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Abstract

de Moura Calderoni, Breno; Barbosa dos Santos Guerreiro, Thi-
ago (Advisor). Levitated optomechanics: from Gaussian tweez-
ers to structured modes. Rio de Janeiro, 2023. 54p. Dissertação
de Mestrado – Departamento de Física, Pontifícia Universidade
Católica do Rio de Janeiro.

Optical tweezers have become an important tool in multidisciplinary
research, allowing for the manipulation and study of micro- and nano-
scale particles. Here, we describe the development of two optical tweezer
experiments at the heart of levitated optomechanics: a Gaussian and a
structured light vacuum optical tweezer. In the Gaussian experiment, we
describe in detail its construction and its use to test features of stochastic
motion subject to nonlinear effective forces generated via electric feedback.
Next, we move to the structured light setup. Using a Spatial Light Modulator,
we develop a vacuum optical tweezer with the capability of engineering
arbitrary optical landscapes, including non-linearities and multi-particle
traps. The experiments developed in this work pave the way to novel methods
for controlling particle motion, forces and interactions, further extending
the levitated optomechanics toolbox

Keywords
Optomechanics; Optical tweezer; Non-linear potentials; Structured

light.



Resumo

de Moura Calderoni, Breno; Barbosa dos Santos Guerreiro, Thiago.
Optomecânica levitada: de pinças ópticas Gaussianas à
modos estruturados. Rio de Janeiro, 2023. 54p. Dissertação de
Mestrado – Departamento de Física, Pontifícia Universidade Católica
do Rio de Janeiro.

As pinças ópticas tornaram-se uma ferramenta importante na pesquisa
multidisciplinar, permitindo a manipulação e estudo de partículas em micro
e nanoescala. Aqui, descrevemos o desenvolvimento de dois experimentos
de pinça óptica no cerne da optomecânica levitada: uma pinça óptica a
vácuo Gaussiana e uma pinça óptica a vácuo com luz estruturada. No
experimento Gaussiano, descrevemos em detalhes sua construção e seu uso
para testar características de movimento estocástico sujeito a forças efetivas
não-lineares geradas através de feedback elétrico. Em seguida, passamos para
a configuração de luz estruturada. Utilizando um Modulador Espacial de
Luz, desenvolvemos uma pinça óptica a vácuo com a capacidade de gerar
potenciais ópticos arbitrários, incluindo não-linearidades e armadilhas para
múltiplas partículas. Os experimentos desenvolvidos neste trabalho abrem
caminho para novos métodos de controle de movimento de partículas, forças
e interações, expandindo ainda mais a caixa de ferramentas da optomecânica
levitada.

Palavras-chave
Optomecânica; Pinça ótica; Potenciais não-lineares; Luz estrutu-

rada.
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1
Introduction

The interaction of light with matter has been a pivotal subject in scientific
discourse [1], significantly shaping our understanding of physics. It has long
been established that light carries momentum [2,3], but the tangible exploration
of this phenomenon became more feasible with the advent of laser technology
in the 1960s [4]. This technological advance facilitated extensive studies on
radiation pressure and enabled scientists to observe the subtle forces exerted
by light on macroscopic objects [2, 5].

Arthur Ashkin pioneered the exploration of optical tweezers, illustrating
that focused laser beams could trap and confine dielectric micrometer particles
[6, 7]. This development of optical tweezers stemmed from the coherent nature
of laser light, allowing for the accurate manipulation and study of particles
ranging from the nano to the micro scale [8].

Levitodynamics [9], involving the trapping and controlling of nano- and
micro-objects in a vacuum [10,11], emerged as a novel field, blending principles
from atomic physics [12, 13], biophysics [14], and other domains [15, 16]. It has
allowed scientists to analyse the dynamics of levitated objects in high vacuum,
offering insights into non-equilibrium physics [17, 18], thermodynamics [19–22],
and various material properties under distinct conditions [23,24].

Optical tweezers have found extensive applications across diverse scientific
fields, notably in biology for analyzing physical properties of cell membranes
[25], and in physics as force sensors [26–28]. The ability to manipulate and
study the motion and properties of particles and atoms in isolation has been
instrumental in deepening our understanding of quantum mechanics and the
interactions between light and matter [29–32].

My dissertation aims to add to this growing field by focusing on two
experiments designed to expand our current understanding. The first one
experimentally validates predictions made by perturbation theory [33] regarding
the introduction of an effective quartic harmonicity on a nanoparticle suspended
in an optical trap. The work compares configurations to both theoretical
expectations and numerical simulations [34]. A second experiment is introduced
that addresses the inherent limitations of conventional optical trapping
techniques in manipulating particles within complex potential landscapes [35,36].
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This segment explores the utilization of structured light in vacuum optical
tweezers, employing a Spatial Light Modulator to create an optical bottle
beam [37,38], forming a double potential well along the beam’s propagation
direction. This enables the simultaneous trapping of two particles on the
beam’s propagation direction, opening avenues for advanced experiments and
applications involving controlled inter-particle interactions [39].

The structure of this dissertation is designed for a logical progression of
thought, segmented into four more chapters. The second chapter, "Theory of
Vacuum Optical Tweezers", delves into the theory of the subject, providing
the scientific context and theoretical basis upon which the experiments were
conceived and executed. In the third chapter, "Experimental Tweezer in
Vacuum", we elucidate the setup, data collection, and findings of the first
experiment. The fourth chapter, "Structured Light Vacuum Optical Tweezer",
serves as an exploratory segment discussing the innovative techniques and
preliminary results of the second experiment. The fifth and final chapter offers
a conclusion and outlook, summarizing the findings and offering perspectives
on potential future work.



2
Theory of Vacuum Optical Tweezers

To comprehend the underlying physics of optical trapping, it is first
necessary to understand about the spatial profile of laser beams and the
motion dynamics of the object in the trap. We start this chapter with a
theoretical introduction on the paraxial Helmholtz equation and their solutions:
the Gaussian, Hermite Gaussian and Laguerre Gaussian beams, commonly
employed in optical trapping. Next, we briefly describe the stochastic motion of a
trapped particle and its spectral analysis, necessary for the trap characterization.

2.1
Optical Tweezers

In 1970, the 2018 Nobel Laureate Arthur Ashkin demonstrated that with
the force of radiation pressure of a continuous laser it is possible to manipulate
microscopic particles [5, 40]. This manipulation is made possible because light
is made up of oscillating electric and magnetic fields that propagate through
space. As these fields move, they carry energy and momentum. When photons,
or light particles, strike the particle’s surface, they transfer momentum to it.
This transfer of momentum from the photons to the particle generates a force
[7]. These optical forces can be thought of as produced by the intensity and
gradient intensity of the laser beam. To better understand optical trapping, we
must therefore first introduce the spacial profiles of laser beams.

2.1.1
Paraxial Helmholtz Equation and its Solutions

Maxwell’s equations describe the dynamics of electric and magnetic fields
in space-time. A consequence of the Maxwell’s laws of electrodynamics is the
wave equation for an electric field E⃗(r⃗, t). For a certain class of solutions in
vacuum1 (that is, in the absence of charges and currents) which we refer to as
scalar light fields, we may write the electric field as E⃗(r⃗, t) = U(r⃗, t)ϵ̂ , where
U(r⃗) is a mode function describing the spacial-temporal profile of the electric
field and ϵ̂ is the field’s polarization vector. Throughout this thesis, we will
assume the polarization vector to be constant. Therefore, the wave equation

1We will not deal here with vector light fields, see [41] for a comprehensive review.
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may be written as
∇2U = − 1

c2
∂2U

∂t2 . (2-1)
Substituting U(r⃗, t) = U(r⃗) exp(iωt) into Eq. (2-1), we arrive at the Helmholtz
equation,

∇2U + k2U = 0, (2-2)
where ω represents the angular frequency and k is the wavenumber, which are
related by c = ω/k.

