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Abstract

Campos Trinidad, Maykol Jiampiers; Cavalcanti Pacheco, Marco
Aurélio (Advisor); Arauco Canchumuni, Smith Washington (Co-
Advisor). Seismic Fault Segmentation using Unsupervised
Domain Adaptation. Rio de Janeiro, 2023. 73p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Seismic fault segmentation presents a challenging and time-consuming
task in geophysics, particularly in the exploration and extraction of oil and
natural gas. Deep Learning (DL) methods have shown significant potential to
address these challenges and offer advantages compared to traditional methods.
However, DL-based approaches typically require a substantial amount of labe-
led data, which contradicts the current scenario of limited availability of labeled
seismic data. To address this limitation, researchers have explored synthetic
data generation as a potential solution for unlabeled real data. This approach
involves training a model on labeled synthetic data and subsequently applying
it directly to the real dataset. However, synthetic data generation encounters
the domain shift problem due to the complexity of real-world geological situati-
ons, resulting in differences in distribution between synthetic and real datasets.
To mitigate the domain shift issue in seismic fault detection, we propose a novel
approach utilizing Unsupervised Domain Adaptation (UDA) techniques. Our
proposal involves using a synthetic dataset for model training and adapting it
to two publicly available real datasets found in the literature. The chosen UDA
techniques include Maximum Mean Discrepancy (MMD), Domain-Adversarial
Neural Networks (DANN), and Fourier Domain Adaptation (FDA). MMD
and DANN aim to align features in a common n-dimensional feature space by
minimizing discrepancy and increasing domain confusion through adversarial
training, respectively. On the other hand, FDA transfers the style from real to
synthetic samples using Fast Fourier Transform. For the experiments, we utili-
zed a smaller version of UNet and its variant Atrous UNet, which incorporates
Dilated Convolutional layers in its bottleneck. Furthermore, DexiNed (Dense
Extreme Inception Network), a state-of-the-art model for edge detection, was
employed to provide a more comprehensive analysis. Additionally, we studied
the application of fine-tuning on labeled datasets to investigate its impact on
performance, as many studies have employed it to reduce domain shift.

The final results demonstrated significant improvements in fault detec-
tion performance by applying UDA techniques, with up to a 13% increase
in evaluation metrics such as Intersection over Union and F1-score on ave-
rage. Moreover, the proposed approach achieved more consistent detections



of seismic faults with fewer false positives, indicating its potential for real-
world applications. Conversely, the application of fine-tuning did not show a
significant gain in performance but did reduce the training time.

Keywords
Seismic imaging; Deep learning; Fault Segmentation; Unsupervised

Domain Adaptation; Oil reservoir identification.



Resumo

Campos Trinidad, Maykol Jiampiers; Cavalcanti Pacheco, Marco
Aurélio; Arauco Canchumuni, Smith Washington. Segmentação
de falhas sísmicas usando adaptação de domínio não su-
pervisionada. Rio de Janeiro, 2023. 73p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

A segmentação de falhas sísmicas apresenta uma tarefa desafiadora e
demorada na geofísica, especialmente na exploração e extração de petróleo e
gás natural. Métodos de Aprendizado Profundo (Deep Learning) têm mostrado
um grande potencial para enfrentar esses desafios e oferecem vantagens em
comparação com métodos tradicionais. No entanto, abordagens baseadas em
Aprendizado Profundo geralmente requerem uma quantidade substancial de
dados rotulados, o que contradiz o cenário atual de disponibilidade limitada
de dados sísmicos rotulados. Para lidar com essa limitação, pesquisadores têm
explorado a geração de dados sintéticos como uma solução potencial para
dados reais não rotulados. Essa abordagem envolve treinar um modelo em
dados sintéticos rotulados e, posteriormente, aplicar diretamente ao conjunto
de dados real. No entanto, a geração de dados sintéticos encontra o problema
de deslocamento de domínio devido à complexidade das situações geológicas
do mundo real, resultando em diferenças na distribuição entre conjuntos
de dados sintéticos e reais. Para mitigar o problema de deslocamento de
domínio na detecção de falhas sísmicas, propomos uma nova abordagem que
utiliza técnicas de Adaptação de Domínio Não Supervisionada ou Unsupervised
Domain Adaptation (UDA). Nossa proposta envolve o uso de um conjunto de
dados sintéticos para treinamento do modelo e sua adaptação a dois conjuntos
de dados reais disponíveis publicamente na literatura. As técnicas de UDA
escolhidas incluem Maximum Mean Discrepancy (MMD), Domain-Adversarial
Neural Networks (DANN) e Fourier Domain Adaptation (FDA). MMD e
DANN visam alinhar características em um espaço de características comum
de n dimensões, minimizando discrepâncias e aumentando a confusão de
domínio por meio do treinamento adversarial, respectivamente. Por outro lado,
FDA transfere o estilo de amostras reais para sintéticas usando Transformada
Rápida de Fourier. Para os experimentos, utilizamos uma versão menor do
UNet e sua variante Atrous UNet, que incorpora camadas convolucionais
dilatadas em seu gargalo. Além disso, o DexiNed (Dense Extreme Inception
Network), um modelo do estado da arte para detecção de bordas, foi empregado
para fornecer uma análise mais abrangente. Além disso, estudamos a aplicação
de ajuste fino ou fine-tuning em conjuntos de dados rotulados para investigar



seu impacto no desempenho, pois muitos estudos o têm utilizado para reduzir
o deslocamento de domínio.

Os resultados finais demonstraram melhorias significativas no desempe-
nho de detecção de falhas ao aplicar técnicas de UDA, com aumento médio de
até 13% em métricas de avaliação como Intersection over Union e F1-score.
Além disso, a abordagem proposta obteve detecções mais consistentes de falhas
sísmicas com menos falsos positivos, indicando seu potencial para aplicações no
mundo real. Por outro lado, a aplicação de ajuste fino não demonstrou ganhos
significativos no desempenho, mas reduziu o tempo de treinamento.

