

DANIEL FERNANDES BOMFIMSILVA

AVALIAÇÃO DO IMPACTO DE RUÍDOS DE MEDIÇÃO E AUSÊNCIA DE DADOS NA CARACTERIZAÇÃO DE RESERVATÓRIOS

Projeto de Graduação

Projeto de Graduação apresentado ao Departamento de Engenharia Mecânica da PUC-Rio

> Orientador: Márcio da Silveira Carvalho Coorientador: Vinicius Mattoso Reis da Silva

Rio de Janeiro Dezembro de 2023

AGRADECIMENTOS

Quero expressar meus sinceros agradecimentos a todos que contribuíram para a conclusão deste trabalho de conclusão de curso. Primeiramente, gostaria de agradecer à minha família pelo constante apoio, incentivo e motivação ao longo dessa jornada acadêmica. Sem o amor e a compreensão de vocês, esta conquista não teria sido possível.

Ao meu orientador, Marcio carvalho, minha gratidão por sua orientação valiosa, dedicação e expertise.

Agradeço também ao meu coorientador, Vinicius Mattoso Reis da Silva, pela paciência incansável, suporte constante e valiosas contribuições para o aprimoramento deste trabalho. Sua orientação foi fundamental para a construção desse trabalho.

Agradeço a todos os professores e amigos que de alguma forma contribuíram para o meu crescimento acadêmico e pessoal ao longo deste período. Cada interação e aprendizado foram peças-chave para o meu desenvolvimento.

Por fim, agradeço a todos que, de alguma maneira, colaboraram para a realização deste trabalho. Esta conquista é fruto de um esforço coletivo, e estou profundamente grato por cada pessoa que fez parte dessa jornada.

RESUMO

AVALIAÇÃO DO IMPACTO DE RUÍDOS DE MEDIÇÃO E AUSÊNCIA DE DADOS NA CARACTERIZAÇÃO DE RESERVATÓRIOS

Uma precisa avaliação da porosidade e permeabilidade é fundamental na caracterização de reservatórios de petróleo, sendo essencial para a prever o comportamento futuro e orientar estratégias de produção. Este estudo utiliza o programa desenvolvido pelo grupo do laboratório de microfluídica e escoamento em meios porosos (LMMP) da PUC-Rio para avaliar o quão impactantes podem ser os dados ruidosos ou a falta de dados na caracterização de um reservatório de petróleo.

Este programa inicia simulando reservatórios de petróleo com base em dados desejados de porosidade e permeabilidade. Em seguida, introduz ruídos ou elimina parte dos dados, procedendo a resolver o problema inverso por meio do método ES-MDA, visando avaliar os impactos de dados ruidosos e da ausência de dados na caracterização de reservatórios.

Foram explorados três cenários distintos: um caso-base, utilizado como referência para comparação com os demais; um caso que envolve a introdução de ruído nos dados; e um caso que implica a remoção de dados. Para cada cenário, foram simulados dois reservatórios, um com propriedades convencionais e outro com características próximas às dos reservatórios do pré-sal..

Ao término do estudo, constatou-se que a exclusão de dados não influenciou na resolução do problema, ao passo que a introdução de ruídos resultou em um aumento proporcional do erro.

Palavras-chave

Permeabilidade; Problema inverso; Transiente; Porosidade; Ruídos de medição

ABSTRACT

EVALUATION OF THE IMPACT OF MEASUREMENT NOISE AND ABSENCE OF DATA ON RESERVOIR CHARACTERIZATION

A precise assessment of porosity and permeability is crucial in characterizing petroleum reservoirs, as it is essential for predicting future behavior and guiding production strategies. This study utilizes the program developed by the Microfluidics and Flow in Porous Media Laboratory (LMMP) at PUC-Rio to evaluate how impactful noisy data or the lack of data can be in characterizing a petroleum reservoir.

This program starts by simulating petroleum reservoirs based on desired porosity and permeability data. It then introduces noise or removes part of the data, proceeding to solve the inverse problem using the ES-MDA method to assess the impacts of noisy data and the absence of data in reservoir characterization.

Three distinct scenarios were explored: a baseline case, used as a reference for comparison with others; a case involving the introduction of noise into the data; and a case implying data removal. For each scenario, two reservoirs were simulated, one with conventional properties and another with characteristics close to those of pre-salt reservoirs.

At the end of the study, it was found that data exclusion did not influence problem resolution, whereas the introduction of noise resulted in a proportional increase in error.

Keywords

Permeability; Inverse problem; Transient; Porosity; Noise

LISTA DE FIGURAS

	11
FIGURA 1-1: CONSUMO DE DIFERENTES TIPOS DE ENERGIA	14
FIGURA 1-2: HISTORICO DE PRODUÇÃO DE PETROLEO.	15
FIGURA 1-3: HISTORICO DE PREÇOS DO BARRIL DE PETROLEO	15
FIGURA 2-1: MODELO DE SISTEMA DE MONITORAMENTO PERMANENTE DE FUNDO DE POÇO [1]	24
FIGURA 2-2: ESQUEMA DO PROBLEMA DIRETO	27
FIGURA 2-3: ESQUEMA DO PROBLEMA INVERSO	28
FIGURA 4-1: DIAGRAMA COM AS ETAPAS REALIZADAS DURANTE O ESTUDO	37
FIGURA 4-2: ESQUEMA DO RESERVATÓRIO 1	39
FIGURA 4-3: ESQUEMA DO RESERVATÓRIO 2	39
FIGURA 5-1: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 1	44
FIGURA 5-2: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 4	44
FIGURA 5-3: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE.	45
FIGURA 5-4: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇ	Ã0 45
FIGURA 5-5: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇ	
4	46
FIGURA 5-6: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	46
FIGURA 5-7: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 1	47
FIGURA 5-8: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 4	48
FIGURA 5-9: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	48
FIGURA 5-10: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,	
ITERAÇÃO 1	49
FIGURA 5-11: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. NA CAMADA L2.	
ITERAÇÃO 4	49
FIGURA 5-12: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. NA CAMADA 12.	
	50
Είςμενα 5-13: Ομενας το Pressão Ortidas através da resolucião do proriema no reservatório 1, na camada 11, itera	
1	50
Ι Είςμα 5-14: ζυρίλας σε Dressão Ortidas ατραλιές σα ρεσομμέδο σο αρορμένα νιο ρεσεριλατόριο 1, Να σανασα 11, μτερα	
FIGURA 3-14. CURVAS DE FRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMIA NO RESERVATORIO 1, NA CAMIADA LI, TIERA	IÇAU E 1
4	51
FIGURA 5-15: CURVAS DE PRESSAU OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA LI,	۲1
UTILIZANDO VALORES MAXIMOS E MINIMOS DE PERMEABILIDADE	51
FIGURA 5-16: CURVAS DE PRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L2, ITERA	¢AO
	52
FIGURA 5-17: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERA	ιÇÃΟ
4	52
FIGURA 5-18: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	53
FIGURA 5-19: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	,
ITERAÇÃO 1	55
FIGURA 5-20: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	,
ITERAÇÃO 4	55

FIGURA 5-21: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	56
FIGURA 5-22: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇ	ÃO
1	56
FIGURA 5-23: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇ	ÃO
4	57
FIGURA 5-24: CURVAS DE PRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1,	
	57
FIGURA 5-25: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1,	- 0
	58
FIGURA 5-26: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1,	- 0
ITERAÇÃO 4	59
FIGURA 5-27: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1,	
	59 ~
FIGURA 5-28: CURVAS DE PRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1, ITERAÇ	AO
1	60 ~
FIGURA 5-29: CURVAS DE PRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1, ITERAÇ 4	ао 60
FIGURA 5-30: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	61
FIGURA 5-31: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 1	62
FIGURA 5-32: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. NA CAMADA L1.	-
ITERAÇÃO 4	63
FIGURA 5-33: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	63
FIGURA 5-34: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇ	ÃO
1	64
FIGURA 5-35: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇ	ÃO
4	64
FIGURA 5-36: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	65
FIGURA 5-37: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 1	67
FIGURA 5-38: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	67
	07
FIGURA 5-39: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1,	67
UTILIZANDO VALORES MAXIMOS E MINIMOS DE PERMEABILIDADE	07
FIGURA 5-40: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L2,	<u> </u>
	68
FIGURA 5-41: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L2,	~~
	68
FIGURA 5-42: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L2,	~~
	69 7 -
FIGURA 5-43: CURVAS DE PRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1, ITERAÇ	A0 60
Τ FIGURA 5-44: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. ΝΑ CAMADA I 1. ITERAC	Ã٥
4	70
FIGURA 5-45: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. ΝΑ CAMADA L1	. 0
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE	70
FIGURA 5-46: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBI FMA NO RESERVATÓRIO 1. NA CAMADA I 2. ITERAC	ÃO
1	71

FIGURA 5-47: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 4
FIGURA 5-48: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,
FIGURA 5-73: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 1
FIGURA 5-74: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 4
FIGURA 5-75: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
FIGURA 5-76: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 1
FIGURA 5-77: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 4
FIGURA 5-78: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
FIGURA 5-79: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 1
FIGURA 5-80: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 4
FIGURA 5-81: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
FIGURA 5-82: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 1
FIGURA 5-83: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 4
FIGURA 5-84: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
FIGURA 5-49: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 1
FIGURA 5-50: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 4
FIGURA 5-51: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,
FIGURA 5-52: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,
FIGURA 5-53: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 4
FIGURA 5-54: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
FIGURA 5-55: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO
FIGURA 5-56: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 4
FIGURA 5-57: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,
FIGURA 5-58: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 1
FIGURA 5-59: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 4
FIGURA 5-60: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE

FIGURA 5-61: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 1
FIGURA 5-62: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,
ITERAÇÃO 4
FIGURA 5-63: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
Είςμεια 5-64: Curvas de Temperatura ortidas através da resolução do problema no reservatório 1, na camada 12
FIGURA 5-65: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,
ITERAÇÃO 4
FIGURA 5-66: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,
UTILIZANDO VALORES MÁXIMOS E MÍNIMOS DE PERMEABILIDADE
FIGURA 5-67: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO 1
FIGURA 5-68: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO
4
Είσιμα 5-69: Curvas de Pressão ortidas através da resolução do problema no reservatório 1, na camada 11
1
FIGURA 5-71: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO 4
FIGURA 5-72: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. NA CAMADA 12
ΓΙΩΙΙΔΑ 5-85: ΓΙΙΔΥΛΑΣ DE PRESSÃO OBTIDAS ΑΤΡΑΥΤΈΧ DA RESOLUÇÃO DO DROBLEMA NO RESERVATÓRIO 1 ΝΑ CAMADA 11 ΙΤΕΡΑCÃO
4
FIGURA 5-86: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,
ITERAÇÃO 4
FIGURA 5-87: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO
4
FIGURA 5-88: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,
ITERAÇÃO 4
FIGURA 5-89: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1. NA CAMADA L1.
ITERAÇÃO 4
Είςμεια 5-90. Curvas de Pressão obtidas através da resoluição do problema no reservatório 1, na camada 11, iteração
4
FIGURA 5-91. CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L1,
FIGURA 5-92: CURVAS DE TEMPERATURA OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L2,
ITERAÇÃO 4
FIGURA 5-93: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1, ITERAÇÃO
4
FIGURA 5-94: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2, ITERAÇÃO
4
FIGURA 5-96: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,
ΤΕΙΝΙΩΤΟ Τ
TIGONA J JJ. CONVAJ DE TEIVIFENATONA OBTIDAS ATNAVES DA RESOLUÇÃO DO PROBLEIVIA NO RESERVATORIO I, NA CAMADA EL,
rigura 5-98: CURVAS DE PRESSAO OBTIDAS ATRAVES DA RESOLUÇÃO DO PROBLEMA NO RESERVATORIO 1, NA CAMADA L2, ITERAÇÃO Δ
ΕΙGLIRA 5-99. ΓΙΙΡΙΛΑς ΔΕ ΡΕΕςςÃΟ ΟΒΤΙΠΑς ΑΤΡΑΝΕΊς ΝΑ ΡΕςΟΙ ΙΓΓÃΟ ΝΟ ΦΟΟΕΙ ΕΜΑ ΝΟ ΡΕςΕΡΙΛΑΤΌΡΙΟ 1 ΝΑ ΟΛΜΑΝΑ 11 ΙΤΕΡΑΟΘΟ
A A A A A A A A A A A A A A A A A A A

FIGURA 5-100: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1	,
ITERAÇÃO 4	102
FIGURA 5-101: CURVAS DE TEMPERATURA OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2	,
ITERAÇÃO 4	102
FIGURA 5-102: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L1,	
ITERAÇÃO 4 1	103
FIGURA 5-103: CURVAS DE PRESSÃO OBTIDAS ATRAVÉS DA RESOLUÇÃO DO PROBLEMA NO RESERVATÓRIO 1, NA CAMADA L2,	
ITERAÇÃO 4 1	103

LISTA DE TABELAS

TABELA 4-1: VALORES DE RUIDO NA PRESSÃO E TEMPERATURA	
TABELA 5-1: CASO BASE RESERVATÓRIO 1	43
TABELA 5-2: CASO BASE RESERVATÓRIO 2	
TABELA 5-3: CASO 1 RUÍDO REFERÊNCIA RESERVATÓRIO 1	54
TABELA 5-4: CASO 1 RUÍDO 10x RESERVATÓRIO 1	58
TABELA 5-5: CASO 1 RUÍDO PRESSÃO 10x RESERVATÓRIO 1	62
TABELA 5-6: CASO 1 RUÍDO TEMPERATURA 10x RESERVATÓRIO 1	65
TABELA 5-7: CASO 1 RUÍDO REFERÊNCIA RESERVATÓRIO 2	66
TABELA 5-8: CASO 1 Ruído 10x Reservatório 2	72
TABELA 5-9: CASO 1 RUÍDO PRESSÃO 10x RESERVATÓRIO 2	79
TABELA 5-10: CASO 1 RUÍDO TEMPERATURA 10x RESERVATÓRIO 2	85
TABELA 5-11: PERDA SINAL 50 PONTOS RESERVATÓRIO 1	92
TABELA 5-14: Perda sinal 120 pontos reservatório 1	93
TABELA 5-13 PERDA DE SINAL 50 PONTOS E RUIDO INSERIDO RESERVATÓRIO 1	95
Tabela 5-12: Perda sinal 50 pontos reservatório 2	96
TABELA 5-13: PERDA DE SINAL 120 PONTOS RESERVATÓRIO 2	
TABELA 5-13: PERDA DE SINAL 50 PONTOS E RUIDO INSERIDO RESERVATÓRIO 2	

SIMBOLOGIA

- C_t compressibilidade
- δ Rugosidade
- εJT coeficiente de Joule-Thompson
- porosidade efetiva
- ρ Densidade
- θ constante discreta de tempo
- µ Viscosidade
- v viscosidade cinemática
- λe condutividade térmica na terra
- BHP Bottom hole pressure
- BHT Bottom hole temperature
- C Compressibilidade
- Cp Capacidade térmica
- D Diâmetro interno tubo
- EnKF Ensemble Kalman Filter
- ES Ensemble Smoother
- ES MDA Ensemble Smoother with Multiple Data Assimilation
- H comprimento total do poco
- KF Kalman Filter
- Q Vazão
- Re Numero de Reynolds
- T Temperatura, K
- U Energia Interna
- g aceleração da gravidade
- h Entalpia
- p Pressão
- v vetor velocidade
- JT Joule-Thompson

Subscritos

i condição inicial

o Óleo

r Rocha

t Total

w água

e termo de fonte de energia

wb poço

SUMÁRIO

1	1 INTRODUÇÃO	
	1.1 RELEVANCIA DO PETROLEO 1.2 RELEVÂNCIA FINANCEIRA DO PETRÓLEO (SÉRIE HI	
	 1.3 IMPORTANCIA E CARACTERIZAÇÃO DE RESERVATÓ 1.4 NECESSIDADE DE UM SENSOREAMENTO MAIS EFE 17 	ORIOS DO PRE SAL 16 TIVO NO SISTEMA DE PRODUÇAO
	1.5 ERROS E RUIDOS DAS TECNOLOGIAS PARA A CARA	CTERIZAÇÃO 17
	1.6 OBJETIVOS DO TRABALHO	
	1.7 DESCRICAO DOS CAPITULOS	
2	2 FUNDAMENTAÇÃO TEORICA	
	2.1 RESERVATÓRIOS	
	2.2 CARACTERIZAÇÃO DO RESERVATÓRIO	
	2.2.1 PERMEABILIDADE	
	2.2.2 POROSIDADE	
	2.2.3 CARACTERIZAÇÃO DOS RESERVATORIOS DO	PRE-SAL
	2.3 AQUISIÇÃO DE DADOS	
	2.4. SIMULADOR DE FLUXO	
	2.4 1 PROBI FMA DIRETO	20
	2.4.2 PROBLEMA INVERSO	
3	3 MODELO MATEMATICO	
	3.1 PROBLEMA DIRETO	30
	3.1.1 EQUAÇÕES DE CONSERVAÇÃO DE MASSA	
	3.1.2 EQUAÇÕES DE CONSERVAÇÃO DE ENERGIA	
	3.1.3 EQUAÇÕES DE CONSERVAÇÃO DE QUANTIDA	DE DE MOVIMENTO
	3.2 PROBLEMA INVERSO	
4	4 METODOLOGIA	
	4.1 SIMULAÇÃO DOS RESERVATÓRIOS	
	4.2 ALTERAÇÃO DOS DADOS	
	4.3 RESOLUÇÃO DO PROBLEMA INVERSO	
	4.4 CASO 1 – EFEITO DO RUÍDO NA CARACTERIZAÇÃO	
	4.5 CASO 2 – EFEITO DA FALTA DE DADOS NA CARACTERIZAÇÃO	
5	5 RESULTADOS	
	5.1 EXPLICAÇÃO DOS GRÁFICOS E TABELAS	
	5.1 ANÁLISE DOS RESULTADOS	
6	6 CONCLUSÃO	

1 INTRODUÇÃO

Nessa seção será apresentada a motivação do trabalho, assim com a sua relevância, os objetivos e a estrutura do trabalho

1.1 RELEVANCIA DO PETROLEO

A indústria de petróleo e gás desempenha um papel fundamental na economia global, fornecendo uma fonte crucial de energia. Segundo o relatório fornecido pela British Petroleum (BP), BP Sustainability Report 2016 [6], até o ano de 2035 as previsões são de que essa indústria ainda represente mais da metade do consumo energético mundial.

A imagem abaixo, retirada do relatório, mostra os percentuais de consumo de cada fonte energética previstos para 2035 para três possíveis cenários de consumo de energia, assim como o percentual do ano de 2015 para comparação. Segundo o Instituto Brasileiro de Petróleo e Gás (IBP, 2022) [20], 46% da oferta interna de energia do país é originária do setor de óleo e gás. De acordo com o Boletim da Produção de Petróleo e Gás Natural, divulgado pela ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis) em março de 2022, essa produção é decorrente de 6.143 poços (466 marítimos e 5.677 terrestres).

Fonte - https://www.epe.gov.br/pt/abcdenergia/matriz-energetica-e-eletrica

Figura 1-1: Consumo de diferentes tipos de energia

1.2 Relevância financeira do petróleo (Série histórica)

O petróleo não só ocupa grande parte do setor energético como também apresenta relevância econômica significativa. A partir do gráfico de histórico de produção de petróleo dos meses de janeiro e do gráfico de histórico de preços por barril é possível calcular a receita aproximada de cada mês.

Figura 1-2: Histórico de produção de petróleo

Fonte:<u>https://www.indexmundi.com/pt/pre%E7os-de-mercado/?mercadoria=petróleo-bruto&meses=120</u> Figura 1-3: Histórico de preços do barril de petróleo

De acordo com a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), a produção de petróleo brasileira foi de 3,274 milhões de bbl/d (milhões de

barris por dia). no mês de janeiro de 2023. Considerando o preço do barril de US\$80,25 pode-se obter uma receita aproximada de 272,74 milhões de dólares americanos.

Segundo o IBGE (Instituto Brasileiro de Geografia e Estatística), Atualmente o petróleo representa 13% do PIB brasileiro. Sendo assim, ele tem um grande impacto na economia brasileira.

1.3 IMPORTANCIA E CARACTERIZAÇÃO DE RESERVATÓRIOS DO PRE SAL

Conforme dados divulgados pelo boletim da Produção de Petróleo e Gás natural da ANP novembro de 2023 [7], 77% da produção de óleo brasileira foi realizada nos campos do pré-sal.

