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Abstract
Oliveira, Anderson; Garcia, Alessandro (Advisor); Alves Pereira,
Juliana (Co-Advisor). Unveiling Design Problems Identifica-
tion: Combining Multiple Symptoms. Rio de Janeiro, 2023.
192p. Tese de doutorado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

Software design results from stakeholder decisions made through software
development. Some of these decisions may lead to design problems, nega-
tively impacting non-functional requirements (NFRs). Even though iden-
tifying design problems is crucial, this is a complex task, especially when
the source code is the only artifact available. Along this task, developers
may have to reason about multiple symptoms (e.g., code smells and non-
conformities with NFRs) to identify even a single design problem. In fact,
previous studies suggest that relying on a single symptom may be inade-
quate for the design problem identification. Thus, in this thesis, we investi-
gate the role that the use of multiple symptoms may have on the identifica-
tion of design problems. In our first study, we focused on investigating the
use of well-known code smells (called here maintainability smells) to support
this task. Our results indicated that developers could benefit from this type
of symptom when smell occurrences affect the same program location and
form a pattern; i.e., a set of co-occurring maintainability smells may better
indicate the presence of a design problem. Nevertheless, we also reveal the
limitations of relying solely on this type of symptom, highlighting the need
for additional context. This leads us to the second study, where we investi-
gate an additional type of symptom, robustness smells, and its combined use
with maintainability smells. Our results indicated that the use of both types
of smells can help developers in the identification of design problems mainly
related to bad modularization of the system (e.g. excess of responsibilities
assigned to the same component). Through these two studies, we observed
the need to understand the perspectives and strategies of developers toward
the NFRs of the system. In doing so, we can potentially understand who
are the developers better able to prevent, discuss and identify design pro-
blems. That led us to our third study, where we investigated how developers
discuss and address NFRs in their systems, uncovering common strategies
toward these requirements. These results led us to a more comprehensive
understanding of how developers can combine different symptoms and how
they perceive their significance within their systems.
Keywords

Design Problems; Code Smells; Non-Functional Requirements; Re-
factoring.



Resumo
Oliveira, Anderson; Garcia, Alessandro; Alves Pereira, Juliana.
Compreendendo a Identificação de Problemas de Projeto:
Combinando Multiplos Sintomas. Rio de Janeiro, 2023. 192p.
Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

O projeto de software resulta das decisões ao longo do seu desenvolvimento.
Algumas dessas decisões podem levar a problemas de projeto, afetando ne-
gativamente os requisitos não funcionais (RNFs). Embora seja crucial iden-
tificar esses problemas, essa é uma tarefa complexa, especialmente quando
o código-fonte é o único artefato disponível. Nessa tarefa, os desenvolvedo-
res podem ter que considerar vários sintomas (por exemplo, anomalias de
código) para identificar até mesmo um único problema de projeto. Estudos
anteriores sugerem que usar um único sintoma pode ser inadequado para
identificar tais problemas. Portanto, nesta tese, investigamos como múltiplos
sintomas podem ser usados nessa identificação. Em nosso primeiro estudo,
nos concentramos em investigar o uso de anomalias de código bem conhe-
cidos (anomalias de manutenabilidade). Nós identificamos que os desenvol-
vedores podem se beneficiar desse tipo de sintoma quando as ocorrências
das anomalias afetam a mesma localização do programa e formam um pa-
drão, podendo indicar melhor a presença de um problema de projeto. No
entanto, também revelamos as limitações ao depender exclusivamente desse
tipo de sintoma, destacando a necessidade de contexto adicional. Isso nos
levou ao segundo estudo, onde investigamos um tipo adicional de sintoma,
anomalias de robustez, e seu uso combinado com anumalias de manute-
nabilidade. Nós identificamos que ambos os tipos de anomalia de código
podem ajudar os desenvolvedores na identificação de problemas de projeto
principalmente relacionados à má modularização do sistema. Através desses
dois estudos, observamos a necessidade de compreender as perspectivas e
estratégias dos desenvolvedores em relação aos RNFs do sistema. Ao fazê-lo,
podemos potencialmente entender quem são os desenvolvedores mais capa-
zes de prevenir, discutir e identificar problemas de projeto. Isso nos levou
ao terceiro estudo, onde investigamos como os desenvolvedores discutem e
abordam RNFs em seus sistemas, revelando estratégias comuns em relação
a esses requisitos. Esses resultados nos proporcionaram uma compreensão
mais abrangente de como os desenvolvedores podem combinar diferentes
sintomas e como percebem sua importância dentro de seus sistemas.
Palavras-chave

Problemas de Projeto; Anomalias de Código; Requisitos Não-
Funcionais; Refatoração.
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1
Introduction

Software design results from design decisions stakeholders take during the
software development process (Tang et al. 2010). These decisions can emerge
from multiple sources, such as official meetings, daily discussions, mailing lists
between the developers and stakeholders, and developers’ collaborative repos-
itories (Baker et al. 2011). Brunet et al. show that a considerable part of the
discussions related to the system design are addressed by developers on com-
mits, issues, and pull requests on open-source systems (OSSs) (Brunet et al.
2014). In case design decisions are not taken into account accordingly, they can
negatively affect non-functional requirements (NFRs), such as maintainability
and robustness (Perry and Wolf 1992, Xiao, Cai and Kazman 2014). In that
case, these decisions result in design problems.

A critical set of design problems are those affecting how the system is
organized in terms of components and how these components communicate
with each other (Lippert 2006). The presence of these design problems usually
lead to significant maintenance effort (Garcia et al. 2009b, Schach et al. 2002,
Yamashita and Moonen 2012). An example of a design problem is the so-called
Scattered Concern (Garcia et al. 2013), which consists of multiple components
responsible for realizing the same high-level concern. This responsibility should
be modularly implemented into a single component, following the Single
Responsibility Principle (Martin and Martin 2006).

When these design problems are neglected, the complexity and difficulty
of maintaining the system tend to increase over time (Curtis, Sappid and
Szynkarski 2012). This leads to longer maintenance cycles, increased effort
required for bug fixes or feature additions, and a higher probability of intro-
ducing new design problems during maintenance activities (Oliveira, Valente
and Terra 2016). These factors contribute to an overall increase in the main-
tenance burden, progressively creating higher maintenance costs, resulting in
software discontinuation (MacCormack, Rusnak and Baldwin 2006, Godfrey
and Lee 2000, Schach et al. 2002). To mitigate these negative effects, devel-
opers must identify and remove these design problems as early as possible for
subsequent removal.

However, the identification of design problems is not an easy task.
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Several reasons make this task challenging for developers. One significant
challenge is the lack of reliable and up-to-date design documentation. Design
documentation is a valuable resource for understanding the intended design
and identifying potential design problems more accurately. However, proper
documentation in software projects is often nonexistent or outdated (Kaminski
2007). A complementary challenge for the identification of design problems is
the lack of modularity in the affected software system. Various types of design
problems usually affect multiple elements of a component and/or multiple
inner modules of a component (e.g., classes or packages), thus requiring major
effort from developers to find and inspect all these elements together. This
task becomes even more time-consuming for the developers without proper
knowledge of the system design and without documentation support. Hence,
they are forced to rely almost only on the source code.

Relying on the source code is a practical approach because design
problems often manifest in the software through observable symptoms in the
source code (Sousa et al. 2018). Examples of design problem symptoms include
code smells (Fowler 1999) and non-conformity of NFRs. Developers combine
these symptoms to identify the design problems more confidently (Sousa et al.
2018, Oizumi et al. 2016, Sharma et al. 2020). One example of code smell is
the Feature Envy, which indicates that a method is more interested in data
from another class than the data from its own class (Lanza and Marinescu
2006). This code smell is related to non-conformity with the maintainability
NFR and can indicate a Scattered Concern (Sousa et al. 2020).

There are certain scenarios where multiple maintainability smells appear
together in a certain code location, better reinforcing the presence of a
design problem in that location. A specific combination of smell types may
occur often across software systems. Given their recurring nature, they are
called maintainability smell patterns (Sousa et al. 2020). These patterns may
potentially better indicate the occurrence of a design problem and which
refactoring operations should be performed to remove this problem (Sousa
et al. 2020). Refactoring is a process utilized to fix or improve the degraded
code without changing the program intended behavior (Fowler 1999).

Multiple studies focused on using maintainability smells as the driving
symptom for identifying design problems (Oliveira et al. 2019, Oizumi et al.
2016, Sousa et al. 2018). However, no evidence exists on whether developers
would benefit from patterns of maintainability smells in practice. In addition,
since design problems can be present in multiple system components, the devel-
oper may need more information regarding the context of the class, component,
or system analyzed. By better understanding the context, developers can bet-
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ter anticipate the potential impact of design problems. Therefore, analyzing
multiple symptoms is often necessary to ensure more accurate identification
and complete removal of design problems.

Another possible symptom of design problems is represented by robust-
ness smells (Kechagia and Spinellis 2014, Oliveira et al. 2016), which negatively
impact the error handling part. Robustness is the ability of a program to con-
tinue its execution properly in the presence of an error (Lee et al. 1990). Thus,
robustness code smells occur in the part of the program explicitly using error
handling constructs (e.g., catch clauses in Java)

One example of robustness smell is the empty catch block, which happens
when a method’s catch block is neglected and, thus, its inner code is left empty.
Current studies of design problem identification do not explicitly consider the
exceptional part of the code. While the normal code refers to a program’s
regular or expected behavior, the exceptional code refers to the code that
handles erroneous conditions that can occur during the program execution.
The exceptional code is placed within the catch block. Therefore, while
maintainability smells often manifest in normal code, robustness smells tend to
emerge in exceptional code. Therefore, developers can identify various design
problems by analyzing both types of code smells together instead of solely
focusing on maintainability smells. Addressing maintainability and robustness
smells is essential to ensure the system meets its defined NFRs effectively.
Neglecting these smells can result in non-conformities with their respective
NFRs. This includes the risk of high maintenance costs and inadequate
responses to unexpected behaviors.

Identifying non-conformities with NFRs can be challenging for develop-
ers, primarily when they lack the necessary knowledge about these require-
ments (Lausen 2002). NFRs can often be implicit in the system, which makes
it necessary to infer them from multiple sources, such as discussions on is-
sues and pull requests. Moreover, NFRs can be interdependent, meaning that
changes to one NFR can impact others, making it difficult for inexperienced
developers to fully comprehend these dependencies (Cacho et al. 2014). To
address these challenges effectively, it is crucial to identify how developers
deal with NFRs and understand their best strategies to solve NFR-related
problems. Developers concerned with NFRs are better positioned to identify
potential design problems within the system, as these problems often manifest
as non-conformities with NFRs (Martin and Martin 2006). In this context,
analyzing how experienced developers combine different symptoms to identify
design problems can provide valuable insights to less experienced developers.
Less experienced developers could benefit from tools that, besides detecting
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multiple symptoms, also combine them for revealing design problems (Sousa
et al. 2018).

In the following section, we present a hypothetical motivating example
about (i) how developers can benefit from the identification of multiple
symptoms to identify design problems correctly; and (ii) the importance of
naming experienced developers to identify and remove such problems.

1.1
Motivating Example

Let us consider a software application called ManagementSystem, which
manages book loans and sales. After a few years of development, developers
observed that significant effort was required to maintain and evolve the system.
Although the developers were aware of the presence of maintainability smells
affecting multiple classes, they found it difficult to identify them, and more
importantly, they were unsure which specific elements (e.g., classes or methods)
and smells to prioritize and address with their efforts.

Figure 1.1 illustrates a UML-based representation of a certain part of the
system. The class Book in this system has multiple issues. Some of these issues
are maintainability code smells, which are presented by smell rectangles in red
in the figure. Firstly, the sell() method updates data from the Client and
Contract classes at the same time, violating the Single Responsibility Principle
(SRP) (Martin and Martin 2006). This method also accesses data from these
two classes, configuring the occurrence of a Feature Envy (FE) smell (Lanza
and Marinescu 2006).

Repository

ContractClient Seller

Book

+ sell (client: Client, Contract: contract)

+ returnBook (seller: Seller, Contract: contract)

+ transferOwnernship (currentOwner: Client, newOwner: Client,
db: Database)

FE

SS

LM

GC

FE

IC

Transactions

Database

 Legenda

 FE: Feature Envy
 GC: God Class
 IC: Intensive Coupling
 LM: Long Method
 SS: Shotgun Surgery
 -- >: Strong Coupling

Figure 1.1: Maintainability Smells Affecting the ManagementSystem Project

The returnBook() method, besides violating the SRP, is also affected by
Shotgun Surgery (SS) (Fowler 1999) and a Feature Envy (FE) maintainability
smells. The SS smell indicates that if any of the logic changes within the
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method, multiple changes have to be carried out in other classes: Seller and
Contract in this particular case. Meanwhile, the FE smell indicates that the
method is more interested in data from other classes than inner data from
the class where the method is declared. The method transferOwnership()
contains an Intensive Coupling (IC) (Buschmann et al. 1996) as it directly
manipulates the Client object. In addition, this method uses the Database
class, which is part of another component of the system, the Transactions
component.

Finally, the Book class is a God Class (GC) (Fowler 1999) due to its
high complexity and multiple unrelated responsibilities that are performed.
Combining all these maintainability smells, they are part of a pattern that
indicates the presence of the Concern Overload design problem (Sousa et al.
2020). In this particular situation, a less experienced developer or someone less
familiar with system design might not have full confidence in identifying this
design problem. They may lack sufficient context to determine if this problem
genuinely exists within the system. Additional information, such as the purpose
of the class and methods, is necessary to make a proper identification.

Furthermore, the developer could have the necessary context by perform-
ing a more in-depth analysis of the methods within the system. In this scenario,
robustness smells also affected key methods in addition to the aforementioned
maintainability smells. Figure 1.2 shows the exception handling part of the
method sell(). Any exceptions that might occur when setting the seller at-
tribute are caught; however, only a message is logged. In that case, the method
is affected by two robustness smells, the Generic Catch and Empty Catch Block.
This happens because the class has multiple concerns, making it difficult for
the developer to handle all the exceptions that these concerns require. There-
fore, they use a generic catch and leave the catch block empty. These smells
can hide errors and make identifying problems in the code difficult.

public void sell(Seller seller) {
  try{
    this.seller = seller;
    ...
  }catch (Exception e) {
    logger.log("Error setting seller");
  }
} 

Figure 1.2: Robustness Smells Generic Catch and Empty Catch Block Affecting
the sell() method

By observing all the smells in the sell() method (i.e. Feature Envy,
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Generic Catch, and Empty Catch Block), and that the class is a God Class,
the developer can have more confidence in pinpointing the presence of the
Concern Overload design problem. This is a scenario where, by pointing out
to developers even the simplest code symptom, such as a Catch Generic
Exception, combined with (patterns of) maintainability smells, inexperienced
developers could have more confidence in identifying a design problem.

Developers will likely struggle to identify and effectively remove design
problems without proper knowledge of the system’s structure. They may not
completely understand the context in which the class is being used and its de-
pendencies with other classes and components. Hence, they can inadvertently
introduce new design problems, affecting other related components. Thus, as-
sisting developers with recommendations regarding key code elements and their
corresponding maintainability and robustness smells will enable them to make
informed decisions. In addition, it is still important that they gather more
knowledge of the system design, which can be obtained with the help of expe-
rienced developers.

1.2
Problem Statement

The identification of design problems can be a difficult task. Develop-
ers need to understand well the system architecture, and the lack of proper
documentation makes the task even harder (see Section 1.1). Therefore, devel-
opers use code smells as a driving source for identifying design problems (Ya-
mashita and Moonen 2013, Sousa et al. 2018). Thus, previous empirical studies
investigated whether maintainability code smells are related to design prob-
lems (Fontana et al. 2019, Martins 2020, Oizumi et al. 2016, Oizumi et al.
2015, Moha, Gueheneuc and Leduc 2006, Moha et al. 2010, Macia et al.
2012b, Macia 2013, Vidal et al. 2016).

When specific code smells appear together, they form a pattern. These
patterns may be used in the identification of certain design problems (Sousa et
al. 2020). For instance, when the maintainability smells God Class, Intensive
Coupling, Long Method, Feature Envy appear together, they are likely to
indicate a Concern Overload design problem (see Section 1.1). This happens
due to the nature of these smells, which combined indicate that the class
and/or method is fulfilling too many responsibilities that should be better
modularized. Then, a developer becoming aware of this smell pattern could
now promptly identify the occurrence of the Concern Overload design problem.
In addition, the information about a smell pattern occurrence can be used to
select proper code refactoring actions (Fowler 1999). These refactorings can be



Chapter 1. Introduction 20

used to reduce or remove these design problems. For instance, Feature Envy
smell is commonly associated with the refactorings Move Method, Move Field,
and Extract Field (Fowler 1999) (see Section 2.4) However, we still do not
have evidence of whether developers could benefit by using smell patterns in
practice. Given this context, we define our first research problem.

Research Problem 1. The extent to which developers can benefit
from the use of smell patterns in the identification and removal of design
problems is unknown.

Maintainability smells are more popularly known and empirically stud-
ied, but they are only one of the multiple symptoms of design problems (Sousa
et al. 2017). Thus, the sole use of maintainability smell patterns may not be
enough to identify certain design problems (see Section 1.1). In this research,
we focus on investigating robustness smells and how these two types of smells
can complement each other to identify design problems.

Previous studies do not explore the combination of maintainability
and robustness smells for the purpose of identifying design problems effec-
tively (Oizumi et al. 2016, Sousa et al. 2018, Sousa et al. 2020). Thus, our
study aims to understand how changes in the exceptional code combined with
maintainability smells can lead to or point out design problems. Hence, we
defined our second research problem.

Research Problem 2. The extent to which robustness smells can
be combined with maintainability smells for the identification of design
problems is unknown.

In addition to robustness and maintainability smells, the non-conformity
of NFRs in a system is another symptom of design problems (Sousa et
al. 2018). A non-conformity emerges when a NFR, defined in the early
stages of the software system, does not meet the requirements expected
(e.g., specific thresholds to define acceptable performance). Developers could
use the requirements documentation to ensure the system meets the NFRs
defined. However, NFRs’ documentation is often neglected (Bhowmik et al.
2019, Chung et al. 2012, Scacchi 2009). In this scenario, it becomes important
to understand developers’ strategies and practices to manage NFRs in their
systems.

Even though other studies explored how developers perceive NFRs in
their systems (Ameller et al. 2012, Glinz 2007), they do not consider their best
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practices for handling NFRs and how they discuss such requirements. There-
fore, this thesis aims to investigate developers’ best practices and strategies
when dealing with NFRs. To achieve that, we need also to understand how
the developers discuss the NFRs in their systems. In addition, developers’ dis-
cussions can help us understand whether developers are truly concerned with
NFRs in a software system. Hence, we defined our third research problem.

Research Problem 3. How developers discuss and address Non-
Functional Requirements (NFRs) throughout the project’s development
stages is unknown.

By exploring these three research problems, we aim to better support the
developers in identifying design problems through reasoning about multiple
and diverse symptoms. Thus, one can prevent new design problems in the
system and help further investigate such problems. Therefore, our main goal
is to understand how developers can use and combine multiple symptoms to
identify and address design problems.

General Problem. How developers use multiple and diverse symp-
toms for identifying design problems is still unknown.

A widely studied type of symptom of design problems is the
maintainability-related code smells (Sousa et al. 2020, Oizumi et al.
2020, Oliveira et al. 2019). While there are state-of-the-art tools to de-
tect maintainability smells (Oizumi et al. 2015) and to partially assist the
task of identifying design problems, there is a need to investigate other types
of design problem symptoms. In this context, robustness smells can give more
confidence to developers and reduce their efforts along this task. In addition,
understanding how developers deal with NFRs, including robustness and
maintainability, may help one to prevent system design problems. However,
we still do not know how the developers can use multiple symptoms and how
they discuss and address NFRs in their systems. Hence, we defined our general
problem above.

1.3
Goal and Research Questions

As aforementioned, identifying design problems is not trivial (Sec-
tion 1.1). To support the developer in the identification of design problems
effectively, it is crucial to understand how they may use multiple and diverse
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symptoms along this task. In particular, we need to characterize who are the
developers more likely to deal with such symptoms. Understanding the exper-
tise of developers in solving design problems enables effective task management
within a development team. By assigning the most experienced developers to
address specific design problems, resource allocation can be optimized, leading
to increased productivity and efficient problem resolution. In addition, by ana-
lyzing these experts individually, we can provide insights into potential process
improvement, where additional tooling and automation can be proposed to as-
sist less experienced developers. Given this scenario, the goal of this thesis is
stated as follows.

Goal. Support developers on the identification of design problems
by combining multiple and diverse symptoms

In Figure 1.3, we present an overview of the goal, contributions, and re-
search questions of this thesis. The arrows represent the relationships between
the research questions, their respective contributions, and how they relate to
our main goal. For each research question, we also present the chapter where
the study is detailed.

identifies

identifies

How do developers benefit from using
maintainability smell patterns (RQ. 1)

identifies

How can robustness smells be
combined with maintainability smell

patterns ? (RQ. 2)

motivates

Limitations of using only one symptom

identifies

identifies

How do developers discuss and address
NFRs within their systems (RQ. 3)

contributes to

How developers avoid non-conformities
with NFRs

Strageties applied by developers to
avoid non-conformities with NFRs

contributes to

Robustness smells that can complement
the maintainability smells patterns

contributes to

Most useful patterns that can be used by
developers

Support developers on the identification of design problems

Goal Contributions Research Questions

Legend

Chapter 3 Chapter 4 Chapter 5

Figure 1.3: Overview of the Contributions of this Thesis

To accomplish our goal, we defined three research questions aligned with
our identified research problems (see Section 1.2). For each research question,
we defined a specific goal to be met. Our first goal is to understand how devel-
opers can use the maintainability smell patterns to identify design problems in
their systems. For that purpose, we conducted a quasi-experiment (Shadish,
Cook and Campbell 2001) to investigate developers’ ability to identify design
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problems in their software systems by using different sets of scenarios with
smell patterns. We defined the first research question (RQ. 1 ) to address this
goal.

RQ. 1 How do developers benefit from using maintainability smell
patterns to identify design problems in practice?

To answer RQ. 1, we defined two steps. As the first step, we aimed to
understand how experienced developers used maintainability smell patterns.
Thus, we asked developers to identify design problems in their software
systems. For that purpose, we developed a tool that presented the developers
with the patterns of maintainability smells and their respective refactorings.
Specifically, the developers were asked to identify design problems in three
different scenarios.

In the first scenario, they used a “single-smell pattern”. For instance,
the design problem Incomplete Abstraction can be indicated by a Lazy Class
maintainability smell. In the second scenario, they used “multiple-smells
patterns”. In this case, for instance, the design problem Cyclic Dependency can
be indicated by two maintainability smells: Intensive Coupling and Shotgun
Surgery. In the last scenario, they used a combination of other maintainability
smells (Others).

After collecting the data from this task, both quantitative and qualitative
analyses were conducted. We applied the statistical test One-Way ANOVA
(Shaw and Mitchell-Olds 1993) and Chi-Square Test (McHugh 2013) for our
quantitative analysis. The One-Way ANOVA was used for comparing the
use of different scenarios (multiple smell patterns, single-smell pattern, and
others) by the same group of participants. We applied the Chi-Square to
compare the different groups of responses regarding the proportion of smell
patterns that indicated design problems and smell patterns that indicated
other types of problems. In the qualitative analysis, we systematically analyzed
the descriptive responses given by the developers when analyzing each scenario
with a set of smell patterns.

As the second step, we observed how developers employed the suggested
refactorings provided by the tool support. We decided to analyze this since the
next step after identifying design problems is to remove them, which can be
accomplished through the use of refactorings (Fowler 1999). Beyond showing
developer information about metrics and maintainability smells (see Chap-
ter 2), we show refactoring recommendations for each maintainability smell
(see Section 2.5.2). Finally, we asked the developers their perceptions on how
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the recommended refactorings could effectively remove the identified design
problems. The purpose was to understand the scenarios where developers ac-
cepted, partially accepted, or rejected the suggested refactorings.

Furthermore, we investigate other factors the developers could use to
complement the maintainability smell patterns. We hypothesize that the ro-
bustness smells can be combined with these patterns to identify design prob-
lems (Section 1.1). This way, we defined our second goal: understand how ro-
bustness smells can be combined with maintainability smells as complementary
symptoms of design problems. With this goal in mind, we defined our second
research question (RQ. 2 ).

RQ. 2 How can robustness smells be combined with maintainability
smell patterns to identify design problems?

To answer RQ. 2, we analyzed over 160k methods from 10 OSSs. We
start the analysis by collecting maintainability smells, robustness smells, and
robustness changes (e.g., changes made within the catch block) from commits
between selected pairs of releases within those systems. To answer this research
question, we defined three steps. First, we analyzed the correlation between
robustness changes and maintainability smells, using Fisher’s exact test (Fisher
1922). To conduct this test, we grouped the methods based on two factors:
(i) the robustness changes they underwent between two releases and (ii) the
presence of maintainability smells in these methods (see Section 4.4).

In the second step, we investigated whether the robustness changes
performed on methods resulted in the degradation of the classes with methods
that underwent such changes. This degradation is measured as the number of
maintainability smells present in the method (Sousa et al. 2018). In the third
step, we investigated how poor robustness changes can be used as symptoms of
design problems. These poor robustness changes are signaled by the presence
of robustness smells, such as the empty catch block.

Once we understand how developers can use multiple symptoms to
identify design problems, we now want to understand how they deal with NFRs
in their systems. Thus, we defined our third goal: document best practices and
strategies of developers who discuss and address NFRs within their systems.
With this goal in mind, we defined our third research question (RQ. 3 ).

RQ. 3 How do developers discuss and address NFRs within their
systems?
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To answer RQ. 3, we first explored Pull Requests (PRs) discussions since
it is a common mechanism used by developers to discuss new features and
improvements in their systems (Soares et al. 2015, Gousios et al. 2014, Gousios
et al. 2015, Jiang et al. 2021). To perform this analysis, we manually classified
1,533 PRs from 3 OSSs within the Spring Ecosystem1. We selected this
ecosystem due to its diversity of features and services (Cosmina et al. 2017)
and its active discussions through PRs. To select the NFRs that we would
focus on, we performed an analysis to observe the most prominent ones in
the systems analyzed. Therefore, we focused on four NFRs maintainability,
robustness, performance, and security.

To understand the discussions related to these four NFRs, we followed
a well-structured procedure to perform the manual classification of PRs. We
identified in each PR discussion: (i) the presence of the NFR type addressed,
(ii) the location in the PR where the discussions about NFR are triggered, (iii)
keywords mentioned in the discussion, and (iv) the main message addressing
the NFR. That procedure allowed us to characterize the PRs and identify
developers involved in the discussions. To define the developers we would
analyze, we identified 63 developers who were more engaged in PR discussions.
We investigated the characteristics of each one of these developers, searching
for their common activities. To complement our analysis, we surveyed 44
developers regarding their perceptions and actions towards NFRs in their
systems.

To summarize, by addressing the first two research questions, we aim to
gain insights into how developers use maintainability smell patterns combined
with robustness smells to identify design problems in practice. Furthermore,
in the third research question, we explored how developers discuss and address
NFRs in their systems, including robustness and maintainability. By docu-
menting their experience and skills regarding the NFRs, we can prevent future
design problems and help newcomers on identifying and dealing with them.
In addition, by understanding how developers use these multiple symptoms,
we can offer insights into the development of tools for the identification of de-
sign problems. Thus, we enable advancements in state-of-the-art automation
support in identifying design problems by considering code smells and NFRs.

1.4
Main Findings

With this thesis, we aim to support developers in identifying design prob-
lems by combining multiple symptoms (e.g., maintainability and robustness

1Spring | Home, https://spring.io/, Accessed on 10/21/2022

https://spring.io/
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smells, and non-conformity with NFRs). Next, we highlight the key findings
we obtained for each research question defined in Section 1.3.

RQ. 1: How do developers benefit from using maintainability smell pat-
terns to identify design problems in practice? We verified whether devel-
opers could benefit from using maintainability smell patterns in practice. We
observed that developers generally agree that maintainability smell patterns
can indicate design problems. This agreement is influenced by various factors,
such as the development platform (e.g., Android) and the level of effort re-
quired to refactor and remove the problem. The developers also indicated that
the information provided regarding the maintainability smell patterns may be
insufficient for more complex problems, such as design problems that affect
multiple modules. This also led them to partially accept the refactorings rec-
ommended/suggested for the design problem removal. Therefore, these results
indicated that more contextual information is needed for more efficient identi-
fication and removal of design problems (see Section 3.4).

RQ. 2: How can robustness smells be combined with maintainability
smell patterns to identify design problems? We verified whether robustness
smells could be combined with the maintainability smell patterns to support
the identification of design problems. We first observed that maintainability
smells commonly co-occur with robustness changes, even when these changes
are small. Moreover, we also observed cases when the maintainability smells
were introduced and how this smell introduction was related to the robustness
change performed in the method.

When analyzing the impact of robustness changes on the maintainability
smells, we analyzed the density of maintainability smells (i.e., the number of
smells in the method(s) affected by the change). This can information indi-
cate the structural degradation level of a method. We found that robustness
changes can have an unsatisfactory effect on classes with methods affected
by those changes, which leads to a higher density of maintainability smells.
Developers often rely on this increased density of smells to identify classes
with potential design problems. The introduction or further deterioration of
the smelly code was primarily related to maintainability smells that indicate
design problems with the system’s modularity. These findings suggest a high
correlation between robustness changes and the presence multiple maintain-
ability smells, emphasizing the importance of considering the interplay between
them in effectively identifying and addressing design problems.

Finally, we analyzed the co-occurrence of robustness smells and maintain-
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ability smell patterns. We aimed to identify which specific robustness smells
could complement these patterns in identifying design problems. In particular,
we observed that the robustness smells catch generic exception and empty catch
block co-occurred with maintainability smells more often. By manually ana-
lyzing these cases, we observed that generic and empty catches could indicate
the presence of maintainability smell patterns (see Section 4.5).

RQ. 3: How do developers discuss and address NFRs within their systems?
To address this question, we explored how developers discuss and address
design problems in their systems. First, we investigated the dataset of 1,533 PR
discussions manually labeled by seven specialists. This investigation showed
that discussions about NFRs are typically triggered on the PR title or
description (77% of the cases). That brings us to the fact that developers
are aware and concerned about these NFRs before opening the PR. This can
be important, especially to identify who are these developers opening the PRs,
since they might be the ones with more knowledge on NFRs.

To better understand the developers engaged in discussions about NFRs,
we analyzed 63 members of the repository. For this purpose, we investigated
their characteristics, network, and participation in the discussions. We ob-
served that these developers were central contributors to the systems, highly
participating in tasks such as commits, reviews, and refactorings. Furthermore,
we observed that these developers played central roles related to NFRs in their
companies. For instance, a developer who discussed more security-related prob-
lems was the Senior Security Engineer from his company. This suggests that
discussions regarding NFRs have the potential to bring the attention of expe-
rienced developers in the OSS community.

To complement our analysis of NFR discussions, we ran a survey with 44
developers. Through this survey, we identified the reasons behind developers’
participation in NFR discussions. The majority of developers emphasized the
impact that NFRs have on software quality (e.g. performance improvements).
That was also related to the mitigation of risks that could emerge when an NFR
was neglected, such as increasing maintenance costs over time. According to the
developers, the discussions usually occur in multiple phases of the development
process, with a special focus on the design and test phases.

Regarding how the developers addressed the NFRs, they mentioned that
collaboration with other team members was one of the more important aspects
of this task. They also highlighted the use of automated tools combined with
practices, such as continuous integration, to identify and address the NFRs
in the system. Among the challenges when dealing with NFRs, the main ones
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were the lack of documentation regarding NFRs and how to deal with trade-offs
between the NFRs (e.g. decrease the performance to increase security).

When we look at the specialists that handle the NFRs in the systems,
the developers mentioned that, usually, there was no such role in the company.
Instead, the NFR was usually handled by engineers and architects with
expertise in specific NFR domains vs. types of NFR, such as security and
performance. However, we also observed a case with a team specialized in
the systems’ NFRs. However, this team was assigned to deal with NFRs from
different projects within the company.

Through these research questions, we observed some strategies develop-
ers could adopt to address NFRs. The NFR should be treated with as much
priority as other requirements, with a focus on the discussion with other team
members. The adequacy of NFR with the system objectives can be accom-
plished using technologies that have already received market approval, which
can be improved with practices such as continuous integration. In addition,
developers highlighted the importance of updating NFR documentation with
their main concerns and best practices and making it available for any team
member.

Our findings gave us insights into how developers use maintainability
smell patterns in real-world scenarios and the limitations of using only this
smell to identify design problems. Additionally, we observed how robustness
smells could be combined with maintainability smell patterns to assist develop-
ers better. Finally, we investigated how developers discuss and address NFRs,
looking for their best strategies to avoid design problems.