For laser beams that are not tightly focused the small angle, or paraxial
approximation, can be applied. We write the spacial mode function as

U(r⃗) = E(r⃗)eikz (2-3)

The paraxial approximation then reads∣∣∣∣∣∂2E

∂z2

∣∣∣∣∣ ≪
∣∣∣∣∣k∂E

∂z

∣∣∣∣∣ (2-4)

which physically means that the mode envelope E(r⃗) varies slowly in the
longitudinal direction. When combined with the Helmholtz equation, this leads
to the paraxial Helmholtz equation,

∇2
T E − 2ik

∂E

∂z
= 0. (2-5)

where ∇2
T denotes the Laplacian operator in the transverse coordinates. Beams

satisfying this equation are called paraxial beams. Altought the paraxial
wave equation is not ideal to describe tightly focused fields, as in the optical
tweezers studied in this work, the mode structure of paraxial beams is still a
good description for most situations and effective corrections to the beams’
parameters can be employed to account for the effects of tight focusing [42]; we
will turn to this issue later on, when we discuss the optical trapping experiment
results.

The complete set of solutions for the paraxial Helmholtz equation
is constituted by either the Hermite-Gaussian beams (HG) in Cartesian
coordinates or, in cylindrical coordinates, the Laguerre-Gaussian beams (LG).
This implies that any two-dimensional light field can be represented as a
superposition of these modes, which leads to new opportunities and applications
for vacuum optical traps - a topic that will be explored in Chapter 4.

Hermite-Gaussian beams take the form,

EHG
m,n(x, y, z) =EG(x, y, z)Hm

(√
2 x

W (z)

)

× Hn

(√
2 y

W (z)

)
exp [−i(m + n)ζ(z)] , (2-6)



Chapter 2. Theory of Vacuum Optical Tweezers 15

Hm(x) = exp
(
x2/2

)(
x − d

dx

)m

exp
(
x−2/2

)
, (2-7)

where Hn are the Hermite polynomials. The optical intensity of HG modes
reads,

IHG
m,n(x, y, z) =I0

(
W0

W (z)

)2

exp
[
−x2 + y2

W 2(z)

]
Hm

(√
2 x

W (z)

)2

× Hn

(√
2 y

W (z)

)2

. (2-8)

where E0 the mode amplitude and W0 is the beam waist, which assume
to be located at the origin of our coordinate system, at the focal point
(x, y, z) = (0, 0, 0).

We may say that what characterizes the HG modes is their Cartesian
symmetry. The indices m and n dictate the beam profile shape along the x

and y axes, respectively. Specifically, with m nodes in the x-direction and n

nodes in the y-direction. Fig-2.1 illustrates the HG beam for different values of
m and n.

(a) HG0,0 (b) HG1,0 (c) HG0,1 (d) HG1,1

Figure 2.1: Hermite Gaussian beams in the transverse plane
for different mode parameters m and n

The Laguerre-Gauss solutions are

ELG
p,l (ρ, ϕ, z) =EG(ρ, z)

(√
2 ρ

W (z)

)l

Ll
p

(
2 ρ2

W (z)2

)
× exp [−i(2p + l)ζ(z) + ilϕ] (2-9)

Ll
p =x−l

p!

(
d

dx
− 1

)p

xp+l (2-10)

where Ll
p are the Laguerre polynomials. Their optical intensity is,
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ILG
p,l (ρ, ϕ, z) =I0

(
W0

W (z)

)2

exp
[
− ρ2

W 2(z)

](
− 2ρ2

W (z)2

)l

×
(

Ll
p

2ρ2

W (z)2

)2

(2-11)

where the transverse radial coordinate reads ρ =
√

x2 + y2.
The LG beams have cylindrical symmetry. The parameters p and l specify

the number of radial nodes and the azimuthal phase distribution, respectively.
Like HG beams, LG beams also form a complete orthogonal basis of solutions
for the paraxial wave equation.

(a) LG0,0 (b) LG1,0 (c) LG0,1 (d) LG1,1

Figure 2.2: Laguerre Gaussian beams in the transverse plane
for different mode numbers p and l

The fundamental solution of the paraxial wave equation, and the most
commonly employed laser profile is known as the Gaussian beam, represented
both by LG0,0 and HG0,0. It earns its name due to its intensity distribution,
given by the Gaussian function.

The expression for the Gaussian beam reads

EG(ρ, z) = E0
W0

W (z) exp
[
− ρ2

W (z)2 + ikmz − iζ(z) + ikm
ρ2

2R(z)

]
. (2-12)

where we introduce the following important beam parameters,

W (z) = W0

√√√√1 + z2

z2
R

, Beam width (2-13)

R(z) = z

(
1 + z2

R

z2

)
, Wavefront radius (2-14)

ζ(z) = arctan
(

z

zR

)
, Gouy phase (2-15)

zR = πW 2
0

nmλ0
, Rayleigh range (2-16)

The Gouy phase, or phase correction, describes how the beam’s phase varies
from a plane wave while it propagates. The Rayleigh range represents the
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distance from the beam waist where the beam radius is increased by a factor of
√

2, i.e. the area is doubled. This distance also dictates the region over which
the beam is approximately non-expanding, or collimated, give by 2zR, also
known as the depth-of-focus. Here, nm is the refractive index of the medium
where the beam is propagating.

Given the Gaussian bema waist W0 we an define another important
definition: the numerical aperture (NA). It can be expressed as

NA = nm sin θ = nmλ0

πW0
, (2-17)

with θ being the half-angle of divergence of the beam. Using (2-16) and (2-17)we
may also write zR in terms of the NA as,

zR = nmλ0

πNA2 , (2-18)
Fig-2.3 shows all the relevant parameters of a Gaussian beam in a succinct
manner.

gg

Figure 2.3: Representation of the beam waist, beam width and
Rayleigh range of a Gaussian beam.

The optical intensity of the Gaussian mode,

IG(ρ, z) = I0

(
W0

W (z)

)2

exp
[
− 2ρ2

W 2(z)

]
(2-19)

where I0 = |E0|2. On the beam axis ρ = 0 the Gaussian function peaks and we
can then write,
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I(0, z) = I0

(
W0

W (z)

)2

= I0

1 +
(

z
zR

)2 (2-20)

from which we define the location of the greatest intensity at the center,
I(0, 0) = I0. The bell shaped graph can be seen in Fig-2.4.

21012z/zR0.250.500.751.00I/I0

Figure 2.4: Normalized beam intensity at ρ = 0
.

To calculate the total optical power, one has to integrate the optical
intensity over the whole transverse plane,

P =
∫ ∞

0
I(ρ, z)2πρdρ. (2-21)

Upon solving the integration, we obtain the total optical power,

P = 1
2I0πW 2

0 . (2-22)
With this result, the intensity can also be expressed in terms of P as

I(ρ, z) = 2P

πW 2(z) exp
[
− 2ρ2

W 2(z)

]
. (2-23)

In the following chapter, we will employ a Gaussian mode as the trapping
beam in our optical tweezer experiments. Later on, we will modify our optical
trap to produce higher order modes for optical trapping. Having defined the
intensity of the Gaussian beam, we are now in a position to discuss the forces
that act on a particle in standard optical tweezers.

