
 
 
 

Cristiano Saad Travassos do Carmo 
 
 
 
 
 

A hybrid solution using stochastic and 
neural networks modeling for the 

consideration of safety uncertainties in 
construction planning methods 

 
 
 
 
 
 

Doctoral thesis 

 
 

Thesis presented to the Department of Civil and 
Environmental Engineering of Pontifical Catholic 
University of Rio de Janeiro (DEC/PUC-Rio) in partial 

fulfillment of the requirements for the degree of Doctor 
of Civil Engineering 

 
 

Advisor: Prof. Elisa Dominguez Sotelino 

 
 
 
 
 
 
 
 
 

Rio de Janeiro 
December 2023 



 
 
 

Cristiano Saad Travassos do Carmo 
 
 
 
 
 

A hybrid solution using stochastic and 
neural networks modeling for the 

consideration of safety uncertainties in 
construction planning methods 

 
 
 

Thesis presented to the Department of Civil and 
Environmental Engineering of Pontifical Catholic 

University of Rio de Janeiro (DEC/PUC-Rio) in partial 
fulfillment of the requirements for the degree of Doctor 
of Civil Engineering 

 
 

Prof. Elisa Dominguez Sotelino 
Advisor 

Department of Civil and Environmental Engineering – PUC-Rio 

 
Prof. Daniel Carlos Taissum Cardoso 

Department of Civil and Environmental Engineering – PUC-Rio 

 
Prof. Fernanda Araujo Baião 

Department of Industrial Engineering – PUC-Rio 

 
Prof. Renata Gonçalves Faisca 
Department of Civil Engineering – UFF 

 
Prof. Sergio Luiz Braga França 
Department of Civil Engineering – UFF 

 
 

Rio de Janeiro, December 1st, 2023. 



All rights reserved. 

 

 

 

 

 

 

 

Cristiano Saad Travassos do Carmo 

 

M.Sc. Degree in Civil Engineering at Pontifical Catholic 

University of Rio de Janeiro (PUC-Rio) in 2019. Adjunct 

professor of the Civil Engineering course at Pontifical 

Catholic University of Rio de Janeiro (PUC-Rio) since 

2022. 

 

 

 

 

 

 
Bibliographic data 

 

 
CDD: 624

Carmo, Cristiano Saad Travassos do 
 
     A hybrid solution using stochastic and neural networks modeling for 
the consideration of safety uncertainties in construction planning 
methods / Cristiano Saad Travassos do Carmo ; advisor: Elisa 
Dominguez Sotelino. – 2023. 
     201 f. : il. color. ; 30 cm 
 
     Tese (doutorado)–Pontifícia Universidade Católica do Rio de 
Janeiro, Departamento de Engenharia Civil e Ambiental, 2023. 
     Inclui bibliografia 
 
     1. Engenharia Civil e Ambiental - Teses. 2. Método de 
planejamento de obras. 3. Incertezas. 4. Ocorrências de segurança. 5. 
Processo estocástico. 6. Redes neurais. I. Sotelino, Elisa Dominguez. 
II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento 
de Engenharia Civil e Ambiental. III. Título. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my guardian 

angel Maria Alice Oliveira de 

Souza. 
 



Acknowledgments 
 

 

 

This study was financed in part by the Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior – Brasil (CAPEs) – Finance Code 001. 

I would like to thank the Pontifical Catholic University of Rio de Janeiro for 

providing me with adequate structure and partial funding over the past four years 

as I have developed my studies. Also, Prof. Elisa Sotelino deserves special mention 

for her technical assistance during my PhD journey. I'd also like to thank her for all 

of the opportunities and lessons she's given me, always guiding me in the best 

academic path. I also want to express my gratitude to the professors who agreed to 

support this study and take part in the thesis presentation.  

During my PhD journey, I lost one of the most important people in my life, 

a non-biological mother who had cared for me since I was a baby. She taught me 

how to read and write, as well as how to be simple and happy, and for that I am 

grateful to Maria Alice Oliveira de Souza. You will never die in our hearts, no 

matter where you are. 

Also, I'd like to thank my wife for encouraging me to pursue my dream of 

becoming a professor. Even when I was very stressed and bored with my progress, 

she gave me reasons to believe that I could do it. 

Special thanks to my mother for being my hero. My father, for being an 

example of happiness, empathy, and a healthy dose of craziness. My brother, for 

setting a good example of professionalism and friendship. Nana, my nanny, for 

being a warrior role model for me. 

I'd like to express my gratitude to my family for all of their emotional 

support and moments of relaxation during this time, especially during the months 

of lockdown caused by the COVID-19 pandemic. 

I'd like to thank my RioBIM colleagues for listening to me many times 

during the week meetings and assisting me in providing ideas and solutions for 

better work. 

Finally, I'd like to remember all of the workers who died while building the 

"Ponte Rio-Niterói" bridge, including Domicio Barbosa Lima, Luiz Carlos Couto, 

Wilson Touso, José Machado, Nilkom Vianna, Gilberto Leal Costa, José Machado, 

Raul Arajo Arendes, and others. 



Abstract 
 

 

 

 

Carmo, Cristiano Saad Travassos do; Sotelino, Elisa Dominguez (Advisor). 

A hybrid solution using stochastic and neural networks modeling for 

the consideration of safety uncertainties in construction planning 

methods. Rio de Janeiro, 2023. 201 p. Doctoral thesis - Department do Civil 
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The construction industry, known for its dynamic and chaotic nature, often 

experiences work accidents. Existing planning methods addressing uncertainties, 

however, frequently overlook safety variables, and the relevant literature is scarce. 

This study introduces a novel construction planning method focused on 

investigating the impact of safety incidents on project duration, specifically in 

energy infrastructure construction projects. The main hypothesis is that safety 

events during construction significantly affect project duration, leading to deficient 

schedules when not considered in the planning process. Utilizing stochastic process 

theory, particularly the quasi birth and death process, the study explores how safety 

states influence delay states. Neural network models complement the stochastic 

model for forecasting bivariate time series derived from safety and delay stochastic 

states. Real-life project data demonstrates that safety events, assuming planned 

delay events, are over double the delay states' value. Applying the stochastic model 

to a real project with a planned 8-day delay indicates a most probable safety state 

of 19. Long short-term memory models outperform statistical methods in bivariate 

time series forecasting, with a significantly smaller root mean square estimation 

metric. The proposed hybrid construction planning approach proves suitable for 

both pre-construction and construction phases, offering improved decision-making 

indicators and supporting reactive safety management. 
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Na indústria da construção, conhecida por sua natureza dinâmica e caótica, 

muitas vezes há acidentes de trabalho. Os métodos de planejamento existentes que 

abordam incertezas, no entanto, frequentemente ignoram as variáveis de segurança, 

e a literatura relevante é escassa. Este estudo introduz um novo método de 

planejamento de obras focado na influência de ocorrências de segurança na duração 

do projeto, especificamente em projetos de construção de usinas de energia. A 

principal hipótese é que eventos de segurança durante a construção afetam 

significativamente a duração do projeto, levando a cronogramas deficientes quando 

não considerados no processo de planejamento. Utilizando a teoria de processos 

estocásticos, particularmente o processo de quase-nascimento e morte, o estudo 

explora como os estados de segurança influenciam os estados de atraso. Modelos 

de redes neurais complementam o modelo estocástico para previsão de séries 

temporais bivariadas derivadas dos estados estocásticos. Dados reais de projetos 

demonstram que os eventos de segurança, supondo eventos de atraso planejados, 

são mais do que o dobro do valor dos estados de atraso. A aplicação do modelo 

estocástico a um projeto real com um atraso planejado de 8 dias indica um estado 

de segurança mais provável de 19. Os modelos de memória de curto prazo de longo 

prazo superam os métodos estatísticos na previsão de séries temporais bivariadas, 

com uma métrica de estimação quadrática média raiz significativamente menor. A 

abordagem de planejamento de construção híbrida proposta mostra-se adequada 

para as fases de pré-construção e construção, oferecendo melhores indicadores de 

tomada de decisão e apoiando a gestão de segurança reativa. 

Palavras-chave  

Método de planejamento de obras; Incertezas; Ocorrências de segurança; 

Processo estocástico; Redes neurais; Projetos de construção de usinas de energia. 
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1 
Introduction 

It is well-known that construction projects are of a unique nature (TAM; 

ZENG; DENG, 2004), which differently from other industries can turn the 

workplace dangerous (ZHOU; IRIZARRY; LI, 2013). According to the Brazilian 

Statistical Yearbook of Works Accidents in 2021, the construction industry had the 

sixth highest number of accidents compared to all economic activities in the 

country. At the same time, however, it is one of the oldest industries (40,000 

~12,000 B.C.) and with safety management through the regulations written by the 

King of Hammurabi (~ 2,200 B.C.)  (PÉREZGONZÁLEZ, 2005). As an example, 

law 229 written in this code says: 

 

229 – If a builder builds a house for someone, and does not 

construct it properly, and the house which he built falls in 

and kills its owner, then that builder shall be put to death. 

 

Despite this, scientific publications in the research field of accident 

prevention has only grown in the last decade (HUANG et al., 2022). Most studies 

related to construction project management generally focus on the classical 

performance indicators: time and cost, and do not consider safety issues as critical 

for the project success (CARMO; SOTELINO, 2023). 

The current study aims to investigate the impact of safety incidents on 

project duration in energy infrastructure construction projects. The main hypothesis 

is that a safety event that occurs during the construction phase affects quantitatively 

the construction duration, and when it is not considered in the planning method, it 

results in deficient construction schedules. Therefore, this work is based on the 

research question “How much does a construction accident cost in terms of delay 

days?”. Usually, the construction managers do not measure this safety impact, but 

the present work infers that safety events, when numerous, can result in many delay 

events in the project duration.
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1.1. 
Motivation 

The Brazilian construction industry accounts for an average of 5.1% of gross 

value added, according to data from the last 22 years from the Brazilian Statistics 

Institute (IBGE, 2022). Behind this number are several effects on the local 

economy, such as job creation, reduction of the housing deficit, among others. 

According to the same sources, in the year 2019, almost 8 million of people were 

employed by this industry. In view of this, the study of the problems of civil 

construction and, consequently, of the possible solutions becomes paramount, since 

it impacts not only the country's economy, but also the lives of workers. 

Indeed, Soltani and Fernando (2004) demonstrated that the safest worker 

path on a construction site can save nearly 30% of the activity cycle and process 

time. Furthermore, according to Koehn and Musser (1983), safety regulations can 

reduce construction costs from 2.8 percent to 1.4 percent. However, previous 

studies did not address the influence of safety events (accidents) in traditional 

construction planning methods, as Carmo and Sotelino (2023) pointed out. The 

scientific motivation is, thus, to determine whether planners are ignoring the safety 

issue in their planning methods and possibly carrying out unrealistic construction 

schedules. 

Given this context, the current work proposes a new construction planning 

method for considering uncertainties related to safety events, with the goal of 

improving decision-making in terms of the main project indicator: time. The 

proposed method is unique in that it employs Quasi Birth and Death Processes 

(QBDP), which are based on the fundamental stochastic process theory (KARLIN; 

MCGREGOR, 1955; KENDALL, 1948) to capture random events associated with 

a safety occurrence. Furthermore, the proposed method considers the use of 

artificial neural network techniques to deal with the limitations of the QBDP during 

a real-time construction plan. 

1.2. 
Objectives 

The primary goal of this study is to create a stochastic model for accounting 

for the uncertainties associated with safety and delay events in energy infrastructure 
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construction projects. This model is also used in conjunction with Artificial 

Intelligence (AI) techniques for bivariate time-series forecasting. 

The specific goals are as follows: (1) propose a Markov transition diagram 

that represents the evolution of safety and delay events in a construction project; (2) 

use computational methods to calculate the stationary and transition probabilities 

based on stochastic process theory; (3) apply the Knowledge Discovery in Database 

(KDD) process to construction datasets that are typically unstructured and scarce; 

(4) investigate the effect of the safety random variable on the delay random variable 

using real-world project datasets; and (5) employ a hybrid solution integrating the 

stochastic model with AI techniques to overcome the shortcomings of complex 

mathematical models derived from the stochastic theory. 

1.3. 
Organization 

This thesis' organizational structure adheres to the manuscript format, in 

which standard thesis chapters are replaced by manuscripts that have been 

published or submitted for publication in peer-reviewed international journals. 

Chapter 2 provides a literature review on construction safety management. Chapter 

3 presents the fundamental concepts related to the stochastic processes. Chapter 4 

is the manuscript titled “Planning for the unexpected in construction projects: a 

review” that was published in a peer-reviewed international journal, which presents 

a literature review related to construction planning methods considering 

uncertainties. This chapter discusses the current state of the art in terms of the 

uncertainties that are typically considered in construction planning methods and, 

thus, highlight the importance of the current study. Chapter 5 consists of the 

manuscript entitled “A stochastic pure birth model for predicting and help prevent 

accidents in energy infrastructure construction projects” which has been submitted 

to the Safety Science Journal. This chapter proposes a new method for predicting 

safety occurrences, based on the pure-birth process, which derives from the birth 

and death processes, both stochastic processes that can generate the QBDP when 

combined. Therefore, Chapter 5 addresses the objective (3) and partially (1), (2), 

and (4). Chapter 6 presents the manuscript “A quasi birth and death process to 

understand the effects of safety occurrences into construction project delays” to be 

submitted to Safety Science Journal. This chapter presents a new construction 
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planning method based on a hybrid solution that combines QBDP and neural 

network modeling, with a focus on the influence of safety events on delay events. 

Thus, Chapter 6 addresses the research objectives (1), (2), (4), and (5). Chapter 7 

describes the practical application of the proposed method in the pre-construction 

and construction phases of an energy infrastructure construction project, which will 

be submitted as case study in Safety Science Journal. This chapter shows how to 

apply the proposed planning method in real-world projects, following the objective 

(4), through a simulation and by comparing with traditional approach. Finally, 

Chapter 8 provides a summary of the main conclusions, limitations, and future work 

suggestions. 

1.4. 
Scientific categorization 

In terms of the classification of scientific research, this study employed the 

inductive method, with a focus on applied research. Therefore, this study aimed to 

derive generalizations from specific observations and concentrated on addressing 

practical issues in the realm of construction safety management. 

Also, the research objectives were exploratory in nature, seeking an in-depth 

understanding and the identification of new perspectives in construction safety 

management. To meet these objectives, a qualitative-quantitative data treatment 

approach was adopted, enabling a comprehensive analysis of the collected 

information. 

Related to the data sampling, the current study adopted a probabilistic 

approach to ensure data representativeness and statistical validity. The research 

strategy incorporated diverse methods, including a literature review for theoretical 

grounding, experimental research for the practical evaluation of proposed 

interventions, and a case study for an in-depth understanding of specific contexts. 

Finally, in relation to data collection, this work was comprehensive, utilizing 

simulation for controlled scenarios and participant observation to capture nuances 

and complexities in real construction environments. This multifaceted approach 

facilitated a holistic analysis of aspects related to construction safety, providing 

significant insights for the formulation of conclusions and recommendations.
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2 
State-of-art-review of construction safety management 

This chapter presents a literature review related to construction safety 

management. Due to the relevance of such topic in the last decade, many review 

articles were found in a brief search in the Scopus database, which is a well-known 

scientific database for studies related to construction management. Therefore, the 

current study adopted the snowballing technique to cover studies that are related to 

the reference ones. 

The snowballing analysis involves the researcher using a reference list or 

citations to well-known articles on the subject (WOHLIN, 2014). So, it is 

essentially a thorough dive into a certain papers’ references. This approach focuses 

on the key articles in a given subject, and with these papers, the researchers use 

inclusion and exclusion criteria to filter the reference list, and then begin the 

analysis, summary, results, and reports similarly to the Systematic Literature 

Review (SLR). Snowballing can be done in two ways: forward or backward. The 

references in the important publications are used in the former, while the citation to 

the key papers is used in the latter. 

According to Jalali and Wohlin (2012), the snowballing analysis is simple 

to understand and replicate, as opposed to the traditional SLR, which contains more 

difficult procedures for a rookie researcher. However, as a disadvantage, “the lack 

of randomized: representativeness” in the snowballing study can result in biased 

conclusions, according to Geissdoerfer et al. (2017).  

The key paper selected in the current study was developed by Zhou et al. 

(2015) and to support the snowballing analysis, the “connectpapers” platform was 

used to map the citations (prior works) and the papers that cited the key article 

(derivative works). The graph presented in Figure 1 shows in the center the key 

paper (ZHOU; GOH; LI, 2015) with a purple border and related works are around 

it. The circles are organized as follows: the darker the green circle, the more recent 

the article; the closer the circles, more similarity between the works; the bigger the 

circle, more citations; the thicker the line, more connection between the works. 
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Figure 1 - Selected review papers during the snowballing analysis. (Adapted from 

connectedpapers1) 

2.1. 
Research fields 

There are two main research fields studying the safety management in the 

construction industry: one related to management issues, normally associated with 

 
1 Retrieved November 14, 2023, from 

https://www.connectedpapers.com/main/7df7f2d87a7db9ec5d490f05f01ababaea97461a/graph?ut

m_source=share_popup&utm_medium=copy_link&utm_campaign=share_graph 

Selected review papers 

https://www.connectedpapers.com/main/7df7f2d87a7db9ec5d490f05f01ababaea97461a/graph?utm_source=share_popup&utm_medium=copy_link&utm_campaign=share_graph
https://www.connectedpapers.com/main/7df7f2d87a7db9ec5d490f05f01ababaea97461a/graph?utm_source=share_popup&utm_medium=copy_link&utm_campaign=share_graph
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cognitive studies (e.g., safety culture and human perceptions); and the other related 

to technological issues, usually associated with robotics and automation (ZHOU; 

GOH; LI, 2015; ZHOU; IRIZARRY; LI, 2013). Beyond the research fields, Zhou 

et al. (2015) defined three more frequent topics covered by the literature: the first 

one involving safety management process, the second one involving the influence 

of individual and group aspects on the safety management process, and the third 

one related to accident and incident data. With a different approach, Liang et al. 

(2020) defined seven other frequent topics, namely: “safety-specific industry 

practices”, “safety strategies and outcomes”, “accident statistics and analysis”, 

“behavior-driven management”, “technology-driven management”, “risk 

identification and assessment”, and “design for safety”. These topics can be related 

in some manner and together they represent an overview of the main research areas 

developed so far (see Figure 2). 

As shown in Figure 2, the number of research areas increase over time in 

derivative fields. For instance, the fields of “strategies and outcomes” and “risk 

identification and assessment” described by Liang et al. (2020) are derived from the 

“safety management process” area described by Zhou et al., (2015), which was 

derived from the research field “safety management issues” defined by Zhou et al., 

(2013). 

 

Figure 2 - Identified research fields in the existing literature. 

The current study focuses on the areas of “accident statistics and analysis” by 

using the safety records to create statistic, stochastic and machine learning models; 
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“technology-driven management” by applying sophisticated technological methods 

in the safety and construction planning methods; and “industry practices” by 

analyzing the traditional construction planning method used in energy infrastructure 

projects. It should be noted that this type of project was not found in the reviews 

carried out by Zhou et al. (2013) and Zhou et al. (2015). The present study 

overcomes this limitation by carrying out such a review related specifically to 

renewable power plants. 

It is also important to understand that Zhou et al. (2013) and Zhou et al. (2015) 

observed that the most publications were from developed countries. Developing 

countries, like Brazil, had almost no publication in this research area – 1% of the 

total located studies related to safety management in the construction industry. 

Therefore, the present paper fills partially this scientific gap, mainly with real data 

from construction projects developed in developing countries. 

2.2. 
Research gaps identified in the literature 

One of the most important objectives of carrying out a literature review is 

the finding of research gaps. Through them, new studies are oriented to fill these 

gaps even if partially. The following paragraphs describe the main research gaps 

identified in the snowballing analysis. 

Zhou et al. (2013) reviewed the applied technologies in safety management 

and concluded that more studies should be done to consider the total project life 

cycle, to analyze the cost impact related to the implementation of new technologies, 

to consider the risk associated with the technology, to develop practical applications 

of technology in construction safety, and to assess legal aspects that can be affected 

by the applied technology. In fact, Liang et al. (2020) verified that in the period 

between 2011 and 2016, innovative technologies were frequently used in studies to 

improve on-site safety management.  

Similarly with the review carried out by Zhou et al. (2013), Mihic et al. 

(2019) reviewed the applied technologies in construction health and safety research 

area. They reported that more studies are needed to develop a universal approach 

aiming to identify hazards in construction projects, not only in the construction 

phase and not limited to building projects, but also with the preconstruction phases 

and for infrastructure projects. In somehow, Mihic et al. (2019) reinforced the 
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research gaps described by Zhou et al. (2015), which means that studies are still 

important and necessary in nowadays.  

Zhou et al. (2015) reviewed studies related to safety management in the 

construction industry and concluded that more research should be done to monitor 

unsafe behavior, to understand how to predict accidents applying safety climate 

(normative ideals, beliefs, and behaviors), to define the organization’s impact in the 

safety performance during the construction phase, to investigate the construction 

activities providing better solutions for safe tasks, to study projects that are not 

related with buildings, such as infrastructure projects, and to bring the academic 

innovative and technological methods into practical cases. However, Liang et al. 

(2020) emphasized that the sample reviewed by Zhou et al. (2015) is limited to 10 

publication sources and, thus, they provided a more complete sample using 

bibliometric analysis. 

In terms of construction safety management, the literature review carried 

out by Liang et al. (2020) concluded that more studies should be carried out to 

consider the entire project lifecycle and not only design and construction phases. 

Also, Liang et al. (2020) suggested the adoption of innovative technologies with 

actual data and a better integration of the safety behaviors in the construction 

planning approaches, like the conclusions of Zhou et al. (2013) and Zhou et al. 

(2015). In fact, they concluded that construction planning methods should consider 

the safety behaviors at a workgroup level (e.g., social relationships and the safety 

climate), when usually is considered at an organizational level (e.g., safety trainings 

and rewards for good safety performance). It is important to point out that this 

review is limited to articles published until 2016. 

In fact, other studies have already reinforced these research gaps: Goh and 

Askar (2016) developed a planning method to model construction activities 

considering safety issues, but they emphasize that their framework should be 

improved with actual data; and Zhou et al. (2015) showed that most studies in the 

literature are related only to the construction phase. 

The current study seeks to address some of the following research gaps: 

• To study projects that are not related with buildings, such as 

infrastructure projects. 
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• To put academic innovative and technological methods related to 

construction safety management into practice. 

2.3. 
Emerging topics and trends 

It should be noted that the studies involving safety management in the 

construction industry are relatively recent, as pointed by Zhou et al. (2015). 

According to their literature review, the number of publications started to increase 

in 2002. In contrast, Liang et al. (2020) showed that the publications had in fact 

only increased from 2009. Related to the use of technologies in the safety 

management, the topic is even more recent in the construction industry, as stated 

by Zhou et al. (2013). Only after 2008, similarly with the results pointed out by 

Liang et al. (2020), this topic started to call researchers attention.  

The present study reproduced the same term search strategy of the studies 

developed by Zhou et al. (2015) in the Scopus database – search terms 

“construction” and “safety” must appear in the article title and only papers written 

in English and peer-reviewed were selected. The results indicate another peak of 

publications related to construction safety management in 2020 (see Figure 3). This 

rapid growth can be caused by many reasons, like the COVID-19 pandemic, which 

imposed restrictions to construction projects. In fact, “COVID” term appeared as 

research topic in 30 publications between 2020 and 2023. 

 

Figure 3 - Number of publications related to construction safety throughout the years. 

(Extracted from Scopus database2) 

 
2 Retrieved November 14, 2023, from https://www.scopus.com/term/analyzer.uri?...  

https://www.scopus.com/term/analyzer.uri?sort=plf-f&src=s&sid=82afa8084f1a4491675b04a20b43ccd6&sot=a&sdt=a&cluster=scosubtype%2c%22ar%22%2ct%2bscolang%2c%22English%22%2ct&sl=43&s=%28TITLE%28%22construction%22%29+AND+TITLE%28%22safety%22%29%29&origin=resultslist&count=10&analyzeResults=Analyze+results
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Moreover, Liang et al. (2020) noted that some research trends appeared in 

the literature, such as the use of a variety of research topics (such as sustainability 

issues and social network analysis), innovation technologies, and considerations 

about safety behavior issues in the construction safety management. In fact, in the 

research field of accident analysis, Huang et al. (2022) defined four trends that are 

somehow related to the three previously mentioned, which are: “daily accident 

prevention”, “model-based research”, “system analysis and accident prediction”, 

and “occupational safety and public health research”. Specifically in the research 

field related to accident prevention, according to Huang et al. (2022), the last 

decade, from 2011 to 2021, was characterized by a rapid development stage of 

publications. 

As a result, the current study was carried out in the research trends related 

to innovation technologies using model-based systems for accident prevention and 

prediction. 

2.4. 
Technologies and approaches applied in safety construction 

management 

One of the common technologies applied in safety management, according 

to Zhou et al. (2013), are the mathematical models that can handle large dataset and 

predict safety occurrences. Between 2005 and 2010, Liang et al. (2020) highlighted 

that mathematical models were frequently used to assess safety risk. Yet, Zhou et 

al. (2015) highlighted the use of sensors, virtual reality, computer-aided design, and 

4D technologies. Li et al. (2016) stated that many safety models were developed 

with a mathematical background. 

Some research works use data mining techniques, for example Rivas et al. 

(2011) used Bayesian networks, classification trees, and decision rules techniques 

to predict workplace accident. Their methodology was based on feature selection, 

cross validation, and data interpretation to understand the causes of safety 

occurrences. 

The real-time strategy adopted by Li et al. (2016) is based on construction 

accessories, such as smart helmets, that track the location of each worker. However, 

to complement the literature in the context of developing countries, as suggested by 

Zhou et al. (2013) and Zhou et al. (2015), this technology may be not available or 
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poorly used in the construction site. Therefore, this paper adopted a hybrid 

approach, using safety records issued weekly to produce a quasi-live planning 

method, eliminating the need for technological gadgets. 

Other studies (LI, Heng et al., 2016) do not detail the preprocessing stages, 

which can hinder the use of these planning methods by other studies. Therefore, the 

present study adopted the Knowledge Discovery in Databases (KDD) process 

detailing all steps until the new knowledge discovery. This helps in providing 

insights mainly related to relations and conditions inside the dataset, improving the 

overall KDD process (AMARAL; BAIÃO; GUIZZARDI, 2021).  

Though the work developed by Li et al. (2016) did not mention foundational 

ontologies, their understanding and description of hazard regions and safety states 

contain many relations and connections between data. This paper used the 

ontologies to formalize the relations between data. In fact, as reported by Mihic et 

al. (2019), the combination of ontology and natural language processing is an 

innovative technology that has been appearing the literature related to construction 

health and safety. 

Related to the adopted approach in the literature in terms of safety 

construction management, Zhou et al. (2013) highlighted that past studies were 

more oriented to reactive approaches, such as cause analysis, and suggested that 

more studies are necessary to develop proactive safety planning methods. In fact, 

some studies have already done some efforts in that direction. Li et al. (2016) 

proposed a live construction planning using real time location systems and 

Markovian stochastic process. Teizer et al. (2010) proposed a proactive safety 

management system using radio frequency technology and tested it in real 

construction cases with focus on equipment flow. 

According to a state-of-the-art related to occupational risk assessment 

presented by Pinto et al. (2011), there are three groups of traditional methods: 

deterministic, probabilistic, and hybrid. In fact, the authors discussed that the usual 

uncertainties in the available information for the risk assessment methods are not 

handled by the traditional probabilistic methods. Also, Marhavilas et al. (2013) 

stated that there are two groups of quantitative accident forecasting: one based on 

time-series, and another based on causality models. The current work focuses on 

the first approach. 
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According to the literature review, probabilistic solutions may be ineffective 

when dealing with on-site construction safety data. To deal with the high level of 

uncertainty, however, hybrid solutions that leverage traditional developments while 

incorporating innovative technologies as enhancer techniques are required. In the 

present work stochastic processes are adopted. Their basic theory is described in 

the following chapter. 

In conclusion, and in accordance with the literature, the current study 

proposes a mathematical model combined with AI techniques to account for both 

safety and delay events in the construction planning method. To treat and process 

the actual dataset, the proposal includes stochastic process theory, data mining 

techniques, and neural networks modeling. 
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3 
Theoretical background 

3.1. 
Stochastic processes 

A stochastic process is a family of functions that, using a parameter, map 

each instance of a sample space to a new domain. This map of functions, also known 

as a random process, is usually related to a time parameter, which can be discrete 

or continuous and, in turn, depends on how the experiment's observations are made. 

Because the observed instances can be discrete or continuous, stochastic processes 

with continuous or discrete parameters are defined (ALBUQUERQUE, 2017). 

When observing work accidents in construction sites, for example, the instance 

(accident) is discrete because it will always be in unit increments, but the time 

observed is continuous, the time difference between accidents does not follow a 

standard increment, and an instance can occur at any time instant. 

Figure 4 depicts two examples of stochastic processes – 𝑛(𝑥1, 𝑡) and 

𝑛(𝑥2, 𝑡) – found in the literature. The first is a discrete stochastic process with a 

continuous parameter that refers to the process of birth and death of any animal 

species (𝑥1). The second example is the number of calls received at a telemarketing 

center. This process, like the first, is discrete with a continuous parameter, but the 

amplitude is always non-negative. 

 

Figure 4 - Examples of stochastic processes in the existing literature. 
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3.1.1. 
Birth and death process 

Kendall (1948) defines the birth and death process as a stochastic process 

𝑛(𝑡) with non-negative integer values (𝑆𝑛 states) and birth and death rates as a 

function of time, i.e., 𝜆(𝑡) and 𝜇 (𝑡).  Furthermore, Karlin and McGregor (1955) 

define the birth and death process as a random walk process with a continuous or 

discrete time parameter. 

The model's possible states and transition probabilities are listed in Table 1 

and illustrated in the states diagram in Figure 5. The diagram can be used to identify 

possible transitions between states represented by arrows with birth or death rates. 

The arrows indicate a state advance when directed to the right, a state retreat when 

directed to the left, and a state permanence when the origin and destination of the 

arrow are in the same state (circles). It should be noted that the diagram depicts 

state transitions at time 𝑡, i.e., all possible state changes when time equals a certain 

value. 

Table 1 - Events, states, and probabilities that describe the traditional birth and 

death process. 

Events States Probabilities 

Birth 𝑛(𝑡 + 𝛿) = 𝑛(𝑡) + 1 𝑝𝑖𝑗|𝑗=𝑖+1(𝑑𝑡) = 𝜆𝑖(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡) 

Death 𝑛(𝑡 + 𝛿) = 𝑛(𝑡) − 1 𝑝𝑖𝑗|𝑗=𝑖−1(𝑑𝑡) = 𝜇𝑖(𝑡)𝑑𝑡+ 𝑜(𝑑𝑡) 

Nothing 𝑛(𝑡 + 𝛿) = 𝑛(𝑡) 𝑝𝑖𝑗|𝑗=𝑖(𝑑𝑡) = 1− {𝜆𝑖(𝑡) + 𝜇𝑖(𝑡)}𝑑𝑡 + 𝑜(𝑑𝑡) 

 

 

Figure 5 - States diagram that represents a typical birth and death process. 
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Where, 

• 𝛿 is any time increment; 

• 𝑝𝑖𝑗(𝑑𝑡) is the probability of transitioning from state 𝑖 to state 𝑗 (𝑖, 𝑗 =

0,1,2,…), given the increment 𝑑𝑡; 

• 𝑜(𝑑𝑡) is a function that meets the following criteria lim
𝑑𝑡→0

0(𝑑𝑡)

𝑑𝑡
= 0. 

 

It has also been established that moving backwards from a state equal to zero 

or forward from states prior to zero and the last state 𝑆𝑛 is not permitted. These 

assumptions, that are listed below, are critical in order to keep the process non-

negative, implying that it is never possible for a construction project to have 

negative duration. 

Assumptions: 

• 𝜇0(𝑡) = 0, which means that it is impossible to die from the number 0; 

• 𝜆−1(𝑡) = 0, indicating that a birth cannot occur from the quantity −1; 

• 𝜆𝑛+1(𝑡) = 0, indicating that a birth cannot occur from the quantity 𝑛 +

1. 

 

With this in mind, some generic states can be used to develop the 

mathematical expressions that result in the transition probabilities based on the 

formal definition of the birth and death process. The population size is then assumed 

to be equivalent to a value 𝑎 at time 𝑡0 = 0 and to a value 𝑏 at time 𝑡1, where 𝑡1 >

𝑡0. As a result, given a time 𝑡 and an increment 𝑑𝑡, the transition probability (𝑎 →

𝑏), taking into account the continuous time parameter and unit transitions (unit 

increments), can be calculated from the state probabilities described in Table 1 and 

expressed by the differential equation: 
Equation 1 - Transi tion probabi li ty  from s tate 𝑎  to  𝑏  g iv en an in finetesim al tim e inc rement 𝑑𝑡, in  a  ty pica l  b i rth  and death proces s . 

 𝑝𝑎𝑏(𝑡 + 𝑑𝑡) = 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡)𝑑𝑡 + {1 − [𝜆𝑏(𝑡) + 𝜇𝑏(𝑡)]}𝑝𝑎𝑏(𝑡)𝑑𝑡

+ 𝜇𝑏+1(𝑡)𝑝𝑎,𝑏+1(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡) 
(1) 

 

In relation to the current study's scope, the first part of the right-hand side 

of the expression represents progress towards state 𝑏 – a work delay; the second 

part represents remaining in state 𝑏; and the third part represents regression to state 

𝑏 + 1 – a potential schedule advance. It can then be seen that if 𝑎 = 𝑏, the 
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probability  𝑝𝑎𝑏(𝑡 = 0) will be equal to 1, and that subtracting from both sides 

𝑝𝑎𝑏(𝑡) and then deriving both sides by 𝑡 results in the following expression: 
Equation 2 - Kolm ogorov forward equations  for a  typ ic al  bi rth and death process . 

𝜕𝑝𝑎𝑏(𝑡)

𝜕𝑡
= 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡) − [𝜆𝑏(𝑡) + 𝜇𝑏(𝑡)]𝑝𝑎𝑏(𝑡)

+ 𝜇𝑏+1(𝑡)𝑝𝑎,𝑏+1(𝑡) 

(2) 

 

Equation 2 represents how the transition probabilities change over time and 

is also known as the Kolmogorov forward equations. However, it is critical to 

understand that the stochastic process in this work is stationary in the strict sense, 

which means that the probability density function of any order does not vary over 

time for the state probabilities. This assumption is critical for the mathematical 

formulations presented in this work, but additional manipulations and definitions 

can be found in Albuquerque et al. (2008). 

Also shown in the format of Equation 2 is the transition probability matrix 

(KARLIN; MCGREGOR, 1955), which represents all transition probabilities in 

matrix format. 
Equation 3 - M atric ia l  forward Kolm ogorov equations. 

𝑷′(𝑡) = 𝑷(𝑡)𝑨 (3) 

 

Where, 

• The generator matrix is represented by 𝑨, which has the following 

positions: 

Equation 4 - Generator m atrix rela ted to  the trad i tional  bi rth and death process . 

𝐀 =

[
 
 
 
 
 
−𝜆0(𝑡) 𝜆0(𝑡)

𝜇
1
(𝑡) −[𝜆1(𝑡) + 𝜇

1
(𝑡)]

⋯
0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
−[𝜆𝑛−1(𝑡) + 𝜇

𝑛−1
(𝑡)] 𝜆𝑛−1(𝑡)

𝜇
𝑛
(𝑡) −[𝜆𝑛(𝑡) + 𝜇

𝑛
(𝑡)]]

 
 
 
 
 

 (4) 

 

 This tridiagonal, non-negative matrix satisfies the following properties and 

conditions: 

I. 𝑷(0) = 𝑰 

II. 𝑝𝑖𝑗(𝑡) ≥ 0 

III. ∑ 𝑝𝑖𝑗(𝑡) ≤ 1∞
𝑗=0  



37 

IV. 𝑷(𝑡 + 𝑠) = 𝑷(𝑡)𝑷(𝑠) 

3.1.2. 

Numerical example 

As an example, consider the following construction site scenario: delay states 

range from 0 to 34 days and are observed in random order with unit increments over 

time (for example, from 27 to 26 at time 𝑡1 and 26 to 27 at time 𝑡2). The number of 

delays in this hypothetical example is always greater than the number of schedule 

advances. In fact, in Brazil, approximately 69% of public works do not meet the 

contractual deadline set for the construction phase (ALVARENGA et al., 2021). 

As a result, in the middle of the construction phase (𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 0.5), the 

state diagram will show the delay and advance rates shown in Figure 6. 

 

Figure 6 - States diagram that represents a hypothetical example related to a 

construction project. 

 Thus, at the normalized time of analysis (𝑡𝑛𝑜𝑟𝑚 = 0.5), the following matrix 

expression can be used to calculate the transition probabilities given an increment 

𝑑𝑡, following Equation 3. 