1.5
Collaborations and Publications

During my Ph.D. research, I collaborated with multiple researchers on
studies that are directly or indirectly related to the thesis. In addition to
the collaborations with colleagues from Opus Research Group, part of the
Software Engineering Laboratory (LES), I also worked with researchers from
Carnegie Mellon University, Johannes Kepler University Linz (JKU), and
Federal University of Alagoas (UFAL). Table 1.1 presents all the publications I
(co-)authored during my PhD. The first row refers to a paper under submission
and is presented as the content of Chapter 5. The second row refers to the study
presented in Chapter 4, published in the 2023 edition of the International
Conference on Mining Software Repositories (MSR). The third row refers to
the study reported in Chapter 3 and published in the 2022 edition of the
Brazilian Symposium on Software Engineering (SBES). The remaining rows
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Table 1.1: Direct and Indirect Contributions of this Thesis
Paper Qualis
Oliveira et al.: Understanding Discussions on Non-Functional Requirements:
The Case of the Spring Ecosystem [Submitted to a leading conference in Software Engineering] A1

Oliveira et al.: Don’t Forget the Exception! Considering Robustness Changes to
Identify Design Problems - 20th International Conference on Mining Software Repositories (MSR ’23) A1

Oliveira et al.: Smell Patterns as Indicators of Design Degradation:
Do Developers Agree? - 36th Brazilian Symposium on Software Engineering (SBES ’22) A3

Uchôa et al.: Predicting Design Impactful Changes in Modern Code Review:
A Large-Scale Empirical Study - 18th International Conference on Mining Software Repositories (MSR ’21) A1

Soares et al.: On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns - 34th Brazilian Symposium on Software Engineering (SBES ’20) A3

Sousa et al.: Characterizing and Identifying Composite Refactorings:
Concepts, Heuristics, and Patterns - 17th International Conference on Mining Softwre Repositories (MSR ’20) A1

Oizumi et al.: Recommending Composite Refactorings for Smell Removal:
Heuristics and Evaluation - 34th Brazilian Symposium on Software Engineering (SBES ’20)
[Distinguished Paper Award]

A3

Oliveira et al.: Atoms of Confusion:
The Eyes Do Not Lie - 34th Brazilian Symposium on Software Engineering (SBES ’20) A3

Bibiano et al.: Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects - 37th International Conference on Software Evolution (ICSME ’21) A2

Sousa et al.: When Are Smells Indicators of Architectural Refactoring Opportunities:
A Study of 50 Software Projects - 28th International Conference on Program Comprehension (ICPC ’20) A3

Bibiano et al.: How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? - 28th International Conference on Program Comprehension (ICPC ’20) A3

Oizumi et al.: On the Density and Diversity of Degradation Symptoms in Refactored Classes:
A Multi-case Study - 30th International Symposium on Software Reliability Engineering (ISSRE ’19) A3

Eposhi et al..: Removal of design problems through refactorings: Are we looking at the right
symptoms? - 27th International Conference on Program Comprehension (ICPC ’19) - Negative Results Track A3

are studies either directly or indirectly related to this thesis.

1.6
Thesis Outline

This chapter provides an overview of this thesis. This thesis is structured
as a compilation of three papers that have been published during the course of
this Ph.D. research. Each paper contributes to addressing a specific research
question presented here in this introductory chapter. Chapters 3, 4, and 5
will detail the study reported in each paper, providing in-depth discussions,
analyses, and results for the questions addressed in this Doctoral Research.

The chapters are organized as follows. Chapter 2 presents the back-
ground and related work of this thesis. Chapter 3 presents the study to
answer our RQ. 1, where we explored how developers can use maintainability
smell patterns to identify and remove design problems. Chapter 4 presents
the study to answer our RQ. 2, where we explored how robustness smells can be
combined with maintainability smells for a more comprehensive design prob-
lem identification. Chapter 5 presents the study to answer our RQ. 3, where
we investigated how developers deal with NFRs in their systems. Chapter 6
presents the conclusions we reached and the future work based on our results.
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Background and Related Work

This section presents the background and related work of this thesis. In
the next sections, we provide the terminologies used throughout the chapters.
Then, we present an overview of the state of the art, where the limitations
and gaps in the current literature are thoroughly described. This chapter is
structured around the following sections. Section 2.1 discusses the relation
between software design and NFRs. Section 2.2 discusses and lists the design
problems that will be explored in this thesis. Section 2.3 presents the symptoms
of design problems. Section 2.4 presents how refactorings can be used to remove
design problems. Section 2.5 presents the related work.

2.1
Software Design and Non-Functional Requirements Discussions

Software design results from multiple design decisions taken during
software development (Tang et al. 2010). These decisions include the process
of defining the characteristics that satisfy non-functional requirements (NFRs)
defined for the system (Bass et al. 2003, Booch et al. 2005, Taylor et al. 2009,
Sousa et al. 2018). Examples of NFRs include maintainability, robustness, and
security (ISO-IEC 25010 2011).

The software design process can be divided into two main stages. The first
stage is the early software design. In this stage, the stakeholders discuss and
understand the problem domain, creating a high-level system structure (Booch
et al. 2005, Taylor et al. 2009). At this point, the system is divided into
components, interfaces, and how they communicate with each other.

The second stage is called detailed design. This stage concerns the spe-
cific decisions regarding implfhoementing each component and its interac-
tions (Booch et al. 2005, Taylor et al. 2009). The decisions taken in this stage
will address the NFRs that the system should satisfy. For instance, a design
that considers the exceptional part of the code will be prepared to handle cer-
tain types of inputs or unexpected events that the system may face (Robillard
2000). Therefore, a carefully planned design that considers this aspect will
guarantee a more robust software system. In addition, given the NFR impor-
tance for software evolution, stakeholders should specify them in requirement
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documents, ideally during the early stages of the software development.
However, the requirements documentation often focuses on the system’s

functional requirements, missing details on the system’ NFRs (Cleland-Huang
et al. 2007). This lack of NFR documentation can negatively impact the
system maintenance and evolution (Robiolo et al. 2019). Hence, studies have
explored how to automatically identify the NFRs in the systems based on
the available artifacts. Bikhonain and Zao have performed a review of the
available techniques for the identification of NFRs using natural language
processing (NLP) combined with machine learning techniques (Binkhonain
and Zhao 2019).

The authors identified a series of limitations on these techniques. For
instance, there is a lack of training data and few shared datasets. Furthermore,
there is no consensus on the definition, classification, and representation of
the NFRs, which causes a diverse range of terms to define the NFRs. Such
problems make creating machine learning models challenging since they can
be trained and used only for specific purposes. Hence, in this thesis, we could
not rely on these techniques to identify the NFRs and use them in our analysis.
Therefore, we created our own dataset of NFRs (Section 5.3.2). This dataset
was composed of discussions from a common resource employed by developers
in OSSs, the pull requests (Soares et al. 2015).

Pull Requests (PRs) discussions are an important mechanism used by
developers to discuss the needs of the system, such as new features and
maintenance tasks (Gousios et al. 2014). This thesis focuses on PR discussions
since they can be used to discuss the system’s requirements and design (Gousios
et al. 2014, Barbosa et al. 2020). A PR discussion is composed of a title, a
description, and the comments of other team members (Liu et al. 2019). In this
approach, the PR author starts a discussion by proposing a change or reporting
some problem within the system. Once started, other team members can
discuss the proposed change or compromise themselves to solve the problem.
These discussions can also emerge code reviews made by more experienced
developers in the system (Silva et al. 2016, Zanaty et al. 2018).

PR discussions can bridge the NFRs defined for the project and its
current implementation. When more experienced team members engage in
discussions regarding NFRs, they end up sharing their knowledge with the
rest of the team participating in the discussion. This can help newcomers learn
with experienced developers how to address NFR tasks in the systems. It can
also help newcomers deal with problems that can emerge due to bad design
decisions early in the system.
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2.2
Design Problems

Design Problems result from design decisions that negatively impact the
NFRs of the systems (Garcia et al. 2009b). The most critical design problems
are the ones that affect how a system is divided into modules and how these
modules communicate (MacCormack, Rusnak and Baldwin 2006, Godfrey and
Lee 2000, Schach et al. 2002, Gurp and Bosch 2002).

Design problems related to the software system modularity are often
associated with high maintenance effort (Schach et al. 2002, Garcia et al.
2009b, Yamashita and Moonen 2012, Sousa et al. 2018). In fact, these problems
can even lead to the software system’s complete discontinuation or complete
redesign (Godfrey and Lee 2000, Gurp and Bosch 2002, MacCormack, Rusnak
and Baldwin 2006). In addition, this kind of design problem often affects
multiple software system components, making identifying these problems a
time-consuming task.

Developers could use the system design documentation to identify possi-
ble problems. However, most software systems do not offer detailed documen-
tation of the design decisions in the system. Therefore, developers need to rely
on analyzing code elements that can be affected by design problems.

This thesis explores the catalog of design problems presented in Table 2.1.
This catalog covers different types of design problems related to (i) abstrac-
tions, (ii) dependencies, and (iii) separation of concerns (Sousa et al. 2018).
Following, we describe each of these design problems.

– Ambiguous Interface: This design problem happens when the inter-
face of a component is ambiguous and has non-cohesive services (Sousa
2018). It commonly occurs in systems where component interfaces in-
clude public methods with generic types as parameters. Such a problem
may hamper the error handling of a system. This happens when the ex-
ceptional interface is not properly defined without clear messages, forcing
developers to use generic exception-handling mechanisms.

– Cyclic Dependency: This design problem happens when a stakeholder
creates dependencies that create cycles. In this scenario, the components
depend on each other in a circular manner (Parnas 1978). As the software
evolves, this kind of design problem can make it difficult to track and
manage these dependencies. Furthermore, this design problem can nega-
tively impact the understandability, testability, reusability, and maintain-
ability of the software system (Parnas 1972). These cyclic dependencies
can also impact the exception handling performed in the classes within
these components.
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– Unwanted Dependency: This design problem happens when the
stakeholders create dependencies in the software system that violates
the design decisions previously defined (Perry and Wolf 1992). This
design problem can hamper the changeability of the system, reducing
its maintainability and testability. In addition, it can lead to incorrect
exception handling in the code since a component can be dependent on
another component with a different type of error handling. It can make
exception handling more complex.

– Concern Overload: This design problem occurs when a component is
responsible for realizing multiple concerns (Macia 2013). This kind of de-
sign problem can make it difficult for the developer to understand which
concerns they should focus on. Hence, the proper exception-handling
logic may not be adequate in this scenario. In addition, this design prob-
lem can also lead the system to irrecoverability from faults, increasing
the maintenance costs and speeding up the software erosion (Gurp and
Bosch 2002, MacCormack, Rusnak and Baldwin 2006, Curtis, Sappid and
Szynkarski 2012).

– Fat Interface: This design problem is a specialization of the Concern
Overload. It also violates the separation of concerns principle. It happens
when the stakeholders design the interface for more than one unrelated
concern (Martin and Martin 2006). This kind of problem can hamper the
system’s extensibility, understandability, and testability (Sousa 2018). In
addition, similar to the Concern Overload, this kind of design problem
can hamper the quality of the exception-handling logic. This is the case
since the developer must evaluate multiple components before applying
any mechanism.

– Scattered Concern: This design problem happens when the stakehold-
ers decompose the system into dependent components rather than inde-
pendent ones (Parnas 1978, Dijkstra 1997). It can cause issues in the
code, such as duplicated code, hampering the readability and maintain-
ability of the software system. In addition, if the concerns are not prop-
erly separated, it may make it difficult for the stakeholders to guarantee
the security and performance of the system.

– Misplaced Concern: This design problem happens when a stakeholder
creates an abstraction that addresses a concern that is not the predomi-
nant one in its own component. As a consequence, the module with this
design problem will face other design problems such as Concern Overload
or Scattered Concern (Sousa 2018). The presence of this design problem
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Table 2.1: Design Problems Description
Type Design Problem Description

Abstraction Ambiguous Interface It refers to interfaces representing the abstraction that
does not reveal which services it offers.

Cyclic Dependency Two or more components that directly or indirectly
depend on each otherDependency Unwanted Dependency Dependency that violates an intended design rule

Concern Overload Abstraction that fulfills too many concerns
Fat Interface Interface with multiple non-cohesive services

Misplaced Concern An element that implements a concern, which is not
the predominant one of their enclosing componentSeparation of Concerns

Scattered Concern Multiple components responsible for realizing a
crosscutting concern

may be a signal that one NFR is prioritized excessively over others. For
instance, focusing only on performance may make the system poorly
scalable.

We chose these design problems for the following reasons. First, identi-
fying these design problems can be difficult, as they may not be immediately
apparent during the design or development process. Second, as described, all
of them clearly impact multiple NFRs of the system. Furthermore, neglecting
these design problems can lead the software to high maintenance costs or even
its discontinuation (Gurp and Bosch 2002, MacCormack, Rusnak and Baldwin
2006, Curtis, Sappid and Szynkarski 2012). Therefore, it is important to iden-
tify them as early as possible. In that scenario, developers can benefit from
using design problem symptoms.

2.3
Design Problems Symptoms

Identifying design problems is not a trivial task (Ciupke 1999, Trifu
and Marinescu 2005). In the case of the design problems considered in this
thesis, these problems can be scattered over multiple components on the
system (Garcia et al. 2009b). Thus, developers need to evaluate these multiple
components before identifying a design problem (Trifu and Marinescu 2005).
Sousa et al. (Sousa et al. 2018) identified five categories of symptoms that
developers use to identify design problems. These symptoms are surface
indicators of the design problems. In fact, developers tend to combine multiple
symptoms, considering factors such as the quantity and diversity of these
symptoms (Oliveira et al. 2019, Oizumi et al. 2018, Macia et al. 2012).

Given the complexity of the identification task and the lack of well-
structured design documentation, developers often have to rely on source
code as the symptom of such problems. These source code level symptoms
are the code smells, which can affect different NFRs of the systems, such
as maintainability and robustness. Since design problems can be scattered
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Table 2.2: Code Smells Descriptions
Level Code Smell Description

Brain Method Long and complex method that centralizes the intelligence of a class
Dispersed Coupling A method that accesses many elements dispersed among many classes
Feature Envy A method that is more interested in another class than its own class

Intensive Coupling A method that is tightly coupled with other methods, and these coupled
methods are defined in the context of few classes

Long Method A method that is long in terms of lines of code
Long Parameter List A method that has a long list of parameters

Method-level

Message Chain A long chain of methods is called to implement a class functionality
Brain Class Long and complex class that centralizes the intelligence of the system
Class Data Should Be Private A class exposing its fields
Complex Class A class with at least one method with high cyclomatic complexity
Data Class A class that contains only fields and accessor methods
God Class A class that centralizes the system functionalities
Lazy Class A class with small dimension, few methods and low complexity
Refused Bequest A class redefining most of the inherited methods

Spaghetti Code A class that implements complex methods that interact between them,
with no parameters and using global variables

Class-level

Speculative Generality A class declared as abstract that has very few child classes using its methods

through multiple components of the systems, developers may be required to
examine multiple methods, classes, and even entire components to identify
the problems effectively. That effort could be reduced when the developers
combine multiple symptoms to understand the context of the problem. In that
case, the use of the non-conformities with the NFRs (e.g. a system facing low
performance) could also be used, combined with the code smells, reinforcing
the presence of a design problem and making the identification more accurate.
Therefore, this thesis explores three symptom types: maintainability smells,
robustness smells, and non-conformity with NFRs.

2.3.1
Maintainability Smells

Code smells are micro-structures in the source code that can act as sur-
face indicators of design problems (Fowler 1999). In the case of maintainability
smells, they are the code smells that affect the maintainability NFR in the sys-
tem. We can divide these smells into two groups: method-level smells (e.g. Long
Method) and class-level smells (e.g. God Class). As the name suggests, these
smells affect the scope of only the method and the whole class, respectively.
Table 2.2 presents the 16 code smells explored in this thesis. We grouped them
according to their level.

Multiple studies explored using these smells as symptoms of design
problems (Trifu and Marinescu 2005, MacCormack, Rusnak and Baldwin
2006, Moha et al. 2010, Macia et al. 2012, Palomba et al. 2014, Oizumi et al.
2016, Sousa et al. 2018, Oliveira et al. 2019). For instance, Sousa et al. (Sousa
et al. 2020) identified that the presence of the smells God Class, Feature Envy,
Intensive Coupling, and Long Method can be strong indicators of the design
problem Concern Overload.

A God class is characterized by centralizing multiple functionalities and
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Table 2.3: Robustness Smells Descriptions
Robustness Smell Description

Catch Generic Exception Catches generic exceptions such as NullPointerException,
RuntimeException, and Exception in try-catch block

Method Throws Exception Explicitly throws java.lang.Exception
Empty Catch Block An exception is caught, but nothing is done
Catch Null Pointer Exception Code throwing NullPointerExceptions
Rethrows Exception Catch blocks that rethrow a caught exception

Throw New Instance of Same Exception Catch blocks that rethrow a caught exception wrapped
inside a new instance of the same type

Throw Exception in Finally Method throwing exceptions within a ’finally’
Exception as Flow Control Uses exception statements as a flow control device
Throw Null Pointer Exception Method that throws a Null Pointer Exception

handling many responsibilities. On the other hand, Feature Envy occurs when
a method is more interested in another class than its own, which suggests that
the responsibilities in that method should be implemented in another class or
component. This smell can lead to Intensive Coupling, and make the method
longer, causing the Long Method smell. When these smells occur together, it
can strongly indicate Concern Overload, which happens when a component
fulfills too many responsibilities that should be better modularized (Garcia et
al. 2009b).

2.3.2
Robustness Smells

Robustness smells are code smells that negatively affect the system’s
robustness. In the context of this thesis, we consider the robustness smells
that manifest in the source code, indicating a lack of proper error handling.
Table 2.3 presents the nine smells explored in this thesis.

These smells emerge since developers may not be concerned about
robustness when making decisions about the system architecture. In another
scenario, when they are concerned, they may not design the decisions to comply
with robustness properly (Robillard 2000). For instance, when the developers
or architects decide on the number of layers or how the components will be
organized according to an architectural style, the mechanism to deal with
robustness might not be a deciding factor.

A type of robustness smell is the Empty Catch Block (Cabral and
Marques 2007). This type of smell occurs when a developer includes a catch
statement in their code but does not provide instructions for handling the
exceptions that may occur. This can be problematic as the catch block is
intended to handle exceptions thrown by the system. However, developers often
ignore these smells and only address them reactively when errors occur (Shah
et al. 2010). Despite being ignored, robustness smells can indicate design
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problems (Ebert et al. 2015).

2.3.3
Non-Conformity with Non-Functional Requirements

Ideally, in the early stages of software development, the NFRs of a system
should be specified. For instance, how well a system should be updated and
maintained over time or how fast a system should answer a user request.
These two characteristics are related to the maintainability and performance
of a system, respectively. The non-conformity with NFRs occurs when these
characteristics are not met in the system. For instance, the non-conformity with
the maintainability NFR may cause the system to have a high maintenance
cost and even discontinuation (Curtis, Sappid and Szynkarski 2012). This non-
conformity can happen due to design decisions in the early stages of software
development. Therefore, when the system does not meet the NFRs defined, it
can indicate to the developers the presence of design problems in the system.

For instance, a design problem such as Cyclic Dependency can neg-
atively impact the performance and maintainability NFRs. This happens
when a stakeholder creates a dependency that generates cycles in the com-
ponents. These cycles can impact the performance of the system, causing
deadlocks (Chen et al. 2005). When a developer notices that the system’s
performance falls below the predefined thresholds, it could indicate deeper
problems within the system. In addition, if the developer observes that the
source code is hard to maintain because the changes are propagated in oth-
ers, it can reinforce the presence of the design problem Cyclic Dependency.
Moreover, when the developer encounters difficulties in maintaining the source
code due to changes affecting multiple parts of the system, it can indicate the
existence of other design problems, such as Concern Overload.

A Concern Overload design problem is related to the violation of the
Separation of Concerns principle, which aims to improve the maintainability
of the system (Macia et al. 2012). However, the presence of this design problem
negatively impacts the maintainability of the code since it makes the concerns
intertwined, making it difficult for the developer to understand, modify, and
maintain the code. Therefore, identifying and addressing such design problems
is crucial for ensuring the software meets its NFR objectives, ultimately
contributing to a more robust and reliable system.

Therefore, when the stakeholders observe a non-conformity with NFRs
in the system, it can be seen as a symptom of a design problem. Combined
with other symptoms (e.g., code smells), it can reinforce the presence of
such problems. After identifying the design problem, the subsequent action
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involves mitigating or minimizing the effects of them. To achieve this objective,
developers can employ code refactorings.

2.4
Removing Design Problems Through Refactoring

Refactoring is defined as program transformations that aim to keep
the observable behavior of the software system while improving its internal
structure (Fowler 1999). Developers can use the refactoring operations to
reduce or remove the design problems (Fowler 1999, Sousa et al. 2020). In fact,
developers can use code smells as hints of which refactoring operation should
be applied to remove the design problem in the code (Fowler 1999, Bourquin
and Keller 2007).

The refactorings can be divided into types described in the litera-
ture (Fowler 1999, Tsantalis et al. 2018). Each of these refactoring types aims
to improve a specific code structure. For instance, refactoring can be applied
to attributes, methods, classes, or interfaces. This thesis considers 13 types
of refactoring operations, defined in Fowler’s catalog (Fowler 1999). Table 2.4
presents the descriptions of each refactoring used in this thesis. These are the
most common types of refactoring operations (Murphy-Hill, Parnin and Black
2009) and are also applied to indicate the presence of design problems in the
system (Sousa et al. 2020). For each refactoring type, we present the problem
and which action should be taken to solve the problem.

Refactorings that affect the system architecture are the so-called archi-
tectural refactorings (Lin et al. 2016, Rachow 2019, Rizzi et al. 2018, Stal
2014, Zimmermann 2015). This kind of refactoring comprises one or more
code-level refactoring with the goal of removing design problems (Zimmer-
mann 2015). For instance, let us consider the Concern Overload design prob-
lem. This problem can be removed by applying multiple move methods, move
fields, and move classes, placing them in the right classes. This will avoid code
smells such as Feature Envy, God Class, and Long Method, providing a better
modularization for the system and avoiding the design problem.

2.5
Related Work

In this section, we explore the themes of (i) identification of design
problems symptoms (Section 2.5.1), (ii) refactorings for the removal of code
smells (Section 2.5.2), (iii) exception handling in the context of software design
(Section 2.5.3), and (iv) developers perceptions on NFRs (Section 2.5.4).



Chapter 2. Background and Related Work 39

Table 2.4: Refactoring Types
Type Problem Action

Extract Interface

Several clients use the same
subset of a class’s interface,
or two classes have part of
their interfaces in common.

Extract the subset into an interface.

Extract Method Code fragments that can be
grouped together.

Separate the existing code
into a new method and update
the original code to call the
newly created method.

Extract Superclass Two classes with similar
features.

Move the common features
to a shared superclass.

Inline Method
A method body is more
obvious than the method
itself.

Create a new method with a
similar body in the class that
uses it most, and remove the
old method.

Move Class
A class is in a package with
other classes unrelated to its
concerns.

Move the class to a more
relevant package, or create
a new package, if necessary.

Move Field A field is or will be, used
more by another class.

Create a new field in the
target class and change all its users.

Move Method A method is or will be,
used more by another class.

Create a new method with a
similar body in the class that
uses it most, and either turn
the old method into a simple
delegation or remove it
altogether.

Pull Up Field Two subclasses have the
same field. Move a field to the superclass.

Pull Up Method Subclasses have methods
that perform similar work.

Move methods with
identical results on subclasses
to the superclass.

Push Down Field A field used only in a
few subclasses. Move the field to these subclasses.

Push Down Method
A behavior is implemented
in a superclass used by only
one (or a few) subclasses.

Move this behavior to the subclasses.

Rename Class The class name does not
reveal its purpose. Change the name of the class.

Rename Method The method name does
not reveal its purpose. Change the name of the method.
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2.5.1
Identification of Design Problems Symptoms

Studies have explored how to identify design problems (Sousa et al.
2020, Oliveira et al. 2019, Sousa et al. 2018, Oizumi et al. 2016). Sousa
et al. proposed a theory on how developers identify design problems in
practice (Sousa et al. 2018). Through a multi-trial industrial experiment with
five companies, they identified the different types of symptoms that developers
tend to use. In addition, they identified that developers tend to use a set of
heterogeneous symptoms (e.g., code smells, and violation of object-oriented
principles). However, they did not explore how developers could use the
robustness smells as a symptom of design problems.

Li et al. (Li et al. 2014) explored the identification of design problems by
using modularity metrics, identifying that modularity metrics could be used as
indicators of design problems. The first metric is called the Index of Package
Changing Impact (IPCI), which quantifies the independence of packages. The
second metric is called the Index of Package Goal Focus (IPGF) and indicates
to what extent services of a package have the same objective. Even though they
present these metrics, the authors do not evaluate how the developers could
use them in practice. In our study, we apply a set of metrics and evaluate them
in practice with the developers.

Oliveira et al. (Oliveira et al. 2019) explored the criteria developers
use to prioritize critical classes with a possible design problem. In fact, this
prioritization is a step before the proper identification of design problems. The
two criteria were the high quantity and diversity of maintainability smells.
However, this study only focused on maintainability smells as the symptom of
design problems. Thus, this thesis explores the combination of NFR robustness
changes and maintainability smells as symptoms of design problems.

Multiple studies explored using code smells to identify design prob-
lems (Sousa et al. 2018, Sousa et al. 2020, Oliveira et al. 2019, Oizumi et
al. 2016, Oizumi et al. 2019, Macia et al. 2012, Coutinho et al. 2022). Sousa
et al. (Sousa et al. 2020) investigated whether maintainability smells could
indicate design problems and which refactorings should be applied to remove
them. By investigating 52,667 refactored elements from 50 open-source sys-
tems, they identified the smell patterns that are often associated with design
problems. These patterns consist of a set of maintainability smells that appear
together and, due to their nature, can reinforce the presence of design prob-
lems. For instance, when the maintainability smells Feature Envy and Intensive
Coupling occur together, it can indicate the presence of a Scattered Concern
design problem (Garcia et al. 2013). However, this study does not explore how
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developers can use these patterns in practice.
Tufano et al. (Tufano et al. 2015) found that code smells are introduced

during the evolution tasks of a system based on mining over 500k commits
and manually analyzing 9,164 of them. Some studies explored developers’
perception regarding maintainability smells (Palomba et al. 2014, Yamashita
and Moonen 2013, Tufano et al. 2015). Palomba et al. (Palomba et al.
2014) identified that most maintainability smells are not seen as problems
by developers. However, some smell like Complex Class and God Class are
still perceived as design problems. Surveys have been used in previous studies
to investigate code smells. Still, they have limitations, such as questions not
yielding useful and valid data and difficulty in phrasing questions so that all
participants understand them. Additionally, the results of these studies have
not been grounded in practice.

Sharma et al. (Sharma et al. 2020) explored the relation of design
problems and code smells on 3,073 open-source C# software systems. They
identified that their systems’ design problem Cyclic Dependency was the most
frequent. In addition, they found that the design problems had a strong
positive relation with the code smells in general, where these smells tended
to cause design problems in the system. In their study, the authors focused
only on maintainability smells without considering other types of smells, such
as robustness smells. Hence, in this thesis, we explore the robustness smells
and also how they can be related to the maintainability smells.

2.5.2
Removal of Code Smells Through Refactoring

Multiple studies investigated the use of refactoring to remove code
smells (Sousa et al. 2020, Oizumi et al. 2020, Bibiano et al. 2019, Cedrim
et al. 2017, Lin et al. 2016, Rachow 2019). Cedrim et al. (Cedrim et al.
2017) investigated how often refactoring operations were applied to elements
affected by code smells. They analyzed 13 types of maintainability smells
along the version history of 23 software systems. They identifier that 80%
of the refactorings were applied to these smelly elements. Unlike this study,
this thesis focuses on the relationship between the maintainability smells and
design problems.

Oizumi et al. (Oizumi et al. 2020) proposed a suite of heuristics to help
developers apply refactorings to remove code smells. To propose these heuris-
tics, the authors proposed using patterns of refactorings often associated with
code smell removal. They identified 35 patterns for the maintainability smells
Feature Envy, God Class, and Complex Class. Finally, based on an evaluation
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with 12 developers, the authors proposed guidelines for the recommendation of
refactorings to remove code smells. In this thesis we explore the combination
of patterns of maintainability smells with robustness smells.

Bibiano et al. (Bibiano et al. 2019) explored 13 refactorings and their
effect on 19 maintainability smells. They identified that refactorings only on
the scope of a method are more efficient in removing the code smells. However,
for smells such as Feature Envy, more interrelated code transformations are
needed for its complete removal. In this study, the authors solely focus on the
maintainability smells. This thesis explores how a set of refactorings can be
used to remove multiple smells, hence removing the design problem.

2.5.3
Exception Handling and Software Robustness

Exception handling is a programming mechanism to ensure software’s ro-
bustness by allowing developers to deal with unexpected events without crash-
ing or producing incorrect results. The use of exception-handling by develop-
ers is extensively explored (Melo et al. 2019, Rocha et al. 2018, Ebert et al.
2015, De Padua et al. 2017, Kery et al. 2016, Nakshatri et al. 2016, Asaduzza-
man et al. 2016, Cacho et al. 2014). Melo et al. conducted a qualitative analysis
on the use of exception-handling guidelines by surveying 98 developers (Melo
et al. 2019). The authors discovered that the majority of developers (70%)
reported following some form of exception-handling guideline. However, these
guidelines were found to be predominantly implicit and undocumented, indi-
cating a lack of explicit guidance. This study highlights the need for improved
documentation regarding exception handling. That led this thesis to explore
new ways of documenting this for the developers, such as collecting the data
available on OSSs.

Cacho et al. (Cacho et al. 2014) conducted a study on C# projects to
investigate the relationship between software system changes and their robust-
ness. The authors analyzed 119 software versions extracted from 16 systems
in different domains. They identified that C# developers frequently prioritize
maintainability over robustness in various program categories, often uncon-
sciously. Additionally, the study revealed that changes made to catch blocks
often resulted in the introduction of uncaught exceptions. Therefore, in this
thesis, we aim to understand the relation that robustness and maintainability
may have through the analysis of smells of each type.

Barbosa et al. (Barbosa et al. 2014) categorized the faults that happen
in exception handling. They studied two open-source systems to identify these
faults. The authors identified 10 categories of exceptional faults regarding
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exception handling. In addition, they classified these faults into sub-categories,
which, considering these sub-categories, led to a total of 18 categories. This
thesis proposes presenting the common faults (robustness smells) regarding
exception handling and suggesting implications that these robustness smells
may have on a higher level of the software system. This thesis explores the
relationship between robustness smells and design problems.

Other studies have also examined the faults and anti-patterns commonly
associated with exception-handling in code, including Ebert et al. (Ebert et
al. 2015) and De Lucia et al.(De Padua et al. 2017). Ebert at al. (Ebert et al.
2015) conducted an empirical study on exception-handling bugs, focusing on
understanding the causes, frequency, severity, and difficulty of fixing them. For
that purpose, they analyzed 220 bug reports related to exception handling and
154 responses to a survey regarding the theme. They identified that usually,
organizations do not consider exception handling in the main phases of the
system, such as the design phase. In addition, tests and documentation for
exception handling are uncommon. In this thesis, we explore the impact of not
considering exception handling on a higher level in the software system, such
as the software design.

2.5.4
Developers’ Perception on NFRs

A few studies explore the developers’ perception of NFRs (Zou et al.
2017, Ameller et al. 2012, Camacho et al. 2016, Rastogi and Nagappan 2016).
Zou et al. analyzed the perception of NFRs by exploring the Stack Overflow
data, a common source of information used by developers (Zou et al. 2017).
The goal of the author was to identify the NFRs that developers tend to focus
on, the difficulties they face when dealing with such requirements, and the
types of NFRs most discussed over time. The authors used a topic modeling
approach to analyze the stack overflow data. Next, they applied LDA (Latent
Dirichlet Allocation) to summarize the topics in the corpus created. They
identified that developers focus mostly on usability and robustness NFRs. In
their data, the maintainability and efficiency was less discussed. The study has
the limitations of using only stack overflow data, which limits the generalization
of the results. In addition, it is not clear the experience of the developers
involved in the study since any developer can participate in such discussions
on the platform. This thesis investigates the characteristics and perceptions
of developers with diverse experience in software development. In addition,
we considered developers working on both open and closed-source systems,
looking for a generalization in our results.
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Ameller et al. explored how software architects consider the NFRs in
their systems (Ameller et al. 2012). That includes the challenges and methods
involved when eliciting, documenting, and validating the NFRs. This study
was performed through semi-structured interviews with 15 software architects
from different companies. The authors identified that NFR elicitation is an
interactive process and that the NFRs are often not documented, and when
the documentation existed, it was often not precise. They also identified
some challenges when dealing with NFRs elicitation, such as the difficulty
of balancing the NFRs with functional requirements. Among its limitations,
the study reported data from only 15 software architects, which may not be
representative of the whole team. They miss other stakeholders involved in
the project. This thesis gathers the perceptions of more than 40 different
stakeholders with different roles in their companies (e.g. software architects,
software engineers, and software developers)

Camacho et al. (Camacho et al. 2016) investigated the challenges agile
times face in testing NFRs. The study used semi-structured interviews per-
formed with 20 participants from a single company. Thematic analysis was
used to analyze the data from the interviews, and the researchers identified
seven main factors that influence non-functional testing in agile projects. They
identified that agile teams face challenges mainly related to priority, culture,
and awareness. In addition, they identified seven factors that influence non-
functional testing: team experience, communication, customer involvement,
tool support, test automation, NFR analysis, and non-functional testing strat-
egy. This study has the limitations of having a small sample of participants
from a single company and focusing only on performance and security testing.
In this thesis, we performed a deeper qualitative analysis over a subset of these
factors: NFR analysis, communication, and team experience. That allowed us
to observe developers in different positions within their teams and from dif-
ferent companies. In addition, we investigate the different reasons that lead
developers to address the NFRs.