2.2
Optical Force in the Dipole Regime

Back in the 70’s2, Arthur Ashkin identified two fundamental light forces
exerted on a dielectric particle in a laser field. These are the scattering force
F⃗scat(r⃗) – in the propagation direction of the incident beam – and a gradient
force F⃗grad(r⃗), along the intensity gradient of the beam. Ashkin conducted
experiments [5–7, 10, 25, 40] and showed that this forces could accelerate,
decelerate and trap the particle in a stable optical potential well. Finally,
in 1986, he observed the first optical tweezer in a experiment using a tightly
focused laser beams.

The gradient force is a conservative force that is originated from the
potential energy of a dipole within an electric field. The scattering force, on the
other hand, is a non-conservative force arising from the momentum transfer from

2It is interesting to compare the date of invention of the laser to the invention of the
optical tweezer!
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the field to the particle, which is a consequence of scattering and absorption
processes.

Optical forces acting on spherical particles can be categorized into three
regimes: the Rayleigh regime, the intermediate regime and the ray optics regime,
based on the particle size and wavelength of the beam. The size parameter ξ can
be defined as ξ = kmR, where km = 2πnm/λ0 , R is the radius of the particle,
nm the refractive index of the medium and λ0 the wavelength of the trapping
beam in a vacuum. When ξ ≫ 1 (commonly assumed to be R > 10λ0), the force
can be described by the ray optics regime. In contrast, the Rayleigh regime
is when ξ ≪ 1 (commonly assumed to be 10R < λ0) and the particle can be
approximated as a dipole in a laser field. For particles with sizes between these
two regimes, the Lorenz-Mie theory can be utilized to investigate the optical
force in the intermediate regime. Calculations in the intermediate regime are
complicated, and numerical methods have to be employed for predicting the
properties of optical forces. For example, the numerical toolbox developed in
[43] can be used to estimate trap characteristics in the Lorentz-Mie regime.

In this dissertation we will focus primarily on the dipole regime, since our
particles have a radius of R = 72 nm and the wavelength of the trapping laser
is λ = 780 nm . In this regime, the optical gradient and scattering forces can
be calculated analytically using Rayleigh scattering theory [44]. The forces are
[45],

F⃗grad(r⃗) = 2πnmR3

c

(
m2 − 1
m2 + 2

)
∇I(r⃗) (2-24)

F⃗scat(r⃗) = 128π5n5
mR6

3cλ4
0

(
m2 − 1
m2 + 2

)2

I(r⃗)ẑ (2-25)

where c is the speed of light in vacuum and m = np/nm is the so-called refractive
index ratio, with np the refractive index of the particle and ẑ the unit vector
along the beam propagation direction z. When the refractive index of the
particle np is greater than that of its surrounding medium nm, the gradient
force pushes the particle towards the region of highest intensity. On the other
hand, when np is smaller than nm, the gradient force pushes the particle away.
For standard optical trapping in vacuum, we want the first condition. The total
force on the particle can be approximated as F⃗ (r⃗) = F⃗grad(r⃗) + F⃗scat(r⃗). A plot
of the gradient and scattering forces along the longitudinal (z) direction for
the relevant parameters in our experiments can be seen in Fig-2.5.

In addition to the gradient and scattering, there is a third force referred
to as spin-curl force [45,46]. It arises due to polarization gradients within the
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Figure 2.5: Forces applied on the trapped particle along
the z-axis. On the left, the Fgrad and Fscatt discriminated.
On the right, the total resulting force. Parameters used for
the plot are λ0 = 780 nm, NA = 0.77, P = 200 mW, nm =
1.0, np = 1.45 and R = 72 nm, similar to those employed in
our experimental setup.

electromagnetic field, but since we are considering beams with homogeneous
polarization, these forces are negligible in our setup.

The gradient force is particularly important as it establishes a confining
potential for the particle. This potential is a measure of the energy required to
move the particle within the trap and can be described mathematically by,

V (r⃗) = −2πnmR3

c

(
m2 − 1
m2 + 2

)
I(r⃗). (2-26)

For successful trapping of the particle, the gradient force must exceed the
scattering force, or otherwise the particle will be pushed along the direction of
beam propagation. The well depth of the trapping potential, defined through
Eq (2-26), serves as a critical figure of merit for stable trapping. According to
the Maxwell-Boltzmann distribution of the particle’s kinetic energy at thermal
equilibrium [47], the well depth should be at least one order of magnitude
greater than the particle’s average kinetic energy [48]. The average kinetic
energy in thermal equilibrium can be calculated as 3kBT/2, based on the
energy equipartition theorem [47], where kB is the Boltzmann constant, and T

is the temperature of the medium. Notably, although the average kinetic energy
remains constant irrespective of the particle size, the well depth diminishes as
the particle size decreases, making it more challenging to trap smaller particles.

This leads us to consider the size-dependence of the forces and the trapping
potential. Specifically, the gradient force scales as R3, contrasting with the
scattering force which scales as R6. This distinction in scaling elucidates the
presence of an upper limit for the particle radius, R, where the gradient force
can dominate the scattering force, assuming all other variables remain constant.
To further examine the lower limit for R we must ensure that the minimum
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potential well depth, Vmin, substantially exceeds the particle’s kinetic energy,
satisfying the conditions Vmin ≫ 3kBT/2 or we may adopt Vmin > 15kBT .

Another important feature of the optical force provided by a Gaussian
laser beam is that it can be approximated by a linear function of the particle’s
position near the origin (the beam waist). This can already be noticed in the
linear behavior of the force near the origin, in Fig-2.6. In other words, the force
from a Gaussian beam is approximately harmonic [49]. More specifically, we
can write

F⃗ = −kxxx̂ − kyyŷ − kzzẑ (2-27)
where kx,y,z denotes the spring constants along the x, y and z directions. To find
the values of the spring constants in terms of the trapping beam’s parameters,
we need to expand the intensity I(ρ, z) (as given in Eq. (2-23)) in a Taylor
series around the equilibrium point (z = 0). We have,

I(ρ, z) ≈ 2Pnm

πW 2
0

− 2Pnm

πW 2
0 z2

R

z2 − 4Pnm

πW 4
0

ρ2 (2-28)

Since the intensity is proportional to the potential energy, we can directly use
the above equation to determine the spring constants. For the z-direction,

kz = 2πnmR3

c

(
m2 − 1
m2 + 2

)
4Pnm

πW 2
0 z2

R

= 8π4R3PNA6

cn2
mλ4

0

(
m2 − 1
m2 + 2

)
(2-29)

The calculation for the x and y directions is analogous. We find,

kx = ky = 16π4R3PNA4

cn2
mλ4

0

(
m2 − 1
m2 + 2

)
(2-30)

Typically, the order-of-magnitude of the spring constant is of 0.1 ∼ 10 pN/µm.
In the paraxial approximation we find that the spring constants along the x

and y directions are equal. In reality, for a tightly focused beam, this is not the
case [42], as we will later see in the experiment.
Notice also the trapping force is stronger in the x and y directions, compared
to the z direction. That leads to the central frequency motion of the particle
on z direction to be smaller that on x and y directions.

In a circularly polarized Gaussian beam with a perfectly aligned setup, kx

and ky should be identical [45]. However, in real-world applications, factors such
as slight misalignments, imperfections in the optical components, aberrations
and the effects of tight focusing mentioned above can lead to differences between
kx and ky.
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Figure 2.6: Optical forces on an optically trapped nanoparticle.
Parameters used for the plot are λ0 = 780 nm, NA = 0.77, P =
200 mW, nm = 1.0, np = 1.45 and R = 72 nm

The analysis of forces on a trapped particle naturally leads us to study
its stochastic motion within the trap. The interplay between gradient and
scattering forces and the random Brownian motion caused by interaction of
the particle with its surrounding medium, dictates the overall dynamics and
behavior of the particle within the optical trap. Understanding this dynamics
is pivotal as it provides a comprehensive view of the trapped particle’s actions
and reactions and the trap characteristics.