𝑷′(𝑡)

=

[
 
 
 
 
 
𝑝0,0(0,5) 𝑝0,1(0,5)

𝑝1,0(0,5) 𝑝1,1(0,5)
⋯

0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
𝑝33,33(0,5) 𝑝33,34(0,5)

𝑝34,33(0,5) 𝑝34,34(0,5)]
 
 
 
 
 

×

[
 
 
 
 
−𝜆

0
(0,5) 𝜆

0
(0,5)

𝜇
1
(0,5) −[𝜆

1
(0,5) + 𝜇

1
(0,5)]

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−[𝜆

33
(0,5) + 𝜇

33
(0,5)] 𝜆

33
(0,5)

𝜇
34
(0,5) −[𝜆

34
(0,5) + 𝜇

34
(0,5)]]

 
 
 
 

= [

−𝜆
0
(0,5)𝑝0,0(0,5) + 𝜇

1
(0,5)𝑝0,1(0,5) 𝜆

0
(0,5)𝑝0,0(0,5) − [𝜆1(0,5) + 𝜇

1
(0,5)]𝑝0,1(0,5)

−𝜆
0
(0,5)𝑝1,0(0,5) + 𝜇

1
(0,5)𝑝1,1(0,5) 𝜆

0
(0,5)𝑝1,0(0,5) − [𝜆1(0,5) + 𝜇

1
(0,5)]𝑝1,1(0,5)+ 𝜇

2
(0,5)𝑝1,2(0,5)

⋯

⋮ ⋱

] 
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It is possible to infer the most common transitions at a given time 𝑡 using this 

matrix and, thus, establish the most critical states associated with these transitions. 

For example, if the delay rate 𝜆3(𝑡) is equal to 0.9, it means that when the number 

of delays accumulates to 3 units (days, weeks, or any other measure), there is a 90% 

chance of moving to state 4 of delays at time 𝑡 of the work. If, on the other hand, 

𝜆34(𝑡) equals 0.05, the probability of a transition to a state one unit higher is low. 

3.1.3. 
Markov chain 

This matrix expression can also be used to understand the Markov property, 

which is an important feature of the stochastic processes used in this study. A 

Markov chain occurs when the probability of an event occurring depends only on 

the recent past and not on the distant past (BOLCH et al., 2006). In other words, a 

Markov process has the property of being memoryless, which can be expressed 

mathematically as: 
Equation 5 - M arkov  c hain`s property rela ted to  m emoryles s feature. 

𝑝(𝑋𝑡𝑛+1  ≤ 𝑠𝑛+1 | 𝑋𝑡𝑛 = 𝑠𝑛, 𝑋𝑡𝑛−1 = 𝑠𝑛−1, … , 𝑋𝑡0 = 𝑠0)

=  𝑝(𝑋𝑡𝑛+1 ≤ 𝑠𝑛+1 | 𝑋𝑡𝑛 = 𝑠𝑛) 
(5) 

 

This property is easily observed in the numerical and hypothetical example 

of delays used by the matrix format, in which the transition probabilities depend 

only on the immediately preceding and following states. The same holds true in the 

case of construction site accidents. The process is Markovian because the 

probability of an accident occurring at the start of the project has no statistically 

significant effect on the probability of accidents occurring at the end of the project. 

In other words, once unitary and independent increments are considered, the study 

of the influence of accidents can be done locally. 

Still on the subject of Markov characteristics, the semigroup property can be 

defined using property IV and the Chapman-Kolmogoroff equation (KARLIN; 

MCGREGOR, 1955): 
Equation 6 - M arkov  c hain`s property rela ted s emigroup feature. 

𝑝𝑖𝑗(𝑡 + 𝑠) = ∑𝑝𝑖𝑘(𝑡)𝑝𝑘𝑗(𝑠)

∞

𝑘=0

 (6) 
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Because of the semigroup property, if one knows the transition probabilities 

from state 𝑖 to 𝑘 and 𝑘 to 𝑗 at times 𝑡 and 𝑠, one also knows the transition probability 

from 𝑖 to 𝑗 at time 𝑡 + 𝑠. Thus, using the semigroup property, it is possible to 

estimate transition probabilities in the future based on past records, or to create a 

predictive accident model as long as the history of previous works is available. 

3.1.4. 
Pure birth process 

The study of occupational safety occurrences can be extracted from the birth 

and death model described for the study of delays by using the pure birth model. In 

the pure birth process, the mortality rate 𝜇(𝑡) is zero for any state (see Figure 7). In 

this study, this model is used to represent construction safety occurrences, where 

the birth represents a safety occurrence, which can be an accident, a near miss event 

(when an accident almost occurs), or a safety observation (when a near miss event 

almost occurs), i.e., construction events that cause or nearly cause work accidents. 

 

Figure 7 - States diagram that represents a typical pure birth process. 

 

The following additional assumptions are made in this model: 

V. 𝑛(0) = 0: the starting point will always be zero births (accidents); 

VI. 𝑛(𝑡2) −  𝑛(𝑡1) : the number of occurrences in the interval ]𝑡1, 𝑡2] ∀ 0 ≤

𝑡1 < 𝑡2; 

VII. 𝑛(𝑡) has independent increments, which means that an increase in the 

number of accidents in (𝑡2 − 𝑡1) is unrelated to another in (𝑡4 − 𝑡3); 

VIII. 𝑛(𝑡2) −  𝑛(𝑡1) : a Poisson random variable (or vector) with parameter 

𝜆(𝑡2 − 𝑡1), where 𝜆 is the birth rate equivalent to the occurrence rate. 
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The transition matrix and state probabilities for this model can be easily 

calculated by zeroing the mortality rate in Equation 1, Equation 2, and Equation 4, 

resulting in: 

 

Equation 7 - Transi tion probabi li ty  for the pure bi rth process .  

𝑝𝑎𝑏(𝑡 + 𝜕𝑡) = 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡)𝜕𝑡 + [1 − 𝜆𝑏(𝑡)]𝑝𝑎𝑏(𝑡)𝜕𝑡 + 𝑜(𝜕𝑡) 
(7) 

Equation 8 – Kolmogorov  forward equations  for the pure b i rth  proc es s.  

𝜕𝑝𝑎𝑏(𝑡)

𝜕𝑡
= 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡) − 𝜆𝑏(𝑡)𝑝𝑎𝑏(𝑡) 

(8) 

Equ ation  9  - Gen erato r matrix  related to th e pu re b irth  p ro cess. 

𝐀 =

[
 
 
 
 
−𝜆0(𝑡) 𝜆0(𝑡)

0 −𝜆1(𝑡)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−𝜆𝑛−1(𝑡) 𝜆𝑛−1(𝑡)

0 −𝜆𝑛(𝑡)]
 
 
 
 

 (9) 

 

3.1.5. 
Poisson model 

Previous research (CHUA; GOH, 2005) indicates that the distribution of 

accidents can be described by the Poisson model and, thus, the equations of the pure 

birth model can be simplified even further based on the following condition that 

indicates the constancy of the birth rate: 

𝜆(𝑡) = 𝜆, at any time 𝑡. 

Thus, the pure birth model's description of the accident evolution problem can 

also be understood as a Poisson stochastic model with the following probability 

distribution: 
Equation 10 -Probabi li ty  dis tribution function that desc ribes  the poiss on m odel. 

𝑝𝑛(𝑡)(𝑁) =  ∑
𝑒−𝜆𝑡(𝜆𝑡)𝑚

𝑚!

∞

𝑚=0

𝛿(𝑁 −𝑚)  |  𝛿(𝑁 − 𝑚)

=  {
1, 𝑖𝑓 𝑚 = 0,1,2,… 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(10) 

 

Where, 

𝛿(𝑁 − 𝑚) is the Dirac delta. 

 

Since the increments are statistically independent, the joint probability 

density function (PDF) between them is the multiplication of the PDFs of the 
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increments. This means that the probability of 𝑁2 safety occurrences between times 

𝑡3 and 𝑡4 given 𝑁1 occurrences between times 𝑡1 and 𝑡2 can be calculated using the 

individual probabilities of each increment, i.e.: 
Equation 11 –  J oint probabil i ty  dens ity  func tion ’s  c oncept. 

𝑃𝑖1 ,𝑖2 ,… ,𝑖𝑚(𝑁1 , 𝑁2 , … , 𝑁𝑚) = 𝑃𝑖1(𝑁1)𝑃𝑖2(𝑁2)… 𝑃𝑖𝑚(𝑁𝑚) (11) 

 

Where, 

• 𝑖1 = 𝑛(𝑡2) − 𝑛( 𝑡1), 𝑖2 = 𝑛(𝑡4) − 𝑛(𝑡3),… , 𝑖𝑚 = 𝑛(𝑡2𝑚) − 𝑛(𝑡2𝑚−1); 

• 0 ≤ 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 < ⋯ < 𝑡2𝑚−1 < 𝑡2𝑚 . 

 

Also, 
Equation 12 - Jo in t probabi li ty dens i ty  func tion applied to  the Pois son model . 

𝑝𝑛(𝑡2)−𝑛(𝑡1)(𝑁) =  ∑
𝑒−𝜆(𝑡2−𝑡1)(𝜆(𝑡2 − 𝑡1))

𝑚

𝑚!

∞

𝑚=0

𝛿(𝑁 −𝑚)

= 𝑝𝑛(𝑡2−𝑡1)(𝑁) 

(12) 

 

And by doing, 

𝑦(𝑡) = 𝑛(𝑡 + ℎ) − 𝑛(𝑡)  

 

It leads to: 

𝑝𝑦(𝑡)(𝑁) = 𝑝𝑛(𝑡+ℎ)−𝑛(𝑡)(𝑁) = 𝑝𝑛(ℎ)(𝑁)  

𝑝𝑦(𝑡+𝑐)(𝑁) = 𝑝𝑛(𝑡+ℎ+𝑐)−𝑛(𝑡+𝑐)(𝑁) = 𝑝𝑛(ℎ)(𝑁)  
Equation 13 - Proof o f s ta tionary  c ondi tion for the Poisson m odel . 

𝑝𝑦(𝑡+𝑐)(𝑁) = 𝑝𝑦(𝑡)(𝑁) (13) 

 

This means that the number of accidents 𝑛(𝑡) exhibits first order increments 

of stationarity, i.e., it is a stationary stochastic process in which the first order 

probability density function does not change as time passes. Furthermore, because 

the increments are independent, the stochastic process described is strictly 

stationary, as can be seen for any integer value of 𝑚. In other words, the PDFs do 

not change over time. 

Next, an analysis of the time between incidents is presented to help 

understand the applicability of the stochastic process described above. The random 

variable under analysis, 𝑡1, is assumed to represent the time of the first incident 
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(accident, first aid, or safety observation). There were no incidents prior to 𝑡1, i.e.: 

𝑛(𝑡 < 𝑡1) = 0. 

Applying the cumulative probability function, 
 

𝑃({𝑡 < 𝑡1}) = 𝑃(𝑛(𝑡) = 0) =
𝑒−𝜆𝑡(𝜆𝑡)𝑚

𝑚!
|
𝑚=0

= 𝑒−𝜆𝑡  

 

Therefore, 

𝑃({𝑡1 ≤ 𝑡}) = 1 − 𝑒−𝜆𝑡  

 

In other words, the cumulative density function is defined as: 
Equ ation  14  - Cu mulativ e p ro b ab ility fun ctio n fo r th e Po isson  mo d el. 

𝐹𝑡1(𝑡) = 𝑃({𝑡1 ≤ 𝑡}) = {1 − 𝑒
−𝜆𝑡 ,    𝑡 ≥ 0

0,    𝑡 < 0
 (14) 

 

As a result, the time of the first occupational safety event on site follows an 

exponential distribution, as shown in Figure 8. Projects with a history of higher 

accident rates (higher 𝜆) are more likely to have new accidents at the beginning of 

the project (lower 𝑡), as expected. 

 

Figure 8 - Cumulative density function for the Poisson model with birth rate 

variation. 

The same reasoning applies to an increment Δ𝑡: 
Equ ation  15  - Cu mulativ e p ro b ab ility fun ctio n fo r th e Po isson  mo d el con sid ering  th e time in cremen t. 
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𝐹𝑡1(Δ𝑡) = 𝑃({Δ𝑡1 ≤ Δ𝑡}) = {1 − 𝑒
−𝜆Δ𝑡 ,    Δ𝑡 ≥ 0
0,    Δ𝑡 < 0

 (15) 

 

In other words, any time interval between occurrences follows the 

exponential distribution in addition to being equally independent of each other, and 

because they are independent of each other, the probability density function can be 

obtained by multiplying exponential distributions. 

𝐹𝑡1,𝑡2,…,𝑡𝑚(Δ𝑡1, Δ𝑡2, … Δ𝑡𝑚) = 𝑃({Δ𝑡1 ≤ Δ𝑡}). 𝑃({Δ𝑡2 ≤ Δ𝑡})… 𝑃({Δ𝑡𝑚 ≤ Δ𝑡})

= {
(1 − 𝑒−𝜆Δ𝑡1)(1 − 𝑒−𝜆Δ𝑡2) …(1 − 𝑒−𝜆Δ𝑡𝑚),    Δ𝑡1 ≥ 0, Δ𝑡2 ≥ 0,… Δ𝑡𝑚 ≥ 0

0,   otherwise
 

 

3.2. 
Neural networks 

Neural networks models are composed of Machine Learning (ML) 

algorithms, which are a kind of Artificial Intelligence (AI) technique. In fact, the 

concept of intelligence associated with computer machines emerged from “The 

Imitation Game” proposed by Turing (1950). Although he did not mention the term 

“Artificial Intelligence”, which was created by McCarthy et al. (1955), the Turing 

test reflects the origin of a learning machine. It is important to highlight, however, 

that ML is a subset of AI scientific area. 

Thus, to “teach” a computer machine aiming to create  an artificial 

intelligence, the neural networks is one of the most recognized models used. It is 

inspired by the human brain which is formed by neurons that communicate each 

other through impulses. Thus, NN models can solve complex tasks thanks to its 

powerful structure, which usually consists of an input layer, processing units and 

activation function (hidden layers), and output layer. 

Following the artificial neuron proposed by Haykin (2009), a processing unit 

can be understood as a mathematical model, in which there are 𝑛 input nodes with 

respective weights and one output node. The input nodes are combined linearly by 

a sum function, considering the associated weights, and the result is used by an 

activation function. The sum operation includes a parameter, named bias, to 

increase or decrease the input value in the activation value. It should be noted that 

the activation function is responsible for limiting the output by a finite value. 
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Therefore, the activation function can be selected depending on the model 

application. Usually, nonlinear functions are used, such as hyperbolic tangent and 

sigmoid, to capture complex behaviors in the neural networks model that are not 

captured with linear functions (MÜLLER; GUIDO, 2016). Table 2 represents the 

hyperbolic tangent and sigmoid nonlinear functions used normally as activation 

functions: 

Table 2 - Examples of nonlinear activation functions. 

Activation function Formulation  

hyperbolic tangent φ(𝑣𝑗) =
1

1 + 𝑒−𝑣𝑗
  

sigmoid φ(𝑣𝑗) =
𝑒(𝑣𝑗) − 𝑒−(𝑣𝑗)

𝑒(𝑣𝑗) + 𝑒−(𝑣𝑗)
  

 Where, 

• φ(𝑣𝑗) represents the activation function according to the parameter 

bias 𝑣 at the neuron index 𝑗. 

3.2.1. 
Architecture 

When combining the artificial neurons, a neural network is created. Thus, the 

architecture can be defined according to the connection between the neurons and 

are usually classified as feed-forward or recurrent. The former is defined when the 

neurons are connected and organized in layers and the information flow is in one 

direction – from the input layer to the output layer. The latter architecture occurs 

when the information flow is possible in two directions – from the input layer to the 

output layer (feed-forward) or vice versa (feed-backward) 

The Multilayer Perceptron (MLP) is one example of neural networks 

architecture classified as feed-forward. In this architecture, there are one input layer, 

one or more hidden layers, and one output layer, in this sequence. The processing 

nucleus is in the hidden layers and so, the number of nodes in the hidden layer is an 

important parameter to be defined (MÜLLER; GUIDO, 2016). 

The current study adopted two architectures: Convolutional (CNN) and Long 

Short-Term Memory (LSTM), as shown in Table 3. The CNN is a feed-forward 

architecture inspired by the structure of a visual cortex, in which the hidden layers 

are characterized by one or more layers that run convolutional operations. The 
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LSTM is however a recurrent architecture, that is useful to deal with time sequence 

and is formed by hidden layers that learn when remember or forget the information. 

Table 3 - Adopted neural networks architectures. 

CNN LSTM 

 

 

 

 

3.2.2. 
Stop criteria and performance metrics 

According to Haykin (2009), although there are not clear convergence criteria 

to stop the backpropagation algorithms, some stop criteria can be highlighted. The 

first one refers to an absolute rate based on the variation in the mean squared error. 

For example, when the absolute rate per epoch is close 1%, it can be considered 

sufficiently low, and the algorithm stops. However, it could interrupt the routine 

prematurely during the learning process. 

The second criteria mentioned by Haykin (2009) is based on the general 

network performance. The generalization refers to the capacity of a neural network 
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in predicting the results using an input data that was not used in the training model. 

When the performance is considered satisfactory, the algorithm is therefore 

stopped.  

The performance can be evaluated using metrics, such as the mean absolute 

error (MAE). In this study, three performance metrics were adopted: MAE, mean 

absolute percentage error (MAPE), and root-mean-square error (RMSE). The 

absolute and percentual errors were important to understand how close or far is the 

prediction for the actual values. But, when there are few data to train and test the 

model, it can return in large MAE and MAPE metrics, due to wrong estimation. 

The RMSE metric is calculated based on the square root of the average of squared 

errors and is sensitive to outliers. Table 4 shows the equations that defined the 

adopted metrics. 

Table 4 – Adopted performance metrics for neural networks evaluation. 

Performance metrics Formulation  

MAE 
∑ |𝑒𝑟𝑟𝑜𝑟𝑖|
𝑛
𝑖=1

𝑛
  

MAPE 
∑ |

𝑒𝑟𝑟𝑜𝑟𝑖
𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒𝑖

|𝑛
𝑖=1

𝑛
 

 

RMSE √
∑ (𝑒𝑟𝑟𝑜𝑟𝑖)

2𝑛
𝑖=1

𝑛
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4 
Planning for the unexpected in construction projects: a 
review 

Paper published by Cristiano S. T. do Carmo and Elisa D. Sotelino, in peer-

reviewed international journal3. 

 Global crises, such as pandemic and wars, bring to light how construction 

projects can be impacted by unexpected events that are typically overlooked by 

planning teams. Therefore, the goal of this study is to review the literature to 

understand how uncertainties are being considered in construction planning 

methods and, what are the next steps to face new crises. By doing so, the authors 

mapped the traditional variables that are included as uncertainties in planning 

methods, such as project time and cost, as well as the unusual variables that are not 

typically included as uncertainties in the methods, such as safety and sustainability 

issues. The state-of-the-art of planning methods with uncertainties entailed a 

thorough reading of 103 journal articles found through an adapted systematic 

literature review, which included, in addition to traditional processes, a 

scientometric study and a snowballing analysis. As a result, it was discovered that 

the main uncertainties considered are related to time, cost, and resources. 

Furthermore, it was possible to observe that there is no single consolidated 

technique for incorporating uncertainties in planning methods, but rather a 

combination of different techniques, ranging from the most traditional with 

analytical analysis to the most contemporary with artificial intelligence algorithms.  

4.1. 
Introduction 

During the current global crisis caused by the COVID-19 pandemic and the 

Ukraine war, the construction industry turns on the lights to improve predictability 

and risk contingency in contracts. Commodities experienced rapid price 

fluctuations, prompting financial investors to shift their portfolios into low-risk 

 
3 DOI: 10.47456/bjpe.v9i4.42244 
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industries. However, as is well known, the construction industry is characterized by 

randomness and uncertainty, increasing the level of vulnerability to unforeseeable 

events, which is unappealing to investors. 

Many factors contribute to the inherent uncertainties that arise during 

construction work. For example, Laufer and Cohenca (1990) conducted a survey 

and found that completion of the design phase, previous experiences, labor supply, 

weather conditions, and planner subjectivity are all factors that have a high impact 

on construction planning results. As a result, it is almost mandatory in today's 

turbulent times to consider uncertainties in construction planning methods to 

include the variability of that industry more explicitly and, thus, attract more 

investment. 

Defining uncertainty is a difficult task. Uncertainty is the lack of knowledge 

about a situation in which one does not understand the values, possible ranges, or 

whether the outcome will be positive or negative (ZHENG; CARVALHO, 2016). 

Unlike risk, which is commonly associated with negative known scenarios (threats), 

uncertainties occur before risks (FENG et al., 2018) and can lead to threats or 

opportunities (ZHENG; CARVALHO, 2016). In other words, one only knows the 

risks if uncertainties are understood beforehand. While risk is equivalent to 

numerical variability, uncertainty can be associated with chaos and without any 

control over the probabilistic events (DE MEYER; LOCH; PICH, 2002). 

Note that there are different levels of uncertainty. According to Walker et 

al. (2013), it is divided into five levels: the lowest level (1) refers to a single system 

model that guide to only one direction; and highest level (5) occurs when there is 

no known system model or even known outcomes. The latter is also known as deep 

uncertainty, as defined by Lempert et al. (2003), and is the one applicable to 

construction planning of unusual projects, such as infrastructure projects, according 

to Feng et al. (2022). This is because in these projects other contexts beyond the 

technical issues such as human, political, social, and environmental issues must also 

be considered, thus, increasing the difficulty in defining uncertainties and the choice 

of model to be used. 

So, how do construction planners deal with uncertainties when planning? 

This is the central question for the current study, which is divided into five sections. 

Thus, the objective of the paper is to provide a comprehensive overview of the state 

of art on construction planning with uncertainties and to identify gaps of 
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knowledge. The research context is presented in the first section and a theorical 

background is presented in the second one. The research methodology is explained 

in the third section. Following, the fourth section contains the main discussions on 

uncertainties in construction planning methods. The fifth section then summarizes 

the study's development as well as the main contributions and limitations.  

4.2. 
Theorical background 

4.2.1 
Construction industry and its challenges with planning methods 

According to the McKinsey report (Ribeirinho et al., 2020), the construction 

industry accounts for 13% of worldwide Gross domestic product (GDP), and 

according to the Brazilian statistical report (CBIC, 2023), an average of 5.3% in 

Brazil. Behind these figures are societal effects such as job creation and income 

generating. Furthermore, the building business has been hit hard by worldwide 

crises such as the COVID-19 pandemic. According to the Brazilian Statistics 

Institute (IBGE, 2023), COVID-19 caused a 2% drop in GDP construction 

participation. Then, as indicated in the McKinsey global construction reports 

(Ribeirinho et al., 2020), the implications of these occurrences are typically industry 

demands for new technology aimed primarily at increasing efficiency. Indeed, as 

stated by Shibani et al. (2020) and Edmund et al. (2018), during the worst global 

crises in history, new technologies “appeared” in the building industry to enhance 

productivity and, as a result, pull the economic recovery. 

However, there is sometimes a harmful aftereffect from the never-ending 

quest for better productivity. According to Enshassi et al. (2009), there was an 

increase in work accidents in the construction industry during the same time 

periods. Even if developing countries have a lower construction representativeness, 

the negative effects of global crises may be stronger in developing countries than 

in wealthy ones. As a result, construction planners play a critical role in taking these 

issues and uncertainties into account in the planning methods and, thus, during the 

construction phase. 

One of the early studies on uncertainty in construction planning was 

conducted by the Fleet Ballistic Missile program in the 1950s, as described by 

Touran (1986) and Williams (1999). In this initiative, the method Program 
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Evaluation and Review Technique (PERT) was proposed by Malcolm et al. (1959) 

to introduce probabilistic input variables into the Critical Path Method (CPM), 

which is the most used technique for construction planning, but deterministic in 

nature. It is worth noting that CPM was idealized almost at the same time by Kelley 

and Walker (1959), who were inspired by the Gannt chart proposed by Clark in 

1922 and later adapted with the predecessor network concept by Fondahl in 1962, 

but always maintaining its deterministic nature, as stated by Hadipriono (1988). 

Following the PERT/CPM method, other derived techniques for dealing with 

uncertainties emerged, such as the Graphical Evaluation and Review Technique 

(GERT) proposed by Moore and Clayton (1976). The predecessor network in this 

approach works with deterministic and probabilistic nodes with additional operators 

to the PERT technique. As a result, Kavanagh (1985) considered GERT to be a 

complex and refined methodology, whose use is challenging to planners who do 

not have experience with statistical analysis and derived topics. 

Later, in 1988, Hadipriono proposed a deductive method based on fault tree 

analysis for considering uncertainties in construction planning, which is applicable 

to both deterministic and non-deterministic analyses. The Modified Fault Tree 

Networking (MFTN) method adds to CPM causal interrelationships between events 

that can cause scheduling problems. This approach follows the recommendation 

made by Caron et al. (1998) regarding the planning process flow, which is to begin 

at the end. For example, you can first establish the deadlines, and then define the 

deliverables and procurement processes based on those dates. Using this logic, 

Hadipriono (1988) argues that MFTN is a construction planning method useful for 

identifying activities and construction sequences that are most likely to contribute 

to schedule delays. 

Many construction planning techniques were developed during the 

aforementioned periods to optimize the processes of repetitive construction and to 

deal with cost and risk estimation (RUSSELL; WONG, 1993). Ock and Han (2010), 

for example, proposed a fuzzy-based method to calculate the risks associated with 

uncertainties in other methods. The Line of Balance (LOB) approach is another 

approach focused on repetitive construction that allows productivity and production 

rates to be considered alongside the PERT approach, but in a deterministic manner 

(KAVANAGH, 1985). The problem with this deterministic analysis is that it 

normally results in optimistic estimations because it does not incorporate 
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uncertainties and random variables into the construction plan (TOURAN, 1986). In 

fact, according to Bacon et al. (1996), when paired with inadequate risk analysis, 

this optimistic scenario can render huge projects unaffordable in infrastructure 

projects built in developing countries. 

Indeed, as stated by Lee et al. (2009), in infrastructure projects involving 

new technologies, project managers typically apply a large margin compared to 

building projects to cover many uncertainties that traditional planning methods do 

not take into account. As a result, for that scope of project, contingency estimation 

is critical (TSENG; ZHAO; FU, 2009), and computer simulations are commonly 

used to overcome the drawbacks of traditional planning methods. In this context, it 

is important to mention Monte Carlo (MC) simulation, which according to Woolery 

and Crandall (1983), is an acceptable technique for performing stochastic analysis 

in network models of large and complex projects, and, thus, applicable for 

construction activities. However, Manik et al. (2008) emphasized that MC 

simulations necessitate a significant amount of computational time and power, and 

Lee (2005) claimed that these simulations are a useful supplement to traditional 

planning methods. Similarly, some stochastic methods are based on deterministic 

methods (e.g., CPM) as demonstrated by the work of Kokkaew and Chiara (2010). 

The authors proposed the Stochastic Critical Path Method (SCPM) in that study, 

which combines the critical path with MC simulations and enveloping analysis. By 

doing so, the authors argue that it is possible to account for the manager's 

subjectivism in schedule estimation. According to Tseng et al. (2009), another 

feature of MC simulation is the requirement for better data history and maintenance, 

which can include pre-processing and data mining techniques. Furthermore, 

according to Du et al. (2016), MC simulation maximizes the benefits of Markov 

chain models, which explains why many studies combine MC with stochastic 

analysis (HASSAN; EL-RAYES; ATTALLA, 2023; HOSNY; NIK-BAKHT; 

MOSELHI, 2022; KAMMOUH et al., 2022; ZHONG et al., 2016). 

It should be noted that simulation techniques are not limited to MC; for 

example, Halpin (1977) proposed the CYCLONE system, which is based on 

Discrete Event Simulation (DES), to study construction operations. Indeed, DES is 

an important technique that is being used by several studies in the construction 

planning area to integrate with building information models (ABBASI; 
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TAGHIZADE; NOORZAI, 2020), fuzzy analysis (SZCZESNY; KÖNIG, 2015), 

probabilistic approaches (FENG et al., 2022), among others. 

Furthermore, construction planning methods frequently employ 

probabilistic analysis to estimate activity duration based on historical data. 

Naturally, there are inherent uncertainties in that historical database that can affect 

the estimation results. Probability Density Functions (PDF) are commonly used in 

this type of approach, as evidenced by the studies of AbouRizk and Halpin (1992) 

and Lee (2005). Although AbouRizk and Halpin (1992) suggested using the Beta 

distribution to estimate earth movement activity durations, PDFs are difficult to 

determine. Furthermore, as stated by Touran (1986), general users typically lack 

the necessary statistical analysis knowledge to incorporate probabilistic techniques 

into planning methods. 

Indeed, according to Jaśkowski and Sobotka (2006), time and cost are the 

most used decision-making indicators, which explains why these two variables are 

frequently used in construction planning methods that account for uncertainties. 

Also, according to Ock and Han (2010), the success of a construction project is 

related to three factors: time, cost, and quality, but the “risk path”, as the authors 

refer to it, may comprehend activities that are not included in the critical path and 

are related to other areas. However, several authors (KAVANAGH, 1985; OCK; 

HAN, 2010; OZDEMIR; KUMRAL, 2017; YANG; CHANG, 2005) criticize 

traditional methods for ignoring resources or believing that resources are limitless. 

As a matter of fact, resources are the means to an end (VAZIRI; CARR; NOZICK, 

2007), which can be time and cost variables, but their omission in construction 

planning results in unrealistic scenarios. As a result, schedule estimates can be 

overly optimistic (KAVANAGH, 1985), causing practical issues on the job site 

such as contractual schedule adjustments. Therefore, CPM, PERT, bar charts, and 

other traditional methods are insufficient to solve the problem of resource allocation 

on construction sites, and the subject is widely discussed in construction site 

planning studies, which propose everything from linear programming to genetic 

algorithms (YANG; CHANG, 2005). 

In this line of reasoning, the worker or labor is introduced, which is regarded 

as the most critical type of resource by Vaziri et al. (2007) when compared to 

equipment and materials. However, labor sizing has traditionally been done by 

relying on past experiences rather than using specific tools or methods. Based on 
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this finding, Elhakeem and Hegazy (2005) proposed the Distributed Scheduling 

Model (DSM), which is a model based on CPM concepts, progress rates and work 

crew estimation, and has as its goal the optimization of resource allocation in 

construction and maintenance operations. Unlike DSM, which employs abacus 

calculations and deterministic formulations, other authors propose more advanced 

methods, such as the study by Zahraie and Tavakolan (2009), which employs 

genetic algorithms associated with fuzzy logic to optimize time and cost while also 

allocating and placing labor. Similarly, Tomczak et al. (2019) proposed a 

conceptual mathematical model of multi-criteria optimization with nonlinear 

processes under deterministic conditions, with the goal of minimizing team 

downtime and total project duration. 

Even more specific is the issue of workplace safety, which is frequently 

overlooked by construction planning methods but can undeniably interfere with the 

main indicators of time and cost. The impact of workplace safety on the duration of 

construction activities is investigated in the study developed by Francis (2019), and 

a method is proposed that considers both themes concurrently to avoid errors in 

decision making. It is worth noting that the simultaneous consideration of variables 

in construction planning methods has already been studied by several authors, 

including Isidore et al. (2001), who proposes the integration of time and cost 

simulations to understand the correlation between them. 

When compared to vertical building projects, the concern with occupational 

safety and health issues is even more important in the realm of infrastructure works 

because they typically involve heavier equipment and a larger number of workers 

in the field. According to Elhakeem and Hegazy (2005), there are three key 

decisions in this type of construction: the number of available teams; the 

construction method used in each activity; and the order of execution of the 

activities in each space. Certainly, activity prioritization is a study that has piqued 

the interest of researchers such as Bruni et al. (2011), who propose new 

prioritization rules based on heuristic programming and statistical analysis, with the 

goal of taking uncertainties and resource constraints into account in construction 

planning. Unlike other planning methods with uncertainty, the authors’ method was 

designed to have an easy-to-use and friendly graphical interface, which has aided 

in the spread of stochastic methods in the construction industry. 
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Moreover, logistics and equipment sizing can have a significant impact on 

the risk of accidents on the construction site in infrastructure projects. With this, 

fleet sizing is a problem that has drawn the attention of stochastic process scholars 

in construction planning. Ozdemir and Kumral (2017) proposed the use of 

stochastic processes in the deterministic Match Factor method to consider risks over 

time, as well as Monte Carlo simulations to understand equipment availability over 

time. The authors were able to demonstrate through case studies that traditional 

methods generate exaggerated or pessimistic estimates, whereas the proposed 

stochastic method generates more realistic, but not necessarily optimistic, 

scenarios. 

To summarize, planners began to consider uncertainties in construction 

using variations of the CPM approach and were primarily concerned with the time 

issue (construction duration). The planning network model was then improved by 

logical methods, which enabled the creation of process maps to simulate the 

construction sequence. However, the simulation itself was only possible due to 

advances in computer processing power, which enabled Monte Carlo simulation 

models and, as a result, the consideration of multiple variables beyond time. 

Furthermore, specific challenges in construction projects, such as repetitive 

construction, prompted the development of new techniques that were not entirely 

based on CPM and were more closely related to statistical analysis. In doing so, the 

theoretical background revealed that there are many construction planning methods 

that originated over the last decades and due to technological evolution but 

understanding the different levels of uncertainty appears to keep this topic at a 

superficial level of implementation. 

4.2.2 
Literature review approaches 

Following Denyer and Tranfield (2009), the Systematic Literature Review 

(SLR) is an approach to discovering findings and research gaps in scientific areas 

in an impartial and objective manner. Although the SLR method strives for 

objectivity, the researcher's parameters, such as search terms and filters, may be 

biased due to personal perspective, experience, and knowledge. As a result, this 

paper proposes the use of adapted systematic reviews, as suggested by He et al. 

(2017), including term cooccurrence analysis to better understand the topics 
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covered by many papers without requiring a thorough reading and a snowballing 

analysis as an additional step. By doing so, it is possible to gain a better 

understanding of whether the search terms are correct and to obtain preliminary 

answers to the research questions. 

Traditionally, according to Khan et al. (2003), the SLR follows a set of 

standardized steps: question formulation, study location, selection and evaluation, 

analysis and summary, and results and reporting. The first step is to properly 

describe the research topic under consideration, which will help direct the search 

for relevant papers. The following step is to do an article database search using 

previously defined search terms and filters. As a result, the researcher receives a list 

of studies that must be selected and reviewed using inclusion and exclusion criteria, 

which can include language, scope of study, and other relevant criteria to the 

literature review. The fourth step comprises thoroughly examining the final 

selection of studies to summarize each contribution, limitations, and subjects 

relevant to answering the SLR questions. Finally, the fifth stage is concerned with 

results and reporting, which includes graphs depicting the insights and tables 

summarizing the SLR results, among other outputs. 

The snowballing analysis is another method for conducting a literature 

review. This method involves the researcher using a reference list or citations to 

well-known articles on the subject (WOHLIN, 2014). So, it is essentially a thorough 

dive into a certain papers’ references. The second and third steps of the snowballing 

analysis differ from those of the SLR. Instead of a structured search in databases, 

the snowballing approach focuses on the key articles in a given subject, and with 

these key papers, the researchers use inclusion and exclusion criteria to filter the 

reference list, and then begin the analysis, summary, results, and reports similarly 

to the SLR. Snowballing can be done in two ways: forward or backward. The 

references in the important publications are used in the former search. The citation 

to the key papers is used in the latter search. 

The quality of the final list of studies, however, can be influenced by the 

researcher’s experience, as they may not completely comprehend what the 

significant publications in a specific area are. Furthermore, according to Jalali and 

Wohlin (2012), the snowballing analysis is simple to understand and replicate, as 

opposed to the SLR, which contains more difficult procedures for a rookie 

researcher. However, as a disadvantage, “the lack of randomized: 
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representativeness” in the snowballing study can result in biased conclusions, 

according to Geissdoerfer et al. (2017). 

It should be noted that the snowballing technique is intended to be 

complementing rather than a replacement for SLR (WOHLIN, 2014). 

4.3. 
Methodology 

In this section, an adapted systematic literature review is proposed, 

combining SLR and snowballing analysis, using the following sets: question 

formulation, study location, selection and evaluation, analysis and summary, 

snowballing analysis, and results and reporting. All steps and information used and 

extracted during the adapted SLR processes are summarized in Figure 9. 

 

Figure 9 - Workflow that represents the adapted SLR used in the methodology. 

The SLR questions in this study are: 

• How do construction planning methods handle uncertainties? 
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• What kinds of uncertainties are taken into account in construction 

planning methods? 