3
Smell Patterns as Indicators of Design Degradation

A version of the work in this chapter appears in the Proceedings of the 35th Brazilian
Symposium on Software Engineering (SBES), (Oliveira et al. 2022).

As mentioned in Section 2.2, design problems result from one or more de-
sign decisions that negatively impact the NFRs of a system (Martin and Martin
2006). Degradation problems are design problems that gradually worsen over
time as software evolves, potentially impacting the software’s overall quality
and adherence to NFRs. These problems are typically related to the long-term
maintenance and evolution of a software system. They tend to affect key design
elements, which include such as classes, methods, hierarchies, or even multiple
software components. As degradation problems accumulate, they can lead to
increased maintenance effort, higher error rates, and reduced system perfor-
mance. Detecting and addressing degradation problems is essential to ensure
that software systems continue to meet their NFRs.

It is worth noting that although we employ the term architectural
problems throughout this chapter, they are fundamentally design problems.
We focus on design problems that affect how the system will be modularized
into software components and how these components interact with each other
(hence, the use of the term “architectural”). Given their wide effect in the
design, they represent a major threat to the system and they might also
manifest when developers implement and refine design decisions along software
changes.

When facing design problems related to the bad modularization of
the system, developers must evaluate multiple elements, such as classes and
packages, to identify and remove the problem. Therefore, this is a time-
consuming and high-effort task, especially because the systems often do not
have design documentation. As a result, developers need to use the only artifact
available, the source code. In that case, developers can rely on code smells.

Certain groups of maintainability code smells, called smell patterns, may
indicate specific design problems (see Section 2.5.1). This type of smell is
a well-explored symptom of design problem (Sousa et al. 2020, Sousa et al.
2018). However, there is not yet an investigation on how developers can benefit
from maintainability smell patterns in practice. Intending to investigate the
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usefulness of smell patterns to help developers identify and remove design
problems and avoid design degradation, we conducted a quasi-experiment with
13 professional developers.

This chapter presents this study, which is reported in the paper Smell
Patterns as Indicators of Design Degradation: Do Developers Agree? (Oliveira
et al. 2022). This study comprehends the first major contribution of this Ph.D.
thesis, which can be characterized as follows: how developers can benefit from
the use of smell patterns in the identification and removal of design problems
in practice (see Section 1.4).

3.1
Introduction

The internal quality of a system depends on how it meets non-functional
requirements such as maintainability (Ciupke 1999, Sousa et al. 2018). A
design degradation problem happens when one or more design decisions
have a negative impact on non-function requirements (Sousa et al. 2018).
Degradation problems can impact isolated code elements (e.g., a method
or a class) or multiple code elements and structures (e.g., hierarchies or
components) (Sharma et al. 2020). The former is called Implementation
Problem and is usually represented by code smells, which are code-level
structures that are a surface indication of a design degradation (Fowler 1999).
The latter is known as Architectural Problem, which is a degradation that
affects how the system is decomposed into modules and how they communicate
with each other (Garcia et al. 2009, Garcia et al. 2009b, Lippert 2006).

Studies have shown that degradation problems can be harmful to the
software system (Curtis, Sappid and Szynkarski 2012, Ernst et al. 2015).
When neglected, these problems hinder software maintenance and evolution,
potentially harming business operations (Curtis, Sappid and Szynkarski 2012).
Thus, developers need to remove these problems as early as possible. As
the design documentation is usually unavailable, developers have to directly
analyze the source code, using symptoms such as code smells and metrics to
identify degradation problems (Sousa et al. 2018). In fact, the literature shows
that developers are not only familiar with code smells, but they can also use
them to identify degradation problems (Yamashita and Moonen 2013, Sousa et
al. 2018). Developers use refactoring to remove or reduce degradation problems
in the system (Fowler 1999). Since code smells are used in practice to identify
low-level code refactorings (Fowler 1999), developers benefit from the use of a
smell-based approach to reinforce their adoption of refactorings (Sousa et al.
2020).
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Multiple studies investigated the relation between code smells and degra-
dation problems (Fontana et al. 2019, Martins 2020, Oizumi et al. 2015, Oizumi
et al. 2016). For instance, Sousa et. al. (Sousa et al. 2020) investigated pat-
terns of smells that can potentially indicate refactoring opportunities (e.g., the
multiple smell pattern with God Class and Complex Class). However, there is
no evidence on whether developers would benefit from these patterns.

In this paper, we investigated the use of smell patterns in practice, for two
sub-groups of degradation problems, namely implementation and architectural
problems. We conducted a quasi-experiment with 13 professional software
developers. Then, we explored whether the smell patterns help developers
to identify implementation problems and architectural problems in practice.
This experiment allowed us to investigate to what extent smell patterns help
developers to identify and refactor both degradation problems.

We confirmed in practice the findings of a previous study carried out
by Sousa et al. (Sousa et al. 2020). We found evidence that multi-smell pat-
terns are the most relevant for detecting architectural problems. We observed
that they may be strong indicators of architectural problems such as Concern
Overload, Scattered Concern, and Fat Interface (Brown et al. 1998). We also
highlight some factors that should be considered to improve the identification
of architectural problems with smell patterns. For instance, the identification
of degradation problems was sensitive to the context of the system (i.e., the
degradation problem was considered inevitable due to the domain of the sys-
tem). We also observed cases in which the developers stated that there was an
implementation problem but their description of the problem was indicating an
architectural problem. Hence, we observed that for the architectural problems,
developers still need more support regarding the metrics and smells provided.
Finally, we observed that refactoring associated with code smells contributes
to the partial removal of degradation problems. With these findings, devel-
opers can better understand how the combined code smells lead them to not
only identify the degradation problem but also remove it with refactoring op-
erations. Finally, we also provided an automated tool to help developers to
identify the refactoring opportunities.

3.2
Background

We discuss the here basic concepts and terminology of our work.
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3.2.1
Design Degradation Problems

In this work, we considered two categories of design degradation: archi-
tectural problems and implementation problems.

An architectural problem is a degradation that negatively impacts high-
level structures, such as components, abstractions, hierarchies of code elements,
and other structures that are relevant to the software architecture (Bass et al.
2003). These problems affect, but are not limited to, (i) how the system is
organized into subsystems and components, (ii) how and which code elements
encapsulate process and data to address each functionality, and (iii) how the
elements interact with each other and their execution environment (Garcia
et al. 2009, Garcia et al. 2009b, Lippert 2006). These types of architectural
problems are often harmful in software systems (MacCormack, Rusnak and
Baldwin 2006, Schach et al. 2002). An example of an architectural problem is
the Fat Interface (i.e., an interface that provides multiple unrelated services)
that usually harms quality attributes such as modifiability and extensibility
(Martin and Martin 2006). Since this degradation problem can affect multiple
components in the system, developers may need more support to identify and
remove them.

An implementation problem is a degradation that negatively impacts fine-
grained elements such as methods and classes (Sharma and Spinellis 2018).
An example of an implementation problem is when a method is too long and
complex to understand. In that case, the implementation problem could be
signaled by the code smell Long Method. This problem negatively affects the
readability of the source code, but since it is more localized, it might have less
impact on the architecture.

3.2.2
Smell Patterns as Indicators of Refactoring Opportunities

Once identified the degradation problems, the next step is to remove
them. Developers can use code smells as hints for the refactoring operations
that can potentially remove the problem (Bourquin and Keller 2007, Fowler
1999). Smells not only indicate the presence of a degradation problem, but
they can also indicate which refactoring operations the developers should apply
(Fowler 1999). For instance, Sousa et al. found that smell patterns (i.e. groups
of one or more types of smells) can indicate architectural patterns (Sousa et
al. 2020).

Table 3.1 presents the two groups of smells patterns investigated by Sousa
et al. (Sousa et al. 2020): Multi-Smells Patterns (MSP) and Single-Smell Pat-
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Table 3.1: Architectural Problems and their Smell-Patterns
Architectural Problem Multi-Smells Pattern
Ambiguous Interface Long Method, Feature Envy, and Dispersed Coupling
Cyclic Dependecy Intensive Coupling and Shotgun Surgery

Component Overload
Shotgun Surgery, Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
and Long Method

Concern Overload
Complex Class, Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
Long Method, and Shotgun Surgery

Fat Interface Shotgun Surgery or Divergent Change, Dispersed Coupling,
and Feature Envy

Misplaced Concern God Class/Complex Class or Dispersed Coupling, Feature
Envy, and Long Method

Scattered Concern
Dispersed Coupling, Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
and Shotgun Surgery

Unwanted Depedency Feature Envy, Long Method, and Shotgun Surgery
Architectural Problem Single-Smell Pattern
Incomplete Abstraction Lazy Class
Unused Abstraction Speculative Generality

terns (SSP). MSP indicates the patterns where the degradation problems can
be identified through the use of multiple smells. For instance, the architec-
tural problem Cyclic Dependency is indicated by the pattern composed of two
smells: Intensive Coupling and Shotgun Surgery. When a single smell indicates
a degradation problem, it has an SSP. For instance, the architectural problem
Incomplete Abstraction can be indicated by a Lazy Class code smell. When
these patterns appear, they indicate both the degradation problem and the
refactorings that should be applied by the developer (Sousa et al. 2020). In
that, case, we call this a refactoring opportunity. For instance, for the afore-
mentioned MSP, the developers could apply Move Method, Extract Method,
Move Field, and Inline Class refactorings. The full list of common refactorings
for each smell explored in this study is detailed Appendix A.1.

The use of smell patterns has pros and cons. In the case of SSP, the
developer only has to reason about a single smell to identify and refactor the
problem. However, this single smell may not be enough to confirm the problem.
Considering the MSP, the presence of smells in the pattern may increase the
confidence regarding the presence of a degradation problem; thus, they can
apply the refactoring suggested. However, reasoning about and connecting
multiple smells is a time-consuming task. Yet, we do not have evidence of
whether developers would benefit from the patterns in practice.
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3.3
Study Design

We conducted a quasi-experiment (Shadish, Cook and Campbell 2001)
asking developers to identify degradation problems in their software systems by
analyzing different cases of smell patterns. The following subsections present
the study settings.

3.3.1
Research Question

With this quasi-experiment, we have the goal of understanding how the
smell patterns can be used by developers to identify and refactor degradation
problems in their systems. With this goal in mind, we defined two research
questions.

RQ1. Are Smell Patterns Indicators of Degradation?

First, we wanted to understand whether the smell patterns could be
good indicators of degradation problems, as claimed by Sousa et al. (Sousa et
al. 2020). To answer RQ1, we asked the participants of our study to identify
degradation problems in their software systems. We asked them to identify
these problems in three scenarios: using (i) Single-Smell Pattern (SSP), (ii)
Multiple Smell Pattern (MSP), and (iii) other combination of smells (Others),
which are smells different from the ones in the patterns.

Upon data collected, we conducted quantitative and qualitative analyses.
The purpose of quantitative analysis was to provide an objective answer to our
RQ. For that purpose, we applied two statistical tests: (i) One-Way ANOVA
(Shaw and Mitchell-Olds 1993), and (ii) Chi-Square Test (McHugh 2013). After
that, we applied qualitative analysis to understand the results in more details.

RQ2. Can Smell-Patterns Indicate Refactoring Opportunities?

Once identified the problems, the next step is to remove them, which can
be done through the use of refactorings. Since the smell type can indicate the
refactoring that should be performed (Fowler 1999), we wanted to understand
how the smell patterns could help the developer in this task. For that purpose,
we defined RQ2.

To answer RQ2, besides presenting information on metrics and code
smells, the developers were provided with suggested refactorings for each smell
(Section 3.2.2). We asked the participants if the suggested refactorings were
sufficient to remove the identified degradation problems. With their answer,
we aimed at understanding the scenarios where developers accepted, partially
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accepted, or rejected the suggested refactorings. More information about the
hypothesis and variables are available at Appendix A.2

3.3.2
Recruiting Participants

To select the participants, we applied convenience sampling by using
the collaborators’ network of contacts in the industry and also in academic
groups. We also looked for potential participants in our social media (Twitter
and LinkedIn). We defined criteria to select the final list of participants
(e.g., Intermediary knowledge about Java and Software Architecture). This
information was given by developers through a characterization form. Detailed
characteristics of the 13 participants are available at Appendix A.3.

We asked the participants to inform us which system they were familiar
with, which was the basis to select the subject systems of our study. This
familiarity is related to the contributions that the developer made to the system
analyzed. Thus, we also collected information about the software systems
selected by participants. Table 3.2 presents a summary of the software systems.
In the last column, we show the ID of participants that analyzed each system.
We identify each participant by an identification number (ID) that we will use
to reference them.

Table 3.2: List of the Software Systems Analyzed by Participants
System Type Domain Size Part.

OPLA-Tool OS Academic/Tool/Model Optimization Large 1
Fresco OS Mobile/Library/Media Management Large 3
Fastjson OS Library/Parser Large 6
Soot OS Academic/Tool/Compiler Optimization Large 12
Couchbase Java Client OS Database driver Medium 2, 10
JDeodorant OS Tool/Plugin/Source Code Analysis Small 8
REST System CS REST API Small 4
School Mgt System CS Web system/School Management Small 5
Image Composition System CS Library/Media Manipulation Small 11
Grace Language Compiler OS Academic/Compiler Small 7
SportsTracker OS Desktop/Personal App Small 9
Glide OS Library/Android/Caching/Media Loading Medium 13
Type: OS = Open Source, CS = Closed Source.
Size (lines of code): Small = <100K, Medium = >100K and <499K, Large = >499k.

3.3.3
Study Procedures

The quasi-experiment to answer our research question has five main steps.
All the participants had to follow them.
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Step 1: Training. Participants went through basic training about study-
related concepts, namely structural software quality, degradation problems,
source code metrics, code smells and refactoring. The goal of this training
was to make sure all the participants had an understanding of the terms used
during the study.
Step 2: Environment Setup. To support our analysis, we collected
information about the systems indicated by the participants (e.g., internal
structure metrics, smells, and smell patterns). For that purpose, we ran an
adapted version of the Organic tool (Oizumi et al. 2018), which is a metric-
based smell detector, in the participants’ systems. We adapted the tool so we
could suggest to the developers the degradation problems and the proposed
refactorings to remove them. After analyzing the source code, the tool selects
the code elements that the participants should analyze. The criteria for
selecting code elements are the number of commits and the number of smells, in
this priority order. We adopted such selection criteria because there is evidence
that they are relevant for software maintainability (Oizumi et al. 2019).
Step 3. Experimental Task. After collecting all the required information,
our adapted version of Organic provided six different cases to be analyzed by
each participant. A case is composed by one or multiple code elements that
are affected by code smells. The six cases are divided into three groups: (i)
two affected by MSP, (ii) two affected by SSP, and (iii) two affected by Other
smells.

Our adapted tool provides the information for each case according to
the groups above. For example, suppose a participant is analyzing a case using
one of the patterns. Then, our tool (i) provides information about code metrics
(e.g., coupling) and code smell(s), (ii) provides the list of smells in the pattern
and a description of the possible degradation problem occurring in the case,
and (iii) suggests the refactorings to remove the problem.

Each participant selected a different system to analyze. There were cases
in which the tool was unable to detect all six cases involving the smell patterns
and other combinations of smells. Therefore, in some scenarios the participant
evaluated less cases (e.g. four) or evaluated more than two cases involving
other combinations of smells. This happened since not all systems have the six
cases. Thus, in these systems, the developers analyzed more than one instance
of the same pattern.
Step 4: Case Analysis. The participants had to analyze each case according
to the information provided by the tool. Then, they filled out a form where they
should inform whether they agree there was a structural degradation problem
or not. In the cases that participants considered there was NO degradation
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problems, they had to provide a justification to their conclusion. They also
had to rate the usefulness of the information provided by the tool to support
their conclusion. More details about this form are available at Appendix A.6.
Step 5: Post-study Interview. At the end of the study, we invited each
participant for an interview. We asked them about external factors that may
have affected the experiment (e.g., interruptions or problems with the tool).
We also asked them about the desirable characteristics that a degradation
detection tool should have.

3.3.4
Data Analysis Procedures

Below we present the procedures to conduct our analysis.
Quantitative Analysis. For the quantitative analysis, we considered the re-
sponses according to the three groups, namely Single Smell Pattern (SSP),
Multiple Smell Pattern (MSP), and Other combination of Smells (Others). For
this evaluation, we compared the precision of participants in identifying im-
plementation problems and architectural problems. In this study, Precision is
the number of cases classified by participants as representing degradation/ar-
chitectural problems divided by the number of analyzed cases. To assess the
statistical significance, we applied the One-Way ANOVA (Shaw and Mitchell-
Olds 1993). This statistical test is useful for comparing the use of different
treatments (MSP, SSP) and a control (SSP) by the same group of participants.

We also compared the different groups of responses concerning the
proportion of smell pattern cases indicating architectural problems to the
proportion of smell pattern cases indicating implementation problems. Hence,
we aimed to understand in which granularity the patterns can be more precise.
We also compared such proportions between the two different groups (MSP, SPP)
and the control (Others) using the Chi-Square Test (McHugh 2013). Finally,
we analyzed the precision of each smell pattern for indicating architectural
problems.
Qualitative Analysis. The participants also provided descriptive responses
to justify and explain each case analyzed. Therefore, we conducted a system-
atic analysis of descriptive responses. In this analysis, two collaborators worked
together to categorize the responses into groups that help to explain the qual-
itative results. After this procedure, all collaborators discussed and improved
the categorization of responses and the extraction of groups. Such analysis was
inspired by procedures commonly used in qualitative research methods such
as Grounded Theory and Content Analysis (Lazard et al. 2017).
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For the categorization of responses, we defined five categories that
reflect relevant scenarios for the evaluation of the use of smell patterns.
In the first (C1) and second (C2) categories, we grouped the responses
in which participants confirmed the existence of an architectural problem.
C1 includes the cases in which the participants agreed that the suggested
refactorings could remove the problem. C2, on the other hand, is the case
where developers suggested that the refactorings would not completely remove
the architectural problem. In the third (C3) and fourth (C4) categories, we
included the participants’ responses that agreed or not with the suggested
refactorings, respectively. However, differently from previous categories, they
considered that exists (a certain level of) degradation but not an architectural
problem. In the last category (C5), we grouped the responses in which
participants considered that there was no occurrence of degradation problems.
This category aims to identify which factors lead participants to conclude that
the analyzed smells do not represent degradation problems. The groups and
categories created during this analysis will not be directly presented, but they
are available in our replication package (1st Complementary 2022).

3.4
Results and Discussion

In this section, we present the results of our study for evaluating the use
of smell patterns for finding refactoring opportunities.

3.4.1
Are Smell Patterns Indicators of Degradation?

Table 3.3 presents the results for the classification of the six cases
analyzed by each participant. The last six columns show the precision of
participants in each group between parentheses. The last table row summarizes
the number of cases and precision of each group. Except for participants 4 and
11, all of them analyzed at least two cases in each group. The reason is that
the systems analyzed by both participants did not have any instances of MSP
cases.
When analyzing the precision of participants in the different groups (Table
3.3), it is possible to observe that the use of MSP tends to result in a higher
precision when compared to SSP and Others. We observed an overall precision
of 0.77 for MSP, 0.66 for SSP, and 0.60 for Others (last row). To compare
the precision of participants in the different groups we applied the One-Way
ANOVA Test.
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Table 3.3: Number of Cases and Precision of Each Participant Using MPS,
SSP and Others.
Id # of

MSP
# of
SSP

# of
Others MSP-DP SSP-DP Others-DP MSP-AP SSP-AP Others-AP

1 2 2 2 2 (1.00) 2 (1.00) 2 (1.00) 0 (0.00) 0 (0.00) 1 (0.50)
2 2 2 2 2 (1.00) 2 (1.00) 0 (0.00) 2 (1.00) 1 (0.50) 0 (0.00)
3 2 2 2 2 (1.00) 2 (1.00) 2 (1.00) 1 (0.50) 0 (0.00) 2 (1.00)
4 0 1 3 0 (-) 0 (0.00) 1 (0.33) 0 (-) 0 (0.00) 0 (0.00)
5 2 1 3 2 (1.00) 0 (0.00) 2 (0.67) 2 (1.00) 0 (0.00) 2 (0.67)
6 2 2 2 2 (1.00) 2 (1.00) 1 (0.50) 1 (0.50) 0 (0.00) 0 (0.00)
7 2 2 2 0 (0.00) 2 (1.00) 2 (1.00) 0 (0.00) 2 (1.00) 0 (0.00)
8 2 2 2 2 (1.00) 2 (1.00) 1 (0.50) 2 (1.00) 2 (1.00) 0 (0.00)
9 2 2 2 2 (1.00) 0 (0.00) 2 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)
10 2 2 2 1 (0.50) 0 (0.00) 2 (1.00) 0 (0.00) 0 (0.00) 1 (0.50)
11 0 2 4 0 (-) 1 (0.50) 2 (0.50) 0 (-) 0 (0.00) 0 (0.00)
12 2 2 2 1 (0.50) 2 (1.00) 1 (0.50) 1 (0.50) 2 (1.00) 1 (0.50)
13 2 2 2 1 (0.50) 1 (0.50) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
All 22 24 30 17 (0.77) 16 (0.66) 18 (0.60) 9 (0.40) 7 (0.29) 7 (0.23)

ID: Participant ID; # of MSP, SSP, Others: Number of cases with the patterns. MSP-DP,
SSP-DP, Others-AP: Number of cases classified by participants as being affected by degra-
dation problems; MSP-AP, SSP-AP, Others-AP: Numbers of cases classified by participants
as being affected by architectural problems.

Before applying the test, we had to remove participants 4 and 11 since
they did not use all treatments (i.e., they did not analyze at least two cases in
each group). After applying the statistical test with an alpha level of 0.05, we
observed a F-ratio of 0.242 and a p-value of 0.787. Thus, we cannot confirm the
difference between precision values of using smell patterns and other smells.
The F-ratio is smaller than 1, which indicates that the use (or not) of smell
patterns alone is not enough for explaining the variance of precision in the
identification of degradation problems. Despite the results of the statistical
test, we were able to find the factors that most influenced the precision of the
different groups.

3.4.1.1
Factors that Impact the Use of a Smell-based Approach

These factors were described by the developers in the post-experiment
interview. Next, we describe the most recurrent factors.
Context sensitive degradation detection. A recurrent observed factor
is that certain degradation problems were considered inevitable in certain
contexts. For example, participant 13 informed that the degradation indicated
in the implementation by the Message Chain and Long Parameter List smells
is common and acceptable in Android applications (e.g., the high number
of parameters and subsequent calls to a method were needed by the API
used). In cases involving the pattern for the architectural problem Incomplete
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Abstraction (i.e. when an element does not completely support a responsibility
in its own component), we observed that participants frequently mentioned
contextual factors to justify the fact that it does not represent any kind of
design degradation.
Use of customized strategies and thresholds. For the detection of
code smells, we adopted default detection strategies and thresholds from
the literature (Lanza and Marinescu 2006). However, we observed that such
strategies and thresholds were not sufficient for the developer to identify the
degradation problem in all scenarios. For instance, we observed a case of Long
Parameter List for which the participants did not agree with the number of
parameters threshold. There were also cases of Speculative Generality for which
the participants argued that the abstract methods of an abstract class were
used in a sufficient number of sub-classes. This observation is corroborated by
other studies (e.g., (Hozano et al. 2017, Hozano et al. 2018)) that indicate the
need for customized detection strategies for code smells. These analyses lead
to the following finding:

Finding 1: Factors such as the context of the system and the
strategies used for the detection of code smells may influence the perception
of the developer regarding the presence of architectural problems.

3.4.1.2
Cases That Smell Patterns Indicate Architectural Problems

When classifying a case as being affected by an architectural problem,
the group with the highest precision was MSP-AP (0.40) (Table 3.3). Consid-
ering the cases classified as having a degradation problem, the highest pre-
cision was MSP-DP (0.77). The lowest precision for degradation problems was
for Others-AP (0.60). Thus, the participants’ precision in finding architectural
problems was much smaller than their precision in finding any types of degra-
dation problems, regardless of the use of patterns. This happened because there
were cases in which the participants considered that there was a degradation
problem, however, this problem was not relevant to the architecture of the
system. According to them, there was (a certain level of) degradation but it
was not an architectural problem.

To search for a possible association of the occurrence of patterns with the
existence of architectural problems, we applied the Chi-Square Test. Table 3.4
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Table 3.4: Results of the Chi-Square Test for the Association of Groups With
Architectural Problems, Implementation Problems and no Problems.

# Arch.
Problems

# Imp.
Problems

# Non-
Degradations

Row
Total

MSP 9 (6.66) [0.82] 8 (8.11) [0.00] 5 (7.24) [0.69] 22
SSP 7 (7.26) [0.01] 9 (8.84) [0.00] 8 (7.89) [0.00] 24
Other 7 (9.08) [0.48] 11 (11.05) [0.00] 12 (9.87) [0.46] 30
Column Total 23 28 25 76

presents the contingency table for this test. The 2nd column presents, for
each group (MSP, SSP, and Others), the number of cases that were classified
as having implementation problems (i.e., degradation problems that are not
related to the architecture). The 3rd column shows the number of cases
classified as having architectural problems. The 4th column presents the
number of cases classified as not having any kind of degradation. In the last
column, we show the total number of cases in each group. The last row shows
the totals of each column. In the cells of 2nd, 3rd, and 4th columns of Table 3.4,
we also show, inside the parenthesis, the expected distributions according to the
totals in each row and column. Values in square brackets represent how much
each cell contributed to the Chi-Square statistic. The higher the difference
between the expected value and the observed value, the higher the contribution
to the Chi-Square statistic. For instance, the expected number of cases with
architectural problems for the MSP group is 6.66, but the actual number of
cases was 9, resulting in a contribution of 0.82 to the Chi-Square statistic.

The highest differences are observed in cases with architectural problems
and cases without degradation (Table 3.4) for the MSP and Others groups. The
number of MSP cases (9) with architectural problems is higher than expected
(6.66), while the number of Others cases (7) with architectural problems is
lower than expected (9.08). However, by applying the Chi-Square test with an
alpha level of 0.05, we obtained a Chi-Square statistic of 2.467 and a p-value of
0.650. Thus, by the test, we can conclude that there is no correlation between
the evaluated patterns and the existence of architectural or implementation
problems. Given such a lack of correlation, in the following sub-sections, we
present qualitative analysis that helps us to understand and explain the results.

3.4.1.3
Developers’ Perspective on Architectural Problems

We observed contradictory cases that were classified as not being affected
by architectural problems but the developers’ justifications seem to reference
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architectural problems. For example, when analyzing the Couchbase Java
Client system, participant 10 classified one case involving a MSP as not
having degradation. The MPS was intended to indicate a Scattered Concern
problem involving the CouchbaseAsyncBucket class through the following
combination of smells: Dispersed Coupling, Feature Envy, God Class, Complex
Class, and Intensive Coupling. According to the open response presented by
the participant, such a class would be affected by a functionality (concern)
that is scattered across different classes.

Since this system is a well-structured open source system, we can
hypothesize that the decision to keep the functionality scattered may have been
conscious indeed. However, this does not mean that there is no architectural
problem, since a scattered functionality may affect the extensibility and
modifiability of the software system. Creating abstractions to isolate a feature
can make the software design more complex. In this sense, developers may
have decided to favor code design simplicity over other quality attributes.

We also observed cases involving patterns that were classified as imple-
mentation problems but the description given by the developer indicated ar-
chitectural problems (considering the literature definition (Martin and Martin
2006)). For instance, when relying on a MSP to analyze the Facebook Fresco
library, participant 3 indicated the existence of an implementation problem in
the FrescoController Java interface and its implementations. This partici-
pant provided the following description of this problem:

“The classes are very dependent and coupled with the FrescoDrawback2
class. All of these classes and methods need to call various methods of that
class to meet their responsibilities.”

On our qualitative analysis, we identified how participant 3 proceeded
with the analysis. In this case, the participant identified that (i) there was
feature envies in some methods, (ii) the class had a high complexity (being a
Complex Class smell), and (iii) through the metrics, the high coupling of that
class. This information helped in the identification of a degradation problem,
even if the participant does not have full knowledge about the architectural
impact of such a problem. In this case, the MPS was intended to indicate
the Fat Interface problem, which occurs when an interface exposes many
functionalities that are not related to each other. The fact that one class
is tightly coupled to another does not necessarily mean that there is a Fat
Interface problem. However, high coupling is a negative characteristic that
directly affects the architecture and may be indirectly related to the existence
of a Fat Interface.

We believe that participant 3 may have initially conducted a shallow
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analysis of the case, without considering a possible impact on the architecture.
Nevertheless, we also believe that in this case, information about metrics
and smells assisted the participant to unconsciously identify an architectural
problem. Even though the participant thought that there was no architectural
problem, a degradation problem related to high coupling was detected. The
participant identified the problem through the combination of the smells and
the presented system metrics.

Given the aforementioned analysis, smells and metrics can be a starting
point for identifying whether there is a degradation problem, and in further
analysis, identify and remove the architectural problem. These results confirm
the findings of previous studies (Sousa et al. 2018, Sousa et al. 2020) that stated
that the complete identification and removal of the architectural problem
should be complemented by other information (e.g., the concerns that are
implemented in each class). In the case of participant 3, the information about
concerns would be useful for identifying the presence of multiple unrelated
services.

Other cases similar to those described above also happened for other
participants. This indicates that the developers’ understanding of what an ar-
chitectural problem may not be aligned with the literature describes(Brown
et al. 1998). We hypothesize that many developers only consider architectural
problems to be those that were not intentionally introduced and those that ex-
plicitly affect many components of the architecture. This shows that, although
smell patterns can indicate the existence of architectural problems in relevant
scenarios, they still do not provide enough information to make evident the
causes and the possible impact caused by the detected architectural problems.
These results lead to the following finding:

Finding 2: Developers perceive architectural problems as those
which they did not intentionally introduce and that explicitly affect many
components of the architecture.

3.4.1.4
Evaluating Specific Smell Patterns

To better understand when smell patterns are indicators of architectural
problems, we analyzed individual types of patterns. Table 3.5 presents the
results for the assessed pattern types. The 2nd column shows the number of
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evaluated cases of each pattern type. The 3rd and 4th columns show the num-
ber of cases with any kind of degradation problem and with only architectural
problems, respectively. In both columns, we show within parenthesis the preci-
sion of each pattern type. Finally, the 5th column presents the mean severity, on
a scale from 1 (lowest) to 5 (highest), according to the classifications provided
by participants.

Table 3.5: Number of Cases, Precision and Mean Severity of Each Pattern
Type.

Pattern Type # Cases # Degradation # Arch. Problems Mean Severity
Multi-Smell Patterns

Concern Overload 3 2 (0.66) 1 (0.33) 4.50
Fat Interface 6 6 (1.00) 3 (0.50) 3.50
Scattered Concern 6 5 (0.83) 2 (0.33) 4.60
Unwanted Dependency 7 4 (0.57) 3 (0.42) 3.25

Single-Smell Patterns
Incomplete Abstraction 6 3 (0.50) 2 (0.33) 3.00
Unused Abstraction 17 13 (0.76) 5 (0.29) 3.38

Detection of Unwanted Dependencies. An Unwanted Dependency occurs
when a dependency violates a rule defined on the system architecture (Perry
and Wolf 1992). The precision of our Unwanted Dependency pattern was
0.57 for degradation problems and 0.42 for architectural problems. Given
the lack of information about architectural rules, this precision can still be
considered high. Unfortunately, architectural rules are not always defined and
documented. In such cases, the pattern would be useful for the detection of
Unwanted Dependencies. Participant 12 informed us in the post-experiment
interview that, besides information about smells, the tool should provide
explicit information about the dependencies that involve the affected code
elements. These results lead us to hypothesize that the usefulness of the pattern
for Unwanted Dependency is limited by the context of the system.
High Precision for the Fat Interface pattern. The pattern type with
the highest precision was the one for Fat Interface, with 1.00 for degradation
problems and 0.50 for architectural problems. The pattern for Fat Interface
is composed by a Shotgun Surgery in the interface or Dispersed Coupling and
Feature Envy in elements that are clients or implement the interface. We believe
that one of the reasons for the high precision of this pattern is the fact that
it makes clear the impact on hierarchical structures composed of interfaces
and classes. In addition, smells like Dispersed Coupling and Feature Envy are
strongly associated with the architectural concepts of high coupling and low
cohesion. Although other patterns are also composed of smells that can reveal a
relevant impact on the architecture, the pattern for Fat Interface makes it clear
that multiple interrelated code elements are affected. Thus, the identification of
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this problem can be simplified, otherwise, the developer would have to analyze
these multiple code elements.
High severity for Concern Overload and Scattered Concern patterns.
Participants classified cases involving the Concern Overload and Scattered
Concern patterns with the highest severity. The mean perceived severity is
4.50 for Concern Overload and 4.60 for Scattered Concern. This indicates
that, even though they were not classified as architectural problems in many
cases, these patterns were considered to be highly severe. Both patterns involve
the God Class and Complex Class smells. To corroborate, Sousa et al.(Sousa et
al. 2020) observed that such smells were recurrent indicators of architectural
refactoring opportunities. Thus, the high severity observed in this experiment
is consistent with the results observed in their study. As we discussed above,
the precision of these patterns could be higher if we had provided additional
information about the dependencies and concerns of each code element. The
results for these patterns lead us to the following finding:

Finding 3: The patterns for the architectural problems Fat

Interface, Concern Overload and Scattered Concern are the most
promising for identifying architectural refactoring opportunities. They be-
come even more useful and precise if complemented with information about
dependencies and concerns.