2.3
Stochastic motion

Stochastic motion, characterized by the random movement of a particle,
arises primarily due to influences of the surrounding medium. This behavior of
particles suspended in a fluid, typically resulting from their collision with the
fast-moving molecules of the fluid, is mathematically modeled by the Langevin
equation. This equation is crucial in the analysis of different types of stochastic
processes, as it combines deterministic forces with stochastic forces, becoming
a straightforward way to introduce noise into a system [45].

2.3.1
Langevin equation

By incorporating a fluctuating force into Newton’s equation of motion
for a particle with mass m, one obtains the Langevin equation,

m
d2

dt2 r⃗(t) = −γ
d

dt
r⃗(t) − ∇V (r⃗) +

√
2γkBT η⃗(t), (2-31)

where r⃗(t) is the trapped particle’s stochastic trajectory and γ is the damping
coefficient, which can be determined by Stoke’s law,

γ = 6πρνR (2-32)
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in a fluid with shear viscosity ρν, ρ the fluid’s density, ν its kinematic viscosity.
The last term contains the random force η⃗(t), which has zero mean and whose
components satisfy,

⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′) (2-33)
From the Langevin equations we can compute the particle’s position

correlation functions and the associated power spectral densities (PSDs), which
contain important information on the trap characteristics. We will not re-derive
the PSDs from the Langevin equation here, as that has been done in a number
of texbooks [45]. In the next section, we introduce the necessary concepts and
results used in the remaining of this work.

Another important concept is the Reynolds number of a particle, which
aims to characterize whether the particle is in an underdamped or overdamped
system. It is given by the ratio between the magnitudes of inertial and viscous
forces acting on an object moving through a fluid by

Re = Rvρ/ν, (2-34)
where v is the terminal velocity. An underdamped system has a high Reynolds
number (commonly assumed to be Re > 100), where the inertia of the particle
m d2

dt2 r(t) is not negligible compared to the damping term γ d
dt

r(t). This leads to
oscillatory behavior where the particle can overshoot its equilibrium position.
On the other hand, the overdamped system is when the viscosity, or damping
term, dominates over inertia (commonly used as Re < 100). Since we will
deal with optical tweezers in vacuum, we will be mostly concerned with high
Reynolds numbers [45].

2.3.2
Power Spectral Analysis

One of the primary methods used for calibrating optical tweezers is
measuring the particle position’s power spectral density (PSD) [45].

Focusing on the longitudinal direction, the PSD of the z(t) coordinate is
the squared modulus of its auto-correlation Fourier transform [50],

P (ω) =
∫ ∞

−∞
⟨z(ω)z(ω′)⟩dω′ (2-35)

One can also show that
P (ω) = |z̃(ω)|2 (2-36)

where,

z̃(ω) =
∫ Trec

2

− Trec
2

z(t)eiωktdt (2-37)

with Trec the time duration of the recorded positions of a trapped nanoparticle.
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Starting from the Langevin equation (2-31) with a harmonic potential, the
PSD of the particle motion on the underdamped regime assumes the Lorentzian
form [45],

P (f) = D/2π2

(fc − 2πm/γf 2)2 + f 2 , (2-38)

where D = kBT/γ is the diffusion coefficient, fc = k/2πγ is the corner frequency
and k the trap stiffness. Notice that (2-38) is a type of Lorenztian function
because it can be written in the standard form,

P (f) = A

(f − f0)2 + Γ2 (2-39)

where A, f0 and Γ are constants. Let A = D/2π2, f0 = fc and Γ = 2πm/γf 2.
The peak is acquired at the trap’s natural frequency fm = (2π)−1

√
k/m

and the width of the peak will be determined by the damping coefficient γ.
This entire set of information will be utilized in subsequent chapters

to characterize the stochastic motion of optically trapped nanoparticles in
experiments.



3
Experimental Tweezer in Vacuum

In this chapter, we focus on the experimental aspects of optical tweezers
operating in vacuum. We describe the construction of the setup and trap char-
acterization, employing the concepts described in the previous chapter. Finally,
we discuss the application of the tweezer in a nonlinear force characterization
experiment.

3.1
Experimental setup

At the starting point of our optical table, we have a Toptica DL-Pro
continuous-wave laser operating at a wavelength of 780 nm. It emits a Gaussian
beam with a power of approximately 39 mW, which is directed into a Toptica
BoosTA tapered amplifier. The amplifier boosts the beam to a maximum output
power of 1.55 W from a single-mode fiber. This fiber is subsequently collimated
using a Thorlabs aspheric lens C260 TM-B, which has a focal length of 15 mm
and a NA of 0.16. The collimated free-space beam that emerges has a waist W0

of approximately 1.435 mm and a Rayleigh range zR of 8.294 m, as measured
using the knife-edge method.

DLpro

BoosTApro

λ/2

λ/2

PBS

f = 45mm

Periscope

f = 75mm

CCD

Detector

Figure 3.1: Schematic drawing of the optical setup for an
optical tweezer in vacuum.

Continuing along the optical path, the beam traverses a λ/2 waveplate.
This allows us to adjust its polarization before it meets a polarizing beam
splitter (PBS). This setup affords us the ability to direct portions of the
beam to different experimental stations on the optical table. For this specific
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configuration, we use the horizontally polarized component of light, which is
transmitted through the PBS.

Subsequent to the PBS, the beam navigates through a periscope system
composed of a pair of Thorlabs E03 mirrors (common to all others in the setup).
The purpose of the periscope is to elevate the height of the beam to match the
vacuum chamber, and align it with the telescope that follows. This telescope is
formed by coupling Thorlabs doublet lenses AC254-045-B and AC254-075-B,
with focal lengths of 45 mm and 75 mm, respectively. The beam is expanded
by a factor of 1.66, allowing it to fill an aspheric lens LightPath 355330 with a
5 mm diameter and lens focal ratio (f/#) 0.65 that is located inside a vacuum
chamber. Overfilling this lens is critical for ensuring the high NA of 0.77 that
the lens offers. This configuration produces a tightly focused Gaussian beam,
effectively forming the optical trap. An image of the tight focus can be seen in
Fig-3.2.

Figure 3.2: Image of beam waist on the experiment, produced
by the scattering of light by pure ethanol injected in the
vacuum chamber.

To calculate the beam waist after passing through the tweezing lens, we
must consider diffraction, a phenomenon that occurs when light passes through
any aperture, like a lens, resulting in the creation of a pattern known as the
Airy disk. This pattern has a central bright region surrounded by concentric
rings of diminishing intensity. The Airy disk diameter (�), or minimum spot
size, is approximated using [51]

� ≈ 2.44 × λ × (f/#), (3-1)
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where (f/#) is the lens f-number. For our lens, this yields a beam waist
of ≈ 0.62 µm and Rayleigh range of ≈ 1.54 µm. These numbers will later
be important to estimate the trap characteristics, like spring constant and
frequencies of center-of-mass motion along the three directions.

Silica spheres from MicroParticles GmbH with a diameter of 143 nm are
mono-dispersed in ethanol and introduced into the optical trap via a standard
pharmaceutical nebulizer (Glenmark NebZmart). The particle aerosol is guided
through from outside the vacuum chamber all the way to the trap center via
a tube, producing a laminar flow and an atmosphere of particles around the
trap. The typical drop radius produced by the nebulizer is less then 2.5 µm.
The concentration used in most of our experiments is such that we have on
average one particle per droplet of ethanol. With this system we are able to
trap a particle in less than a minute. After a single particle is captured, the
chamber pressure is slowly reduced to approximately 10 mbar. Images of a
trapped particle can be seen in Figures 3.3 and 3.4

Figure 3.3: Image of scattered light from an optically trapped
nanoparticle, captured with a smartphone.

