 | Model 1 | Model 2 | Model 3
Real Real Real Real Real
dataset | dataset | dataset | dataset | dataset

16, 16, 16,8, | 16,8,
Encoder 32,32, | 16,8, |88, 8, 8,
32, 64
filters 64, 64, |8, 8 8, 8, 8, 4,
64 8 4

The hyperparameters used in the training of the both datasets are shown
in Table 4.3.

Table 4.3: Hyperparameters of autoencoder training

Hyperparameters | Values

Max epochs 200
Batch size 4
Learning rate 0.0001
Optimizer Adam

Early stopping min__delta=0.0001, patience=20

4.1.2
Training summary

This section aimed to make a neural network recognize an anomaly
in a series of images. For this purpose, a neural network was trained. The
network input, described above, requires at least one image per batch. The
pre-processing only requires resizing each image to 224 x 224 (if Synthetic
dataset is used) or to 640 x 480 (in case of Real dataset) and a normalization.
In certain cases, due to the limitations of the neural network’s training format,
it becomes unfeasible to use images with dimensions of 640 x 480. Consequently;,
it becomes necessary to resize the images to 640 x 384.

All models were trained just using images without anomalies. Moreover,
the images (with and without anomalies) were semantically segmented by me,
so that it was possible to have masks (ground truth) to calculate the Dice, in

order to choose the best trained model.
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4.1.3
Choosing the image mask threshold

After training the model, it is tested. The test consists of using an image
(with or without anomaly) as input to the model. As said in 3.1.3, the model
will output an image of the same dimensions as the input, this output will be
subtracted from the input image generating a mask (Figure 3.6). To better
tune this mask, a threshold is chosen. So that the choice of this threshold is
not random, tests were performed with thresholds 0, 5, 10, 20, 30, 40, 50, 60,
70, 80, and 90 using images not used in training. The threshold that maximizes

the Dice score on the validation set was chosen.

4.1.4
Choosing the loss function

The loss function, also known as the error function or cost function, is a
fundamental part of deep learning models. It is responsible for quantifying the
difference between the model’s predictions and the actual values of the data
set. The objective of the model is to minimize this error function by adjusting
its parameters during the training process. There are several types of error
functions, each suitable for different types of problems, such as classification
or regression. Choosing the right error function can have a significant impact
on the effectiveness of the model and how quickly it converges to an optimal
solution.

In this study, MSE 2.1.3.1, SSIM 2.1.3.2 and SSIM+MSE (using nor-
malization to prevent metric overlap) were tested as loss function, in order to

obtain the best possible models.

4.1.5
Evaluation of results using Dice similarity coefficient

With the threshold chosen appropriately for each model, images (with
and without anomalies in the same proportion) not used in training and in
choosing the threshold are used for the test. A similar process to the one
explained above is carried out. Images are the inputs of the trained model and
its output is subtracted from the input image, generating a mask. Then the
Dice score is calculated. The model with the highest Dice score is considered
the best.
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4.1.6
t-SNE graphics creation

In order to know how much the representations created by the autoen-
coder networks can distinguish the images with anomalies from the images
without, the t-SNE algorithm (106) (t-Distributed Stochastic Neighbor Em-
bedding, a high dimension data visualization algorithm) is used. For this, the
same data from the test stage are used, they are input into the model and the

encoder output is graphed using the t-SNE algorithm.

4.2
Viewpoint planning

The inputs of the DRQN model are information such as entropy and
confidence originated from the SVM. Thus, we can divide the processes as in
the Figure 3.2.

For the proper training of the DRQN, pre-trained SVM models need to
exist, as said before, so we will divide the sections into: SVM training, DRQN
training, and finally the baseline to compare with the results of the DRQN

models.

42.1
Datasets to training models

In this section, we introduce the datasets used to train the fundamental

models for Viewpoint planning, which are:

421.1
SVM Dataset

A dataset consisting of multiple image sequences was created for training
the model. Since the agent’s aim is to reach the object of interest and perform
viewpoint planning to find a better image of it, multiple image sequences can
be saved for model training, as each step corresponds to obtaining an image.

To create this dataset, the agent needed to approach various objects mul-
tiple times, ensuring that the dataset is generalizable enough. After creating
the dataset, the use of the simulator is not necessary, which reduces the con-
sumption of computational resources.

As the aim of this study is solely focused on the objects appearing in the
image, the images were inferred by an object detector, and subsequently, the
objects of interest were cropped (Figure 4.2). These cropped images are used

for SVM model training.
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The image sequences were taken from an underwater environment created
in Unreal (98), they are RGB images of size 64 x 64. These sequences contain
1 to 20 images per object and 25 objects (e.g. fish, can, jar ...), and each object
has at least 20 sequences of images, which gives us a dataset containing a

minimum of 500 sequences.