Following that, a comprehensive literature search was conducted, in which 

Scopus database was used to identify relevant studies by using inclusion and 

exclusion criteria. Basically, the search engine was configured to find only journal 

articles written in English without period limit and with the search terms, derived 

from the initial questions, occurring in the title, abstract, or keywords. The search 

terms involved words related to construction planning methods (e.g., “construction 

plan*” and “construction schedule*”) and uncertainties (e.g., “uncertain*” and 

“risk*”). 

Thus, 444 studies were discovered using the database’s search terms and 

filters. It is worth noting that 67% of the found papers were taken with the search 

term “risk*” and 33% with “uncertain*”. This distinction indicates that the studies 

are more concerned with variability and controlled scenarios than with completely 

unknown scenarios. It is also worth noting that some authors may not have the same 

understanding of the distinctions between risk and uncertainty, as suggested by 

Feng et al. (2022). The current study concentrated on uncertainty scenarios that are 

considered in construction planning methods. 

All article titles from the search results were read to determine whether or 

not they fit the scope of the current work. To avoid mistakes, this evaluation was 

repeated twice, and 226 articles were removed. The remaining 218 studies' abstracts 

were then read using the same logic and process as the title reading. The sample 

was reduced to 103 papers after the second evaluation, which means approximately 

23% of the initial sample. 

The fourth step in the proposed SLR involved extracting data, such as 

authors and publication year, from the chosen studies, to develop classification 

criteria and organize the articles in a logical manner. So, a bibliometric analysis was 

performed using the ‘VOSViewer’ tool (VAN ECK; WALTMAN, 2010) to better 

understand the study clusters, categorize similar studies, and identify potential 

scientific gaps. To that end, it is necessary to define some configurations. To begin, 

it was established that only the terms presented in the abstract and title would be 

examined, with structured abstracts and copyright statements being excluded. 

Second, the terms were counted using binary logic, which means that even if a term 
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appears multiple times in the field, the tool will count each occurrence as one. Third, 

it was determined which terms should be dropped (generic terms such as 

contribution, example, and so on) and which should be synonymized. Fourth, the 

analysis was set up to include only terms that appeared at least three times. 

As a result, the analysis yielded six clusters, which are denoted by different 

colors in Figure 10. The higher the font size, the more frequent the term appears, 

and the closer the terms, the more they appear together (cooccurrence). 

 

Figure 10 - Cooccurrence terms mapping and clustering resulted from the selected 

papers. 

As expected, the term “uncertainty” has the highest occurrence and is in the 

center due to the SLR objectives and search terms. The terms “PERT”, “CPM”, and 

“buffer” are also included in the same “uncertainty” cluster. Close to “uncertainty”, 

“duration” is the second most cited term, as expected given that planning methods 

typically deal with activity and project duration. Terms such as “duration”, “genetic 

algorithm”, and “resource constraint” are included in the cluster identified for 

“duration”, and can indicate possible techniques used to consider multiple types of 

uncertainties in the planning method. The third most frequently used term is “risk”, 

which can be attributed to possible misunderstandings on the distinction between 

uncertainty and risk, as discussed in the introduction section. Terms like “risk”, 

“worker”, “efficiency”, and “survey” were grouped together in the same cluster. 

There is a cluster involving the terms “productivity” and “project completion”, 
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almost mixed with the previous cluster, with no clear conclusion. On the other hand, 

there is a cluster with terms like “resource”, “optimization”, and “algorithm”, which 

again indicates possible techniques and construction planning methods purposes 

that take uncertainties into account. The final cluster that was discovered was 

associated with “cost”, “safety”, and “Monte Carlo simulation”, which is more 

closely related to the risk cluster than the duration and resource clusters. 

The final sample was then thoroughly read to answer the SLR questions. 

This step included a sensitivity analysis to classify the studies based on the types of 

uncertainties being considered (cost, environmental impact, safety, resources, site 

layout, weather, quality, and others) and the techniques used (fuzzy logic, machine 

learning, discrete event simulation, probabilistic analysis, Monte Carlo simulation, 

stochastic processes, information modelling, and others) while considering, but not 

limited to, the clusters suggested by the bibliometric analysis. 

Then, a forward snowballing analysis was carried out to collect papers that 

were not found by the SLR mechanism but were included in references and were 

related with the scope of this work. This approach was applied in the key papers 

observed in the SLR results. 

In the final step of the SLR, the authors synthesized the findings of the 

selected studies to identify interesting discussions and conclusions related to the 

question formulation. Also, the authors also proposed the creation of a summary 

table resuming all main suggestions for future work described in the SLR. This step 

is critical for understanding the overall scenario of the topic in the context of the 

guide questions. It is intended to answer, even partially, the SLR questions and to 

provide substantial material to orient new studies that aim to reinforce the main 

works identified or fill scientific gaps. 

4.4. 
Results and discussions 

The categorization revealed that the majority of articles (56%) deal with 

uncertainties through time variables, which was expected given that construction 

planning methods typically work with deadlines and activity duration. When the 

papers that are not focusing on time were examined, four main areas represent 81% 

of the other topics studied as uncertainties in construction planning methods: 

resources (29%), cost (22%), environment (14%), and safety (16%). It is also worth 
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noting that many works combine those areas, such as the construction duration 

estimation model proposed by Lee et al. (2009), which considers both weather 

conditions (environmental issue) and work cycles (time issue). These groupings 

follow a nearly identical division as shown in Figure 11, with a high occurrence for 

the four areas mentioned. 

Moreover, the Table 5 shows specifically the related uncertainty, the 

solution method, and the use or not of Artificial Intelligence (AI) adopted in the 

selected papers from the last 6 years. 

 

Figure 11 - Papers divided by area of uncertainty and applied technique. 

A division by technique was performed besides the area grouping, as shown 

in Figure 11. This chart shows that some procedures, such as Machine Learning 

(ML), probabilistic analysis, stochastic processes, Fuzzy Logic (FL), Monte Carlo 

(MC) and Discrete Event Simulation (DES), and information modelling are 

frequently used in uncertainty analyses for construction planning. It should be noted 

that traditional techniques such as probabilistic analysis, stochastic processes, and 

MC simulation are losing ground to ML algorithms, which gained popularity in the 

2000s because of technological advances, primarily in processing hardware 

solutions. However, some of these algorithms are internally based on traditional 
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techniques, such as the Genetic Algorithm (GA) proposed by Leu and Hung (2002), 

which searches for probability distributions that best describe project duration 

under resource constraints. 

Table 5 - Selected papers published since 2018: Related uncertainties, adopted 

solutions, and AI use. 

Articles 
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Hu et al. (2023)    •    •    •    • 

Zhang and Lin (2023)    •           •  

Chen et al. (2023)     •      • •    • 

Adedokun et al. (2023)       •     •    • 

Wang et al. (2023)     •    • •  •    • 

AlJassmi et al. (2023)     •       •    • 

Hosny et al. (2022)       • •   •   •   

Kammouh et al. (2022)     •          •  

Hong et al. (2022)     •          •  

Sharma et al. (2022) • • •  •       •   •  

Kedir et al. (2022)   •  •       •   • • 

Feng et al. (2022)     •    •      • • 

Milat et al. (2022)     •       •    • 

Canca and Laporte (2022)      •  •       • • • 

Ramani and Kumar (2022)    • •          •  

Fitzsimmons et al. (2022)     •      • •   • • 

Alhussein et al. (2022)       •        •  

Chen et al. (2021)       •    • • •    

Sarkar et al. (2021)     •          •  

 Abadi et al. (2021)        •       •  

Cheng and Zhang (2021)     •       •   • • 

Kulejewski et al. (2021)     •          •  

Plebankiewicz et al. (2021) •    •     •      • 

Isah and Kim (2021)   •  •         • •  

Taghaddos et al. (2021)       •  •      •  

Mohamed et al. (2021)  •   •          •  

Liu et al. (2021)     •          •  

Biruk and Rzepecki (2021)     •          •  

Ansari et al. (2021)     • •      •   • • 

Kaveh et al. (2021) • • • • • •      •   • • 

Zhang and Wang (2021)     •       • •    

Hassan et al. (2021) •    •      • •  •  • 

Chakraborty et al. (2020) •           • •    

Abbasi et al. (2020)     •   • •      •  

Hosny et al. (2020)   •    • •         

Jaśkowski et al. (2020)     •    •    •    

Zohrehvandi and  Khalilzadeh 

(2019) 
    •          •  

Maronati and Petrovic (2019) •    •      •  • •   

Wang et al. (2019)   •            •  

Husin (2019)     •   •v         

Tran and Long (2018) •    •       •   • • 

Rahman et al. (2018) •    •    •      •  

Li et al. (2018)   •         •   • • 

 

A more detailed discussion about the areas and techniques identified in the 

selected papers is presented in the following sections. 
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4.4.1. 
Uncertainties related to time, cost, and resources 

A common approach used to address time issues as uncertainties in 

construction planning methods is to draw on previous experiences and user 

subjectivism. For example, Mulholland and Christian (1999) developed a study that 

involved quantifying uncertainties in a construction chronogram using expert 

knowledge and experience, lessons learned, and project information. Similarly, 

understanding that there is subjectivism in the information provided to estimate 

construction duration, AbouRizk and Sawhney (1993) proposed a system to assess 

uncertainties caused by planner subjectivism using FL. 

Another common subset of time uncertainties is the time buffer, which is 

essential for simulating both optimistic and pessimistic scenarios in activity 

duration. In fact, Nasir et al. (2003) claim that the definition of upper and lower 

duration values can have an impact on risk management. For that reason, Sarkar et 

al. (2021) proposed a Critical Chain Project Management by improving the buffer 

sizing through the integration of multiple uncertainties that affects the construction 

schedule, such as environmental disasters and resources restrictions. 

Note that uncertainties are typically treated as risks, especially when they 

are time related. Consider the study of Chen et al. (2023), who investigated the 

interdependence of risks in building construction schedule using Bayesian networks 

and MC simulation. They suggested a planning strategy that, when compared to 

standard methods (CPM and PERT), resulted in more accurate construction time 

due to its ability to foresee the sequence of risks. An interesting aspect of the study 

performed by Chen et al. (2023) is that they suggested that the literature is limited 

in approaches that include risk interdependence, which could be interpreted as a 

lack of understanding on deeper uncertainties. 

Returning to the discussion on time buffers, Ma et al. (2014) proposed a 

framework to size buffers and allocate resources based on the critical chain concept, 

similarly with the study of Sarkar et al. (2021). Furthermore, they emphasized that 

improving information flow can reduce uncertainties in construction activities, 

which is accordance with Abbasi et al. (2020). The authors proposed a construction 

planning method that uses information extracted from a Building Information 
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Modeling (BIM) model and DES searches for optimal activity durations that 

represent realistic scenarios. 

The complete reading of the selected papers revealed that information 

modelling, primarily related to BIM and Virtual Design and Construction (VDC), 

is widely used in construction planning method proposals, such as the work 

developed by Li et al. (2009). The authors investigated virtual construction 

prototypes created with BIM and VDC to analyze and optimize the schedule 

through the visualization of “what-if” scenarios. It is worth noting that the solution 

in this case is influenced in part by the planner's subjectivism regarding the virtual 

model, bringing back the importance of studies like Mulholland and Christian 

(1999) and AbouRizk and Sawhney (1993). 

To summarize, some light can be shed on current planning methods that 

account for uncertainties for time issues. First, the duration of the activity is 

considered in different scenarios, ranging from pessimistic to optimistic. It is 

already a result of the PERT implementation and its use as a model for new 

approaches. Second, the time buffer is essential not only for covering uncertainties 

during construction, but also for carrying out meaningful risk management. Third, 

model visualization is a feature that has been investigated to help with the search 

for better solutions and the impact of subjectivism on the schedule. 

Another major point of discussion is resource constraints. Construction 

planning methods have traditionally assumed that resources are limitless and, thus, 

always available during the construction phase, but this is not the case. To solve 

this issue, many studies are using AI algorithms. Li et al. (2018), for example, used 

multi-objective optimization algorithms and metaheuristics; Kim and Ellis (2009) 

presented a hybrid and adaptative GA; and Leu et al. (1999b) and Leu and Hung 

(2002) proposed a GA to find optimal solutions in resource allocation problems. 

However, due to their multidimensionality, resources can be abstract and 

difficult to plan. The term “resources” refers to the equipment, workers, materials, 

and other auxiliary products required to carry out construction activities. As a result, 

Hosny et al. (2020, 2022) proposed a tool to model workspaces and detect 

interferences between them to gain a better understanding of some uncertainties that 

can be assessed before construction begins. Nonetheless, other studies deal with 

resources during the construction process, suggesting “live” planning methods, 

such as the work done by AlJassmi et al. (2023). Their work comprises of a neural 
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network-based planning system that self-recovers the construction schedule by 

collecting and analyzing worker productivity rate on a regular (daily or weekly) 

basis. 

When looking at studies that discuss cost uncertainties, two sub-areas were 

identified: cost estimate and cash flow. Cheng et al. (2013) proposed an inference 

model based on Support Vector Machine (SVM) and time series, in which FL is 

used to work with cash flow problems and construction estimates. In relation to cost 

estimation, Chakraborty et al. (2020) highlighted, after comparing multiple ML 

algorithms, that the use of a hybrid ML model to deal with uncertainties in the cost 

issue, associated with a probabilistic approach, is recommended. 

It is important to note that many studies combine cost with other categories 

of uncertainty, such as time (HASSAN; EL-RAYES; ATTALLA, 2023), 

environmental impacts (SHARMA et al., 2021), and so on. One of these categories, 

safety, is regarded by the authors as the one for which uncertainties are most 

difficult to estimate, since it is associated with human factors such as emotions, 

health, and a plethora of random variables that extend beyond a number or a 

historical data set. 

4.4.2. 
Uncertainties related to other variables 

In relation to the safety issue, due to the high level of uncertainty that is 

involved, from a heart attack to an explosion that can result in a construction 

accident, many authors carry out questionnaire surveys to assess the uncertainties. 

For instance, Zolfagharian et al. (2014) proposed an automatic tool for safety 

planning based on a risk matrix calibrated with a survey applied to safety and 

construction managers. 

Information modeling and simulations are also commonly used in studies 

related to safety uncertainties. Benjaoran and Bhokha (2010) proposed a rule-based 

integrated system that allows the user assessing and reviewing construction 

planning through model visualization and, thus, viewing potential work-related 

accidents. Goh and Askar Ali (2016) presented a hybrid simulation framework to 

facilitate the integration of safety uncertainties and construction activity sequence. 

They used DES, system dynamics, and agent-based simulation to achieve this goal. 
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Sometimes, however, uncertainties related to safety require spatiotemporal 

analysis. Hu et al. (2023), for example, presented a strategy for dealing with safety 

accidents induced by crane operations, based on a spatiotemporal analysis that was 

based on a BIM model. They collected data using the BIM methodology, applied 

AI algorithms to perform path analysis (connected to the crane’s position), and 

visualized the results using a hazard exposure heatmap. 

Uncertainties related to cognitive aspects were also identified in the SLR 

results. For example, Alhussein et al. (2022) utilized agent-based methods to 

investigate improvisational behavior in construction planning that emerges from 

unanticipated uncertainty. They discovered that improvised solutions are produced 

more frequently by managers than by laborers. It should be noted that agent-based 

techniques to deal with uncertainties are common in recent literature, with 

numerous research works such as those by Zhang and Lin (2023), Goh and Askar 

(2016), Abadi et al. (2021), Kedir et al. (2022). 

Weather is other issue that is commonly studied in planning methods. For 

instance, Pan (2005) addresses rainfall uncertainty by proposing a construction 

planning approach that assesses the impact of rainfall on construction duration by 

using historical rainfall data and expert knowledge. 

Other studies go beyond the specific category of uncertainties, but rather 

about risk inference in infrastructure project construction planning. Chen et al. 

(2021) created a method that does not require observed data and can be useful in 

cases where historical data is unavailable. The authors employed MC simulation 

with Bayesian networks to infer risks in infrastructure building scheduling. 

4.4.3. 
The growth of AI techniques 

Aside from the types of uncertainties covered by the present SLR, certain 

discussions are necessary about the strategies used in these planning methods. 

Historically, the SLR indicated that uncertainties were frequently evaluated using 

statistical analysis (TOURAN, 1986), mathematical formulations (WOOLERY; 

CRANDALL, 1983), and simulation - typically DES (SAWHNEY; ABOURIZK; 

HALPIN, 1998) and MC (SUKUMARAN et al., 2006). In fact, Figure 12 shows 

that almost 50% of the planning methods found in the SLR are related to these 

traditional techniques. 
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However, more recent studies found in the SLR revealed that AI methods 

are commonly utilized. Some construction planning methods use evolutionary 

algorithms to deal with multi-objective optimization (HASSAN; EL-RAYES; 

ATTALLA, 2023; MILAT; KNEZIĆ; SEDLAR, 2022; TRAN; LONG, 2018), FL 

to deal with uncertain data (PAWAN; LORTERAPONG, 2016; 

PLEBANKIEWICZ; ZIMA; WIECZOREK, 2021; SZCZESNY; KÖNIG, 2015), 

neural networks to forecast schedules in real-time (ALJASSMI; ABDULJALIL; 

PHILIP, 2023), rules induction methods to interpret and assess construction 

scenarios (FENG et al., 2022), among others. Figure 12 depicts a summary of the 

AI techniques revealed in the SLR. The widespread usage of FL and GA (53%) 

may indicate that they are the most promising methodologies to account for 

uncertainty in building planning procedures. However, the other part (47%) of the 

AI methods uses other ways that could also be seen as a promise for portraying 

random events in construction plan. 

 

Figure 12 - AI techniques utilized over the time in the construction planning 

methods. 
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Also, it is important to note that many studies propose hybrid planning 

methods that combine traditional and contemporary techniques, such as the work 

done by Fitzsimmons et al. (2022), who combined MC simulations with support 

vector machines, a well-known AI technique, to predict project delays while 

accounting for uncertainty. Furthermore, the integration of FL with GA has been 

reported by Moon et al. (2015) and Cheng et al. (2013). The former was used to 

consider the random variables, while the latter was utilized to optimize the 

outcomes. Indeed, some studies have already assessed AI approaches applied in 

certain themes of planning with uncertainties, such as Chakraborty et al. (2020), 

who analyzed six AI algorithms to anticipate cost and discovered that a hybrid 

solution produces better estimates. 

4.4.4. 
Perspectives for future works 

The present work suggests that new studies may consider unusual 

uncertainties (not just time, for example) and hybrid solutions, that combine 

traditional methods with advanced algorithms, in the development of new 

construction planning methods. But it is important to highlight the 

recommendations for future work that are provided in the selected studies. 

Researchers can use these suggestions to direct their studies to fill scientific gaps 

completely or partially and, as a result, improve this research field. 

In the current work, twenty suggestions from the reviewed articles were 

identified to guide future studies. Many authors suggested as future works the 

expansion of their methods to other countries, industries, and more detailed data, 

aiming to validate their approaches with different test environments. Moreover, it 

was identified that some studies recommend dynamic approaches to deal with 

actual and field data, to create a kind of “live planning”. Certainly, to make it viable, 

a user-friendly interface and advanced algorithms are needed, which are other two 

recommendation given by some authors. Finally, some authors proposed cognitive 

studies to better understand human behavior and planner attitudes toward 

construction planning (Table 6). 
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Table 6 - Suggestions for future works identified in the SLR. 

# Suggestions for future studies 
Number of related 

studies 

1 Context expansion (application in other industries or contexts) 10 

2 Increasing sample data (application in more details) 6 

3 Algorithms improvements 6 

4 Development of dynamic approaches to deal with real-time data 6 

5 
Capturing field data with monitoring technologies and use of actual 

data 
6 

6 
Geographical expansion (methods implementation in other 

countries) 
4 

7 Consideration of multiple variables 4 

8 User friendly interface 4 

9 Better understanding of variables and parameters 3 

10 
Development of microsimulation and micro modelling to deal with 

more details 
3 

11 Processes automatization 3 

12 More case studies applying existing methods 3 

13 Better computational performance 2 

14 
Cognitive studies to better understand people behavior and 

resilience 
2 

15 
Creation of knowledge database based on field data and/or past 

experiences 
2 

16 Creation of specific databases to support similar studies 2 

17 Investigation of hybrid simulation 1 

18 Improvements in math formulations 1 

19 Consideration of constraint conditions. 1 

20 Deeper understanding of uncertainties 1 

 

4.4.5. 
The answers to the SLR questions 

• How do construction planning methods handle uncertainties? 

There are several ways that construction planning methods deal with 

uncertainties, and some commonly used strategies have been identified. First, as 

observed in Hossen et al. (2015); Mulholland and Christian (1999); Nasir et al. 

(2003); Rozenfeld et al. (2009), planners use risk assessment techniques to identify 

potential sources of uncertainty and to evaluate the likelihood and impact of these 

risks during construction project. They investigated methods for mitigating or 

managing these risks, such as developing contingency plans and acquiring 

additional resources. Second, it was discovered in some studies (ANSARI, 2021; 

CHEN et al., 2021; FORD; LANDER; VOYER, 2002; TRAN; LONG, 2018) that 

planning methods handle uncertainties by relying on flexibility and adaptability. 
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Flexibility allows for adjustments to be made in response to changing circumstances 

caused by uncertain factors. Building in contingencies allows for scope changes, 

and being open to alternative approaches are all examples of this. Third, many of 

the proposed methods make use of computational resources and simulations to 

better understand various scenarios and critical sequences that may occur during 

the construction phase. Following the studies developed by Woolery and Crandall 

(1983), Zhong et al. (2016), MC is one of the most used techniques for simulation 

purposes. However, methods that use DES, such as Abbasi et al. (2020); Goh and 

Askar Ali (2016); Szczesny and König (2015), should be mentioned as an approach 

to understanding construction scenarios with uncertainties. Finally, a brief 

discussion on construction monitoring and lessons learned is provided next. Some 

planning methods (BI et al., 2015; KAMMOUH et al., 2022; SZCZESNY; KÖNIG, 

2015) establish systems for ongoing monitoring of the project to identify potential 

issues early on and make necessary adjustments. There are also studies focused on 

the creation of knowledge bases, such as Pan (2005), which assesses the impact of 

rain on project completion based on historical data and expert experiences. Overall, 

the key to dealing with uncertainties in construction planning methods involves 

identifying uncertainty sources, strategies for collecting and modelling construction 

data, flexibility to work with many possible scenarios, and computational solutions, 

such as simulations, to capture multiple solutions and outcomes caused by 

uncertainties. 

• What kinds of uncertainties are taken into account in construction planning 

methods? 

According to the SLR results, uncertainties related to time (construction 

duration, project delay, productivity rates, and so on) are the most used in 

construction planning methods, followed by resource and cost issues. The reason 

for this is most likely because construction management has traditionally been 

based on three pillars: time, cost, and resources. However, after thoroughly reading 

the selected articles, it was discovered that many methods deal with multiple 

variables at the same time, such as the study carried out by Leu et al. (2001) to 

optimize time and cost in construction trade-off subject to uncertainties. 

Furthermore, the findings point to other issues that have been investigated by 

numerous studies, such as quality, environmental impacts, and safety. In terms of 

safety issues, simulation techniques are typically used, such as the work done by 
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Wang et al. (2016), and historic databases support planning methods by providing 

previous knowledge to draw future possible scenarios, such as the CHASTE 

approach (ROZENFELD; SACKS; ROSENFELD, 2009). Similarly, in terms of 

environmental impacts, historical data is frequently used in planning methods 

associated with ML algorithms and fuzzy analysis, such as the work developed by 

Pan (2005). Furthermore, the most used techniques are ML algorithms and 

probabilistic analysis, with stochastic analysis coming in third with some studies 

relating to time, cost, resources, environmental impacts, and/or site layout. It is also 

worth mentioning the use of MC simulation in conjunction with stochastic 

processes, which is present in at least seven studies. 

4.5. 
Conclusions 

The authors used an adapted SLR to examine the state of the art in 

construction planning methods with uncertainties. The results revealed that most 

approaches consider time issues as a variable to consider uncertainty, but they also 

exposed that there are many methods that consider multiple variables at the same 

time. Furthermore, the findings showed that there is currently no common system 

in use, and that a combination of traditional techniques and advanced algorithms is 

being used to estimate uncertainties during the construction phase. 

These findings have important implications for the understanding of this 

research area, which requires more studies not only consolidating existing methods, 

but also validating new methods with benchmarking data. As indicated by the 

summary of suggestions for future works, there is a need for universalization and 

dynamization of current methods, extending the application to other project 

contexts, countries, etc., and bringing actual data to create a “live planning”. 

This paper encourages construction planners to use methods that account for 

uncertainties and do not overlook out-of-the-ordinary planning variables that may 

have a significant impact on the project because of crisis events. Likewise, the 

review suggests that new research on construction planning methods should take 

those uncertainties into account while exploring different approaches that have 

already been discussed in the literature. Moreover, the authors suggest that new 

studies can be oriented to construction planning methods that deals with higher 
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level of uncertainties, being able to capture unusual random events commonly 

observed in infrastructure project. 

Finally, it is critical to emphasize that there is no close answer for considering 

uncertainties in construction planning approaches. On the contrary, some studies 

suggest that hybrid methods may be the best option for dealing with some sorts of 

uncertainties. Rather than repeating failing planning methods, that do not consider 

uncertainties during crisis events, academics and industry practitioners could dive 

into AI growth and strive to uncover atypical uncertainties with atypical strategies 

that can help anticipate the future of construction planning. 
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5 
A stochastic pure birth model for predicting and help 
prevent accidents in energy infrastructure construction 
projects 

Paper submitted by Cristiano S. T. do Carmo and Elisa D. Sotelino in a peer-

reviewed international journal. 

This study proposes a novel construction planning approach to predict safety 

events amid un-certainties in the construction industry. Recognizing historical 

challenges and recent crises, the research aims to help enhancing worker safety in 

construction projects. Current planning methods often lack the ability to handle 

random variables related to accidents, leading to overly optimistic projections. In 

contrast, the proposed approach leverages stochastic processes, an underutilized 

classical theory in the literature related to construction planning, coupled with 

modern computational power. Using the Knowledge Discovery in Databases 

(KDD) framework, real construction data is refined for training predictive models. 

The study presents two solutions: probabilistic distribution and stochastic 

processes. Results from 39 projects reveal that the probabilistic solution is optimist, 

and the stochastic solution provides a cautious outlook. While both methods fit 

some projects well, the probabilistic solution excels in minimizing false positives, 

while the stochastic approach offers superior precision. By balancing precision and 

recall, the stochastic approach outperforms in F1-score and the area under the 

precision-recall curve (PR-AUC score). Further analysis supports its advantage in 

matrix similarity scores. Notably, the potential integration of advanced Artificial 

Intelligence (AI) methods is highlighted within the robust stochastic framework. 

5.1. 
Introduction 

According to the Brazilian Statistics Institute – IBGE (2023), in the last 22 

years the construction industry accounted for 5.1% of gross domestic product added 

in Brazil on average, and behind this figure are numerous repercussions on the local 

economy, such as job creation and housing deficit reduction. This industry 
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employed 7,7 million of people in 2019, according to the same sources. As a result, 

studies related to construction projects difficulties and potential solutions is a 

constant demand, as it will affect not only the country's economy, but also the lives 

of workers. 

Its significance in the local and global contexts is, thus, undeniable, 

particularly during economic crises due to the COVID-19 pandemic and the 

Ukraine War, for example. The effects of these important events on this industry 

might linger for years, affecting economic, political, and social fields and capable 

of generating new difficulties or rescuing existing problems for technical discourse. 

In the case of the pandemic, the subject of Occupational Health and Safety (OSH), 

which was a contested issue in the 1970s, has returned to be one of the most cited 

study issues in the previous two years. A quick search in the Scopus database with 

the terms "construction industry" and "safety management" yielded 207 journal 

articles since 2020. 

In this sense, understanding the issue of OSH in the construction industry as 

a field that requires further research, the current study aims to develop a predictive 

model of construction accidents. More specifically, the concept of stochastic 

processes and knowledge discovery in databases are applied in a dataset related to 

safety occurrences in infrastructure projects, to grasp the study´s main inquiry: how 

to better predict and prevent accidents in construction projects using not only the 

past but also future scenarios? 

The paper is organized into the sections listed next. The first section, 

introduction, addresses the historical and local context of the construction challenge 

that is addressed in the current study. The second section, theoretical framework, 

outlines the key concepts used in this research. The third section presents the 

literature review, scientific searches, and summarizes the articles that contributed 

to the present effort. The fourth section, related to the proposed methodology, 

outlines which approaches, tools, and processes were used to solve the topic under 

consideration. In the fifth section, results and discussions, the proposed 

methodology applied to a case study with real project data and the results are 

detailed analyzed to understand the discovered knowledge. Finally, in the 

conclusion section, a summary of the contributions and limitations of the present 

work, and suggestions for future work are presented. 
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5.2. 
Theoretical framework 

The two major concepts employed in the proposed methodology are 

presented in this section. The first, on safety management, focuses on presenting 

current research that deals with this topic, highlighting the utilized approaches. The 

second concept is related to stochastic processes. This concept´s necessary 

theoretical background required to comprehend the suggested methodology is 

provided. Because the aim of this work is dedicated to apply the existing knowledge 

of stochastic processes to accident prevention in the construction sector, no deep 

conceptual development related to that technique is presented. 

5.2.1. 
Safety management in the construction industry 

To understand how accidents are managed in construction projects, a 

literature review was carried out. It focused on locating studies that propose 

solutions on occupational safety in the construction industry. The review 

methodology used the following search terms with their synonyms: “safety 

management”, “construction industry”, and "data modeling"; and filters were 

applied to limit the search to only journal articles published in journals in English. 

After an analysis of titles and abstracts, some studies were discarded, and others 

were selected for full reading. The contributions of the selected papers to the 

development of the current study are explained next. 

The first observation after reading the selected articles was that many of 

them propose the adoption of Building Information Modeling (BIM) methodology 

to support OSH analysis in construction planning. For example, Zhang et al. (2015) 

propose a BIM tool that automatically identifies possible points of worker fall 

accidents during the construction phase. The innovation of their work is that the 

tool automatically models the safety components that prevent the fall in the BIM 

model and, thus, without the modeler´s intervention, thus, reducing the modeling 

effort. It is worth mentioning, however, that the tool requires a BIM model with 

detailed geometric and temporal data before the actual construction begins, which 

is not yet the reality in the construction industry in many countries, including Brazil. 

Similarly, Sacks et al. (2009) created a system named CHASTE, that takes 

as input data traditional construction planning and the BIM model. Based on the 
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layout of employees and equipment in the building site, it uses probabilistic 

algorithms to analyze possible victims exposed to loss-of-control scenarios (such 

as falling ceramic tiles from the facade) using spatial and time variables. As a result, 

the technique generates data matrices of worker´s exposure in all planned tasks and 

sub-activities, categorized by accident type and severity. However, the authors 

discovered during the implementation in a case study that the algorithm does not 

take into consideration distinct construction approaches. 

The use of the spaciotemporal BIM model to identify conflicts and risk 

exposures is found in several articles, as is the case with the work developed by 

Choi et al. (2014).  However, most methods have as a limitation the non-

consideration of randomness inherent in the construction process, which can lead 

to deterministic results that do not accurately describe the construction site's reality. 

Like Choi et al. (2014). Su et al. (2018) also studied a spaciotemporal mathematical 

model using MATLAB. They used singularity functions and expressions to take 

uncertainties into account and used the BIM model as input. Although not strictly 

focused on safety management, it may be an indicator of how to consider 

uncertainties in conjunction with a BIM model. 

Another line of research found in the selected articles is related to 

ergonomics and ergometric research that may be causal factors in construction 

accidents or harm to employees' health. For example, Golabchi et al. (2015) employ 

BIM model´s data to simulate work-related musculoskeletal illnesses. However, 

their approach requires a high level of model detail for ergonomic posture analysis 

and biomechanical analysis, which may not match the reality of many building 

projects. A similar limitation was identified in the work by Zhang et al. (2015). 

Without the need for such a complex modeling, Zaalouk and Han (2021) investigate 

work environments and offer a project parameterization with modular constructs to 

reduce the difficulties and hazards of worker´s poor posture. This is done using 

genetic algorithms with multicriteria optimization. Finally, the work of Wang et al. 

(2016), which provides an occupational safety planning that is updated in real time. 

This research focuses on the development of underground caverns and the use of a 

geometric and temporal BIM model to update simulations of the construction 

processes with real-time geological data that may signal possible structural 

instability of the cave. Although a Structured Query Language (SQL) database is 
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used for the dynamic model, the authors claim that the method is less difficult than 

prior proposed methods for the same purpose. 

As observed, the topic of safety management in the construction industry is 

being studied in many research fields, specially related to BIM and data mining 

using AI techniques. Also, the studies revealed that the uncertainties are rarely 

examined, which can be one of the causes of accidents – unplanned events. Studies 

point in the direction of a dynamic model and a more simplified geometry to make 

viable methods of construction planning, as is pursued in the current study. 

It is worth pointing out that, aside from the recent studies, traditional and 

well-known articles are still references for handling uncertainty in safety 

management. The study developed by Chua and Goh (2005) is an example of that. 

In their work, the authors examined the ideal statistical distribution for construction 

events. Due to a lack of scientific work aimed at modeling construction safety 

occurrences, the authors proposed the homogeneous Poisson distribution to account 

for the intrinsic random nature of accidents. Using a dataset of 14 projects, they 

demonstrated that the Poisson parameter may be utilized as a quantitative indication 

of safety in railroad construction projects using the chi-square goodness-of-fit and 

scatter tests. Furthermore, construction incidents, according to them, can be 

separated into n Poisson subprocesses that represent diverse categories, such as the 

type of occurrence and the severity of the accident. The authors suggest that big 

databases be used in future studies to better understand the systemic elements that 

cause an accident and the applicability of this distribution (Poisson) in various types 

of construction projects. 

It is worth mentioning that the use of Poisson process to describe the 

accident probability is not specific to construction projects. Nicholson and Wong 

(1993) had previously investigated this issue in the context of traffic accidents and 

concluded that a Poisson distribution can be assumed for annual events. This type 

of distribution was also employed by Sari et al. (2009) to explain the number of 

failures, which is equivalent to accidents, associated to coal mines. Also, Janardan 

(1998)   investigated the number of failures related to computer chips and concluded 

that the Poisson distribution is suitable to understand the average failure rate.  

However, according to Zhang et al. (2021), there are few research works 

that employ stochastic processes as a theoretical foundation for understanding 

safety risk in construction projects. The combination of stochastic theories with 
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construction risk, they claim, is "meaningful and reasonable," and these random 

processes are used in a variety of applications such as failure detection and asset 

integrity. Furthermore, Chua and Goh (2005) have shown that the Poisson process 

may be utilized to represent the randomness of construction accident occurrences. 

The current work further contributes to the scientific field by utilizing stochastic 

process theory. 

The research area of Machine Learning (ML) is also observed in the articles 

selected in the literature review. It should be noted that most of the studies 

(GERASSIS et al., 2017; SARKAR, Sobhan et al., 2019; SHIN et al., 2018; 

TRILLO CABELLO et al., 2021; XU; ZOU, 2021) are directed to the evaluation of 

the causes of accidents. Consequently, the datasets chosen in those research field 

include extensive information on the accident, such as the victim's age and gender, 

which is outside the scope of the current study. However, two works (LI, Xin et al., 

2021; ZHANG, Fan et al., 2019) employed a dataset like the one available for the 

current study, with accident records collected throughout time at different 

construction sites and with varying severity levels (fatal, first aid, etc.). 

Nevertheless, it should be emphasized that the databases used by both works 

contain more information and are available to the public from the OSHA. The 

current study, on the other hand, makes use of a private company's database that 

has limited records of safety incidences. Yet related to ML, no specific algorithm 

seems to predominate, but decision trees and association rules techniques are the 

most frequently used in these works (AMIRI; ARDESHIR; FAZEL ZARANDI, 

2017; DHALMAHAPATRA et al., 2019; SARKAR, Sobhan et al., 2019; SHIN et 

al., 2018; TRILLO CABELLO et al., 2021; XU; ZOU, 2021). 

As conclusion from the literature review it was observed that most work 

planning approaches do not account for random variables associated with work 

accidents. So, the ensuing construction timelines may be unduly optimistic, since 

they mainly consider contractual, financial, and other similar problems. Besides 

that, it reveals that strategies, tools, and methodologies (e.g., decision tree 

algorithms, association rules, and BIM) have been used in specific scientific articles 

on safety management in construction projects. 
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5.2.2. 
Stochastic processes 

A stochastic process is a family of functions that use a parameter to translate 

each instance of a sample space to a new domain. This function map, also known 

as a random process, is frequently tied to a time parameter, which can be discrete 

or continuous and relies on how the experiment's observations are carried out. 

Because the observed instances might be discrete or continuous, continuous, or 

discrete stochastic processes with continuous or discrete parameters are defined. 

As described by Beltrami (2013), the number of calls that arrives in a fire 

department over the time is an example of a stochastic process, specifically known 

as a Poisson process. In this process, the observation (call) is discrete and counted 

in unit increments, because it is not possible that more than one call will arrive at 

the same moment. However, the observed time is continuous, the time difference 

between accidents does not follow a standard increment, and an instance can occur 

at any time instant. 