The axial center-of-mass motion of the trapped particle, denoted as z(t), is
monitored by collecting forward-scattered light from the trapped particle. The
scattered light is collected with an aspheric lens, and directed to a photodiode
Thorlabs PDA100A2, which converts it into an electrical signal proportional
to z(t) and communicates with the oscilloscope TiePie Handyscope HS5. The
oscilloscope is connected to the laboratory computer, where we have the voltage
data recorded. A typical trace containing the information on the particle motion
can be seen in 3.5. This data can be subsequently processed by Python.
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Figure 3.4: Scattering light image of an optically trapped
nanoparticle, captured using the lab’s webcam post-imaging
system.

Images of the particle are produced by collecting scattered light along the
transverse plane, and directing such light to a CCD, also located outside the
chamber.

Collecting the scattered light from the particle is crucial to achieving
proper motion detection, since the forward scattered photons carry information
on the particle’s longitudinal position. The more photons we are able to collect,
the more information we will have and the cleaner the signals corresponding to
particle motion will be. Since the particle consists of a dispersive medium, it
effectively alters the optical path of forward scattered photons and hence, the
information is encoded in the phase of the scattered beam. Since non-scattered
light travels together with the scattered beam, they automatically interfere,
converting this phase information into an intensity information. A schematic
illustration of this process can be seen in Fig-3.1. Choosing the proper collection
lens is therefore crucial for an efficient motion detection; we do so by employing
the methods described in [52]. As a result, theroetical graph of the efficiency
versus NA of the collecting lens can be seen in Fig-3.6 with a peak at NA = 0.46.
Based on this analysis, we chose to use a lens with an NA of 0.50, slightly
deviating from the peak value but still within an efficient range. This choice
aligns with our objectives for optimizing the optical setup.
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Figure 3.5: Voltage data from oscilloscope over 0.25 s at 1 MHz
sampling frequency.
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Figure 3.6: Graph to visualize the most efficient lens for forward
detection.
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3.1.1
Expected trap characteristics

In our experiment, we employ a beam power of approximately 240 mW.
Consequently, without considering the scattering force, we obtain a potential
depth of around 400 kBT in the x, y directions and 600 kBT in the z direction,
as seen in Fig-3.7.

Despite neglecting the scattering force at this point, analysing the trap
depth due to the gradient force indicates that longitudinal trapping is likely
within reach with our experimental conditions. Indeed, the addition of the
non-conservative scattering force shifts the equilibrium position, but as can
be seen by the numerical simulations presented in the previous chapter, stable
trapping can be successfully achieved.
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(a) Trap depth in x direction.
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(b) Trap depth in z direction.

Figure 3.7: Trap depth simulation considering only the gradient
force.

It is also useful to estimate the frequencies for the motion along x, y and
z directions expected in the experiment. Using Eqs. (2-29), (2-30) and the
parameters described in the previous section we find the theoretical values for
the trap stiffness and resonance frequency

kz ≈ 0.69 pN/µm → fz ≈ 72 kHz (3-2)

kx,y ≈ 8.52 pN/µm → fx,y ≈ 253 kHz. (3-3)

Compared to real data

kz ≈ 1.00 pN/µm → fz ≈ 89 kHz (3-4)

kx ≈ 16.00 pN/µm → fx ≈ 348 kHz (3-5)

ky ≈ 19.70 pN/µm → fy ≈ 385 kHz. (3-6)
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Figure 3.8: Power spectral densities of a confined particle
showing the resonance frequencies in the x, y and z directions.
Lorentzian functions are fitted to the measured data yielding
the central frequencies Ωx/2π = 348 kHz, Ωy/2π = 385 kHz,
Ωz/2π = 89 kHz.

These values are obtained by fitting Lorentzian functions to the PSDs in Fig-3.8,
obtained from collecting traces of the particle motion. Note the theoretical
values of the frequencies and trap stiffness are on the same order of magnitude
as the experimental ones.

Another important parameter is the tweezer’s spring constant, which is a
measure of how much force must be applied to the particle in order to displace
it by a certain amount of length. Typical spring constants are on the order of
1 pN/µm to 10 pN/µm, indicating that we need approximately 1 ∼ 10 pN to
move the particle by 1 µm. By the equipartition theorem, the mean squared
deviation of the longitudial particle position is ⟨z2⟩ ≈ kBT/2, corresponding to√

⟨z2⟩ ≈ 1 nm. This means that the force fluctuations in the experiment are on
the order of δF ≈ kz

√
⟨z2⟩ ≈ 0.001 pN, which implies the particle can be used

as a force sensor with a minimum sensitivity of approximately δF .

3.2
Application

Traditional experiments often involve a dielectric particle trapped in
a tightly focused Gaussian beam, which usually approximates a confining
harmonic potential. The particle undergoes Brownian motion due to its
interaction with the surrounding medium, and measuring its position correlation
functions and associated power spectrum allows for a characterization of the
trap’s parameters [49].

Recently, the study of nonlinear optical tweezers has gained prominence
[37,39]. By employing beams with complex intensity profiles, like double-well
landscapes [35,36], the optical potential experienced by the particle becomes
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inherently nonlinear, differing from the typical harmonic potential commonly
found in optical levitation experiments. Engineering potential landscapes that
go beyond the harmonic approximation is increasingly vital for applications such
as non-equilibrium Brownian machines [17], the preparation of non-classical and
non-Gaussian quantum states [53], and matter wave interference experiments
[54]. As a result, the behavior of trapped particles deviates from simple harmonic
motion [33], requiring a more sophisticated analysis using nonlinear stochastic
differential equations to understand the particle’s motion correlation functions
and power spectrum.

The present application aims to experimentally validate a theoretical
framework presented in [33] by implementing effective nonlinear potential
landscapes on a levitated particle using electric feedback forces. This method
implies corrections to the statistical moments of particle motion to be
computed, particularly the position power spectrum, opening new pathways
for understanding nonlinear dynamics in optical trapping.

3.2.1
Experiment

A simplified schematic of the experimental setup is shown in Fig-3.9. The
configuration is similar to the one described previously in Sec-3.1, but with
modifications to be able to implement nonlinear position-dependent forces upon
a levitated nanoparticle.

The motion of the center-of-mass of the confined particle, denoted as
z(t), is detected by capturing forward scattered light. The detected signal is
passed through a wide band-pass filter, amplified and then fed into an FPGA
(Field-Programmable Gate Array) - a specialized integrated circuit designed
to process the signal received from the detector. This circuit subsequently
produces a voltage, generating a force on the particle that’s relative to z3(t − τ)
and a certain feedback gain. Here, τ is the total electronic delay originated by
the electronic system.

To implement an electric field near the confined particle, a pair of
electrodes is positioned in the trapping and collecting lenses mounts. These
electrodes are linked to both a signal filter and an amplifier, found before and
after the FPGA, including the FPGA itself. As a result, an electric force is
established at the particle’s location, described by Gfbz(t − τ)3, where Gfb

is the net feedback gain output from the combined efforts of the FPGA and
amplifier.