Original images

Objects: cropped images

¥y 9

Figure 4.2: Object image dataset for SVM training

4.2.1.2
Baseline and DRQN dataset

The Baseline and DRQN share the same dataset. This dataset consists
of metrics generated from the output of the SVM model, with the help of
the library created in 3.1.4.1. It is relevant to highlight that this library has
the capability to randomly employ various trained SVM models, along with
sequences of random images, which contributes to an increased capacity for
generalization in model training.

Each entry in the dataset is composed of:

— Entropy;

Difference between entropy ¢ — 1 and ¢;
— Confidence;

— Difference between confidence t — 1 and ¢;

Image number.
And entropy and confidence are calculated in the following way:

— Entropy: Since the output of the SVM consists of a decision score that

evaluates the distance of a data point from the decision hyperplane, the
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Platt calibration technique (107) is employed to transform these decision
scores into probability estimates. With these probabilities in hand, the
entropy (Equation 4-2) is calculated.

H(X) =~ Zp(x)logp(:r) (4-2)

— Confidence: The confidence of an SVM model is the measurement of
the distance between the data points and the separation hyperplane
identified by the SVM. The greater the distance between a data point
and the hyperplane, the higher the confidence associated with that point,

making its classification more secure.

422
SVM training

To use the outputs of the models by DRQN; it is necessary to train several
SVM models with images of random classes. This training occurs on demand,
being performed in real-time by the code of the environment (3.1.4.1).

The SVM was chosen to be used in this work due to its relatively fast
training time and efficiency in processing large amounts of data.

Testing different configurations to determine which model will produce
the best results is always important. Several settings can be adjusted in
SVM, such as the kernel used, the regularization parameter, and the kernel
coefficients. Adjusting settings is crucial to obtain the best possible results
from the SVM model and ensure that it is properly trained for the specific
task being performed.

To do this, the GridSearchCV function from the scikit-learn library (108)
was employed to identify the optimal configuration of the SVM when using the
SVM dataset 4.2.1.1.

In order to assess whether the accuracies of SVM models decrease
significantly as the number of classes increases, we incorporated 25 new objects
into the existing dataset. These sequences of images are shorter than the
existing ones, containing approximately 6 images per object. Conducting this
type of test is of utmost importance because in a practical inspection scenario,
it is not possible to accurately determine how many objects may be encountered
along the path, which would require retraining the SVM.

Using the dataset of 50 classes (objects) and the obtained configuration,
several SVM models were trained. This process was repeated 10 times, with
the classes added in random order in each iteration, in order to calculate the

average accuracy of the models.



Chapter 4. Experiments 59

4.2.3
Baseline

In order to verify the efficiency of the DRQN, a simple network without
LSTM (Table 4.4) was trained with identical inputs to the DRQN and with
the output of "is new" or "is not new". Two training sessions were conducted:
the first using only the initial images of the sequences, and the second using
only the final images of the sequences. This allows us to measure how much
better the use of DRQN can be.

Table 4.4: Neural network architecture used in baseline

Output space
Layer | & o oP
dimensionality
Input 5t
Dense 32
Dense 16
Dense 2

4.2.4
DRQN training

In order to achieve the best possible DRQN model, multiple hyperparam-
eter configurations were tested, including variations in the values of gamma and
reward. They are important because they influence, for example, the number
of steps the agent takes.

The gamma value can range from 0 to 1; the smaller the gamma, the more
it relies on immediate rewards. Since the immediate reward for stopping (when
the action is "known" or "unknown") is 1, and negative in case of an error or the
action being "continue', the agent tends to take fewer steps because it follows
a greedy policy, always seeking the highest reward. However, to have a high
probability of correct classification, the agent must first take some steps that
incur a negative reward in order to gather sufficient information. Therefore,
finding an appropriate balance between reward values and gamma is of utmost
importance. This will enable the agent to make precise decisions, taking fewer
steps, and maximizing its effectiveness in the given task.

Training configurations that remained constant were:

Episodes: 1200 episodes - 200 of them are random, which means that
the agent randomly chooses the actions to be carried out, to be able to do
exploration and exploitation;

Neural network used: Described in the Table 4.5.
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Table 4.5: Neural network architecture used in DRQN model

Output space
Layer

dimensionality
Input 5
LSTM 32
Dense 16
Dense 3

4.3
Framework

After completing the training of all models and ensuring the proper
functioning of the microservices, the integrated execution of the framework
finally becomes viable. These series of experiments were conducted with
the purpose of assessing the system’s robustness, as well as identifying its
advantages and disadvantages.