Os campos do pré-sal apresentam características únicas que os diferenciam de outros campos de petróleo e gás. Esses reservatórios normalmente são compostos por multicamadas geológicas sobrepostas, adicionando complexidade à sua caracterização e exploração. Além das dificuldades impostas pelas multicamadas ainda pode se destacar a presença de camadas de alta permeabilidade. Essas camadas são conhecidas como "Super K" e exercem grande influência no regime de fluxo do reservatório uma vez que essas camadas possuem uma maior facilidade ao escoamento.

A alta heterogeneidade é uma marca distintiva desses reservatórios, refletida em variações notáveis nas propriedades do subsolo, como porosidade e permeabilidade. A complexidade geológica, aliada a logística necessária para operar em águas profundas e longe da costa, adiciona desafios significativos as operações de exploração e produção nos campos do pré-sal. Os fatores mencionados aumentam consideravelmente os desafios associados a caracterização das propriedades do poco e do reservatório para a criação de modelos computacionais fidedignos e a simulação dos mesmos. Informações a respeito da caracterização do sistema assim como ,modelos computacionais apropriados são essenciais para as fases iniciais da exploração e para as fases de gerenciamento da produção.

Para enfrentar esses desafios são desenvolvidos simuladores e softwares de otimização, para consumir os dados disponíveis e assim conseguir dar suporte no processo de caracterização do sistema e auxiliar na estimativa de vazão de cada camada produtora, a fim de proporcionar um melhor gerenciamento da produção.

1.4 NECESSIDADE DE UM SENSOREAMENTO MAIS EFETIVO NO SISTEMA DE PRODUÇAO

Para impulsionar o desenvolvimento de novos simuladores, é crucial ter acesso a uma gama mais ampla de informações durante os diversos estágios de produção. Uma estratégia adotada para fornecer dados adicionais e aprimorar o controle de produção é a implementação de completações inteligentes nos poços. Esse tipo de configuração possibilita a medição de pressão e temperatura em múltiplos pontos do poço, além de oferecer um controle mais preciso das válvulas de produção. Esses dados sobre variações de pressão e temperatura permitem calibrar os modelos que representam o campo. Com modelos mais precisos, é viável realizar uma gestão mais eficiente da produção.

1.5 ERROS E RUIDOS DAS TECNOLOGIAS PARA A CARACTERIZAÇÃO

Entretanto, apesar dos avanços tecnológicos na utilização de sensores de temperatura e pressão para a medição e controle do fluxo nos poços, há desafios inerentes relacionados à precisão das medições devido a uma grande variedade de fatores que podem gerar ruídos nas medições.. Entre eles podem destacar-se as variações nas condições do poço, complexidade dos reservatórios, desgaste dos sensores ao longo do tempo e interferências externas, podendo gerar ruídos na medição . Para além dos ruídos na medição, há o risco de desconexão dos sensores de medição ou até mesmo o congelamento do sinal, o que pode resultar na perda de informações essenciais.

1.6 OBJETIVOS DO TRABALHO

Tendo em vista os assuntos abordados, nas subseções anteriores, o presente estudo visa empregar um simulador de fluxo para auxiliar no processo de caracterização de um reservatório multicamadas. Esse processo é um típico problema inverso que visa avaliar o impacto na caracterização do reservatório, quando os dados medidos estão expostos a diferentes magnitudes de erros de medição assim como possíveis ausências de dados.

1.7 DESCRICAO DOS CAPITULOS

O restante desse trabalho será organizado da seguinte forma:

O capítulo 2, Fundamentação teórica, trata dos princípios fundamentais que precisam ser compreendidos para entendimento do estudo desenvolvido.

O capítulo 3, Modelo matemático, desenvolve especificamente as fórmulas matemáticas utilizadas nos cálculos de problema inverso e problema direto do simulador de fluxo.

O capítulo 4, Metodologia, explica a maneira como este trabalho foi conduzido

O capítulo 5, Resultados, mostra as rodadas do programa do simulador de fluxo e os resultados obtidos para os diversos casos

O capítulo 6, Conclusão, apresenta as conclusões do trabalho.

2 FUNDAMENTAÇÃO TEORICA

Dentro do escopo deste capítulo, serão explorados e analisados diversos princípios fundamentais, cujo entendimento se revela imprescindível para uma apreciação abrangente do estudo que está sendo conduzido.

2.1 RESERVATÓRIOS

A Caracterização de reservatórios é uma tarefa muito importante para o setor de óleo e gás. Um reservatório de petróleo é uma formação geológica subterrânea que contém uma acumulação significativa de petróleo bruto. Esses reservatórios são constituídos por rochas porosas e permeáveis, nas quais o petróleo é armazenado em suas cavidades porosas.

A formação de um reservatório de petróleo envolve um processo geológico complexo que começa com a acumulação de matéria orgânica ao longo de milhões de anos. À medida que camadas de sedimentos se acumulam sobre essa matéria orgânica, a pressão e a temperatura aumentam, resultando na transformação da matéria orgânica em petróleo e gás natural por meio de um processo chamado de maturação orgânica.

Quando a pressão e a temperatura são adequadas e há a presença de rochas reservatórias porosas e impermeáveis, o petróleo migra de sua fonte para o reservatório, onde fica armazenado.

Os reservatórios do pré-sal referem-se a extensas camadas de rochas localizadas abaixo do leito do oceano, em águas profundas na costa brasileira. Esses depósitos de petróleo e gás são denominados "pré-sal" devido à sua posição geológica abaixo de espessas camadas de sal, e sua exploração demanda tecnologias avançadas devido à profundidade e complexidade do ambiente submarino.

Essa formação, encontrada principalmente nas Bacias de Santos, Campos e Espírito Santo, tem transformado o Brasil em um importante protagonista na indústria petrolífera global. Os reservatórios do pré-sal são notáveis não apenas por sua abundância em recursos energéticos, mas também pelos desafios técnicos envolvidos na extração, marcando uma fase significativa no desenvolvimento econômico e energético do país.

2.2 CARACTERIZAÇÃO DO RESERVATÓRIO

A caracterização de um reservatório é um processo que envolve a coleta e análise de dados para compreender as propriedades geológicas, físicas e fluidodinâmicas do subsolo onde os recursos são armazenados. Isso inclui a avaliação da porosidade e permeabilidade da rocha, a composição dos fluidos presentes (como óleo e gás), a distribuição e movimentação desses fluidos, além de fatores dinâmicos como a pressão do reservatório.

Com uma boa caracterização do reservatório, é possível gerar modelos computacionais semelhantes ao reservatório, que permitem prever o comportamento futuro, orientando estratégias eficientes de produção e recuperação de recursos, e é fundamental para a tomada de decisões informadas na indústria de exploração e produção.

2.2.1 PERMEABILIDADE

A permeabilidade de um reservatório de petróleo é uma característica fundamental que se refere à capacidade das rochas reservatórias subterrâneas de permitir o fluxo de fluidos, como petróleo, gás e água, através delas. Em outras palavras, a permeabilidade mede a facilidade com que os fluidos podem se deslocar nas rochas que compõem o reservatório.

Essa propriedade é expressa em unidades de Darcy (D), sendo um Darcy equivalente a 0,987.10⁻¹² m². Quanto maior a permeabilidade, mais fácil é para os fluidos fluírem pelas rochas. Por outro lado, uma permeabilidade baixa indica que o movimento dos fluidos é restrito, o que pode afetar a eficiência da extração de petróleo e gás do reservatório.

Vários fatores influenciam a permeabilidade das rochas, incluindo o tamanho e a forma dos poros, a conectividade entre os poros, o estado de saturação (se a rocha está saturada com petróleo, gás ou água) e a compressibilidade da rocha sob pressão. Por exemplo, rochas com poros maiores tendem a ter maior permeabilidade, desde que esses poros estejam interligados. Além disso, a forma regular dos poros pode facilitar o fluxo dos fluidos. A permeabilidade não é uma propriedade fixa e pode variar ao longo do tempo, principalmente devido à alteração da pressão no reservatório. À medida que a pressão aumenta ou diminui, a permeabilidade pode ser afetada. Isso é particularmente importante durante a produção de petróleo e gás, quando a pressão do reservatório pode ser manipulada para otimizar a extração.

Para determinar a permeabilidade de um reservatório, os geólogos e engenheiros de petróleo realizam testes de núcleos de rocha coletados de poços de petróleo, conduzem testes de poços (*well tests*) para fazer a caracterização de propriedades do reservatório a partir de uma produção controlada e utilizam simulações numéricas para modelar o fluxo de fluidos no subsolo.

A determinação da permeabilidade é essencial para o planejamento e operação eficaz de poços de petróleo e gás, permitindo estimar a taxa de produção, otimizar a injeção de fluidos para aumentar a produção e tomar decisões estratégicas durante a exploração e produção de recursos energéticos.

2.2.2 POROSIDADE

A porosidade, em geologia de petróleo, é um parâmetro fundamental das rochas reservatórias, referindo-se à fração de espaço vazio (poros) em uma rocha em relação ao seu volume total. Ela é expressa como uma porcentagem, indicando a quantidade de espaço vazio em relação ao volume total da rocha.

Para calcular a porosidade (φ), utiliza-se a seguinte fórmula:

$$\varphi = \frac{V_p}{V_t} .100\%$$
 (Equação 2-1)

Onde:

 ϕ representa a porosidade em porcentagem.

V_p é o volume dos poros na rocha.

Vt é o volume total da rocha.

O cálculo da porosidade envolve diversas etapas. Inicialmente, é necessário medir o volume total da amostra de rocha (Vt), podendo esse procedimento ser conduzido por meio de medições laboratoriais precisas ou utilizando dimensões conhecidas da própria amostra.

Em seguida, é crucial determinar o volume dos poros (Vp) presentes na amostra de rocha. Esse processo normalmente é realizado por meio de testes laboratoriais específicos, que quantificam de maneira precisa o espaço vazio contido na estrutura da rocha.

Com os valores de Vt e Vp em mãos, aplica-se a fórmula dedicada ao cálculo da porosidade (φ).

Dessa forma, esse conjunto de procedimentos proporciona uma avaliação quantitativa da porosidade da amostra de rocha, contribuindo para uma compreensão mais abrangente das suas características físicas.