We proceed to verify the perturbation theory as described in [33]. We apply
an effective quartic potential (cubic perturbation force) on the trapped particle



Chapter 3. Experimental Tweezer in Vacuum 33

z(t)Gfbz
3(t− τ)

FPGA

x

z

Figure 3.9: Experimental setup. A silica nanoparticle is trapped
by an optical tweezer in vacuum. The forward scattered light
is collected and sent to a photodiode, producing a signal
proportional to the particle’s axial coordinate, z(t). An FPGA
processes the signal to produce a voltage that induces a force
on the trapped particle proportional to z3(t−τ). Amplification
prior to and after the FPGA enhance the maximum resolution
of its analog-to-digital converter, enabling the exploration of
a broader range of values for the applied electrical force.

generated via the position measurement feedback as described previously. This
is valid for small Gfb,

Gfb ≪ m2ω4
0

2kbTeff
. (3-7)

PSD’s of particle motion under the influence of the cubic feedback force
with positive and negative feedback gains can be seen in Fig-3.10(a). These
measurements qualitatively confirm the effect of the cubic force predicted by
perturbation theory as a shift in the PSD central frequency (∆Ω) given by

∆Ω
2π

= 3kbT

4πm2ω3
0
Gfb ≡ κGfb, (3-8)

where ω is the angular resonance frequency.
Note that the shift depends on the sign of the feedback gain, in accordance

to Eq. (3-8), indicating an effective hardening or softening of the optical trap
due to the cubic actuation.

To quantitatively compare the frequency shifts with the prediction from
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perturbation theory, we acquired the longitudinal motion PSD for different
values of feedback gain Gfb. Fitting Lorentzian functions to the PSDs we
obtained the central frequency as a function of feedback gain. The result of
these measurements is shown in Fig-3.10(b), in comparison to the theoretical
prediction given in Eq. (3-8) for our experimental parameters. Good agreement
between the data and the theoretical prediction was observed within the
perturbation regime, indicated by the non-shaded region of the plot. Note also
that outside the regime of perturbation theory (grey shaded regions in Figure
3.10b)), the measured shifts fall systematically slightly bellow the predicted
first order correction, consistent with the second-order correction scaling of
O(G2

fb) [33]. Finally, the experimentally obtained angular coefficient κe was
measured to be

κe = (5.46 ± 0.10) × 10−4 Hz m3 N−1 (3-9)

which compares to the theoretical prediction given the parameters for our
experiment,

κt = 5.69 × 10−4 Hz m3 N−1 . (3-10)
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(a) PSDs of the trapped particle’s longi-
tudinal motion under cubic force, display-
ing central frequency shifts. The data was
taken at 293 K and a pressure of 10 mbar.
The reference PSD has a central frequency
of 77.8 kHz and a shift of ±1.4 kHz was
measured for Gfb = ±1.2 × 106 N/m3.

(b) Frequency shifts as a function of Gfb,
verifying the prediction of perturbation
theory given by Eq. (3-8) (dashed line).
The grey shaded region marks the regime
of validity for perturbation theory de-
scribed in Eq. (3-7). Each point corre-
sponds to 250 seconds of data acquisition
at 500 kHz divided into 1000 traces and
organized into batches of 5 traces each.
All data points were collected using the
same nanoparticle.

Figure 3.10: Verifying the predictions of perturbation theory

3.2.2
Conclusion

In summary, a cubic nonlinear force derived from position measurement
feedback has been applied to an underdamped levitated nanoparticle. We
examined the impact of this force on the particle’s random behavior through
experiments. Specifically, we measured the changes in the particle’s motion
power spectrum induced by the cubic feedback force and found them to be
consistent with existing path integral perturbation theory for nonlinear optical
tweezers.

We expect that nonlinear feedback methods will be useful in various
levitodynamics experiments, both in classical and quantum settings. Such
feedback-induced forces can be used for state preparation that goes beyond
the inherent nonlinearities in optical potentials [54,55]. Additionally, delayed
nonlinear feedback can be employed to create systems with specific types of
nonlinear damping [56].



4
Structured light vacuum optical tweezer

Conventional optical trapping techniques, using Gaussian laser beams,
provide a hamonic potential to a good approximation [45]. As we have seen,
‘standard’ optical tweezers can serve as very good force and displacement sensors
[57], but they do not explore the full capabilities offered by light. As we also
discussed earlier, electromagnetic waves can be shaped into various transverse
spatial profiles using the superposition of higher-order modes (Laguerre-Gauss
or Hermite-Gauss, for example). With these structured light modes, we can
engineer the field gradients, and consequently design novel types of optical
traps [37,58]. For instance, we could engineer a stiffer trap, a non-linear trap,
and perhaps most interestingly, a multi-particle trap. It is the purpose of this
chapter to deal with these structured optical traps. This chapter dives into an
innovative approach that involves the use of structured light in vacuum optical
tweezers to address these challenges.

To produce structured light beams, we employ a device called Spatial
Light Modulator (SLM). It consists in a sort of variable grating, capable of
modulating the phase of an incoming beam in an essentially arbitrary spatially
varying pattern [59]. As a consequence, we are able to shape the transverse
profile of the beam, producing the desired mode superposition.

In what follows we will briefly describe principles of functioning of the SLM
and holographic beams generation, as well as practical details on how to calibrate
it. Subsequently, we describe an experimental setup where general structured
light optical traps can be implemented. We use this setup to implement a special
beam, known in the literature as the optical bottle beam (OBB) [37,38,60].

The OBB is an interesting choice of structured light for optical trapping
since it has two intensity maxima along the longitudinal direction. We could
imagine, therefore, trapping two neighbouring particles in each of these maxima,
opening the possibility of studying multi-particle levitated optomechanics in
vacuum [39].

After discussing some properties of the OBB, we report initial attempts
at multi-particle trapping in the OBB and results on the trapping of single and
clusters of Silica nanoparticles.
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4.1
Spatial Light Modulator

In our laboratory, we generate structured light modes using the SLM
(HOLOEYE Photonics, model PLUTO-NIR-015 HR). The special interest to us
are the Laguerre-Gauss modes, described in Chapter 2. This device consists in
a 1920 × 1080 pixel electronic display (Liquid Crystal on Silicon micro-display
- LCOS), where each pixel is an individually adjustable liquid crystal cell to
effectuate alterations in the electric field of an incoming light beam. The uniform
amplitude of an incoming laser beam can be modulated by introducing a phase
delay ϕ = ϕ1(x, y), where (x, y) are the coordinates on the hologram, of 0 or π

on the liquid crystal (LC) pyxels with the use of ferroelectric modulator [59].
The LCOS micro-display consists of several layers: cover glass, transparent

electrode, alignment layer, liquid crystal layer, another alignment layer and
the complementary metal-oxide-semiconductor (CMOS) with a refractive layer.
When the display is activated, a voltage is applied pixel-wise between the
CMOS and transparent electrode layers.

The phase modulating capability of the setup is derived from the combined
electrical and optical anisotropy of LC material. Specifically, the dipole nature
of the LC (electrical anisotropy) allows for a varying orientation of the LC
molecules based on the strength of the applied electric field. Furthermore,
the LC molecules exhibit birefringence, meaning they have different refractive
indexes for their perpendicular molecular axes (optical anisotropy).

Together, these properties enable the retardation or phase modulation of
light waves. Each SLM pixel can receive a distinct voltage, resulting in a unique
phase delay. In practice, the display is addressed using an 8-bit grayscale bitmap
image, where each gray level corresponds to a specific mean voltage across the
LC layer at that pixel. For the generation of an LG mode, it is essential for a
horizontally polarized Gaussian Beam to strike the LCOS. Once the screen is
appropriately programmed, it presents a phase pattern corresponding to the
2D Laguerre-Gauss equations and the result can be seen in Fig-4.1.