Tests were conducted in order to compare the advantage of using DRQN
in viewpoint planning. The first experiment involved the agent traversing
the entire pipeline and inspecting objects without utilizing DRQN, while the
second experiment incorporated the application of DRQN. The inspection
times for each object were recorded. To conduct these tests, five environments
containing distinct objects were utilized. Additionally, several SVM models
were applied to simulate situations in which the agent could be familiar or
unfamiliar with the objects.

To test the entire VIP framework, three Nvidia V100 GPUs were used,
with one allocated to each microservice: novelty detection, viewpoint planning,
and environment simulator.

Furthermore, analyses were conducted to identify potential errors that
may arise during the system’s utilization, as well as its expected behavior in

such situations.



5
Results

5.1
Novelty Detection

The results of the training are reported below. The experiments were

separated as follows:

Best image mask threshold for each network architecture;
— Best loss function;

— Best model for Synthetic dataset;

Best model for Real dataset.

5.1.1
Best image mask threshold for each network architecture

In this experiment, the objective is to choose a threshold that maximizes
the Dice score, in order not to use a random threshold.

The threshold choice is highly important, as increasing the threshold
could lead to the exclusion of crucial pixels for forming the mask that identifies
the anomalous object. Unfortunately, this action would result in the loss of
important information. To avoid this type of loss, we calculate the Dice score
for each threshold in order to find the threshold that maximizes the Dice score.

The results of both the Synthetic (Table 5.1) and Real (Table 5.2)

datasets are found in the following tables.

Table 5.1: Threshold for models trained with the Synthetic dataset. (*) Mode
of thresholds that maximize the dice score.

dAE dAE cAE cAE cAE
Model 1 | Model 2 | Model 1 | Model 2 | Model 3
Synthetic | Synthetic | Synthetic | Synthetic | Synthetic
dataset dataset dataset dataset dataset
Threshold | 70(*) 80(*) 30 40 60
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Table 5.2: Threshold for models trained with the Real dataset. (*) Mode of
thresholds that maximize the dice score.

dAE dAE cAE cAE cAE
Model 1 | Model 2 | Model 1 | Model 2 | Model 3
Real Real Real Real Real
dataset | dataset | dataset | dataset | dataset
Threshold | 30(*) 30(*) 20 20 20

Analyzing the results, it is evident that the synthetic dataset showed a
higher threshold compared to the real dataset. This can be attributed to the
presence of less complex and more similar images in the synthetic set, resulting

in masks with reduced levels of noise.

5.1.2
Best loss function

For all architectures created, the training was done using 3 variations of
loss function: MSE, SSIM and SSIM+MSE;, in order to discover the best one
for the proposed task.

For both the dAE and cAE architectures, the loss SSIM-+MSE presented
the best results (Table 5.3), followed by the results of the loss being only SSIM
and MSE.

Table 5.3: Comparison of the mean Dice score of models trained using MSE,

SSIM and SSIM-+MSE.

dEA mean | cEA mean

dice score | dice score
MSE 0.4427 0.3712
SSIM 0.6314 0.5132
SSIM+MSE 0.8125 0.6510

Thus, we can conclude that when comparing the generated images
with the original ones, it is more important to consider information about
luminance, contrast and structure (calculated by SSIM) than just the difference
in pixel values (calculated by MSE). However, the use of all information makes

the result more accurate.
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5.1.3

Best model for Synthetic dataset
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After choosing the threshold for each model, they were tested. For the

Synthetic dataset, the results on the test set, with hyperparameters chosen

using the validation set were as follows (Table 5.4):

Table 5.4: Dice-Score (mean and std. deviation of images) for trained models
with Synthetic dataset. Where LD is latent dimension.

dAE dAE
cAE cAE cAE
Model 1 Model 2
Model 1 Model 2 Model 3
(LD = 256) (LD = 512)
Threshold=30 | Threshold=40 | Threshold=60
Threshold=70 | Threshold=80
Dice 0,90612 + 0,89964 + 0,82241 + 0,66944 + 0,55494 +
(uto) | 0,12102 0,10237 0,15553 0,23307 0,19888

Aiming to experiment with different networks of different depths, dAE
and cAE networks were trained, and for dAE the latent dimensions were varied
from 4 to 1024 resulting in 9 trained models for each dAE architecture variant,
and from these variations the 3 loss functions were used. In other words, 27
models were trained for dAE models and 9 for cAE models.

For "dAE Model 1 Synthetic dataset" the highest score resulted from
the use of the latent dimension of 256 and using the threshold selected in
the previous step (Figure 5.1), while for "dAE Model 2 Synthetic dataset" the
latent dimension that maximizes the score using the selected threshold is 512.

The best results came from the dAE models, using the SSIM+MSE loss.
The best of these models, as seen in table 5, is the dAE Model 1.