Palavras-chave
Imagem sísmica; Aprendizado profundo; Segmentação de falhas; Adap-

tação de domínio não supervisionada; Identificação de reservatórios de petró-
leo.
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1
Introduction

1.1
Motivation

Seismic fault segmentation plays a crucial role in geophysics, particularly
in the exploration and extraction of natural resources such as oil and natural
gas. The accumulation of these resources in commercially viable quantities
relies on various geological factors. These factors encompass the presence of an
organic-rich source rock that generates oil or gas, a porous reservoir rock for
storage, and the presence of a trap mechanism to prevent hydrocarbon leakage.
One of the most common types of traps is fault traps, which result from rock
displacement along seismic faults, as depicted in Figure 1.1.

Seismic faults are geological structures that exert a significant influence
on subsurface reservoir behavior, controlling fluid flow and impacting hydro-
carbon distribution. Therefore, accurate identification and characterization of
faults are vital for constructing reliable geological models and facilitating in-
formed decision-making in the Oil & Gas industry.

Fault Trap Seismic Fault

Oil

Figure 1.1: Illustration of a fault trap. The blue area depicts water positioned
below the oil due to its greater density.
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However, the identification of faults from seismic data poses various
challenges. Typically, seismic data consists of large volumes of 3D data that
represent the subsurface structure of the Earth, as observed in Figure 1.2. A
single seismic survey can produce up to one terabyte of data daily, and seismic
datasets can quickly exceed many petabytes. Due to the size and complexity
of these datasets, advanced computational tools and techniques are required
for their processing and analysis. This makes the fault identification process
difficult and time-consuming, taking up to months to identify faults throughout
the entire volume [1]. Furthermore, the inherent noise and ambiguity in the
data further complicate the task. Lastly, manual labeling is highly subjective,
and the involvement of multiple expert geophysicists is necessary to minimize
errors and biases.

0.00  0.250 0.500 0.750 1.00  

Figure 1.2: 3D real seismic volume employed in [7] for evaluation.

To address the challenges in seismic data analysis, various
semi-automated and automated methods have been proposed, based on a
wide range of techniques, including attribute extraction [2, 3, 4], Machine
Learning (ML) [5, 6], and Deep Learning (DL) [7, 8, 9]. Among these tech-
niques, DL has been found to be particularly effective and has achieved the
best results in many applications.

Despite the potential benefits of traditional DL approaches for seismic
data analysis, there are still some limitations. As previously mentioned, the
primary limitation is the requirement for a substantial amount of labeled data,
which can be difficult and time-consuming to obtain [10, 11]. To address this
issue, researchers have explored the use of synthetic data generation for seismic
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faults. The idea is to train robust models on this synthetic data and then apply
them to real datasets directly [8, 9, 12]. Nevertheless, due to the complexity
of real-world geological situations, differences exist between synthetic and real
datasets, such as variations in seismic signal frequency, noise intensity, and
fault distribution frequency, making it challenging for models to generalize
effectively [13]. This difference in dataset distributions is known as domain
shift and remains a significant limitation for DL methods.

In order to tackle the domain shift problem, some studies have chosen to
employ transfer learning techniques like fine-tuning. Fine-tuning involves using
the knowledge gained from a pre-trained DL model on an initial dataset as a
starting point for training on another dataset. This process requires manually
labeling a significant number of samples from real datasets [11, 14] or using
automatic labeling methods [15], which enables the application of fine-tuning
with models pre-trained on synthetic data. Although these approaches have
demonstrated visual improvements, they still rely on supervised tasks [16] since
they heavily depend on generating labeled real samples.

Domain adaptation (DA) is a methodology aimed at improving classifier
generalization by minimizing differences between different data distributions.
The source domain represents the data used for training, while the target
domain contains data that the model must adapt to. When no labeled
samples are available in the target domain, it is called Unsupervised Domain
Adaptation (UDA). UDA techniques can generally be categorized into two
main groups: feature-level and image-level adaptation [17]. The former aligns
features in a common and agnostic n-dimensional feature space, while the latter
focuses mainly on style transfer between both domains.

In line with the methodology used in previous studies that applied
UDA to the CityScapes dataset [18, 19], synthetic datasets are predominantly
utilized as the source domain, whereas real datasets are employed as the target
domain. Although some studies have addressed seismic fault segmentation
using DA [16, 20, 21], they have applied only one technique per study, and
quantitative improvements in real 3D seismic blocks through DA have not
been fully explored due to the lack of labels in the real datasets.

In this dissertation, we propose a novel approach for seismic fault
segmentation using UDA. Our approach aims to develop end-to-end DL
frameworks that incorporates DA techniques to overcome the challenge of
domain shift and enhance model robustness and generalization capabilities.
We use a synthetic dataset as the source domain and two real seismic datasets
as the target domain. We apply three different UDA techniques (feature and
image-level adaptation) to allow for better comparison and to determine the
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most suitable UDA technique for this application. Quantitative improvements
are measured using appropriate metrics, taking advantage of the labeled
real dataset. Different DL architectures are also explored to assess their
impact on the application of UDA techniques. Our approach surpasses the
limitations of existing methods and demonstrates superior performance in
challenging scenarios, indicating its potential for practical applications. As a
complementary part of the study, fine-tuning experiments are conducted using
the two labeled datasets to explore the benefits of leveraging multiple domains
for enhanced model generalization.

1.2
Objectives

1.2.1
General Objective

The objective of this study is to assess UDA techniques in semantic
segmentation for seismic fault detection, with the aim of minimizing the
negative impact of domain shift.

1.2.2
Specific Objectives

– Implement different UDA techniques, such as feature-level and image-
level adaptation, for seismic fault segmentation.

– Evaluate the quality of the seismic fault segmentation results of applying
UDA techniques using visual inspection.

– Compare the performance of the seismic fault segmentation results
of applying UDA techniques with traditional supervised learning
approaches using accurate quantitative metrics.

– Assess the generalization capability of supervised learning approaches by
fine-tuning on diverse datasets.

1.3
Contributions and Novelties

The main contributions of this work are the following:

– Implementation and evaluation of UDA techniques for the semantic
segmentation of seismic faults. This task presents a greater challenge
compared to image classification and can serve as a benchmark for future
research in the field.
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– It was explored the effectiveness of different types of UDA techniques.
This allows for a more complete inspection of the UDA-based approach.