Once we investigated how the smell patterns can help the developers in
the identification of degradation problems, our next step was to understand
whether these patterns can also help the developers to remove the problems
through refactoring.

3.4.2
Can Smell-Patterns Indicate Refactoring Opportunities?

We asked the developers to inform us whether the refactorings suggested
by our tool were sufficient to remove the degradation problem identified. They
had to inform if they accepted, partially accepted, or rejected the suggested
refactorings. Table 3.6 summarizes their answers.

For SSP, in most cases, participants either accepted or partially accepted
the refactorings. The main reasons for the partially accepted refactorings were
(i) the effort needed to conduct the suggested refactorings, and (ii) not fully
understanding the design of the software system. In those cases, the architec-
tural problem was Unused Abstraction. For such a problem, the participant
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had to understand where the abstraction could be used. Therefore, deeper
knowledge about the system design was necessary. To illustrate this recurrent
observation, we may take as an example the justification of participant 2 for
one of the cases:

“The refactoring suggestion, as useful as it may be, may not be just what
is necessary to solve the problem. It potentially needs a reevaluation of the
design itself to discover the real use of that abstract class, and why no other
class uses it.”

We observed that even if the developer understands the system design,
the refactorings can be difficult. As suggested by participant 10, the refactor-
ings indeed would reduce the complexity of a class, however, with a high effort
cost. In that case, even though the participant recognized that there is an ar-
chitectural problem, the participant thought the trade-off between the class
complexity and the effort was not worthwhile. Besides analyzing the rejected
and partially accepted refactorings, we also analyzed the cases when the par-
ticipants accepted the suggested refactorings. In such cases, we noticed that
the refactorings for simpler smells were more widely accepted. By simpler, we
mean those smells that are easier to understand or, at least, those that partic-
ipants are familiar with. Examples of such smells are Long Method and Long
Parameter List.

Table 3.6: Number of Refactoring Suggestions that Were Accepted, Partially
Accepted, or Rejected.

SSP MSP Others
Accepted 9 6 9
Partially Accepted 6 11 6
Rejected 1 0 2

Regarding the MSP, we found that the participants partially accepted
most of the suggested refactorings for MSP cases (Table 3.6). Among the causes
for them partially accepting the refactorings, we observed (i) the complexity of
the degradation problem, (ii) the use of design patterns, and (iii) the context
of the software system.

Participants mentioned, for example, that multiple code elements with
smells were presented, which made the analysis difficult. One of the obstacles
was how to relate the smells and metrics of different code elements to identify
the main problem. For that matter, they accepted only some refactorings since
they were not fully aware of the whole architectural problem affecting these
classes. Another cause for partially accepting the refactorings was related to
the possible modification related to a higher-level abstraction. In these cases,
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the participants mentioned that instead of only applying the refactorings they
would also make more massive changes, such as introducing design patterns.
For instance, one of the reasons mentioned by participant 10 was the context of
the systems. Even though there was an architectural problem, the participant
mentioned that this was needed due to the APIs used on the system. Hence,
only some refactorings were accepted, since other cases of the smell were
required for API usage. Following, we present an example of this scenario
involving participant 10:

“This is a library that serves as an API for communication with a
database and this is a central abstraction of the database. Thus, it is justified
that this class adds a high amount of functionality so that (i) this abstraction
is not spread over many classes, and (ii) API usability is also facilitated.”

When the participants accepted all suggested refactorings, we observed
that they used our tool to identify problems that at a glance could be
considered as complex. For instance, participant 1 mentioned that some
problems were hard to identify due to the complexity of the system. However,
using the provided source code, smells, and metrics, the participant managed
to identify and fully understand the problem.

In addition, in the accepted cases, some participants also mentioned the
time constraints for the system development. Due to such constraints, they
recognized the introduction of implementation and architectural problems
during the development and evolution of the source code. For example,
participant 5 provided the following justification in one of the cases:

“Due to development time, I simplified this implementation, adopting
conditionals, instead of using polymorphism.”

As reported by the participant, this simplification led the class to become
a Complex Class and to have methods with Message Chains, Long Methods,
and Feature Envies. Combined with other smells, they were indicators of the
Unwanted Dependency problem.

For the Other category, we noticed that the participants did not accept
the refactorings especially due to intentional decisions. For instance, partici-
pant 10 mentioned that even though the class analyzed was indeed big and
complex, it was an intentional decision. In the Other cases where the partici-
pant partially accepted the refactoring, we noticed that this is related to the
complexity of the problem. For instance, participant 3 suggested the implemen-
tation of a design pattern to start solving the problem. This was suggested since
the analyzed class had duplicated functions. To implement this pattern, the
participant suggested applying Extract Class to create new separated classes.
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In this case, refactorings suggested to remove long parameter lists and long
methods would not be enough. Similar to the case where they do not accept
the refactorings, the domain of the system was also impacted when they only
partially accepted the refactorings.

Based on the aforementioned results, we conclude that the refactorings
associated with code smells in the smell patterns can help the developer
to remove or, at least, partially remove degradation problems. Nevertheless,
removing architectural problems tends to be more challenging. We have
identified scenarios in which more complex refactorings (e.g., introduction of
a design pattern) were required. Therefore, we conclude that our smell-based
approach is more useful when it provides automated support for performing the
suggested refactorings. Hence, in this study, we developed an automated tool
that, based on the smell patterns, suggests to the developer the degradation
problems and the proposed refactoring remove them. To assist developers in
removing architectural problems, we believe that the suggested refactorings in
our tool could be customized and optimized using machine learning or search-
based algorithms (Boukhdhir et al. 2014). This discussion leads to our last
finding:

Finding 4: Refactorings associated with code smells contribute to
the (partial) removal of degradation problems. However, more complex
problems, such as the architectural ones, require complementary informa-
tion (e.g., customized thresholds for the metrics of internal quality).

3.5
Related Work

In a previous work, Sousa et al. investigated when smells are indicators
of refactoring opportunities (Sousa et al. 2020). These authors analyzed
52,667 refactorings from 50 open-source systems. The main contribution of
their study was the identification of smell patterns that are often associated
with degradation problems. In this paper, we complement this related work by
evaluating the use of smell patterns in practice. Our evaluation was based on a
quasi-experiment involving 13 professional software developers, that helped us
to reach new findings. For instance, we identified when patterns are actually
useful in practice. We have also identified several factors that must be taken
into account for developers to be more precise in identifying architectural
problems through code smells. Next, we discuss other studies that are closely
related to this work.
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3.5.1
Code Smells and Degradation Problems

Code smells have been explored by multiple studies (Macia 2013, Macia
et al. 2012b, Moha et al. 2010, Oizumi et al. 2016, Oliveira et al. 2019, Tufano
et al. 2015). Tufano et al. (Tufano et al. 2015) explored when and why
developers introduce code smells. They mined over 500k commits and manually
analyzed 9,164 of them, identifying that the smells are introduced during
the evolution tasks of a system. Some studies explored the perception of
developers regarding the code smells (Palomba et al. 2014, Yamashita and
Moonen 2013, Tufano et al. 2015). Palomba et al. investigated specifically
whether developers recognized smells as degradation problems (Palomba et
al. 2014). Through the analysis of 12 distinct smells and three open-source
systems, they identified for most code smells, developers do not see as actual
problems. Nevertheless, some smells were perceived as problems in the source
code (e.g., Complex Class, and God Class). However, these previous studies
rely on surveys to investigate code smells. Some issues appear when using
surveys to gather information (Easterbrook et al. 2008). For instance, the
questions in a survey may not be designed in a way that yields useful and valid
data. Another issue is to phrase the questions insomuch that all participants
understand them in the same way, especially when the target population is
diverse. Another limitation of these studies is that their results have not been
grounded in practice.

Fontana et al. (Fontana et al. 2019) conducted an empirical study to
evaluate if architectural smells are independent of code smells. Their results
indicate that there is no strong correlation between architectural smells and
code smells. However, they used an automated tool for detecting architectural
smells. Thus, their architectural smells do not necessarily represent architec-
tural problems, as there can be false positives and false negatives. Differently
from them, we evaluated the use of a smell-based approach with professional
developers on a quasi-experiment. We relied on the expertise of the developers
to evaluate degradation problems. Therefore, our work evaluates the relation-
ship between smells and both architectural and implementation problems from
a different perspective.

3.5.2
Identification and Refactoring of Design Degradation Problems

Cedrim et al. (Cedrim et al. 2017) investigated the frequency that
refactoring operations are applied to smelly elements. They found that almost
80% of refactoring operations are applied to smelly elements. In their study,
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the authors focused on the relation between smells and refactoring. We focus
on the relation between smells and design degradation problems, in which
we conveniently use refactoring to find the relevant problems. In addition,
differently from them, we conducted a quasi-experiment to assess the usefulness
of a smell-based approach for finding refactoring opportunities.

Studies have explored how to identify design degradation problems (Ran
et al. 2015, Sousa et al. 2018). For instance, Sousa et al. proposed a theory to
describe the factors that influence how developers identify design degradation
problems in practice (Sousa et al. 2018). However, these studies focus only on
the identification of design degradation problems. They do not explore how
these smells can be used in practice for both the identification and refactoring
of these problems.

Different from the aforementioned studies, we performed a study with
professional developers, where we investigated the use of a smell-based ap-
proach for finding refactoring opportunities in practice. Besides evaluating the
use of a smell-based approach, we also developed an automated tool that is
fully available to be extended and used by other researchers and developers.
Details about this tool are available at Appendix A.5 and in our replication
package (1st Complementary 2022).

3.6
Threats to Validity

The time allocated for the quasi-experiment can pose a threat to the
validity of this study. To mitigate this threat, we performed a pilot study to
adequate the number of cases and the time spent analyzing each case. We
also present the cases of different groups in random order to avoid the cases
of a certain group always remaining at the beginning or at the end of the
experiment. Finally, we recorded the time spent analyzing each case and asked
the participants if they felt tired during the experiment. The analysis of each
case lasted an average of about 11 minutes. Most participants reported that
they did not feel tired. Two participants were asked to partition the experiment
into two parts to prevent tiredness.

As the experiment was carried out remotely, it was not possible to control
external variables such as interruption by third parties or the occurrence
of technical problems. We mitigate this threat by asking each participant
to report the occurrence of any interruptions or technical problems. Two
participants suffered interruptions caused by third parties and one of the
participants’ internet went down for 10 minutes. Nevertheless, the participants
informed us that such problems did not hinder their performance during the
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experiment.
The number of participants represents another threat to validity. We

would need a larger sample of participants to further understand the results.
To mitigate this threat, we complemented our quantitative analysis with sys-
tematic qualitative analysis. In fact, qualitative research requires the study of
specific situations and people, complemented by considering specific contextual
conditions (Yin 2015). We selected 13 professional developers with diverse ex-
perience, which are representative individuals of our target population. Thus,
we consider that this threat was mitigated.

During the experiment we had some threats. We used an automated
tool to collect metrics, detect smells and find patterns. Thus, our results are
influenced by the accuracy and reliability of the tool. To reduce this threat,
we extended a tool that was extensively used in related studies for collecting
metrics and detecting code smells (e.g., (Cedrim et al. 2017, Sousa et al.
2018, Oizumi et al. 2016)). We also conducted manual tests with multiple open-
source systems to identify and remove possible defects in the tool. Finally, we
conducted a qualitative assessment that helped us to identify cases in which
the accuracy of the tool influenced the results.

Our tool provides an output with the degradation problem affecting
the system, which could introduce a confirmation bias. To mitigate that, the
developers analyzed cases that had patterns indicating the problem and cases
that did not have any pattern. The developers’ preference for the system
analyzed could also introduce a confirmation bias. To mitigate that, the
participants had different levels of familiarity with the systems.

3.7
Conclusion

To assess the use of smell patterns in practice, we conducted a quasi-
experiment with 13 professional developers. Each participant evaluated mul-
tiple cases of smell patterns and other combinations of smells regarding their
relation with architectural and implementation problems. This evaluation was
conducted in the context of software systems they were familiar with. The
participants also indicated whether the detected degradation problems were
present at the architectural or implementation level. Finally, they indicated
whether the refactorings associated with the smells would be sufficient to re-
move each degradation problem.

We observed that developers tend to agree that smell patterns are indi-
cators of degradation problems in certain cases. This agreement is influenced
by several factors. Examples of such factors are development platform (e.g.,
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Android), type of functionality, and effort for refactoring the problem (see Sec-
tion 3.4.1.1). In practice, developers can benefit from the use of patterns such
as multi-smell patterns since they contain multiple smells that can be cumber-
some to analyze apart. Our tool presents the information needed (e.g. smell
patterns and suggested refactorings) to remove/reduce the degradation prob-
lem, likely saving developers time/effort. In future work, we intend to use the
findings presented in this paper to improve our smell-based approach with new
empirical studies. We also intend to improve our tool, based on the feedback
that the developers gave us.



4
Considering Robustness Changes to Identify Design Problems

A version of the work in this chapter appears in the Proceedings of the 20th
International Conference on Mining Software Repositories (MSR) (Oliveira et al.

2023).

In the previous chapter, we provided insights on how maintainability
smell patterns can be used to effectively identify design problems (see Chap-
ter 3). The quasi-experiment with professional developers showed that smell
patterns could indicate design problems. The agreement among developers re-
garding the existence of design problems within the system is influenced by
factors like the development platform, the type of functionality, and the level
of effort required to refactor and remove the problem. There were scenar-
ios where the maintainability smell patterns were not enough for the design
problem identification, and the developers needed more information so they
could have a more comprehensive understanding of the design problems. This
occurred because depending solely on maintainability smells introduced a lim-
itation related to the static analysis tools used for identifying these smells (see
Section 3.4.1.1). These tools rely on metrics and thresholds that might prove
inadequate for certain system contexts. This limitation related to static anal-
ysis tools is aggravated by developers’ need for more contextual information
about specific classes or components to identify and address design problems
accurately.

Relying solely on a limited set of smells may result in an incomplete
design problem identification. Considering that design problems negatively
impact NFRs on the system, exploring a new symptom (i.e., code smells)
related to a new type of NFR can be an option to give the developer
more information regarding a problem. Thus, in this chapter, we explore
robustness smells. Robustness smells can complement the maintainability
smells and reinforce the presence of design problems. Robustness smells are
complementary, as they tend to appear in the exceptional code of the system
(i.e. the code that handles unexpected behaviors in the system), while the
maintainability smells appear commonly in the normal code (e.g. the code
that deals with the expected behavior). Therefore, some information that the
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maintainability smells may not capture can be complemented by the robustness
smells.

In this context, we investigated how developers can use robustness smells
combined with maintainability smells to identify design problems. To perform
our analysis, we collected the commit history of more than 160k methods
from various releases of 10 open-source software systems. We first investigated
how the robustness changes (i.e, changes performed within the catch block)
are correlated maintainability smells. Second, we explored whether robustness
changes could be related to the number of maintainability smells in a class
or method. Finally, we investigated how poor robustness changes (i.e., the
changes affected by robustness smells) could be used with the maintainability
smells patterns for the identification of design problems.

This chapter presents the paper Don’t Forget the Exception! Considering
Robustness Changes to Identify Design Problems (Oliveira et al. 2023). This
study comprehends the second major contribution of this Ph.D. thesis: how
robustness smells can be combined with the pattern of maintainability smells
for the identification of design problems (see Section 1.4).

4.1
Introduction

Exception-handling mechanisms, commonly utilized in modern program-
ming languages, promote the robustness and stability of the software sys-
tems (Shah et al. 2010, Weimer and Necula 2008). The proper use of these
mechanisms aims to guarantee the software integrity when unexpected events
or behaviors happen (IEEE 1990). However, most software systems do not
offer detailed documentation of the design decisions related to the exception
handling implementation (Ebert and Castor 2013, de Lemos and Romanovsky
2001). This lack of information encourages developers to focus solely on the
normal behavior of the software system (Robillard 2000), leaving the excep-
tion handling behavior poorly implemented (Reimer and Harini 2003, Shah et
al. 2010) or even neglecting the exceptional code (de Lemos and Romanovsky
2001, Jakobus et al. 2015). This neglection can impact the software system’s
robustness and might also be a sign of problems in the design of the software
system (Kechagia and Spinellis 2014, Coelho et al. 2015, Oliveira et al. 2016).

A design problem results from one or more design decisions that nega-
tively impact the system’s non-functional requirements (NFRs), which include
robustness and maintainability (Garcia et al. 2009b, Li et al. 2015, Lim et al.
2012). The most critical design problems often affect how the system is mod-
ularized into components and how these components interact with each other.
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To identify such design problems, developers have to analyze several elements
(e.g., classes and packages), which is a laborious activity. Thus, in this study,
we focus on design problems related to system modularity. An example is the
design problem Concern Overload that occurs when a component is respon-
sible for realizing multiple concerns (Macia et al. 2012). This design problem
can also make it difficult for developers to know which concerns they should
focus on to create the proper exception-handling logic. Furthermore, when ne-
glected, these design problems can lead the system to undesired consequences
such as irrecoverability from the faults, increasing the maintenance cost, and
speeding up software erosion (Gurp and Bosch 2002, MacCormack, Rusnak
and Baldwin 2006, Curtis, Sappid and Szynkarski 2012).

Since these design problems can affect multiple NFRs, they must be
identified and removed from the systems as soon as possible (de Mello et al.
2023). Multiple studies explored the use of maintainability smells as symptoms
of design problems (Oizumi et al. 2016, Sousa et al. 2018, Coutinho et al. 2022).
A recent study presented a catalog with patterns of maintainability smells that
indicate multiple design problems (Oliveira et al. 2022). However, more smells
may be considered, since developers may need more context regarding the class,
component, or system. Moreover, this can cause an incomplete identification of
the design problem. In addition, these studies do not explore how exceptional
code (i.e., code inside the catch block) can be combined with maintainability
smells to identify design problems. Given the different natures of normal and
exceptional code, it is possible that they can complement each other to identify
design problems. Developers could benefit from tools that, besides detecting
multiple symptoms, also combine them for revealing design problems (Sousa et
al. 2018). Therefore, in this study, we aim to understand how the poor changes
in exception handling can be used as symptoms of design problems and how
they can be combined with maintainability smells to identify these problems.

For this study, we consider the changes related to robustness as the
changes performed within the catch blocks, since the exceptional code is
in this part of the implementations. We analyzed over 160k class methods
from 10 open-source software systems. For our analysis, we collected (i)
maintainability smells based on insights from a related study (Oliveira et
al. 2022), (ii) robustness changes in methods, and (iii) robustness smells. In
the first analysis, we explored how robustness changes could correlate with
maintainability smells. Furthermore, we looked for maintainability smells that
were introduced through robustness changes. Our goal was to identify how
these two factors were correlated. In a second analysis, we identified whether
robustness changes could have a negative impact on classes with methods
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that underwent this kind of change. Hence, we could understand how these
changes impacted the method’s degradation. Finally, we investigated which
poor robustness changes (signaled through robustness smells) could be used
with patterns of maintainability smells to identify design problems.

We identified that a method with robustness changes would also be af-
fected by a Feature Envy, Dispersed Coupling, or Long Method maintainability
smells. By manually analyzing the methods with robustness changes, we identi-
fied cases where these changes introduced the maintainability smells, especially
the Feature Envy. We also identified that classes with robustness changes had
a higher density of smells when compared to classes without such changes.
Hence, these robustness changes could indicate these classes’ degradation. We
also observed that the robustness smells catch of generic exceptions and empty
catch block tended to co-occur with the patterns of maintainability smells that
help in the identification of design problems such as Concern Overload and
Unwanted Dependency.

Our results support the community in understanding how poor robust-
ness changes can complement the information given by maintainability smells
to identify design problems. In practice, developers can use this information to
be aware that even minor modifications made to catch blocks can potentially
affect or reveal underlying design issues within the system. Moreover, by iden-
tifying the robustness smells as a new symptom of design problems, tools can
be developed to reinforce the presence of these problems.

4.2
Background

This section describes the concepts for understanding the relationship
between poor robustness changes, and maintainability code smells, so they
can be used to identify design problems.

4.2.1
Exception Handling

An exception is an unexpected event that occurs during the execution
of a program, interrupting its normal behavior (Goodenough 1975). Usually,
exceptions manifest through errors. When an error happens, the method
where it appears creates an exception object including information, such as
the program’s state and details about the error. The exception object is then
delivered to the runtime system, completing the initial routine that throws an



Chapter 4. Considering Robustness Changes to Identify Design Problems 73

exception1.
Developers use exception-handling mechanisms to ensure that the system

will be in a consistent state, even after errors that occur at runtime (Goode-
nough 1975), assuring that the system will be robust. In Java, any code snippet
likely to throw exceptions must be placed inside a try-catch block. The try
block defines the normal code of a method. Respectively, each try is followed
by one or more catch blocks, which handle specific exceptions thrown inside
the associated try. The catch block has the code responsible for handling
the specific exception types that can emerge from the enclosed instructions
in the try block. In addition, the catch block encompasses the method’s
exceptional code. These blocks can also be followed by a finally block
that always executes after the try and the catch if an exception is raised.

4.2.2
Robustness Changes and Code Smells

In this study, we consider as robustness changes those performed within
the catch block, since the poor use of exception-handling mechanisms can
harm the software robustness (Kechagia and Spinellis 2014, Coelho et al.
2015, Oliveira et al. 2016). We consider the poor robustness changes as the
changes in the catch block that are affected by robustness smells. An example
of a robustness smell is the Empty Catch Block, which occurs when a developer
creates a catch statement but leaves its content empty. This is a problem
because the catch block should be where the developer handles exceptions
thrown by the system, which is not occurring. Unfortunately, developers tend
to ignore these smells and only deal with them reactively when they face
errors (Shah et al. 2010). Albeit ignored, robustness smells may indicate
the decay of the software (Ebert et al. 2015). Other indicators of software
degradation are the maintainability smells (Fowler 1999, Lanza and Marinescu
2006, Uchôa et al. 2020), that can also signal design problems (Sousa et al.
2017, Sousa et al. 2018, Oizumi et al. 2016, Oliveira et al. 2019, Oliveira et
al. 2022). However, they are not always sufficient for this identification task.
Hence, since both maintainability and robustness smells can indicate design
problems, combining them could reinforce its presence.

To understand this relationship between poor robustness changes and
maintainability smells, let us consider the following example illustrated by
Figure 4.12. This figure displays the HTTPHandler system, which implements
an HTTP client. Figure 4.1(a) shows the layered architectural style followed

1Java Documentation. What Is an Exception? Available at https://docs.oracle.com/
javase/tutorial/essential/exceptions/definition.html, last accessed on 2021-07-16.

2For simplicity, we adapted this example from one of the analyzed systems.

https://docs.oracle.com/ javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/ javase/tutorial/essential/exceptions/definition.html
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by the architecture of the system we analyzed, which consists of four layers:
Interface, Cache, Connection, and Control. According to the architectural
style, each layer is in charge of its responsibility, thus following the Separation
of Concerns (SoC) principle (Dijkstra 1997, Parnas 1972).

Interface (IF)

Cache (CA)

Connection (CO)

Control (CT)

ControlTimer

...

+ expire()

+ flush()

+ drop()

HTTPHandler Partial View of
the Control Layer

timer
CT CA CO

(a) (b)

Figure 4.1: Partial View of the HTTPHandler System

Like other design decisions, one might expect that every exception han-
dled in each layer is directly related to the responsibility (i.e., the concern)
implemented in the layer. However, this is not always the case. For exam-
ple, Figure 4.1(b) shows the ControlTimer class with three methods, where
flush() and drop() implement responsibilities from two other layers: Cache
and Connection, respectively. When we look at the expire() method (illus-
trated in Figure 4.2), we see a code snippet that shows a change was performed
in the class in which the developer tried to handle an error. However, as ob-
served in the Figure 4.2, it catches a generic exception to handle the error,
which is a bad practice since it hides the error that the catch block should
have captured and handled. In addition, within the catch block, nothing is
handled, only logged with a generic message.

We hypothesize that this happened due to the several concerns inter-
mingled in the implementation of that class. This method is also affected by
the code smell Intensive Coupling, which indicates that this class has a high
coupling with the other classes in the module. At the time, the developer
could not know which specific exception the block should handle. As afore-
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public class ControlTimer{
  (...)
  public void expire(Control ct, 
                     Connection conn){
    try {
      (...)
    } catch (Throwable t) {
      log.debug(ct.getServiceKey() 
      + "and" + conn.getUrl())
    }

Figure 4.2: Example of a Method Catching a Generic exception

mentioned, the class implements concerns from other layers. Consequently, the
many concerns caused the developer to neglect proper exception handling in
the method. Furthermore, besides just logging the error instead of handling it,
the log method also calls multiple methods from the other classes, introducing
a Feature Envy and reinforcing the Intensive Coupling smell that the method
already had. Additionally, these two maintainability smells are part of a pat-
tern that can strongly indicate the design problem Concern Overload (Oliveira
et al. 2022, Sousa et al. 2020). The patterns considered in our study are pre-
sented in Table 4.1. Therefore, in this example, the poor robustness change and
the smell pattern together reinforced the design problem’s presence. Moreover,
this study explores the potential of using these co-occurring factors to identify
design problems.

Table 4.1: Design Problems and their Smell-Patterns
Design Problem Smells Pattern
Ambiguous Interface Long Method, Feature Envy, and Dispersed Coupling
Cyclic Dependency Intensive Coupling and Shotgun Surgery

Concern Overload
Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
Long Method, and Shotgun Surgery

Fat Interface Shotgun Surgery or Divergent Change, Dispersed Coupling,
and Feature Envy

Misplaced Concern God Class/Complex Class, Dispersed Coupling, Feature
Envy, and Long Method

Scattered Concern
Dispersed Coupling, Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
and Shotgun Surgery

Unwanted Dependency Feature Envy, Long Method, and Shotgun Surgery
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4.3
Related Work

Multiple studies have explored the relationship between maintainability
smells and design problems (Sousa et al. 2018, Sousa et al. 2020, Oliveira et
al. 2019, Oliveira et al. 2022, Oizumi et al. 2016, Oizumi et al. 2018, Macia
et al. 2012). Oliveira et al. (Oliveira et al. 2019) identified the criteria that
developers used to prioritize the classes that, with respect to their degradation,
were most critical in a system. The authors found that developers tend to
consider the quantity and diversity of maintainability smells in a class as an
important factor in its prioritization. Thus, the developers should focus their
effort on these degraded classes. The limitation of these studies regards using
only the maintainability smells as the symptom of design problems. Sousa et
al. (Sousa et al. 2018) developed a theory on how developers identify design
problems. They identified the developers’ use of multiple symptoms, including
maintainability smells and violation of non-functional requirements (NFRs).
Thus, our study explores the NFR robustness (by considering the robustness
changes) and its combination with the symptom maintainability smell.

Studies have shown that maintainability smells can be indicators of
design problems (Sousa et al. 2017, Macia et al. 2012a, Macia et al. 2012b,
Coutinho et al. 2022). A pattern of maintainability smells (i.e. groups of one
or more types of smells) can be a strong indicator of the presence of design
problems (Oliveira et al. 2022, Sousa et al. 2020). For instance, when the
maintainability smells Feature Envy and Intensive Coupling occur together,
they indicate that the method, affected by these smells, is more interested
in data from others, calling many methods from unrelated classes(Lanza and
Marinescu 2006). Hence, these smells can indicate the presence of a Scattered
Concern design problem (Garcia et al. 2013). However, these smells may not
be sufficient to confirm the presence of design problems (Oliveira et al. 2022).
Among the reasons, more information regarding the context of the method and
class is needed, such as the system’s domain. Thus, in this study, we expand
the use of these smells with information on the exceptional code, which can
introduce more context (e.g., through the type of exception handled) about the
method and class analyzed. Best of our knowledge, the relationship between
robustness changes and code smells still needs to be explored.

The use of exception-handling by developers is extensively explored (de
Mello et al. 2023, Rocha et al. 2018, Ebert et al. 2015, De Padua et al.
2017, Kery et al. 2016, Nakshatri et al. 2016, Asaduzzaman et al. 2016, Cacho
et al. 2014). Melo et al. qualitatively analyzed the use of exception-handling
guidelines by surveying 98 developers (Melo et al. 2019). The authors identified
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Figure 4.3: Workflow of our Study Design.

that in 70% of the developers’ responses, there was a guideline to be followed.
However, these guidelines tend to be implicit and undocumented. Cacho et
al. (Cacho et al. 2014) presented a study with C# projects where they identify
the relationship between software systems changes and their robustness. They
analyzed 119 software versions extracted from 16 systems from different
domains. They identified that C# developers often unconsciously traded
robustness for maintainability in various program categories. Finally, it was
identified that a high number of uncaught exceptions were also introduced
when the catch blocks were changed. Other studies explored the faults and
anti-patterns commonly related to the exception-handling in the code (Ebert
et al. 2015, De Padua et al. 2017). In this study, we explore how poor changes
in the exceptional code can impact the maintainability smells of the system.

4.4
Study Design

In summary, we analyzed commits from 10 open-source software systems.
We started by collecting maintainability smells, robustness smells, and robust-
ness changes in the commits between selected pairs of releases from those
systems. We detail the remainder of the study design as follows. It is also
summarized in Figure 5.1.

4.4.1
Research Questions

Our goal is to understand how poor robustness changes can be combined
with maintainability smells as complementary symptoms of design problems.
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With this goal in mind, we defined three research questions.

RQ1: How often do robustness changes co-occur with main-
tainability smells?

We hypothesize that robustness changes and maintainability smells can
be considered in combination (Section 4.2.2) and have the potential to reveal
design problems. Therefore, we performed a statistical analysis of the corre-
lation between robustness changes and maintainability smells using Fisher’s
exact test (Fisher 1922). We started by dividing methods regarding robustness
changes they underwent between two releases and the presence of maintain-
ability smells in these methods.

Alongside understanding whether those robustness changes and main-
tainability smells correlate, we also want to understand if these changes could
introduce the maintainability smells. Thus, we selected the methods with ro-
bustness changes and verified whether the maintainability smells were intro-
duced during those changes (see Section 4.4.4 - Step 1).

RQ2: What impact can robustness changes have on the
degradation of classes?

Once we answer RQ1, we should have indications of whether robustness
changes and maintainability smells are correlated and if these changes can in-
troduce smells. After knowing that, we aim to understand whether performing
robustness changes to methods can impact the degradation of classes. For RQ2,
similarly to previous work (Sousa et al. 2018, Oliveira et al. 2019, Oizumi et
al. 2016), we considered degradation as the number of maintainability smells
a method has (a.k.a. density of smells). Developers use this metric to prior-
itize classes with a high number of different smells when looking for design
problems (Oliveira et al. 2019) (see Section 4.4.4 - Step 2).

RQ3: How do robustness smells give evidence of design
problems?

After identifying if robustness changes can have a negative impact on
maintainability smells, we also want to investigate further how we can use
poor robustness changes as symptoms of design problems. To answer RQ3,
we analyze when robustness smells co-occur with maintainability smells that
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are part of patterns that indicate design problems (see Section 4.2.2). With
this RQ, we aim to identify which robustness smells can complement these
patterns of maintainability smells, reinforcing the presence of design problems
(see Section 4.4.4 - Step 3).

Consequently, by addressing all three research questions, we will gain
insights into how and which poor robustness changes can be used with the
patterns of maintainability smells to assist developers in detecting design
problems.

4.4.2
Defining Subject Software Systems and Releases

We firstly selected projects from a list of projects used in related
studies (Coutinho et al. 2022, Oliveira et al. 2022, Barbosa et al. 2014, Oizumi
et al. 2019). Then, we filtered the systems to be used in this study using the
following criteria:

Open Source. We selected open-source software systems to allow full
replication of this work, since access to closed software systems is usually very
limited. Open-source software systems often rely on version control systems
(e.g., Git) to track the evolution of their source code. This gives us access to
the complete history of changes (i.e., commits) to the source code of a software
system, allowing us to perform the multiple analysis required to address our
three research questions.

Java Language. We consider systems written in Java since it provides
an exception-handling mechanism designed to help developers to build robust
systems (Barbosa et al. 2014). For instance, the use of checked exceptions forces
developers to write handlers for certain errors. In addition, we selected projects
from different domains that are more inclined to follow robustness requirements
(e.g., distributed computing, and big data processing). Moreover, Java has a
wide availability of static analysis tools and libraries that can automatically
identify source code problems such as Organic (Oizumi et al. 2018), PMD3,
and SonarQube4;

Active Software Systems. To consider a software system active we
considered four criteria: (i) its Git repository has more than 1,000 commits,
(ii) should contain commits pushed a month before our data collection period,
(iii) should have recent discussions on pull requests and issues, and (iv)
should have recent releases. These criteria ensure that the systems still have
a development activity and relevance to the developers participating. After

3PMD. Available at https://pmd.github.io/, last accessed on 01/19/2023
4SonarQube. Available at https://www.sonarsource.com/products/sonarqube/, last

accessed on 01/19/2023

https://pmd.github.io/
https://www.sonarsource.com/products/sonarqube/
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Table 4.2: Details on the Software Systems Analyzed
Commits

Project Start Release End Release With
Any

Changes

With
Robustness

Changes

Methods

apm-agent-java v0.5.0 v1.28.0 1,025 484 9,949
dubbo dubbo-2.6.12 dubbo-3.0.0 1,382 1,069 26,613
elasticsearch-hadoop v1.3.0.M1 v8.0.0 1,120 503 3,894
fresco v1.0.0 v2.6.0 1,165 791 7,700
netty netty-4.1.31.Final netty-4.1.75.Final 995 694 19,067
okhttp parent-2.3.0 parent-3.14.0 586 455 5,933
RxJava v1.0.10 v3.1.0 1,169 799 28,004
spring-boot v2.7.6 v3.0.0 1,380 618 19,330
spring-framework v5.3.24 v6.0.0 1,119 794 38,429
spring-security 5.1.0.RELEASE 5.6.0.RELEASE 1,426 690 10,062

Commits with any changes: Number of commits with any kind of change
Commits with robustness changes: Number of commits with robustness changes
Methods: Total number of methods between releases
following these criteria, we settled on 10 software systems: APM Agent, Dubbo,
Elasticsearch Hadoop, Fresco, Netty, Spring Boot, Spring Security, Spring
Framework, RxJava, and OkHttp.