Another example of a stochastic process is the birth and death process, 

defined by Kendall (1948) as a stochastic process 𝑛(𝑡) with non-negative integer 

values (𝑆 states) and birth and death rates as a function of time, i.e., 𝜆𝑠(𝑡) and 𝜇𝑠(𝑡), 

respectively.  Furthermore, Karlin and McGregor (1955) defined the birth and death 

process as a random walk process with a continuous or discrete time parameter. 

In this paper, the Poisson and pure birth models are utilized to understand 

and predict the transitions of safety occurrences in a construction project. The pure 

birth process is a simplification of the birth and death process, in which the death 

rate is zero for any state and the birth rate 𝜆𝑠(𝑡) represents the rate of new 

occurrences (an accident, a near miss incident, or a safety observation) in time 𝑡 

and state 𝑠. In other words, an accident cannot be deleted once it has been recorded, 

and the higher the birth rate, the more safety events can occur. 

Note that previous studies considered safety states in different aspects. Li et 

al. (2016) assumed that the kinds of safety occurrence describes the safety state, 

namely: normal incidences, near-misses, accidents, and nonoccurrence. Zhang et 

al. (2021) assumed that the risk factor contributes to an evolution from risk to 

accident, which can be understood as two stochastic states: risk and accident. The 

present study, however, considers the stochastic state as the number of safety 
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events, similarly with the stochastic times-series analysis proposed by Marhavilas 

et al. (2013). 

Figure 13 shows the diagram that describes the evolution of safety events 

over the time for a typical construction project. Each construction project is 

specified by its own safety events rates, but together they describe the stochastic 

process, where the circles represent the possible safety states, varying from 0 events 

to 𝑁 possible safety events, and the arrows represents the possible transitions 

between states ruled by the birth rates. 

 

 

Figure 13 - States diagram that represents the safety events in a construction 

project. 

Thus, for each project, the probability that a safety event occurs in a non-

negative time interval 𝑑𝑡 (𝑝𝑖𝑗(𝑑𝑡)), from state 𝑆𝑖  to state 𝑆𝑗  where 𝑖 and 𝑗 can assume 

any value between 0 and 𝑛, can be formally described as: 
Equation 16 -Transi tion probabil i ties  related to safety  events  in  a  c onstruc tion projec t. 

𝑝𝑖𝑗(𝑑𝑡) = {
𝜆𝑖(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 𝑗 = 𝑖 + 1

1 − 𝜆𝑖(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 𝑗 = 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16) 

 

Where,  

• 𝑜(𝑑𝑡) is any function that satisfy the condition lim
𝑑𝑡→0

0(𝑑𝑡)

𝑑𝑡
= 0; 

Furthermore, assuming two hypothetical states: 𝑆𝑎 in time 𝑡 and 𝑆𝑏 in time 

𝑡 + 𝑑𝑡, it yields: 

𝑝𝑎𝑏(𝑡 + 𝑑𝑡) = 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡)𝑑𝑡 + [1 − 𝜆𝑏(𝑡)]𝑝𝑎𝑏(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡) 
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Then, subtracting both equation sides from 𝑝𝑎𝑏(𝑡) and dividing by 𝑑𝑡, the 

result is the Kolmogorov forward equation, as demonstrated by Miller and Childers 

(2012): 
Equation 17 - Kolmogorov  forward equation rela ted to  the stoc has tic process  that desc ribes  the s afety  events  in  a  c ons truction projec t. 

𝜕𝑝𝑎𝑏(𝑡)

𝑑𝑡
= 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡) − 𝜆𝑏(𝑡)𝑝𝑎𝑏(𝑡) (17) 

 

Organizing as a matrix, following Karlin and McGregor (1955), the 

previous equation can be rewritten as: 

𝑷′(𝑡) = 𝑷(𝑡)𝑨   

 

Where, 𝑷(𝑡) represents the transition probabilities: 

𝑷(𝑡) =

[
 
 
 
 
𝑝00(𝑡) 𝑝01(𝑡)

𝑝10(𝑡) 𝑝11(𝑡)
⋯

0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
𝑝𝑛−1,𝑛−1(𝑡) 𝑝𝑛−1,𝑛(𝑡)

𝑝𝑛,𝑛−1(0,5) 𝑝𝑛,𝑛(𝑡) ]
 
 
 
 

   

 

And 𝐀 represents the infinity generator matrix: 

𝐀 =

[
 
 
 
 
−𝜆0(𝑡) 𝜆0(𝑡)

0 −𝜆1(𝑡)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−𝜆𝑛−1(𝑡) 𝜆𝑛−1(𝑡)

0 −𝜆𝑛(𝑡)]
 
 
 
 

   

 

The right diagonal of A represents the vector of transition rates, which is 

related to the diagrams shown in Figure 13. In the current work, this vector 𝒗, 

named the transition vector, is one of the parameters used to evaluate the trained 

models as shown in Equation 18. 
Equation 18 - Vec tor of trans i tion rates  rela ted to  safety  s ta tes  in  a  cons truction pro jec t. 

𝒗 = [𝜆0(𝑡) 𝜆1(𝑡) ⋯ 𝜆𝑛−2(𝑡) 𝜆𝑛−1(𝑡)] (18) 

 

A Markov chain is formed when the likelihood of an event occurring 

depends only on the recent past and not on the distant past (BOLCH et al., 2006). 

In other words, a Markov process holds the attribute of memoryless, and its property 

can be deduced from Equation 17, which can be expressed mathematically as 

follow: 



81 

 

𝑝(𝑋𝑡𝑛+1  ≤ 𝑠𝑛+1 | 𝑋𝑡𝑛 = 𝑠𝑛, 𝑋𝑡𝑛−1 = 𝑠𝑛−1, … , 𝑋𝑡0 = 𝑠0) =

 𝑝(𝑋𝑡𝑛+1  ≤ 𝑠𝑛+1 | 𝑋𝑡𝑛 = 𝑠𝑛)  
 

 

Also, the Markov process holds the semigroup property (KARLIN; 

MCGREGOR, 1955), which means that knowing the transition probabilities from 

states 𝑖 to 𝑘 and 𝑘 to 𝑗 at times 𝑡 and 𝑠, one learns the transition probability from 𝑖 

to 𝑗 at time 𝑡 + 𝑠. Thus, using the semigroup property, it is conceivable to estimate 

transition probabilities in the future based on prior records, or in other words, it is 

possible to develop a predictive model of accidents if the accident history of 

previous jobs is known. 

Note that, in Equation 17, the analytical solution for the transition rates is 

not trivial, but some authors (CHUA; GOH, 2005) indicate that the accidents 

distribution (states versus time) can be associated with the Poisson function, which 

simplifies the Equation 16, since for any time t, 𝜆(𝑡) = 𝜆. As a result, the pure birth 

model can be interpreted as a Poisson model with the following probability 

distribution: 

𝑝𝑠(𝑡)(𝑆) =  ∑
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!

∞

𝑛=0

𝛿(𝑆 − 𝑛)  |  𝛿(𝑆 − 𝑛) =  {
1, 𝑠𝑒 𝑛 = 0,1,2,… 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Where, 

• 𝑠(𝑡) is the state of safety events in time 𝑡; 

• 𝛿(𝑆 − 𝑛) is the Dirac delta. 

So, the cumulative distribution function is described as: 

𝑃({𝑡 < 𝑡1}) = 𝑃(𝑛(𝑡) = 0) =
𝑒−𝜆𝑡(𝜆𝑡)𝑚

𝑚!
|
𝑚=0

= 𝑒−𝜆𝑡   

𝑃({𝑡1 ≤ 𝑡}) = 1 − 𝑒−𝜆𝑡   

 

And the probability density function is given by: 

𝐹𝑡1(𝑡) = 𝑃({𝑡1 ≤ 𝑡}) = {1 − 𝑒
−𝜆𝑡 ,    𝑡 ≥ 0

0,    𝑡 < 0
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Therefore, applying these concepts into the scope of the present study, the 

time of the first incidence of occupational safety on site follows an exponential 

distribution. As expected, projects with a history of higher accident rates (higher 𝜆) 

have a larger risk of new accidents occurring at the start of the work (lower 𝑡). 

5.3. 
Methodology 

To better understand how to predict and help prevent construction accidents 

using past and future scenarios, the present study proposes a construction planning 

method oriented to worker safety based on random processes. To that end, this 

work's methodology adopts the notion of Knowledge Discovery in Databases 

(KDD), which is a process of discovering new knowledge and patterns in databases 

(FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996). In this paper, the new 

knowledge refers to the behavior of transitions between safety states during the 

construction phase of an infrastructure project and the database comprehends of 

past safety records of several construction projects of this type.  

The proposed KDD procedure used in this work is illustrated in the flowchart 

shown in Figure 14. Note that there are 3 steps of data treatment, involving the tasks 

related to preprocessing, such as data transformation, and organization. After the 

preprocessing and transformation tasks, a decision gate is inserted to allow for the 

review of previous steps. In doing so, the proposed methodology occurs in cyclical 

workflows, going back when it is necessary. Another important point is the two 

moments to explore the data – the first one occurs with the raw data and the second 

one, after all preprocessing and transformation operations. This is important to 

avoid that the data mining operations produce inconsistent or unreal data.  

After the dataset organization step, the next steps involve model training 

during data mining, and model evaluation during postprocessing. By evaluating the 

trained models, the user, with the support of the algorithm, can interpret the 

meaning of each model. For instance, after the evaluation step a trained model can 

assume a pessimistic or optimistic behavior related to safety events. Finally, if there 

is no need to review previous step, the proposed methodology ends a cycle with a 

new knowledge, which is the best models to predict a new project based on past 

projects. However, if a new project is concluded, then the history should be updated 

with new data collection and the process restarted. Therefore, the proposed 
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methodology works in repetitive cycles with real-time data, which is a challenge 

for construction planning methods that deal with uncertainties (BI et al., 2015; 

FENG et al., 2022; GOH; ASKAR ALI, 2016; KIM; ELLIS, 2009; LI, Qian et al., 

2018; MA et al., 2014). 

 

 

Figure 14 - Adopted methodology (Knowledge Discovery in Database) for the 

data mining process. (Adapted from Fayyad et al., 1996) 

5.3.1. 
Data collection 

The data collection step includes functions to extract the files from the 

database, to identify the attributes and instances in each file, and to organize the 

database resulting in the Exploratory Data Analysis (EDA). Performing an EDA is 

important to understand weak and strong points of a dataset, which can include 

irregularities and possible biased data (HILL, 2006). Also, in this paper, the EDA 

was used to gather data insights that helped to understand the database and the 

techniques that can be applied in the next steps. The functions were written in 

Python programming language using the Google Colab platform. This 

programming environment is useful to collaborate with other colleagues and code 
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in distinct devices, but some attention should be paid in relation to data protection 

and privacy. 

The dataset used in this work is composed of 39 renewable-energy power 

plant construction projects, the majority of which use wind and photovoltaic 

technologies. Since the available safety data is sensitive and confidential, the 

company's name is not mentioned. It is also worth noting that the database includes 

power plants ranging in size from 50 MW to 500 MW nominal capacity and located 

on four continents. 

Also, the projects have distinct number of safety records, safety occurrences, 

and locations, which can be better understood in the exploratory analysis presented 

in the next section. Note that the number of projects included in this study is larger 

than that employed in earlier research with comparable goals (CHUA; GOH, 2005). 

Moreover, the safety data are provided in spreadsheets, typically as weekly reports.  

To explore the dataset, ontologies theory was used. As discussed by Amaral 

et al. (2021), foundational ontologies are important to enhance the KDD 

methodology, specifically due to the insights that it can provide beyond the domain 

ontologies. However, the authors concluded that more practical studies are 

necessary to integrate the foundational ontologies with KDD techniques. Through 

this problem deep understanding that identifies relations and conditions inside the 

dataset, the researcher can find a better foundation for classification purposes and 

interpretation of results. In fact, with abstract topics, like risk and value, Sales et al. 

(2018) concluded that the ontological investigation help define the “deep 

connections” between them. In this paper, to better understand the uncertainties 

intrinsic in the dataset, a data taxonomy is proposed as shown in Figure 15.  

The current study adopted domain ontologies, but the results indicate that 

the foundational ontologies may be useful to understand better the uncertainties and 

the risks events related to them. 

The data conceptual model revealed that the scope of this study is limited to 

construction projects related to renewable energy, mainly related to wind and solar 

technologies. Also, it is possible to observe that there are three entities that describe 

a safety occurrence. First, the safety record that is registered by the user and 

contains the safety events counted during a time period. Through the record date 

and the counted events, the entity related to the safety event transitions is obtained. 

This represents the specie that will be predicted during the data mining process and 
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be useful to adopt the stochastic modeling. With such a prediction, the construction 

planner would be able to understand the most likely moment where an accident 

could occur. 

Also, note that safety records involve data that identifies the worker, 

company, among other sensitive information, and usually this kind of information 

is not available to the planning team due to data protection laws. Therefore, the 

proposed approach does not use any kind of confidential data that can interfere in 

the practical application of this method. 

 

Figure 15 - Data conceptual model describing the relationships between data and 

attributes. 

5.3.2. 

Data preprocessing 

After data collection, the data from all projects were merged into one data 

table, named in Python as “dataframe”, to facilitate the preprocessing and the other 

procedures. The preprocessing techniques used in this work were attributes 
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renaming, attributes addition, data merging, missing data analysis, data 

replacement, data removal, and data type analysis. The first phase is the feature 

selection to identify the total number of attributes, unnecessary ones, incorrect 

names, among others. 

During the merging function, attributes that were incorrectly named or 

misspelled names, such as “Accindents” instead of “Accidents”, were renamed and 

new attributes, such as “Period start date” and “Period end date”, were added to 

improve the unified data table. The unified dataset was, then, checked to identify 

noisy data, which can be related to missing values, unacceptable user inputs, among 

others. The missing data analysis is also important to avoid wrong data 

interpretations in the KDD process (SILVA; ZÁRATE, 2014). This analysis also 

involves the treatment of the missing data. Basically, the missing data can be 

removed, maintained, or replaced in the dataset. Considering the scope of the 

present study, the missing data can occur mainly due to human error, which means 

that the user can wrongly insert some value or forget to insert it. Therefore, in the 

proposed methodology, the missing data was managed in two ways: elimination 

and replacement with zero value, resulting in two unified datasets to comprehend if 

the sample size affects the results. 

The last pre-processing function used in this study consisted of data type 

analysis to check if the values were consistent with the attribute data type described 

in Figure 15. In the negative case, the value data type was changed. 

Table 7 shows the resulted data attributes after pre-processing techniques. It 

was assumed that the missing data represents the nonoccurrence of safety events, 

since it is likely that the user forgot to insert a value in the weeks with no safety 

occurrences. Therefore, the replacement with zero value was used in the proposed 

methodology. 
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Table 7 - Dataset attributes related to the prediction model of safety events. 

Data 

attributes 

Taxonomy 

hierarchy 
Description 

Type of 

input 

Type of 

variable 

c.project ORDER 

Energy infrastructure 

construction project represented 

by an abbreviation 

Automatic String 

c.safid FAMILY 
Number that identifies the safety 

record in the project 
Automatic Integer 

c.period FAMILY 

Period in which the safety 

occurrences were counted in the 

safety record 

Automatic String 

c.enddate FAMILY End date of the record period Automatic Date 

c.startdate FAMILY Start date of the record period Automatic Date 

c.safobs GENUS 

Occurrences presented in the 

safety record related to safety 

observations 

Manual Integer 

c.nearmiss GENUS 

Occurrences presented in the 

safety record related to near miss 
events 

Manual Integer 

c.fstaid GENUS 

Occurrences presented in the 

safety record related to first aid 

events 

Manual Integer 

c.accid GENUS 
Occurrences presented in the 

safety record related to accidents 
Manual Integer 

c.fataccid GENUS 

Occurrences presented in the 

safety record related to fatal 

accidents 

Manual Integer 

 

5.3.3. 
Data transformation 

The third step in the KDD process refers to data transformation. Here, math 

operations between attributes, data conversion (e.g., date to integer value), data 

grouping, normalization, and binarization are the main subprocesses to prepare the 

database for data mining. 

The first stage of data transformation is data grouping, in which the 

instances related to the same project in the same period were summed. Then, to 

understand the evolution of safety events over the time, a cumulative sum was 

carried out. After that, a binarization process was developed to convert the safety 

occurrences into two possibilities: safety event occurrence (1) or no safety event (0) 

and, so, the BDP states were created. This is important to prepare the dataset to the 

pure birth process modeling, in which the allowed instances are one single birth (1) 

or no birth (0). The binarization, thus, produced the actual species, which are related 

in the data taxonomy with the transition between safety states. 
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Note that this procedure removes the magnitude of safety events that occur 

in a period, but since this study is based on weekly safety reports, it can be assumed 

that after the first event it is unlikely that another would occur in such a short period 

of time. To summarize these operations, an example of a sequence of data 

preprocessing is presented in Table 8 and Table 9. 

Table 8 - Example of dataset after the preprocessing operations. 

c.project c.enddate c.accid 

ABC1 02/08/2022 0 

ABC1 09/08/2022 1 

ABC1 09/08/2022 1 

ABC1 16/08/2022 0 

ABC1 23/08/2022 1 

ABC1 23/08/2022 0 

DEF2 26/08/2022 0 

 

Table 9 - Example of dataset after the transformation operations. 

c.project c.enddate 
c.accid 

(sum) 

c.accid 

(cumulative sum) 

c.accid 

(transitions) 

c.accid 

(BDP states) 

ABC1 02/08/2022 0 0 0 0 

ABC1 09/08/2022 2 2 1 1 

ABC1 16/08/2022 2 2 0 1 

ABC1 23/08/2022 3 3 1 2 

DEF2 26/08/2022 0 0 0 0 

 

In the next phase of data transformation process, this work´s methodology 

adopts data conversion and normalization. Data conversion consists of converting 

date values (e.g., “1900-01-01”) into integer values (e.g., “16720200”). The integer 

values represent the number of days from a reference date (“1900-01-01”) until the 

converted date. In doing so, the integer values can be normalized through a MinMax 

technique, the maximum being 1 (one) and the minimum being 0 (zero). It is worth 

noting that the entire date was saved because it will be useful in future studies, such 

as the impact of weather conditions.  

Therefore, the final dataset that was used for data mining purposes is 

composed of four main attributes: project name, normalized period end date, safety 

transitions (births), and birth process states. Table 10 shows an example of 5 

instances of this dataset. 

 

 

 



89 

Table 10 - Example of the preprocessed and transformed dataset used in the data 

mining process. 

c.project c.enddate_norm 
c.accid 

(transitions) 

c.accid 

(BDP states) 

ABC1 0.20 0 0 

ABC1 0.27 1 1 

ABC1 0.35 0 1 

ABC1 0.43 1 2 

DEF2 0.45 0 0 

 

With this final dataset, a new exploratory study was carried out to visualize 

the available data for utilization in the processing techniques. The step-curve and 

the histogram of pure-birth states were plotted for each project. Through the graphs, 

projects with noisy data and data anomalies could be visually identified and 

discarded from the dataset. Also, to focus on construction phases related to civil 

engineering activities, such as earth movements, foundation pouring, among others, 

the final datasets were reduced to instances reported up to 60% of construction 

completion (𝑡 ≤ 0.6). This time criterion is defined after the analysis of the 

projects´ timelines included in the dataset. 

5.3.4. 
Data processing 

Then, the KDD stage related to data processing was initiated by dividing the 

dataset into training and test datasets. This train-test split followed a project-

oriented division with cross-validation. In other words, for the dataset with 39 

projects, 𝑋 % of them was applied to separate the training dataset and (1 − 𝑋) % 

to the testing set, as shown in Figure 16. Then, from the training projects, 𝑁 folds 

were organized to be used during the data mining for training and test purposes. 

After the initial training and testing, a final evaluation was done with the (1 − 𝑋) % 

of projects separated for testing. The trial values of 𝑋 were 67% and 89%, and the 

trial values of 𝑁 were 3 and 6. This variation is important to understand its effects 

in the data training. Note that the cross-validation is useful to select models that 

predict safety events in new construction projects.  
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Figure 16 - Dataset division and organization including the cross-validation 

technique. 

However, it may be not useful for ongoing projects, because the dataset can 

be understood as time series and traditional cross-validation techniques would not 

be adequate since it can eliminate the meaning of time sequence. Therefore, for that 

specific case, the walk forward validation or adapted cross-validation techniques 

(time series cross-validation), would be more appropriate to deal with time series 

(PARDO, 1992). 

Following the proposed KDD process, the next step consists of data 

processing, which is divided into two parts: probabilistic distribution and stochastic 

solutions. The first part consists of fit the training dataset to the best probabilistic 

distribution performing the Kolmogorov-Smirnov test for goodness of fit. This 

specific metric was chosen because the best fit cannot result in a normal distribution 

and thus, other tests, such as the Student’s T-Test, would not be applicable 

(MASSEY, 1951). During this part of data processing, two parameters were defined 

to control the learning process in KDD: the number of samples for the Kolmogorov-

Smirnov test (ksN) and the threshold p-value for the Kolmogorov-Smirnov test 

(KS_criteria) that rejects the null hypothesis. For the former it was assumed the 

value of 1000 and the latter was fixed at 5%. 
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Therefore, using the training datasets that came from cross validations, the 

probabilistic solution results in a trained model that contains the best distribution 

for each construction time and for each step in the cross-validation process. Note 

that the attribute used in this part is the histogram of transitions between safety 

states and so, the model returns the transition probabilities as described in the right-

hand side of Equation 17. 

The second part in the data processing step is the stochastic solution. Using 

the Python package BirDePy (HAUTPHENNE; PATCH, 2021), this solution 

included the parameter estimation for each project training dataset, assuming that 

the stochastic process is pure birth or Poisson, and time continuous. So, the main 

parameter is the estimation method, defined as the direct numerical maximization 

(dnm), also known as Maximum Likelihood Estimation (MLE). The initial guess 

for the parameter value, and the parameter bounds are also possible 

hyperparameters to use, but to simplify the methodology, the values were defined 

as fixed. The initial guess (𝑝0) assumed the value of 1𝑒−6 and the parameter bounds 

(𝑝𝑏𝑜𝑢𝑛𝑑𝑠), [0, 1𝑒
+6]. 

So, to evaluate the training model, simulations were carried out to predict 

the global behavior of safety events transitions in a future construction project. 

Using the probabilistic model, 1000 simulations were performed, and using the 

stochastic model, 1 simulation was carried out because of the excessive processing 

time required. The simulations resulted in a predicted column related to the 

cumulative sum of safety events transitions, which is the attribute used to train all 

models. Note that each trained model passes by three distinct evaluations, two 

during the validation step and one with the final dataset. The evaluation with cross 

validation is based on the confusion matrix, comparing the actual column in the test 

fold (inside the initial training dataset) with the predicted one. Basically, there are 

only two possible values for a prediction: 1 (safety event transition occurs) and 0 

(nothing occurs), and thus, the confusion matrix is 2x2, composed of true positive, 

false positive, false negative and true negative values. So, the following 

performance metrics were used to rank the trained models: 

• Precision score (PRC): to understand from the positive predictions, how 

many are truly positive. Thus, this would suggest that the model is able 

to correctly predict safety events transitions. 
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𝑃𝑅𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

• Recall score (REC): to understand from the positive cases, how many are 

predicted positive by the model. Thus, this would suggest that the model 

is capable of quantitatively predict safety events transitions. 

𝑅𝐸𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

• Specificity score (SPC): to comprehend from the negative predictions, 

how well the model is predicting the nonoccurrence of safety events 

transitions. Thus, this would attest to the model´s ability to avoid false 

predictions of safety events transitions. 

𝑆𝑃𝐶 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

• F1 score (F1S): to understand in combination the precision and 

sensitivity scores, through the harmonic mean. It would capture the good 

models based on both metrics. 

𝐹1𝑆 = 2 ×
𝑃𝑅𝐶 × 𝑅𝐸𝐶

𝑃𝑅𝐶 + 𝑅𝐸𝐶
  

• PR-AUC score: to comprehend, in case of imbalanced classes (negative 

class is more frequent than positive class), the model performance in 

predicting positive cases. It deals with the area under the curve generated 

by the precision and recall scores along several executions of the 

training. 

5.3.4. 
Data postprocessing 

After the best models were ranked according to the metrics, the final 

evaluation was carried out to compare the two solutions. The final evaluation 

consisted of examining the predicted transition probability matrix, created by each 

model, with the actual one originated from the initial test dataset. As shown in 

Equation 17, the transition matrix is useful to understand the stochastic process 

through the birth rates between states. By creating a predicted stochastic process 

and comparing with the real observed (actual) process, the model is evaluated by 
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the right diagonal that represents the transition rates for each time. Note that to 

understand the evolution of safety events transitions, the proposed methodology 

uses the probability of transition in a time interval (𝛥𝑡 = 𝑡 < 𝑡1), instead of a time 

instant (𝑡). The following equation exemplify the matrix used as ground truth and 

was originated by the right diagonal presented in the Equation 6 applied for each 

time interval considered. 
Equation 19 - Ground truth m atrix  of trans i tion rates  v ec tors  used as va lidation m etric . 

𝐸𝑛,𝑚 = [

𝜆0|𝑡<𝑡1(𝑡) 𝜆1|𝑡<𝑡1(𝑡) … 𝜆𝑚−1|𝑡<𝑡1(𝑡)

⋮
𝜆0|𝑡<𝑡𝑛(𝑡) 𝜆1|𝑡<𝑡𝑛(𝑡) … 𝜆𝑚−1|𝑡<𝑡𝑛(𝑡)

] (19) 

 

Note that the construction manager would know from the past what was the 

birth rate between safety events in each period of the construction duration. The 

adopted time periods refer to a quarter of the total time, which means the following 

normalized times: 0.15, 0.30, 0.45, and 0.60. Through the data visualization in the 

data transformation step in the KDD process, it is observed that this period refers 

to approximately a quarter in a year. However, the ground truth matrix does not 

allow the prediction of birth rates for states that were not observed before, i.e., the 

exact solution can only repeat the past to predict the future. So, the solutions 

provided in the trained models were used to capture random events that can predict 

future transitions given a time period even if this type of transition did not occur 

before. The probabilistic model, in theory, should result in more controlled future 

scenarios, since the fitted distribution are semi-deterministic equations, i.e., given 

the same input, the equation returns the same output in terms of transition 

probability, but does not always return the same output in terms of occurrence of 

safety events transitions. However, due to the higher level of chaos associated with 

stochastic processes, the stochastic model should be able to predict totally 

unexpected events, such as natural disasters.  

To evaluate the matrix similarity between the trained and exact solutions, 

the sum of local distances between them is calculated using the following equation: 
Equation 20 - Matrix  s im ilari ty  metric  us ed for the m odel va lidations . 

𝑴𝑺 = ∑∑|𝑬𝑖𝑗 − 𝑺𝑖𝑗|

𝒏

𝒊

𝒎

𝒋

 (20) 

Where,  

• 𝑴𝑺 is the similarity value matrix; 
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• 𝑛,𝑚 are, respectively, the number of rows and columns of the 

matrices;  

• 𝑬𝑖𝑗 is the value in position 𝑖𝑗 of the exact solution matrix 𝑬; 

• 𝑺𝑖𝑗 is the value in position 𝑖𝑗 of the trained solution matrix 𝑺. 

5.4. 
Results and discussions 

The proposed methodology was applied to the available database, which 

included projects from various countries, from different continents and three types 

of renewable energy technologies. It is important to note that all databases 

originated from a single company that has operations in numerous nations 

worldwide.  The results related to model training are described next.  

The first Exploratory Data Analysis (EDA) is shown in Figure 17, describing 

the number of projects, files, and instances per technology (taxonomic class), 

continent, and country. With the total of 39 projects, 74% are photovoltaic projects, 

23%, wind projects, and 3% hydroelectric. Most of the projects are in Europe (44%) 

and Latin America (46%), concentrated in Brazil (13%), Chile (23%), and Spain 

(36%). From the total number of projects, 6511 files containing safety records were 

collected, with a total of 31469 instances related to safety events. The total number 

of distinct attributes is 146 identified in all files, but only 10 were considered in the 

analysis due to General Data Protection Regulation restrictions. 

 

  

(a) 

 

(b) 
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(c) (d) 

Figure 17 - Exploratory data analysis to understand the technologies (a), regions 

(b), and countries (c) associated with the safety dataset and its instances (d). 

 This initial data analysis reveals that developing countries are the ones with 

the highest number of safety records, whose cause is not in the scope of the present 

study. Moreover, this initial EDA reveals that the data may be biased for the Latin 

America (LATAM) projects, because they constitute a large parcel of the total 

number of instances. The same occurs with the solar projects, that are in majority. 

Therefore, the cross-validation technique is adopted to reduce the level of bias 

related to these points. Also, this analysis revealed that the database is composed of 

unbalanced classes, since the nonoccurrence is more frequent than the occurrence 

of a safety event and, thus, the performance metrics must deal with this unbalance 

between classes. 

The second moment of the EDA is shown in Figure 18, describing the 

histogram of states of safety events organized by technology, continent, and 

country. Note that this second analysis occurs after data preprocessing and 

transformation steps and, thus, some technologies, continents, or countries may 

have been eliminated due to the cleaning or removal process. The histograms reveal, 

as expected, that initial states of safety events are more frequent and after 15 states, 

the Kernel Density Estimation (KDE) curve tends to decrease to zero. Note that 

some projects contain 50 safety events, which represents more than one safety event 

per week in a construction project that lasts 1 year. Moreover, the photovoltaic 

projects tend to have a smaller percentage of safety events when compared to wind 

projects, since the KDE curve is more frequent in the beginning of x axis. 

In terms of location, the KDE curves reveal that the European projects have 

more frequent zero safety events than the LATAM projects since the curve reaches 

its peak near 3 safety events. Also, the LATAM projects present distinct KDE curve 

behaviors. It is worth pointing out that the number of instances can affect these 

curves, but for an initial data analysis the histograms provide enough information 

to identify the possible bias that the data can assume. 
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(a) 

 

(b) 

 

© 

Figure 18 - Exploratory data analysis to understand the occurrence of safety states 

in the dataset, according to the technology (a), region (b), and countries (c). 

In sequence, the outcome from the data mining is provided. The best 

probabilistic and stochastic model for each training and testing combination and its 
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results and evaluation in the cross-validation step are briefly represented in the 

experiment plan detailed in Table 11. 

From a total of 31 trained probabilistic models, 13 (42%) were pre-

evaluated and selected for the final testing, which reduced to 6 (19% of total) 

selected models. For each model, 1000 simulations were carried out to compare 

with the actual dataset in order to extract the mean score values. Note that a 

convergence test was used to determine the number of simulations, and the results 

demonstrated that after 1000 simulations, the results were essentially the same. 

The best models were the ones with lower values for MS and higher values 

for PR-AUC and F1-Score in each group of the cross-validation datasets, as listed 

in Table 11. Note that even the not trained model achieves a recall score higher than 

0.3, which indicates that the predictions performed quantitatively bad. However, 

the model’s specificity resulted in scores higher than 0.8, which means that the 

models are not doing false predictions of safety events transitions.  

In general, as observed in some predicted step curves (Figure 19), the 

probabilistic models tend to be optimistic –almost all curves are beneath the actual 

step curve. The reason for that may be related with the fact that the distribution 

functions tend to fit better with the safety events transitions with higher occurrence 

(histogram peak), ignoring random events that can create another peak in advanced 

construction phases. Thus, the probabilistic model would be more appropriate for 

construction projects with lower level of uncertainties when compared with the past 

projects. 

Moreover, there is no clear conclusion to what the best distribution function 

would be. As suggested by some authors (ABOURIZK; HALPIN, 1992), the beta 

distribution could be an adequate function to describe safety events, but the results 

of this work do not confirm this assumption. On the contrary, similarly with the 

conclusions of Tesfaye et al. (2015), several functions can be adequate to describe 

the project completion time. In fact, future studies should incorporate more 

possibilities, beyond the sixty distributions tested in the present work. 

For the stochastic models, from a total of 588 trained models (294 related 

to pure birth and 294 to Poisson process), 266 (45%) were pre-evaluated and 

selected for the final testing, which reduced to 4 selected models (0.7% of the total). 
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Table 11 – Experiment plan with the best models after the cross validation and model evaluation. 

Experiment plan – Best models 

 

Model Training and testing datasets Probabilistic model Model evaluation 
# Main division Cross-validation Parameters Trained model During CV (mean scores)  Final test 

 test 

projects 

test 

projects 

folds test 

projects 

training 

projects 

ksN KS p-value 

threshold 

Best 

distribution 

KS 

p-value 

PRC REC SPC F1S PR-

AUC 

Status MS Status 

3 9 18 3 6 12 1000 0.05 genparetoa 0.8686 0.651 0.223 0.907 0.183 0.662 Passed 7.69 OK 

8 9 18 6 3 15 1000 0.05 genparetoa 0.7914 0.642 0.291 0.935 0.271 0.576 Passed 8.84 OK 

13 9 18 9 2 16 1000 0.05 foldnormb 0.7194 0.698 0.233 0.830 0.233 0.723 Passed 9.54 OK 

21 3 24 3 8 16 1000 0.05 halfnormc 0.6076 0.716 0.109 0.866 0.183 0.742 Passed 11.45 OK 

23 3 24 4 8 16 1000 0.05 halflogisticd 0.5634 0.643 0.124 0.908 0.180 0.615 Passed 7.75 OK 

27 3 24 6 4 20 1000 0.05 halflogisticd 0.4428 0.723 0.140 0.859 0.228 0.720 Passed 12.11 OK 

 

Model Training and test datasets Stochastic model Model evaluation 

# Main division Cross-validation Parameters Trained model During CV (mean scores)  Final test 

 test 

projects 

training 

projects 

folds test 

projects 

training 

projects 

p0 p0_bound estimation 

method 

Pure Birth 

parameter 

Poisson 

parameter 

PRC REC SPC F1S PR-

AUC 

Status MS Status 

24 9 18 3 6 12 1e-6 [0, 1e6] dnm 1.84e-03  0.928 0.551 0.780 0.685 0.871 Passed 4.4 OK 

75 9 18 3 15 3 1e-6 [0, 1e6] dnm 1.73e-03  0.760 0.528 0.500 0.623 0.755 Passed 9.3 OK 

173 3 24 6 4 20 1e-6 [0, 1e6] dnm 1.90e-03  0.694 0.714 0.358 0.704 0.688 Passed 3.9 OK 

217 3 24 3 8 16 1e-6 [0, 1e6] dnm  6.17e-03 0.740 0.751 0.385 0.732 0.736 Passed 2.1 OK 

 

a Distribution defined by a generalized Pareto continuous random variable. 

b Distribution defined by a folded normal continuous random variable. 

c Distribution defined by a half-normal continuous random variable. 

d Distribution defined by a half-logistic continuous random variable. 

0.716 This color represents the best metric scores. 
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Figure 19 - Prediction results related to the probabilistic models. 

Note that the higher number of models compared with the probabilistic 

model is due to the fact that for each training project, one stochastic model is 

estimated, which is not true for the probabilistic model. The probabilistic solution 

requires a large number of projects to have a representative histogram. To 

compensate this discrepancy and to reduce the processing time, only one simulation 

is carried out for each stochastic model. 

Using the same selection criteria of the best probabilistic models, it is 

observed, in Table 11, that the recall scores are better than the probabilistic solution 

and, consequently, the F1-score is also better. In this sense, the stochastic solution 

tends to produce better predictions for positive classes (safety events transitions) 

both qualitatively and quantitatively. However, the specificity score shows lower 

values compared with the probabilistic solution, which can indicate that the 

stochastic solution produces more false positives, or, in practical terms, it is more 

pessimistic. Depending on the application, construction planning could take the 

more optimistic or more pessimistic approach. In the context of infrastructure 

projects, which are typically uncontrolled and have a higher level of uncertainty, 

the pessimistic solution should be better. However, if the values of specificity are 
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too low, this would indicate that the model is being too pessimistic and, thus, not 

realistic. 

When compared to the probabilistic solution, the stochastic models present 

better values of matrix similarity, which can suggest that the birth rates were better 

predicted. In fact, the predicted step curves seem to be more similar with the actual 

ones (see Figure 20) for the stochastic solution and, even when there are few safety 

events transitions, some stochastic models predicted similar step curves. This 

adaptability indicates that maybe the stochastic models can also represent optimistic 

scenarios in the construction projects, it will depend on the trained project. Using 

the stochastic models, the planner will have a family of possible predictions, but 

using the probabilistic ones, she/he will have just one standard family member (i.e., 

the taxonomical level that represents the safety record) that can better represent the 

others. 

  

  
Figure 20 - Prediction results related to the stochastic models. 