2.2.3 CARACTERIZAÇÃO DOS RESERVATÓRIOS DO PRÉ-SAL

A exploração dos reservatórios de petróleo no pré-sal destaca-se por suas características geológicas e físicas singulares, demandando uma caracterização minuciosa para otimizar as operações de perfuração e produção.

Os reservatórios do pré-sal, encontrados em profundidades superiores a 2.000 metros abaixo da superfície do mar, são predominantemente compostos por rochas carbonáticas, como calcário e dolomita. Essas formações rochosas apresentam uma complexidade notável na variabilidade da porosidade, determinante para a capacidade de armazenamento de petróleo e gás, e na permeabilidade, que influencia a movimentação dos fluidos no reservatório.

A profundidade extrema do pré-sal impõe condições de alta pressão e temperatura. À medida que as perfurações atingem maiores profundidades, a pressão aumenta, enquanto a temperatura elevada impacta as propriedades dos fluidos presentes nos reservatórios. Essas condições extremas exigem tecnologias avançadas para garantir a segurança e eficiência das operações de exploração e produção.

A porosidade e permeabilidade variáveis são características distintivas dos reservatórios do pré-sal, resultantes da heterogeneidade das rochas. Essas propriedades influenciam diretamente a capacidade de produção, tornando essencial o uso de técnicas avançadas de modelagem para compreender e otimizar a movimentação dos fluidos no reservatório.

A presença de várias camadas estratigráficas é outra característica notável do pré-sal. Cada camada apresenta suas próprias características geológicas e potencial de produção, exigindo uma identificação precisa para o planejamento estratégico de perfuração e produção, visando maximizar a recuperação de hidrocarbonetos.

Adicionalmente, a existência de zonas de alta permeabilidade, conhecidas como "Super K," dentro dos reservatórios do pré-sal, cria desafios adicionais. Essas áreas de alta permeabilidade podem formar canais preferenciais para o fluxo de fluidos, impactando a distribuição da produção.

2.3 AQUISIÇÃO DE DADOS

A fim de obter uma caracterização do reservatório em tempo real há necessidade de realizar o monitoramento contínuo, que fornece dados detalhados em tempo real sobre variáveis-chave, como pressão, temperatura e composição do fluido, sendo fundamental para entender como as propriedades do subsolo e as características do fluido se alteram durante a produção.

Com isso é possível detectar imediatamente anomalias no comportamento de cada camada, identificar potenciais vazamentos ou alterações e utilizando as informações tomar as medidas necessárias como ajustar a quantidade de água ou gás injetado por camada ou parar a produção no caso de algum problema.

A aquisição de dados para medição da pressão, temperatura e em alguns casos a vazão de produção, são obtidas através de um dispositivo instalado no poço chamado PDG (*Permanent Downhole Gauge*).

Figura 2-1: Modelo de sistema de monitoramento permanente de fundo de poço [1]

A Figura 2-1 foi retirada de HE et al., 2020, p. 1105. [1] representando onde são realizadas as medidas de pressão e temperatura de cada camada.

Inicialmente utilizado para o monitoramento da produção, o PDG, passou a ser utilizado para caracterização do reservatório ao redor do poço (TIAN, 2017) [2] .Seu uso fornece informações de pressão e temperatura de cada camada do reservatório ao qual o poço está acoplado.

2.3.1 ERROS DE MEDIÇÃO

As medições de pressão e temperatura realizadas pelos PDGs no pré-sal podem ser influenciadas por diversos fatores. É importante considerar as condições desafiadoras do ambiente submarino do pré-sal ao avaliar a precisão e confiabilidade dessas medições. Alguns dos fatores que podem afetar as medições de pressão e temperatura pelos PDGs incluem:

Profundidade do reservatório: O pré-sal caracteriza-se por reservatórios localizados em grandes profundidades abaixo da superfície do oceano. A pressão aumenta significativamente com a profundidade, e é crucial que os PDGs sejam

capazes de suportar e medir com precisão as condições extremas associadas a essas profundidades.

Temperatura Elevada: As altas temperaturas encontradas nas camadas profundas do pré-sal podem afetar a precisão dos sensores de temperatura dos PDGs. É fundamental que esses dispositivos sejam capazes de suportar e compensar variações térmicas para fornecer medições precisas.

Salinidade da Água do Mar: O pré-sal está localizado em uma região onde a salinidade da água do mar pode ser elevada. A presença de sal pode influenciar as propriedades do fluido e pode ser um desafio para as medições precisas de pressão e temperatura.

Deslocamento Vertical: As condições de alta pressão e as características geológicas do pré-sal podem levar a movimentos verticais do solo marinho. Isso pode impactar a posição dos PDGs, afetando as medições de pressão e temperatura.

Interação com Fluidos Produzidos: A extração de petróleo e gás do pré-sal envolve a produção de fluidos complexos. A interação entre os fluidos produzidos e os sensores dos PDGs pode influenciar as medições. Contaminação ou mudanças na composição do fluido podem afetar a precisão das leituras.

Desgaste e Corrosão: As condições ambientais adversas, como a salinidade e a presença de hidrocarbonetos, podem levar ao desgaste e à corrosão dos PDGs ao longo do tempo. Isso pode comprometer a integridade dos dispositivos e afetar a precisão das medições.

Incertezas Geológicas: As incertezas relacionadas às características geológicas do pré-sal também podem influenciar as condições de pressão e temperatura. Variações na permeabilidade e na porosidade do reservatório podem impactar as medições.

Considerando todos esses fatores, pode-se assumir que sempre haverá a presença de ruído nos valores obtidos. Além disso, os sensores utilizados ,podem apresentar perda de dados durante um período de tempo. Logo, os modelos matemáticos do reservatório sempre considerar uma margem de confiabilidade para os valores obtidos.

2.3.2 COMPLETAÇÃO INTELIGENTE

A completação inteligente é um conjunto de processos e técnicas que permite a monitoração e controle, em tempo real e de forma automatizada, de diferentes zonas produtoras ou injetoras atuantes no poço de forma independente.

Dados defeituosos podem ter uma grande influência negativa nesses processos, logo além de sensores de última geração é recomendado fazer uma análise prévia de como os dados defeituosos podem estar afetando a produção.

2.4 SIMULADOR DE FLUXO

Este estudo utiliza o programa desenvolvido pelo grupo do laboratório de microfluidica e escoamento em meios porosos (LMMP) da PUC-Rio para avaliar o quão impactantes podem ser esses dados defeituosos.

O programa, utilizado nesse trabalho tem 2 funções principais: simulação de reservatório através do problema direto e resolução do problema inverso através do ES-MDA.

Além dessas duas funções foi adicionado ao software a capacidade de inserir ruídos e de eliminar uma quantidade predefinida de dados gerados pela simulação inicial.

2.4.1 PROBLEMA DIRETO

Dentro da perspectiva do problema direto, às propriedades físicas do sistema (conhecidas como parâmetros do sistema ou modelo) são previamente fornecidas a um modelo matemático está à disposição para calcular a resposta do sistema a um estímulo conhecido. Esse modelo matemático é composto de equações diferenciais assim como as condições iniciais e de contorno necessária para resolver o equacionamento,

No presente trabalho, foi utilizado o método das diferenças finitas para resolver o modelo matemático. Este método consiste em uma técnica numérica que visa solucionar equações diferenciais, em particular, as equações diferenciais parciais, por meio da subdivisão do domínio em uma grade discreta. A aproximação das derivadas

ocorre por meio de diferenças finitas, resultando em equações de diferenças. Essas equações são então resolvidas numericamente, considerando as condições de contorno e, em problemas que envolvem evolução temporal, a atualização da solução ao longo do tempo.

Figura 2-2: esquema do problema direto

2.4.2 PROBLEMA INVERSO

De acordo com Engl et al. (1996) [8] : " Resolver um problema inverso é determinar causas desconhecidas a partir de efeitos desejados ou observados".

Um problema inverso, em vez de prever o resultado com base nas condições iniciais, o problema inverso envolve a determinação dos parâmetros do problema com base no resultado observado. Este conceito desempenha um papel crucial na pesquisa em análise, onde enfrentamos o desafio de estimar os parâmetros associados a um reservatório. O objetivo é aprimorar a coerência entre os dados observados e as estimativas das incertezas associadas a cada parâmetro previsto.

Um problema de caracterização de reservatórios abordado esse estudo é um exemplo típico de problema inverso, pois na caracterização se deseja determinar as propriedades do reservatório se baseando nas respostas do reservatório observado.

A Figura 2-3 abaixo representa um esquema da solução do problema inverso.

Figura 2-3: esquema do problema inverso

Existem duas formas de abordar um problema inverso. Pode-se utilizar uma abordagem determinística ou uma abordagem não determinística. Nesse trabalho a segunda abordagem foi utilizada visando fornecer uma faixa de valores plausíveis para os valores estimados. Dentre os diferentes métodos disponíveis para essa abordagem não determinística, esse trabalho utilizou o método do ES-MDA que é baseado no filtro de Kalman.

FILTRO DE KALMAN e ES-MDA

O filtro de Kalman é um algoritmo de estimativa utilizado para estimar o estado de um sistema dinâmico a partir de uma série de medições sujeitas a ruídos. Ele foi proposto por KALMAN (1960). Há diversos métodos que aplicam variações do filtro de Kalman, dentre eles temos, Ensemble Kalman filter - EnKF, Ensemble Smoother - ES e Ensemble Smoother with Multiple Data Assimilation - ES-MDA. Nesse estudo apenas o ES-MDA será utilizado.

O Ensemble Smoother with Multiple Data Assimilation (ES-MDA) é uma abordagem não determinística ou estatística utilizada na estimativa do estado de sistemas complexos, como reservatórios de petróleo e sistemas caracterizados por múltiplas variáveis e fontes de incerteza. Este método opera de maneira iterativa, conduzindo várias iterações para aprimorar a precisão das estimativas do estado do sistema. Em cada iteração todos os dados disponíveis são assimilados e as incertezas relacionadas aos dados observados são cuidadosamente consideradas, o que é fundamental para alcançar estimativas precisas. Além disso, o método incorpora a técnica de "inflação" para gerenciar as incertezas que variam tanto no tempo quanto no espaço.