Given that the releasing strategy can differ across software systems, we
selected start and end releases that span at least 1,000 commits. Our goal is to
avoid the bias of having only a few robustness changes and thus being unable
to perform reliable conclusions. Therefore, we can detect subtle patterns and
correlations in the data that may not have been apparent with fewer robustness
changes. This led us to more generalizable, accurate, and robust conclusions.
In Table 4.2, we present the systems and the releases selected.

4.4.3
Collecting Artifacts Data

To answer our RQs, we collected robustness changes, maintainability
smells, and robustness smells from 10 target systems. We first collected the
maintainability smells using Organic (Oizumi et al. 2018). Organic is a static
code analyzer that collects software metrics (Lanza and Marinescu 2006) for
maintainability smells detection. For our first two RQs, we only consider
method-level smells (e.g., Feature Envy, and Dispersed Coupling). We selected
these smells since they are part of the patterns that help identify design
problems (see Table 4.1). When evaluating those design problem patterns (i.e.,
RQ3), we also consider class-level maintainability smells (e.g., God Class, and
Complex Class).

To collect robustness changes, we developed a Python script that cal-
culates the difference between two commits and identifies any change within
the catch block of a method body. We also filtered out the test code. Finally,
we collected nine robustness smells (e.g., empty catch block, and catch generic
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exception), using PMD, which is a static code analyzer, often used to find flaws
in source code. Details about the smells and the script developed can be found
at Appendix B.1.

4.4.4
Data Analysis

In this section, we present the steps to the analyses executed to answer
our research questions as follows (see Figure 5.1).

Step 1: Correlating robustness changes and maintainability
smells: To answer RQ1, we first divided methods as follows: (i) methods
with at least one robustness change, (ii) methods that changed but did
not have any robustness change, (iii) methods that were affected by at
least one maintainability smell, and (iv) methods that were unaffected by
maintainability smells. Considering this division, we defined the following pair
groups to be used in Fisher’s exact test (Fisher 1922).

– Smelly + Changed (SML + CH): Methods with maintainability
smells and robustness changes

– Smelly + Not Changed (SML + NoCH): Methods with maintain-
ability smells without robustness changes

– Not Smelly + Changed (SML + CH): Methods without maintain-
ability smells and with robustness changes

– Not Smelly + Not Changed (NoSML + NoCH): Methods without
maintainability smells and without robustness changes

With this statistical test, we can define whether robustness changes
performed to a method are related to the presence of maintainability smells in
that same method. To understand how these two factors could be correlated,
we performed a manual inspection analysis of randomly selected 206 methods
(equally distributed between the collaborators) with maintainability smells
and robustness changes. First, we selected the methods in which robustness
change and maintainability smell were present. Then, for each analysis, the
participants filled out a form detailing how the robustness changes could be
related to the maintainability smells. All participants have experience with
exception handling and code smell detection and at least a Master’s degree in
Software Engineering. Whenever collaborators had even a slight doubt about
the validity of a case, they took note of it, and another author was asked
to confirm their findings. This process allowed a comprehensive review of
each case, ensuring that mistakes were avoided and the verdicts were reliable.
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Details about this manual inspection and the protocol used can be found in
our replication package (2nd Complementary 2022).

Step 2: Verifying the introduction of maintainability smells. In
this step, we complemented the analysis of RQ1 with a qualitative analysis
now looking at cases in which maintainability smells were introduced through
robustness changes. For that purpose, we identified the methods by which this
event occurred and inspected them, looking for why the robustness change
introduced the smells. For this analysis, we prioritized cases with a higher
quantity of smells introduced. Furthermore, we analyzed 30 methods, equally
divided between the software systems. To select these methods, we divided
them into quartiles, considering the number of smells introduced in that
commit. Furthermore, four collaborators analyzed the methods presented in
the 1st, 2nd and 3rd (together), and 4th quartiles.

Step 3: Assessing the impact of robustness changes on the
degradation of methods: To answer RQ2, we evaluate whether the number
of maintainability smells in a class with methods that underwent robustness
changes is significantly higher than the number of smells in classes that do
not have methods with this kind of change. First, we compared the number
of smells in both groups of classes. Next, we considered the total number of
maintainability smells a class has in the end release, considering the smells on
the method-level. Finally, to analyze the statistical significance of our results,
we applied the Mann-Whitney test (Sheskin 2003).

Step 4: Identifying robustness smells as a symptom of design
problems. To answer RQ3, we analyzed the methods that underwent robust-
ness changes between the pair of releases defined (see Section 4.4.2), resulting
in 4,758 methods. First, we collected the robustness smells for each method
and verified whether the robustness smells co-occurred with the patterns for
identifying design problems. For each smell, we verified how many times a pat-
tern co-occurred with the robustness change. Finally, we analyzed 80 cases in
which this event occurred to understand whether this robustness change and
the pattern could be related to a possible design problem.

4.5
Analysis and Results

This section presents and discusses the results to answer our research
questions. First, we explored the correlation between robustness changes and
maintainability smells. Next, we explored the density of smells compared to
classes with robustness changes and without this kind of change. Finally, we
explored the type of robustness changes that lead to the presence of design
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Table 4.3: The Relation of Maintainability Smell (S) and
Robustness Changes (C) - (p < 0, 05)

Software System Odds
Ratio

SML +
CH

SML +
NoCH

NoSML +
CH

NoSML +
NoCH

apm-agent-java 4.755 50 941 99 8,859
dubbo 6.995 219 1,956 385 24,053
elasticsearch-hadoop 2.377 33 139 338 3,384
fresco 5.243 25 35 916 6,724
netty 6.902 45 63 1,778 17,181
okhttp 3.351 32 75 658 5,168
RxJava 5.938 48 105 1,991 25,860
spring-boot 2.192 10 62 1,320 17,938
spring-framework 4.504 31 73 3,302 35,023
spring-security 2.458 50 234 782 8,996

Odds Ratio: Odds ratio identified through the Fisher test
SML + CH: # of methods with maint. smells and robust. changes
SML + NoCH: # of methods with maint. smells and without robust. changes
NoSML + CH: # of methods without maint. smells and with robust. changes
NoSML + NoCH: # of methods without maint. smells and robust. changes

problems.

4.5.1
How Often do Robustness Changes Co-occur with Maintainability Smells?

To answer RQ1, we analyzed if there is a correlation between robustness
changes and maintainability smells. For that purpose, we first relied on Fisher’s
exact test (Fisher 1922) (see Section 4.4.1). Table 4.3 provides an overview of
this analysis.

Chances of methods with robustness changes being affected
by maintainability smells. Considering the commits between the two
releases, we computed a correlation for the methods’ robustness changes and
maintainability smells. In our analysis, all systems had p < 0.05, meaning
that there is an association between the occurrence of robustness change
and maintainability smell in methods. The odds ratio assumes values from
0 to infinity. When the OR is greater than 1, it indicates that methods that
underwent robustness changes will likely be affected by maintainability smells.

In this test, we used the robustness change as a predictor and main-
tainability smell as the outcome. For instance, for the system Dubbo, the
Fisher test computed an odds ratio of 6.995. This means that the odds of a
maintainability smell occurring are 6.995 higher in cases where the robustness
change occurs than in cases where this change does not affect the method.
Thus, this indicates a strong correlation between robustness change and main-
tainability smells. In this example, 26,613 methods were changed between the
releases, thus considered in the analysis. From these methods, 604 had robust-



Chapter 4. Considering Robustness Changes to Identify Design Problems 84

Table 4.4: The Relation of Specific Smells (S) and Robustness Changes (C).
(p < 0, 05)

Odds Ratio
Software System Brain

Method
Dispersed
Coupling

Feature
Envy

Intensive
Coupling

Long
Method

Message
Chain

Long Parameter
List

Shotgun
Surgery

spring-security NR 11.002 2.477 NR 6.291 NR NR 11.206
apm-agent-java NR 6.952 8.153 9.058 13.431 2.482 NR NR
dubbo 10.330 14.171 8.198 10.191 9.305 3.168 1.936 10.330
elasticsearch-hadoop NR 7.214 2.968 4.607 3.971 3.002 NR 8.032
fresco NR 9.299 8.878 NR 7.205 NR 2.780 NR
netty NR 13.033 6.126 9.930 14.293 NR 2.461 NR
okhttp NR 3.862 5.933 9.743 9.059 2.929 NR 9.011
RxJava NR 10.049 9.820 NR 11.272 NR 3.387 21.686
spring-boot NR NR NR NR NR NR 3.682 NR
spring-framework NR 15.411 4.517 NR 5.447 3.425 4.124 NR

NR: Not statistically relevant

ness changes (219 with maintainability smells and 385 without them). Also,
we discuss the cases in systems with the highest odds ratio. For instance, in
Table 4.3, the lowest odds ratio is 2.192 in the spring-boot system; hence meth-
ods with robustness changes are at least twice as likely to have maintainabil-
ity smells compared to methods without such changes. Therefore, developers
should consider these changes when introducing or changing exceptional code.

Finding 1. When robustness changes are performed, developers
should be aware of the maintainability smells introduced or already present
in the method.

To better understand which maintainability smells correlated with the
robustness changes, we did an analysis specifically for each smell. Table 4.4
presents the results for this analysis. Each column represents a maintainability
smell. Each cell represents the odds ratio for the specific smell. When we did not
reach statistically relevant results, we filled the cell with ‘NR’ (Not statistically
Relevant).

We can highlight three smells: Feature Envy, Dispersed Coupling, and
Long Method. The results of these three smells were statistically significant in
all software systems, except for spring-boot. Dispersed Coupling had an odds
ratio higher than five in eight systems, while Feature Envy and Long Method
had in six and eight systems, respectively. That means a strong correlation
between the robustness change and the presence of these smells on methods.
The smell Shotgun Surgery had an odds ratio of 21.686 on RxJava. However,
the results for this smell were relevant only for five systems.

Finding 2. Methods that underwent robustness changes mostly co-
occur with the maintainability smells Dispersed Coupling, Feature Envy,
and Long Method.
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We decided to manually evaluate cases involving the three maintainabil-
ity smells mentioned with the highest odds ratio. For that, we selected a sample
of 206 methods. To select them, we chose the commit in which the class had
methods affected by the maintainability smells and had the robustness change.
On a manual analysis, we identified that in at least 74 (35.91%), the main-
tainability smell was directly related to the robustness change, meaning that
either the robustness change introduced the smell or worsened the smell al-
ready present in the method. More details about this validation can be found
in our replication package (2nd Complementary 2022). Besides these direct
cases, we observed that this relation could also be indirect.

Indirect relation between robustness changes and maintainabil-
ity smells. One example is case in the method drainLoop from RxJava (Rx-
Java 2023). We identified that the Feature Envy and Message Chain smells
were related to the operation performed, which was a parsing that resulted in
new exceptions being raised. Therefore, there is an indirect relation between
the smells and the exceptional change. The indirect relation can also be re-
lated to Long Methods. In this scenario, it is natural that the excess of code
statements will be more complex, leading to multiple catch implementations
of generic catch blocks or even empty catch blocks.

Developers can use the logging mechanism as a source of
information for minor exception-handling improvements. Changes in
the logging regarding the errors handled were also constant in our analysis. We
observed that 37 (from 206) cases were related to logging in the catch block. At
first sight, this may be seen as a bad practice, as apparently nothing is handled.
However, the log messages can serve as documentation for the developers,
since they can provide information to the developers that will maintain this
exceptional code. Furthermore, when a developer inserts a log message with
proper information regarding the exception, it can indicate that he intends to
improve the code in the future. However, in our analysis, we observed that the
inclusion of Feature Envy was mainly related to changes in the log messages,
as we described above on a method from dubbo. Hence, developers need to be
careful when adding these messages since they can add new maintainability
smells. For instance, the developer should give more context in the log message,
which can be reinforced using more specific exceptions rather than generic ones.
In addition, the developer needs to be sure about the log level for the messages,
which would avoid smells such as the Feature Envy.

Maintainability smells can be included during robustness
changes. We identified that from the 4,758 methods with robustness changes,
774 (16.26%) co-occurred with the introduction of maintainability smells.
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Therefore, we analyzed the cases in which this happened. We focused on cases
with the introduction of Feature Envy, Dispersed Coupling, and Long Method,
which had statistically relevant results in 9 out of 10 systems (see Table 4.4).
On dubbo, we observed a case in which the developer added log messages to
the catch block. However, these messages heavily relied on calls to methods
from other classes, adding a Feature Envy and a Dispersed Coupling. We ob-
served a similar case on RxJava, but in which the catch block introduced the
smell Dispersed Coupling. In addition, the block called multiple classes to close
the resources used. On okhttp, we identified a case of bad practice on excep-
tion handling that led to the introduction of a Long Method. In this class, the
developer added multiple catch blocks for different exceptions. However, the
handling code was the same in every case, which led to duplicated code, making
the method unnecessarily long. In that scenario, the developer should use the
same code on the same block, since the Java language allows the developer to
do that. These changes also can impact the robustness of the software system
in the future, making it difficult for the developer to understand the source of
that problem.

Finding 3. Robustness changes can introduce smells such as Fea-
ture Envy and Dispersed Coupling on the methods, which can negatively
impact their maintainability.

We observed that these cases in which the robustness changes come along
with the introduction of maintainability smells happened when the method
was introduced in the commit. Therefore, both the change and the smell are
inserted simultaneously. Still, the robustness change can indicate the presence
of these smells in the normal code. For instance, let us consider the method
onBeforeExecute from apm-agen-java (APM Agent Java 2023). This method
is part of the ElasticsearchRestClientInstrumentation class, which provides the
instrumentation for the Elasticsearch Java Rest Client. The method is called
before a request is executed using this client. In this case, the catch block
in the method was empty, and the developer left a comment warning that
nothing should be handled there. Through this message, it can be the case
that the exception is not in the correct class. This can be directly related to
the presence of the Feature Envy, indicated through the multiple calls to data
from the Span class. This excessive calling also introduced the smells Intensive
Coupling, Long Method, and Message Chain. Therefore, even though it was a
simple change in the catch block, it signaled the other maintainability smells.
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Finding 4. Even small changes in the exceptional code (e.g., a
comment in an empty catch block) can be an indicator of maintainability
smells such as Feature Envy and Intensive Coupling.

In summary, in our first RQ, we observed the maintainability smells that
commonly co-occur or are introduced with robustness changes performed in the
code. Hence, developers should be aware of these smells when performing this
kind of change on a method, even when small. This way, it is recommended that
the developers plan ahead the changes that will be performed. Furthermore,
these changes should be considered even in the early stages of software
development, when the decisions regarding exception handling should be
defined appropriately. Developers could also benefit from using tools that
could warn them about the possible maintainability smells that could be
introduced with that robustness change. Alternatively, even warning them
about possible smells already present in that method, giving the change
performed, is informative.

4.5.2
What Impact Can Robustness Changes Have on the Degradation of
Classes?

To answer RQ2, we computed the density of maintainability smells in
methods with and without robustness changes (see Section 4.4.4. Figure 4.4
presents box plots representing the density of smells per method group and
software system. Inside each one, we have white dots representing the mean
density. In parentheses, we show the systems in which p − value < 0.05,
meaning that the results were statistically significant for the Mann-Whitney
statistical test applied. With this test, we want to confirm whether the density
of maintainability smells in classes with methods that underwent robustness
changes is greater than the density of smells in classes without these methods.

Density of maintainability smells in classes with and without
methods that underwent robustness changes. Looking at the box plots,
we can observe that the density median was higher in six systems, while the
median was the same in the other four. In addition, the mean density of smells
is higher in seven systems. Thus, we can observe through the mean and median
that classes with methods that underwent robustness changes tend to have a
higher density of maintainability smells than classes without these methods.
More details about the statistical values are available at Appendix B.2.
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Figure 4.4: Smells Density in Classes per Software System.

Finding 5. Classes with methods that underwent robustness
changes tend to have a higher density of maintainability smells compared
to classes without methods with this kind of change.

Robustness changes can worsen the already existing maintain-
ability smells. In our analysis, we observed a typical scenario for all sys-
tems. The introduced catch block does not originate the smells but, in some
cases, contributes to their worsening (e.g., making a method more coupled
than earlier). It suggests that the robustness changes occur in methods with
a high density of smells. For instance, we identified that catch blocks con-
tribute to amplifying the smelly nature of Long Methods, Message Chains, and
Dispersed Couplings. Therefore, the catch block contributes to expanding the
smelly structure since the same practices of the smelling code are – to a minor
or a large extent – also replicated for the exception handling code.

Well-written robustness changes may reduce maintainability
smells. We observed that methods with a high number of smells had catch
blocks with poor or no exception handling at all. For instance, on elasticsearch,
we observed that the excess of maintainability smells on the methods could be
related to the lack of proper error handling. Multiple instances of Feature Envy
were found in methods without exception handling. These methods exhibited
this code smell more frequently than the methods with catch blocks in the
same class. We also observed similar cases on Fresco and dubbo. Since we are
considering the system’s version on the last release (e.g., the last version of
the class), we can conjecture that the methods in which the developers did not
handle errors degraded more when compared with the classes that had proper
error handling.
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Table 4.5: Cases in which Robustness Smells Co-occur with Pattern of Main-
tainability Smells

Robustness Smell

Pattern Catch Generic
Exception

Method
Throws

Exception

Empty
Catch
Block

Catch
NPE

Rethrows
Exception

Throw New
Instance Of

Same Exception

Throw
Exception
In Finally

Exception
As Flow
Control

Throw
NPE

Concern Overload 212 1 54 2 7 0 3 7 3
Cyclic Dependency 74 5 6 0 6 0 3 7 1
Fat Interface 171 2 6 0 1 0 0 1 1
Misplaced Concern 394 5 199 3 8 1 0 1 7
Scattered Concern 35 0 1 0 0 0 0 1 0
Unwanted Dependency 274 2 81 2 7 0 0 1 4
Total 1160 15 347 7 29 1 6 18 16

Finding 6. Robustness changes can worsen maintainability smells
such as Long Methods, Message Chains, Dispersed Couplings, and Feature
Envy, hampering the modularity of the system.

To sum up, with this RQ, we observed that the robustness changes could
have a negative impact on classes with methods that underwent such changes.
This impact is signaled through the high density of maintainability smells. De-
velopers commonly use this density to prioritize classes likely to have design
problems (Oliveira et al. 2019, Sousa et al. 2018). Furthermore, the intro-
duction and worsening of smells were mainly related to the maintainability
smells that signal design problems related to the system’s modularity (Ta-
ble 4.1). Hence, we highlight that when performing robustness changes, de-
velopers should be aware of the smells introduced or worsened since it may
indicate deeper problems in the system. In addition, tools could use these
metrics (i.e., presence of robustness change and high density of specific smells)
to signal possible design problems in the system.

4.5.3
How do Robustness Smells Give Evidence of Design Problems?

To answer RQ3, we analyzed if robustness smells co-occurring with
patterns of maintainability smells could help in the identification of design
problems. Thus, we first identified when the robustness smells appeared
in methods together with the maintainability smells that indicate design
problems (see Table 4.1). Table 4.5 presents the results. Each cell represents
cases where the robustness smell co-occurs with the maintainability smells,
forming a pattern. We can observe a high number of cases where catch
generic exception (1,160 cases) and empty catch block (347 cases) co-occurred
with the maintainability smells forming the patterns. We manually analyzed
the patterns that happened the most with the robustness smells. They are
highlighted in gray.
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Generic and empty catches can indicate the presence of main-
tainability smell patterns. The robustness smell was not directly related
to a design problem from the cases we analyzed. However, they could signal
that maintainability smells were affecting the method. Let us consider the case
of the method getAsync from fresco (Fresco 2023). This method has nested
try/catch blocks due to excess of verification performed. There are also catch
generic exceptions that only return Null instead of handling the exceptions.
We can hypothesize that this happened for two reasons: (i) the method was ful-
filled with multiple concerns; hence the developer did not know which exception
should be handled, or (ii) the exception was handled on the wrong class. This
can hint that this method could not be in the correct class. When we look
at the maintainability smells, this method has a Feature Envy since it calls
multiple methods from other classes, which also causes a Dispersed Coupling.
Since the method uses data from other classes, it also causes a Long Method.
Together, these smells can indicate the design problems Misplaced Concern or
Scattered Concern. Both design problems suggest that this method should be
moved to a more appropriate class.

Developers can be induced to introduce generic catches. Let us
consider a case analyzed on dubbo (Dubbo 2023) in the method getProxy,
which was affected by a catch generic exception (i.e., a Throwable). This is
a bad practice since the exceptions should be adequately handled depending
on their type. As the scope of Throwable is too broad, it may hide runtime
issues that should be better handled. However, the developer may be induced
to introduce these bad practices. This may occur on methods affected by a
Long Method, combined with the fact that the developer does not know the
software system’s design well. Thus, he/she uses this generic handler to catch
any exception.

Furthermore, this harmful practice can be the source of new maintain-
ability smells, as we observed in this method, which was affected by Dispersed
Coupling, Feature Envy, Message Chain and was part of a Complex Class.
This happens because the developer tries to implement multiple concerns in
this method. To do that, he/she may need to call multiple methods from
other classes, hampering the modularity of the software system. In addition,
the long methods also tend to have more dependencies on external elements.
Thus, the class also has a higher chance of having exceptions handling errors
from multiple contexts, which can explain why developers use generic catches.
In this example, both maintainability and robustness smells could indicate the
presence of a Misplaced Concern or Scattered Concern.

Generic catches indicating unwanted dependencies. We observed
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that developers tended to determine that all exceptions without a specific type
would only be logged and lead to the system crash afterward. This happened
when they were handling generic exceptions or in cases with an empty catch
block, where only a comment was left in the handler. These smells could
appear due to some projects’ status as frameworks (e.g., spring-framework and
RxJava), meaning that the hot spot classes (i.e., those that the framework’s
users will directly use) might have a different form of exception handling than
the rest of the project. The design problem Unwanted Dependency seemed to
appear for the same reason: the role of the classes as hot spots. Upon analysis,
we noticed that these classes served as “import hubs”. Each class imported
several other package classes, allowing the user to have all the package’s
functionality by importing a single class. However, this bad practice leads to
potentially unwanted dependencies among the classes. In addition, this caused
the presence of the maintainability smells Feature Envy, Shotgun Surgery, and
Long Method.

Finding 7. The robustness smells empty catch block, and catch
generic exception can indicate the presence of maintainability smells
mainly related to the design problems Concern Overload, Misplaced Con-
cern, and Unwanted Dependency.

In conclusion, when the code is too complex and affected by code smells
on both normal and exceptional code, we observed that developers tend to
modify only the normal code (the one inside the try block). This can happen
since the exceptional code tends to be more complex due to the global nature of
exceptions. This complexity is related to how the exceptions can traffic between
system modules. Thus, when changing the exceptional code, the developer
needs to be careful about how this change will impact the modularity of
the software system. In addition to the complexity, the IDEs tend to provide
refactoring suggestions only for the normal code. Due to its different nature,
it would be ideal to have specific refactorings for the exceptional code. For
instance, in some cases, the IDEs constrain the implementation of exception-
handling mechanisms. The IDE does not let the developer choose which class
should handle the exception. Therefore, the developer must be free to choose
how to properly handle the exception before applying the refactoring. Hence,
the refactoring needs to be manually performed, which can discourage the
developer from implementing the improvement change.

We hypothesize that this behavior was also due to the need for proper
refactoring recommendations by IDEs. These tools provide better refactoring
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options only for the normal code. They do not consider the nuances the
exception handling code can have, such as which class could or should handle
the exceptions. Thus, these changes co-occurring with the code smells can
indicate to developers that robustness refactoring should be done at that time.
When neglected, these robustness changes can also increase the degradation
of the method. This can complicate the code in the future, making it more
complex and discouraging developers from maintaining the code.

As observed, the robustness smells can indicate the presence of patterns
of maintainability smells that signal design problems related to the system
modularity. These design problems are challenging to identify since they can
be scattered through multiple software system components. By analyzing
maintainability smells, developers may not be able to identify a design problem
accurately. However, developers can find more reliable results when using both
maintainability and robustness smells. Thus, the indicator given by the co-
occurrence of robustness smells and these patterns can help the developer to
identify this design problem and refactor the code to remove or reduce this
problem. Hence, the developer will save time and effort on this identification.

4.6
Threats to Validity

Our analyses were performed on a set of 10 software systems, which
could be a threat. However, our selection was based on meticulously defined
criteria to find software systems (see Section 4.4.2) relevant to our research
questions. In addition, our criteria also focused on reproducibility, allowing
other researchers to replicate our steps. Therefore, our study can be the starting
point for other researchers to explore the types of relationships explored in this
paper with other software systems with other purposes and domains.

Another threat is the detection strategies (and their specific thresholds)
for code smells. To mitigate this threat, we selected a tool (Organic) that uses
a set of strategies and thresholds commonly used by the software engineering
community (Lanza and Marinescu 2006). Moreover, this tool has been suc-
cessfully used in multiple studies about software design (e.g., (Oizumi et al.
2016, Cedrim et al. 2017, Sousa et al. 2018, Oliveira et al. 2022)). Finally, we
mitigated this threat by performing a manual inspection analysis with expe-
rienced experts. For each analysis, the participants filled out a form detailing
how the robustness changes could be related to the maintainability smells.

The selection of releases can also be another threat. However, we carefully
selected these releases based on the number of commits that the two releases
had between them. More specifically, we selected a pair of releases spanning at
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least 1000 commits. That allowed us to cover a significant part of the history
of software systems. Furthermore, there is no bias in the selection of releases,
since this metric of commits was used indistinctly from the software system.

The use of exception handlers affects the size and complexity of methods,
potentially threatening validity. Therefore, we validated our dataset to ensure
we were not performing unfair comparisons between methods with and without
exception handlers. Hence, we observed that the presence of getters/setters was
balanced between these two subsets per software system, accounting for ∼11%
of getters and setters composing our complete dataset.

4.7
Conclusion

We explored how the combination of poor robustness changes and
maintainability smells indicate design problems. For that purpose, we analyzed
over 160k methods from 10 open-source systems. We identified that the
robustness changes could introduce or worsen maintainability smells such as
Dispersed Coupling, Feature Envy, and Long Method. We also observed that
classes with methods that underwent robustness changes tend to have a higher
density of maintainability smells compared to classes without these methods.
Finally, we observed that the robustness smells empty catch block and catch
generic exception could be used with the maintainability smells to help the
identification of design problems such as Concern Overload and Unwanted
Dependency.

Understanding the relationship between robustness changes and main-
tainability code smells can help developers identify design problems’ presence.
Such problems are harmful to the software and hard to identify. Using the
knowledge about this relationship can be the first step toward their identifica-
tion. Additionally, these problems can be the target of refactoring operations,
thus improving the systems’ maintainability and robustness. Developers can
now be aware that even small changes in the catch blocks can impact or indi-
cate possible design problems in the system. Moreover, based on our findings,
tools can be developed to better assist the maintainability and evolvability of
systems.

In future work, we plan to explore other symptoms of design problems
(e.g., smells related to other NFRs). In addition, we will investigate the evo-
lution of methods (i.e., further changes in later versions) that once underwent
robustness changes. Thus, we will be able to understand how poor robustness
changes can further impact the quality of the method along with its evolu-
tionary changes. Finally, we plan to explore cases where only the exception
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part of the method has changed and observe its impact on the normal code
unchanged.



5
Understanding How Developers Deal With Non-Functional
Requirements

In the two previous chapters, we explored how developers may use
and combine two symptoms of design problems: maintainability smells and
robustness smells (see Chapters 3 and 4). Another possible symptom of
design problems is the non-conformity with NFRs (see Section 2.3.3). For
instance, observing that a system is becoming more difficult to change over
time, indicates non-conformity with the system’s maintainability. Hence, the
stakeholders may consider that a possible design problem is causing this high
effort to maintain the system. However, as presented in the earlier chapters,
identifying design problems is not a trivial task, especially for developers with
less experience.

Developers who understand how to properly address NFR concerns
within the system are likely to prevent the system from facing design prob-
lems. Hence, understanding who these developers are and how they deal with
NFRs can be a key step in identifying and avoiding design problems. In addi-
tion to understanding who these developers are, we also need to understand
how they discuss and perceive NFRs within their systems. Understanding how
experienced developers deal with NFRs can give us insights into how experi-
enced developers can share their knowledge with less-experienced developers
on NFR tasks.

Despite its importance, the discussion of NFRs is often ad-hoc and scat-
tered through multiple sources, limiting developers’ awareness of NFRs. Pull
Request (PR) discussions on open-source systems are a common mechanism
used by developers for mentioning design and requirements concerns, thus pro-
viding a centralized platform for comprehensive NFR knowledge exchange.

In this study, we report an investigation on how developers discuss and
perceive NFRs within their systems. First, we investigated NFR discussions
available in PRs of repositories of the Spring ecosystem. We collected, manually
curated, and analyzed 1,533 PR discussions addressing four categories of
NFR: maintainability, security, performance, and robustness. Through this
characterization, we identified and investigated the most engaged developers
in NFR discussions.
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To complement this analysis, we applied a survey with 44 developers to
gather their perceptions on NFRs discussions. In addition, we also considered
developers from closed-source systems, looking for similarities and differences
between the developers’ strategies on open-source systems. By observing how
developers approach NFRs and participate in discussions, we documented the
best practices and strategies newcomers can use to address NFRs effectively.

This chapter presents the paper Understanding Developers’ Discussions
and Perceptions on Non-Functional Requirements: The Case of the Spring
Ecosystem. The study addresses the third major contribution of this Ph.D.
thesis: how do developers discuss and perceive NFRs within their systems (see
Section 1.4).

5.1
Introduction

Non-Functional Requirements (NFRs) determine desired qualities or
attributes a software system should have, such as security, maintainability,
and performance NFRs. The specification of NFRs on software development
is essential to establish the technical constraints in which software systems
should run (Casamayor et al. 2010). Consequently, NFRs support developers
in making architectural and design decisions that will drive the implementation
of a software system (Bashar 2001).

Over the software life cycle, developers are expected to discuss and doc-
ument the impact of NFRs on the system. Particularly during software main-
tenance activities, the lack of organized and updated information concerning
NFRs has several negative consequences (Slankas and Willians 2013, Saadat-
mand et al. 2012). For example, not having a proper source of information
developers rely on when reasoning about NFRs can result in misinterpretation
of the maintenance tasks, delays in solving issues, and increased risk of in-
troducing new NFR problems (e.g., decreasing performance) (Yamashita and
Moonen 2012, Yamashita and Moonen 2013, Chung and Nixon 1995).

Despite its relevance, the specification of NFRs is commonly neglected
or informal (Bhowmik et al. 2019, Chung et al. 2012, Hoskinson 2011, Scac-
chi 2009). We observe this behavior in open-source systems (OSSs), where
developers typically discuss NFRs on demand during maintenance tasks, us-
ing unstructured communication such as mailing lists (Noll and Liu 2010, de
Souza et al. 2005). Since the information about the system NFRs is unavailable
or non-organized in a structured and specific/dedicated document, developers
need to find alternatives to map and understand the systems’ NFRs, such as
analyzing scattered textual content (Noll and Liu 2010).
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A few studies have investigated alternatives for automating the identifi-
cation of NFRs on available documentation (Slankas and Willians 2013, Kur-
tanović and Maalej 2017, Casamayor et al. 2010, Cleland-Huang et al. 2007).
These investigations explore detection approaches ranging from keyword
strategies to Natural Language Processing through Machine Learning. How-
ever, automatically detected NRFs are typically limited to small datasets of
requirement specification documents (e.g., the PROMISE dataset (Baker et al.
2019, Chatterjee et al. 2021, Kaur 2022, Jindal 2021)). Furthermore, a set of
studies use closed-source systems (Mohammed and Alemneh 2021, Chatterjee
et al. 2021, Handa et al. 2022, Wang et al. 2018, Tóth, 2019), and do not make
their artifact available for reproducibility. Yet, to the best of our knowledge,
no previous work explored the identification of NFRs in PR discussions.

Pull Requests (PRs) are a common resource employed by developers for
discussing the need for new system features and software maintenance and
evolution (Soares et al. 2015, Gousios et al. 2014, Gousios et al. 2015, Jiang et
al. 2021). A recent study (Jiang et al. 2021) on 900 GitHub projects reveals that
more than 54% of projects produce their release notes with PRs (e.g., details
of recent changes). Given the nature of PR discussions, their content can be a
valuable source of information on NFRs. However, first, one needs to identify
which PRs contain NFR discussions and characterize such types of discussions.
This characterization aims to understand how the NFR discussions happen
and how the developers are involved. Therefore, in this paper, we report an
empirical study on characterizing NFRs that emerged from PR discussions and
understanding the characteristics of developers engaged in these discussions.
This characterization lets us gather insights into how the developers discuss
the NFRs within the Spring ecosystem and can show us relevant features when
building NFR classification mechanisms.