We should include a tilt function τ(x, y) = mxx + myy to the phase
function ϕ(x, y) in order to separate the undiffracted order 0 to higher orders.
In this context, mxx and myy determine the tilt magnitude along x and y

directions respectively.
The complex uniform amplitude of the object beam A(x, y) can be written

as

A(x, y) = exp(iΦ(x, y)), (4-1)
where
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Figure 4.1: SLM hologram pattern for producing an LG0,2
mode

Φ = ϕ(x, y) + τ(x, y). (4-2)
The beam’s corresponding binary hologram transmittance, t(x, y), is defined as

t(x, y) =

1, if cos Φ(x, y) ≥ 0

0, otherwise.

When visualised, t(x, y) behaves like a square wave in relation to Φ(x, y), leading
to its Fourier expansion

t(x, y) = 1
2 + 1

π

[
exp(iΦ) + exp(−iΦ)

− 1
3 (exp(3iΦ) + exp(−3iΦ))

+ 1
5 (exp(5iΦ) + exp(−5iΦ)) + · · ·

]
. (4-3)

Considering the backfocal plane of the first lens, the diffraction pattern of
t(x, y) is

T (fx, fy) =
∫ ∞

−∞

∫
t(x, y) exp (−2πi(xfx + yfy)/λf) dxdy, (4-4)

Here, (fx, fy) stands for backfocal plane coordinates, λ for the beam’s wave-
length, and f the focal length of the first lens after the SLM display. The
diffraction pattern T (fx, fy) serves as the Fourier transform of t(x, y). Each
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term in the equation corresponds to various spatial orders in the Fourier plane
due to different τ tilts.

The diffraction orders (±1, ±2, ±3, · · · ) have phase information of
(±1, ±2, ±3, · · · )ϕ(x, y). In our case, the 1st order diffraction term is isolated
and transmitted to the second lens.

Figure 4.2: LabView software used to calibrate the SLM
and create the beam superposition. Program courtesy of the
Quantum Optics Group at Universidade Federal Fluminense.

We empirically calibrate the diffraction settings to obtain a well-defined
mode with the software LabView (left image in Fig-4.2). There, we have to input
values for deviation angle in x-z plane, that determines horizontal distance
between the diffraction orders in a transverse plane. Higher the value of x-z ,
higher the distance between the modes; the y-z angle, who is responsible for
vertical distances; and consider the blazing configuration showed (right image
in Fig-4.2). This fine adjustment improves the fraction of total power that is
transmitted for a specific order of propagation.

4.2
Optical Bottle Beam

Utilizing the SLM, we create a beam superposition that combines the
Gaussian beam LG0,0 with LGp,0 where p = 1, incorporating a relative phase
of π. This superposition is specifically chosen to produce a beam characterized
by two distinct potential wells, as shown in Fig-4.5. Its electric field is

E⃗OBB(ρ, z) = EG − EGL0
1

(
2ρ2

W (z)2

)
exp[−2iζ(z)] ϵ̂ (4-5)

where ϵ̂ is the polarization vector. The corresponding intensity of the OBB is
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Figure 4.3: Images of the OBB transverse profile along the
propagation axis.

IOBB(ρ, z) =I0

(
W0

W (z)

)2

exp
[
− ρ2

W 2(z)

]
×

×

1 − 2 cos
(

2 arctan z

zR

)
L0

1

(
2ρ2

W (z)2

)
+ L0

1

(
2ρ2

W (z)2

)2
 .

(4-6)
In Fig 4.4 we plot the intensity profile along the x and z directions.
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Figure 4.4: OBB intensity profile on x and z directions.

We note that alternative optical bottle beams can be generated using
higher order modes, for instance a LG mode with p = 2 [60]. However, the
choice of p = 1 is motivated by two factors that influence the practicality of
trapping two particles. First, the SLM is considerably less efficient at generating
higher-order modes, making p = 1 the most practical choice for optical tweezers.
Second, the choice of p influences the separation between the intensity maxima,
where trapped particles are expected to be; higher p values would result in less
distance between two neighbour particles. Since we expect the neighbouring
particles will mutually interact, for instance via Coulomb interaction, coherent
scattering and optical binding [61, 62], we expect it to be more challenging
to achieve multi-particle trapping with closer separations, resulting in higher
interaction forces described in [39].
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Figure 4.5: OBB normalized potential profiles in x and z
directions.

4.3
Setup
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Figure 4.6: Schematic drawing of the optical setup for the
structured light trap in vacuum.

The strucutured light optical trap setup is similar to the one described
in Section 3.1, up to the point where the beam reaches the PBS. In this
particular experiment, we utilize the beam that is reflected from PBS. The
beam subsequently passes through a telescope, composed of lenses with focal
lengths of 45 mm and 75 mm. This configuration results in a magnification factor
of 1.66, producing a beam with a radius of 2.39 mm. The beam is then steered
by a pair of dielectric mirrors (Thorlabs BB1-E03), which are deliberately
tilted to direct it onto the SLM display. This slight tilt aids in separating the
nth-order diffraction modes from the 0th-order mode. Among the modulated
beams, the one of interest is the 1st-order mode immediately succeeding the
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0th-order mode, which also happens to be the second strongest. Any remaining
unwanted modes are filtered out to prevent undesirable interference.

The modulated beam subsequently traverses a 4F system, comprised
of two lenses. The first lens (Thorlabs AC254-400-B) has a focal length
f3 = 400 mm and is positioned at a distance equal to its back focal length of
391.1 mm from the SLM display. The second lens (Thorlabs AC254-300-B) has
a focal length f4 = 300 mm and is placed at a distance equal to the sum of its
own back focal length (290 mm) and that of the first lens (391.1 mm). Between
the two lenses, the beam passes through a periscope, to match the height of
the vacuum chamber.

After the telescope, the beam encounters another λ/2 waveplate and a
PBS. These components are included for the purpose of establishing a back-
detection scheme, which is yet to be implemented, and to calibrate the SLM, as
we put a CCD in the direction of the reflacted beam to analyse the beam shape.
Finally, the beam goes towards two alignment mirrors and passes through the
same optical trapping system as described in Section 3.1. The high NA lens is
precisely positioned at the focal length of the second lens, completing the 4F

system.
With this setup, we can in principle generate arbitrary structured light

modes for optical trapping. To demonstrate this capability, we trap the particle
using the OBB mode. To do so, we initially configure the SLM to generate
a Gaussian beam pattern. Employing the Gaussian beam offers advantages
in terms of both the potential well and the SLM’s efficiency, making it easier
to capture the nanoparticle using the previously described nebulizer drop-off
system. Once the particle is levitated at the focal point, we transition the
beam to an OBB mode with p = 1. At this stage, the Gaussian focal point is
replaced by a ring-shaped beam. Additionally, new potential wells are formed at
distances zR and −zR (or 0.4 µm and −0.4 µm) from the focal point, effectively
creating a double potential well. As we switch the SLM parameters from the
Gaussian to the OBB mode, the particle relocates to one of these new wells.
With this technique we were able to succesfully trap a particle using the OBB
mode with strctured light and even achieve a vaccum of 1 mbar.

For technical reasons associated with the SLM, the maximum power
achievable in our optical tweezer setup varies depending on the beam mode in
use. Specifically, with the Gaussian mode, we are able to attain a peak power of
260 mW, while in the OBB (Optical Bottle Beam) mode, the maximum power
is limited to 160 mW. This creates a potential depth of around 500kBT for the
Gaussian beam and 250kBT for the OBB, considerably smaller.