O resultado do ES-MDA não se limita a uma única estimativa do estado do sistema; em vez disso, ele abrange um conjunto de estimativas que refletem a incerteza envolvida nessas projeções. Esse aspecto é de suma importância, uma vez que sistemas complexos frequentemente envolvem múltiplas fontes de incerteza e variabilidade.

3 MODELO MATEMATICO

Neste capítulo serão apresentadas as formulações matemáticas utilizadas pelo simulador de fluxo que consistem em um sistema composto por três camadas produtoras acopladas a um poço produtor.

3.1 PROBLEMA DIRETO

Hipóteses na formulação das camadas de reservatório:

- A matriz sólida está em equilíbrio térmico local com o óleo e a água conata, ou seja, T_{solid} = T_{water} = T_{oil} = T;
- Os efeitos capilares são negligenciáveis;
- Não há fluxo de fluido nem transferência térmica entre as camadas ;
- Óleo e água são fluidos ligeiramente compressíveis e imiscíveis;
- O fluxo de óleo no reservatório é regido pela Lei de Darcy;
- Parâmetros do reservatório e propriedades térmicas do fluido (exceto densidade e porosidade) não variam com temperatura e pressão;
- Fluxo radial de óleo é monofásico;
- A permeabilidade do reservatório é considerada homogênea em cada camada;
- O poço é vertical e penetra totalmente o reservatório.

Hipóteses consideradas para a formulação do poço:

- A transferência de calor para o entorno ocorre devido à difusão radial.
 Não há difusão axial de calor;
- A densidade é função de temperatura e pressão. Outras propriedades do fluido são constantes;
- Os materiais do poço têm condutividades térmicas constantes.
- Fluxo axial de fluido monofásico é ligeiramente compressível;
- O modelo leva em consideração os efeitos Joule-Thomson e gravidade;
- Na presença de tubulação, o espaço anular entre revestimento/ tubulação é preenchido com um material isolante;
- A pressão e a temperatura estão inicialmente em equilíbrio com o gradiente geostático e geotérmico;

3.1.1 EQUAÇÕES DE CONSERVAÇÃO DE MASSA

Reservatório

A equação de conservação de massa da fase de água (w) e óleo (o) em um reservatório é expressa como:

Aqui, Ct e βt são as compressibilidades e expansões térmicas totais, dadas por:

$$C_{t} = \frac{1}{\rho} \frac{\partial \rho_{m}}{\partial p} + s_{w} \frac{1}{\rho_{w}} \frac{\partial \rho_{w}}{\partial p} + s_{o} \frac{1}{\rho_{o}} \frac{\partial \rho_{o}}{\partial p}$$
(Equação 3-2)
$$\beta_{t} = -\frac{1}{\phi} \frac{\partial \phi}{\partial T} + s_{w} \left(-\frac{1}{\phi_{w}} \frac{\partial \phi_{w}}{\partial T} \right) + s_{o} \left(-\frac{1}{\phi_{o}} \frac{\partial \phi_{o}}{\partial T} \right)$$
(Equação 3-3)

A velocidade radial do óleo (v_{ro}) é determinada pela permeabilidade (K) e viscosidade do óleo (μ_o):

$$v_{ro} = -\frac{K}{\mu_o} \frac{\partial p}{\partial r}$$
(Equação 3-4)

A porosidade é modelada como:

$$\phi(r,t) = \phi_{ini}(r,t)exp(C_r\Delta p_r - \beta_r\Delta T_r)$$
(Equação 3-5)

As equações de estado relacionam a densidade de cada fase à pressão e temperatura:

$$\rho_m(r,t) = \rho_{ini_m}(r,t)exp(C_m\Delta p - \beta_m\Delta T)$$
 (Equação 3-6)

Essas fórmulas incorporam as variações da densidade e porosidade com relação à pressão e temperatura, considerando as compressibilidades e expansões térmicas totais.

Poço

A equação que descreve a conservação de massa no poço, segue a proposta de Ulker (2016) [3]:

$$\frac{\partial p_{wb}}{\partial t} + \frac{Q}{A} \frac{\partial p_{wb}}{\partial z} - \frac{\beta_o}{C_o} \frac{\partial T_{wb}}{\partial t} - \frac{Q\beta_o}{AC_o} \frac{\partial T_{wb}}{\partial z} + \frac{1}{AC_o} \frac{\partial Q}{\partial z} = 0$$
 (Equação 3-7)

Aqui, Q(z,t) representa a taxa volumétrica de fluxo, resultante da velocidade da fase de óleo (v_{wbo}) multiplicada pela área transversal do poço (A):

$$Q(z,t) = A v_{wb_0}$$
(Equação 3-8)

O termo w_b indica que as variáveis são analisadas internamente no poço, enquanto z refere-se à coordenada axial ao longo do poço, iniciando a partir do fundo. Esta equação modela a dinâmica do equilíbrio de massa no interior do poço, considerando variações temporais e ao longo da coordenada axial da pressão (p_w) e temperatura (T_{wb}).

3.1.2 EQUAÇÕES DE CONSERVAÇÃO DE ENERGIA

Reservatório

Ao considerar relações termodinâmicas e equilíbrio térmico local entre a fase fluida e a formação rochosa, e incluir o efeito Joule-Thomson (ε^oJt), a equação de conservação de energia para um reservatório é escrita da seguinte forma:

$$\frac{\partial T}{\partial t} + u_{co}(r,t)\frac{\partial T}{\partial r} - \frac{1}{r}\frac{\partial}{\partial r}\left(r\alpha_t\frac{\partial T}{\partial r}\right) - \emptyset_t^*\frac{\partial p}{\partial t} - u_{co}(r,t)\epsilon_{JT}^o\frac{\partial p}{\partial r} = 0 \qquad (Equação 3-9)$$

Na $\frac{\partial T}{\partial t} + u_{co}(r,t) \frac{\partial T}{\partial r} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \alpha_t \frac{\partial T}{\partial r} \right) - \emptyset_t^* \frac{\partial p}{\partial t} - u_{co}(r,t) \epsilon_{JT}^o \frac{\partial p}{\partial r} = 0$ (Equação 3-9, os termos Φ_t^* , $u_{co}(r,t)$ e α_t representam, respectivamente, o coeficiente efetivo de expansão adiabática do meio poroso saturado, a função de velocidade de transferência de calor e a difusividade térmica. Eles são definidos da seguinte maneira:

$$\alpha_t = \frac{\lambda_t}{(\rho C p)_t + \phi_p \beta r}$$
(Equação 3-12)

O coeficiente de expansão adiabática do sistema do reservatório e a capacidade volumétrica de calor da rocha saturada por fluido são definidos como:

$$(\rho C p \phi)_t = \phi(so\rho_o C_{po} \phi_o + sw\rho_w C_{pw} \phi_w)$$
 (Equação 3-13)

$$(\rho Cp)_t = \emptyset(so\rho_o C_{po} \emptyset_o + sw\rho_w C_{pw} \emptyset_w) + (1 - \emptyset)\rho_r C_{pr}$$
(Equação 3-14)

Além disso, a expansão térmica adiabática de cada fase fluida (ϕ), como função do coeficiente Joule-Thomson, e a condutividade térmica efetiva da rocha saturada por fluido (λ t) são definidas como:

$$\begin{split} \phi_o &= \epsilon_{JT}^o + \frac{1}{\rho_o C_{po}} \end{split} \tag{Equação 3-15} \\ \phi_w &= \epsilon_{JT}^w + \frac{1}{\rho_w C_{pw}} \end{aligned} \tag{Equação 3-16}$$

$$\lambda_t = \phi(so\lambda_o + sw\lambda_w) + (1 - \phi)\lambda_r$$
 (Equação 3-17)

Essa formulação matemática oferece uma compreensão abrangente da dinâmica de conservação de energia em um reservatório, considerando a interação de vários parâmetros e suas influências nas variações de temperatura e pressão.

Poço

A equação de balanço de energia para o poço é uma dada por:

$$\rho_{o}Ac_{po}(1+C_{T})\frac{\partial T^{wb}}{\partial t} = \rho_{o}QC_{po}L_{R}[T_{ext}(z) - T^{wb}(z,t)] - \rho_{o}Qc_{po}\left(\frac{\partial T^{wb}}{\partial z} - \varphi(z,t) + \frac{gsin(\alpha)}{c_{po}}\right)$$
(Equação 3-18)

A parte esquerda da equação, $\rho_0Ac_{po}(1 + C_T) \partial T^{wb}/\partial t$, representa a variação da energia térmica no poço em relação ao tempo. Aqui, ρ_0 é a densidade do óleo, A é a área transversal do poço, c_{po} é a capacidade térmica do óleo, e C_T é um coeficiente adimensional que reflete o armazenamento térmico do poço.

Do lado direito, temos $\rho_0 QC_{po}L_R$, que incorpora a transferência de calor convectiva e a resistência térmica total (L_R) no sistema. A expressão [T_{ext}(z) – T^{wb}(z, t) – $\rho_0 Qc_{po} \partial T^{wb}/\partial z - \phi(z, t) + g \sin(\alpha) / c_{po}$] representa uma combinação de fatores, incluindo o perfil de temperatura externa (T_{ext}(z)), o perfil de temperatura interno do poço (T^{wb}(z,t)), a taxa de variação da temperatura ao longo da coordenada axial ($\partial T^{wb}/\partial z$), o efeito Joule-Thomson ($\phi(z, t)$), a influência da gravidade (g sin(α)), e a capacidade térmica do óleo (c_{po}).

3.1.3 EQUAÇÕES DE CONSERVAÇÃO DE QUANTIDADE DE MOVIMENTO

Poço

A equação que descreve a conservação de momentum para o fluxo em poços, apresentada por Ulker et al. [3], estabelece uma relação crucial entre vários parâmetros. Esta equação considera a taxa de fluxo (Q), a área da seção transversal do tubo (A), a densidade do fluido (ρ_0), a pressão (p), e o diâmetro interno do tubo (D), levando em conta também os fatores de atrito. Essa relação é formulada como:

$$\frac{1}{A}\frac{\partial Q}{\partial t} + \frac{Q}{A^2}\frac{\partial Q}{\partial z} + \frac{1}{\rho_o}\frac{\partial p}{\partial z} + \frac{fQ^2}{2A^2D} + g = 0$$
 (Equação 3-19)

Aqui, Q representa a taxa de fluxo, A é a área da seção transversal do tubo, ρ_o é a densidade do fluido, p é a pressão, D é o diâmetro interno do tubo, f é o fator de atrito de Darcy-Weisbach, e g é a aceleração devida à gravidade.