In terms of uncertainty, as expected, the results suggest that the stochastic 

model captures a higher level of uncertainty when compared to the probabilistic 

solution. Therefore, as the conclusions given by Zhang et al. (2021), the stochastic 

models seem to be more useful for construction projects that have more chances of 

having random events. Comparing both solutions, as shown in Figure 21, it can be 
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clearly seen that the stochastic models capture more safety events than the 

probabilistic solutions. 

 

Figure 21 - Comparison betwen the prediction results from the probabilistic and 

stochastic models. 

Next, a discussion related to the stochastic process adopted in each solution 

provided. From the total number of 266 selected models, 97 (36%) are pure-birth 

process estimation, and only 1 of the best 4 models is estimated by a Poisson 

process. Differently from other studies (CHUA; GOH, 2005; ZHANG, Zhenhao; 

LI; YANG, 2021), it seems that the Poisson is not the best process to estimate safety 

occurrences in construction projects. From the results, it can be concluded that the 

Poisson process is more optimistic than pure birth. Again, the level of uncertainty 

may explain the reason for that: the pure-birth process works like a random walk, 

which is more chaotic, and the Poisson process, even in the stochastic part, captures 

less uncertainties related to safety events transitions. 

5.5. 
Conclusions 

The construction industry has been tested many times during the recent 

crisis events, and that worker safety is a historical issue to be dealt with. Therefore, 

the current study proposes a construction planning approach to predict the 

transitions between safety states, capturing random events with high level of 

uncertainties. To that end, the authors reviewed the literature and concluded that 

most planning methods do not handle uncertainties with random variables related 
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to work accidents, which generally results in optimistic scenarios. The ones that 

deal with random events usually adopt information models and machine learning 

techniques to manage the safety plan in construction projects. Stochastic processes, 

which are part of a classical theory that have the purpose to capture the random 

nature of the construction industry, have not yet being reported in the literature. The 

present study´s hypothesis is that combined with the currently available 

computational power, stochastic processes can be a good alternative to prepare 

infrastructure projects to deal with totally unplanned events, like a work accident 

that had never occurred before, focusing on the safety worker issue. 

The proposed methodology based on the KDD concept involves data 

treatment steps to optimize and improve real construction datasets, preparing them 

for training models that will predict the species of safety events transitions. Based 

on the previous methods adopted in the literature, the current work presents two 

solutions: one based on probabilistic distribution and the other on stochastic 

processes. By applying these solutions in a real dataset with 39 projects, the results 

revealed that the probabilistic approach tends to assume optimistic scenarios for 

real projects, while the stochastic approach, more pessimistic ones. As observed in 

the step curves, both solutions fit relatively well in some real projects, but with 

different best scores. The probabilistic solution presents the best specificity scores 

– highlighting its ability to not predict a false positive class – and the stochastic 

solution presents better precision scores, even with only one simulation – 

highlighting its ability to predict a true positive class. Also, combining precision 

and recall scores, the stochastic solution results in better F1 and PR-AUC scores, 

and analyzing the generator matrix of both solutions, the stochastic solution results 

in better values of MS score as well. Therefore, the results indicate that 

quantitatively the stochastic solution provides better predictions than the 

probabilistic approach. 

It is also worth pointing out that the pure-birth estimation seems to return 

better scores when compared to the Poisson model estimation (both estimations in 

the stochastic solutions), which leads to the conclusion that when the level of 

uncertainty is high, the Poisson model is able to capture this level of randomicity. 

Thus, as suggestion for future works, it is recommended the use of walk-forward 

validation to better understand the differences between Poisson and pure-birth 

models and to make the approach useful for ongoing projects, since the training and 
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testing datasets will be done with incremental time. Also, to better categorize the 

qualitative results in terms of pessimistic, realistic, and optimistic model, future 

studies can investigate the application of clustering techniques in the stochastic 

models, expanding the approach to more projects and countries, too. Finally, as 

highlighted in the literature, the stochastic solution should also be tested with 

recently developed AI methods. 
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6 
A hybrid solution to consider the stochastic nature of 
safety incidents on project delays in construction planning 
methods 

Paper ready to be submitted by Cristiano S. T. do Carmo and Elisa D. 

Sotelino to a peer-reviewed international journal. 

 

Abstract 

The construction sector is inherently full of uncertainties, such as political 

and social worries, and infrastructure projects are considerably more chaotic due to 

their scale. This context brings to light construction safety hazards, which are 

typically overlooked in construction planning methods. Using the stochastic quasi 

birth and death process and neural network models, the current study proposes a 

new construction planning method that considers safety events and their effects on 

project delay. A literature study revealed that there is a scientific requirement for 

practical research related to infrastructure that connect technical applications with 

industry practices. As a result, the goal of this work is to cover some of the research 

gaps mentioned in the literature by employing a real-life database and applying it 

to energy infrastructure projects. The results show that ignoring safety variables 

leads to the assumption that safety occurrences will occur; however, by applying 

the stochastic solution, construction planners can better understand the implications 

of safety events on delay events and vice versa. In addition, for live planning, this 

study recommends the use of statistical and neural network algorithms capable of 

forecasting bivariate time series. The validation scores show that the neural 

networks model performed nearly twice as well as the statistical method during the 

initial period of the construction phase. 

6.1. 
Introduction 

Unlike other industries, which have a controlled work environment, civil 

construction is well-known for its dangerous workplace (TAM; ZENG; DENG, 
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2004). In 2021 in Brazil, according to the Brazilian Statistical Yearbook of Works 

Accidents, it was responsible for the sixth highest number of accidents when 

compared to all economic activities in the country. This is often due to the terrible 

condition for workers the high cost for constructors due to the insurance premiums 

(HINZE; DEVENPORT; GIANG, 2006) and employee absence, that reduces team 

productivity. In fact, Waehrer et al. (2007) concluded that an extra cost of $1.36 

billion (2002 dollars) is due to construction work-related accidents. 

In times of crisis, however, the construction industry is under a lot of 

pressure to increase productivity, since it accounts for a large percentage of 

countries' gross domestic value – around 13% at global level (McKinsey, 2020). 

This scenario of cost and time pressure, following Pinto et al. (2011), can result in 

worst safety performance due to relaxing rules and processes. The current study 

focuses on safety management issues to avoid the increase of work accidents and, 

consequently, losses in terms of workers, and extra-costs for the company.  

Related to the safety impacts in project management, Soltani and Fernando 

(2004) have already found that a safest path for the worker can reduce in almost 

30% the construction activity cycle and process times. Also, according to Koehn 

and Musser (1983) apud Zhou et al. (2015), safety regulations can result in 

construction cost reduction, from 2.8% to 1.4%. However, following Carmo and 

Sotelino (2023), most planning methods currently adopted in construction projects 

do not consider the safety variable as critical for the schedule validation.  

Thus, the current study proposes a new construction planning method to 

evaluate the effects of safety incidents on construction delays, using the 

fundamental stochastic theory of Quasi Birth and Death Processes (QBDP) and 

machine learning techniques. In fact, Carmo and Sotelino (2023) verified that the 

use of a stochastic model for safety occurrences predictions can perform better than 

the forecasting models adopted so far, such as statistical methods and Poisson 

model. 

The paper is structured as follows. The first section discusses the context in 

which this study fits. The second section provides the theoretical foundation needed 

to comprehend the stochastic processes used in the proposed method, as well as the 

application of such theory in construction project management. The third section 

describes the methods used in the current work, such as the Markov transition 

diagram and the computational techniques used to process real-project datasets. The 
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fourth section presents the findings and discussions related to the incorporation of 

such methods into a real-world database of energy infrastructure construction 

projects. Finally, the fifth section provides a summary of conclusions, limitations, 

and future work suggestions. 

6.2. 
Theoretical framework 

6.2.1. 
Stochastic processes in project management 

A Systematic Literature Review (SLR) was conducted using the Scopus 

database to identify the important research works, their contributions to the body of 

knowledge, and the research gaps concerning the use of stochastic process theory 

in construction project management. The adopted literature review approach 

consists of five key steps: research questions, study location, study selection and 

assessment, analysis and summary, and reporting and interpretation (KHAN et al., 

2003), which are discussed in Carmo and Sotelino (2023). 

The SLR questions were:  

• What are the primary contributions linked to stochastic processes in 

construction management in the literature? 

• How were the theories implemented in the studies? 

The search terms were subsequently formulated for use in the database 

engine, with the goal of achieving the greatest number of works relevant to the issue 

that could answer, at least partially, the inquiries. The search query included the 

following terms: TAK("STOCHASTIC* PROCESS*" OR "STOCHASTIC* 

MODEL*" OR "STOCHASTIC* ANALY*") AND TAK("MANAGEMENT") 

AND TAK("CONSTRUCTION PROJECT" OR "CONSTRUCTION INDUSTR*" 

OR "CONSTRUCTION ACTIVIT*" OR "CONSTRUCTION WORK*")). The 

acronym "TAK" indicates that the term must occur at least once in the title, abstract, 

or keywords. 

The initial results returned 75 studies from the database without any filtering. 

However, two filters were required to eliminate publications that were irrelevant or 

in a language that was incomprehensible to the authors. As a result, the language 

filters – only English papers (results in 74 studies) – and the publishing type – only 

journal articles (58 studies) – were used. 
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Then, using inclusion/exclusion criteria, all 58 titles were examined, and 

studies that were not directly related to construction project management were 

excluded (e.g., “Governmental Investment Impacts on the Construction Sector 

Considering the Liquidity Trap” – Alshboul et al, 2022), and the sample was 

reduced to 43 studies. Finally, all 43 abstracts were evaluated, and 24 articles were 

chosen for the SLR following the same inclusion/exclusion criteria.  

Note that many studies mentioned stochastic variables (e.g., “Physical 

Distancing Analytics for Construction Planning Using 4D BIM” – Hosny et al., 

2022) or coefficients (e.g., “Research on extremely short construction period of 

engineering project based on labor balance under resource tolerance” – Peng et 

al., 2022) but did not use stochastic processes themselves and were, thus, excluded. 

This occurred because some studies interpret the term "stochastic" as an alternative 

expression for "risk and uncertainty" (e.g., “Stochastic analysis for managing risk 

of delay in Duri oil construction projects, Indonesia” – Sandhyavitri, 2022). 

Following the SLR processes the 24 journal papers were thoroughly read, and 

the key studies and their contributions are detailed next. 

Yang (2005) conducted one of the pioneering works highlighted in the SLR, 

proposing a time-cost tradeoff analysis using stochastic formulations, primarily 

with uncertainties due to funding unpredictability. A probability function was 

defined to a chance-constrained programming, a subdivision of stochastic 

programming. The study then translated the stochastic formulation into a 

deterministic expression that was evaluated using a small building project, after 

analyzing the possible random variables and the probabilistic distribution that they 

could adopt. According to the author, the proposed methodology could assist 

planners in quantifying the impact of the examined uncertainty.  The current study 

has a similar goal, which is to determine the impact of safety uncertainties on 

project time. 

Tseng et al. (2009) provided a technique to estimate contingency considering 

uncertainties that affect project duration and cost utilizing stochastic programming 

as well. They accounted for random events caused by incorrect or inadequate data, 

resulting in change orders, and permitted delays during the construction phase. 

Also, they created the stochastic process using mathematical expressions that 

assumed specified probabilistic distributions for the random variables, like Yang 

(2005). To deal with stochastic processes, they used the real options technique 
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rather than chance-constrained programming. In fact, they claimed that using 

predetermined distributions could be a restriction of their model, but other 

distributions could be employed in future works.  

It is interesting to note that the applicability of the Markov chain’s 

memoryless property into the project management process was noted by Tseng et 

al. (2009). As a result of a numerical application, they discovered that increasing 

project riskiness led in a decrease in construction length, because the contingency 

rises project cost in order to reduce project duration, as a result of dynamic crashing 

(risks mitigation based on optimal decisions). This conclusion is intriguing because 

it suggests that, when adequately defined and combined with cost contingency, 

uncertainty may assist reduce construction length. Following their findings, the 

present study used Markov processes to characterize stochastic processes and 

hypothesized the following: when adequately established and supplemented with 

proactive safety management (i.e., acts prior to an accident occurring) the 

uncertainties associated with safety accidents can reduce the duration of a 

construction project. 

In terms of safety, an accident prediction model can be thought of as a 

stochastic process (MARHAVILAS; KOULOURIOTIS; SPARTALIS, 2013). The 

authors created a risk assessment tool based on a stochastic harmonic analysis of 

time series. They discovered that this method was time-consuming and necessitated 

a large enough accident database spanning a few years. Furthermore, they 

concluded that Markov chain and neural network models can improve accident 

forecasting in the medium term, and they pointed out that, due to the non-linearity 

of random data, exponential smoothing and auto-regression models are inapplicable 

for times-series forecasting that follows a stationary condition. It is worth noting 

that, like the other research, the study developed by Marhavilas et al. (2013) 

presented the stochastic character primarily through the use of stochastic variables. 

Li et al. (2016), on the other hand, made a significant advance in this research 

area by studying the stochastic states that describe the process and developing a 

mathematical model to comprehend them. More specifically, they developed a live 

construction planning method that makes use of real-time location technologies and 

a Markovian stochastic process. The safety states referred to the type of safety 

occurrence (e.g., near-miss, accident, or fatal accident), and the research focused on 

the relationship between them rather than the causes. In fact, many research works 
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proposed safety prediction models based on accident causes 

(DHALMAHAPATRA et al., 2019; XU; ZOU, 2021; ZHANG, Fan et al., 2019). 

However, due to the randomness of the construction environment, the current study 

followed a similar approach to that adopted by Li et al. (2016), focusing solely on 

safety events that could be produced by a variety of factors. This assumption is 

particularly necessary to avoid using sensitive data that could disrupt the 

implementation of any method, since the General Data Protection Regulation 

restricts the use of worker information or related data and is linked to the 

consideration of legal issues indicated by Zhou et al. (2013). 

Zhang et al. (2021) recently added to this area by investigating the evolution 

of safety risk as a random process and by converting risk to accident as a random 

process. They discovered that the use of stochastic processes theory to construct 

safety risk management is still 'very rare' in the literature. As a result, they created 

a conceptual framework to integrate stochastic processes with safety accidents 

utilizing Markov, normal, and Poisson processes.  The goal of this study was to 

anticipate the risk-accident process, and they determined that, on a macro level, the 

Poisson process is an adequate model to predict quantitatively the number of safety 

accidents, which is consistent with previous research (CHUA; GOH, 2005). 

Chapter 5 further examined the adoption of Poisson process to represent safety 

incidents in energy infrastructure construction projects, but they concluded that the 

pure birth process can also be used and leading to better estimation. As a result, the 

current study used the quasi birth and death process to integrate the random 

variables of safety and duration. 

As a conclusion from this literature review, the initial questions can be 

answered, as follows. 

• What are the primary contributions linked to stochastic processes in 

construction management in the literature? 

A.: As observed in the literature, the adoption of stochastic processes 

is commonly associated with logistics and procurement activities 

(CARON; MARCHET; PEREGO, 1998; HSU; ANGELOUDIS; 

AURISICCHIO, 2018; NG; FANG; UGWU, 2008), risks analysis 

(MARHAVILAS; KOULOURIOTIS; SPARTALIS, 2013; ZHANG, 

Zhenhao; LI; YANG, 2021); and project time and cost evaluation 

(ESPINOZA, 2011; FARSHCHIAN; HERAVI, 2018; YANG, 2005). 
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Most studies proposed mathematical models and focused only on the 

theorical implications and did not use any kind of data mining process. 

Three works (LI, Heng et al., 2016; MARHAVILAS; 

KOULOURIOTIS; SPARTALIS, 2013; ZHANG, Zhenhao; LI; 

YANG, 2021), however, showed good examples of application of 

stochastic processes into the construction safety management, which 

is interesting for the current study.  

• How were the theories implemented in the studies? 

A.: The Markov chain theory is commonly adopted to consider the 

transitions between stochastic states, as observed in Li et al. (2016). 

Also, the Poisson process is used to forecast the number of 

accidents during the construction phase, as observed in Zhang et al. 

(2021), which is a well-known approach in this research field since 

the work of Chua and Goh (2005). However, this literature did not 

identify the use of the birth and death process, which can be 

described from a Markov process perspective and simplified with 

the Poisson model. This indicates that there is a scientific gap that, 

if filled, can contribute to the literature with theorical advances.  

 

6.2.2. 
Stochastic processes 

A stochastic process can be defined as a set of functions 𝑓(𝑥𝑖, 𝑡) that maps 

each instance 𝑥𝑖 of the sample space Ω and a parameter 𝑡 into a new domain Υ. This 

function map, also known as a random process, is usually coupled to a time 

parameter, which might be discrete or continuous. Furthermore, stochastic analysis 

is typically used to explain the general behavior of an experiment 

(ALBUQUERQUE, 2017). For example, the observation of safety events during 

the construction phase of an infrastructure project is an experiment where the safety 

occurrences are the instances 𝑥𝑖 in the domain Ω, and the random process 𝑓(𝑥𝑖, 𝑡) 

(or stochastic process) results in the occurrences over time in a new domain Υ, 

similarly with a time series. 

Formally, it can be described as: 
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Equation 21 - Formal  des cription of a stoc has tic process . 

𝑓(𝑥𝑖, 𝑡) ∶  Ω → Υ ∶ 𝑥𝑖 → 𝑓(𝑥𝑖, 𝑡) | 𝑥𝑖 ∈ Ω , 𝑡 ∈ Υ , 𝑓(𝑥𝑖, 𝑡) ∈ Υ  (21) 

 

The Birth and Death Process (BDP) is a type of stochastic process in which 

the instance is discrete and can rise (birth) or decrease (death) in unit increments 

along a continuous period, i.e., it exhibits a discrete stochastic process with a 

continuous parameter. This type of random process is commonly used in biological 

research to better understand species evolution, such as in the whooping crane 

population (MANDJES; SOLLIE, 2022). It is also being used in research on 

communication channels, such as the signal 6G with integrated sensing and 

communication (ZHANG, Zhengyu et al., 2023). Despite the fact that Chapter 5 

demonstrated the potential benefits of using it to understand the evolution of 

accidents, studies based on BDP theory in construction management are extremely 

rare. As a result, the current study is a pioneer in this field. 

A popular technique to define a BDP is to create diagram states that 

correspond to all conceivable states of the instance 𝑥𝑖 and the transitions between 

them. It is worth noting that the graphic depicts the entire history of 𝑥𝑖 over time t 

and so provides an alternate approach to comprehend the map function that 

represents the stochastic process. 

A popular technique to defining a BDP is to create diagram states that 

correspond to all conceivable states of the instance 𝑥𝑖 and the transitions between 

them. It is worth noting that the diagram depicts the entire history of 𝑥𝑖 over time t 

and so it provides an alternative approach to comprehend the map function 𝑛(𝑡) 

that represents the stochastic process. The states diagram is shown in Figure 5, 

where the circles indicate the states 𝑆𝑖  and the arrows reflect the transition rates 𝜆 

(birth) and 𝜇 (death). In general, the transition rates vary with time 𝑡, i.e., 𝜆(𝑡) and 

𝜇(𝑡). 
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Figure 5 - States diagram that represents a typical birth and death process. 

 

Formally, the possible transitions are as follows: 

𝑛(𝑡 + 𝛿) = {
𝑛(𝑡) + 1

𝑛(𝑡) − 1

𝑛(𝑡 + 𝛿) = 𝑛(𝑡)
   

Where, 

• 𝑛(𝑡) is the map function that yields the number of occurrences in a 

particular experiment; 

• 𝛿 is a time increment.  

 

Thus, by linking the transition rates, one obtains the transition probabilities 

𝑝𝑖𝑗(𝑑𝑡) in the infinitesimal time 𝑑𝑡: 

𝑝𝑖𝑗(𝑑𝑡) = {

𝜆𝑖(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 𝑗 = 𝑖 + 1

𝜇𝑖(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 𝑗 = 𝑖 − 1

1 − 𝜆𝑖(𝑡)𝑑𝑡 − 𝜇𝑖(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 𝑗 = 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 

Where, 

𝑖 and 𝑗 indicate the past and subsequent states, respectively, and belong to the 

set of integers, i.e., 𝑖, 𝑗 ∈ ℤ; 

𝑜(𝑑𝑡) is any function that satisfy the condition lim
𝑑𝑡→0

𝑜(𝑑𝑡)

𝑑𝑡
= 0. 

 

In addition, when two generic states 𝑎 and 𝑏 are observed, the transition 

probability at time 𝑡 given an increment 𝑑𝑡 follows the following equation: 
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𝑝𝑎𝑏(𝑡 + 𝑑𝑡) = 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡)𝑑𝑡 + [1 − 𝜆𝑏(𝑡) − 𝜇𝑏(𝑡)]𝑝𝑎𝑏(𝑡)𝑑𝑡

+ 𝜇𝑏+1(𝑡)𝑝𝑎,𝑏+1(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡) 
 

 

The first parcel in the right side of the equation represents the transition from 

state 𝑏 − 1 to state 𝑏, the second parcel represents no transition – past and 

subsequent states are 𝑏, and the third parcel represents the transition from state 𝑏 to 

state 𝑏 + 1. 

Furthermore, as demonstrated by Miller and Childers (2012), the forward 

Kolmogorov equations can be obtained by deriving both sides of the equation by 

𝑑𝑡: 

 

𝑑𝑝𝑎𝑏(𝑡)

𝑑𝑡
= 𝜆𝑏−1(𝑡)𝑝𝑎,𝑏−1(𝑡) − [𝜆𝑏(𝑡) + 𝜇𝑏(𝑡)]𝑝𝑎𝑏(𝑡) + 𝜇𝑏+1(𝑡)𝑝𝑎,𝑏+1(𝑡)  

 

 As shown by Karlin and McGregor (1955), it can be organized in a matrix 

format as: 

𝑷′(𝑡) = 𝑷(𝑡)𝑨   

  

Where, 𝑷(𝑡) is an 𝑛 × 𝑛 matrix and represents the transition probabilities, in 

which 𝑛 represents the maximum possible state in the process: 

 

𝑷(𝑡) =

[
 
 
 
 
𝑝00(𝑡) 𝑝01(𝑡)

𝑝10(𝑡) 𝑝11(𝑡)
⋯

0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
𝑝𝑛−1,𝑛−1(𝑡) 𝑝𝑛−1,𝑛(𝑡)

𝑝𝑛,𝑛−1(0,5) 𝑝𝑛,𝑛(𝑡) ]
 
 
 
 

   

 

And 𝐀 represents the generator matrix with 𝑛 × 𝑛 dimension: 

 

𝐀 =

[
 
 
 
 
−𝜆0(𝑡) 𝜆0(𝑡)

𝜇1(𝑡) −(𝜆1(𝑡)+ 𝜇1(𝑡))
⋯

0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
−(𝜆𝑛−1(𝑡) − 𝜇𝑛−1(𝑡)) 𝜆𝑛−1(𝑡)

𝜇𝑛(𝑡) −𝜇𝑛(𝑡)]
 
 
 
 

  

 

https://www.sciencedirect.com/book/9780123869814/probability-and-random-processes
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The pure birth process is a specific example of the BDP in which the transition 

𝜇𝑖(𝑡) is zero for any state 𝑖 and time 𝑡, resulting in the following generator matrix: 

 

𝐀 =

[
 
 
 
 
−𝜆0(𝑡) 𝜆0(𝑡)

0 −𝜆1(𝑡)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−𝜆𝑛−1(𝑡) 𝜆𝑛−1(𝑡)

0 0 ]
 
 
 
 

   

 

This work adopts the Quasi Birth and Death Process (QBDP), which 

combines both BDP and pure birth process. QBDP, as defined by Wallace (1969), 

is a continuous-time Markov process in which the transition probability matrix is 

composed of transition probability submatrices, both with tridiagonal structure. 

Indeed, according to Fadiloglu and Yeralan (2002), QBDP is "a generalization of 

the birth-death process," and following van Leeuwaarden and Winands (2004), 

homogeneous QBDP can be understood as a two-dimensional Markov chain. As a 

result, the possible states are represented by the Kronecker product between the 

BDP and the pure birth states, resulting in a vector of two scalars.  

6.3. 
Proposed methodology 

6.3.1 

Theorical formulation  

In this study, the QBDP approach is based on states that are vectors (𝑑, 𝑠) 

related to delay (𝑑) and safety (𝑠) states, as opposed to the BDP approach, which 

states are scalars. Also, to use a similar notation used in many studies 

(FADILOGLU; YERALAN, 2002; MANDJES; SOLLIE, 2022; OSOGAMI, 

2005), the safety states are referred to as levels, and the delay states are referred to 

as phases, as shown in Figure 22.  
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Figure 22 - States diagram that represents a quasi birth and death process 

considering safety states as levels. 

 

Formally, the function map that defines the stochastic process is 𝑓( 𝑑𝑖 ,  𝑠𝑖 ,

𝑡) and the possible states, s(t), are: 
Equation 22 - Sam ple spac e that represents  the QBDP states. 

Ω = 𝒔(𝑡) = {(𝑑, 𝑠) | 𝑑 = 0,1,2,3, … ; 𝑠 = 0,1,2,3, … } (22) 

 

It should be noted that the adopted QBDP assumes only states from the set of 

non-negative integer numbers, i.e., {𝑑, 𝑠 ∈ ℤ+}, as well the birth and death process. 
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Therefore, at time 𝑡 and given a time increment δ, the following transitions 

are possible: 

𝒔(𝑡 + 𝛿) =

{
  
 

  
 
𝒔(𝑡) + (0, 0)

𝒔(𝑡) + (0, 1)

𝒔(𝑡) + (1, 0)

𝒔(𝑡) + (1, 1)

𝒔(𝑡) + (−1, 0)

𝒔(𝑡) + (−1, 1)

   

 

 Similarly, as previously described, the transition probabilities 

𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑑𝑡), which denotes a transition from a state (𝑖, 𝑗) to a generic state 

(𝑚, 𝑛) in the infinitesimal time 𝑑𝑡, are given by: 
Equ ation  23  - Tran sition  p rob ability  fro m state ( 𝑖, 𝑗) to state (𝑚 ,𝑛) g iv en  an  in fin etesimal time in cremen t d t, in  th e p ropo sed  q u asi b irth and  d eath  p ro cess.  

𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑑𝑡) =

{
 
 
 
 

 
 
 
 

𝜆𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (1,0)

𝜇𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (−1,0)

𝛾𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (0,1)

𝜙𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (1, 1)

𝜓𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (−1,1)

[1 − (𝜆𝑖𝑗(𝑡) + 𝜇𝑖𝑗(𝑡)+ 𝛾𝑖𝑗(𝑡) + 𝜙𝑖𝑗(𝑡) + 𝜓𝑖𝑗(𝑡))]𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(23) 

 

 And the transition probabilities at time 𝑡 given an increment 𝑑𝑡 are: 
Equ ation  24  - Tran sition  p rob ability  fro m state (i,j) to state (m,n ) at time 𝑡 g iv en  an  in cremen t 𝑑𝑡,  in  th e p rop o sed  q u asi b irth  an d d eath  p ro cess. 

𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡 + 𝑑𝑡)

= 𝛾𝑚,𝑛−1(𝑡)𝒑(𝑖,𝑗),(𝑚,𝑛−1)(𝑡)𝑑𝑡

+ 𝜆𝑚−1,𝑛(𝑡)𝒑(𝑖,𝑗),(𝑚−1,𝑛)(𝑡)𝑑𝑡

+ 𝜇𝑚+1,𝑛(𝑡)𝒑(𝑖,𝑗),(𝑚+1,𝑛)(𝑡)𝑑𝑡

+ 𝜙𝑚−1,𝑛−1(𝑡)𝒑(𝑖,𝑗),(𝑚−1,𝑛−1)(𝑡)𝑑𝑡

+ 𝜓𝑚+1,𝑛−1(𝑡)𝒑(𝑖,𝑗),(𝑚+1,𝑛−1)(𝑡)𝑑𝑡

+ [1 − 𝜆𝑚,𝑛(𝑡) − 𝜇𝑚,𝑛(𝑡) − 𝛾𝑚,𝑛(𝑡) − 𝜙𝑚,𝑛(𝑡)

− 𝜓𝑚,𝑛(𝑡)]𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡) 

(24) 

 

 As a result, the Kolmogorov forward equations can be obtained: 
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Equation 25 - Kolmogorov  forward equations  for the proposed quasi  bi rth and death process . 

𝑑𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡)

𝑑𝑡
= 𝛾𝑚,𝑛−1(𝑡)𝒑(𝑖,𝑗),(𝑚,𝑛−1)(𝑡) + 𝜆𝑚−1,𝑛(𝑡)𝒑(𝑖,𝑗),(𝑚−1,𝑛)(𝑡)

+ 𝜇𝑚+1,𝑛(𝑡)𝒑(𝑖,𝑗),(𝑚+1,𝑛)(𝑡)

+ 𝜙𝑚−1,𝑛−1(𝑡)𝒑(𝑖,𝑗),(𝑚−1,𝑛−1)(𝑡)

+ 𝜓𝑚+1,𝑛−1(𝑡)𝒑(𝑖,𝑗),(𝑚+1,𝑛−1)(𝑡)

− [𝜆𝑚,𝑛(𝑡) + 𝜇𝑚,𝑛(𝑡) + 𝛾𝑚,𝑛(𝑡) + 𝜙𝑚,𝑛(𝑡)

+ 𝜓𝑚,𝑛(𝑡)]𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡) 

(25) 

  

Rewriting the equations in matrix format, one obtains: 
Equation 26 - Kolmogorov  forward equations  for the proposed quasi  bi rth and death process , in  a  m atrixial  format. 

𝑑𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡)

𝑑𝑡

= [

𝒑(𝑖,𝑗),(𝑚−1,𝑛−1)(𝑡) 𝒑(𝑖,𝑗),(𝑚−1,𝑛)(𝑡) 𝒑(𝑖,𝑗),(𝑚−1,𝑛+1)(𝑡)

𝒑(𝑖,𝑗),(𝑚,𝑛−1)(𝑡) 𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡) 𝒑(𝑖,𝑗),(𝑚,𝑛+1)(𝑡)

𝒑(𝑖,𝑗),(𝑚+1,𝑛−1)(𝑡) 𝒑(𝑖,𝑗),(𝑚+1,𝑛)(𝑡) 𝒑(𝑖,𝑗),(𝑚+1,𝑛+1)(𝑡)

]

× [

𝜙𝑚−1,𝑛−1(𝑡) 𝛾𝑚,𝑛−1(𝑡) 𝜓𝑚+1,𝑛−1(𝑡)

𝜆𝑚−1,𝑛(𝑡) −[𝜆𝑚,𝑛(𝑡)+ 𝜇𝑚,𝑛(𝑡) + 𝛾𝑚,𝑛(𝑡)+ 𝜙𝑚,𝑛(𝑡) + 𝜓𝑚,𝑛(𝑡)] 𝜇𝑚+1,𝑛(𝑡)

0 0 0

] 

 

(26) 

 

Due to the number of variables, some notations are simplified by dropping 

subscripts and birth and death rates are treated as constants, as follows: 

𝒑(𝑖,𝑗),(𝑚,𝑛)(𝑡) = 𝒑(𝑚,𝑛) ; 𝜆𝑚,𝑛(𝑡) = 𝜆 ; 𝜇𝑚,𝑛(𝑡) = 𝜇 ; 𝛾𝑚,𝑛(𝑡) = 𝛾 ; 𝜙𝑚,𝑛(𝑡) = 𝜙 ; 

𝜓𝑚,𝑛(𝑡) = 𝜓, for any 𝑚, 𝑛 ∈ Ω. 

 The steady-state equations are calculated to obtain the generator matrix that 

describes the QBDP process, as described in Fadiloglu and Yeralan (2002). These 

equations define the balance conditions and represent the border states in the states 

diagram. For example, it is known that there are only two possible transitions to the 

first state (0, 0), coming from the state (1, 0) or from the same state (0,0). As a 

result, the sum of both possible transitions must be zero. 
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Equation 27 - Steady -s tate equation for the s tate (0 , 0).  

−(𝜆 + 𝛾 + 𝜙) 𝒑(0,0)+ 𝜇 𝒑(1,0) = 0 (27) 

Equation 28 - Steady -s tate equation for the s tate (i , 0).  

−(𝜆 + 𝜇 + 𝛾 + 𝜙 + 𝜓) 𝒑(𝑖,0) + 𝜆 𝒑(𝑖−1,0) + 𝜇 𝒑(𝑖+1,0) | 𝑀 > 𝑖 > 0 
(28) 

Equation 29 - Steady -s tate equation for the s tate (M , 0).  

−(𝛾 + 𝜇 + 𝜓) 𝒑(𝑀,0) + 𝜆 𝒑(𝑀−1,0) = 0 
(29) 

Equation 30 - Steady -s tate equation for the s tate (0 , j ).  

−(𝜆 + 𝛾 + 𝜙) 𝒑(0,𝑗)+ 𝛾 𝒑(0,𝑗−1) + 𝜇 𝒑(1,𝑗) + 𝜓 𝒑(1,𝑗−1) = 0| 𝑁 > 𝑗 > 0 
(30) 

Equation 31  - Steady -s tate equation for the s tate (0 , N).  

−𝜆 𝒑(0,𝑁) + 𝛾 𝒑(0,𝑁−1) + 𝜇 𝒑(1,𝑁) + 𝜓 𝒑(1,𝑁−1) = 0 
(31) 

Equation 32 - Steady -s tate equation for the s tate (i , j ).  

−(𝜆 + 𝜇 + 𝛾 + 𝜙 + 𝜓 ) 𝒑(𝑖,𝑗) + 𝛾 𝒑(𝑖,𝑗−1) + 𝜙 𝒑(𝑖−1,𝑗−1) + 𝜓 𝒑(𝑖+1,𝑗−1)

+ 𝜇 𝒑(𝑖+1,𝑗) + 𝜆 𝒑(𝑖−1,𝑗) = 0  | 𝑀 > 𝑖 > 0, 𝑁 > 𝑗 > 0,  

(32) 

Equation 33 - Steady -s tate equation for the s tate (i , N).  

−(𝜇 + 𝜆 ) 𝒑(𝑖,𝑁) + 𝛾 𝒑(𝑖,𝑁−1) + 𝜙 𝒑(𝑖−1,𝑁−1) + 𝜓 𝒑(𝑖+1,𝑁−1) + 𝜆 𝒑(𝑖−1,𝑁)

+ 𝜇 𝒑(𝑖+1,𝑁) = 0 | 𝑁 > 𝑗 > 0  

(33) 

Equation 34 - Steady -s tate equation for the s tate (M , j ).  

−(𝛾 + 𝜇 + 𝜙) 𝒑(𝑀,𝑗) + 𝛾 𝒑(𝑀,𝑗−1) + 𝜙 𝒑(𝑀−1,𝑗−1) + 𝜆 𝒑(𝑀−1,𝑗) = 0 | 𝑀

> 𝑖 > 0 

(34) 

Equ ation  35  - S teady -state equ atio n fo r th e state (M, N). 

−𝜇 𝒑(𝑀,𝑁) + 𝛾 𝒑(𝑀,𝑁−1) + 𝜙 𝒑(𝑀−1,𝑁−1) + 𝜆 𝒑(𝑀−1,𝑁) = 0 (35) 

 

 According to Osogami (2005), the generator matrix 𝑸 has the following 

format, a block tridiagonal matrix of submatrices: 
Equation 36 - Generator matrix  re lated to  the propos ed quas i  b i rth  and death proc es s. 

𝑸 = [

𝑳00 𝑭01 0
𝑩10 𝑳11 𝑭12
0 𝑩21 𝑳22

⋯

⋮ ⋱

] (36) 

 

Where, 

• 𝑳𝑖𝑗 refers to the transition rate submatrix related to from state (𝑖, 𝑗) to state 

(𝑘, 𝑗) for 𝑖 ≠ 𝑘; 

• 𝑭𝑖𝑗  refers to the transition rate submatrix related to from state (𝑖, 𝑗) to state 

(𝑘, 𝑗 + 1) for any value of 𝑖 and 𝑘; 

• 𝑩𝑖𝑗  refers to the transition rate submatrix related to from state (𝑖, 𝑗) to 

state (𝑘, 𝑗 − 1) for any value of 𝑖 and 𝑘. 

 

Note that the submatrices attend to the following rule, which is important to 

obtain the submatrices: 
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Equation 37 - Equil ibrium  c ondi tion for the subm atric es  in  the generator matrix . 

𝑳00𝟏
𝑇 + 𝑭01𝟏

𝑇 = 𝑩10𝟏
𝑇 + 𝑳11𝟏

𝑇 + 𝑭12𝟏
𝑇 = 0 (37) 

 

Thus, the submatrices can be extracted, following the procedures explained 

in Fadiloglu and Yeralan (2002): 
Equation 38 –  Subm atric e L00 that compos e the generator m atrix  in  the propos ed quas i  b i rth  and death proc es s. 