For the purpose of analyzing NFR discussion, we developed our own
dataset, where we manually classified 1,533 PRs obtained from three Open-
Source Systems (OSSs) within the Spring ecosystem (Spring, 2022). We
selected the Spring ecosystem due to the diversity of functionalities and services
delivered (Cosmina et al. 2017). Besides, the Spring community is notably
active in discussing code changes through PR discussions. We focus on four
NFR types, namely maintainability, robustness, performance, and security. The
NFRs chosen were the ones more prominent in the systems analyzed.

To select the sample of PRs to be manually classified, we applied a pre-
classification using keywords linked to NFRs by previous studies (Cleland-
Huang et al. 2007, Slankas and Willians 2013). Then, we followed a well-
structured procedure for the manual classification of each PR. We classify PR
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discussions in terms of (i) the presence of the NFR type addressed, (ii) the
location in the PR where the discussions about NFR are triggered, (iii) the
keywords mentioned in the discussion, and (iv) the main message addressing
the NFR. This classification allowed us to characterize the PR discussions and
the developers discussing NFRs.

Through the analysis of the dataset created, we identified 63 developers
that frequently engaged in PRs addressing NFRs. After investigating their
characteristics and participation in the discussions, we found that most of
these developers play roles related to NFRs (e.g., Security Engineer Senior) in
their companies, indicating their expertise in certain NFRs types. This suggests
that these NFR discussions can attract attention from experienced developers
within the OSS community. In addition, these developers are commonly
involved with key tasks in the software system (e.g., commits and reviews).
Compared to other developers, their participation in the NFR discussions
regarding these tasks is also prevalent. By analyzing the PR discussions
classified, we found that the discussions about NFRs typically are triggered
by the PR title or description (77%). This shows developers opening these
discussions are already concerned with the system NFRs.

To better understand how developers perceive and address NFRs within
their systems, we ran a survey with 44 developers. Through this survey, we
identified that developers engage in NFR discussions, since they acknowledge
their significant influence on software quality. We also observed how the
developers address NFRs throughout the entire software development lifecycle,
employing multiple methods, including PR discussions and rigorous testing, to
ensure the software complies with the systems’ NFRs. The participants also
highlighted the collaborative aspect of dealing with NFRs during the software
evolution, going from meetings between stakeholders to suggestions made by
more experienced developers and architects.

We make the following four achievements:

1. A characterization of how four common types of NFRs are discussed in
PRs. This characterization gives the first glimpse into the nature of NFR
discussions in the OSS community. It can be further employed to support
the building of new technologies for the automatic classification of NFR
discussions and warning developers in charge of dealing with NFRs.

2. We highlight prevalent developers’ characteristics while discussing NFRs.
By identifying these characteristics, we can support project managers
in allocating team members who ideally are more qualified to solve
an NFR problem (Joblin et al. 2017). In addition, by understanding



Chapter 5. Understanding How Developers Deal With Non-Functional
Requirements 99

which developers are involved in NFR discussions, newcomers can more
effectively collaborate with those developers and work together to address
NFRs.

3. A set of strategies on how to address NFRs. Through the survey applied,
we gathered the perceptions of developers regarding NFRs and how they
address such requirements in their systems. This information enabled us
to formulate an initial set of strategies aimed at assisting developers
in effectively addressing NFRs. These strategies include the use of
specific technologies and practices (e.g., continuous integration) allied
with testing and the use of benchmarks to guarantee the NFRs defined
for the system meet the expectations.

4. A curated dataset composed of 1,533 PRs addressing maintainability, ro-
bustness, performance, and security, which is publicly available1. Details
about the dataset is available at C.1. We also provide a subset of common
keywords related to NFRs derived from manual analysis. The full list of
keywords is available at Appendix C.2. This content improves previous
studies (Cleland-Huang et al. 2007, Slankas and Willians 2013) and sup-
ports further investigations on conceiving, training and validating NFR
classification technologies.

Audience. Project managers shall benefit from our analysis by identifying
developers more frequently involved with NFRs. We also provide a documented
set of strategies to better address NFRs in software systems based on knowl-
edge gathered through our survey. In addition, newcomers can learn effective
strategies and best practices for addressing NFRs by observing experienced
developers’ approaches and participating in discussions. Moreover, although
our analysis is focused on the systems from the Spring ecosystem, the insights
gained from our findings can be explored in practice for other ecosystems.

5.2
Background and Related Work

In this section, we explore (i) documentation of NFRs, (ii) discussions
on OSSs, and (iii) developers perceptions on NFRs.

1Available at https://github.com/devs-discussions-perceptions/devs_
discussions_perceptions_paper.

https://github.com/devs-discussions-perceptions/devs_discussions_perceptions_paper
https://github.com/devs-discussions-perceptions/devs_discussions_perceptions_paper
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5.2.1
The Documentation Gap of NFRs

Based on requirements specification, developers are expected to man-
age and validate the implementation of NFRs through the software develop-
ment life cycle. However, requirement specification documents usually focus
on functional requirements, lacking a sufficient description of the system’s
NFRs (Cleland-Huang et al. 2007). In the case of OSSs, even producing a
formal specification of the functional requirements is unusual (Bhowmik et
al. 2019). Instead, content addressing the system requirements is often scat-
tered through many documents related to the software system, such as mailing
lists, message boards, and ad-hoc discussions (Noll and Liu 2010, Slankas and
Willians 2013). The lack of proper specification and documentation of the sys-
tem’s NFRs is an obstacle to its maintenance and evolution (Robiolo et al.
2019). For instance, newcomers in charge of evolving systems that lack docu-
mentation about NFRs will likely spend considerable time identifying/inferring
them. Lack of information may result in an insufficient understanding of the
system’s NFRs, which may cause design problems (Sousa et al. 2018).

To overcome the problem of insufficient NFR documentation, studies ex-
plored different approaches to automatically identify NFRs on the available
textual artifacts of the system. Binkhonain and Zao (Binkhonain and Zhao
2019) performed a review on machine learning techniques used for the iden-
tification and classification of NFRs. In their reviews, the authors observed a
series of limitations on the existing techniques, such as the lack of (i) labeled
datasets, (ii) standard definition, classification, and representation of NFRs,
and (iii) reporting standards.

Studies have investigated the use of Natural Language Processing (NLP)
combined with Machine Learning to automate the identification and classi-
fication of NFRs on specification documents. Casamayor et al. proposed a
semi-supervised learning approach, combining the algorithm Expectation Max-
imization with Naive Bayes (Casamayor et al. 2010). The authors empirically
evaluated their approach over the PROMISE dataset. The proposed semi-
supervised learning approach reached an accuracy rate higher than 75%, sur-
passing 85% for some NFRs. Slankas and Willians techniques, such as k-NN,
Multinomial Naïve Bayes, and Sequential Minimal Optimization (SMO) to
identify NFRs from the PROMISE dataset combined with the available docu-
mentation (Slankas and Willians 2013). SMO reached 74% precision and 54.4%
recall. However, due to the nature of the additional documents composing the
dataset, most of the NFRs detected address only legal requirements.

The aforementioned works rely on the PROMISE dataset. However, this
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dataset comprises only 625 sentences describing requirements specifications
(255 functional and 370 non-functional), which may be considered a limited
learning scope. Furthermore, this dataset is highly unbalanced. Considering the
four NFRs we explore in the OSSs, it has 74 instances of maintainability, 24 of
performance, 25 of security, and none of robustness. Therefore, in our study,
we could not rely on state-of-the-art techniques to identify the discussions
automatically. After creating a model based on the PROMISE dataset, we
reached accuracies below 40%. That led us to create our own dataset for the
purpose of our analysis. We detail this dataset in Section 5.3.2.

5.2.2
Open-Source Discussions

OSSs using distributed version control systems tend to use features that
support developers in tracking and discussing changes (Gousios et al. 2014).
For example, PRs are one of the most used features in GitHub (Github
2022). PRs allow developers to communicate with other team members about
changes to be performed (Github Pull Requests 2023). Once a developer opens
a PR, it may discuss the acceptance/rejection of change with other team
members. A PR discussion is composed of (i) a title, (ii) a description, and
(iii) comments (Liu et al. 2019). The PR author creates both the PR title
and description. The PR comments result from the system team members’
discussion.

Software system discussions represent an important and abundant re-
source available in OSSs. These discussions may run in the context of reported
issues and PRs. Our study focuses on PR discussions once they often sup-
port requirement and design discussions among developers (Gousios et al.
2014). Through investigation of software system discussions, we can identify
the developers who consistently address NFRs within these discussions. By
observing their characteristics, we can have an understanding of how the team
addresses NFRs during the software evolution. In addition, since these discus-
sions often include the decisions taken to address the NFR, they can serve as
documentation to help future developers understand how to properly handle
such requirements within the systems.

5.2.3
Developers’ Perception on NFRs

A few studies explore the developers’ perception of NFRs (Zou et
al. 2017, Ameller et al. 2012, Camacho et al. 2016). However, these studies
lack characterizing how developers discuss NFRs. Zou et al. investigated the
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perspective of developers on NFRs by exploring 21.7 million posts and 32.5
million comments on Stack Overflow (Zou et al. 2017). For this purpose, the
authors applied topic modeling to identify the topics related to NFR discussed
in the posts and comments. The authors identified that developers focus
more on usability and reliability and are less concerned about efficiency and
maintainability. They also investigated the difficulty of a topic to be discussed.
The authors found that maintainability is the most difficult NFR type for
developers to discuss.

Ameller et al. investigated how software architects perceive and address
NFRs in their projects (Ameller et al. 2012). The authors conducted a semi-
structured interview with 20 software architects from academia and industry.
They found that the software architects perceive NFRs as key elements for
the success of software development. The authors also identified factors that
impact how to address the NFRs, such as project size, team composition, and
stakeholder involvement.

Camacho et al. investigated the perceptions of agile team members re-
garding the importance of testing NFRs (Camacho et al. 2016). The authors
applied semi-structured interviews with 20 participants from a single company.
They observed that several factors, including experience, culture, and aware-
ness, influence the identification of NFRs’ testing needs. The authors provide
recommendations to address this kind of test better. For instance, code review
practices and all roles within the team should work with quality in mind, being
aware of the NFRs.

Despite their contributions, these studies have limitations. Zou et al.
do not investigate the reasons behind the developer’s perceptions and focus
on questions from Stack Overflow. Hence, it is not clear the experience of the
developers involved in the study. Although Ameller et al. focus only on software
architects, they miss other stakeholders involved in the project. In their study,
Camacho et al. explore stakeholders of a single company. Our study surveyed
more than 40 developers in different positions within their teams and from
different companies. In addition, we investigate the different reasons that lead
developers to address the NFRs.

Characterizing the developers who deal with NFRs includes identifying,
among others, the type of development tasks in which they are more frequently
engaged in OSSs, which may indicate their interests and skills. Gonzalez
et al. investigated the developers’ profile based on their productivity (e.g.,
number of commits) and code quality (e.g., number of refactorings) (González
et al. 2021). They evaluated 77,932 commits from 33 OSSs, clustering 2,460
developers using the k-means algorithm. The authors identified three profiles of
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developers: (i) the cleaner (who documents and fixes issues), (ii) the average
developer, and (iii) the dirty (who introduces complex functions that often
need to be refactored). Even though this study followed a more qualitative
approach to identifying developer profiles, the authors did not explore whether
the developers’ profiles deal with NFRs.

5.3
Study Design

To understand PR discussions related to NFRs, we first manually curated
a dataset with such discussions. We classified 1,533 PR candidates to address
NFRs. Through this classification, we built a dataset to characterize the NFR
discussions and identify the developers who discuss NFRs. We selected 63
developers to investigate their characteristics and strategies for dealing with
NFRs. Finally, we conducted a survey with developers from private companies
to compare their perceptions with the results found in the PRs analysis. The
following subsections present the study settings.

5.3.1
Research Questions

With this study, we have the goal of understanding developers’ discus-
sions and perceptions on NFRs. Thus, our study is guided by the following
research questions (RQs).

RQ1. What are the characteristics of the discussions in PRs addressing
NFRs?

To answer RQ1, we manually classified NFRs on the PR discussions of
three systems from the Spring ecosystem. We focus on analyzing PRs designed
to propose changes in the codebase. PRs typically involve several members with
different roles, which may lead to a broader view of NFR discussions. For each
PR, we first identified the locations (i.e., PR title or PR description) where
the contributors address NFRs. With this information, we intend to identify
how NFR issues are typically reported in PRs, triggering the discussions.
Then, we characterized the NFRs’ discussions concerning the topics discussed.
We aimed to determine whether it was possible to generalize NFR topics in
these discussions. From PR discussions, we could identify the developers most
engaged in discussing NFRs (see RQ2).

RQ2. Who are the developers that engage in NFR discussions?

By characterizing the developers’ expertise and how they contribute to
the projects, we expect to understand their role in NFR discussions. We intend
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to point out the desired characteristics of developers that fit roles related to
a specific NFR in a team. Once we understand the developers who mainly
engaged in NFR discussions in OSSs, we now want to understand developers’
perceptions of open-source and closed-source systems. For this purpose, we
defined the following research question:

RQ3. How do developers perceive and address NFRs in their daily work?

To answer this RQ, we conducted an opinion survey (Linaker et al. 2015)
with 44 developers working with multiple closed-source systems. The survey is
composed of questions ranging from the early stages of the software system to
its continuous maintenance. Based on the insights gathered, we intend to point
out the best strategies that developers tend to use when addressing NFRs.

5.3.2
Study Steps

To answer our RQs, we performed the steps described and presented in
Fig. 5.1.

Step 2: Data Collection

Step 4: Developers of Interest Selection

Step 3: Pull Requests ClassificationStep 1: Community and Software Systems Selection

Find
Repositories

Collect
Repositories

Artifacts

Manual
Classification

1. Is Open Source
2. Has PR discussions
3. Is from Spring community
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Step 6: Data Analysis
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 Metrics

NFR
Devs
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End
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All PRs

Spring Framework
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PRs suggesting
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Step 5: Survey Design

Survey Design

Survey
Application Answers

(44)

Identify
 Developers NFR
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Developers Inspection
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Figure 5.1: Workflow of our Study Design.

Step 1. Software Systems Selection: To select the systems within
the Spring ecosystems that are suitable for this study, we followed the criteria
adopted by Barbosa et al. (Barbosa et al. 2020): (i) systems that use PRs
as a mechanism to discuss code changes, (ii) the system Git software system
must have over 1,000 commits, (iii) systems that are at least five years old;
and (iv) systems currently active. Notice that applying such selection criteria
is essential for being able to perform reliable conclusions (Kalliamvakou et al.
2016). We selected the three that provided the diversity, considering the entire
effort required for the analyses.
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Table 5.1: Software Systems from the Spring Ecosystem
System # Commits # Pull Requests Time Span
spring-boot 40,071 5,319 2012-2022
spring-framework 25,522 3,850 2008-2022
spring-security 11,671 1,954 2004-2022

We selected three systems, namely Spring Security, Spring Framework,
and Spring Boot, from a wide and well-known open-source community available
at Git: Spring (Spring Community 2022). Table 5.1 describes the characteris-
tics of each system. We conducted this study over a particular ecosystem to
allow us to investigate the dynamics of the NFRs discussions in more depth.

Step 2. Data Collection: We used the GitHub API (Github Rest API
2022) to collect the PR discussions. For each NFR type, we defined a set of
keywords that can indicate its incidence in PRs. The set of keywords used in
our study is based on previous works (Cleland-Huang et al. 2007, Slankas and
Willians 2013). We collected the keywords on different PR discussion levels
(e.g., title, description, and discussion) and the commit messages related to
each PR. With this set of keywords, we performed a pre-classification of PR
discussions by the NFR type addressed. Based on this pre-classification, we
randomly selected a subset of PRs for each NFR type to be manually inspected
and classified by experts. The keywords considered in our study are found in
Table 5.2.

Step 3. PRs Classification: First, we defined the NFRs to include
in our dataset by identifying the most prominent NFRs within the systems
through an analysis of the PR labels. This analysis highlighted four NFRs:
security, maintainability, robustness, and performance. Since we wanted to
characterize the discussions related to NFRs, one of the steps followed was
to identify where the mentions of NFRs happen in PRs. Hence, we divided the
PR discussion into (i) title, (ii) description (i.e., first comment), (iii) discussion
comments, and (iv) review comments. We manually classified PRs from each
system to identify whether the discussion was related to an NFR. For each
PR, the following information was identified:

– The NFR types identified (i.e., security, maintainability, robustness, or
performance).

– The sentence (or sentences) that led to each NFR identification.

– The keywords related to each NFR, from single words to short sentences.

– The location of each NFR keyword: title, description, comments, or
review comment.



Chapter 5. Understanding How Developers Deal With Non-Functional
Requirements 106

Table 5.2: Non-Functional Requirements and its Keywords
NFRs Keywords

Maintainability
maintainability, maintenance, reliability, serviceability, accordance,
measures, requirements, index, update, release, production, addition,
budget, integration, operation, comprehension, readable, readability

Performance

performance, rate, bandwidth, cpu, time, latency, throughput, channel,
instruction, response, process, communication, space, memory, storage,
peak, compress, uncompress, runtime, perform, execute, dynamic, offset,
reduce, response, longer, fast, slow, maximum, capacity, scale, cycle

Robustness
robust, robustness, inputs, error, failure, network, error, reliability,
serviceability, fault, tolerance, exception, bug, recover, handl, fail with,
crash, unexpect, NPE, null, stack, swallow, reliable

Security

access, author, ensure, data, authentication, security, secure, malicious,
prevent, incorrect, harmful, state, exception, vulnerability, vulnerable,
malicious, harmful, attack, expose, compromised, authenticator,
encrypt, cookie, encrypted, ssl, authenticate, integrity, virus, encryption,

– The participants involved in the PR discussion.

Seven collaborators performed the manual classification individually. In
cases of uncertainty about the classification, a second researcher was consulted.
In case of disagreement, the collaborators discussed it until they reached a
consensus. As the output, we have all the PRs tagged with the (set of) NFRs
they are discussing. We also used the GitHub API to collect relevant metrics
about the developers’ participation in NFR discussions. The full list of metrics
is presented at Appendixes C.3 and C.4.

Step 4. Developers of Interest Selection: First, we selected the
most engaged developers in NFR discussions. Next, we distributed them into
quartiles by the frequency of their participation in NFR discussions. Hence,
we defined three participation levels: Low (1st quartile), Average (2nd and 3rd

quartiles) and High (4th quartile). We selected the developers in the 4th quartile
as the developers of interest since they are the most participative in NFR
discussions.

Aiming at also evaluating developers who engaged less frequently in
discussions but were more focused on discussing NFRs, we selected another set
of developers. For this purpose, we used the following metrics: (i) developers
who mentioned at least one keyword related to an NFR in at least 25% of their
messages within the repository, (ii) developers who actively participated in a
minimum of three PR discussions, and (iii) developers who had less than 50
messages in the repository. Following these rules, we could find developers who
are less active regarding discussions, but their discussions were more focused
on NFRs.

To characterize the developers, we computed metrics addressing their
background, activities, and code quality (e.g., experience in years). We com-
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puted the metrics by gathering raw data through the GitHub API and per-
forming aggregations to compound more complex metrics. The list of metrics
can be found in at Appendix C.3.

Next, we applied a clustering algorithm to group the developers based
on their metric similarities. We ran a dimensionality reduction in the metrics
using PCA (Abdi and Williams 2010). Then, we conducted the silhouette
analysis (Rousseeuw 1987) to estimate the ideal number of clusters that fit our
data. Finally, we applied the k-means (MacQueen 1967). For each software
system, we obtained a set of clusters representing similar developers. We
combined these steps to select developers of interest to be investigated and
analyze their characteristics. We selected 15 developers from the fourth cluster
and 48 from the other clusters.

Step 5. Survey Design: We designed a survey to answer RQ3. The
survey population is composed of software developers with experience in
dealing with NFRs in their systems. The survey is at Appendix C.6. The survey
questionnaire consists of 19 questions, divided into four blocks, as follows:

1. Eight questions to characterize the developers regarding their age, gen-
der, academic experience, experience in software development, role posi-
tion, and proficiency in programming languages.

2. Eight questions aimed at gathering insights into the practices of the
developers when dealing with NFRs.

3. Two multiple-choice questions, in which we wanted to understand the
developers’ strategies to address NFRs in their systems. The developers
also had the opportunity to add new options if necessary. In addition, we
asked them to complement their answer, explaining how these strategies
were applied.

4. One open question designed to gather insights on the learning and
improvement opportunities that the developers experienced when dealing
with NFRs.

We conducted the opinion survey in August 2023, extending a 15-day
window for responses. We used social media such as Twitter and LinkedIn to
publicize the survey. We also publicized with other research groups that we
had previously worked with. After this recruitment, the survey questionnaire
was answered by 44 developers.

Step 6. Data Analysis: To answer RQ1, on the dataset created, we
identified the parts of a PR discussion in which the NFRs appeared (i.e.,
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title, description, messages, and/or review). To analyze the content of the
discussions, we selected a sample of around 15% of the total number of
PR discussions in each system, a total of 160 PR discussions for qualitative
analysis. We ensured that the discussions selected were equally distributed
for each NFR, avoiding bias, and ensured a representative sample for each
NFR type. For this analysis, we followed some steps based on Grounded
Theory procedures (Corbin and Strauss 2014). We applied the open coding
procedure, which consists of breakdown, analysis, and categorization of the
data. To develop the coding scheme, we identified the subcategories of each
NFR and developed an initial set of codes based on these subcategories (see
Section 5.4.1). Then, we refined the categories by applying the codes to the data
and revising as needed. For cases in which the code did not meet any category,
we created new ones. The four researchers involved in the open coding received
a standard definition of each NFR type to support their activities. A second
author reviewed each code and category created. In case of disagreement, the
collaborators discussed it until they reached a consensus.

To answer RQ2, we investigated 63 engaged developers (Step 4). Since
the profiles of these developers were not available in a specific document in
the projects’ repositories, we created a protocol to perform this analysis, in
which four collaborators participated. This protocol includes (i) the analysis
of the developers’ GitHub profile, (ii) the identification of other repositories
they collaborate, and (iii) the manual analysis of their profiles available on
the Spring team page (Spring Team 2022). The entire protocol is available in
our complementary material1. We followed the Grounded Theory procedure to
analyze this information, as in RQ1, categorizing and grouping information to
find clusters of developers with similar characteristics.

To answer RQ3, we examined the survey answers. We applied descriptive
statistics to analyze the numerical and multi-option questions. We also used vi-
sualizations (e.g., bar charts and segmented charts) to observe some tendencies
in the results. To evaluate the open questions, we applied qualitative analysis,
categorizing the answers to observe the topics most discussed by the develop-
ers. Five collaborators participated in this last analysis; at least two analyzed
each answer. In case of disagreement in the categorization, a third author was
asked to participate in a discussion until the team reached a consensus.

5.4
Results

In this section, we present the results of our study to characterize NFR
discussions and understand how the developers perceive and address NFRs in
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Table 5.3: Distribution of Mentions to the NFRs on Pull Requests Discussions
NFR Title Description Messages Review Total
Maintainability 120 (59.11%) 71 (34.97%) 35 (17.24%) 0 (0%) 203
Security 91 (69.46%) 34 (25.95%) 26 (19.84%) 0 (0%) 131
Robustness 58 (51.78%) 45 (40.17%) 29 (25.89%) 2 (1.78%) 112
Performance 38 (58.46%) 32 (49.23%) 13 (20%) 1 (1.53%) 65

their systems.

5.4.1
What are the Characteristics of the Discussions in PRs Addressing NFRs?

To characterize the PR discussions related to NFRs, we first inspected
where those discussions started and evolved within each PR. For that purpose,
in our manual classification (see Section 5.3.2 - Step 3), we identified which
part of the discussion mentioned the NFR keyword (e.g., title, description,
discussion messages, and/or review). Table 5.3 presents the number of times
the NFR mention occurred on the PR location. Between parenthesis, we show
the percentage of mentions compared to all mentions. The last column shows
how frequently we observed the NFR in our dataset. For instance, we observed
Maintainability in 203 PRs. In 120 (59.11%) of them, the mention occurred
in the PR title. Notice that, in some cases, the mention appear in multiple
locations (e.g., title and description).

By analyzing Table 5.3, we observe that the PR title and the description
mainly trigger discussions. For all four NFR types, their mention is on the
title in more than 50% of the instances. When we look at the description,
the percentage is lower, even reaching only 25.95% for Security. Considering
that the title and description commonly contain information about NFRs, we
conducted a more in-depth analysis of their utilization.

Complementary nature of title and descriptions. The title and descrip-
tion, combined, are the pieces of information that the developer must provide
to open the PR. Therefore, we also considered when the keyword was in the
PR title or description. We observed that the NFR with the lowest occurrence
was Robustness, with 77.67% of cases with an NFR mentioned either on the
title or description. Maintainability, Security, and Performance, reached
83.74%, 84.73%, and 86.15%, respectively. To better understand this relation,
consider the example of a PR opened on Spring Framework (Spring Framework
2022). In the PR title, the developer shortly described the change performed:

“Avoid unnecessary sorting overhead”
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From the mention of the term “overhead”, this PR seems related to a
change in Performance. However, the change is still unclear, in the change
description, the developer states:

“This PR avoids some unnecessary sorting overhead (e.g. if the collection is too
small) for methods that are repeatably called and where collection sizes of <= 1
are fairly common (e.g. for the ProducesRequestCondition).”

This description clarifies the change performed, allowing other developers
to discuss this improvement. In the remaining discussion within this PR, a
second developer agreed with the changes and accepted them to be integrated
into the system.

Considering the presence of the keywords related to the NFRs in the
title and/or description, we observe that in at least 77% of the PRs, the
developers were aware of the NFR before opening the PR. This result indicates
that developers have NFR concerns during other activities such as tests,
maintenance, or external use. We can summarize our findings as follows.

Finding 1: Developers usually mention the NFRs when creating
PRs. Thus, developers are aware of and concerned about these NFRs even
before opening the PR. This indicates that NFRs are a primary concern
during software maintenance and evolution.

To better understand the content of NFR discussions, we focused on
analyzing the titles and descriptions within PR discussions. For that purpose,
we randomly selected 160 PRs for qualitative analysis (see Section 5.3.2 - Step
6). Through open coding, we generated 35 codes and 9 categories, allowing us
to understand the content of these titles and descriptions. The list of codes
and categories are presented in our complementary material1.

NFR problem identification and resolution. Among the codes identified,
25 were associated with the category NFR Problem Identification and/or
NFR Problem Resolution. These two categories describe cases where the de-
velopers identify and describe a change related to NFR. The developers either
provide a solution themselves or identify the problem and leave it for other
developers to solve. Let us consider the example from Spring Boot (Spring
Boot 2022). In that case, the developer described a solution to improve the
Performance. Following, we provide a snippet from what the developer stated:

“As described in Issue #16401 there is an optimization opportunity in SpringIter-
ableConfigurationPropertySource when checking for CacheKey equality[...]. This is
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Table 5.4: NFR Types and Sub-categories Resulting From the Open-coding on
PR Title and Description.

NFR Type Subcategory

Maintainability
Documentation (28), Code Simplification (18), Feature Enhancement (11),
Readability (3), Encapsulation (1), Extensibility (1), Move Component (1),
and Setup (1)

Performance Complexity (6), Concurrency (2), Memory Usage (2), Response Time (1),
and Synchronization (1)

Robustness Error Recoverability (22), Error Representability (9), and Error Scope (4)

Security Feature Addition (13), Inconsistent Behavior (9), Information Protection (7),
and Parameters Customization (1)

due to the fact that the internal key inside CacheKey is copied in order to fix PR
#13344 and can thus not benefit from a == comparison[...]. The idea of this PR
is to introduce a flag that effectively disables the copying of the internal key un-
der certain circumstances[...]. With the applied changes, I see major improvements
compared to an M22 baseline”

In the title, this developer described “optimizing CacheKey handling”. It
is a case where the title and description complement each other. The snippet
provided above summarized the PR description. In this example, the developer
gave a detailed description of the problem context, where he/she found
an optimization opportunity on a class in the system. Then, the developer
describes how the problem was solved, thus improving performance. Another
developer reviewed the code and accepted the PR change in the following
discussion. However, this type of long description did not happen so often in
our dataset.

NFR-related topics on the PR title and description. We observed
multiple codes related to sub-categories concerning the four NFRs, as shown
in Table 5.4. In parentheses, we show the frequency of each subcategory.
For each NFR, we subdivided them according to the type of change that
was mentioned. We aimed to understand the different topics the title and
description address. For instance, we identified 64 cases for Maintainability,
divided into eight sub-categories: documentation, code simplification,
feature enhancement, readability, encapsulation, extensibility,
move component, and setup. Documentation was the most recurrent topic
(28 cases) topic for PRs that discuss Maintainability. In general, those
changes are related to the addition of missing documentation, fixing inconsis-
tencies between the documentation and code behavior, typo corrections, and
minor improvements. Due to the space limitation, we will only describe one
of the sub-categories. The remaining are detailed at Appendix C.5

2M2 are the initials to reference a milestone in the system
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For Performance, we identified 12 cases divided into five sub-
categories: complexity, concurrency, memory usage, response time,
and synchronization. For this NFR, the most recurrent sub-category was
complexity, which describes cases where the change increased (or decreased)
the computational complexity.

For Robustness, we identified 35 codes, divided into three sub-categories
related to the NFR: error recoverability, error representability,
and error scoping. The most recurrent sub-category for Robustness was
the error recoverability (22 cases). This error happens when there is an
improper exception handling and clean-up actions after the system raises an
exception.

Finally, for Security, we identified 30 cases divided into four sub-
categories: feature addition, inconsistent behavior, information
protection, and parameter customization. While the different categories
had similar cases, we can observe that feature addition was the most
frequent category identified in the coding process. Those cases usually relate
to adding a wide range of new security-related features, such as new types of
encryption, new authentication methods, etc. With these examples and the
data presented in Table 5.4, we can define our next finding as follows.

Finding 2: The PR titles and descriptions tend to clearly commu-
nicate the intention and the scope of changings addressing NFRs.

Upon the analyses and findings described above, we can characterize
the NFR discussions as being triggered mainly by their title and description
and usually discussing the identification and resolution of problems related to
the NFR. In addition, these titles/descriptions also encompass multiple sub-
categories of the NFRs explored.

By understanding how the PR discussions occur, researchers can explore
these characteristics in systems from other communities and domains. Re-
searchers may optimize their efforts based on our findings. For instance, instead
of considering the whole discussion to identify a particular NFR discussion, we
may consider only the title and description of the PR discussions. It can also
avoid noise in the identification process.

In addition, we found in software systems analyzed that developers may
use the PRs titles, descriptions, and code changes as a source of documenta-
tion about the system’s NFRs. In this way, newcomers can use this content
to understand how developers address NFRs during the development process.
Having this source of documentation is particularly useful in OSSs, where the
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Table 5.5: Summary of Developers’ Characteristics
Task/ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
PRs Opened 15 3 7 1 16 10 3 11 3 0 4 0 7 2 2
PR Comments 115 3 152 60 11 7 39 125 34 49 47 69 18 12 3
PR Reviews 500 36 419 9 2 0 10 595 71 6 4 19 15 24 17
PR Commits 90 10 111 5 17 10 4 86 58 0 9 2 34 4 0

NFR documentation is often scattered through multiple sources. Considering
the importance of understanding how these discussions occur, it is also im-
portant to understand who are the developers engaged in NFR discussions.
Therefore, next, we investigate the characteristics of developers who discuss
NFRs.

5.4.2
Who are the Developers that Most Engage in NFR Discussions

To understand who deals with NFR, we first selected 15 developers by
identifying their degree of participation in NFR discussions (see Section 5.3.2
- Step 4). The table respectively presents, for each developer, the number of
PRs opened, comments made, reviews, and commits. Table 5.5 summarizes
the characteristics of these 15 developers regarding their main tasks on the
software system. For instance, developer #D1 (i) opened 15 PRs, (ii) made 115
comments, (iii) made 500 review comments, and (iv) committed 90 times.

We applied the k-means clustering technique for each software system to
observe whether developers had similarities regarding their activities. Then, we
verified in which cluster each selected developer is classified. For each software
system, the clustering results led to four clusters. Notice that although the
number of clusters was equal between the three software systems, they didn’t
exhibit identical characteristics within those clusters. However, we observed
similarities between the clusters across repositories, as follows.

– Newcommers: It is composed of two clusters, containing around 80%
of the total number of developers. Developers in these clusters tend to be
newcomers with less experience or other developers who are less active.
This is an expected result since the most significant part of contributors
is not regular.

– Active Contributors: Contains developers who are newbies or recent
contributors but highly active. This cluster usually has less than 10% of
developers.

– Experienced Contributors: They are highly active and experienced
contributors on the software system, having top metrics in multiple
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tasks (e.g., commits, PRs, refactorings, comments, and reviews). Less
than 10% of the developers belong to this cluster.

We observed that the 15 developers initially analyzed belong to cluster
Experienced Contributors. They are part of the small group of core contributors
active in the software system, not only addressing questions related to NFRs.
Therefore, this leads us to our third finding.

Finding 3: Developers more actively discussing NFRs are also core
contributors having high participation on multiple tasks in the software
system (e.g., commits, reviews, and refactorings).

These findings show the activity of developers on the software system.
However, we want to understand what makes these developers discuss NFRs.
For that purpose, we analyzed other sources of information available (e.g.,
GitHub profile and Spring Team page) that support us in understanding what
makes developers discuss specific NFRs. Our manual analysis through open
coding generated 17 codes and six categories, allowing us to understand these
developers. More details about these codes and categories are found in our
complementary material1.