It can be concluded that these dense autoencoders work well for the
images in the dataset used, with few complexities. And the cAE models
achieved moderate results due to the occurrence of noise in some cases, which

generated inadequate masks.
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Original image

Generated image

Generated image
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Original image + Anomaly mask

Original image + Anomaly mask

Figure 5.1: Images resulting from "dAE Model 1 Synthetic dataset" inference

The t-SNE was used in order to observe if the embeddings of data with

anomalies can be separated from those without anomalies. The best possible

result would be if the two classes were divided into well-defined clusters.
The t-SNE result, generated based on the best trained model and its
embeddings (Figure 5.2), clearly illustrates the segregation between the rep-

resentations of images with anomalies and those without. This highlights the

effectiveness of the model in successfully performing its function of distinguish-

ing between anomalous and non-anomalous images.

t-SNE embedding on the feature representation
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5.1.4

Best model for Real dataset

65

Using the real image dataset, experiments similar to the Synthetic

dataset were performed, but some networks were deeper (Table 4.2), given
the dimensions of the dataset images (640x480).
The model results for the Real dataset on the test set, with hyperparam-

eters chosen using the validation set were as follows (Table 5.5):

Table 5.5: Dice-Score (mean and std. deviation of images) for trained models
with Real dataset. Where LD is latent dimension.

dAE dAE
cAE cAE cAE
Model 1 Model 2
Model 1 Model 2 Model 3
(LD = 64) (LD = 256)
Threshold=20 | Threshold=20 | Threshold=20
Threshold=30 | Threshold=30
Dice 0,76289 =+ 0,79379 £ 0,54545 + 0,56118 & 0,53711 £
(uto) | 0,24197 0,27118 0,14271 0,15140 0,15029

For this dataset, the architecture using dAE with many convolutional
layers (dAE Model 2) and with a latent dimension of 512 obtained the best
result (Figure 5.3), despite the difference between dAE Model 1 and dAE
Model 2 be statistically insignificant.

In this dataset, the worst results were obtained in the cAE models, the
generated images were not very different from the original ones, however had a
lot of noise, which did not occur in dAE models, which filtered out the existing
noise due to the low latent space dimensionality.

In some of the results, some areas of the images were more segmented
than necessary, but this can be advantageous, even if it may lead to an increase
in the number of false positives - that is, regions that are mistakenly identified
as belonging to the object of interest - it is preferable to have false positives
above false negatives. This is because a false negative indicates that a region
that should have been segmented as part of the object was mistakenly left out,
causing the area not to be observed during the inspection. This can lead to
inaccurate results and misinterpretations of the image. On the other hand, a

false positive can be easily eliminated during the post-processing step.
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Original image Generated image Original image + Anomaly mask

Original image Generated image Original image + Anomaly mask

Figure 5.3: Images resulting from "dAE Model 1 Real dataset" inference

Once again, to analyze the results, a graph was created using the embed-
dings of the most effective model, through the t-SNE technique (as illustrated
in Figure 5.4). It can be inferred that even facing a dataset containing larger
and more complex images, the model once again demonstrates its remarkable
ability in distinguishing between images with and without anomalies. This per-
formance is clearly visible in the segregation of the two classes of embeddings,

with only a few distinct representations in proximity.

t-SNE embedding on the feature representation
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5.2
Viewpoint planning
The results of the training are reported below. The experiments were

separated as follows:

— SVM model,;
— Baseline model,

— DRQN model.

5.2.1
SVM model

As previously mentioned, the best configuration for the SVM model was
first found. Which obtained using the as the best model the configuration:

Kernel: RBF, C: 10 and Gamma: 0.001

Using this configuration, multiple SVM models were experimented with,
having been trained on as many as 50 classes. This process was repeated
10 times, with the classes being added in random sequences each time.
Subsequently, an average accuracy score was computed for each quantity of
classes. (Figure 5.5). The results were promising, showing that even after

increasing the classes, the accuracy remains high.
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Figure 5.5: Accuracy per SVM model

Since the output of the SVM is used as input for the DRQN model,

and considering that the object to be investigated is not always known by the
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SVM, relying solely on accuracy /probability does not yield satisfactory results
for determining whether the object is known or not. Therefore, we use entropy
and confidence score, which in SVM is calculated from the signed distance of
that sample to the hyperplane.

An example between confidence and probability estimate for an object
that is known by the model and another that is not known:

Known object: Probability: 0.8160, Confidence: 16.2

Unknown object: Probability: 0.8982, Confidence: 1.7

These results show that we could erroneously say that the model classified
the unknown object well if we did not take confidence into account. As detailed
in section 4.2.1.2, when dealing with an unknown object for the SVM model,
even if the probability is high, it is possible to observe that the distance between
the sample and the hyperplane is small, which results in a confidence reduced

in the result.