– Furthermore, it was investigated the performance of three architectures
for seismic fault segmentation: U-Net, Atrous UNet, and DexiNed. This
provides insights into the suitability of different DL networks for the
proposed task.

– It was utilized a different approach to apply fine-tuning for generalization
to new seismic datasets.

– The code1 for the proposed methods is publicly available, along
with detailed descriptions of the preprocessing and training protocols
employed. This enables further research to conduct comparisons by
applying other UDA techniques for fault segmentation.

Overall, this dissertation makes several contributions to the field of UDA-
based seismic fault segmentation, including the use of multiple datasets, the
exploration of different techniques, and the investigation of various network
architectures.

1Available code repository: https://github.com/mkl04/UDAforFaultDetection

https://github.com/mkl04/UDAforFaultDetection


2
Related Works

As mentioned earlier, the identification of seismic faults has been of
significant importance to the Oil & Gas industry for numerous years, as it
facilitates the exploration and discovery of new reservoirs. Thus, different
techniques have been developed to achieve this identification, which can be
classified into two categories: seismic attributes-based methods, and ML-based
methods [11].

2.1
Seismic attributes-based methods

Also known as handcrafted features-based methods, these methods
were the first to be used for seismic fault identification and were based
on the extraction of certain features or characteristics of different types in
mainly 2D sections. These attributes can be divided into three groups: edge
detection, geometric, and texture [5, 14]. Basic edge detection techniques,
such as coherence [2], semblance [22], variance [23], and chaos [24], are still
used for relatively simpler seismic interpretation, as they capture the high-
frequency variations and gradients that are indicative of fault edges. Geometric
attributes aim to capture the geometric properties and patterns associated
with faults. These attributes include measurements such as fault length and
are obtained by quantifying the geometric variations of seismic reflectors
using reflector curvature [3] or flexure [25]. Lastly, textural attributes are
more challenging to extract compared to other types of attributes. These
attributes rely on statistical analysis, where the spatial distribution of intensity
levels surrounding a pixel is estimated. Several texture attributes have been
suggested, including directionality, smoothness, and edge content [26], gray-
level co-occurrence matrix (GLCM) contrast and homogeneity [4], and gradient
of texture (GoT) [27], among others. Although widely used in remotely sensed
data, texture-based techniques face the issue of detecting line-like edges while
dealing with spatial resolution statistics [11].

In seismic interpretation, seismic attributes-based methods face several
limitations when dealing with large-scale seismic data obtained through 3D
surveying technologies. These methods are highly time-spatially complex,
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computationally intensive, and often struggle to achieve high accuracy, making
them impractical for industrial deployment [1]. Some seismic attributes such as
semblance, coherence and variance are highly sensitive to noise and insufficient
for detecting faults [7]. Moreover, preprocessing of seismic datasets is necessary
to achieve a certain signal-to-noise level before applying feature extraction
methods. However, due to the sensitivity of these methods to noise, it is often
necessary to manually adjust parameters by trial and error, taking into account
the unique geological structure and data quality of different datasets [9].

2.2
ML-based methods

Initially, many researchers chose to use the attributes or features ex-
tracted by applying the techniques described in the previous section and com-
plement them with classic ML techniques, such as Random Forest, Support
Vector Machine (SVM) or even Multi Layer Perceptron (MLP). However, in
some cases, defining labels indicating the presence of faults was necessary. The
initial approach involved a classification procedure, where each section of the
3D seismic volume was divided into small patches, and it was assigned whether
it belonged to a fault or not based on a minimum percentage of seismic fault
pixels present in the patch.

For example, in [5], the authors extracted 14 attributes from the three
mentioned groups (edge detection, geometric, and texture), which were used
as input variables to the SVM model to classify between two sets of manually
selected samples where one set indicates the presence of seismic faults and the
other does not. Similarly, in [6], a multi-attribute SVM was applied, but using
another group of attributes called descriptors, which include Local Binary
Pattern and its variants [28]. There have also been some attempts to apply
unsupervised algorithms, such as in [29], where another list of attributes was
extracted, and the different pixels were clustered using the Self-Organizing
Maps algorithm. Although combining attributes with ML improved the results,
the drawbacks of time-consuming feature extraction and complexity remained.

Following the success of Convolutional Neural Networks (CNN) in image
classification tasks across different domains, researchers began extracting
features from seismic data at the image level. Specifically, they focused on
texture attributes while allowing the model to learn and generate new filters
automatically during training. These techniques are commonly referred to as
DL-based methods, which use multiple convolutional layers to improve valida-
tion scores at the cost of higher computational requirements. For example,
in [8], it was trained a basic CNN using manually labeled sections from



Chapter 2. Related Works 23

Great South Basin (GSB), which is a very used dataset for identification of
faults. Their network architecture was based on LeNet-5 [30], as illustrated
in Figure 2.1. Similarly, in [31], it was employed three sections along each
orthogonal axis to estimate the pixel values at their intersections. To accom-
plish this, they concatenated the three sections as input to their customized
CNN and used an auto-picking method to label its data.

Figure 2.1: Basic CNN classifier used for fault detection (extracted from [8]).

A common challenge observed in these research studies was the lack of
large volumes of high-quality labeled data due to the time-consuming process of
manual labeling and the unavailability of publicly shared datasets. To overcome
this limitation, the use of synthetic data generation techniques based on the
workflow of [32] was adopted. This approach involves training models using
synthetic seismic data and subsequently evaluates their performance on real
datasets. For instance, in [33], synthetic seismic sections were generated along
with their corresponding seismic faults for classification, similar to Figure 2.1.
In another study [34], the focus was not only on fault classification but also
on predicting the inclination angle of the generated seismic faults.

Furthermore, in [7], a more advanced approach was pursued by shifting
from image classification to pixel-level classification or Semantic Segmentation.
In this approach, 3D seismic blocks with multiple faults along their three
axes were generated. The trained model, named FaultSeg3D, was a simplified
version of the well-known UNet architecture [35], adapted to 3D inputs as
illustrated in Figure 2.2. This approach resulted in more continuous fault
predictions, which were further enhanced using other architectures such as
ResUNet [36] and UNet++ [12].