𝐿00

=

[
 
 
 
 
−(𝛾 + 𝜆 + 𝜙) 𝜆

𝜇 −(𝛾 + 𝜆 + 𝜇 + 𝜙 + 𝜓)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−(𝛾 + 𝜆 + 𝜇 + 𝜙 + 𝜓) 𝜆

0 −(𝛾 + 𝜆 + 𝜙)]
 
 
 
 

𝑁×𝑁

 
(38) 

Equation 39 - Submatrices  Fij  that c ompos e the generator m atrix in  the propos ed quas i  b i rth  and death proc es s. 

𝐹01 =

[
 
 
 
 
𝛾 𝜙
𝜓 𝛾

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝛾 𝜙
𝜓 𝛾]

 
 
 
 

𝑁×𝑁

𝐹12 =

[
 
 
 
 
𝛾 𝜙
𝜓 𝛾

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝛾 𝜙
𝜓 𝛾]

 
 
 
 

𝑁×𝑁

 (39) 

Equation 40 - Submatrice Bij  that compos e the generator m atrix  in  the propos ed quas i b irth  and death proc ess . 

𝐵10 =

[
 
 
 
 
0 0
0 0

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
0 0
0 0]

 
 
 
 

𝑁×𝑁

𝐵21 =

[
 
 
 
 
0 0
0 0

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
0 0
0 0]

 
 
 
 

𝑁×𝑁

 (40) 

Equation 41 - Submatrice Li i  that c om pose the generator matrix  in  the proposed quasi  bi rth  and death process . 

𝐿11

=

[
 
 
 
 
−(𝛾 + 𝜆 + 𝜙) 𝜆

𝜇 −(𝛾 + 𝜆 + 𝜇 + 𝜙 + 𝜓)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−(𝛾 + 𝜆 + 𝜇 + 𝜙 + 𝜓) 𝜆

0 −(𝛾 + 𝜆 + 𝜙)]
 
 
 
 

𝑁×𝑁

 
(41) 

Equ ation  42  - Sub matrice LNN th at co mpo se th e g en erato r matrix in  th e prop o sed  q u asi b irth  an d d eath  p ro cess. 

𝐿𝑁𝑁 =

[
 
 
 
 
−(𝜆) 𝜆
𝜇 −(𝜆 + 𝜇)

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−(𝛾 + 𝜆) 𝜆

𝜇 −𝜇]
 
 
 
 

𝑁×𝑁

 (42) 

 

It is also important to understand that, due to the simplification of constant 

transition rates, all submatrices from level 1 will repeat, except for 𝑳𝑁𝑁, i.e.: 

𝑭01 = 𝑭12 = 𝑭23 = ⋯ = 𝑭   

𝑩10 = 𝑩21 = 𝑩32 = ⋯ = 𝑩   

𝑳00 = 𝑳11 = 𝑳22 = 𝑳33 = ⋯ = 𝑳   

 

With the generator matrix and using the states where the probabilities are 

known, Equation 37 applied in the case of QBDP can be solved through the 

demonstration given by Kharoufeh (2011), utilizing the fundamental matrices 𝑹, 𝑮, 
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and 𝑼. The analytical solution to such a problem is exhaustive, necessitating the 

use of numerical algorithms and computational approaches, such as the 

Erlangization approach (MANDJES; SOLLIE, 2022). The results are the stationary 

probabilities vectors, which are the current study's goal to understand the 

probability QBDP states during the construction phase and then predict the 

influence of safety states into delay ones. 

The fundamental matrices must satisfy the following equations by 

definition: 
Equation 43 - Consis tency  check  for fundam enta l matrices 

𝑩 + 𝑳 𝑮 + 𝑭𝑮2 = 𝟎 

(43) 𝑭 + 𝑹 𝑳 + 𝑹𝟐𝑩 = 𝟎 

𝑳 + 𝑭(−𝑼) 𝑰 𝑩 − 𝑼 = 𝟎 

 

It should be noted that in case that the aim of the analysis is the effects of 

delay states on safety events, the states diagram is different and, consequently, the 

formulations too. Figure 23 shows the states diagram for this variation and the 

mathematical expressions can be seen in Appendix A. 

 

Figure 23 - States diagram that represents a quasi birth and death process 

considering delay states as levels. 

 

6.3.2. 
Computational techniques 

 To solve the transition probabilities in QBDP, the Python module BuTools 

(HORVATH; TELEK, 2017) with the package Matrix Analytic Methods, that 



121 

provides Markovian solution algorithms, was employed in this work. In short, given 

the generator matrix, this tool computes the fundamental matrices and the stationary 

probabilities for the QBDP using matrix analytical solution methods. See the 

documentation4 for more details. 

The dataset employed in this work is made up of 23 energy infrastructure 

construction projects, the majority of which uses wind and photovoltaic 

technologies. As mentioned in Chapter 5, it should be noted that the number of 

projects covered in this study is greater than those used in previous studies with 

equivalent goals (CHUA; GOH, 2005). The projects include distinct numbers of 

safety and delay records, as well as locations, which can be better understood in the 

exploratory study discussed later in this section. In addition, data on safety and 

delays are provided as weekly reports.  

As a result, the QBDP solution represents the global random process that 

incorporates all projects and may be used in a new project to capture the 

unpredictability connected with the consequences of safety accidents on delay 

events. However, in an ongoing project, the QBDP may be so general that such 

predictions may yield unreal results ignoring the project`s particularities. Therefore, 

the current methodology proposes the use of neural networks models for each time 

series created in each project during the construction phase. Since there are two 

variables – safety and delay events – that are not independent and identically 

distributed (this condition was verified by data processing techniques), the adopted 

algorithms were more oriented to multivariate time series forecasting. 

This hybrid approach is presented in Figure 24. It should be noted that 

traditional safety management, such as fall prevention barriers and the distribution 

of individual and collective protective equipment, will remain important and 

necessary in this workflow. Also highlighted in yellow is the construction 

monitoring and reporting process, which is critical for producing adequate and 

consistent data for both stochastic and AI models. 

 
4 Retrieved November 14, 2023, from  

https://webspn.hit.bme.hu/~telek/tools/butools/doc/index.html  

https://webspn.hit.bme.hu/~telek/tools/butools/doc/index.html
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Figure 24 - Proposed hybrid solution including QBDP and neural networks model 

to deal with safety and delay events before and during the construction phase. 

Following the methodology described in Chapter 5, a structured procedure 

was developed to preprocess, transform, process, and interpret the outcomes of the 

computational methods adopted. 

The major difference between the safety and delay raw data refers to the file 

format and how the user interacts with it during the data gathering process. While 

safety reports are completed manually by the user in spreadsheets, delay reports are 

generated automatically in XML (Extensible Markup Language) format by a 

construction management platform that receives only the actual start and end dates 

of the construction activities from the user.  

To produce the delay states, certain data preprocessing and transformation 

techniques were used based on the planned duration (the difference between the 

scheduled start and finish dates) and the actual duration of the activity. As a result, 

in accordance with the Knowledge Discovery in Databases (KDD) outlined in 

Chapter 5, the data preprocessing and transformation stages were performed 

individually for each raw data collection that represents the random variables. The 

safety and delay treated datasets were then combined into a single dataframe to 
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begin the training and testing set division (data organization step) for data mining 

purposes, as shown in Table 12. 

Table 12 - Merged dataset with delay and safety events. 
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1 K400 WIND AFRICA South 

Africa 

0.008584 0 85 0 0 

2 K400 WIND AFRICA South 

Africa 

0.009009 0 84 0 -1 

… … … … … … … … … … 

 

Considering the total number of projects, an initial training and testing set 

division was carried out, defining 80% as training projects and 20% as testing 

projects. Then, in the training dataset (80% or 16 projects) the walk forward 

validation technique was adopted, because the random variables are time 

dependent. As shown in Figure 25, the following time periods were applied: 30%, 

50%, and 70% of the dataset have been added since 𝑡0. 

 

Figure 25 - Dataset division and organization including the walk forward 

validation technique. 
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It should be emphasized that the time series representing a single ongoing 

project, with 30% of the dataset, represents a small quantity of data to train, but this 

is the reality in a construction project. Each infrastructure construction project has 

a distinct environment, with diverse work teams, site conditions, and other aspects 

that add to the construction industry's uniqueness.  

This small dataset in time series forecasting was common in the early 

months of the COVID-19 pandemics, as documented by Fong et al. (2020). In fact, 

the authors used only 14 instances to predict the next 6 instances. They discovered 

that classical algorithms, like the Auto Regression Integrated Moving Average 

(ARIMA), did not perform well in forecasting the time series. Also, they concluded 

that the polynomial neural network, that according to Fong et al. (2020) is a 

“prototype” of Convolutional Neural Network (CNN), performed the best time 

series forecasting with the lowest Root Mean Square Error (RMSE). However, 

Cruz-Nájera et al. (2022) found that the ARIMA technique performed better in 

forecasting than the applied artificial neural network technique in a study involving 

short time series related to crimes in cities. It should also be noted that, as Ospina 

et al. (2023) pointed out, the ARIMA method fails in long-term prediction. As a 

result, it appears that the literature is unclear about which technique should be used 

in short-sized time series. For that reason, the current study tested both the statistical 

and neural networks approaches. 

Moreover, in the current study, the time series is bivariate with the safety 

and delay states and so ARIMA and other classical statistical techniques may be 

not applicable since the training data is a vector. In contrast, there are well-known 

statistical methods to deal with vectorial data, the current study adopted the Vector 

Auto Regression (VAR) and the Vector Autoregressive Integrating Moving 

Average (VARIMA).  

The VARIMA technique was used by Karim and Ahmed (2023) to forecast 

and evaluate the pandemics consequences on oil prices, concluding that is 

applicable for short-term forecasting only, which is the case of a construction 

project with week reports. 

A distinguishing feature of statistical methods is that, unlike neural network 

models, they require that the condition that variables are stationary, with no trend 

or seasonal variations. Each time series' stationary was assessed using the 

Augmented Dickey Fuller (ADF) test. When the test statistic exceeds the critical 
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value, the null hypothesis cannot be rejected, indicating that the series is not 

stationary. If the stationary tests were not successful, the data was logarithmically 

transformed and differentiated in a single time step. In other words, these two 

operations were required to convert the time series into one that was stationary 

enough for a statistical analysis. 

The Granger's and Johansen's causality test was also applied to determine 

the relationship between the random variables (safety and delay). The tests were 

required to determine whether the safety states influence the delay states and, thus, 

whether the time series is truly bivariate. This is significant because if variables 

have no relationship, they can be excluded and modeled separately. In contrast, if a 

relationship exists, the variables must be taken into account during the modeling 

phase. When the Granger's test is less than the critical value, the null hypothesis 

must be rejected, indicating that there are potential causal relationships between 

variables. For the Johansen's test, the variables have dependency relations when the 

p-value is greater than the critical value (0.05). 

In addition to statistical methods, AI techniques were used to compare 

forecasting models. According to the literature, the techniques most commonly 

used are CNN and Long Short-Term Memory (LSTM), both of which are capable 

of capturing nonlinearities and, thus, do not require stationary conditions. It should 

be noted that, for the purposes of this work, the use of neural networks is 

recommended, as they deal with noise and chaotic components better than other 

methods, according to Stepchenko et al. (2017). Indeed, Stepchenko et al. (2017) 

concluded that it could outperform time series predictions using a Markov chain, 

which is interesting to investigate in the current study. There are also recent studies 

combining CNN and LSTM in multivariate time series forecasting in smart city 

topics (PAPASTEFANOPOULOS et al., 2023). 

6.3.3. 
Data mining assumptions  

The adopted QBDP assumes that transitions are made in unit increments; 

thus, to be consistent with this methodology, a time lag (𝑝) of one was considered 

to fit the VAR model, i.e., 𝑝 = 1. The variables (𝐾) used in the VAR modeling are 

safety and delay states, i.e., 𝐾 = 2. It should be noted that the VAR parameters did 

not vary due to the study's context explained previously. To fit the VARIMA model, 



126 

however, two additional parameters (𝑝 and 𝑞) are required, which define the 

model's order. According to Karim and Ahmed (2023), the parameters are critical 

for producing consistent and accurate VARIMA models. As a result, the 

methodology used tested four variations: 𝑝 = 1,2 and 𝑞 = 1,2. 

In relation to the CNN and LSTM techniques, the model fitting required a 

different format of variable in partial time-series (block sequences). The blocks are 

made up of steps in (expected input) and steps out (expected output), which act as 

new attributes that supplement the two existing ones and improve the neural 

network model's performance. For example, in a project with nine instances – 

[1,1,2,3,4,4,4,5,6]; six input blocks with three steps in and six output blocks with 

one step out can be created: 

• Input block sequences: [[1,1,2], [1,2,3], [2,3,4], [3,4,4], [4,4,4], [4,4,5]]  

• Output block sequences: [[3], [4], [4], [4], [5], [6]]  

Furthermore, two groups of neural network models were created: one with 

only the training project dataset (local) and one with all of the training project 

datasets (global). This is critical for understanding the proposed methodology's 

applicability in construction companies that do not have a database of past projects. 

In the proposed methodology, the number of steps in were tested with 4 and 

7 instances, and the steps out were fixed in 1.  In addition, for both ML techniques, 

the activation layer was configured with a rectified linear unit (ReLU) function, the 

Adam algorithm was used as the optimizer, the Mean Squared Error (MSE) was 

used as the loss function, the number of epochs was tested with 100, and the batch 

size was tested with 32. The CNN and LSTM architectures are shown in Table 3. 

The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 

and RMSE metrics were used to evaluate the VAR, VARIMA, CNN, and LSTM 

models during the walk-forward validation. Because the dataset contains many 

actual values close to 0, MAPE score may fail, resulting in an error (divide by zero) 

or extremely high values. As a result, the MAPE score is only used to understand 

the MAE score, and the RMSE will be the final score used to test and validate the 

models, following Fong et al. (2020). 
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6.4. 
Results and discussion 

6.4.1. 
Exploratory data analysis 

Figure 26 show exploratory data analysis using the same approach as 

presented in Chapter 5. The total number of projects that contain consistent data 

related to safety and delay events during construction is 23, with 79 percent being 

photovoltaic (solar) power plants and 21 percent being wind farms. Furthermore, 

49 percent of them are in Latin American (LATAM) countries, the majority of 

which are in Chile (36 percent of the total number of projects). 

 

(a) 

 

(b) 

 

(c) 

Figure 26 - Exploratory data analysis to understand the technologies (a), regions 

(b), and countries (c) associated with the safety and delay dataset. 

Figure 27  depicts histograms of safety and delay states organized by region, 

country, and technology in relation to the observed safety and delay events in these 
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projects. The 𝑦 axis represents state occurrences, while the 𝑥 axis represents state 

number. For example, the first histogram shows that for European projects, more 

or less three safety events (state equal to 3) occurred nearly 120 times.  

In addition, to normalize the occurrences, a density estimation is used, 

which is represented by the Kernel Density Estimation (KDE) curves. By 

examining these curves, it is possible to conclude that the LATAM region has more 

occurrences of safety states because the peak of the curve is located at a higher 

value of the axis 𝑥.  

Concerning the delay states, to eliminate the possibility of negative delay 

states, like a construction advance brought about by higher worker productivity, all 

projects began with 102 days of construction as the default. As a result, the 

histogram's center is on 102, which represents zero delay events. This number was 

altered to the original in the final analysis of each project and was defined using the 

minimum and maximum observed delay states to avoid non positive states. In 

contrast to the safety histogram, the KDE curve for delay states shows a higher 

frequency of no delays in LATAM projects than in other regions. 

 Furthermore, the project technologies present similar KDE curves for safety 

states with different number of occurrences, since most projects are photovoltaics. 

However, they presented different delay state curves – the wind projects appear to 

have a higher frequency of delay events than the solar ones. 

The histograms of states shown in Figure 27 also show that there are many 

peaks of safety and delay events, making the use of classical probability 

distributions to define their behavior difficult. As demonstrated in Chapter 5, by 

using classical probability distributions to fit the safety occurrences in such 

projects, random events may be missed, necessitating the use of methods that 

capture high levels of uncertainty. 

Figure 27, however, did not depict the evolution of the project states. The 

time series for each project is thus plotted in, where the 𝑦 axis represents the 

observed states, and the 𝑥 axis represents the normalized construction time – 0 

represents the start of construction and 1 represents the end. The red curves 

represent the evolution of safety states and the blue ones, the evolution of delay 

states.  
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(a) (b) (c) 

Figure 27 - Exploratory data analysis to understand the occurrence of safety and delay states in the available dataset, according to the region (a), 

countries (b), and technologies (b).
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The actual time-series for all the projects did not present any kind of relation 

or pattern between the safety and delay random variables, as shown in Figure 28. It 

is a stochastic process, as observed, because there is no clear understanding of the 

behaviors of the safety and delay states in the projects, and even less so of the 

influence of these two random variables. The bivariate time-series depicted in 

Figure 28 was used in the current study to understand the global behavior of safety 

occurrences into delays events and to forecast during a construction project. 

 

 

Figure 28 - Bivariate time series that represents the available dataset for 

forecasting. 

6.4.2. 
Statistical tests 

Following the EDA, the stationary tests were computed for each variable in 

the time series. The ADF test yielded six projects with nonstationary data or errors 

during the calculations. In Table 13, each project is represented by its time series 

and the ADF p-value. The two projects that did not return any p-values due to a 

calculation error were removed from the dataset. In these projects' time series, it is 
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possible to observe a long period of time without the occurrence of safety or delay 

events – this is unrealistic when compared to the other projects. The authors 

understand that this level of noise is unacceptable. However, the four projects that 

failed in the ADF test were not removed but transformed to contain stationary 

variables. 

The causality tests were also carried out to understand the adopted variables. 

Granger's causality test, in fact, provides a preliminary indication of the effects of 

safety events on project delays, which must be confirmed or denied following the 

data processing stage. As shown in Table 14, most projects reject the null 

hypothesis in both variable relationships, with the exception of two projects where 

there appears to be no causality relationship from safety events to delay events. 

There are some causality relationships between variables in all projects, 

depending on the used tested. Following the Johansen's test, one project (S145) 

demonstrated through p-values that the variables are not dependent, with the 

exception of the safety variable into the delay variable. Figure 29 depicts the time 

series for this specific project. In fact, the occurrences of states in this project remain 

nearly constant during the construction phase, which is consistent with the causality 

test results. It was removed from the dataset as another example of an unreal project 

dataset. 
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Table 13 – Statistical test results to check stationary variables using ADF test. 

Failed 

projects 
Bivariate time series 

p-value 
Failed 

projects 
Bivariate time series 

p-value 

safety 

variable 

delay 

variable 

safety 

variable 

delay 

variable 

S843 

 

5.70e-6 

(OK) 

0.85 

(Failed) 
A172 

 

0.86 

(Failed) 

0.82 

(Failed) 

 

L181 

 

Error Error M941 

 

0.15 

(Failed) 

0.56 

(Failed) 

T614 

 

Error Error L868 

 

2.95e-5 

(OK) 

0.58 

(Failed) 
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Table 14 - Statistical test result to check causality relationship using Granger`s 

test and Johansen`s test. 

Projects 

p-value for the Granger's 

causality test 
p-value for the Johansen's causality test 

Safety > Delay Delay > Safety Safety > Delay Delay > Safety 

 T238  0.1615 0.0000 0.2766 0.0668 

 S843  0.0000 0.0000 0.4171 0.0695 

 C434  0.0411 0.0042 0.3652 0.0004 

 V104  0.0000 0.0009 0.2037 0.0031 

 S833  Error Error 0.1757 0.0111 

 A172  0.0000 0.0008 0.6161 0.2352  

 M941  0.0238 0.0000 0.4659 0.3067 

 L406  0.0006 0.0000 0.4565 0.2366  

 C907  0.0579 0.0000 0.2524 0.0325 

 M174  Error Error 0.1384 0.0084 

 S242  0.0118 0.4297 0.3618 0.0063 

 S816  0.0182 0.0054 0.1839 0.1281 

 L868  0.0001 0.0077 0.4215 0.0104 

 A739  0.0003 0.0000 0.5718 0.1857 

 C624  0.0144 0.0575 0.2648 0.0627 

 A676  Error Error 0.1174 0.0270 

 S145  0.1063 0.3448 0.1626 0.0196 

 G413  0.0002 0.0400 0.2615 0.0189 

 S165  0.0048 0.0000 0.3378 0.0474 

 K400  0.0467 0.0000 0.4035 0.1192 

 D316  0.0000 0.0000 0.2562 0.1239  

 

 

Figure 29 – Example of time series related to the failed project in the causality 

tests. 
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6.4.3. 
QBDP-based solution 

To understand the global behavior between the forementioned variables, 

first the QDBP was modeled including all the dataset (2150 instances). Note that 

the size of the dataset is appropriate with the stochastic process, analogously with 

the study developed by Mandjes and Sollie (2022) and De Gunst et al. (2022), in 

which the simulated data achieved a total number of 2000 samples. 

The transition rates, defined in Equation 23, were calculated and the results 

are presented in Table 15. Note that the double jump – simultaneous transitions of 

safety and delay states – are very rare, as expected; the safety and delay transitions 

are proportional, i.e., the frequencies are very close; and the none transition 

represents 36.6%, which means that only in almost one third of the construction 

period simulated, nothing occurred (safety events or delay events), showing how 

dynamic and critical is an energy infrastructure construction project. 

Table 15 - Actual QBDP transition rates. 

Transition variable Occurrence Frequency 

𝜸 601 0.280 

𝝀 440 0.205 

𝝁 295 0.137 

𝝓 22 0.010 

𝝍 6 0.003 

 

 Using the transitions rates, the fundamental matrices were calculated from 

the generator matrix, resulting in the following matrices 𝑹,𝑮, and 𝑼 with a residual 

error in the order of 1 𝑒−16.To facilitate results interpretation, the generator matrix 

was truncated to the dimension of 20 × 20, which means that the effects of the 

safety event will be examined until state 19. 

𝑹 = [
𝟎. 𝟔𝟑𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝟎. 𝟕𝟓𝟓

]

20×20

  

𝑮 = [
𝟎 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝟎

]

20×20

  

𝑼 = [
−𝟎. 𝟒𝟗𝟒 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ −𝟎. 𝟒𝟐𝟎

]

20×20
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It is important to note that the fundamental matrices were checked to verify 

if they satisfy the Equation 43 and all the conditions were satisfied with the worse 

precision in the order of 1 𝑒−15.  

Then, to obtain the stationary distribution in level 0, the method QBDSolve 

was applied and, consequently, the stationary distribution in any level was achieved 

by using the function QBDStationaryDistr. The results including all the stationary 

distributions are presented in Figure 30, in which the 𝑥 axis represents the phases 

(delay states) and the 𝑦 axis, the stationary probability given the level (safety state) 

which is colored and listed in the legend. 

As observed, the results indicate that the higher the safety state (levels), the 

more likely are the higher number of safety states (phases). It is possible to 

conclude, thus, that if the high number of construction states coincide likely with 

high number of delay occurrences. 

In addition, some quantitative conclusions can be drawn from the QBDP 

results. It is worth noting that the most likely delay state in this simulation (19) is 

6. It should be noted that a most likely delay state of 1 appears only when the safety 

state is equal to 4. This is critical because if a construction schedule is defined as 

"planning" some delay days, it should be assumed that some safety events will 

occur. As a result, the "zero accidents" mindset must be implemented during the 

preconstruction phase rather than just during the construction phase, as is 

customary. 

 

Figure 30 - Stationary probability distribution for the proposed QBDP using the 

actual dataset truncated to 20 safety states. 
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6.4.4. 
Bivariate time series forecasting 

It should be noted that the QBDP solution does not support detailed 

forecasting in a time series format. Therefore, related to the bivariate time series 

forecasting applied individually in the projects, the statistical and neural networks 

models were compared.  

Table 16 shows the experiment plan including the model parameters that were 

changed to evaluate the model's performance and the performance metrics. Note 

that the lowest RMSE scores in the overall performance is obtained using the VAR 

model (0.60) and the LSTM model (0.65) with 70% of training data. The VAR 

model used 32 instances to result in this score and the LSTM model used 60 

instances. Therefore, in an initial analysis, the VAR model seems to be more 

adequate than the VARIMA one, and the LSTM local model resulted in better 

scores compared to the CNN and global models. 

Table 17 shows the comparison for each percentage of training project used 

during the walk forward validation. The neural network models that used all of the 

training projects outperformed the statistical methods using the smallest train 

dataset for walk forward validation (30%). The best RMSE score was associated 

with the global LSTM model, while the worst RMSE score was associated with the 

VAR model – the score value was nearly double that of the best. In comparison to 

the largest training dataset (70 %), the results show almost the opposite. The RMSE 

score for the VAR model was the best, and the local LSTM model came in second. 

The scores were, however, very close between the models, and the sum of RMSE 

scores was better for the local LSTM model. 

The final validation using 20% of the projects produced similar results. 

Locally trained models outperformed global models, with better metrics for the 

LSTM models using 30% of the available local dataset. Statistical and local neural 

network models performed similarly when using the largest dataset (70 percent). 

For ongoing construction projects that are nearing completion, the global CNN and 

LSTM models did not perform well. 

Appendix B contains the entire experiment plan. 
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Table 16 – Experiment plan including the best models during the walk forward validation. 

 Dataset Parameters Resulted metrics per model 

 Training 

Project 

Walk 

forward 
validation 

Trainig 

data 

size 

VARIMA 
Neural 

networks  
VAR VARIMA Local CNN Local LSTM Global CNN Global LSTM 
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3 T238 0,3 (13, 2) 2 1 - 5,73 0,20 6,44 5,53 0,05 6,09 - - - - - - - - - - - - 

12 T238 0,7 (32, 2) 2 2 - 0,36 0,00 0,60 0,68 0,11 0,88 - - - - - - - - - - - - 

121 L868 0,3 (30, 2) 1 1 - 4,97 0,17 5,85 15,96 0,43 18,02 - - - - - - - - - - - - 

122 L868 0,3 (30, 2) 1 2 - 4,97 0,17 5,85 15,74 0,42 17,85 - - - - - - - - - - - - 

123 L868 0,3 (30, 2) 2 1 - 4,97 0,17 5,85 17,86 0,48 19,72 - - - - - - - - - - - - 

124 L868 0,3 (30, 2) 2 2 - 4,97 0,17 5,85 16,23 0,44 18,22 - - - - - - - - - - - - 

176 S165 0,5 (27, 2) 2 2 - 1,76 0,09 2,19 1,89 0,17 2,42 - - - - - - - - - - - - 

232 L406 0,5 (39, 2) - - 7 - - - - - - 2,58 0,05 2,89 2,58 0,05 2,58 - - - - - - 

246 M174 0,7 (60, 2) - - 7 - - - - - - 0,65 0,01 0,77 0,65 0,01 0,65 - - - - - - 

272 A676 0,3 (22, 2) - - 7 - - - - - - 4,26 Error 4,38 4,26 Error 4,26 - - - - - - 

361 C624 0,3 (32, 2) - - 4 - - - - - - - - - - - - 2,73 0,29 2,94 2,73 0,29 2,73 

363 C624 0,5 (53, 2) - - 4 - - - - - - - - - - - - 3,52 0,36 3,65 3,52 0,36 3,52 

378 S165 0,7 (39, 2) - - 7 - - - - - - - - - - - - 2,50 0,22 2,68 2,50 0,22 2,50 

 

* From the initial time; 

0.716 This color represents the best metric scores. 
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Table 17 - Summary of the best models and its metrics per train dataset.  

Dataset Analysis Statistical techniques AI techniques 

Walk 

forward 

validation 

Math 

Operation 

VAR VARIMA Local CNN Local LSTM Global CNN Global LSTM 

Metrics Metrics Metrics Metrics Metrics Metrics 

% Train*  MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE 

0,3 

Average 16,97 35,9% 21,57 14,74 34,6% 16,81 15,52 62,0% 16,30 15,52 62,0% 15,52 11,34 86,8% 12,54 11,34 86,8% 11,34 

Sum 882,40 
 

1121,49 751,66 
 

857,51 496,62 
 

521,74 496,62 
 

496,62 362,96 
 

401,22 362,96 
 

362,96 

Minimum 4,97 9,2% 5,85 5,53 4,7% 6,09 4,26 14,6% 4,38 4,26 14,6% 4,26 2,73 15,6% 2,94 2,73 15,6% 2,73 

0,5 

Average 8,88 16,1% 11,07 11,90 25,2% 13,53 11,86 39,4% 12,25 11,86 39,4% 11,86 13,03 90,1% 13,67 13,03 90,1% 13,03 

Sum 461,51 
 

575,65 618,72 
 

703,80 379,46 
 

391,99 379,46 
 

379,46 386,66 
 

406,73 386,66 
 

386,66 

Minimum 1,76 2,2% 2,19 1,89 10,8% 2,42 2,58 4,7% 2,89 2,58 4,7% 2,58 3,52 15,6% 3,65 3,52 15,6% 3,52 

0,7 

Average 3,43 6,6% 4,35 8,44 15,9% 9,39 6,79 29,6% 6,94 6,79 29,6% 6,79 16,76 76,5% 17,06 16,76 76,5% 16,76 

Sum 178,32 
 

226,35 438,64 
 

488,27 217,13 
 

222,19 217,13 
 

217,13 501,87 
 

511,61 501,87 
 

501,87 

Minimum 0,36 0,3% 0,60 0,68 2,8% 0,88 0,65 0,6% 0,77 0,65 0,6% 0,65 2,50 14,6% 2,68 2,50 14,6% 2,50 

 
0.716 This color represents the best metric scores. 

0.716 This color represents the second best metric scores. 
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Figure 31 depicts the score results based on the percentage used in the walk 

forward validation and the models used. The 𝑦 axis shows the average RMSE score, 

the 𝑥 axis shows the percentage of train dataset used, and the colors show the trained 

and tested models. Except for the global models, all of the models improved their 

RMSE scores as the dataset increased. One possible explanation for this exception 

condition in the global model is that the global dataset is too broad and does not 

adequately represent local forecasting. 

 

Figure 31 - Models` performance with the increasing train dataset. 

 

The results shown in Figure 31 show that the CNN and LSTM produced 

very similar outputs that capture more random events than the VAR model when 

the training dataset is small, which is consistent with the findings of Fong et al . 

(2020) that verify that neural networks performed better for time series forecasting 

using small dataset. However, as the dataset size grows, statistical forecasting 

becomes more suitable for bivariate time series. Nevertheless, the neural network 

models continue to perform well with larger datasets, with acceptable RMSE 

scores.  

It's also worth noting that the models have comparable RMSE metrics when 

the training and testing data are both 50%. It could imply that block sequences 
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perform better when the amount of training and testing data is comparable. As a 

result, future research can look into walk forward validation using always block 

sequences with the same number of train and test samples. 

As a result of analyzing the overall performance, the current study 

concluded that the LSTM model is the most appropriate for bivariate time series 

forecasting, using all available projects when the construction stage is in its early 

stages and only the local dataset produced during the construction phase when the 

construction stage is nearing its end. 

It is important to note that using the neural networks model, the level of 

uncertainties captured is higher than the stochastic model, but the user does not 

obtain the global behavior of the entire set of projects to predict a new project 

starting without any size. Indeed, the proposed CNN and LSTM models need some 

input data from the project, which it is only possible to obtain after a few weeks 

from the start of the construction phase. 

Therefore, the obtained results suggest that a hybrid solution may be 

necessary to deal with safety and delay uncertainties in a construction planning 

method. The stochastic solution, during the pre-construction phase, with all the 

history of previous projects, is adequate to understand the possible scenarios of 

safety and delays events in a new project, when there are not available data. And, 

the AI solution, using neural networks applied to bivariate time series forecasting, 

is applicable for the new data that is generated during the construction phase. 

6.5. 
Conclusions 

Due to importance of the safety issue in the construction industry and the 

lack of construction planning methods that take it into account, the current study 

proposed a new planning method using the quasi birth and death process and 

machine learning techniques. To that end, a literature review was conducted to 

understand how stochastic process theories are being applied in construction 

management. The SLR results showed that the studies are scarce but promising. 

Due to the high level of uncertainties inherent in a construction project, the adoption 

of stochastic models could be helpful in capturing totally unexpected events, as 

pointed out in Carmo and Sotelino (2023). 



141 

A Markovian transition diagram was, thus, proposed to describe the safety 

and delay events in a construction project and using computational techniques, the 

stationary distributions were obtained for any level and phase. The results indicate 

that the higher the delay state, a higher safety state is expected, suggesting that 

delays precede safety. In other words, it is unlikely to have many delay states 

without a large number of accidents. The reason for that can be further investigated 

in future studies by understanding how other random variables can be combined in 

the multivariate time-series, such as cost and productivity.  

The QBDP solution can be helpful in providing an overview behavior for 

the company that captures better the relations and uncertainties associated with 

safety occurrences than the traditional methods. The proposed approach is 

appropriate at the global management level, since it helps to understand what are 

the possible number of safety states based on the “expected” delay or vice-versa 

when considering a new project. For instance, imposing a zero accidents policy, the 

likely number of delay events can be calculated to support the decision-making 

process combined with other analysis, such as financial risks. 

It should be noted that the proposed QBDP is adequate for the 

preconstruction phase, and that statistical and AI techniques are suggested during 

the construction phase, which represents data in a bivariate time series format. 

Furthermore, when the construction phase began (small dataset available for time 

series forecasting), the LSTM model performed better than the statistical methods, 

as expected by the literature. As the volume of data increased, both statistical and 

AI techniques performed admirably. 

 Thus, the neural networks can play an important role during the 

construction monitoring, by updating the forecasting every moment that a new 

safety and delay events are reported. Through this real-time planning method, it is 

possible to capture extraordinary random events that cannot not be captured by the 

QBDP solution. 

It is worth noting that the proposed hybrid solution was tested and validated 

using real-world energy infrastructure construction projects. Therefore, as 

suggestion for future works, it is recommended the extension of such approach for 

residential and commercial buildings, and other types of infrastructure projects 

(e.g., bridges and airports). Note that maybe for construction projects that do not 
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have a high level of uncertainties, the proposed solution may be unnecessary, and 

the classical statistical methods may suffice. 
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7 
The proposed construction planning method in a real 
application 

Case study paper to be submitted by Cristiano S. T. do Carmo and Elisa D. 

Sotelino to a peer-review international journal. 

  

In this chapter, the proposed construction planning method is applied to a real 

scenario to illustrate its usability. The used data in this demonstration is real and 

corresponds to energy infrastructure construction projects from 2020 and so forth. 

The datasets contain distinct uncertainties and random events similar to those that 

occurred during COVID-19 pandemic, Ukraine war. It is also associated to each 

project´s local context, which could affect project duration and generate safety 

accidents during the construction phase. However, due to the Global Data 

Protection Regulation, the company and project names have been omitted. 

7.1. 
Initial assumptions and user`s background 

Once a new project is approved to be executed, the planning team must 

develop a construction schedule. Traditionally, the user`s experience with previous 

projects is used to understand the construction sequence and possible risks that may 

affect the project`s key performance indicators, which is usually associated with 

time and cost, as shown in Carmo and Sotelino (2023). In the proposed 

methodology, the manner in which the construction sequence is carried out does 

not change, but the way in which the risks are taking into account do. 

Independently of the professional expertise, the planned construction duration 

is usually not equal to the actual construction duration and, thus, delay events must 

be planned in the traditional planning method. A list of possible events that can 

generate extra cost and project delays is, thus, generated as show in Table 19. 

For each item in this list, a probability of occurrence is calculated based on 

previous experiences. This calculation uses the classical statistical methods showed 

in Chapters 4, 5, and 6. The result for one of the items is illustrated in Table 19. 
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Table 18 - Usual uncertainties and problems considered in the traditional 

construction planning method for energy infrastructure construction project. 

List of possible events that can impact the project duration and cost 

Problems Causes 

1 Incorrect time/cost estimate 
Basic design or project layout not 
completed or not performed 

2 
Failure during 
erection/commissioning activities 

Inadequate contractor/sub-contractor 
management 

3 
Execution performance rates different 
than expected  

Lack of skilled workers/qualified 
professionals 

4 Wrong time/cost estimate 
High number of tenders to manage in a 
tight schedule 

5 
Fabrication/Delivery rates of 
equipment different than expected 

Site logistic/accessibility external 
constraints 

6 Change/Additional scope of work  
Tightness of the time schedule for 
project development 

7 
Execution performance rates different 
than expected 

Inadequate contractor/sub-contractor 
management 

8 Change/Additional scope of work High/unclear fragmentation of contracts 

9 
Failure during the final acceptance 

tests 

Inadequate contractor/sub-contractor 

management 

10 
Unexpected archeological/hazardous 
waste findings 

Environmental permitting phase not 
finalized 

 

Table 19 - Details about the uncertainties and consequences considered using the 

statistical approach, based on probabilistic distribution. 