5.2.2
Baseline model

A simple neural network was trained, consisting of two fully connected
layers (Table 4.4), having the classes "is new"' (0) and "is not new" (1) as output
and the same input of the DRQN model.

As previously stated, two training sessions were carried out (10 times

each), the results were as follows:

— Mean test accuracy of the trained model using only the first images of

the sequences: 76.7%

— Mean test accuracy of the trained model using only the last images of

the sequences: 86.3%

These results are good; however, it is expected that with the use of
DRQN, the presented accuracy will be higher, in addition to requiring fewer

steps to make decisions on whether an object is new or not.

5.2.3
DRQN model

Several DRQN models were trained using the previously mentioned
dataset to find the best result. In order to optimize the performance of the
model, different configurations of received rewards and gamma values were
tested (10 times each). The results of these experiments will be presented
below to evaluate the effectiveness of the DRQN model against the baseline

and provide insights into the impact of these settings on model performance.
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As mentioned previously, the training process utilized 1200 episodes per

training, requiring approximately 3 hours when executed on an Nvidia V100

GPU.

Choice of gamma

The proper choice of the gamma value is a crucial aspect of agent training
(as explained in 4.2.4) since this parameter directly impacts the model’s
performance. Several values were used to evaluate the effects of different
gamma values, including 0.99, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0, 20, 0.10,
and 0.0. The results obtained with these values are represented in Figure
5.6, allowing the evaluation of the relationship between the gamma value

and the agent’s error rate.

It was observed that the lower the gamma value, the lower the number
of steps performed by the agent. This is because the immediate reward
is prioritized over the future reward, which can reduce the overall
performance of the model. For example, when gamma is 0.0, the agent’s
average steps is 1, and when it is 1.0, the agent takes as many steps as
possible. In other words, a wrong choice of gamma can result in a higher

error rate and a longer time for model convergence.

The result that showed the most favorable trade-off between accuracy
and the number of steps was obtained with a gamma value of 0.99. This
value will be used in the following tests to evaluate the reward for each

step.
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Figure 5.6: Comparing mean error and gamma results
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— Choice of Reward

Tests were performed with different reward values to select the best
reward strategy for the reinforcement learning agent. The maximum
reward was set to 1 when the agent takes the correct action, while the
reward was set to -1 when the agent took the wrong action. In addition,
rewards were tested for when the agent decides to take another step
because he is still not sure whether to choose the "is new" or "is not new"
actions, with values of 0, -0.001, -0.01, -0.05, and -0.1. These tests were
performed to evaluate which reward configuration maximizes the agent’s

performance in the learning environment.

The results of the tests carried out with different reward values are
represented in the graph of Figure 5.7. The analysis of these results
allowed us to conclude that the reward configuration that presented the
best performance had a value of 0, contributing to reduce the agent’s
error in the learning environment at the expense of taking many steps.
This conclusion indicates the importance of choosing the appropriate
reward strategy in optimizing the performance of the reinforcement

learning agent.
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Figure 5.7: Comparing mean error and rewards results

In summary, in Figure 5.8 and Table 5.6, it is possible to compare the
results of the baseline with the trained DRQN models, which were excellent.

The results showed good accuracy and a reduced number of steps.
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When calculating the confidence interval (CI) (109) of the accuracies,
it can be noticed that the difference in accuracy between the best DRQN
model (7y=0.99 and reward per step=0) and the best baseline model (which
only uses the last images in the sequence) is significant, demonstrating the
effectiveness of the DRQN model in progressively acquiring knowledge over
time. Additionally, it is worth noting that the number of steps has decreased
significantly. This indicates successful optimization of viewpoint planning while

simultaneously increasing accuracy.
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Figure 5.8: Comparison of Baseline and DRQN results. (r = reward per step)
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5.3

Table 5.6: Comparison of Baseline and DRQN results.

Mean Accuracy

Models Mean Steps
(mean acc+CT)

Baseline - First Step 1 76.640.46
DRQN =0

AN 1 77.940.95
reward per step= 0
DRQN ~=0.99

AN 2.89 83.6+1.31
reward per step= -0.1
DRQN ~=0.

RQN'7=0.99 413 85.141.11
reward per step= -0.05
DRQN ~=0.
RQN'7=0.99 4.94 85.841.11

reward per step= -0.01
DRQN ~=0.99

QN7 5.56 86.8£1.12
reward per step=-0.001
DRQN ~=0.