As previously mentioned, transfer learning was one of the proposed
solutions to address the domain shift arising from the distribution differences
between synthetic and real data [13], where the synthetic samples are the ones
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Figure 2.2: FaultSeg3D architecture for 3D fault segmentation (extracted
from [7]).

generated in the prior study [7]. In [14], some sections of the real dataset were
manually labeled, and two transfer learning techniques were applied. The first
approach involved training the entire network with initial weights set to the
pre-trained model weights, rather than random ones (full fine-tuning). The
second approach froze the weights of the convolutional layers, using them only
as a feature extractor. The extracted features were then fed into an SVM or
MLP to classify the presence or absence of seismic faults. Although studies have
been conducted for automatically generating labels in real datasets to apply
fine-tuning, as in [15], the potential improvement depends on the amount of
available labeled data and the domain shift between datasets [37].

Before exploring studies that have applied Domain Adaptation (DA) to
mitigate the domain shift, it is important to acknowledge the work in [9].
They introduced a new labeled real dataset named Thebe and made specific
modifications to address the task of edge detection, resulting in significant
performance enhancements on datasets such as GSB and the one utilized in
FaultSeg3D. A comprehensive summary of other traditional DL-based studies
on seismic faults up until 2020 can be found in [1].

According to literature [38], the first paper that applied UDA for Seman-
tic Segmentation was [19], which utilized domain adversarial training for global
domain alignment and class-aware constrained multiple instance loss for trans-
ferring spatial layout. This approach has been extended to various applications,
including faults detection. For instance, in [20], the authors utilized Domain
Adversarial Neural Network (DANN) [39] as a domain adaptation method for
a model based on UNet [35]. They used the same synthetic data generated
in [7] as the source domain for training and a real dataset as target domain.
Since there were no labels, the evaluation was visual, and this feature-level
adaptation achieved the detection of much finer seismic faults.
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Later, the same author propose a progressive transfer learning to reduce
the impact of data distribution differences and update the training dataset
with predicted intermediate data and pseudo-labels. The next intermediate
data is processed progressively, reducing the distance between the updated
training data and the target prediction data. The experimental results show
that this method is effective in improving the performance of fault detection
in seismic data with limited labeled samples [21].

In another study [16], the problem was addressed using Cycle Generative
Adversarial Networks (CycleGAN) [40], which falls under image-level adapta-
tion techniques. CycleGAN involves generating data using the style of the sam-
ples in both domains. The results showed great style transfer in real datasets,
which could be further explored using the datasets presented in this disserta-
tion to evaluate its performance using metrics.

The latest paper, to the best of our knowledge, that addresses bridging
the domain discrepancy between synthetic and real seismic datasets is
presented in [41]. They propose an alternative data standardization technique
to make both the source domain and target domain distributions similar. To
achieve this, they apply a series of transformations such as z-score normaliza-
tion and equal frequency normalization. Additionally, to leverage the advan-
tages of 3D-based models that capture more spatial context information, they
use multiple sections as inputs, treating them as channels, and utilize the labels
from the middle section as the target. This approach was called 2.5D inputs
and improves visual results without significantly consuming GPU memory and
reduces training time.



3
Fundamentals

3.1
Seismic Data Interpretation

Seismic data interpretation is of great importance in the Oil & Gas
industry, particularly in the field of seismic exploration. Through the utilization
of advanced technology and geophysical techniques, seismic interpretation
plays a vital role in gaining a deep understanding of the fundamental principles
necessary to comprehend the subsurface of the Earth and identify valuable
energy resources.

Seismic exploration begins by utilizing reflective seismic waves to predict
subsurface structures. This intricate process involves a series of critical steps,
including the acquisition and processing of seismic data. These data processing
steps encompass various techniques like denoising to remove unwanted noise
and interpolation for filling in missing data gaps.

Additionally, inversion techniques are employed, which include migration
and imaging methods. Migration techniques help transform the recorded seis-
mic data into a spatial representation, allowing for a more accurate depiction
of subsurface features. Imaging techniques refine these representations further,
enhancing the quality and resolution of the subsurface images. Furthermore,
seismic exploration also involves interpretation tasks, such as fault detection
and facies classification [42]. The procedure of exploration geophysics is sum-
marized in Figure 3.1.

Geo-scientists analyze seismic data to unravel the complexities of subsur-
face structures and identify potential areas where oil and gas deposits may be
trapped. Trap identification is a critical initial step in evaluating prospects and
is integral to any exploration or assessment program. A trap can be defined as
a geometric arrangement of rock that enables the significant accumulation of
hydrocarbons beneath the surface of the Earth [43].

Traps can be broadly categorized into three types: structural traps,
stratigraphic traps, and combination traps that exhibit both structural and
stratigraphic elements. Structural traps can further be subdivided into fold
traps (anticlinal), traps associated with geological faults, traps associated with
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Figure 3.1: The procedure of exploration geophysics. (a) Seismic waves are
propagated downward to the reflector and then are recorded by the receivers.
(b) Velocity inversion method as preprocessing. (c) The seismic imaging result.
(d) Seismic Interpretation. Figure extracted from [42].

piercement features (such as salt bodies), and combination traps that require
elements of both faults and folds for their effectiveness. The significance of
identifying fault traps and the utilization of ML tools for this purpose is em-
phasized here due to their substantial advantages over alternative technique [1].

3.1.1
Geological faults

Geological or seismic faults are defined as plane surfaces where the
relative movement of tectonic units occurs. These faults can either facilitate
fluid flow or act as boundaries that create hydrocarbon structural traps
or reservoir compartments. Faults are of great importance in hydrocarbon
exploration and field development, making it essential to understand the
complex connections between fault networks and fractures [1]. They are also a
primary consideration in reservoir characterization [5].