O número de Reynolds (Re) é fundamental para distinguir entre os regimes de fluxo e é calculado da seguinte forma:

$$Re = \frac{\rho_o QD}{A\mu_o} \tag{Equação 3-20}$$

Aqui, µo representa a viscosidade dinâmica do fluido.

O fator de atrito de Darcy-Weisbach (f) varia conforme o regime de fluxo. Para fluxo laminar (Re < 2300), é calculado como f = 64 / Re. Já para o regime turbulento (Re ≥ 2300), utiliza-se a equação não linear de Colebrook-White:

 $\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3,7D}\right) + \frac{2,51}{Re\sqrt{f}}$ (Equação 3-21)

Aqui, ε representa a rugosidade equivalente da parede do poço.

3.2 PROBLEMA INVERSO

O método Ensemble Smoother with Multiple Data Assimilation (ES-MDA) opera sob o princípio de realizar uma assimilação de dados abrangente, assemelhando-se ao método ES. No entanto, o ES-MDA executa esse processo de forma iterativa, com um número pré-definido de iterações (N_a).

$$m_{j}^{l+1} = m_{j}^{l} + C_{MD}^{l} (C_{DD}^{l} + \alpha_{factor} C_{D})^{-1} (d_{duc}^{l} - d_{j}^{l})$$
 (Equação 3-22)

Onde,

$$C_{MD} = \frac{1}{N_e - 1} \sum_{j=1}^{N_e} (m_j - \bar{m}) (d_j - \bar{d})^T$$
 (Equação 3-23)

 $C_{DD} = \frac{1}{N_e - 1} \sum_{j=1}^{N_e} (d_j - \bar{d}) (d_j - \bar{d})^T$ (Equação 3-24)

$$\bar{d} = \frac{1}{N_e} \sum_{j=1}^{N_e} d_j \tag{Equação 3-25}$$

$$C_{D} = \begin{cases} \sigma_{d_{obs1}}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{d_{obs2}}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{d_{obsNd}}^{2} \end{cases}$$
(Equação 3-26)

Matriz de covariância dos erros, esta matriz determina o grau de incerteza sobre os dados.

O fator de inflação (α_{factor}) deve satisfazer a seguinte regra de formação:

$$\sum_{l=1}^{N_a} \frac{1}{\alpha_{factor}} = 1$$
 (Equação 3-27)

Existem várias combinações de valores que podem atender a essa regra, dependendo do número de assimilações (N_a) planejadas. Conforme destacado por Emerick em 2016 [4], a escolha de um fator de inflação constante igual a N_a resulta em uma concordância otimizada dos dados, especialmente quando N_a = 4.

O termo d_{uc} é um vetor de dados observacionais perturbados. Essas perturbações são incorporadas a cada etapa de assimilação por meio da $duc=d_{obs} + \sqrt{\alpha_{factor}}C_D^{1/2}z_d$ (Equação 3-28. Esse procedimento busca mitigar problemas associados a valores discrepantes que poderiam surgir quando os dados observacionais são perturbados em cada iteração.

$$d_{uc} = d_{obs} + \sqrt{\alpha_{factor}} C_D^{1/2} z_d$$
 (Equação 3-28)

Aqui, zd na equação é uma distribuição normal N(0,INd), onde Nd representa o tamanho dos dados observacionais.
4 METODOLOGIA

Este trabalho utilizou três casos para avaliar os efeitos de dados ruidosos e a ausência de dados na caracterização de reservatórios pelo método ES-MDA. O caso base será utilizado como referência pois não possui nenhum ruído na medição ou ausência de pontos, enquanto os casos 1 e 2 possuem respectivamente adição de ruído gaussiano e remoção de pontos.

Cada caso, por sua vez, estuda duas configurações de reservatórios, sendo o primeiro caso um reservatório com todas as camadas de mesma permeabilidade, já o segundo possui uma super K na camada do meio.

A escolha de dois reservatórios distintos tem como objetivo determinar como a influência desses efeitos pode variar de reservatório para reservatório.

O estudo dos casos 1 e 2 segue as seguintes etapas: Simulação dos reservatórios, inserção do problema a ser analisado, resolução do problema inverso e análise dos resultados obtidos.

O diagrama a seguir mostra de forma visual as etapas do estudo:

Figura 4-1: Diagrama com as etapas realizadas durante o estudo

4.1 SIMULAÇÃO DOS RESERVATÓRIOS

Nesta etapa os dois reservatórios foram modelados e simulados através do simulador de fluxo. Ambos possuem três camadas conectadas a um poço vertical e possuem apenas diferenças entre os valores de porosidade e permeabilidade de cada camada. Esse simulador, em python, resolve através do método de diferenças finitas as equações de massa e energia para o reservatório e de massa, energia e momento para o poço. Mais detalhes sobre a simulação podem ser encontrados na dissertação de Mestrado *Reservoir characterization based on pressure and temperature transient data, using an ensemble-based method* [5].

Para o primeiro reservatório foi escolhida uma permeabilidade de 1000 miliDarcy e porosidade de 0,2 para todas as três camadas produtoras, valores máximos encontrados em reservatórios brasileiros [19].

Já o segundo reservatório tem o intuito de representar as características dos reservatórios do pré-sal, reservatórios tradicionalmente estratificados, de alta produção e a presença de uma camada "super k". Para isso foram escolhidas uma permeabilidade de 500 miliDarcy nas camadas superior e inferior com uma porosidade de 0,15 e, na camada central, uma permeabilidade de 3000 miliDarcy com porosidade de 0,25.

A fim de obter uma simulação próxima a uma produção real foram introduzidas reduções na quantidade de fluido do reservatório ao longo do tempo levando a redução da pressão e consequentemente ao aumento da temperatura.

A partir do esquemático dos reservatórios abaixo pode-se ter maior compreensão das configurações de reservatórios previamente descritas.

Reservatório: 1

Figura 4-2: Esquema do reservatório 1

Reservatório 2:

4.2 ALTERAÇÃO DOS DADOS

De posse dos dados obtidos por meio da simulação direta dos casos analisados, as medidas de pressão e temperatura de cada camada foram alteradas com o acréscimo de ruídos Gaussianos ao longo do tempo ou remoção de pontos em sequência.

4.3 RESOLUÇÃO DO PROBLEMA INVERSO

Por último, a partir dos dados alterados, o simulador de fluxo será utilizado para resolver o problema inverso, utilizando o método ES-MDA, tentando obter novamente os valores iniciais de porosidade e permeabilidade de cada camada.

O método ES-MDA neste trabalho foi programado para aproximar as curvas de pressão e temperatura simuladas das observadas. Seu ajuste se dá através da correção de seus parâmetros ao longo de 4 iterações nas quais ele irá executar o método dos mínimos quadrados entre os dados observados e os dados simulados.

4.4 CASO 1 – Efeito do ruído na caracterização

A forma utilizada para identificar os efeitos do ruído na caracterização foi de subdividir este caso em 4 subcasos, cada um deles com um valor diferente de ruído para a pressão e temperatura.

A partir da variação independente dos ruídos na pressão e temperatura é possível identificar qual das características apresenta maior influência sobre o resultado final.

O primeiro subcaso utiliza um ruído gaussiano ao longo do tempo com média zero e desvio padrão baseado na resolução comum de sensores de pressão e temperatura utilizados pela indústria atualmente [11] [12].

O subcaso 2 multiplica os valores utilizados no caso base por 10 permitindo verificar o quanto o aumento do ruido irá prejudicar a convergência do programa.

Os subcasos 3 e 4 buscam comparar a influência do ruido aplicado na temperatura comparado com o ruído aplicado na pressão para isso no subcaso 3 o ruído na pressão é multiplicado por 10 enquanto no subcaso 4 o ruido é multiplicado na temperatura por 10. Os subcasos podem ser identificados através da tabela a seguir:

subcaso	Ruído na pressão (desvio padrão) (Bar)	Ruído na temperatura (desvio padrão) (K)
Subcaso 1	0.1 Bar	0.002K
Subcaso 2	1 Bar	0.02K
Subcaso 3	1 Bar	0.002K
Subcaso 4	0.1 Bar	0.02K

Tabela 4-1: Valores de Ruido na Pressão e Temperatura

4.5 CASO 2 – Efeito da falta de dados na caracterização

A falta de dados na caracterização representa alguma falha no sensoriamento do PDG ou na transmissão dos dados obtidos. Esta falha é marcada por uma ausência de informações durante um período de tempo.

O caso 2 também foi dividido em 3 subcasos, a saber:

O subcaso 1 remove 50 pontos em sequência dos dados (aproximadamente 20% dos dados) simulados e busca compreender se essa remoção irá afetar a capacidade do programa de solucionar o problema inverso.

O subcaso 2 por sua vez remove 120 pontos em sequência dos dados e serve para testar se o aumento do número de pontos removidos pode acarretar erros maiores entre os dados de entrada e os de saída.

Por último, o subcaso 3 remove 50 pontos e conta também com a adição de ruído na pressão e na temperatura. Este subcaso permite realizar a comparação entre os casos 1 e 2 e determinar qual fator mais determinante a ser considerado, a remoção de pontos ou a inserção de ruídos.

5 RESULTADOS

Este capítulo apresentará os resultados obtidos em cada caso, seguido de uma análise comparativa com os resultados esperados.

5.1 EXPLICAÇÃO DOS GRÁFICOS E TABELAS

As tabelas nesse capítulo indicam os valores máximos, médios e mínimos de porosidade e permeabilidade de cada camada. Além disso, também apresentam o erro percentual entre os valores reais de permeabilidade e porosidade utilizados na simulação do problema direto do reservatório e os valores médios de permeabilidade e porosidade resultantes da solução do problema inverso.

Os gráficos apresentam o comportamento das pressões e temperaturas ao longo do tempo para as três seguintes situações: primeira iteração da resolução do problema inverso, quarta iteração da resolução do problema inverso e máximos e mínimos da resolução do problema inverso.