N 7=0.99 6.13 87.9+1.14
reward per step= 0
DRQN ~=1.0

AN 17.04 88.5::0.99
reward per step= 0
Baseline - Last Step 17.15 86.3+0.52

Framework

72

Several tests were conducted in order to prove the efficiency and correct

usage of the VIP framework, evaluating different scenarios and potential events

that could occur. These include:

Performance comparison of the VIP framework with and without the
DRQN model;

Analysis of SVM outputs in the VIP framework with and without the
DRQN model;

How the System Behaves in Case of Errors: Approaches and Solutions;

Exploring the implementation of the VIP framework in real scenarios.
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5.3.1
Performance comparison of the VIP framework with and without the
DRQN model

Tests were conducted to compare the performance of viewpoint planning
with and without the use of DRQN. Next, we present the results (Table 5.7),
which include the mean time for each type of object (known and unknown)

identified by the system as anomalies. These tests were conducted in five

distinct environments, each containing different objects considered anomalies.

Table 5.7: Comparison of mean times (with a 95% confidence interval - CI) of
inspection of each object with and without DRQN

Mean time(s) Mean time(s)
Types of objects | without DRQN with DRQN
(mean time+C1I) | (mean time+C1T)
Unknown 35.1840.99 21.36+1.51
Known 35.46£0.94 3.02+0.40

When analyzing the results, it becomes evident that the inspection time
per object is significantly reduced with the use of DRQN, especially when the
object in question is known. The main difference lies in the fact that, even
when the object of interest is already known by the system, the agent always
completes a full revolution around the object, whereas with the use of DRQN,
the agent does not require many steps to analyze the object, as it utilizes the
SVM model trained with images of previously encountered objects as input. In
other words, if the object belongs to the same class as one previously inspected,
the analysis process will be much faster.

It is important to highlight that if an object is considered unknown,
the SVM will be retrained by the Viewpoint Planning microservice (Section
3.1.5). This process typically takes about 4~30 seconds. If a new anomaly is
found and needs to be inspected during the retraining, the system will wait for
the completion of this training to be able to inspect the new object with the
updated model. This waiting time was not taken into account in the results

presented.

5.3.2
Analysis of SVM outputs in the VIP framework with and without the
DRQN model

For a more comprehensive understanding of the impact of SVM outputs
on the decision-making of DRQN within the framework, a series of tests were

conducted.
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Ten SVM models were trained, covering a variety of classes. Among these,
ten objects were chosen for analysis purposes. These models were used to make
inferences about the sequences of the selected objects.

The outputs generated by the SVM were evaluated in two contexts: first,
up to the point at which the DRQN determines the "known" or "unknown"
actions; second, considering no intervention from the DRQN, by analyzing the
SVM outputs up to the last frame.

The entropies were calculated for all the images. The one with the lowest
entropy was selected. Then, the SVM classifier was used to try to classify the
image in order to calculate the accuracy.

Continuing with this logic, it was decided to also select the images that
showed the greatest distance from the hyperplane defined by the SVM, and the
last images in the sequence. This enabled a comparative analysis of accuracies
among different approaches.

Comparing the results (Table 5.8), it can be observed that the accuracies
consistently remain high at all times. However, when analyzing the last images
without the use of DRQN, a significant variation is noticed. This is due to the
presence of some images that are considerably different from the initial ones,
leading to challenges in the classification task.

Furthermore, when examining the use of DRQN, we observed that the
accuracy was slightly lower in the analysis of images with lower entropy and
those farther from the hyperplane. However, this difference was not large, and
considering that the use of DRQN results in a reduction in the number of
required steps, it is still advantageous to use it.

Additionally, it is possible to conclude that the inputs to the DRQN (the
SVM outputs) exhibited high quality, as the SVM displays metrics that are

quite favorable.

Table 5.8: SVM mean accuracy results (with a 95% confidence interval - CI)

Mean Accuracy,

analyzing the

Mean Accuracy,

analyzing the

Mean Accuracy,

analyzing the

Tests minimum entropy farthest image .
) last image
image of the hyperplane
(mean acc+C1T)
(mean acc+CI) | (mean acctC1T)
With DRQN 91.6+0.95 92.8+1.01 90.4+0.56
Without DRQN 94.14+1.33 96.5+1.21 86.4+2.08
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5.3.3
How the system behaves in case of errors: Approaches and Solutions

Occasionally, the system may encounter errors. In this section, we will
discuss the system’s behavior in such situations and provide guidance on how

to handle these errors. The errors that will be subject to analysis include:

— Novelty detection error;

— Viewpoint planning makes a misguided decision.

5.3.3.1
Novelty detection error

The anomaly detector is an essential component of the system, respon-
sible for determining whether the agent should interrupt the task of following
the pipeline and examine the object in question. If the detector fails to detect
any anomalies, no image of the object is recorded, and no entry is included in
the report. This error can have a significant impact on the final outcome of
the report.