The recognition of faults can be made by observing the presence of
different rock types across a generally flat surface, which exhibit textures and
structures that are typically produced by shearing. Fault planes can either be
vertical or inclined at an angle, known as the dip, which is the acute angle
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Figure 3.2: Types of fault, where arrows indicate direction of movement. (a)
normal fault; (b) reverse fault; (c) sinistral fault; (d) dextral fault; (e) oblique-
slip (sinistral-reverse) fault. Figure adapted from [44].

between the fault plane and a horizontal surface. Faults are classified based on
the direction the crustal blocks have been displaced parallel to the fault plane.
Dip-slip displacement occurs when there is vertical movement oriented parallel
to the dip of the fault plane, while horizontal offset parallel to the fault plane
is referred to as strike-slip displacement. Oblique-slip faults have components
of both dip-slip and strike-slip displacement.

Dip-slip faults are categorized as normal or reverse depending on the
relative movement of the crustal blocks bounding a fault plane. Normal faults
occur when the hanging wall moves down relative to the footwall, while reverse
faults have the opposite sense of displacement. On the other hand, as per
convention, a strike-slip fault exhibits a left-lateral displacement, commonly
known as sinistral displacement, when the crustal block opposite the position
of observer moves to the left. In contrast, a right-lateral displacement, known
as dextral displacement, takes place when the opposite crustal block is shifted
to the right from the perspective of observer [44]. In Figure 3.2, the described
types of faults are shown.

3.2
Semantic Segmentation

Prior to delving into the definition of semantic segmentation, it is
pertinent to provide a brief overview of the concept of Deep Learning (DL),
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which is a subfield of ML that involves the use of artificial neural networks
with multiple layers, enabling the learning of complex data representations.
DL has achieved success in various applications, including image and speech
recognition, natural language processing, and robotics [45].

3.2.1
State-of-the-art

The boom of DL in computer vision began with the application of
CNN [46] in the 2012 ImageNet competition, which involved classifying 1.3
million high-resolution images into 1000 different classes where CNN surpassed
other solutions. However, it should be mentioned that these had already been
presented in [30] to perform classification on the well-known MNIST dataset
of handwritten digits.

To identify different objects within an image, pixel-level classification or
semantic segmentation was necessary, since image classification alone was not
sufficient for the task. One of the proposed approaches at the beginning was
to generate several small subsets from input image, known as patches, and
classify the pixel in the center of each patch. After being trained, the inference
was performed throughout the entire image and the output was reconstructed.
However, this process was very expensive computationally and did not return
good results.

It was not until 2014 that was introduced the first ideas of applying
downsampling at the beginning, and then converting all fully connected layers
to convolutions to return to the original dimensions of the input image at once,
turning the networks into a Fully Convolutional Network (FCN) [47]. This
type of CNN architecture is also commonly referred to as an encoder-decoder
structure and enables the extraction of essential features or filters without
the need for an excessive number of parameters. An example is illustrated
in Figure 3.3, which belongs to the architecture SegNet [48].

Figure 3.3: Convolutional encoder-decoder architecture for semantic segmen-
tation (extracted from [48]).
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A representative diagram illustrating the distinctions between image
classification and semantic segmentation is presented in Figure 3.4. As
depicted, these tasks address different questions. Image classification focuses
on determining the presence or absence of a seismic fault in the input image,
along with a certain probability. On the other hand, semantic segmentation
provides a probability map of the same size as the input image, allowing the
separation of pixels that are detected as seismic faults based on a threshold.

Is there a seismic fault?

Yes

No

Which pixels belong to
seismic fault?

Enc Dec

Image Classifica�on Seman�c Segmenta�on or Pixel-wise
classifica�on

FCN

CNN

Figure 3.4: The differences between image classification and semantic segmen-
tation.

Next, it will be described the networks used for this study, along with a
brief explanation of why they were considered as options.

3.2.1.1
U-Net (UNet)

UNet was chosen as the base model due to its impressive performance
and relatively simple implementation. It is a type of CNN commonly used for
semantic segmentation tasks that was introduced in 2015 [35]. The architecture
of UNet consists of an encoder-decoder structure with skip connections between
corresponding layers of the encoder and decoder. The encoder part is composed
of multiple convolutional layers with pooling operations to downsample the
input image, while the decoder part upsamples the feature maps to produce
the segmentation mask. The skip connections help to preserve the spatial
information of the image and improve the accuracy of the segmentation.

UNet has been widely used in various applications such as biomedical
image segmentation, satellite image analysis and also for fault segmentation [9,
7]. It has shown promising results and outperformed other segmentation
methods in many cases.
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3.2.1.2
Atrous U-Net (Atrous UNet)

This is a customized network that was originally presented during
a Kaggle competition2 and later utilized in one of our papers, where its
superior performance in segmenting seismic images for Facies identification was
demonstrated [49]. The network, known as Atrous UNet, was also employed
by [50] for satellite image segmentation. This architecture follows an encoder-
decoder format with a modification in the bottleneck section, incorporating
a series of Atrous or Dilated Convolutions with varying dilation rates (r),
similar to the Atrous Spatial Pyramid Pooling (ASPP) [51]. Unlike traditional
convolution, which employs a fixed-sized kernel, dilated convolution introduces
gaps in the kernel to expand its receptive field without increasing the number
of parameters. This enables the network to capture features at various scales,
making it particularly advantageous for tasks such as image segmentation. For
instance, as depicted in Figure 3.5, the filter on the right-hand side operates
much like a 5 × 5 kernel while utilizing the same number of parameters as a
3 × 3 kernel.

Normal Convolu�on
3 × 3

Atrous Convolu�on
3 × 3, 𝑟 = 2

Figure 3.5: Both convolution layers have a kernel size of 3 × 3 and the same
number of parameters. The Atrous or Dilated Convolution has a dilation
ratio (r) of 2, which allows it to capture more contextual information without
increasing the number of parameters.

2Code repository: https://github.com/lyakaap/Kaggle-Carvana-3rd-place-solution/

https://github.com/lyakaap/Kaggle-Carvana-3rd-place-solution/
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3.2.1.3
Dense Extreme Inception Network (DexiNed)

In the paper [9], a shift from semantic segmentation to edge detection was
proposed for seismic fault analysis due to the thin nature of seismic faults. To
address this, more robust networks such as Holistically-Nested Edge Detection
(HED) [52] were utilized. However, further research revealed that DexiNed
had already surpassed HED in different datasets such as BSDS500 [53], so
it was decided to employ DexiNed for this study. DexiNed introduced the
Inception module, which comprises parallel convolutional layers with different
kernel sizes. This architecture enables the network to capture information at
multiple scales and extract finer details, thereby enhancing its accuracy in
detecting edges and boundaries. Similar to the Atrous UNet, DexiNed utilized
dilated convolutions.