Os gráficos da primeira iteração da resolução do problema inverso revelam as curvas iniciais de pressão e temperatura geradas e as compara com curva de dados observados. Estes gráficos são fundamentais para avaliar se os valores iniciais escolhidos foram aceitáveis para a resolução do problema. Caso a curva de dados observados esteja distante das outras curvas, os valores não foram bons e devem ser alterados para que possa ocorrer uma boa convergência ao final das iterações.

Já os gráficos da quarta iteração da resolução do problema inverso comparam os dados observados com as curvas de pressão e temperatura finais, geradas após a quarta iteração da solução do problema inverso. Esses gráficos permitem observar o quão próximo foram os valores estimados em relação aos observados.

Por último, os gráficos de máximos e mínimos comparam os dados de pressão e temperatura observados com curvas traçadas utilizando os valores máximos e mínimos de cada parâmetro obtido durante a última iteração da solução do problema inverso.

Caso os dados observados estejam fora das linhas de máxima e mínima significa que o programa precisa considerar uma margem maior de erro, através da alteração da matriz Cd. Visando reduzir a quantidade de gráficos mostrados e levando em consideração que os gráficos das camadas com propriedades idênticas apresentaram resultados praticamente idênticos, optamos por exibir apenas os gráficos de uma das camadas que compartilham as mesmas propriedades.

5.1 ANÁLISE DOS RESULTADOS

Caso base

Reservatório 1

No reservatório 1 ,como esperado para um caso em que não há adição de ruido e com camadas homogêneas os erros apresentados na tabela 5-1 são próximos de zero enquanto o ajuste visto nos gráficos das figuras 5-2 e 5-5 confirmam que o ajuste da pressão e temperatura foram capazes de seguir perfeitamente os dados observados.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,191	0,182	0,195	945,817	882,658	984,741
Max	0,208	0,209	0,208	1070,011	1039,55	1070,922
Med	0,202	0,197	0,202	1010,772	960,201	1026,775
Erro (%)	1,00	1,50	1,00	1,08	3,98	2,68

Tabela 5-1: Caso base Reservatório 1

Figura 5-1: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-2: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-3: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade.

Figura 5-4: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-5: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-6: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Reservatório 2

A tabela 5-2 indica que diferente do reservatório homogêneo, o reservatório heterogêneo apresentou erros bem acima do esperado nas camadas 1 e 3 e erros um pouco acima do esperado para a camada 2. No entanto, os gráficos das figuras 5-7 a

5-18 indicam que em relação aos valores observados houve pouca ou nenhuma divergência.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,188	0,229	0,168	603,892	2554,119	537,577
Max	0,222	0,244	0,188	790,399	2827,288	622,341
Med	0,209	0,236	0,177	723,633	2668,954	576,474
Erro(%)	39,33	5,60	18,00	44,73	11,03	15,29

Tabela 5-2: Caso base Reservatório 2

Figura 5-7: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-8: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-9: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-10: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-11: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4

Figura 5-12: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Figura 5-13: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-14: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-15: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-16: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-17: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4

Figura 5-18: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

.

Caso 1

Nesse caso, foram introduzidos diferentes ruídos, para observar os efeitos dos mesmos nas propriedades obtidas após a resolução do problema inverso. É esperado um incremento no erro percentual proporcional ao aumento do ruido. Isso ocorre devido à maior probabilidade dos dados gerados se distanciarem dos valores originais em decorrência das variações introduzidas pelo ruído.

Pelas Figura 5-19 até Figura 5-83, pode-se notar uma diferença significativa entre os dados das tabelas do reservatório 1 (homogêneo) para o reservatório 2 (heterogêneo). Enquanto o reservatório 1 tende a possuir erros maiores à medida que o ruído aumenta, o reservatório 2 não segue a mesma tendencia, apresentando erros aparentemente sem relação com os ruídos nos diferentes subcasos.

Reservatório 1

Subcaso 1- Ruídos de referência

Pela Tabela 5-3 observa-se que ocorreu um aumento médio de um ponto percentual nos erros. Esses erros ainda podem ser considerados aceitáveis uma vez que os reservatórios em geral apresentam variações bem maiores que estes valores.

Analisando os gráficos das figuras 5-19 a 5-24 nota-se que os valores das curvas obtidas mantem o valor bem próximo ao dado observado. Isso confirma que o ruido de referência considerando apenas a resolução dos sensores não é suficiente para afetar negativamente a caracterização do reservatório.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,174	0,191	0,2	881,19	910,809	988,415
Max	0,201	0,22	0,212	1019,309	1108,418	1083,583
Med	0,191	0,205	0,206	969,074	988,76	1039,073
Erro(%)	4,5	2,5	3,00	3,09	1,12	3,91

Tabela 5-3: Caso 1 Ruído referência Reservatório 1

Figura 5-19: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-20: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-21: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-22: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-23: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-24: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Subcaso 2- Ruídos X10

Com a ampliação de 10 vezes no nível de ruído tanto na pressão quanto na temperatura, destaca-se, inicialmente, o aumento médio de erro em todos os valores de porosidade e permeabilidade, atingindo 13%. Esse incremento representa uma elevação aproximada de apenas 4,3 vezes em comparação ao erro médio do subcaso 1.

Além disso, percebe-se pelos gráficos das figuras 5-25 e 5-29 que o método ainda consegue fornecer um bom ajuste a média da curva dos dados ruidosos. No entanto , as figuras 5-27 e 5-30 mostram que os dados observados estão em alguns momentos ultrapassando as curvas de máximo e de mínimo geradas o que representa a possível necessidade de utilizar uma matriz Cd que permita maior tolerância.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,178	0,164	0,201	864,555	830,045	1217,498
Max	0,192	0,178	0,213	924,34	868,625	1289,325
Med	0,185	0,17	0,208	893,096	849,142	1257,893
Erro(%)	7,50	15,00	4,00	10,69	15,09	25,79

Tabela 5-4: Caso 1 Ruído 10x Reservatório 1

Figura 5-25: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-26: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-27: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-28: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-29: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-30: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Subcaso 3- Ruido na Pressão X10

Para este subcaso o ruido na pressão utilizado de 10 vezes o ruido de referência enquanto o ruido na temperatura permaneceu igual ao de referência, a fim de testar o quanto cada ruido impacta nos resultados. Um aumento apenas no valor do ruido na pressão deveria apresentar erros menores entretanto, como mostra a tabela 5-5, todos os erros exceto o da permeabilidade da camada L3 foram aumentados. Uma possível causa para este ocorrido seria os valores iniciais escolhidos para a primeira iteração estarem distanciados dos dados observados no entanto, pelos gráficos das figuras 5-31 e 5-34, observa-se que isso não acontece. Logo, mais estudos são necessários para compreender o motivo do ocorrido.

Diferentemente do resultado da tabela, os resultados gráficos se comportam como o esperado visto que enquanto na figura 5-33 os valores observados de temperatura estão dentro dos limites máximos e mínimos, na figura 5-36 os valores observados de pressão extrapolam esses limites.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,227	0,137	0,21	1148,611	661,841	1045,881
Max	0,24	0,159	0,221	1243,972	758,629	1123,246
Med	0,234	0,147	0,216	1206,653	692,508	1092,708
Erro(%)	17,00	26,50	8,00	20,67	30,75	9,27

Tabela 5-5: Caso 1 Ruído Pressão 10x Reservatório 1

Figura 5-31: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-32: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-33: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-34: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-35: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-36: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Subcaso 4- Ruido na Temperatura X10

O subcaso 4 representa o inverso do subcaso 3, tendo o ruido na temperatura aumentado em 10 vezes e o ruido na pressão mantido igual ao de referência. Este subcaso apresenta um erro médio de aproximadamente 7,86% o que inicialmente indicaria que um ruido na pressão traz maiores problemas para a solução do problema. Contudo, devido aos resultados do subcaso 3 estarem muito fora do esperado não se pode confirmar essa hipótese.

Um outro indicativo de que os ruídos na temperatura têm menos efeitos nos resultados pode ser verificado nos gráficos 5-39 e 5-42 : as curvas de temperatura e pressão observadas estão entre as curvas de máximo e mínimo diferentemente do caso anterior.

r						
	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,220	0,179	0,21	997,458	758,459	984,458
Max	0,225	0,195	0,213	1199,596	1046,556	1200,001
Med	0,223	0,187	0,212	1098,027	902,501	1130,003
Erro(%)	6,25	6,50	5,75	9,85	9,75	9,22

Tabela 5-6: Caso 1 Ruído Temperatura 10x Reservatório 1

Reservatório 2

Ao analisar os gráficos relativos ao reservatório 2 do caso1 destacam-se que as curvas obtidas apresentam uma boa concordância com a média das curvas dos dados observados em todos os subcasos e em todas as camadas.

Adicionalmente, é importante observar que, embora os gráficos revelem um ajuste satisfatório, os erros associados estão elevados, indicando que os ruídos provocaram um deslocamento nos dados observados. Consequentemente, pode-se inferir que o método ES-MDA está ajustando as curvas a uma trajetória já deslocada.

No que diz respeito aos erros nas tabelas correspondentes ao reservatório 2 do caso1, é evidente a disparidade entre os erros na camada de maior permeabilidade e porosidade em comparação com as demais camadas. Essa disparidade é atribuída ao fato de que valores menores de permeabilidade e porosidade são mais suscetíveis à interferência de ruídos.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,223	0,222	0,164	814,117	2408,27	566,768
Max	0,247	0,234	0,186	934,147	2560,165	635,458
Med	0,235	0,229	0,178	875,887	2469,573	605,289
Erro(%)	56,67	8,40	18,67	75,18	17,68	21,06

Subcaso 1- Ruídos de referência

Tabela 5-7: Caso 1 Ruído referência Reservatório 2

Figura 5-37: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-38: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-39: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-40: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-41: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-42: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Figura 5-43: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-44: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-45: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-46: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-47: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-48: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Subcaso 2- Ruídos X10

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,154	0,225	0,222	456,4	2479,246	815,704
Max	0,182	0,244	0,238	552,598	2592,263	904,098
Med	0,175	0,239	0,229	525,283	2525,322	861,648
Erro(%)	16,67	4,40	52,67	5,06	15,82	72,33

Tabela 5-8: Caso 1 Ruído 10x Reservatório 2

Figura 5-49: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-50: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-51: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-52: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-53: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-54: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Figura 5-55: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-56: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-57: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-58: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-59: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-60: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Subcaso 3- Ruido na Pressão 10X

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,215	0,197	0,194	766,077	2211,992	691,022
Max	0,249	0,213	0,213	962,185	2472,744	782,067
Med	0,231	0,206	0,205	859,596	2349,487	756,696
Erro(%)	54,00	17,60	36,67	71,92	21,68	51,34

Tabela 5-9: Caso 1 Ruído Pressão 10x Reservatório 2

Figura 5-61: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-62: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-63: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-64: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-65: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-66: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Figura 5-67: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-68: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-69: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-70: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-71: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-72: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Subcaso 4- Ruido na Temperatura X10

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,168	0,196	0,156	501,237	2670,85	494,456
Max	0,217	0,219	0,18	728,186	2946,836	579,826
Med	0,195	0,214	0,172	614,094	2828,235	545,379
Erro(%)	30,00	14,40	14,67	22,82	5,73	9,08

Tabela 5-10: Caso 1 Ruído Temperatura 10x Reservatório 2

Figura 5-73: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-74: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-75: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-76: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-77: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-78: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Figura 5-79: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 1.