Some tests were conducted in the simulated underwater environment, in
which the agent was only supposed to determine whether there was or wasn’t
an anomaly in the images captured by the camera by performing inference with
the trained autoencoder. In total, there were 112 frames, with half containing
some anomaly and half without.

The obtained results are encouraging, with a false positive rate of only 6%
and a false negative rate of 2%. It is preferable to have more false positives than
false negatives, as it ensures that what truly matters is not being overlooked.
The inclusion of less relevant information in the reports allows experts to
analyze them later and determine the relevance of the data.

Analyzing some images (Figure 5.9) of objects that have been misclassi-
fied by the network, we observed that some of them are very small or have low
contrast, which may have led them to be mistaken for the ground itself by the

neural network.
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Figure 5.9: Some images with objects that have been misclassified by the
autoencoder

5.3.3.2
Viewpoint planning makes a misguided decision

Viewpoint planning may make some mistakes, one of which is misclassi-
fying a known object as unknown in its output. This could be due to an error
propagated from the SVM (already calculated in 5.3.2) to the DRQN or solely
an error from the DRQN (already calculated in 5.2.3). The following errors

were verified:

— Viewpoint planning is classified as unknown, when in fact it is

known.

Several tests were conducted in order to measure the severity of these
errors. If they occur, the SVM will be retrained with the current images,
considering them as a new class. However, this approach may lead to less

accurate SVM results.

The tests were conducted as follows: 16 classes of images were randomly
selected, and models were incrementally trained by adding one class at a
time. Then, the same images were presented to the models again during
training, but they were labeled as different classes from the previous
ones, simulating possible errors in the system. In order to obtain more
accurate results, the test was repeated 10 times, and the average accuracy

was calculated.

To achieve the results shown in Figure 5.10, when the images of the
classes began to repeat, such as in the case of class 1 and class 18,
which contained the same images, the accuracy evaluation during testing
considered these classifications as correct when the SVM assigned either

class 1 or 18 to these images.
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mean accuracy

These results indicate that the SVM model’s performance slightly de-
creases as it is trained with images incorrectly labeled as new classes.
This suggests that when the viewpoint planning fails to correctly classify
an object as unknown, there is an increased tendency to make mistakes

in the future.

Mean accuracy per model

0.98

0.96

0.94 1

0.92 A

0.290 4

0.88

2 10 20 30
number of classes

Figure 5.10: Accuracy per SVM model, repeating classes

To mitigate this issue, it would be beneficial, as future work, to imple-
ment an additional verification step, possibly by comparing the images
from each folder created for the report with the new images, using cosine
similarity (110). This would ensure that during the retraining process,

the images truly belong to the same class.

Viewpoint planning misclassifies as known when it is actually

unknown

In the event that the situation arises where the object is not recognized,
but the system incorrectly deems it as recognized, there will be no
retraining of the SVM model. However, the captured images of the object
will be stored appropriately for inclusion in the report, enabling the

specialist to analyze them later.

For the next inspection, all the captured images for the report will be
carefully analyzed and used as input for training a new SVM model.
This way, when the new inspection begins, the SVM will be updated

with prior knowledge of the objects to be encountered along the way.
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5.3.4
Exploring the implementation of the VIP framework in real scenarios

With the aim of adapting the framework developed to operate in a sim-
ulated environment to a real-world setting, it becomes necessary to imple-
ment some significant changes. For instance, in the simulated environment,
the agent moves at a fixed height relative to the duct. However, in a real-world
environment, this height may be influenced by maritime currents, requiring
a more sophisticated control than simple proportional control. Furthermore,
while simulations do not account for collisions, in a real scenario, it is crucial
to incorporate guidelines to avoid them, preventing damage to equipment.

In the real-world environment, the Autonomous Underwater Vehicle
(AUV) will have more degrees of freedom to be controlled, necessitating a
more robust control system, such as the implementation of a PID controller
(Proportional, Integral, and Derivative), for example.

The quality of images will also be compromised, with lower brightness
and sharpness, which may impact the effectiveness of the novelty detector. In
this regard, the application of image pre-processing can be a viable strategy
to mitigate the lack of focus.

Considering the high cost of equipment, it is essential to incorporate
fault recovery routines. This ensures that the AUV does not become lost in
the depths of the sea, preserving the integrity of the investments made.

Moreover, a crucial consideration lies in how and where the models will
perform inferences. So far, the simulated environment has allowed for efficient
use of NVIDIA V100 GPUs, enabling fast inferences. However, with the
adoption of microservices, there is latency in information transfer, potentially
resulting in system slowness, an undesirable situation in the real-world context.

To optimize efficiency in the real world, it would be advantageous for all
models to reside in the AUV and perform inferences locally, eliminating the
need to transmit information to the vessels for inference execution. This would
reduce the risks of failures, such as data loss or delays in information transfer.