3.2.2
Evaluation Metrics

Three widely used metrics to assess labeled datasets for semantic segmen-
tation tasks are Intersection Over Union (IOU), F1-score (F1), and Average
Precision (AP). These metrics are derived from two fundamental measures:
Precision (P) and Recall (R). Precision calculates the fraction of retrieved
information that is relevant, whereas Recall estimates the fraction of relevant
information that is retrieved by the models:

P = TP

TP + FP
(3-1)

R = TP

TP + FN
(3-2)

where, for this research, True Positive (TP) are pixels that both the
machine and the interpreter consider to be fault pixels, False Positive (FP) are
pixels that the machine considers to be fault pixels while the interpreter does
not, and False Negative (FN) are pixels that the interpreter classifies as fault
pixels while the machine does not.

Since some applications require both a good Precision and Recall, F1-
score provides a balanced evaluation of the two metrics when both are
considered equally important. The F1-score is calculated as the harmonic mean
of Precision and Recall:
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F1 − score = 2 × P × R

P + R
(3-3)

The IOU score is another important metric in semantic segmentation.
It measures the overlap between the ground truth and the prediction, derived
from Precision and Recall as follows:

IOU = intersection

union
= TP

TP + FN + FP
= 1

1
R

+ 1
P

− 1 (3-4)

Furthermore, Average Precision (AP) calculates the Area Under the
Precision-Recall curve (AUPRC) graph in binary classification tasks, taking
into account all possible threshold values. As the model assigns a probability
value between 0 and 1 to each pixel, the AP summarizes the overall per-
formance of the classifier. Unlike the widely used AUC-ROC (Area Under
the Curve of the Receiver Operating Characteristic), Average Precision (AP)
evaluates the effectiveness of a model’s positive classification, specifically its
capability to accurately classify seismic faults as positive cases. The distinction
between these two curves is illustrated Figure 3.6, where the AP score provides
a more realistic assessment of the model’s performance.
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Figure 3.6: The difference between both curves: AUC-ROC (left) and AUPRC
(rigth).

While in the described curves, all possible thresholds are considered, in
tasks such as edge detection, knowing the optimal threshold has a greater
impact both on the metrics and visually. For this reason, Optimal Dataset
Scale (ODS) and Optimal Image Scale (OIS) are the most widely used and
representative evaluation metrics for assessing edge detection [54]. ODS, also
known as global best, calculates the F1-score using the best fixed threshold
across the entire dataset, while OIS selects the best threshold for each image
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and then calculates the F1-score. Based on these definitions, OIS will always
be greater than or equal to ODS.

3.3
Domain Adaptation for Seismic Fault Detection

Domain Adaptation (DA) techniques emerged as a consequence of the
high cost of acquiring labeled data, which is necessary for training DL models.
To have a clear understanding of the concepts, it is necessary to first introduce
their notation.

Let DS = XS × YS represent a collection of paired samples and annota-
tions (XS = {xi}M

i=1 and YS = {yi}M
i=1, respectively). These samples are

drawn from a source distribution PS(X, Y ), which is the source domain. In
the context of semantic segmentation for seismic faults, x and y correspond
to images and their pixel-wise annotations, respectively. Here, x ∈ RH×W ×1

and y ∈ RH×W ×1, where (H, W ) is the image size. Note that x has only one
channel as it represents gray-scale input images. Let DT = XT = {xi}N

i=1 be a
set of unlabeled samples obtained from a target distribution PT , representing
the target domain, such that PS ̸= PT due to the domain shift. In the UDA
setup, both sets are available during training (D = DS ∪ DT ). The ultimate
objective is to train a model that performs effectively on samples from the
target distribution [38].

Misclassify

Source Domain Target Domain

Source Domain Classifier

Domain Gap

Domain Adaptation

Cross Domain Classifier

Figure 3.7: Representation of Domain Adaptation to mitigate the domain shift
problem between the source and target domains (extracted from [55]).

The process of adapting a model trained in a source domain to a target
domain, with the aim of reducing the domain gap and improving performance,
is referred to as Domain adaptation and is depicted in Figure 3.7. When
this adaptation is achieved without using labeled target samples, it is called
Unsupervised Domain Adaptation (UDA) [38]. Given the complexity and non-



Chapter 3. Fundamentals 35

linearity of DL models, numerous algorithms for UDA have been developed
in recent years, such as metric alignment-based and adversarial learning-based
algorithms [55], whose definitions are represented in the techniques that were
used.

UDA techniques can be broadly classified into two main types. The first
type, known as feature-level adaptation, focuses on reducing the domain gap
by aligning features in a common and agnostic n-dimensional feature space.
The second type, image-level adaptation, aims to transfer the visual style from
the target domain to the source domain. These groups are also referred to as
representation matching and image translation, respectively [37].

As proposed in this dissertation, the goal is to utilize at least one tech-
nique from each main type of UDA to enable a direct comparison and determine
which approach would be most suitable for seismic fault segmentation.

3.3.1
Feature-level adaptation

The general UDA methods proposed for image classification aim to align
different domains by minimizing some distance metrics, such as Maximum
Mean Discrepancy (MMD) [56] or CORrelation ALignment (CORAL) [57],
or through adversarial training of a domain discriminator. These methods
operate in a latent space to align feature distributions of source and target
data. They have been successfully applied in semantic segmentation problems,
particularly the adversarial training approach, which has been combined with
other techniques to achieve improved results.

3.3.1.1
Maximum Mean Discrepancy (MMD)

The intuition behind this metric is that learn a representation that
minimizes the distance between the source and target distributions, then it
can be trained a classifier on the source labeled data and directly apply it to
the target domain with minimal loss in accuracy [56].