Figura 5-80: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-81: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, utilizando valores máximos e mínimos de permeabilidade

Figura 5-82: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 1.

Figura 5-83: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-84: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, utilizando valores máximos e mínimos de permeabilidade

Caso 2

Baseado nos erros apresentados nas tabelas referentes ao Caso 2, Seção 5.2, percebe-se que, mesmo ao remover uma grande quantidade de pontos, não houve alteração significativa em relação aos erros do caso base.

Essa situação decorre do fato de que, desde que o reservatório não demonstre alterações substanciais em seus parâmetros ao longo do tempo, os pontos remanescentes têm a capacidade de fornecer as informações essenciais para resolver a questão.

Pela tabela, também se percebe que há uma diferença pequena apenas nos subcasos 3 de cada reservatório. Os ajustes das curvas nas figuras comprovam que apenas no subcaso ruidoso ocorreu uma dispersão de valores considerável.

Reservatório 1

Subcaso 1

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,184	0,182	0,19	911,420	883,910	879,660
Max	0,215	0,215	0,208	1119,050	1119,750	1025,790
Med	0,199	0,202	0,200	1010,349	1014,446	978,978
Erro(%)	0,50	1,00	0,00	1,03	1,44	2,10

Tabela 5-11: perda sinal 50 pontos reservatório 1

Figura 5-85: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-86: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,180	0,178	0,191	902,37	877,020	888,820
Max	0,212	0,212	0,209	1113,17	1023,360	1036,230
Med	0,196	0,200	0,202	1005,779	1009,928	989,800
Erro %	2,00	0,00	1,00	0,58	0,99	1,02

Tabela 5-12: Perda sinal 120 pontos reservatório 1

reservatório 1 perda sinal 2 (caso 2)

Figura 5-87: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-88: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,177	0,176	0,190	899,456	880,651	890,249
Max	0,245	0,211	0,203	1111,111	1125,671	1042,641
Med	0,211	0,206	0,207	969,531	987,319	1040,576
Erro %	5,50	3,00	3,50	3,10	1,27	4,06

Tabela 5-13 perda de sinal 50 pontos e ruido inserido reservatório 1

Figura 5-89: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-90: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Reservatório 2

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,222	0,217	0,170	818,020	2211,010	523,920
Max	0,255	0,237	0,199	1106,130	2495,250	665,500
Med	0,238	0,230	0,188	918,582	2418,077	611,560
Erro(%)	58,67	8,00	25,33	83,72	19,40	22,33

Tabela 5-14: Perda sinal 50 pontos reservatório 2

Figura 5-91: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-92: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-93: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-94: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,211	0,218	0,167	739,546	2288,226	524,985
Max	0,246	0,240	0,197	1015,147	2572,665	670,000
Med	0,240	0,229	0,189	946,980	2400,698	620,023
Erro %	60,00	8,50	26,00	89,20	20,00	24,00

Tabela 5-15: perda de sinal 120 pontos reservatório 2

Figura 5-95: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-96: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-97: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-98: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Tabela 5-16: perda de sinal 50 pontos e ruido inserido reservatório 2

	Porosidade	Porosidade	Porosidade	Permeabilidade	Permeabilidade	Permeabilidade
	L1	L2	L3	L1	L2	L3
Min	0,199	0,218	0,163	659,560	2364,450	523,540
Max	0,236	0,243	0,195	924,480	2647,820	675,380
Med	0,217	0,234	0,182	754,779	2565,295	627,262
Erro %	44,67	6,40	21,33	50,96	14,49	25,45

Figura 5-99: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-100: Curvas de Temperatura obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

Figura 5-101: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L1, iteração 4.

Figura 5-102: Curvas de Pressão obtidas através da resolução do problema no reservatório 1, na camada L2, iteração 4.

6 CONCLUSÃO

Com base nos resultados dos três casos, pode-se afirmar que o método ES-MDA utilizado para resolver os problemas inversos conseguiu convergir eficientemente as curvas simuladas aos resultados observados.

Para o reservatório homogêneo foi possível ver que ocorreu um aumento do erro proporcionalmente ao aumento do ruido. No entanto, para o reservatório heterogêneo, os ruídos tiveram mínima influência sob o erro, tendo o subcaso sem adição uma diferença para os dados de entrada de aproximadamente 50%.

Apesar disso, observou-se que a perda de dados não representa um grande risco para a utilização do método. Mesmo com a remoção de aproximadamente 40% dos pontos, os resultados ainda foram obtidos com a mesma fidelidade que os dados completos. Isso se deve ao fato de que, contanto que o reservatório não apresente grandes variações em seus parâmetros ao longo do tempo, os pontos remanescentes podem fornecer as informações necessárias para a resolução do problema. Além disso, foi possível concluir que os reservatórios típicos do pré-sal demonstraram ser mais suscetíveis a serem afetados por ruídos.

A fim de melhorar a eficiência do método para reservatórios heterogêneos com "super" sujeitos a ruido podem ser utilizados técnicas de pré-processamento capazes de mitigá-los.

Bibliografia

[1] HE, L. et al. Development and prospect of separated zone oil production technology. Petroleum Exploration and Development, v. 47, n. 5, p. 1103-1116, 2020.

[2] TIAN, C. Machine learning approaches for permanent downhole gauge data interpretation. Stanford University, 2018.

[3] ULKER, G.. Modeling and Interpreting Transient Wellbore Temperature Distributions in Wellbores Under Nonisothermal Single-Phase Liquid Flow Conditions in Oil and Geothermal Reservoirs. PhD thesis, MS Thesis, Dep. Of Pet. and Nat. Gas Eng., ITU Graduate School of Science . . . , 2016.

[4] EMERICK, A. A. Analysis of the performance of ensemble-based assimilation of production and seismic data. Journal of Petroleum Science and Engineering, 139:219–239, 2016.

[5] DA SILVA, V. Reservoir characterization based on pressure and temperature transient data, using an ensemble-based method. Dissertação de Mestrado— Pontificia Universidade Catolica rj, 2021

[6] BRITISH PETROLEUM. Sustainability Report 2016. [s.l: s.n.]. Acesso em: 12 out. 2023.

[7] ANP. Boletim Mensal da Produção de Petróleo e Gás Natural. [s.l.] ANP, 2023.
Disponível em: ">https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br/anp/pt-br/centrais-de-petroleo-e-gas-natural>">https://www.gov.br

[8] Engl, H. W., Hanke, M. & Neubauer, A., 1996, Regularization of Inverse Problems: Mathematics and its Applications, Kluwer. [9] Mustafa Onur, Murat Cinar, et al. Analysis of sandface-temperature-transient data for slightly compressible, single-phase reservoirs. SPE Journal, 22(04):1–
134, 2017.

[10] Mustafa Onur, Murat Cinar, et al. Temperature transient analysis of slightly compressible, single-phase reservoirs. In SPE Europec featured at 78th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2016.

[11] Sensornet Limited., 2007. DTS Advantages and Technology. www.sensornet.co.uk.

[12] A. Veneruso, C. Ehlig-Economides, and L. Petitjean, Pressure gauge specication consi-derations in practical well testing (SPE-22752), in Proceedings of the 1991 SPE Annual Technical Conference and Exhibition, 1991.

[13] ONUR, M.; PALABIYIK, Y.; TUREYEN, O. I.; CINAR, M.. Transient temperature behavior and analysis of single-phase liquid-water geothermal reservoirs during drawdown and buildup tests: Part ii. interpretation and analysis methodology with applications. Journal of Petroleum Science and Engineering, 146:657–669, 2016.

[14] GONÇALVES, W. P.. Estimativa de Parâmetros de Reservatórios de Petróleo a Partir de Modelo Transiente não Isotérmico. PhD thesis, MS Thesis, Dep. Of Mechanical Engineering, PUC-Rio . . . , 2020.

[15] KALMAN, R. E.. A new approach to linear filtering and prediction problems. 1960.

[16] DE SOUZA CARDOSO, J. A. B.. Pressure and Temperature transiente response in a coupled stratified wellbore-reservoir model. PhD thesis, MS Thesis, Dep. Of Mechanical Engineering, PUC-Rio, 2020.

[17] SUI, W.; ZHU, D.; HILL, A. D. ; EHLIG-ECONOMIDES, C. A.. Determining multilayer formation properties from transient temperature and pressure

measurements. In: SPE ANNUAL TECHNICAL CONFERENCE AND EXHIBITION. OnePetro, 2008.

[18] SILVA, V. L. S.. Ajuste de histórico e otimização da produção de petróleo sob incertezas - Aplicação do gerenciamento de reservatórios em malha fechada. PhD thesis, Universidade Federal do Rio de Janeiro, 2016.

[19] GODOI, L.; VIDAL, A. RELAÇÃO ENTRE AS CARACTERÍSTICAS PETROFÍSICAS E PROCESSOS DIAGENÉTICOS DOS CARBONATOS DO PRÉ-SAL BRASILEIRO. UNUCAMP, 2022. Acesso em: out. 10DC

[20] AGENDA da Indústria 2022. [S. I.], 8 nov. 2022. Disponível em: https://www.ibp.org.br/noticias/ibp-lanca-agenda-da-industria-2022-com-asprioridades-para-o-avanco-do-setor-de-oleo-e-gas/#:~:text=óleo%20e%20gás-,IBP%20lança%20Agenda%20da%20Indústria