Developers participation on other projects. In our analysis, we could
observe that all 15 developers participated in multiple OSSs. Many of them,
such as #D1, have collaborated in more than 10 software systems. For these
developers, it is common that most of the systems they participate in are part
of the Spring ecosystem. Multiple developers have participated in more than
10 software systems from Spring. They also tend to participate in repositories
related to NFR, the most discussed in the PRs. For instance, #D1 participates
in multiple software systems related to Security, whereas #D2 participates
in several software systems related to documentation, and #D3 participates in
software systems related to Performance.

Where developers work. We identified where the developers work through
a manual analysis. Almost all developers (12 of 15) work for a company that
supports the Spring ecosystem. One developer works for a company focused
on developing browser and mobile games. Two developers do not have their
companies identified. Hence, the developers generally work for a company that
directly maintains the software system or for a company that presumably uses
Spring products.

These results suggest that most of these developers are knowledgeable
about the software system since (i) they work for the company that maintains



Chapter 5. Understanding How Developers Deal With Non-Functional
Requirements 115

the software system, (ii) they describe themselves as engineers for the software
system, and (iii) they are active in the Spring repositories. Through these
observations, we see why these developers engage more in NFR discussions.
Since the companies where they work are closely related to the Spring, they
have a strong incentive to ensure that the NFRs are properly addressed. Their
high activities in tasks such as opening PRs and reviewing others’ PRs suggest
that they not only have a good understanding of the NFRs of the system, but
they are also proactive in addressing them.

Developers’ expertise based on their position. Based on the developers’
positions in companies, we could infer their expertise on certain NFRs. For
instance, the developer #D1 has high participation in multiple tasks related
to Security in the software system. On the software system team page, we
observed that #D1 is Security Senior Engineer, a position closely related to the
NFR he most discusses. Therefore, due to the nature of this position, we can
infer that this developer has high expertise in Security.

A similar scenario happened with the developer #D2. This developer
mainly revised code related to Maintainability. By looking at the PR
discussions in which this developer participated, it is also mainly related to
the documentation of Spring Security. We observed that this developer is
Senior Technical Writer of his company. Hence, it makes sense for his main
contributions to be related to Maintainability, with a focus, especially on
documentation.

To understand developers who discussed less but were more focused
on discussing NFRs, we selected 48 developers to investigate from the three
systems. Initially, we selected 20 of each system, equally distributed considering
the four NFRs. However, some developers appeared in more than one of the
three systems analyzed, leading us to analyze 48 developers. However, we could
not find any specific information about most of them (e.g., they did not have
information on their GitHub page).

We can highlight that at least six are open-source enthusiasts and active
contributors to multiple open-source projects. Four are main contributors to
projects within the Spring community. Three of them are closely related to
security open-source projects. In this last case, the developers contributed
mainly to the Spring Security project. Combined, this information shows
similar characteristics from the group of 15 developers early analyzed. These
results give us the first glimpse of the characteristics of developers dealing with
NFRs on open-source systems. With these aspects identified, we can summarize
our next findings as follows:
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Table 5.6: Participants Characterization
Average Median Mode

Age 36.13 33.50 32
Experience in Years 12.06 10 3, 5 and 20
Number of Projects Participated 16.61 8.50 2 and 8

Finding 4: Developers who discuss NFRs tend to be part of compa-
nies closely related to the Spring community or repositories related to the
NFR they most discuss, justifying their engagement in addressing NFRs
in OSSs.

By understanding these developers’ characteristics, system managers and
leaders can allocate specialists on NFRs to specific tasks or positions in the
company. In addition, newcomers can benefit from the knowledge that may
be acquired by understanding how the more experienced developers deal with
NFRs. Moreover, the team managers can also allocate these developers to
review decisions regarding the NFRs and avoid future violations of these
requirements. Since these violations are symptoms of design problems in the
system (Sousa et al. 2017), this concern with the NFRs is a key activity to
keep the software system healthy through its evolution.

5.4.3
How Developers Perceive and Address NFRs in Their Systems

To have a broader view of the perception of developers regarding NFRs,
we ran a survey with 44 developers from different systems, mainly from
closed-source systems. By observing both closed and open-source developers’
perspectives, we aim to generalize our findings. Next, we present the results of
this survey.

Participants characterization. In Table 5.6, we provide an initial charac-
terization of participants in your survey. Concerning their experience in years
and the number of projects, we can observe that both more experienced and
less experienced developers participated in your survey. When we look at their
experience in years, we can observe that the developers vary in experience, but
through the mean and median, we can observe high levels of experience.

Considering the education level, most participants had a master’s degree
(17), followed by a bachelor’s degree (12) and a PhD degree (8). Regarding the
roles in their companies, most of them were software developers (16) and/or
software engineers (15). Concerning the programming languages that they were
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proficient in, Java (27), Python (25), and JavaScript (19) stand out. Notice
that the questions about the roles and programming languages were multiple-
choice. By observing these demographics, we see a diversity in the profile of
the participants.

Why developers discuss NFRs. In our survey, we asked what makes the
participants engage in discussions related to NFRs. Most of them answered
that their primary motivation is (i) the impact on the quality of the software
they use (37), (ii) the alignment with the software objectives (30), and (iii)
the potential risks that may arise if the NFR is not addressed (22). These
motivations suggest that the participants value the discussion since they
perceive the NFRs as key aspects of the software quality. This is indicated
once the majority of participants (42 out of 44) stated that they consider
NFRs a crucial aspect for the success of the software system. These answers
are the first insights into why developers invest time and effort in addressing
NFRs.

When developers discuss NFRs. We asked the developers which phase
of the software lifecycle they discussed NFRs. Their responses were diverse,
mentioning almost all phases: development (31), test (25), and design (3).
The developer #P11 even mentioned that during the early development phase,
the NFRs are easily identified when the team is giving due importance to
identifying and analyzing the NFRs.

The developer #P6 mentioned using the PR discussions within their
project for revision purposes. In his/her company, PR discussions are used
to discuss performance improvements. #P6 also stated the tests being applied
at the end of the day to check non-conformities with the Performance, which
are used to fix problems that could appear in production. #P36 even mentioned
a more sophisticated way to address the NFRs. #P36 noted that the project had
a spreadsheet showing the system’s NFRs, which a software architect filled out.
Altogether, developers cited multiple approaches to ensure the system meets
NFRs: pen tests for Security, continuous integration using Static Application
Security Testing (SAST), Dynamic Application Security Testing (DAST), and
stress testing for Performance. We have the following finding by understanding
why and when developers discuss NFRs in their systems.

Finding 5: Developers discuss NFRs since they recognize their
impact on the software quality, identifying such requirements as key to
the success of the software systems. They discuss the NFRs throughout
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the software’s whole lifecycle, using diverse methods to ensure compliance,
such as PR discussions and tests.

How developers perceive and address NFRs. We asked developers about
their strategies to guarantee that the NFRs were adequately applied during
the software development. Among their answers, two approaches stand out:
collaboration with other team members to gather insights regarding the NFRs
(35) and review and refine the definitions of NFRs in the early stages of the
development process (31).

We observed developers employ specific NFR analysis tools (19). In these
cases, we noticed that teams tend to address NFRs reactively. For instance,
#P17 explicitly mentioned that the NFRs were addressed only when specific
metrics were below acceptable. In this example, automated tools were used
to ensure that the NFR was being met. (e.g., use of SonarQube for minimum
coverage of automated tests). In addition, #P17 mentioned that their approach
was proactive only if the NFR was a requirement defined early by the team
of requirements. That reactive approach appeared when they expressed no
defined process to deal with the NFRs.

Other developers mentioned specific strategies to address the NFRs. #P13
mentioned that the team uses developers’ previous experiences to define par-
ticular NFRs for the system, and then they are reevaluated if necessary during
the review phases. #P12 stated that they first looked for NFR documentation
available. However, in cases where this was not available, they asked for help
from more experienced team members. If there is still no solution, a meeting
is scheduled between the stakeholders involved. #P12 even mentioned that if
it reaches the point of needing to do this meeting, it was proof of a failure
in requirements collection and analysis. Indeed, the lack of proper documen-
tation was the most mentioned in our questions to understand the challenges
in addressing NFRs (20 cases). We can resume these results in the following
finding.

Finding 6: Developers primarily address NFRs through collabora-
tive efforts, often resorting to reactive approaches, focusing on NFRs only
when automated tools indicate possible problems. This happens because the
missing documentation is one of the most significant challenges.

Which developers address NFRs. We asked the developer whether there
is someone specifically dealing with the NFRs in the system. Most develop-
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ers (26) answered that there was no specific role to handle such requirements.
Nine developers mentioned that the entire team is responsible for the NFRs,
depending on what is needed. For instance, #P4 stated that the most experi-
enced architects and/or developers were most concerned with the NFRs.

Since, in multiple cases, no developer focused on only solving NFR
problems, some practices are followed in the companies to ensure that the
NFRs are being adopted. #P30 stated that before joining the company, the
team members were trained to understand and keep the NFRs security and
maintainability of all activities carried out within it. #P33 also mentioned that
within the company, they had specialists in certain NFRs, such as security.
However, they are not exclusive to only one project. Instead, they work on all
of the company’s projects.

Strategies to address NFRs. We gathered information on the best strate-
gies to address NFRs within the developers’ systems. We categorized these
strategies based on their answers, as follows.

– Prioritization and planning: NFRs should be treated with as much
priority as other requirements. They should be planned in advance and
reviewed throughout the project.

– Identification and discussion: NFRs should be identified and dis-
cussed early in the development process, ideally in the design phase.
During the evolution of the software, these NFRs should be revisited if
necessary and discussed with stakeholders the possible changes that will
be done to keep the NFR adequate.

– Used of technologies allied with testing: The adequacy of the NFR
can be verified through technologies already approved by the market,
where their non-functional requirements satisfy the project’s complexity.
In addition, the processes of continuous integration and continuous
delivery (CI/CD) can help in the identification of such problems.

– Benchmarks: Using benchmarks to simulate the behavior of a piece of
code or algorithm under different conditions is recommendable, enabling
the review and refactoring of the code when it is not meeting the project-
specified NFRs.

– Documentation and best practices: By keeping the NFRs well-
documented, developers will have a starting point to address an NFR
problem when it appears. In addition, it is good to have these best
practices on handling NFRs documented since each system may have
its own particularity.
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– Long-Term mindset: Properly addressing NFRs will enhance the
software’s lifetime. To guarantee this, a system (i) should have a good
user experience, (ii) should be designed to scale, and (iii) should be easy
to maintain by future developers. These characteristics rely on NFRs
such as performance, robustness, security, and maintainability.

By investigating how developers perceive and handle NFRs in open-
source and closed-source systems, we obtained initial insights into their dis-
cussions regarding these system requirements. Through an analysis of their
perspectives and typical tasks, we compiled a documented overview of best
practices for addressing NFRs to ensure the long-term health of software sys-
tems. As one survey participant aptly said: “Paying attention to NFRs can
mean the difference between the success or failure of a software project”.

5.5
Threats to Validity

This section discusses the threats to the internal and external validity of
our study as follows.

Threats to Internal Validity: Labeling process. The procedure adopted
for the manual identification of NFRs in PR can be posed as a threat. We
adopted a well-structured process to overcome such a threat to the study’s
validity. Besides all collaborators being experienced with the NFRs types
investigated, we also provided complementary material with details about the
NFRs to avoid misclassification. In addition, our qualitative analysis ensured
that the author evaluated a PR classified by other collaborators. Finally,
when there was any doubt about the classification, a second author also
classified the PR to ensure the reliability of the classification. Clustering
algorithm. Regarding clustering, the k-means (MacQueen 1967) algorithm
expected an explicit indication of the number of clusters for grouping the data.
We mitigate that threat by applying the Silhouette analysis (Rousseeuw 1987)
that enables us to determine the most appropriate number of clusters for our
data. Furthermore, the set of metrics supplied to the clustering algorithm to
group developers could be a limitation. For this reason, we manually reviewed
the metrics in the feature engineering process to ensure they represent the
proper dimensions that characterize the developer’s tasks in the repository.

Threats to External Validity: System ecosystem generalization. We
selected three systems for our analysis that might be a threat. However, our
selection was based on a set of criteria (Section 5.3.2) to ensure that we are
selecting project repositories with proper characteristics for our study. In this
way, we decided to focus on OSSs from the same ecosystem to perform an in-
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depth analysis and understand this scenario in specific. Even though the gener-
alization of the study findings is limited to the Spring ecosystem, we provided
a detailed research methodology, allowing the replication of the study steps to
investigate other software (eco)systems. Developers’ generalization. The num-
ber of developers analyzed in RQ2 can be another threat. However, since our
goal was to analyze only the developers dealing with NFRs, we focused on
two steps to select them. First, we divided them into quartiles regarding soft-
ware system activity and their presence in NFR-related discussions. Then, we
first selected the developers who were present on the 4th quartile, meaning they
were highly active on the software system and regarding the NFRs. Second, we
selected developers from the other quartiles but with a higher focus on NFR in
the discussions. Finally, we applied the survey to complement the information
gathered from these first developers.

5.6
Conclusion

To understand how developers discuss NFRs on OSS, we first character-
ized these discussions on three systems from the Spring ecosystem. For that
purpose, seven collaborators of this paper performed a manual classification of
1,533 PR discussions. We considered four NFRs for this classification: main-
tainability, security, performance, and robustness, which were the NFRs most
present on the software systems analyzed. Through this classification, we built
a dataset of PR discussions regarding the presence of NFRs. With this dataset,
we characterized the NFR discussions and identified the developers discussing
these requirements.

We observed that in more than 77% of the PRs, discussions related to
NFRs are triggered in the title and description, both provided by the developer
opening the PR. That lets us understand that the developer who opens the PR
knows the NFR that should be discussed. These discussions’ content is mainly
related to introducing and resolving NFR problems. When we investigated the
developers discussing NFRs, we observed that they have high participation in
multiple tasks in the software system (e.g., commits, and reviews). They also
usually have a role in the company that they work for, closely related to a
specific NFR (e.g., Spring Security Senior Engineer).

As a contribution, we provide the dataset created by our manual classifi-
cation, which can be used to develop new and improved automated classifica-
tion mechanisms for NFRs. The characterization we provided of PR discussions
can be used as a starting point for developing tools for the automatic detection
of NFRs. Furthermore, the mapping of developers who discuss NFR can be
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used by system managers who want to understand specialists’ characteristics
in certain NFRs. Hence, he can allocate his team based on these skills. In fu-
ture studies, we plan to explore the impact of the identification of NFRs on
PR discussions can have on the system’s design and expand our analyses with
more ecosystems.



6
Conclusions and Future Work

A design problem is the result of one or more design decisions that have a
negative effect on non-functional requirements (NFR) of a system (e.g., main-
tainability and robustness). Identifying and removing these problems is essen-
tial as allowing them to prevail in the system implementation can result in high
maintenance costs and even lead to the system discontinuation. Current stud-
ies focus solely on considering maintainability code smells as the only driving
symptom for the design problem identification, which can lead to incomplete
contextual information to support developers during the identification process.
Hence, there is a need to explore new types of information that developers can
use to identify design problems.

In this thesis, we explored how developers can leverage the use of
robustness smells in combination with maintainability smells to identify design
problems effectively. We identified the benefits and challenges of relying on
these two types of symptoms. Through our initial research steps, we realized
that only developers who are able to somehow discuss NFRs can be able to
identify design problems. As a consequence, only these developers would be
able to make proper meaning of maintainability and robustness smells (and
other NFR-related smells) along design problem identification.

Developers deal with NFRs during discussions in OSSs. To complement
the investigation, we performed a survey with developers from both open
and closed-source systems. We searched for similarities and differences in
developers’ approaches to identify and address NFRs. Through this analysis,
we provided a documentation of best practices and strategies followed by
experienced developers when dealing with NFRs. With this guidance, non-
experienced developers can learn how to address NFRs within their systems
and potentially avoid future design problems related to these NFRs.

6.1
Thesis Contributions

The main goal of this thesis is to support developers in the identification
of design problems by relying on the use of multiple and diverse symptoms.
To reach our goal, we performed three main studies to gain insights into how
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developers can use and combine symptoms of design problems to identify and
address them.

In our first study (see Chapter 3), we aimed to understand how developers
could use patterns of maintainability smells to identify design problems.
For that purpose, we conducted a quasi-experiment with 13 professional
developers. We explored to what extent the use of maintainability smell
patterns could assist them on identifying design problems in practice. This
first study was divided into two main steps. First, we asked the participants
to identify design problems in their software systems. They used a tool we
developed to show the candidates of design problems in the systems. Second,
we asked the participants whether the information about the smell patterns
was enough to identify and remove the design problems.

We identified the factors that led the developers to perceive a design
problem in the system. One factor was the context of the system, where the
developer perceived the problem as inevitable. Another factor was the use of
customized strategies and thresholds for the identification of maintainability
smells. In that case, the developers mentioned false positives being detected,
such as a long method that was not necessarily long in the context of the
system analyzed.

We observed that the smell patterns for the design problems Fat Inter-
face, Concern Overload, and Scattered Concern are highly promising as indi-
cators of their occurrences. However, their effectiveness can be enhanced when
complemented with information about dependencies and concerns (related to
the relevant symptoms) within the software system. In this context, the first
contribution of this thesis is the following.

1st Contribution. Developers can benefit from using maintainabil-
ity smells patterns as a practical approach to identify design problems.

Developers tend to perceive design problems as issues that they did
not intentionally introduce and that have a noticeable impact on multiple
software architecture components (see 3). Then, we analyzed some factors that
induced developers’ perceptions regarding the presence of design problems.
These factors included the context (e.g. use of APIs that led to design
problems) of the system they worked on and the strategies used to detect
the maintainability smells. Without such information, developers were not
able to complete the design problem identification. Developers mentioned that
complementary information would be needed to identify more complex design
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problems, such as those affecting the system’s modularity. In this context, we
performed our second study.

In our second study (see Chapter 4), we aimed to understand how robust-
ness smells could be used as (complementary) symptoms of design problems.
For that purpose, we analyzed over 160k methods from 10 OSSs. We divided
this study into three main steps. First, we explored how any kind of robust-
ness change (i.e., change made within the catch block) could be correlated with
maintainability smells. Second, we explored whether these robustness changes
could harm methods (by considering the density of maintainability smells)
that underwent such a change. Finally, we investigated how robustness smells
(i.e. poor robustness changes in the catch block) could be combined with the
maintainability smells (already explored in Chapter 3) for more effective iden-
tification of design problems.

In our analyses, we observed that methods that underwent robustness
changes tended to co-occur with the maintainability smells Dispersed Coupling
and Feature Envy. By performing a manual analysis, we observed that these
two maintainability smells were introduced in the methods when the robustness
changes were performed. We also observed that even small changes in the
exceptional code, such as a comment left in an empty catch block, can indicate
(or reinforce) maintainability smells in the method.

By performing even small changes in the exceptional code, developers
should be aware that the target code can be affected by maintainability smells.
Furthermore, developers can proactively address emerging design problems
by taking into consideration the maintainability smell patterns studied (see
Chapter 3). In addition, we observed that classes with methods that underwent
robustness changes have a high density of smells, confirming the negative
impact of these changes.

By exploring the combination of robustness smells and maintainability
smells patterns, we observed that some robustness smells (empty catch block
and catch generic exception) exhibit a close relation to system modularity
problems. For instance, when exceptions are caught in a generic manner, as
indicated by these two smells, it can imply that these smelly methods are
dealing with multiple concerns. In the face of multiple unrelated concerns,
developers can be forced to deal with the exceptions in this generic way. Hence,
by observing the presence of these robustness smells and combining them with
maintainability smells patterns, developers can be more confident in identifying
design problems. In this context, we have our second contribution to this thesis.
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2nd Contribution. Developers can benefit by combining both
robustness smells and maintainability smell patterns to identify design
problems more effectively.

Understanding how developers can rely on different types of code smells is
fundamental for the identification of design problems. The non-conformity with
NFR is another symptom of design problems. Understanding and documenting
strategies and techniques developers use when dealing with NFRs can support
less experienced developers to identify and properly address design problems.
Through the adoption of different symptoms, developers will be more likely
to maintain the code and prevent unwanted designproblems in the future. To
understand developers who deal with NFRs and their strategies, a third study
was performed (see Chapter 5)

This study was divided into four steps. In the first step, we created a
dataset of pull request (PR) discussions. In the second one, we characterized
the NFR within the PR discussions; we focused on understanding the main
characteristics of these discussions and how they occur. In the third step,
we investigated the developers’ engagement in these discussions. Finally, we
surveyed the developers to understand how they identify, perceive and address
NFRs within their systems.

For this study, we created a dataset of 1,533 PR discussions labeled with
their respective NFR. That allowed us to characterize the discussions and
identify the developers participating. On our characterization, we identified
that developers tended to mention NFR-related keywords in the title and
the description of the PR, which reinforces that NFRs are the developers’
primary focus during the software’s maintenance and evolution. We also
observed that developers describe multiple NFR-related keywords, showing
their clear intention on the PR opened and helping define the scope of the
change pointed out or made. Through analyzing these discussions, we also
selected 63 developers who showed the highest level of involvement in NFR
discussions.

In our investigation, we observed that these developers were the central
contributors to the systems, having high participation in multiple tasks, such
as commits, reviews, and refactorings. By observing their GitHub profile and
social media, we also noticed that they usually had roles in their companies
related to the NFRs they discussed. For instance, a highly active developer in
discussing security was the Senior Security Engineer of the company where he
worked. That shows the paramount importance of their practical expertise in
addressing these NFRs in the systems.
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To enhance our comprehension on how they address NFRs, we surveyed
44 developers. We observed that developers discuss NFRs often because they
are essential to the software evolution according to their perception. These
discussions were made especially to keep the NFRs aligned with the project
objectives. These discussions took place during the whole software development
life cycle, going from the design phase to the maintenance phase. They
highlighted the importance of discussing NFRs, especially in the design phase,
with the presence of the clients.

The participants also pointed out the use of practices to guarantee that
the NFR was being satisfied and reaching the expectations of the clients, for
example, the use of continuous integration and continuous delivery. For this
purpose, they relied on specific techniques to test each type of NFR, such
as stress testing to measure the performance. All participants stated that
they have experience addressing NFRs. Nevertheless, the developers chosen to
address NFR-related issues were often the most experienced members within
their teams, such as the software engineers and architects.

Based on our investigation with 63 developers from the Spring ecosystem
and 44 developers surveyed, we found the strategies they tend to apply to
address the NFRs. For example, they highlighted the importance of prioritizing
and planning the NFR in the early stages of software development. They
also mentioned the use of static analysis tools combined with testing to
help address NFRs. The use of benchmarks to identify when the NFRs
were not met in the system was also mentioned to help address the NFRs
properly. Additionally, developers mentioned the need for easy access to
the documentation. These strategies help developers improve the software
system’s overall quality; and by addressing NFR problems in the system, future
problems, such as design problems, can be avoided. Based on these findings,
we have our next contribution.

3rd Contribution. Understanding how developers identify and
address NFRs within their systems can help in the prevention of design
problems.

With these three contributions, we take a step further in helping develop-
ers deal with design problems. We are advancing the state-of-the-art by show-
ing how the developers use symptoms of design problems in practice and how
they can combine multiple symptoms to identify such problems. In this the-
sis, we analyze how the combination of maintainability and robustness smells
can assist developers in this task. In particular, we assess how combining both
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smells can provide more information regarding the design problem, increasing
its identification accuracy. In addition, looking for a more practical perspec-
tive, we showed how developers perceive NFRs within their systems. We also
presented developers address NFRs’ non-conformities that may arise during
the system’s lifecycle, documenting their best practices.

Figure 6.1 depicts a methodology grounded on the findings of this
thesis for assisting developers in the identification of design problems. In this
methodology, we employed a specific notation:

– Gray squares represent the phases.

– Blue squares represent the actions that need to be executed.

– Hexagons represent the artifacts utilized during these actions.

– Arrows represent the sequence of steps to be followed.

through the use of 

Phase 3: 
Apply action plan

Phase 1: 
Explore non-conformities with

NFRs

Identify affected components

Refactor operations
to mitigate the design

problems

interactively returns to

Phase 4: 
Apply Continuous

monitoring

Continuous
Integration/Continuos

Delivery

Phase 2: 
Explore source code-

level symptoms

Maintainability
Smells

Robustness
Smells

through the use of

Smell Patterns

Identify design
problems

combined to form

used to

through the use of

Static analysis tools Testing

through the use of

used to
Phases

Artifact

Action

Legend

Figure 6.1: Workflow on Design Problem Identification.

This methodology is divided into four major phases, described as follows.

Phase 1. Explore the non-conformities with NFRs: First, the developer
should identify non-conformities with the NFRs defined for the software
system. This step is an essential initial activity as design problems negatively
affect these requirements. As observed in Chapter 5, developers address
the NFRs when identifying such non-conformities (e.g., when a component
has issues with the code readability and/or is tightly coupled with other
component(s)). Developers can rely on static analysis tools and testing to
identify such non-conformities. For instance, static analysis tools can measure
code complexity metrics and pinpoint components that are hard to maintain
or prone to errors. Considering the tests, developers can evaluate the test
coverage and tests that assess the software’s ability to meet NFRs related to
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Table 6.1: Smells Patterns Considering Maintainability and Robustness Smells
Design Problem Maintainability Smells Robustness Smells

Concern Overload
Complex Class, Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,

Long Method, and Shotgun Surgery

Empty Catch Block,
Catch Generic Exception

Scattered Concern
Dispersed Coupling, Divergent Change, Feature Envy,

God Class/Complex Class, Intensive Coupling,
and Shotgun Surgery

Empty Catch Block, and
Catch Generic Exception

robustness, such as fault tolerance and error handling. This phase serves as a
way to identify these components that may be negatively affecting the NFRs in
the system. Then, the developer should focus on such a component for deeper
analysis.

Phase 2. Explore source code-level symptoms: Once the developer has
identified the components to analyze, they can use the patterns discussed in
this thesis. In Chapter 3, specifically in Section 3.2.2, we present patterns that
focus exclusively on maintainability smells (see Table 3.1). Furthermore, in Ta-
ble 6.1, we provide the expanded patterns that now include robustness smells.
Developers can rely on both types of patterns when they deem necessary, based
on the systems they are identifying the design problems. Through the use of
these patterns, developers can be more confident regarding the presence of a
design problem.

Phase 3. Apply action plan: Once the developer has identified the design
problem, they must address it. Developers can use refactoring operations to
remove or reduce the impact of design problems in the system. Code smells
play a significant role in identifying opportunities for these refactorings. In
Chapter 3, we investigated how the smell patterns can be combined with the
refactorings to mitigate the design problem. In Appendix A.1, we provide the
full list of refactorings for each respective code smell. Therefore, by using the
patterns in this thesis, the developers can apply such refactorings to mitigate
the design problem.

Phase 4. Apply continuous monitoring: Once the developer removes the
design problem, the next step is to keep monitoring the system. That is needed
since new problems may emerge during the development phase. For monitoring,
the methodology proposed suggests using continuous integration/continuous
delivery (CI/CD) processes. CI/CD tools generate reports and logs for each
build and deployment. Developers should monitor these reports for any non-
conformities with NFRs. The CI/CD pipeline should prevent the deployment
of the code to production until the non-conformities are addressed. Failing the
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build provides immediate feedback to the development team and enforces NFR
compliance. As identified in Chapter 5, the developers apply such approaches
to keep informed whether the NFRs meet the expectations, avoiding non-
conformities with such requirements. Therefore, this phase has a link with the
first phase, as this is an iterative process that must be performed through the
system lifecycle.

By following this methodology, the developer can systematically address
design problems in the system. This methodology helps ensure that the
software system maintains its quality and evolves over time while meeting
the desired NFRs. Developers and researchers interested in improving code
quality can explore this thesis as a valuable resource to understand better how
to use different symptoms effectively as indicators of design problems. Finally,
by following the documented strategies outlined in this thesis, they can apply
and adapt them to their own specific scenarios, thus proactively preventing
and mitigating design problems. This thesis opens up multiple possibilities,
such as incorporating machine learning techniques to automatically detect code
quality issues, such as design problems. We discuss these possibilities in the
next section.

6.2
Future Work

Empirical studies with the Smell Patterns tool. In our first study,
we created a tool for the developers to identify the possible design problems
within their systems (see Chapter 3). This tool can be enhanced with new
types of symptoms (and patterns) to complement our current catalog of
smell patterns (see Section 4.5.3) The catalog can also be enhanced with
the combination of robustness smells and maintainability smell patterns (see
Chapter 4).

Combination of symptoms. Multiple types of symptoms can be used
for the identification of design problems. In this thesis, we focused on some
of them as justified in previous chapters. In future work, we can explore
other types of symptoms. For instance, the detection of violations of design
patterns (Gamma et al. 1995) could be used together with code smells. Their
co-occurrence may indicate a design pattern was misused in a particular
context of the project. Moreover, based on how we explored the combination
of maintainability smells and robustness smells, new studies can be performed
to explore new combinations of symptoms.

Tools to automatically identify NFRs. In Chapter 5, we created a
manually curated dataset of 1,533 PR discussions labeled with their respective



Chapter 6. Conclusions and Future Work 131

NFR discussed. In this dataset, we provided (i) the NFR identified, (ii) the
phrase that contains the keywords related to the NFR, (iii) the keywords
related to the NFR, and (iv) the location where the keyword appeared.
Moreover, we provided several keywords related to the NFRs. Tool builders and
researchers can use this dataset as input to build natural language processing
(NLP) models aiming to identify NFRs automatically.

Investigation of the strategies used by experienced developers
to address NFRs. In Chapter 5, we documented the strategies and per-
ceptions that developers use to address NFRs. Researchers can explore these
strategies to understand what can be applied in practice to guarantee software
quality and avoid design problems. It is worth investigating whether systems
adhering to these practices experience fewer NFR-related issues and exhibit
smoother evolution (e.g. reduced maintenance costs) compared to systems that
do not adopt such practices.

Expertise Assessment Model: In Chapter 5, we highlighted strategies
that developers can apply to address NFRs. Through these results, a machine
learning model can be developed for assessing and quantifying the expertise of
software developers or teams in handling NFRs. This could involve considering
various factors, including technical knowledge, experience, soft skills, and
the ability to balance conflicting NFRs. In addition, studies can be carried
out considering the correlation between the presence of NFR experts in a
development team and project success metrics.

Assessing Developer Proficiency in Addressing NFRs: In Chap-
ter 5 we introduced a preliminary study focused on identifying how software
developers deal with NFRs through their engagement in Pull Request (PR)
discussions. In future work, we aim to provide automatic support for getting in-
formation about the developer’s level of expertise in solving NFR issues based
on their historical contributions. This could involve analyzing developers’ con-
tributions, code changes, and discussions. We plan to incorporate a scoring
system that assigns weights to different competencies and skills based on their
relevance and importance within specific NFR domains. Thus, it can help re-
cruiters and managers assess an overall score for the developers’ NFR expertise
and assign who could be more able to identify and fix a design problem.
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A
Study on the Identification of Design Problems Using Main-
tainability Smells Patterns

In this appendix, we present details of our first study (see Chapter 3).
The following subsections describe the study (i) refactorings considered, (ii)
hypothesis and variables, (iii) developers’ characterization, (iv) summary of
developers’ answers, (v) automated tool details, and (vi) forms applied.

A.1
Common Refactorings Applied for Specific Maintainability Smells

The full list of common refactorings for each maintainability smell
explored in Chapter 3 is detailed as follows. In Table A.1, we present the
description of each refactoring. In Table A.2, we present the maintainability
smell and the respective refactorings that could be applied to remove them.

A.2
Hypothesis and Variables

Table A.1: Refactorings and their Descriptions
Refactoring Description

Collapse Hierarchy A class hierarchy, in which the subclass is almost identical to its superclass.
We merge bloth classes.

Extract Class
One class has the responsibilities of two. We create a new class
responsible for the relevant functionalities, making both classes
have single responsibilities.

Extract Field Expression is hard to understand. We place the result of the expression
is in separate fields.

Extract Method A code fragment can be grouped together. We move this code to a
new method and replace the old code to a call to the method.

Move Field A field is used more in another class rather than its own class.
We create a field in a new class and put the old fields in this new class.

Move Method
A method is used more in another class rather than its own class.
We move this method to the right class and move the code from the
original method to the new one.

Inline Class A class that does not have any responsibility, performing no functionalities.
We move all fields and methods from this class to a new one.

Rename Method The current method name do not explain what the method does. We change
the method name to fit its actions.

Remove Parameter A parameter is not used in the method body. We remove this parameter.



Appendix A. Study on the Identification of Design Problems Using
Maintainability Smells Patterns 153

Table A.2: Common Refactorings Applied for Each Maintainability Smell
Maintainability Smell Common Refactoring
Complex Class Extract Method, Move Method, Extract Class
Dispersed Coupling Extract Method
Feature Envy Move Method, Move Field, Extract Field
God Class Extract Class, Move Method, Move Field
Intensive Coupling Move Method, Extract Method
Lazy Class Inline Class, Collapse Hierarchy
Lazy Method Extract Method
Shotgun Surgery Move Method, Move Field, Inline Class

Speculative Generality Collapse Hierarchy, Inline Class,
Remove Parameter, Rename Method

A.2.1
Hypothesis RQ. 1

For our first research question (RQ. 1: Are Smell Patterns Indicators of
Degradation?), we formulated the following hypotheses:
Null Hypothesis:

– H0: "Smell patterns do not indicate degradation."