To minimize the distance between the source and target domains, differ-
ent versions of MMD have been used. The empirical approximation is given
by:

MMD(XS, XT ) =

∥∥∥∥∥∥ 1
|XS|

∑
xs∈XS

ϕ(xs) − 1
|XT |

∑
xt∈XT

ϕ(xt)

∥∥∥∥∥∥
2

(3-5)

where ϕ(.) is a representation of the samples in both the source and target
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domains. This value is minimized and usually accompanies the minimization
of the loss of the task to be optimized, such as binary cross-entropy (BCE) for
image classification.

Some research has focused on optimizing and enhancing current metrics.
For instance, in [58], it was introduced a multi-kernel version (MK-MMD) to
reduce the Type II error, while in [59], it was proposed a multi-RBF kernel
as the Taylor expansion of the Gaussian function can match all the moments
of the two populations. For this research, it was chosen the last one version.
Other researchers utilize it to complement their proposed techniques, as evident
in [60].

3.3.1.2
Domain-Adversarial Neural Networks (DANN)

The Domain Adversarial Neural Network (DANN) [39] is a topology that
utilizes adversarial training to learn latent representations of images that are
invariant across domains. Specifically, it minimizes the discrepancy between
two latent probability distributions, which are parameterized by a feature
extractor (Gf (., θf )) as shown in Figure 3.8.

Figure 3.8: DANN architecture (extracted from [39]).

To achieve UDA, a domain classifier (Gd(., θd)) is added and connected
to the feature extractor using a Gradient Reversal Layer (GRL), which has
no associated training parameters. The GRL acts as an identity transforma-
tion during forward propagation, but during backpropagation, it multiplies
the gradient by a negative constant (−λ). This multiplication ensures that the
gradients flowing through the GRL are reversed and, thus, contribute to min-
imizing the domain discrepancy. The label predictor (Gy(., θy)) then estimates
the labels of the input samples which are used to compute the classifier loss
(Ly). The total loss is given by the following equation:
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E(θf , θy, θd) = Ly(θf , θy) − λLd(θf , θd) (3-6)

where, (Ld) is the loss for the domain classifier. The optimal parameters
(θ∗

f , θ∗
y, θ∗

d) are obtained during training by updating the parameters in two
stages to satisfy the following equation:

(θ∗
f , θ∗

y) = argmin
θf ,θc

E(θf , θy, θ∗
d) (3-7)

θ∗
d = argmax

θd

E(θ∗
f , θ∗

y, θd) (3-8)

3.3.2
Image-level adaptation

In contrast to feature-level adaptation, some works perform domain
adaptation at the image level by translating source data to the style of the
target domain, or vice versa. Many strategies in this category are based
on the CycleGAN technique [40], which enables image translation between
different domains without paired training data. This neural network tackles
the Generative Adversarial Network (GAN) method [61], which involves two
networks pitted against each other: a generative model, G, that captures data
distribution and a discriminative model, D, that distinguishes between G-
generated samples and training data images by predicting a binary label.
Through a process of cycle consistency, the network can learn to map images
from one domain to another, resulting in consistent-looking images in both
domains.

While some techniques have focused on modifying input images and have
demonstrated better results on some datasets such as CityScapes [62], this
study confines itself to conventional fault detection methods. The objective
is to begin the investigation with less complicated techniques and gradu-
ally advance to more complex network implementations. Fortunately, there
are techniques such as Fourier Domain Adaptation (FDA) that outper-
formed other techniques like Cycle-Consistent Adversarial Domain Adaptation
(CyCADA) [63] with minimum effort for the same CityScapes dataset [18].

The FDA technique [18] starts by computing the Fast Fourier Transform
(FFT) of an image from both the source domain and the target domain,
extracting both amplitude and phase information. In the subsequent step,
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the low-frequency components of the target image are translated onto the
source image to facilitate this stylistic transition between the two domains.
Image selection is done randomly, and the magnitude of spectral signal
transfer between domains is controlled using the parameter β ∈ (0, 1). The
recommended value is 0.3, as a higher value of β can introduce artifacts. After
this frequency-based substitution, the inverse FFT is applied to the source
image, yielding an image that now possesses a style akin to that of the target
domain.

The Figure 3.9 illustrates an example of applying spectral transfer from
a CityScapes image, representing the target domain, to a labeled synthetic
image from the source domain. These newly generated images will have a style
similar to the target domain and will be used to train a model using the labels
from the source domain, resulting in more accurate inference in the target
domain.

Figure 3.9: Example of spectral transfer for CityScapes dataset (extracted
from [18]).



4
Methodology

This chapter provides a comprehensive overview of the methodology
proposed for this study. We utilized a total of three datasets, two of which were
labeled either manually or through synthetic generation, while the remaining
was unlabeled public real dataset [9, 7]. To ensure consistency, a standardized
preprocessing technique was applied to each dataset, allowing for the utilization
of the same neural network despite their varying dimensions.

Moreover, a detailed explanation of the different training stages is
presented. This includes supervised training to establish baselines for each la-
beled dataset, followed by training using UDA techniques at either the feature-
level or image-level. Additionally, as a complement to traditional approaches,
fine-tuning is employed to assess its impact on the initial supervised training
stage.

Lastly, the inference process is discussed, highlighting the need for image
reconstruction techniques, as well as the adoption of various metrics for eval-
uating the labeled datasets. This section also introduces novel metrics specifi-
cally designed for seismic fault detection applications. The overall framework
of the proposed methodology is illustrated in Figure 4.1.

4.1
Preprocessing protocol

While many available datasets consist of large volumes, researchers
have found in several papers [9, 11, 20, 64] that an effective approach is to
divide them into sections for each volume. This methodology provides greater
flexibility in defining the input dimensions of our model, as generating voxels
can be challenging due to considering size in all three axes. Since the sections
generated for each volume still remain large and non-uniform, it was chosen to
generate square patches or tiles within each section extracted from the volumes.