For the specific application discussed in Section 3.2, a concentration of
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one silica (SiO2) nanosphere per droplet of ethanol was used. In contrast, the
aim for the current experiment is to achieve dual-particle trapping, requiring
a concentration of two nanospheres per droplet. There are two main factors
that support our hypothesis that dual-particle trapping is feasible. First, the
size of the potential well decreases when the trapping mode is switched from
Gaussian to OBB mode. This reduced well size indicates that it is less likely
for two particles to occupy the same spatial region, effectively making it more
challenging for both to ’fit’ into the same trapping site. Second, electrostatic
repulsion between the charged particles is expected to segregate them into
separate potential wells, further facilitating the dual-particle trapping strategy
in different spots.

4.4
Results

We successfully trapped a particle with the OBB. Now, it’s essential to
cross-check the trap parameters of the particle confined within the OBB to
confirm that our theoretical predictions match the actual experimental results.
For this validation, we adopt an approach analogous to the one used for the
Gaussian beam. We expand Eq. (4-6) into a Taylor series to determine the
central frequency of motion using the OBB. For the z direction, we expand
around the point (ρ, zR), where the intensity distribution exhibits a Gaussian
profile and is the position where our particle will be trapped.

Iz(ρ, z) ≈ I0e
− ρ2

2W 2
0

16W 8
0 z2

R

(
4ρ2W 6

0

(
z2 + 4zzR − 9z2

R

)
+ 2ρ4W 4

0

(
25z2 − 66zzR + 45z2

R

)
− 4ρ6W 2

0 (4z − 5zR)(z − zR) − 16W 8
0 z(z − 2zR) + ρ8(z − zR)2

)
.

(4-7)
And for the x-y directions, expanding in (ρ, z) gives

Iρ(ρ, z) ≈ 4I0z
2z2

R

(z2 + z2
R)2 − 12I0z

2z4
Rρ2

W 2
0 (z2 + z2

R)3 (4-8)

Taking the derivative of Eq. (4-7) and (4-8) into Eq. (2-24), substituting
to values (0, z) and (ρ, zR) respectively and ignoring the constant term results
in

kz = 2πnmR3

c

(
m2 − 1
m2 + 2

)(
2I0

z2
R

)

= 2πnmR3

c

(
m2 − 1
m2 + 2

)
4P

πW 2
0 z2

R

(4-9)
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kx = ky = 2πnmR3

c

(
m2 − 1
m2 + 2

)(
3I0

W 2
0

)

= 2πnmR3

c

(
m2 − 1
m2 + 2

)(
6P

πW 4
0

)
(4-10)

Different from the Gaussian tweezer setup, in this case there is no
overfilling of the lens, thus our NA is not 0.77 as the maximum provided.
This creates a smaller trapping stiffness and, consequently, smaller resonance
frequencies values. Another point that the trap stiffness and frequency smaller
is the power, as it can’t be as high as with the Gaussian beam by experimental
reasons described in the next section. With this in mind, considering a
NA = 0.70 and power of 150 mW,

kz ≈ 0.21 pN/µm → fz ≈ 40 kHz (4-11)

kx,y ≈ 2.38 pN/µm → fx,y ≈ 134 kHz (4-12)

Compared to measured data verified by the plot in Fig-4.7 with the same
parameters

kz ≈ 0.13 pN/µm → fz ≈ 31.4 kHz (4-13)

kx,y ≈ 4.65 pN/µm → fx,y ≈ 187 kHz (4-14)
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(a) Resonance frequency on z. (b) Resonance frequency on x and y.

Figure 4.7: Resonance frequency of a trapped particle on x, y
and z directions.

Utilizing the SLM with a Gaussian mode enabled the observation of
different resonance frequencies within the same particle and pressure by varying
the power, as depicted in Fig-4.8.
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Figure 4.8: Resonance frequencies of a trapped particle on a
Gaussian beam at different power values.

In the experiment, a consistent difference in light intensity was observed
when varying the concentration between one and two particles per droplet. The
light intensity is noticeably greater with the higher concentration compared to
the lower concentration. This occurrence suggests that the potential well can
retain more than one particle. An image of this event can be seen in Fig-4.9.

One of the challenges in trapping particles with the OBB arises from
the noise in the SLM, which was observed after a meticulous analysis and can
be seen in Fig-4.10. This results in a challenge when observing the PSD of
the trapped particle, as it gets submerged beneath this noise. If two particles
are trapped, each in a distinct potential well, detection and analysis would be
problematic due to the limited resolution of our camera and the cumbersome
PSD analysis.

A potential solution could be the incorporation of new pair of lenses for
the 4F system that can better fulfill the trapping lens requirement and attain
a higher NA, or by adopting a more efficient model of SLM that can augment
stiffness, thus causing the frequency to shift to the right, or that doesn’t exhibit
this type of noise anymore. An alternative solution that doesn’t involve more
power of better NA could be utilizing a balanced detector; one end receives
only the noise without the SLM and the other end receives the noise plus the
PSD of the trapped particle, thereby allowing the noise to be mitigated by
subtracting one from the other; or by inserting an λ/2 waveplate and PBS
before the tweezing lens, implementing this way a backward detection, noticible
to be more efficient [52]. Implementing backward detection is intriguing as it
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(a) Low intensity scattered light from
trapped particle.

(b) High intensity scattered light from
trapped particle.

Figure 4.9: Different light intensities from trapped nanoparticle
that could indicate multiple particles being trapped in b).
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Figure 4.10: Noise caused by the SLM. PSD taken without
particle.

may also yield information about the distance between particles. This is because
the backward scattered light from the more distant particle can interfere with
that from the closer one, creating a signal that is proportional to the distance
between them.

Nonetheless, detection on the x and y directions avoids the issue of being
too close to the SLM noise. The PSD in Fig-4.11 was taken from a Gaussian
beam modulated by the SLM. It shows different peak positions, with two
well separeted and one with a flat top, possible caused by two peaks very
approximated, and that can be explained by a cluster of particles as represented
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in [63].
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Figure 4.11: PSD of apparent cluster of particles.
.



5
Conclusion and outlook

Over the course of approximately two years, the work described in this
thesis helped assembling a general-purpose vacuum tweezer experimental setup.
This required careful micro-metric precision alignment, and resulted in an
on-demand, stable vacuum optical trap which can now be employed in various
experiments. It is worth mentioning that, to the best of our knowledge this has
been the first vacuum optical tweezer for silica nanoparticles in Brazil. Two
initial experiments were conducted with the tweezer, one complete, and the
other in ongoing development.

The complete experiment consisted in a detailed study of the effect of
non-linear forces in the stochastic motion of a Brownian particle within the
perturbation regime. This study used a cubic nonlinear electric feedback force
to analyze alterations in the stochastic behavior of an underdamped levitated
nanoparticle, specifically measuring the changes in the particle’s position power
spectrum. The findings confirm previous theoretical predictions for nonlinear
optical tweezers [33]. The nonlinear feedback methods employed in this work
can be used as a resource for quantum state preparation beyond the intrinsic
nonlinearities present in standard optical potentials and for nonlinear damping
and control in both classical and quantum regimes.

For the ongoing experiment, we have setup a modified version of the
vacuum tweezer, connected now to a spatial light modulator for producing
structured light modes of the trapping beam. In particular, we have showed
that a particle trapped in a standard Gaussian tweezer can be successfully
transferred to a structured light mode, i.e. the optical bottle beam in vacuum.
Trapping in the bottle beam is interesting, as it has two neighbour intensity
maxima along the beam propagation, opening the possibility of trapping pairs
of particles at a close distance on the order of a micron. Once stable trapping of
particle pairs is successfully achieved, a myriad of possibilities opens in terms
of physics experiments. We could for instance study particle interactions, from
Coulomb to coherent scattering and optical binding, as well as multi-particle
cooling schemes via feedback of the optical trap and applied electric field. This
set the stage for multi-particle quantum optomechanics, which in the future
could lead to tests of quantum mechanics in new scales.
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