Alternative Hypotheses:

– H1: "Single Smell Patterns are indicators of degradation."

– H2: "Multiple Smell Patterns are indicators of degradation."

A.2.2
Hypothesis RQ. 2

For our second research question (RQ. 2: Can Smell-Patterns Indicate
Refactoring Opportunities?), we formulated the following hypotheses:
Null Hypothesis:

– H0: "Smell patterns can not indicate refactoring opportunities."

Alternative Hypotheses:

– H1: "Single Smell Patterns can indicate refactoring opportunities."

– H2: "Multiple Smell Patterns can indicate refactoring opportunities."
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A.2.3
Independent Variables

The independent variables in our study are:

– The characteristics of the software systems under investigation.

– The level of familiarity with these software systems among the develop-
ers.

– The use of single smell patterns (SSP) in the analysis.

– The use of multiple smell patterns (MSP) in the analysis.

– The use of multiple combinations of smell patterns.

A.2.4
Dependent Variables

The dependent variables in our research are:

– Presence of Degradation (RQ. 1 ).

– Acceptance of Refactoring Opportunities (RQ. 2 and RQ. 3 ).

A.3
Developers’ Characterization

We recruited the developers of this quasi-experiment through our network
of contacts in the industry and other research groups. We also looked for
potential developers in our professional social media (Twitter and LinkedIn).
We defined the following criteria to select the final list of developers:

1. Intermediary knowledge of Java programming language.

2. Intermediary knowledge about software architecture.

3. Basic knowledge about code smells and refactoring.

4. More than one year of experience with software development.

The developers themselves informed such characteristics through a char-
acterization form. We did not conduct any tests to verify the experience and
level of knowledge on each topic. Table A.3 contains information on the selected
developers for this study.
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Table A.3: Characteristics of Developers from Study One
ID Programming

Experience
Java

Knowledge
Architecture
Knowledge

Code Smells
Knowledge

Refactoring
Knowledge

1 6 to 10 years Specialist Experienced Experienced Experienced
2 1 to 5 years Intermediate Intermediate Experienced Experienced
3 6 to 10 years Intermediate Intermediate Experienced Specialist
4 6 to 10 years Intermediate Intermediate Intermediate Intermediate
5 6 to 10 years Intermediate Intermediate Basic Basic
6 6 to 10 years Experienced Intermediate Intermediate Intermediate
7 6 to 10 years Intermediate Intermediate Basic Intermediate
8 1 to 5 years Intermediate Intermediate Experienced Intermediate
9 6 to 10 years Experienced Experienced Experienced Experienced
10 1 to 5 years Intermediate Intermediate Experienced Experienced
11 11 to 15 years Specialist Experienced Experienced Experienced
12 1 to 5 years Experienced Specialist Experienced Experienced
13 6 to 10 years Experienced Intermediate Experienced Experienced

Table A.4: Summary of Developers’ Answers
Participant

ID

Agreed With
the Presence
of a Problem

Is
Implementation

Level

Is
Architectural

Level

Agreed
With the

Refactorings

Partially Agreed
With the

Refactorings
1 6 5 1 6 0
2 4 3 1 0 4
3 1 0 1 1 0
4 6 3 3 1 4
5 4 0 4 4 0
6 5 4 1 3 2
7 4 2 2 3 1
8 5 1 4 2 3
9 2 2 0 0 0
10 3 2 1 0 1
11 3 3 0 0 2
12 4 0 4 2 2
13 2 2 0 2 0

A.4
Summary of Developers’ Answers

Table A.4 presents a summary of developers’ answers. 1st column shows
the developers’ ID. 2nd column presents how many times (from the 6 cases)
the developer agreed with the presence of a degradation problem. 3rd and 4th

columns show how often the developer considered the problem to be on an
implementation or architectural level. 5th and 6th columns show how often
developers agreed or partially agreed with the proposed refactoring.

A.5
Automated Tool

We developed a tool to be used by the developers to identify design
problems within their systems. In this tool, the developers use as input
their project source code. The tool analyzes and automatically collects the
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maintainability smells and metrics. In Figure A.1, we show a screenshot of the
tool with numbered parts.

Figure A.1: Screenshot of the Tool Used by the Developers to Identify Design
Problems

Following, we describe each part.

– Part 1: Presents the components’ source code tree. The developer can
navigate through the files of this tree and evaluate each source code.

– Part 2: Presents the maintainability smells affecting the current file
analyzed by the developer.

– Part 3: Presents the source code of the current file analyzed.

– Part 4: It has two sections. The 1st section (Degradation Info) provides
a description of the design problem that may be affecting the code
analyzed. The 2nd section (Metrics) provides a list of metrics of the source
code analyzed (e.g. lines of code in the method and coupling intensity)

– Part 5: It has two sections. The 1st section (Smell/Metric Information),
presents the description of the maintainability smell or metric selected
in the tool. The 2nd section (Refactoring Suggestions) presents the
refactoring suggestions to remove the design problem.
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A.6
Forms

A.6.1
Characterization Form

Following, we present the form filled by the developer prior to their task
of identifying design problems.



01/02/2021 Characterization and Consent Form

https://docs.google.com/forms/d/1OQxm9wWEaxwzB5AawyTKEZvTpeURzqANjJJq9MGpgX0/edit 1/5

1.

Marque todas que se aplicam.

I agree to voluntarily participate in this study

2.

Characterization and Consent Form
The purpose of this form is to characterize and collect the consent of people participating in 
the study on structural software degradation carried out by researchers from PUC-Rio and 
Carnegie Mellon University. 
The identity of the participants is confidential and, therefore, will not be stored or disclosed in 
any way. 
This study causes little to no discomfort or stress in the participants. Although the forms 
have mandatory fields, the participant can choose to fill any field with the following text or 
option: "I prefer not to inform". 
In this study, we will use a software for static analysis of source code. This software does not 
make any changes to the analyzed code, nor does it send any type of information to us. 
The participating person will have full control over the information that will be collected 
during the study, as all of it will be filled out and sent through a web form. 
At the end of the study, we will send a link to access the source code of the static analysis 
software used in this experiment. 
Participation in this study is completely voluntary, with no compensation for the participants. 

Researchers in charge of this study: 
Willian Oizumi (PUC-Rio) 
Leonardo Sousa (CMU) 
Anderson Oliveira (PUC-Rio) 
Alessandro Garcia (PUC-Rio) 
Diego Cedrim (PUC-Rio) 
Carlos Lucena (PUC-Rio) 

Contact: oizumi.willian@gmail.com 
*Obrigatório

Do you agree to voluntarily participate in this study? *

E-mail *
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01/02/2021 Characterization and Consent Form

https://docs.google.com/forms/d/1OQxm9wWEaxwzB5AawyTKEZvTpeURzqANjJJq9MGpgX0/edit 2/5

3.

4.

Marcar apenas uma oval.

Between 18 and 24 years old

Between 25 and 34 years old

Between 35 and 44 years old

Between 45 and 54 years old

Between 55 and 64 years old

Between 65 and 74 years old

Over 74 years old

I prefer not to inform

5.

6.

Where do you live (City/Country)? *

What is your age group? *

Where do you identify yourself in the gender spectrum? *
Examples: Binary (Female or Male), Non-Binary (Transfeminine, Trans-male, Polygender, etc)

What is your current position? *
Examples: Software Developer, Software Architect
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01/02/2021 Characterization and Consent Form

https://docs.google.com/forms/d/1OQxm9wWEaxwzB5AawyTKEZvTpeURzqANjJJq9MGpgX0/edit 3/5

7.

Marcar apenas uma oval.

Less than 1 year

Between 1 and 5 years

Between 6 and 10 years

Between 11 and 15 years

Between 16 and 20 years

More than 20 years

I prefer not to inform

8.

Marcar apenas uma oval por linha.

9.

Marcar apenas uma oval por linha.

What is your experience with software development? *

How do you rate your knowledge of the Java programming language? *

I prefer not to
inform

None Beginner Intermediary Experienced Specialist

LevelLevel

How do you rate your knowledge of architectural decisions in software systems? *

I prefer not to
inform

None Beginner Intermediary Experienced Specialist

LevelLevel

Appendix A. Study on the Identification of Design Problems Using
Maintainability Smells Patterns 160



01/02/2021 Characterization and Consent Form

https://docs.google.com/forms/d/1OQxm9wWEaxwzB5AawyTKEZvTpeURzqANjJJq9MGpgX0/edit 4/5

10.

Marcar apenas uma oval por linha.

11.

Marcar apenas uma oval por linha.

12.

Marcar apenas uma oval.

Open Source Software

Closed Source Software

13.

How do you rate your knowledge about refactoring? *

I prefer not to
inform

None Beginner Intermediary Experienced Specialist

LevelLevel

How do you rate your knowledge of code smells? *

I prefer not to
inform

None Beginner Intermediary Experienced Specialist

LevelLevel

What type of project will you perform the study on? *

Please provide us with information, which is not confidential, about the project to
be analyzed in this study. *
We are interested in information, such as: architectural style, domain, frameworks and size of the
development team. If the project is open source, please provide us with the link to the repository.
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01/02/2021 Characterization and Consent Form

https://docs.google.com/forms/d/1OQxm9wWEaxwzB5AawyTKEZvTpeURzqANjJJq9MGpgX0/edit 5/5

14.

Marcar apenas uma oval por linha.

15.

Este conteúdo não foi criado nem aprovado pelo Google.

How do you rate your familiarity with the project chosen to analyze? *

I prefer not to inform None Small Medium High Very High

LevelLevel

How long have you been working with the project chosen to analyze? Set to zero if
you have never made changes to the source code of the chosen project. *

 Formulários
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A.6.2
Form Used During the Quasi-Experiment

Following, we present the form filled by the developers during the task
of identifying design problems.



01/02/2021 Case Analysis

https://docs.google.com/forms/d/17Vwu5AXAeZV-OJaU9lp0_qw29hV814KRa6zCD27nFcQ/edit 1/5

1.

2.

Exemplo: 08h30

3.

Marcar apenas uma oval.

Yes Pular para a pergunta 4

No Pular para a pergunta 11

Structural Degradation Identified

4.

Case Analysis
*Obrigatório

E-mail *

Start Time *
Please indicate the time when you started to analyze this case. Take the time you think is necessary to
analyze each case.

In your opinion, is there a problem of structural degradation in this case? *

Description and justification of the degradation problem found *
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01/02/2021 Case Analysis

https://docs.google.com/forms/d/17Vwu5AXAeZV-OJaU9lp0_qw29hV814KRa6zCD27nFcQ/edit 2/5

5.

Marcar apenas uma oval.

Implementation Level

Architecture and Design Level

6.

Marcar apenas uma oval por linha.

7.

Marcar apenas uma oval por linha.

8.

What is the granularity of the identified degradation problem? *

How do you rate the severity of the identified degradation problem? *
The closer to 5, the greater the perceived severity.

1 2 3 4 5

SeveritySeverity

How useful was the information provided by the static analysis tool to reach this
conclusion? *
The higher the rating, the greater the perceived usefulness.

1 2 3 4 5

UsefulnessUsefulness

Describe what specific information was helpful in identifying the degradation
problem. Such information may or may not have been provided by the tool. *
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01/02/2021 Case Analysis

https://docs.google.com/forms/d/17Vwu5AXAeZV-OJaU9lp0_qw29hV814KRa6zCD27nFcQ/edit 3/5

9.

Marcar apenas uma oval.

Yes

No

Partially

10.

Pular para a pergunta 14

No Structural Degradation

11.

Marcar apenas uma oval por linha.

Do you believe that the refactorings suggested by the tool would be sufficient to
remove the identified degradation problem? (for each smell check the "Refactorings
Suggestion" tab) *

Additional comments
Additional comments on this case or on your responses.

How useful was the information provided by the static analysis tool to reach this
conclusion? *
The higher the rating, the greater the perceived usefulness.

1 2 3 4 5

UsefulnessUsefulness
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01/02/2021 Case Analysis

https://docs.google.com/forms/d/17Vwu5AXAeZV-OJaU9lp0_qw29hV814KRa6zCD27nFcQ/edit 4/5

12.

13.

Case Analysis Completed

14.

Exemplo: 08h30

Describe what information, provided or not by the tool, was most useful to rule out
the existence of a degradation problem. *

Additional comments
Additional comments on this case or on your responses.

End Time *
Please indicate the time when you finished analyzing this case.
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01/02/2021 Case Analysis

https://docs.google.com/forms/d/17Vwu5AXAeZV-OJaU9lp0_qw29hV814KRa6zCD27nFcQ/edit 5/5

15.

Este conteúdo não foi criado nem aprovado pelo Google.

Case Description *
In the static analysis software, click the "Copy Data and Open Next Case" button. The case description will
be copied to the clipboard. Paste here the case description provided by the experiment tool. If, for any
reason, you lose data from the clipboard, the description can also be copied from a file ("case_ [case
number]") that will be saved in the same folder as the static analysis software.

 Formulários
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A.6.3
Form Used as a Post-study Interview

Following, we present the form filled by the developers after performing
the task of identifying design problems.



01/02/2021 Post-Study Interview

https://docs.google.com/forms/d/1WQDjhhLg99U8JvkOEYCawhrYNXzg9W0PCDPIptqDYbw/edit 1/3

1.

2.

3.

Post-Study Interview
*Obrigatório

E-mail *

Did any external factors hinder the execution of the study's tasks? For example, you
cannot concentrate because there was an interruption during the study execution. *

Regarding the duration of the study, do you think it was appropriate, too long or
would you need more time? What led you to that conclusion? *
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01/02/2021 Post-Study Interview

https://docs.google.com/forms/d/1WQDjhhLg99U8JvkOEYCawhrYNXzg9W0PCDPIptqDYbw/edit 2/3

4.

5.

6.

Marcar apenas uma oval.

Yes

No

7.

What features in the tool would you like to include in your IDE or in the plug-ins you
already use? *

What features does the tool need to become a plug-in that you would use in your
IDE? *

Would you like to receive reports with information about the results of this study? *
We plan to have a first report in January 2021.

General comments and feedback on your participation in this study.
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B
Study on the Use of Robustness Smells Combined With
Maintainability Smells

In this appendix, we present details of our second study (see Chapter 4).
The following subsections describe the (i) code smells collected, and (ii)
detailed statistics of maintainability smells density for each system.

B.1
Code Smells Collected

Table B.1 presents the maintainability smells considered in this study
and their respective descriptions.

Table B.1: Maintainability Smells and its Descriptions
Maintainability Smell Description

Brain Method Long and complex method that
centralizes the intelligence of a class

Dispersed Coupling
A method that accesses many elements,
and the accessed code elements are
dispersed among many classes

Feature Envy A method that is more interested in a
class other than the one it actually is in

Intensive Coupling

A method that has tight coupling with
other methods, and these coupled
methods are defined in the context of
few classes

Long Method A method that is unduly long in terms
of lines of code

Message Chain
A long chain of method invocations
is performed to implement a
class functionality

Long Parameter List
A method having a long list of
parameters, some of which are
avoidable

Shotgun Surgery
When a single change performed
on the method demands multiple
other changes on other classes
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Table B.2: Robustness Smells and its Descriptions
Robustness Smell PMD Name Description

Catch Generic
Exception AvoidCatchingGenericException

A method that catches generic
exceptions such as
NullPointerException,
RuntimeException,
and Exception in a try-catch block

Method Throws
Exception SignatureDeclareThrowsException A method that explicitly

throws java.lang.Exception
Empty Catch
Block EmptyCatchBlock An exception is caught,

but nothing is done

Catch NPE AvoidCatchingNPE Code throwing
NullPointerExceptions

Rethrows Exception AvoidRethrowingException Catch blocks that rethrow
a caught exception

Throw New Instance
of Same Exception

AvoidThrowingNew
InstanceOfSameException

Catch blocks that rethrow
a caught exception wrapped
inside a new instance of the
same type

Throw Exception
in Finally DoNotThrowExceptionInFinally Method throwing exceptions

within a ’finally’

Exception as
Flow Control ExceptionAsFlowControl

Catches the use of exception
statements as a flow control
device

Throw NPE AvoidThrowingNullPointerException A method that throws a
NullPointerException

Table B.2 presents the robustness smells considered in this study. 2nd

column presents the name as recognized by the PMD static analysis tool used
to identify the smell. 3rd column presents the description of the robustness
smell.

B.2
Density of Maintainability Smells in Classes with and without Robustness
Changes

Following, we present, for each system, the detailed statistics for the
analysis that we performed. Each table presents the density of maintainability
smells when a class had robustness changes and when it did not have this
change.
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Table B.3: Density of Maintainability Smells for the elasticsearch-hadoop
System

Statistics for
elasticsearch-hadoop

Density
With Exception

Density
Without Exception

Minimum 0 0
Maximum 32 38
Mean 2.9 2.6
Median 1 0
Mode 0 0
Std. Dev. 5.2 4.5

Table B.4: Density of Maintainability Smells for the apm-agent-java System
Statistics for

apm-agent-java
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 73 48
Mean 3.2 2.3
Median 1 1
Mode 0 0
Std. Dev. 7.5 6.7

Table B.5: Density of Maintainability Smells for the okhttp System
Statistics for

okhttp
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 197 181
Mean 30.8 4.3
Median 8 0
Mode 0 0
Std. Dev. 37.8 22.3

Table B.6: Density of Maintainability Smells for the dubbo System
Statistics for

dubbo
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 38 17
Mean 4.7 0.8
Median 3 0
Mode 0 0
Std. Dev. 6.6 3.2
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Table B.7: Density of Maintainability Smells for the fresco System
Statistics

fresco
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 27 30
Mean 3.29 1.57
Median 1.00 1.00
Mode 0.00 0.00
Std. Dev. 5.25 2.91

Table B.8: Density of Maintainability Smells for the netty System
Statistics

netty
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 113 157
Mean 8.72 3.74
Median 4.00 1.00
Mode 0.00 0.00
Std. Dev. 16.39 8.19

Table B.9: Density of Maintainability Smells for the rxjava System
Statistics

rxjava
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 86 244
Mean 3.53 5.58
Median 1.00 1.00
Mode 0.00 0.00
Std. Dev. 12.52 13.23
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Table B.10: Density of Maintainability Smells for the spring-security System
Statistics

spring-security
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 27 71
Mean 2.27 2.34
Median 1.00 1.00
Mode 0.00 0.00
Std. Dev. 4.28 4.96

Table B.11: Density of Maintainability Smells for the spring-boot System
Statistics

spring-boot
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 45 56
Mean 3.39 2.63
Median 1.00 1.00
Mode 0.00 0.00
Std. Dev. 7.78 5.97

Table B.12: Density of Maintainability Smells for the spring-framework System
Statistics

spring-framework
Density

With Exception
Density

Without Exception
Minimum 0 0
Maximum 23 132
Mean 3.41 3.89
Median 2.00 1.00
Mode 0.00 0.00
Std. Dev. 4.08 9.25



C
Study on How Developers Discuss and Address NFRs

In this appendix, we present details of our third study (see Chapter 5).
The following subsections describe the (i) dataset, (ii) keywords identified in
the dataset, (iii) developers’ metrics,(iv) developers metrics related to NFRs,
(v) NFR sub-categories, and (vi) survey applied.

C.1
Dataset

We provide a dataset with 1,583 PR discussions classified in terms of
NFR presence. After manual classification, we built a dataset composed of PR
discussions, each one classified in terms of (i) the presence of the NFRs type
addressed, (ii) the location in the PR where the discussions are triggered, (iii)
keywords mentioned in the discussion, and (iv) discussion content addressing
the NFR. This classification allowed us to characterize the PR discussions and
identify the developers discussing NFRs.

Our dataset is structured with the following columns:

– NUMBER_PR: The number from the PR analyzed.
– SYSTEM: The system analyzed.
– URL: The URL from the PR analyzed.
– NFR_TYPE: The NFR type identified in the PR discussion.
– PHRASE: The phrase that led to the NFR classification.
– KEYWORDS: The keywords related to the NFR present in the dis-

cussion.
– LOCATION: The location where the mention of the NFR was present

(e.g., title, description).
– OBS: Observations regarding the discussion.

In our dataset, we have:

– 609 PR discussions related to Maintainability.
– 393 PR discussions related to Security.
– 336 PR discussions related to Robustness.
– 195 PR discussions related to Performance.



Appendix C. Study on How Developers Discuss and Address NFRs 178

C.2
Keywords

Through our dataset, we identified a set of keywords related to the
NFRs. We divided these keywords into two groups: (i) single keywords and (ii)
composed sentences keywords. The second group has combinations of keywords
that can reinforce the presence of the NFR due to its context.

For each NFR, we also ranked the keywords according to the number of
times that the keywords appeared on our manual classification. For instance,
the “cleanup” keyword appeared 15 times when we were classifying maintain-
ability PRs.

The “*” represents that this keyword can have multiple variations. For
instance, “doc*” can be related to “documentation”, “document”, “document-
ing”, and so on.

Following, we present the full list of keywords identified.



Maintainability

Single Keywords
"doc*: 49,
"javadoc": 15,
"cleanup": 15,
"polish*": 12,
"typo": 8,
"simpli*": 7,
"read*": 6,
"improve*": 5,
"fix": 5,
"duplicat*": 5,
"refact*": 4
"update": 4,
"customi*": 3,
"nam*": 2,
"dependenc*": 2,
"deprecated": 2,
"build": 2,
"maintain*": 2,
"clean*": 2,
"replace*: 2,
"readme": 2,
"unecessary": 1,
"syntax": 1,
"misleading": 1,
"clarify": 1,
"comprehensible: 1,
"outdated": 1,
"renaming": 1,
"migrate": 1,
"maintainability": 1,
"guidelines": 1

Composed Sentences Keywords
"documentation + improvement": 1,
"fix + documentation": 1,
"improve + docs": 1,
"clarify + docs + for + usage": 1,
"improve + extension": 1,
"duplicating + logic": 2,
"not + required: 2,
"configuration + properties": 1,
"duplicated code": 1,
"remove + incorrect": 1,
"facilitate + creation": 1,
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"long method": 1,
"less code: 1,
"unused + dependency": 1,
"easier + understand": 1,
"correction + doc": 1,
"naming + convention": 1,
"to + make + the + code + more": 1,
"difficult + to + read: 1,
"easy + integration": 1,
"single + responsibility: 1,
"outdated + javadoc: 1,
"whitespace format": 1,
"code + style: 1

Security

Single Keywords
"auth*": 39,
"oauth*: 17,
"security": 15,
"JWT": 11,
"token": 9,
"saml*": 8,
"password": 5,
"vulnera*": 4,
"exception": 4,
"session: 4,
"ssl": 3,
"exposed": 3,
"sha*": 3,
"jwks": 3,
"bearer": 3,
"attack*": 3
"crypto*": 3,
"sanitize": 2,
"denied": 2,
"leaking": 2,
"null": 2
"login": 2,
"CSRF": 2,
"protected": 1,
"cookie": 1,
"ldap: 1,
"breach": 1,
"anonymous: 1,
"decrypt": 1,
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"access": 1,
"secure": 1,
"key": 1,
"secret": 1,
"threat": 1,
"victim": 1,
"thread": 1,
"safe": 1,
"decrypter": 1

Composed Sentences Keywords
"prefer + the + https + protocol": 1,
"memory + leak": 1
"public + key": 1,
"grant + access": 1
"token + Authentication": 1
"access + tokens": 1,
"exposed + as + a + bean": 1,
"timing + attacks": 1,
"token + hashing": 1

Robustness

Single Keywords
"exception*": 30,
"*throw*": 19,
"error*": 16,
"*Exception": 10,
"fail*: 8,
"null": 6,
"*handl*": 5,
"catch*": 4,
"NPE": 4,
"stacktrace": 1,
"logging": 1,
"caught": 1,
"robustness": 1,
"crash": 1,
"Ensure": 1,

Composed Sentences Keywords
"null + check*"": 2,
"error + handl*": 2,
"should + fail": 1,
"shuts + down": 1,
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"error + code": 1,
"message + exception": 1,
"throw + exception": 1,
"chain + exception": 1,
"propagate + root + cause": 1,
"returning + validation + errors": 1,
"null + pointer + exception": 1,
"exception + handling": 1,
"handling + exception": 1
"does + not + handle": 1,
"avoid *Exception: 1

Performance

Single Keywords
"performance": 14,
"optimiz*": 11,
"*sych*": 4,
"benchmark": 3,
"memory": 2,
"lock": 2,
"parallel": 2,
lazy*: 2
"cpu": 2,
"inneficien*": 2,
"threadsafe": 1,
"sockets": 1,
"overhead": 1,
"stream: 1,
"loop": 1
"timeout": 1,
"fast": 1,
"hotspots": 1,
"expensive": 1,
"caching": 1,
"speed up": 1,
"buffer": 1,
"payload": 1,
"byte": 1,
"encoder": 1,
"costly": 1,
"cache": 1,
"pipeline": 1,
"session": 1,
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"allocation": 1,
"memorysaving": 1
"slower": 1

Composed Sentences Keywords
"multiple + beans": 1,
"time + improvement": 1,
"early + initialization": 1,
"interface + cache": 1,
"prevent + excessive + object + reallocations": 1,
"lazily + inititalize": 1,
"multiple + invocations": 1,
"called + just + once": 1,
"memorysaving": 1
"unnecessary + fetching": 1,
"reduce + allocations": 1,
"lazy + exceptions": 1,
"storing + unnecessary": 1,
"cpu + cycles": 1
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C.3
Developers’ Metrics

Aiming to investigate the developers’ characteristics, we computed met-
rics describing their repository activities and code quality. We computed the
metrics by gathering raw data through the GitHub API and performing ag-
gregations to compound more complex metrics. The complete list of metrics is
presented as follows.

– Number of PRs merged

– Number of PRs opened

– Number of PRs closed

– Mean time between merged PRs

– Number of Commits

– Average size of commits (Size in terms of source file)

– Number of commits with .XML files

– Number of commits with .Java files

– Number of reviews

– Number of lines revised

– Number of modules revised

– Number of refactorings

– Number of comments

– Mean time between developer comments

– Mean discussion duration (when the developer participates)

– Mean number of words from the developer’s messages on PR discussions

– Total number of words from the developer’s messages on PR discussions

– Experience in days (From the first contribution to the last)
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C.4
Developers’ Non-Functional Requirements Metrics

We identified 63 developers based on their participation in particular
tasks, allowing us to explore their individual characteristics.

participates_NFR: Number of times that the developer participates in a
discussion related to the NFR (e.g., participates_security: 10 means that
the developer participated in 10 discussions related to security).

opened_discussion_NFR: Number of times the developer opened discus-
sions related to the NFR.

commented_NFR: Number of times the developer commented on discus-
sions related to the NFR.

reviews_NFR: Number of times the developer reviewed source code on
discussions related to the NFR.

commited_NFR: Number of times the developer had committed to discus-
sions related to the NFR.

None indicates the number of times the developer did not participate
in any task related to the NFRs. All NFRs are the total sum for the tasks
regarding the four NFRs

We computed the quartiles for each metric and indicated whether the
developer was part of the high, low, or medium quartile. The never tag
is marked as True when the developer never performs the task for the
correspondent NFR. To exemplify, let us consider the following metrics:

" reviewed_robustness_high ": true ,

" reviewed_robustness_low ": false ,

" reviewed_robustness_medium ": false ,

" reviewed_robustness_never ": false

In this case, the developer had a high rate of reviews related to Robust-
ness compared to other developers in the same system.
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C.5
Non-Functional Requirements Sub-Categories

For each NFR used in this study, we subdivided them according to
the type of change that was mentioned in our dataset. That allowed us to
understand how many topics the pull requests title and descriptions could
address. Following we describe each sub-category.

Robustness

1. Error Representability: whether errors are properly represented/speci-
fied/thrown.

2. Error Propagation: whether the error is properly propagated by either
remapping to another error type or directly propagating to upper levels.

3. Error Recoverability: whether proper exception handling and clean-up
actions are executed after an exception is raised, and the program’s
normal behavior returns to a consistent/safe state after those actions
are executed.

Performance

1. Memory Usage: whether the change increased the memory usage on the
application.

2. Concurrency (Thread Sync): whether there was a change in the concur-
rency of the system by using threads.

3. Concurrency (Scheduling): whether there was a change in the concur-
rency of the system by using scheduling.

4. Response Time: whether the change increased (or decreased) the re-
sponse time (e.g., page loading).

5. Complexity: whether the change increased (or decreased) the computa-
tional complexity.

Security

1. Customize Parameters: whether the change allows configuring security
parameters.

2. Information Protection: whether the change avoids accessing encrypted
addresses.
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3. Support for New Feature: whether the change supports security features
(e.g., authentication mechanisms).

4. Inconsistent Behavior: whether the change fixes an inconsistent behavior
related to security.

Maintainability

1. Feature Enhancement: whether the change is related to improving the
system maintainability.

2. Code Simplification: whether the changes aim to simplify the code,
improving its readability.

3. Move Component: whether the change focuses on moving components
that could be highly coupled, hampering the maintainability.

4. Documentation: whether the change improves the software documenta-
tion.

5. Readability: whether the change improves the code readability.

6. Extensibility: whether the change improves the software extensibility.

7. Encapsulation: whether the change improves the modules’ encapsulation.

C.6
Survey

To answer How do developers perceive and address NFRs in their daily
work?, we conducted an opinion survey with 44 developers working with
multiple closed-source systems. The survey is composed of questions ranging
from the early stages of the software system to its continuous maintenance.
The survey questions are presented as follows:



Exploring Developers' Approach for
Dealing with Non-Functional
Requirements
Researchers: Anderson Oliveira, Alessandro Garcia, Caio Barbosa, Daniel Coutinho, 
João Correia, Juliana Alves Pereira, Paulo Vítor Libório, Rafael Maiani, Wesley KG 
Assunção

Objective:  The primary goal of this survey is to gain an understanding of your 
experiences and strategies when dealing with Non-Functional Requirements (NFRs) and 
engaging in discussions related to this kind of requirement during software development. 
By NFR, we refer to aspects of a software system that go beyond its primary 
functionalities. These requirements define how the system should behave in terms of 
performance, security, robustness, and other qualities essential for overall effectiveness 
and to ensure the system's longevity. By sharing your insights, you will contribute to 
enhancing the awareness and practices surrounding NFRs, ultimately aiding the 
development of tools and best practices that benefit the software development 
community. Your participation will help shed light on the significance of NFR discussions 
and their impact on project outcomes.   

Consent to Participation

1. I declare that I am over 18 years old and agree to participate in non-invasive studies 
conducted by researcher Anderson José Silva de Oliveira under the coordination of 
Prof Dr. Alessandro Garcia and Prof. Dr. Juliana Alves Pereira as part of the research 
carried out by the OPUS Research Group, belonging to PUC-Rio. This study aims to 
understand how developers deal with NFR discussions on their systems.

2. I understand that all responses are personal and based on my experience.

3. All information collected in this study is confidential. I understand that my name will 
not be identified at any time. There will be no attempt to identify who you are, and your 
details will be reported in a non-identifying form.

4. You may withdraw from participating in the research and withdraw your consent at 
any time.

For questions, doubts or complaints about the study, you can contact Anderson 
Oliveira: anderson.jose.so@gmail.com

* Indica uma pergunta obrigatória

Appendix C. Study on How Developers Discuss and Address NFRs 188



1.

Marcar apenas uma oval.

Yes Pular para a pergunta 2

No

Characterization

2.

3.

Marcar apenas uma oval.

Male

Female

Other

Prefer not to say

4.

Marcar apenas uma oval.

Outro:

High School

Bachelor

MBA

MSc.

PhD/DSc.

5.

Thanks in advance! Do you want to participate in this survey? *

Age *

Gender *

Higher academic degree *

Years of experience in software development *
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6.

7.

Marcar apenas uma oval.

Very Low

Low

High

Very High

8.

Marcar apenas uma oval.

Outro:

Software Developer

Software Engineer

Software Architect

Software Testing

Project Management

Requirement Analysis

Interface Design

Number of software development projects participated *

In your opinion, what is your experience level with software development?

Current role in your company: *
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9.

Outro:

Marque todas que se aplicam.

Java

Python

C

C#

C++

JavaScript

NFR Practices

10.

11.

Outro:

Marque todas que se aplicam.

Relevance to your area of expertise

Impact on software quality that you use

Alignment with project goals

Potential risks of NFRs are not addressed

Learning opportunity

Programming languages that you are proficient in *

2.1 Please describe occasions in which you were involved in discussions
about Non-Functional Requirements (NFRs) in software projects

*

2.2 What triggers you to actively collaborate with NFR-related discussions in
your projects? (Select all that apply)
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12.

Outro:

Marque todas que se aplicam.

Performance: Speed, responsiveness, and efficiency of the software.

Scalability: Ability to handle increased workload or user traffic.

Robustness: Ability of the software to recover in various conditions.

Availability: System uptime and accessibility for users.

Security: Measures to protect data and prevent unauthorized access.

Usability: User-friendliness and ease of interaction.

Maintainability: Ease of making updates and changes to the software.

13.

Marcar apenas uma oval.

Very Low

Low

High

Very High

14.

Outro:

Marque todas que se aplicam.

Requirements documentation

Chat platforms with the team (e.g., Teams, Slack, Discord)

Code comments

Discussions on version control platforms (e.g., issues and pull requests)

Meetings

With other (more experienced) colleagues

E-mail

2.3 Which NFR types do you typically discuss during software development *

2.4 What is your level of contribution to the NFRs elicitation and specification?

2.5 When dealing with problems related to NFRs, how do you access the
information necessary? (Select all that apply)

*
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