Activity: Civil works related to grid connection 

Problem event: 
Wrong time/cost estimate due to basic design or project 

layout not completed or not performed 

Problem type: Regular 

Probability 

density function: 

Distribution: Triangular 
Occurrence 

probability: 
0.7 

Parameters 
Minimum: 

6 days 

Maximum: 

12 days 

Mode: 

11 days 

 

Note that this represents the default events for any new project. However, as 

found by the literature review carried out in Carmo and Sotelino (2023), safety 

events are not considered. In other words, the traditional construction planning 

method is based in the assumption that safety occurrences do not produce 

significant project extra costs or delays. However, the hypothesis of this study´s 

proposed method is that the possibility of safety events must be considered as a new 

item in the list, as follows: 
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Table 20 - Additional uncertainties and problems considered in the proposed 

construction planning method for energy infrastructure construction project. 

 Problems Causes 

11 Project duration delays 
Safety occurrences observed during the 
construction phase 

 

Moreover, the possible impacts in terms of days of delay can be estimated 

with the proposed QBDP approach and not using the statistical approaches which 

resulted in optimistic scenarios and, thus, do not capture well random events. 

7.2. 
Required database 

A possible barrier to adopt the proposed method is the required database. 

Even if it is a simple record of safety occurrences with binary inputs by the user, 

most construction firms do not have it or, when available, they are disorganized, 

and many pre-processing techniques are required. The KDD process presented in 

Chapter 5 illustrates the required efforts to treat the dataset. 

In this sense, with a real example,  

 

Table 21 explains the first step in the proposed methodology (see Figure 24), 

which deals with the database organization for safety occurrences and construction 

duration data. It is worth pointing out that the applied algorithms are applicable for 

any new safety or duration report increment in the initial database, but its format 

must be identical to the one adopted in this study. Therefore, in a different company, 

it would be necessary to modify the algorithms to fit in the company`s report 

patterns. 

It is also important to note that the adopted data preprocessing and 

transformation techniques optimized the database size. Approximately, 35.000 files 

(532 megabytes) were reduced to one file with 53 kilobytes. 

Following the traditional construction planning method, the “planned” delays 

are independently calculated from the possible safety occurrences. This calculation 

is based on alternative scenarios, probabilistic distributions, and Monte Carlo 

simulations. These techniques appeared in the literature review carried out by 

Carmo and Sotelino (2023) and is also the one used by the company in the present 

study. 
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Table 21 – Available database in the start of the proposed workflow and the 

dataset preprocessed and transformed. 

Raw data from previous 23 projects File 

format (weekly safety and delay reports) 

 

.XML 

 

.XLS 

Preprocessed and transformed data  

 

.CSV 

 

7.3. 
Simulations and results 

The results of the traditional construction planning method applied to a real 

project is presented in Figure 32. The histogram of possible days of delay according 
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to Monte Carlo simulations is represented in the left upper corner of Figure 32, and 

it is similar to the histograms presented in Chapter 6. The cumulative density curve 

is shown below the histogram, and possible project delay scenarios are shown on 

the right side. The chosen scenario, as shown in the highlighted box, corresponds 

to an 8-day delay, which occurred in 60% of the simulations with the Full Time 

Project (FTP) equaling 779 days. 

 

Figure 32 - Results related to the traditional construction planning approach using 

a real-life database. 

In this case, the simulations resulted in a likely project delay equal to 8 days. 

Using the hybrid solution proposed in this study, the quasi birth and death model 

trained with the history of projects results in 38 safety events to achieve likely 8 

delay events, following the stationary probabilities calculated from the generator 

matrix, as described in Chapter 6. Note that one delay event results in at least one 

delay day, and consequently at the worst case, the “planned” delay days are equal 

to 8. It may suggest that the “planned” delay days chosen in scenario could produce 

38 safety events during the construction phase.  

The proposed construction planning method, therefore, adds a new line to 

evaluate in the possible scenario, as shown in Table 22. 
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Table 22 - New output created in the proposed construction planning method. 

Percentile: 60 

FTP (dd): 779 

Delay (days): 8 

Delay (%): 1.0 

Prediction of safety events: 38 

 

7.4. 
Construction monitoring 

In general, a company does not want to convert the planned delays into actual 

delays and, therefore, some techniques must be adopted during the construction 

phase to prevent safety events and delays. Traditionally, the S-curves are used and 

represent the planned and actual economical and physical progress of such 

construction over the time, as shown in Figure 33. The gray dashed curve represents 

the planned construction progress, the yellow curve represents the authorized, 

through financial evaluation, construction progress, the blue curve represents the 

actual progress, and the green curve represents the progress forecasting. 

Basically, if the actual curve starts to distance from the planned curve, the 

construction team turns on the alert to avoid new delays. However, if this is not 

caught soon enough it may become so late to take action and difficult to understand 

the real cause of such distance between actual and planned curves. 

 

Figure 33 - Traditional approach used to monitor the construction progress using 

the S curves. 
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Therefore, the current methodology proposes the adoption of AI techniques 

to forecast the time-series related to safety and delays events. Differently from the 

stochastic model, the neural networks model uses both the database of the ongoing 

project and the past projects. Using the AI technique, the predictions made by the 

stochastic models can be updated, being more compatible with the context of the 

ongoing project. Due to dynamic construction context, however, the dataset used in 

the AI model is constantly updated during the construction phase. Therefore, the 

“planned” delays are updated every time that a new report is added to the database.  

It is important to highlight that beyond the consideration of safety effects into 

project delays, the proposed methodology is helpful to avoid new accidents since 

the forecasting models also forecast the safety events. Note that the “zero accidents” 

mindset results in “planned” safety events always equal to zero during the 

construction planning process. However, understanding the uniqueness of such 

industry, this assumption is too optimistic. As verified by the proposed 

methodology applied to a real-world database of infrastructure projects always 

results in some new safety events. Therefore, the hope is that future databases could 

reduce the safety accidents in a manner that the model will be also “optimistic”.  

Another significant difference between the proposed method and traditional 

methodologies is that the planning method assumes that safety events will occur 

given the applied real database prior to the construction phase. However, it should 

be noted that the construction team will focus on maintaining the "zero accidents" 

mindset and will not allow the safety event predictions to become a reality. 

Table 23 shows the main differences between the traditional and the proposed 

construction planning method. 
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Table 23 - Comparison between the traditional and proposed construction 

planning method. 

 TRADITIONAL 
PROPOSED 

ADDITIONAL ITEMS 

PLANNING 

METHOD 

Probabilistic analysis 

with Monte Carlo 

simulation 

Stochastic modeling with 

neural networks time-series 

forecasting 

PURPOSE 

To identify general and 

common risks that can 

affect the construction 

schedule 

To capture unexpected 

uncertainties that can generate 

risks, beyond the common 

risks, and can affect the 

construction schedule, 

specifically in the relation 

between safety and delay 

occurrences. 

INPUT 

User previous 

experiences, lessons 

learned and unstructured 

data from previous 

projects 

Structured data from previous 

projects with safety and delay 

records. 

 

PREMISES 

Safety events do not 

have significant impact 

on the main project’s 

indicators – time, cost, 

and quality. Thus, it does 

not need be considered 

in the planning method. 

Safety events play an 

important role, since they 

influence the occurrence of 

delay events and, thus, should 

be taken into account. 

INITIAL STEPS 

Creation of a list of 

identified risks to be 

considered in the 

simulations 

Data preprocessing and 

transformation techniques 

applied in the raw dataset 

PROCESSING 

Definition of the 

pessimistic, realistic, and 

optimistic scenarios. 

Calculation of the transition 

rates and the generator matrix 

in the QBDP. 

Number of iterations to 

simulate with Monte 

Carlo. 

Precision required to converge 

the stationary distributions 

CONSTRUCTION 

MONITORING 

Using traditional reports 

and S-curve 

Using bivariate time-series 

forecasting modeled with 

neural networks 

RESULTS 

Most likely construction 

delays considering the 

usual risks 

Most likely construction 

delays considering random 

events 
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8 
Conclusions 

This chapter provides a summary of the developed methodology, 

emphasizing the results obtained from the proposed hybrid solution for construction 

safety and project management. It also highlights the main contribution of 

considering uncertainties related to safety during construction. Finally, the main 

limitations of the proposed approach and future research directions are provided. 

The study of construction planning methods is a scientific demand due to 

the high level of uncertainty and random events associated with a construction 

project, such as weather conditions, political and economic context, and so on. In 

relation to the safety issue, the literature has not fully understood the effects of this 

variable on project duration. In fact, previous research has shown that safety 

regulations can reduce construction costs and that using the safest construction 

methods can shorten construction time. Most planning approaches, however, ignore 

the fact that safety events will occur and may have an impact on project completion. 

At the same time, the construction industry's safety record is among the worst in the 

world. As a result, the current work proposes a new construction planning method 

that takes into account uncertainties associated with safety events, with the goal of 

improving decision-making in terms of the main project indicator: time. 

Consequently, this study proposes using a stochastic model called the Quasi 

Birth and Death Process to consider both safety and time random variables in the 

construction planning method. Using a real-world database, the stochastic model 

produced satisfactory results for the pre-construction phase, while the neural 

networks model produced more reliable results for the construction phase. It was 

also demonstrated that for bivariate time-series forecasting, the LSTM models 

outperformed statistical methods in the short term. Long term, both statistical and 

neural networks local models performed well, with the exception of the global 

neural networks model, which shows an increasing RMSE metric, most likely due 

to the generalized nature of the trained dataset. 
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Furthermore, exemplifying with a real-world application in Chapter 7, the 

current work demonstrated that using traditional planning approaches, construction 

planners can be assuming a high occurrence of safety events, which is completely 

contrary to the "zero accidents" mindset commonly promoted in large projects. It 

should be noted that inserting safety concerns during the preconstruction phases can 

result in not only a reduction in safety events but also a reduction in "planned" (or 

acceptable) project delays. 

Therefore, as identified by the literature review presented in the initial 

chapters, this study contributes partially to the research field related to accidents 

analysis and prevention and bring more attention to the importance of uncertainties 

consideration in the planning methods, specifically those related to safety. Using a 

real-world database with 39 energy infrastructure construction projects, the current 

study showed that the safety occurrences impact directly the construction delays, 

even this assumption is not assumed in the current planning method, as discussed 

in Chapter 7.  

This study addressed the following topic in relation to the specific 

objectives: 

(1) Two Markov transition diagrams were proposed in Chapter 6 to 

represent safety and delay events in construction projects, one to 

analyze the impacts of safety into delay and the other from delay to 

safety; 

(2) In Chapters 5 and 6, two different computational methods based on 

stochastic process theory were applied to a real-life database to 

understand/describe the pure-birth process, which is uniquely 

associated with the evolution of safety events, and the quasi birth 

and death process, which is linked to the safety and delay states ; 

(3) Chapter 7 demonstrated the significance of the KDD adoption result 

with the new knowledge obtained with the treated dataset, after 

several data preprocessing and transformation techniques, such as 

binarization and normalization; 

(4) This study concluded from the QBDP's stationary distribution that 

the higher the safety state, the higher the most likely delay state, 
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which means that the occurrence of safety events affects the 

occurrence of delay events; 

(5) Because of the QBDP's limitations in dealing with time series 

forecasting, Chapter 6 demonstrated that using the LSTM model, 

better predictions can be obtained for a short available period of time 

when compared to statistical methods. 

In general, it can be concluded that the methodology proposed in this work 

fulfills all the objectives presented in Chapter 1. Also, the main hypothesis was 

verified, that is: a safety event that occurs during the construction phase affects the 

construction duration, and when it is not considered in the planning method, it 

results in dangerous construction schedules. Thus, the proposed method is able to 

assist construction planners in decision making when planning a new project related 

energy infrastructure construction project. 

8.1. 
Limitations and future research 

One of the main limitations of this study is that the stochastic model used is 

based on a complex mathematical model, which makes its application difficult for 

a typical user who is unfamiliar with the subject. Thus, in future works, a user-

interface platform could be developed to make the proposed approach more user-

friendly. Furthermore, the neural network techniques used were developed to 

address the shortcomings of the QBDP solution in dealing with an ongoing 

construction project, and thus may not be the best AI solution for bivariate time 

series forecasting. This study encourages future research that combines CNN and 

LSTM or employs other AI techniques like Prophet. 

Furthermore, it is worth noting that many other random variables, such as 

project cost and quality, can affect and are affected by safety occurrences. The 

current work, however, did not take this into account because the high 

dimensionality of the Markov transition diagram would make it difficult to 

understand and mathematically formulate the generator matrix that generates the 

stationary distributions. Future research could attempt to combine other random 

variables to better understand their impact. 
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 Finally, the KDD process required a significant amount of time spent 

preprocessing and transforming the available datasets from construction projects. 

This can be addressed by developing an information model that simplifies the 

system of safety and delay records and organizes the data as required by the QBDP 

and neural networks models. Thus, integration with BIM methodology is suggested 

for future work.
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Appendix A 
QBDP-based solution considering delay events as levels. 

 

 

Formally, the function map that defines the stochastic process is 𝑓(𝑠𝑖 , 𝑑𝑖 , 𝑡) 

and the possible states, S(t), are: 

 

Ω = 𝑺(𝑡) = {(𝑠, 𝑑) | 𝑎 = 0,1,2,3, … ; 𝑠 = 0,1,2,3,… } 

 

It should be noted that the adopted QBDP assumes only states from the set of 

non-negative integer numbers, i.e., {𝑠, 𝑑 ∈ ℤ+}, as a matter of simplification. 

Therefore, at time 𝑡 and given a time increment δ, the following transitions 

are possible: 

𝑺(𝑡 + 𝛿) =

{
  
 

  
 

𝑺(𝑡)

𝑺(𝑡) + (0, 1)

𝑺(𝑡) + (0,−1)

𝑺(𝑡) + (1, 0)

𝑺(𝑡) + (1, 1)

𝑺(𝑡) + (1,−1)
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 Similarly, as previously described, the transition probabilities 

𝑝(𝑖,𝑗),(𝑚,𝑛)(𝑑𝑡), which denotes a transition from a state (𝑖, 𝑗) to a state (𝑚, 𝑛) in the 

infinitesimal time 𝑑𝑡, are given by: 

 

𝑝(𝑖,𝑗),(𝑚,𝑛)(𝑑𝑡)

=

{
 
 
 
 

 
 
 
 

𝜆𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (0,1)

𝜇𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (0,−1)

𝛾𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (1,0)

𝜙𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (1,1)

𝜓𝑖𝑗(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗) + (1,−1)

[1 − (𝜆𝑖𝑗(𝑡) + 𝜇𝑖𝑗(𝑡) + 𝛾𝑖𝑗(𝑡) + 𝜙𝑖𝑗(𝑡)+ 𝜓𝑖𝑗(𝑡))]𝑑𝑡 + 𝑜(𝑑𝑡), 𝑖𝑓 (𝑚, 𝑛) = (𝑖, 𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

 

 And the transition probabilities at time 𝑡 given an increment 𝑑𝑡 are: 

 

𝑝(𝑎,𝑏),(𝑐,𝑑)(𝑡 + 𝑑𝑡)

= 𝜆𝑐,𝑑−1(𝑡)𝑝(𝑎,𝑏),(𝑐,𝑑−1)(𝑡)𝑑𝑡

+ 𝜇𝑐,𝑑+1(𝑡)𝑝(𝑎,𝑏),(𝑐,𝑑+1)(𝑡)𝑑𝑡

+ 𝛾𝑐−1,𝑑(𝑡)𝑝(𝑎,𝑏),(𝑐−1,𝑑)(𝑡)𝑑𝑡

+ 𝜙𝑐−1,𝑑−1(𝑡)𝑝(𝑎,𝑏),(𝑐−1,𝑑−1)(𝑡)𝑑𝑡

+ 𝜓𝑐−1,𝑑+1(𝑡)𝑝(𝑎,𝑏),(𝑐−1,𝑑+1)(𝑡)𝑑𝑡

+ [1 − 𝜆𝑐,𝑑(𝑡) − 𝜇𝑐,𝑑(𝑡) − 𝛾𝑐,𝑑(𝑡) − 𝜙𝑐,𝑑(𝑡)

− 𝜓𝑐,𝑑(𝑡)]𝑝(𝑎,𝑏),(𝑐,𝑑)(𝑡)𝑑𝑡 + 𝑜(𝑑𝑡) 

 

 

 As a result, the forward Kolmogorov equations can be obtained: 

 

𝑑𝑝(𝑎,𝑏),(𝑐,𝑑)(𝑡)

𝑑𝑡
= 𝜆𝑐,𝑑−1(𝑡)𝑝(𝑎,𝑏),(𝑐,𝑑−1)(𝑡)

+ 𝜇𝑐,𝑑+1(𝑡)𝑝(𝑎,𝑏),(𝑐,𝑑+1)(𝑡) + 𝛾𝑐−1,𝑑(𝑡)𝑝(𝑎,𝑏),(𝑐−1,𝑑)(𝑡)

+ 𝜙𝑐−1,𝑑−1(𝑡)𝑝(𝑎,𝑏),(𝑐−1,𝑑−1)(𝑡)

+ 𝜓𝑐−1,𝑑+1(𝑡)𝑝(𝑎,𝑏),(𝑐−1,𝑑+1)(𝑡)

− [𝜆𝑐,𝑑(𝑡) + 𝜇𝑐,𝑑(𝑡) + 𝛾𝑐,𝑑(𝑡) + 𝜙𝑐,𝑑(𝑡)

+ 𝜓𝑐,𝑑(𝑡)]𝑝(𝑎,𝑏),(𝑐,𝑑)(𝑡) 

 

  

Rewriting the equations in matrix format, one obtains: 
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𝑑𝑝(𝑎,𝑏),(𝑐,𝑑)(𝑡)

𝑑𝑡

= [
𝑝(𝑎,𝑏),(𝑐−1,𝑑−1)(𝑡) 𝑝(𝑎,𝑏),(𝑐−1,𝑑)(𝑡) 𝑝(𝑎,𝑏),(𝑐−1,𝑑+1)(𝑡)

𝑝(𝑎,𝑏),(𝑐,𝑑−1)(𝑡) 𝑝(𝑎,𝑏),(𝑐,𝑑)(𝑡) 𝑝(𝑎,𝑏),(𝑐,𝑑+1)(𝑡)
]

× [

𝜙𝑐−1,𝑑−1(𝑡) 𝜆𝑐,𝑑−1(𝑡)

𝛾𝑐−1,𝑑(𝑡) −[𝜆𝑐,𝑑(𝑡) + 𝜇𝑐,𝑑(𝑡) + 𝛾𝑐,𝑑(𝑡) + 𝜙𝑐,𝑑(𝑡) + 𝜓𝑐,𝑑(𝑡)]

𝜓𝑐−1,𝑑+1(𝑡) 𝜇𝑐,𝑑+1(𝑡)

] 

 

 

 

Due to the number of variables, some notations are simplified by dropping 

subscripts and birth and death rates are treated as constants, as follows: 𝑝(𝑎,𝑏),(𝑖,𝑗) =

𝑝(𝑖,𝑗) ; 𝜆𝑖,𝑗(𝑡) = 𝜆 ; 𝜇𝑖,𝑗(𝑡) = 𝜇 ; 𝛾𝑖,𝑗(𝑡) = 𝛾 ; 𝜙𝑖,𝑗(𝑡) = 𝜙 ; 𝜓𝑖,𝑗(𝑡) = 𝜓. 

 The steady-state equations are calculated to obtain the generator matrix that 

describes the QBDP process, as described in Fadiloglu and Yeralan (2002). These 

equations define the balance conditions and represent the border states in the states 

diagram. For example, it is known that there are only two possible transitions to the 

first state (0,0), coming from the state (0,1) or from the same state (0,0). As a 

result, the sum of both possible transitions must be zero. 

−(𝜆 + 𝛾 + 𝜙) 𝑝(0,0) + 𝜇 𝑝(0,1) = 0  

−(𝜆 + 𝛾 + 𝜙) 𝑝(𝑖,0) + 𝛾 𝑝(𝑖−1,0)+ 𝜇 𝑝(𝑖,1) + 𝜓𝑝(𝑖−1,1) = 0  

−𝜆 𝑝(𝑀,0) + 𝛾 𝑝(𝑀−1,0) + 𝜇 𝑝(𝑀,1) + 𝜓𝑝(𝑀−1,1) = 0  

−(𝜆 + 𝜇 + 𝛾 + 𝜙 + 𝜓 ) 𝑝(0,𝑗) + 𝜆 𝑝(0,𝑗−1) + 𝜇 𝑝(0,𝑗+1) = 0  

−(𝜆 + 𝜇 + 𝛾 + 𝜙 + 𝜓 ) 𝑝(0,𝑁) + 𝜆 𝑝(0,𝑁−1) = 0  

−(𝜆 + 𝜇 + 𝛾 + 𝜙 + 𝜓 ) 𝑝(𝑖,𝑗) + 𝜆 𝑝(𝑖,𝑗−1) + 𝜇 𝑝(𝑖,𝑗+1) + 𝜙 𝑝(𝑖−1,𝑗−1)

+ 𝛾 𝑝(𝑖−1,𝑗) + 𝜓 𝑝(𝑖−1,𝑗+1)   = 0 

 

−(𝜇 + 𝛾 + 𝜓 ) 𝑝(𝑖,𝑁) + 𝜆 𝑝(𝑖,𝑁−1) + 𝜙 𝑝(𝑖−1,𝑁−1) + 𝛾 𝑝(𝑖−1,𝑁) = 0  

−(𝜆 + 𝜇 ) 𝑝(𝑀,𝑗) + 𝜆 𝑝(𝑀,𝑗−1) + 𝜇 𝑝(𝑀,𝑗+1) + 𝜙 𝑝(𝑀−1,𝑗−1)

+ 𝛾 𝑝(𝑀−1,𝑗) + 𝜓 𝑝(𝑀−1,𝑗+1)   = 0 

 

−𝜇 𝑝(𝑀,𝑁) + 𝜆 𝑝(𝑀,𝑁−1) + 𝜙 𝑝(𝑀−1,𝑁−1) + 𝛾 𝑝(𝑀−1,𝑁) = 0  

 

 According to Osogami (2005), the generator matrix 𝑸 has the following 

format, a block tridiagonal matrix of submatrices: 
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𝑸 = [

𝑳00 𝑭01 0
𝑩10 𝑳11 𝑭12
0 𝑩21 𝑳22

⋯

⋮ ⋱

]  

 

Where, 

𝐿𝑖𝑗 refers to the transition rate submatrix related to from state (𝑖, 𝑗) to state 

(𝑘, 𝑗) for 𝑖 ≠ 𝑘; 

𝐹𝑖𝑗  refers to the transition rate submatrix related to from state (𝑖, 𝑗) to state 

(𝑘, 𝑗 + 1) for any value of 𝑖 and 𝑘; 

𝐵𝑖𝑗 refers to the transition rate submatrix related to from state (𝑖, 𝑗) to state 

(𝑘, 𝑗 − 1) for any value of 𝑖 and 𝑘. 

 

Thus, to solve the submatrices, matrix geometric procedures can be applied, 

according to Feldman et al. (1993). This results in the following submatrices: 

𝐿00 =

[
 
 
 
 
−(𝜆 + 𝛾 + 𝜙) 𝛾

0 −(𝜆 + 𝛾 + 𝜙)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−(𝜆 + 𝛾 + 𝜙) 𝛾

0 −𝜆]
 
 
 
 

𝑁×𝑁

  

𝐹01 =

[
 
 
 
 
𝜆 𝜙
0 𝜆

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝜆 𝜙
0 𝜆 ]

 
 
 
 

𝑁×𝑁

𝐹12 =

[
 
 
 
 
𝜆 𝜙
0 𝜆

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝜆 𝜙
0 𝜆]

 
 
 
 

𝑁×𝑁

 

 

𝐵10 =

[
 
 
 
 
𝜇 𝜓
0 𝜇

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝜇 𝜓
0 𝜇]

 
 
 
 

𝑁×𝑁

𝐵21 =

[
 
 
 
 
𝜇 𝜓
0 𝜇

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝜇 𝜓
0 𝜇]

 
 
 
 

𝑁×𝑁

 

 

𝐿11

=

[
 
 
 
 
−(𝜆 + 𝛾 + 𝜙 + 𝜇 + 𝜓) 𝛾

0 −(𝜆 + 𝛾 + 𝜙 + 𝜇 + 𝜓)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−(𝜆 + 𝛾 + 𝜙 + 𝜇 + 𝜓) 𝛾

0 −(𝜆 + 𝜇)]
 
 
 
 

𝑁×𝑁

 

 

𝐿𝑁𝑁 =

[
 
 
 
 
−(𝛾 + 𝜇 + 𝜓) 𝛾

0 −(𝛾 + 𝜇 + 𝜓)
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
−(𝛾 + 𝜇 + 𝜓) 𝛾

0 −𝜇]
 
 
 
 

𝑁×𝑁
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Appendix B 
Experiment plan related to the bivariate time series 
forecasting 
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2 

...3 ...5 ...6 ...7 
...
8 

...11 ...12 ...13 ...14 ...15 ...16 ...17 ...18 ...19 ...20 ...21 ...22 ...23 ...24 ...25 ...26 ...27 ...28 

1 
T2
38 

0,3 (13, 2) 1 1 - 5,73 
19,7

% 
6,44 5,70 

18,2
% 

6,41 - - - - - - - - - - - - 

2 
T2
38 

0,3 (13, 2) 1 2 - 5,73 
19,7

% 
6,44 5,85 

20,6
% 

6,54 - - - - - - - - - - - - 

3 
T2
38 

0,3 (13, 2) 2 1 - 5,73 0,20 6,44 5,53 0,05 6,09 - - - - - - - - - - - - 

4 
T2
38 

0,3 (13, 2) 2 2 - 5,73 
19,7

% 
6,44 6,11 

29,7
% 

6,62 - - - - - - - - - - - - 

5 
T2
38 

0,5 (23, 2) 1 1 - 2,65 2,2% 3,03 4,54 
19,8

% 
5,14 - - - - - - - - - - - - 

6 
T2
38 

0,5 (23, 2) 1 2 - 2,65 2,2% 3,03 4,61 
20,9

% 
5,19 - - - - - - - - - - - - 

7 
T2
38 

0,5 (23, 2) 2 1 - 2,65 2,2% 3,03 4,35 
22,8

% 
5,06 - - - - - - - - - - - - 

8 
T2
38 

0,5 (23, 2) 2 2 - 2,65 2,2% 3,03 4,59 
24,1

% 
5,21 - - - - - - - - - - - - 

9 
T2
38 

0,7 (32, 2) 1 1 - 0,36 0,3% 0,60 1,89 
19,1

% 
2,26 - - - - - - - - - - - - 



178 

10 
T2
38 

0,7 (32, 2) 1 2 - 0,36 0,3% 0,60 2,43 
21,3

% 
2,84 - - - - - - - - - - - - 

11 
T2
38 

0,7 (32, 2) 2 1 - 0,36 0,3% 0,60 0,79 
11,2

% 
1,01 - - - - - - - - - - - - 

12 
T2
38 

0,7 (32, 2) 2 2 - 0,36 0,00 0,60 0,68 0,11 0,88 - - - - - - - - - - - - 

13 
S8
43 

0,3 (8, 2) 1 1 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

14 
S8
43 

0,3 (8, 2) 1 2 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

15 
S8
43 

0,3 (8, 2) 2 1 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

16 
S8
43 

0,3 (8, 2) 2 2 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

17 
S8
43 

0,5 (14, 2) 1 1 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

18 
S8
43 

0,5 (14, 2) 1 2 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

19 
S8
43 

0,5 (14, 2) 2 1 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

20 
S8
43 

0,5 (14, 2) 2 2 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

21 
S8
43 

0,7 (20, 2) 1 1 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

22 
S8
43 

0,7 (20, 2) 1 2 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

23 
S8
43 

0,7 (20, 2) 2 1 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

24 
S8
43 

0,7 (20, 2) 2 2 - 
Erro

r 
Error 

Erro
r 

Erro
r 

Error 
Erro

r 
- - - - - - - - - - - - 

25 
C4
34 

0,3 (37, 2) 1 1 - 7,33 9,2% 9,10 
18,1

9 
28,0

% 
22,0

9 
- - - - - - - - - - - - 

26 
C4
34 

0,3 (37, 2) 1 2 - 7,33 9,2% 9,10 
18,5

5 
28,4

% 
22,4

3 
- - - - - - - - - - - - 
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27 
C4
34 

0,3 (37, 2) 2 1 - 7,33 9,2% 9,10 
17,5

6 
26,7

% 
21,1

1 
- - - - - - - - - - - - 

28 
C4
34 

0,3 (37, 2) 2 2 - 7,33 9,2% 9,10 
16,5

8 
25,2

% 
20,1

4 
- - - - - - - - - - - - 

29 
C4
34 

0,5 (62, 2) 1 1 - 
12,0

0 
17,0

% 
13,8

0 
19,4

5 
27,8

% 
22,4

9 
- - - - - - - - - - - - 

30 
C4
34 

0,5 (62, 2) 1 2 - 
12,0

0 
17,0

% 
13,8

0 
18,9

3 
26,9

% 
22,0

7 
- - - - - - - - - - - - 

31 
C4
34 

0,5 (62, 2) 2 1 - 
12,0

0 
17,0

% 
13,8

0 
20,7

1 
29,4

% 
23,8

1 
- - - - - - - - - - - - 

32 
C4
34 

0,5 (62, 2) 2 2 - 
12,0

0 
17,0

% 
13,8

0 
19,4

7 
27,6

% 
22,4

1 
- - - - - - - - - - - - 

33 
C4
34 

0,7 (86, 2) 1 1 - 6,03 6,8% 7,23 
16,1

2 
20,2

% 
18,4

8 
- - - - - - - - - - - - 

34 
C4
34 

0,7 (86, 2) 1 2 - 6,03 6,8% 7,23 
14,7

2 
18,4

% 
17,1

4 
- - - - - - - - - - - - 

35 
C4
34 

0,7 (86, 2) 2 1 - 6,03 6,8% 7,23 
11,1

1 
13,5

% 
13,1

3 
- - - - - - - - - - - - 

36 
C4
34 

0,7 (86, 2) 2 2 - 6,03 6,8% 7,23 
14,4

1 
18,1

% 
16,5

7 
- - - - - - - - - - - - 

37 
V1
04 

0,3 (45, 2) 1 1 - 
39,7

8 
43,9

% 
48,6

6 
18,6

3 
31,8

% 
22,2

5 
- - - - - - - - - - - - 

38 
V1
04 

0,3 (45, 2) 1 2 - 
39,7

8 
43,9

% 
48,6

6 
18,7

3 
32,8

% 
22,2

1 
- - - - - - - - - - - - 

39 
V1
04 

0,3 (45, 2) 2 1 - 
39,7

8 
43,9

% 
48,6

6 
18,9

0 
33,0

% 
22,3

1 
- - - - - - - - - - - - 

40 
V1
04 

0,3 (45, 2) 2 2 - 
39,7

8 
43,9

% 
48,6

6 
18,7

1 
32,5

% 
22,2

1 
- - - - - - - - - - - - 

41 
V1
04 

0,5 (75, 2) 1 1 - 
15,9

9 
17,4

% 
21,6

2 
21,2

5 
31,4

% 
23,7

1 
- - - - - - - - - - - - 

42 
V1
04 

0,5 (75, 2) 1 2 - 
15,9

9 
17,4

% 
21,6

2 
22,1

3 
33,7

% 
24,4

5 
- - - - - - - - - - - - 

43 
V1
04 

0,5 (75, 2) 2 1 - 
15,9

9 
17,4

% 
21,6

2 
22,4

7 
34,3

% 
24,5

7 
- - - - - - - - - - - - 
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44 
V1
04 

0,5 (75, 2) 2 2 - 
15,9

9 
17,4

% 
21,6

2 
21,5

3 
32,5

% 
23,9

6 
- - - - - - - - - - - - 

45 
V1
04 

0,7 
(105, 

2) 
1 1 - 6,57 7,5% 8,98 

13,6
0 

18,0
% 

14,8
2 

- - - - - - - - - - - - 

46 
V1
04 

0,7 
(105, 

2) 
1 2 - 6,57 7,5% 8,98 

14,2
6 

19,0
% 

15,6
1 

- - - - - - - - - - - - 

47 
V1
04 

0,7 
(105, 

2) 
2 1 - 6,57 7,5% 8,98 

16,1
6 

22,0
% 

17,7
3 

- - - - - - - - - - - - 

48 
V1
04 

0,7 
(105, 

2) 
2 2 - 6,57 7,5% 8,98 

16,8
8 

22,9
% 

18,5
4 

- - - - - - - - - - - - 

49 
A1
72 

0,3 (16, 2) 1 1 - 
11,4

0 
29,4

% 
13,8

6 
9,03 

38,7
% 

10,2
0 

- - - - - - - - - - - - 

50 
A1
72 

0,3 (16, 2) 1 2 - 
11,4

0 
29,4

% 
13,8

6 
9,10 

39,1
% 

10,2
5 

- - - - - - - - - - - - 

51 
A1
72 

0,3 (16, 2) 2 1 - 
11,4

0 
29,4

% 
13,8

6 
9,66 

40,5
% 

10,7
9 

- - - - - - - - - - - - 

52 
A1
72 

0,3 (16, 2) 2 2 - 
11,4

0 
29,4

% 
13,8

6 
9,98 

41,5
% 

11,0
6 

- - - - - - - - - - - - 

53 
A1
72 

0,5 (28, 2) 1 1 - 2,82 7,1% 3,15 8,34 
26,4

% 
9,70 - - - - - - - - - - - - 

54 
A1
72 

0,5 (28, 2) 1 2 - 2,82 7,1% 3,15 7,05 
21,1

% 
8,43 - - - - - - - - - - - - 

55 
A1
72 

0,5 (28, 2) 2 1 - 2,82 7,1% 3,15 5,63 
23,4

% 
6,28 - - - - - - - - - - - - 

56 
A1
72 

0,5 (28, 2) 2 2 - 2,82 7,1% 3,15 7,30 
29,9

% 
8,16 - - - - - - - - - - - - 

57 
A1
72 

0,7 (39, 2) 1 1 - 1,03 2,2% 1,34 3,62 7,1% 4,31 - - - - - - - - - - - - 

58 
A1
72 

0,7 (39, 2) 1 2 - 1,03 2,2% 1,34 2,56 5,3% 3,08 - - - - - - - - - - - - 

59 
A1
72 

0,7 (39, 2) 2 1 - 1,03 2,2% 1,34 4,21 
15,1

% 
4,87 - - - - - - - - - - - - 

60 
A1
72 

0,7 (39, 2) 2 2 - 1,03 2,2% 1,34 4,41 
15,4

% 
5,06 - - - - - - - - - - - - 
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61 
M
94
1 

0,3 (30, 2) 1 1 - 
40,0

8 
68,2

% 
53,9

2 
11,5

2 
32,1

% 
13,1

3 
- - - - - - - - - - - - 

62 
M
94
1 

0,3 (30, 2) 1 2 - 
40,0

8 
68,2

% 
53,9

2 
11,6

3 
33,0

% 
13,2

6 
- - - - - - - - - - - - 

63 
M
94
1 

0,3 (30, 2) 2 1 - 
40,0

8 
68,2

% 
53,9

2 
11,1

6 
29,5

% 
13,2

6 
- - - - - - - - - - - - 

64 
M
94
1 

0,3 (30, 2) 2 2 - 
40,0

8 
68,2

% 
53,9

2 
Erro

r 
Error 

Erro
r 

- - - - - - - - - - - - 

65 
M
94
1 

0,5 (50, 2) 1 1 - 
10,3

2 
16,4

% 
11,6

0 
9,19 

21,6
% 

10,5
3 

- - - - - - - - - - - - 

66 
M
94
1 

0,5 (50, 2) 1 2 - 
10,3

2 
16,4

% 
11,6

0 
8,77 

22,6
% 

10,3
1 

- - - - - - - - - - - - 

67 
M
94
1 

0,5 (50, 2) 2 1 - 
10,3

2 
16,4

% 
11,6

0 
12,7

3 
23,2

% 
13,8

7 
- - - - - - - - - - - - 

68 
M
94
1 

0,5 (50, 2) 2 2 - 
10,3

2 
16,4

% 
11,6

0 
13,3

1 
25,5

% 
14,4

0 
- - - - - - - - - - - - 
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16 

0,3 (47, 2) 1 2 - 
27,1

0 
45,8

% 
35,6

4 
24,9

7 
43,3

% 
27,9

9 
- - - - - - - - - - - - 

183 
D3
16 

0,3 (47, 2) 2 1 - 
27,1

0 
45,8

% 
35,6

4 
25,3

8 
44,8

% 
28,2

1 
- - - - - - - - - - - - 

184 
D3
16 

0,3 (47, 2) 2 2 - 
27,1

0 
45,8

% 
35,6

4 
25,1

3 
44,0

% 
28,0

6 
- - - - - - - - - - - - 
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185 
D3
16 