Table 5.9 compares inference times between an Intel Xeon CPU running
at 2.20GHz and an NVIDIA V100 GPU. It is evident that GPU utilization
substantially improves processing times. However, CPU times are not discour-
aging, suggesting that it is feasible to exclusively opt for the CPU for executing
inferences on the AUV itself.
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Table 5.9: Model inference time

Models CPU time (s) | GPU time (s)
Autoencoder 0.1154 0.0583
SVM 0.0034 0.0025
DRQN (1 step) 0.1736 0.0629
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Conclusions

This work represents an advancement in the submarine oil industry,
with the objective of automating processes that pose challenges to human
perception.

In this work, a Visual Inspection of Pipelines (VIP) framework for an
autonomous underwater vehicle to accomplish an underwater inspection was
created. This system allows the agent to perform the inspection requiring only
images from its camera, providing a significant economic advantage.

Through this system, the agent has the ability to approach the object
of interest, aiming to enhance classification metrics. Furthermore, in case the
object is unknown, it is possible to retrain the SVM model in order to enable
its recognition in future encounters with similar objects.

To develop the system, an autoencoder network was trained to identify
innovative features in the images captured by the autonomous vehicle’s camera.
Subsequently, the object’s cropping in the same image will be used by the
viewpoint planning (DRQN + SVM) if novelties are detected.

Several autoencoder architectures have been trained to find anomalies
in subsea inspection images, for specialists to more easily find anomalies in
inspection videos.

The choice of using autoencoders was motivated by the fact that most
works use these networks to detect novelties, but they use grayscale images,
unlike this work, which also uses RGB images. In addition to featuring a
characteristic blue or green tonality, these images generally exhibit a blurred
appearance.

A study was carried out on the best architecture to be used to find
anomalies in images of different sizes and origins, and it can be concluded
that dense autoencoders and convolutional autoencoders are good networks to
find novelties in RGB images. However, the latter tends to generate noise that
hinders the detection of anomalies.

Moreover, this work can evaluate the most suitable loss to be used
in autoencoder networks aiming to efficiently detect anomalies, reaching the
conclusion that utilizing SSIM+MSE is the optimal choice for a loss function.

Regarding the viewpoint planning, the results were excellent, success-
fully achieving the objective of optimizing viewpoint planning while showcasing
the most advantageous balance between accuracy and the number of required

steps. In other words, the DRQN approach outperformed the baseline, demon-
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strating the ability to analyze the problem with a substantially smaller amount
of images, resulting in significant time savings.

With these highly satisfactory results, reinforcement learning in view-
point planning opens up new possibilities for optimizing underwater inspec-
tions and monitoring in the oil industry. Combining advanced technologies and
intelligent decision-making systems brings us closer to achieving safer, more
efficient, and cost-effective operations in the exploration and production of un-
derwater resources. This allows camera-guided robots to increasingly extend
their autonomy and overcome limitations present in traditional reinforcement
learning algorithms.

In our future research, we aim to enhance the exploration of underwater
image anomalies by leveraging advanced techniques such as Variational Ad-
versarial Autoencoder (VAE). Our objective is to compare and contrast the
results obtained from these methods with the findings presented in this work.
Additionally, we plan to investigate the efficacy of other reinforcement learning
algorithms, including Dueling DRQN and Deep Transformer Q-Network (111),
in this domain. By exploring a diverse range of approaches, we hope to gain
deeper insights and further contribute to the field.

Furthermore, as part of our future work, we have plans to utilize cosine
similarity to minimize errors in selecting SVM training classes. This way, we
can compare the images from each folder stored in the report with new images
and have greater confidence that they belong to a new class not yet recognized
by the SVM model.

With the aim of further enhancing and simplifying some sub-tasks within
the framework, such as calculating the pipeline angle, we are exploring the
feasibility of using a neural network to perform this task. Additionally, we are
considering replacing the image binarization step in the pipeline with a neural
network specialized in semantic segmentation. There are also plans to improve
the task of circumnavigation control, which could be more accurate.

Another area of focus for improvements lies in expanding inspection
tasks. This includes the ability to inspect larger areas, such as vegetation
coverage, as well as incorporating leak inspection tasks. Moreover, we are
looking to enhance existing tasks, such as object inspection, which currently
primarily focuses on static objects.

There are also plans to make use of the ROV simulator located at
Technip, which provides a higher level of realism and is geared towards
professional use.

To be used in the real world, the VIP framework must be enhanced

to improve the ability to dynamically adapt to the aquatic environment,
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optimizing its trajectory and behavior in response to variable conditions. This
will enable the AUV to handle unforeseen challenges such as ocean currents,

underwater obstacles, and changes in environmental conditions.
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