0,5 (79, 2) 1 1 - 
28,8

6 
45,7

% 
39,6

2 
25,8

7 
38,6

% 
27,5

2 
- - - - - - - - - - - - 

186 
D3
16 

0,5 (79, 2) 1 2 - 
28,8

6 
45,7

% 
39,6

2 
20,5

1 
28,3

% 
22,1

1 
- - - - - - - - - - - - 

187 
D3
16 

0,5 (79, 2) 2 1 - 
28,8

6 
45,7

% 
39,6

2 
15,7

1 
17,9

% 
16,9

0 
- - - - - - - - - - - - 

188 
D3
16 

0,5 (79, 2) 2 2 - 
28,8

6 
45,7

% 
39,6

2 
23,3

0 
33,8

% 
25,0

1 
- - - - - - - - - - - - 

189 
D3
16 

0,7 
(111, 

2) 
1 1 - 3,67 5,1% 4,94 

18,2
4 

23,5
% 

19,2
0 

- - - - - - - - - - - - 

190 
D3
16 

0,7 
(111, 

2) 
1 2 - 3,67 5,1% 4,94 

18,2
2 

23,4
% 

19,1
4 

- - - - - - - - - - - - 

191 
D3
16 

0,7 
(111, 

2) 
2 1 - 3,67 5,1% 4,94 

14,3
0 

16,7
% 

15,0
3 

- - - - - - - - - - - - 

192 
D3
16 

0,7 
(111, 

2) 
2 2 - 3,67 5,1% 4,94 

18,1
7 

23,5
% 

19,1
6 

- - - - - - - - - - - - 

193 
T2
38 

0,3 (18, 2) - - 4 - - - - - - 
13,2

2 
22,9% 

13,3
4 

13,2
2 

22,9% 
13,2

2 
- - - - - - 

194 
T2
38 

0,3 (18, 2) - - 7 - - - - - - 8,54 56,5% 8,57 8,54 56,5% 8,54 - - - - - - 

195 
T2
38 

0,5 (30, 2) - - 4 - - - - - - 
20,1

9 
41,7% 

20,1
9 

20,1
9 

41,7% 
20,1

9 
- - - - - - 

196 
T2
38 

0,5 (30, 2) - - 7 - - - - - - 8,23 79,6% 8,26 8,23 79,6% 8,23 - - - - - - 

197 
T2
38 

0,7 (42, 2) - - 4 - - - - - - 4,23 28,1% 4,24 4,23 28,1% 4,23 - - - - - - 

198 
T2
38 

0,7 (42, 2) - - 7 - - - - - - 0,83 25,3% 0,91 0,83 25,3% 0,83 - - - - - - 

199 
S8
43 

0,3 (11, 2) - - 4 - - - - - - 
24,1

7 
376,1

% 
24,2

1 
24,1

7 
376,1

% 
24,1

7 
- - - - - - 

200 
S8
43 

0,3 (11, 2) - - 7 - - - - - - 9,60 
338,5

% 
9,63 9,60 

338,5
% 

9,60 - - - - - - 

201 
S8
43 

0,5 (19, 2) - - 4 - - - - - - 7,87 
184,8

% 
7,89 7,87 

184,8
% 

7,87 - - - - - - 
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202 
S8
43 

0,5 (19, 2) - - 7 - - - - - - 3,83 23,9% 3,97 3,83 23,9% 3,83 - - - - - - 

203 
S8
43 

0,7 (26, 2) - - 4 - - - - - - 
11,7

5 
19,1% 

11,8
7 

11,7
5 

19,1% 
11,7

5 
- - - - - - 

204 
S8
43 

0,7 (26, 2) - - 7 - - - - - - 
10,4

0 
352,8

% 
10,4

2 
10,4

0 
352,8

% 
10,4

0 
- - - - - - 

205 
C4
34 

0,3 (42, 2) - - 4 - - - - - - 
15,6

5 
29,7% 

17,6
9 

15,6
5 

29,7% 
15,6

5 
- - - - - - 

206 
C4
34 

0,3 (42, 2) - - 7 - - - - - - 
29,0

8 
47,4% 

32,6
0 

29,0
8 

47,4% 
29,0

8 
- - - - - - 

207 
C4
34 

0,5 (71, 2) - - 4 - - - - - - 
19,6

3 
28,6% 

21,2
2 

19,6
3 

28,6% 
19,6

3 
- - - - - - 

208 
C4
34 

0,5 (71, 2) - - 7 - - - - - - 
17,9

0 
25,1% 

19,0
9 

17,9
0 

25,1% 
17,9

0 
- - - - - - 

209 
C4
34 

0,7 (99, 2) - - 4 - - - - - - 
20,2

9 
25,4% 

20,6
8 

20,2
9 

25,4% 
20,2

9 
- - - - - - 

210 
C4
34 

0,7 (99, 2) - - 7 - - - - - - 
15,9

7 
17,0% 

16,2
4 

15,9
7 

17,0% 
15,9

7 
- - - - - - 

211 
V1
04 

0,3 (46, 2) - - 4 - - - - - - 
20,1

7 
32,4% 

23,7
9 

20,1
7 

32,4% 
20,1

7 
- - - - - - 

212 
V1
04 

0,3 (46, 2) - - 7 - - - - - - 
18,7

9 
31,5% 

22,2
2 

18,7
9 

31,5% 
18,7

9 
- - - - - - 

213 
V1
04 

0,5 (77, 2) - - 4 - - - - - - 
30,7

7 
40,3% 

33,7
4 

30,7
7 

40,3% 
30,7

7 
- - - - - - 

214 
V1
04 

0,5 (77, 2) - - 7 - - - - - - 
22,0

1 
33,7% 

23,6
9 

22,0
1 

33,7% 
22,0

1 
- - - - - - 

215 
V1
04 

0,7 
(108, 

2) 
- - 4 - - - - - - 

19,2
0 

25,2% 
19,5

6 
19,2

0 
25,2% 

19,2
0 

- - - - - - 

216 
V1
04 

0,7 
(108, 

2) 
- - 7 - - - - - - 

10,1
5 

13,0% 
10,2

1 
10,1

5 
13,0% 

10,1
5 

- - - - - - 

217 
A1
72 

0,3 (18, 2) - - 4 - - - - - - 
25,6

9 
56,8% 

26,7
1 

25,6
9 

56,8% 
25,6

9 
- - - - - - 

218 
A1
72 

0,3 (18, 2) - - 7 - - - - - - 
12,5

1 
46,8% 

13,1
8 

12,5
1 

46,8% 
12,5

1 
- - - - - - 
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219 
A1
72 

0,5 (31, 2) - - 4 - - - - - - 
23,5

6 
70,7% 

23,8
8 

23,5
6 

70,7% 
23,5

6 
- - - - - - 

220 
A1
72 

0,5 (31, 2) - - 7 - - - - - - 
20,8

1 
84,0% 

21,0
6 

20,8
1 

84,0% 
20,8

1 
- - - - - - 

221 
A1
72 

0,7 (43, 2) - - 4 - - - - - - 
12,4

7 
38,4% 

12,6
1 

12,4
7 

38,4% 
12,4

7 
- - - - - - 

222 
A1
72 

0,7 (43, 2) - - 7 - - - - - - 9,46 36,4% 9,64 9,46 36,4% 9,46 - - - - - - 

223 
M
94
1 

0,3 (30, 2) - - 4 - - - - - - 
12,7

1 
35,9% 

13,0
1 

12,7
1 

35,9% 
12,7

1 
- - - - - - 

224 
M
94
1 

0,3 (30, 2) - - 7 - - - - - - 
10,7

2 
30,1% 

11,0
0 

10,7
2 

30,1% 
10,7

2 
- - - - - - 

225 
M
94
1 

0,5 (51, 2) - - 4 - - - - - - 8,54 28,1% 8,67 8,54 28,1% 8,54 - - - - - - 

226 
M
94
1 

0,5 (51, 2) - - 7 - - - - - - 
10,2

4 
27,3% 

10,3
1 

10,2
4 

27,3% 
10,2

4 
- - - - - - 

227 
M
94
1 

0,7 (71, 2) - - 4 - - - - - - 5,09 13,0% 5,14 5,09 13,0% 5,09 - - - - - - 

228 
M
94
1 

0,7 (71, 2) - - 7 - - - - - - 5,73 17,7% 5,87 5,73 17,7% 5,73 - - - - - - 

229 
L4
06 

0,3 (23, 2) - - 4 - - - - - - 
21,7

5 
38,9% 

22,1
8 

21,7
5 

38,9% 
21,7

5 
- - - - - - 

230 
L4
06 

0,3 (23, 2) - - 7 - - - - - - 
12,9

4 
21,7% 

13,6
4 

12,9
4 

21,7% 
12,9

4 
- - - - - - 

231 
L4
06 

0,5 (39, 2) - - 4 - - - - - - 9,53 22,8% 9,74 9,53 22,8% 9,53 - - - - - - 

232 
L4
06 

0,5 (39, 2) - - 7 - - - - - - 2,58 0,05 2,89 2,58 0,05 2,58 - - - - - - 
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233 
L4
06 

0,7 (54, 2) - - 4 - - - - - - 6,55 19,8% 6,70 6,55 19,8% 6,55 - - - - - - 

234 
L4
06 

0,7 (54, 2) - - 7 - - - - - - 
10,3

5 
19,1% 

10,4
0 

10,3
5 

19,1% 
10,3

5 
- - - - - - 

235 
C9
07 

0,3 (20, 2) - - 4 - - - - - - 9,79 45,6% 
10,5

9 
9,79 45,6% 9,79 - - - - - - 

236 
C9
07 

0,3 (20, 2) - - 7 - - - - - - 
18,7

1 
67,1% 

18,9
4 

18,7
1 

67,1% 
18,7

1 
- - - - - - 

237 
C9
07 

0,5 (34, 2) - - 4 - - - - - - 
11,2

9 
20,3% 

11,3
5 

11,2
9 

20,3% 
11,2

9 
- - - - - - 

238 
C9
07 

0,5 (34, 2) - - 7 - - - - - - 9,93 30,2% 
10,0

0 
9,93 30,2% 9,93 - - - - - - 

239 
C9
07 

0,7 (48, 2) - - 4 - - - - - - 5,97 26,4% 6,19 5,97 26,4% 5,97 - - - - - - 

240 
C9
07 

0,7 (48, 2) - - 7 - - - - - - 5,46 22,0% 5,65 5,46 22,0% 5,46 - - - - - - 

241 
M
17
4 

0,3 (26, 2) - - 4 - - - - - - 
20,0

1 
29,3% 

20,8
7 

20,0
1 

29,3% 
20,0

1 
- - - - - - 

242 
M
17
4 

0,3 (26, 2) - - 7 - - - - - - 
16,2

1 
34,1% 

16,6
7 

16,2
1 

34,1% 
16,2

1 
- - - - - - 

243 
M
17
4 

0,5 (43, 2) - - 4 - - - - - - 
15,5

0 
28,7% 

15,5
8 

15,5
0 

28,7% 
15,5

0 
- - - - - - 

244 
M
17
4 

0,5 (43, 2) - - 7 - - - - - - 
15,7

6 
27,7% 

15,7
9 

15,7
6 

27,7% 
15,7

6 
- - - - - - 

245 
M
17
4 

0,7 (60, 2) - - 4 - - - - - - 
13,5

9 
20,0% 

13,5
9 

13,5
9 

20,0% 
13,5

9 
- - - - - - 

246 
M
17
4 

0,7 (60, 2) - - 7 - - - - - - 0,65 0,01 0,77 0,65 0,01 0,65 - - - - - - 
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247 
S2
42 

0,3 (49, 2) - - 4 - - - - - - 
23,4

6 
45,9% 

24,4
9 

23,4
6 

45,9% 
23,4

6 
- - - - - - 

248 
S2
42 

0,3 (49, 2) - - 7 - - - - - - 
16,8

6 
37,9% 

18,1
5 

16,8
6 

37,9% 
16,8

6 
- - - - - - 

249 
S2
42 

0,5 (82, 2) - - 4 - - - - - - 
14,5

0 
31,0% 

15,3
1 

14,5
0 

31,0% 
14,5

0 
- - - - - - 

250 
S2
42 

0,5 (82, 2) - - 7 - - - - - - 
11,5

4 
24,8% 

12,2
2 

11,5
4 

24,8% 
11,5

4 
- - - - - - 

251 
S2
42 

0,7 
(114, 

2) 
- - 4 - - - - - - 9,64 17,4% 

10,0
8 

9,64 17,4% 9,64 - - - - - - 

252 
S2
42 

0,7 
(114, 

2) 
- - 7 - - - - - - 2,08 3,6% 2,40 2,08 3,6% 2,08 - - - - - - 

253 
L8
68 

0,3 (31, 2) - - 4 - - - - - - 
17,3

3 
49,1% 

18,3
5 

17,3
3 

49,1% 
17,3

3 
- - - - - - 

254 
L8
68 

0,3 (31, 2) - - 7 - - - - - - 
17,3

7 
51,6% 

18,2
5 

17,3
7 

51,6% 
17,3

7 
- - - - - - 

255 
L8
68 

0,5 (52, 2) - - 4 - - - - - - 
12,4

7 
43,7% 

12,8
3 

12,4
7 

43,7% 
12,4

7 
- - - - - - 

256 
L8
68 

0,5 (52, 2) - - 7 - - - - - - 7,86 31,1% 8,15 7,86 31,1% 7,86 - - - - - - 

257 
L8
68 

0,7 (73, 2) - - 4 - - - - - - 3,82 13,5% 3,91 3,82 13,5% 3,82 - - - - - - 

258 
L8
68 

0,7 (73, 2) - - 7 - - - - - - 9,24 30,6% 9,28 9,24 30,6% 9,24 - - - - - - 

259 
A7
39 

0,3 (51, 2) - - 4 - - - - - - 8,01 19,7% 8,13 8,01 19,7% 8,01 - - - - - - 

260 
A7
39 

0,3 (51, 2) - - 7 - - - - - - 5,24 14,6% 5,41 5,24 14,6% 5,24 - - - - - - 

261 
A7
39 

0,5 (86, 2) - - 4 - - - - - - 3,72 7,9% 3,81 3,72 7,9% 3,72 - - - - - - 

262 
A7
39 

0,5 (86, 2) - - 7 - - - - - - 3,69 7,7% 3,81 3,69 7,7% 3,69 - - - - - - 

263 
A7
39 

0,7 
(121, 

2) 
- - 4 - - - - - - 1,31 1,8% 1,50 1,31 1,8% 1,31 - - - - - - 
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264 
A7
39 

0,7 
(121, 

2) 
- - 7 - - - - - - 0,84 1,3% 1,05 0,84 1,3% 0,84 - - - - - - 

265 
C6
24 

0,3 (32, 2) - - 4 - - - - - - 7,14 30,9% 7,30 7,14 30,9% 7,14 - - - - - - 

266 
C6
24 

0,3 (32, 2) - - 7 - - - - - - 7,30 35,7% 7,38 7,30 35,7% 7,30 - - - - - - 

267 
C6
24 

0,5 (53, 2) - - 4 - - - - - - 3,59 30,3% 3,65 3,59 30,3% 3,59 - - - - - - 

268 
C6
24 

0,5 (53, 2) - - 7 - - - - - - 3,27 35,7% 3,33 3,27 35,7% 3,27 - - - - - - 

269 
C6
24 

0,7 (74, 2) - - 4 - - - - - - 2,66 22,6% 2,73 2,66 22,6% 2,66 - - - - - - 

270 
C6
24 

0,7 (74, 2) - - 7 - - - - - - 2,54 21,7% 2,59 2,54 21,7% 2,54 - - - - - - 

271 
A6
76 

0,3 (22, 2) - - 4 - - - - - - 
21,6

7 
Error 

21,7
2 

21,6
7 

Error 
21,6

7 
- - - - - - 

272 
A6
76 

0,3 (22, 2) - - 7 - - - - - - 4,26 Error 4,38 4,26 Error 4,26 - - - - - - 

273 
A6
76 

0,5 (37, 2) - - 4 - - - - - - 3,37 Error 3,58 3,37 Error 3,37 - - - - - - 

274 
A6
76 

0,5 (37, 2) - - 7 - - - - - - 4,85 13,9% 5,22 4,85 13,9% 4,85 - - - - - - 

275 
A6
76 

0,7 (52, 2) - - 4 - - - - - - 2,89 Error 3,01 2,89 Error 2,89 - - - - - - 

276 
A6
76 

0,7 (52, 2) - - 7 - - - - - - 1,72 19,9% 2,18 1,72 19,9% 1,72 - - - - - - 

277 
S1
65 

0,3 (17, 2) - - 4 - - - - - - 
18,9

2 
93,8% 

19,0
3 

18,9
2 

93,8% 
18,9

2 
- - - - - - 

278 
S1
65 

0,3 (17, 2) - - 7 - - - - - - 9,70 58,7% 9,84 9,70 58,7% 9,70 - - - - - - 

279 
S1
65 

0,5 (28, 2) - - 4 - - - - - - 
19,2

6 
87,2% 

19,3
0 

19,2
6 

87,2% 
19,2

6 
- - - - - - 

280 
S1
65 

0,5 (28, 2) - - 7 - - - - - - 7,70 58,8% 7,80 7,70 58,8% 7,70 - - - - - - 
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281 
S1
65 

0,7 (39, 2) - - 4 - - - - - - 3,07 22,7% 3,21 3,07 22,7% 3,07 - - - - - - 

282 
S1
65 

0,7 (39, 2) - - 7 - - - - - - 5,45 35,6% 5,54 5,45 35,6% 5,45 - - - - - - 

283 
D3
16 

0,3 (50, 2) - - 4 - - - - - - 
21,7

0 
42,6% 

22,4
6 

21,7
0 

42,6% 
21,7

0 
- - - - - - 

284 
D3
16 

0,3 (50, 2) - - 7 - - - - - - 
17,4

0 
36,7% 

18,0
0 

17,4
0 

36,7% 
17,4

0 
- - - - - - 

285 
D3
16 

0,5 (83, 2) - - 4 - - - - - - 
17,2

6 
31,8% 

17,3
7 

17,2
6 

31,8% 
17,2

6 
- - - - - - 

286 
D3
16 

0,5 (83, 2) - - 7 - - - - - - 8,23 15,4% 8,28 8,23 15,4% 8,23 - - - - - - 

287 
D3
16 

0,7 
(116, 

2) 
- - 4 - - - - - - 2,37 4,5% 2,46 2,37 4,5% 2,37 - - - - - - 

288 
D3
16 

0,7 
(116, 

2) 
- - 7 - - - - - - 1,33 2,1% 1,57 1,33 2,1% 1,33 - - - - - - 

289 
T2
38 

0,3 (18, 2) - - 4 - - - - - - - - - - - - 
6,73076

9 
272,3

% 
6,77642

7 
6,73076

9 
272,3

% 
6,73076

9 

290 
T2
38 

0,3 (18, 2) - - 7 - - - - - - - - - - - - 
9,22222

2 
375,8

% 
9,27524

6 
9,22222

2 
375,8

% 
9,22222

2 

291 
T2
38 

0,5 (30, 2) - - 4 - - - - - - - - - - - - 
7,35185

2 
310,3

% 
7,42892 

7,35185
2 

310,3
% 

7,35185
2 

292 
T2
38 

0,5 (30, 2) - - 7 - - - - - - - - - - - - 7,375 
343,1

% 
7,42619

1 
7,375 

343,1
% 

7,375 

293 
T2
38 

0,7 (42, 2) - - 4 - - - - - - - - - - - - 10 
386,9

% 
10,0241 10 

386,9
% 

10 

294 
T2
38 

0,7 (42, 2) - - 7 - - - - - - - - - - - - 
9,29166

7 
325,3

% 
9,33933

7 
9,29166

7 
325,3

% 
9,29166

7 

295 
S8
43 

0,3 (11, 2) - - 4 - - - - - - - - - - - - 
7,60869

6 
518,7

% 
7,63629 

7,60869
6 

518,7
% 

7,60869
6 

296 
S8
43 

0,3 (11, 2) - - 7 - - - - - - - - - - - - 9,2 
596,7

% 
9,21662

7 
9,2 

596,7
% 

9,2 

297 
S8
43 

0,5 (19, 2) - - 4 - - - - - - - - - - - - 9,9 
646,3

% 
9,91345

1 
9,9 

646,3
% 

9,9 
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298 
S8
43 

0,5 (19, 2) - - 7 - - - - - - - - - - - - 
7,83333

3 
492,5

% 
7,87660

3 
7,83333

3 
492,5

% 
7,83333

3 

299 
S8
43 

0,7 (26, 2) - - 4 - - - - - - - - - - - - 6,625 
298,0

% 
6,67016

3 
6,625 

298,0
% 

6,625 

300 
S8
43 

0,7 (26, 2) - - 7 - - - - - - - - - - - - 8,8 
351,5

% 
8,84390

9 
8,8 

351,5
% 

8,8 

301 
C4
34 

0,3 (42, 2) - - 4 - - - - - - - - - - - - 
20,1614

6 
33,0% 

24,0334
5 

20,1614
6 

33,0% 
20,1614

6 

302 
C4
34 

0,3 (42, 2) - - 7 - - - - - - - - - - - - 
27,4462

4 
40,9% 

33,6469
1 

27,4462
4 

40,9% 
27,4462

4 

303 
C4
34 

0,5 (71, 2) - - 4 - - - - - - - - - - - - 
24,2388

1 
38,3% 

25,9456
8 

24,2388
1 

38,3% 
24,2388

1 

304 
C4
34 

0,5 (71, 2) - - 7 - - - - - - - - - - - - 
31,5312

5 
43,6% 

35,2681
8 

31,5312
5 

43,6% 
31,5312

5 

305 
C4
34 

0,7 (99, 2) - - 4 - - - - - - - - - - - - 
45,5897

4 
52,4% 

47,0737
7 

45,5897
4 

52,4% 
45,5897

4 

306 
C4
34 

0,7 (99, 2) - - 7 - - - - - - - - - - - - 
43,7222

2 
51,9% 

44,8875
3 

43,7222
2 

51,9% 
43,7222

2 

307 
V1
04 

0,3 (46, 2) - - 4 - - - - - - - - - - - - 28,0619 44,7% 
35,3694

2 
28,0619 44,7% 28,0619 

308 
V1
04 

0,3 (46, 2) - - 7 - - - - - - - - - - - - 
20,8970

6 
36,3% 

24,0133
7 

20,8970
6 

36,3% 
20,8970

6 

309 
V1
04 

0,5 (77, 2) - - 4 - - - - - - - - - - - - 
28,1351

4 
41,5% 

31,1614
8 

28,1351
4 

41,5% 
28,1351

4 

310 
V1
04 

0,5 (77, 2) - - 7 - - - - - - - - - - - - 
26,3802

8 
41,6% 

28,1966
7 

26,3802
8 

41,6% 
26,3802

8 

311 
V1
04 

0,7 
(108, 

2) 
- - 4 - - - - - - - - - - - - 

42,9883
7 

53,2% 
43,8946

7 
42,9883

7 
53,2% 

42,9883
7 

312 
V1
04 

0,7 
(108, 

2) 
- - 7 - - - - - - - - - - - - 56,3 65,0% 

57,7020
4 

56,3 65,0% 56,3 

313 
A1
72 

0,3 (18, 2) - - 4 - - - - - - - - - - - - 4,6875 27,1% 
5,40268

6 
4,6875 27,1% 4,6875 

314 
A1
72 

0,3 (18, 2) - - 7 - - - - - - - - - - - - 
5,24324

3 
23,1% 

6,46952
3 

5,24324
3 

23,1% 
5,24324

3 



197 

315 
A1
72 

0,5 (31, 2) - - 4 - - - - - - - - - - - - 
7,25925

9 
29,7% 

7,89948
4 

7,25925
9 

29,7% 
7,25925

9 

316 
A1
72 

0,5 (31, 2) - - 7 - - - - - - - - - - - - 
6,97916

7 
27,5% 

7,54488
1 

6,97916
7 

27,5% 
6,97916

7 

317 
A1
72 

0,7 (43, 2) - - 4 - - - - - - - - - - - - 
8,33333

3 
27,7% 8,50838 

8,33333
3 

27,7% 
8,33333

3 

318 
A1
72 

0,7 (43, 2) - - 7 - - - - - - - - - - - - 
9,04166

7 
28,9% 

9,15971
4 

9,04166
7 

28,9% 
9,04166

7 

319 
M
94
1 

0,3 (30, 2) - - 4 - - - - - - - - - - - - 
8,16911

8 
24,9% 

8,68973
8 

8,16911
8 

24,9% 
8,16911

8 

320 
M
94
1 

0,3 (30, 2) - - 7 - - - - - - - - - - - - 
9,90769

2 
27,1% 

10,3960
6 

9,90769
2 

27,1% 
9,90769

2 

321 
M
94
1 

0,5 (51, 2) - - 4 - - - - - - - - - - - - 
11,4361

7 
28,7% 

11,5393
9 

11,4361
7 

28,7% 
11,4361

7 

322 
M
94
1 

0,5 (51, 2) - - 7 - - - - - - - - - - - - 
11,6931

8 
30,9% 

11,7588
7 

11,6931
8 

30,9% 
11,6931

8 

323 
M
94
1 

0,7 (71, 2) - - 4 - - - - - - - - - - - - 
12,8888

9 
33,3% 

12,9215
8 

12,8888
9 

33,3% 
12,8888

9 

324 
M
94
1 

0,7 (71, 2) - - 7 - - - - - - - - - - - - 14,5 34,5% 
14,5262

8 
14,5 34,5% 14,5 

325 
L4
06 

0,3 (23, 2) - - 4 - - - - - - - - - - - - 
10,1862

7 
24,8% 

11,0230
3 

10,1862
7 

24,8% 
10,1862

7 

326 
L4
06 

0,3 (23, 2) - - 7 - - - - - - - - - - - - 9,5625 24,5% 
10,3112

5 
9,5625 24,5% 9,5625 

327 
L4
06 

0,5 (39, 2) - - 4 - - - - - - - - - - - - 9,7 25,5% 
9,94280

6 
9,7 25,5% 9,7 

328 
L4
06 

0,5 (39, 2) - - 7 - - - - - - - - - - - - 
11,5156

3 
29,0% 

11,7184
4 

11,5156
3 

29,0% 
11,5156

3 



198 

329 
L4
06 

0,7 (54, 2) - - 4 - - - - - - - - - - - - 12,55 27,6% 
12,6243

4 
12,55 27,6% 12,55 

330 
L4
06 

0,7 (54, 2) - - 7 - - - - - - - - - - - - 
12,5588

2 
28,5% 

12,6067
2 

12,5588
2 

28,5% 
12,5588

2 

331 
C9
07 

0,3 (20, 2) - - 4 - - - - - - - - - - - - 
3,31111

1 
15,6% 

3,75893
4 

3,31111
1 

15,6% 
3,31111

1 

332 
C9
07 

0,3 (20, 2) - - 7 - - - - - - - - - - - - 5,5 16,9% 
6,32516

8 
5,5 16,9% 5,5 

333 
C9
07 

0,5 (34, 2) - - 4 - - - - - - - - - - - - 
5,20967

7 
17,0% 

5,43779
6 

5,20967
7 

17,0% 
5,20967

7 

334 
C9
07 

0,5 (34, 2) - - 7 - - - - - - - - - - - - 5,25 15,6% 
5,47714

7 
5,25 15,6% 5,25 

335 
C9
07 

0,7 (48, 2) - - 4 - - - - - - - - - - - - 
7,32352

9 
23,7% 

7,38771
6 

7,32352
9 

23,7% 
7,32352

9 

336 
C9
07 

0,7 (48, 2) - - 7 - - - - - - - - - - - - 
5,03571

4 
14,6% 

5,28097
8 

5,03571
4 

14,6% 
5,03571

4 

337 
M
17
4 

0,3 (26, 2) - - 4 - - - - - - - - - - - - 
18,9298

2 
35,0% 

20,0765
9 

18,9298
2 

35,0% 
18,9298

2 

338 
M
17
4 

0,3 (26, 2) - - 7 - - - - - - - - - - - - 
19,5740

7 
36,5% 

20,5034
6 

19,5740
7 

36,5% 
19,5740

7 

339 
M
17
4 

0,5 (43, 2) - - 4 - - - - - - - - - - - - 23,5625 40,3% 
24,1169

2 
23,5625 40,3% 23,5625 

340 
M
17
4 

0,5 (43, 2) - - 7 - - - - - - - - - - - - 
21,2162

2 
38,1% 

21,5132
1 

21,2162
2 

38,1% 
21,2162

2 

341 
M
17
4 

0,7 (60, 2) - - 4 - - - - - - - - - - - - 
25,3260

9 
41,6% 

25,3389
7 

25,3260
9 

41,6% 
25,3260

9 

342 
M
17
4 

0,7 (60, 2) - - 7 - - - - - - - - - - - - 22,25 37,2% 
22,2555

1 
22,25 37,2% 22,25 
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343 
S2
42 

0,3 (49, 2) - - 4 - - - - - - - - - - - - 21,0045 44,8% 24,031 21,0045 44,8% 21,0045 

344 
S2
42 

0,3 (49, 2) - - 7 - - - - - - - - - - - - 
16,3379

6 
37,5% 

17,7499
1 

16,3379
6 

37,5% 
16,3379

6 

345 
S2
42 

0,5 (82, 2) - - 4 - - - - - - - - - - - - 20,0641 42,4% 
20,8892

1 
20,0641 42,4% 20,0641 

346 
S2
42 

0,5 (82, 2) - - 7 - - - - - - - - - - - - 30,76 52,7% 
34,3365

4 
30,76 52,7% 30,76 

347 
S2
42 

0,7 
(114, 

2) 
- - 4 - - - - - - - - - - - - 

27,3260
9 

49,6% 
28,3775

5 
27,3260

9 
49,6% 

27,3260
9 

348 
S2
42 

0,7 
(114, 

2) 
- - 7 - - - - - - - - - - - - 

36,2674
4 

60,1% 
37,8954

1 
36,2674

4 
60,1% 

36,2674
4 

349 
L8
68 

0,3 (31, 2) - - 4 - - - - - - - - - - - - 7,3 27,7% 
8,62257

2 
7,3 27,7% 7,3 

350 
L8
68 

0,3 (31, 2) - - 7 - - - - - - - - - - - - 
7,96268

7 
29,2% 

9,17515
5 

7,96268
7 

29,2% 
7,96268

7 

351 
L8
68 

0,5 (52, 2) - - 4 - - - - - - - - - - - - 8,22449 31,4% 
8,62950

9 
8,22449 31,4% 8,22449 

352 
L8
68 

0,5 (52, 2) - - 7 - - - - - - - - - - - - 
9,96739

1 
34,0% 

10,7539
2 

9,96739
1 

34,0% 
9,96739

1 

353 
L8
68 

0,7 (73, 2) - - 4 - - - - - - - - - - - - 
13,0178

6 
40,0% 

13,1772
3 

13,0178
6 

40,0% 
13,0178

6 

354 
L8
68 

0,7 (73, 2) - - 7 - - - - - - - - - - - - 12,84 38,8% 
12,9158

5 
12,84 38,8% 12,84 

355 
A7
39 

0,3 (51, 2) - - 4 - - - - - - - - - - - - 
10,5762

7 
25,1% 

10,6958
3 

10,5762
7 

25,1% 
10,5762

7 

356 
A7
39 

0,3 (51, 2) - - 7 - - - - - - - - - - - - 
10,7956

5 
23,7% 

10,9373
9 

10,7956
5 

23,7% 
10,7956

5 

357 
A7
39 

0,5 (86, 2) - - 4 - - - - - - - - - - - - 
14,7108

4 
32,8% 

14,7464
1 

14,7108
4 

32,8% 
14,7108

4 

358 
A7
39 

0,5 (86, 2) - - 7 - - - - - - - - - - - - 11,8625 26,8% 
11,9102

8 
11,8625 26,8% 11,8625 

359 
A7
39 

0,7 
(121, 

2) 
- - 4 - - - - - - - - - - - - 

14,5312
5 

30,0% 
14,5562

4 
14,5312

5 
30,0% 

14,5312
5 



200 

360 
A7
39 

0,7 
(121, 

2) 
- - 7 - - - - - - - - - - - - 14,6 26,8% 

14,6265
5 

14,6 26,8% 14,6 

361 
C6
24 

0,3 (32, 2) - - 4 - - - - - - - - - - - - 2,73 0,29 2,94 2,73 0,29 2,73 

362 
C6
24 

0,3 (32, 2) - - 7 - - - - - - - - - - - - 
6,14705

9 
49,9% 

6,39554
1 

6,14705
9 

49,9% 
6,14705

9 

363 
C6
24 

0,5 (53, 2) - - 4 - - - - - - - - - - - - 3,52 0,36 3,65 3,52 0,36 3,52 

364 
C6
24 

0,5 (53, 2) - - 7 - - - - - - - - - - - - 
4,51063

8 
33,8% 

4,62192
3 

4,51063
8 

33,8% 
4,51063

8 

365 
C6
24 

0,7 (74, 2) - - 4 - - - - - - - - - - - - 2,87931 24,1% 
2,96805

1 
2,87931 24,1% 2,87931 

366 
C6
24 

0,7 (74, 2) - - 7 - - - - - - - - - - - - 
5,23076

9 
31,9% 

5,33583
4 

5,23076
9 

31,9% 
5,23076

9 

367 
A6
76 

0,3 (22, 2) - - 4 - - - - - - - - - - - - 
7,18367

3 
Error 

7,29558
5 

7,18367
3 

Error 
7,18367

3 

368 
A6
76 

0,3 (22, 2) - - 7 - - - - - - - - - - - - 
8,22826

1 
Error 

8,35391
7 

8,22826
1 

Error 
8,22826

1 

369 
A6
76 

0,5 (37, 2) - - 4 - - - - - - - - - - - - 
7,63235

3 
Error 

7,73755
5 

7,63235
3 

Error 
7,63235

3 

370 
A6
76 

0,5 (37, 2) - - 7 - - - - - - - - - - - - 
9,37096

8 
Error 

9,46607
6 

9,37096
8 

Error 
9,37096

8 

371 
A6
76 

0,7 (52, 2) - - 4 - - - - - - - - - - - - 
8,34210

5 
Error 

8,48020
2 

8,34210
5 

Error 
8,34210

5 

372 
A6
76 

0,7 (52, 2) - - 7 - - - - - - - - - - - - 8,25 Error 
8,45089

9 
8,25 Error 8,25 

373 
S1
65 

0,3 (17, 2) - - 4 - - - - - - - - - - - - 
3,81944

4 
46,3% 

3,92835
1 

3,81944
4 

46,3% 
3,81944

4 

374 
S1
65 

0,3 (17, 2) - - 7 - - - - - - - - - - - - 
3,81818

2 
52,2% 

3,99019
4 

3,81818
2 

52,2% 
3,81818

2 

375 
S1
65 

0,5 (28, 2) - - 4 - - - - - - - - - - - - 4,38 53,3% 
4,52133

5 
4,38 53,3% 4,38 

376 
S1
65 

0,5 (28, 2) - - 7 - - - - - - - - - - - - 
5,09090

9 
57,5% 

5,30816
2 

5,09090
9 

57,5% 
5,09090

9 



201 

377 
S1
65 

0,7 (39, 2) - - 4 - - - - - - - - - - - - 
2,96428

6 
24,3% 

3,10480
3 

2,96428
6 

24,3% 
2,96428

6 

378 
S1
65 

0,7 (39, 2) - - 7 - - - - - - - - - - - - 2,50 0,22 2,68 2,50 0,22 2,50 

379 
D3
16 

0,3 (50, 2) - - 4 - - - - - - - - - - - - 17,4646 35,6% 
18,3050

5 
17,4646 35,6% 17,4646 

380 
D3
16 

0,3 (50, 2) - - 7 - - - - - - - - - - - - 
15,1954

5 
29,8% 

15,8761
5 

15,1954
5 

29,8% 
15,1954

5 

381 
D3
16 

0,5 (83, 2) - - 4 - - - - - - - - - - - - 15,95 33,5% 
16,0575

8 
15,95 33,5% 15,95 

382 
D3
16 

0,5 (83, 2) - - 7 - - - - - - - - - - - - 
14,3571

4 
29,5% 

14,6016
3 

14,3571
4 

29,5% 
14,3571

4 

383 
D3
16 

0,7 
(116, 

2) 
- - 4 - - - - - - - - - - - - 

16,3297
9 

32,4% 
16,4329

9 
16,3297

9 
32,4% 

16,3297
9 

384 
D3
16 

0,7 
(116, 

2) 
- - 7 - - - - - - - - - - - - 

17,9886
4 

33,8% 
18,0082

4 
17,9886

4 
33,8% 

17,9886
4 

       9,76 
19,5

% 
12,3

3 
11,6

7 
25,2

% 
13,2

2 
11,3

9 
43,4% 

11,8
3 

11,3
9 

43,4% 
11,3

9 
13,71 84,5% 14,42 13,71 84,5% 13,71 

       VAR VARIMA Local CNN Local LSTM Global CNN Global LSTM 
       0,36 0,3% 0,60 0,68 2,8% 0,88 0,65 0,6% 0,77 0,65 0,6% 0,65 2,50 14,6% 2,68 2,50 14,6% 2,50 

 