Firstly, a patch size was defined for all datasets to avoid any complica-
tions during model training and inference. For extraction, a sliding window
procedure with a 50% overlap in each direction was used, along with reflec-
tion padding to ensure inclusion of border pixels. Similar to [9], it was used
an additional parameter called step size, which involves skipping consecutive
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Figure 4.1: The general scheme of the proposed methodology. Where XS and
yS represents images and labels on source domain, respectively. XT are dataset
on target domain and FS(.) is the pre-trained model on source domain for fine-
tuning on target domain.

sections to reduce the number of samples and thus decrease training time, as
neighboring sections share very similar characteristics. To confirm this point,
the pixel differences between consecutive sections were computed, revealing an
average close to zero.

The authors also suggested utilizing patches in which only 3% of the
pixels were classified as faults. However, this contradicts the assumption of
not having predefined labels, as mentioned in [65]. After a quick inspection
of the patches generated without any filtering, it was observed that some
patches had a high percentage of identical values in areas near the ends of the
sections, which, in turn, did not contain seismic faults. This could have resulted
from complexities in the seismic imaging process due to insufficient seismic
signal information. Therefore, only patches where more than 50% of the pixels
had distinct values were considered, as this approach helps to avoid selecting
patches that were generated inaccurately or contained missing information.
The final proposed protocol is illustrated in Figure 4.2, using a step size of 3,
which was chosen empirically.

Finally, after extracting and filtering patches from each dataset, data
loaders were established for every dataset. These loaders encompassed the
train, validation, and test sets, which will be subsequently defined for each
respective dataset. This facilitated direct loading and allowed for the modi-
fication of certain configurations, such as the number of samples to be used
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Figure 4.2: Proposed preprocessing protocol.

during training, the standard normalization or z-score, and the application of
different combinations of data augmentation.

4.2
Training protocol

For this study, three training stages were conducted to facilitate a
comprehensive analysis of the results obtained from traditional and UDA
methods. Prior to training, it is important to note that neural networks with
an encoder-decoder architecture were selected due to their adaptability to the
discussed UDA methods, with the encoder primarily functioning as a feature
extractor or backbone.

The first stage, referred as Supervised Training, enabled the establish-
ment of lower and upper bounds performance for subsequent stages. To achieve
this, each labeled dataset, whether synthetic or real, was trained using the se-
lected models (UNet, Atrous-UNet, and DexiNed) on their respective training
sets through a supervised learning approach. Depending on the database in
which the trained models were assessed, the performance limits were defined.
For instance, evaluating a model on the test set of the same dataset on which it
was trained yields the maximum attainable value (upper bound). Conversely,
assessing the model on a distinct dataset without any Domain Adaptation
can be considered as the expected minimum performance without UDA (lower
bound). Ideally, the metrics obtained using UDA should be closer to the max-
imum value than the minimum value.

In the second stage, consistent with the approach used in prior research
that applied UDA to the CityScapes dataset [18, 19], synthetic datasets are
used as the source domain, while real datasets are used as the target domain in
order to apply UDA. The architecture configurations and loss functions were
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modified based on the chosen UDA methods and adjusted empirically. Among
the techniques mentioned in the previous chapter 3, only MMD, DANN, and
FDA were used in this study. The configuration of architectures involved
determining the placement and necessity of multiple branches for feature-level
adaptation techniques. In the case of FDA, no architectural changes were made,
as the style transfer is applied prior to the input of patches into the neural
network. Evaluation was exclusively carried out on the validation sets of the
real datasets.

Lastly, since many studies have applied transfer learning techniques [9,
14, 10], it was also explored the use of one of its most well-known techniques,
fine-tuning, to determine its impact on the results. For example, a recent pa-
per [66] conducted a similar analysis using pre-trained models on RGB datasets
such as ImageNet [67], COCO [68], and BSDS500 [69, 70], demonstrating that
fine-tuning only improves training in specific cases. However, this could also be
attributed to the fact that the models were trained on domains unrelated to
seismic data and with RGB images. Therefore, it was decided to investigate the
effect of fine-tuning by initializing the model weights with pre-trained models
on seismic datasets. For all fine-tuning experiments, no layers were frozen to
allow them to be optimized as needed (full fine-tuning). It is important to note
that this training approach was only applied to labeled datasets because the
objective of this application is to determine if this technique would provide
any benefits in the presence of labels in our target domain.

During the tuning process, various hyperparameters were considered,
including batch size, learning rate (static or dynamic), number of epochs,
application of different data augmentation configurations, weighting schemes
for loss functions in Domain Adaptation, and certain model modifications
such as the inclusion of batch normalization and dropout. All models were
implemented using the PyTorch framework (version 1.6) and for training was
used a GPU Nvidia Volta V100 32GB.

4.3
Inference and Evaluation process

The evaluation process was carried out in two ways depending on whether
the dataset was labeled or not. Metrics were used for labeled datasets, while
for unlabeled datasets, visual comparisons were made. These evaluations were
performed at the section level. To do this, the same technique described by
the preprocessing protocol was first used to generate patches, but with a fixed
step size of 1 since intermediate sections cannot be ignored during inference.
Once the patches were generated, they were inferred using the trained model



Chapter 4. Methodology 43

to obtain their probability map. After this step, the reconstruction of the
sections was carried out by averaging the probabilities of overlapping pixels for
consecutive patches. Since the quality of the predictions decreased from the
center to the edges of the patches, the technique proposed in [9] was considered,
where a squared spine window function was applied to merge adjacent patches
smoothly. This approach involves generating a 2D matrix, where the intensity
of values decreases from the center towards the edges, and then multiplying
this matrix with each inferred patch before summing the overlapping regions.
The difference between applying and not applying this technique is shown
in Figure 4.3 for one of the datasets, confirming that the applied technique
delivers a much smoother result.

(c)(b)(a)

Figure 4.3: Comparison of Merge Method: (a) Seismic + Fault annotation; (b)
Average merge; (c) Smooth merge. Figure adapted from [9].

After the sections have been reconstructed, for the case of labeled
datasets, evaluations are conducted using metrics. While there are already
common metrics for evaluating models attempting to solve the task of semantic
segmentation, such as IOU and F1, these are not the most suitable for
our seismic fault detection application. Seismic faults, being thin lines, are
frequently not precisely detected by neural networks in the exact pixels where
they were labeled. Instead, they are often detected in nearby regions, as
illustrated in Figure 4.4. This can result in misleading scores, falsely indicating
that the faults were not detected in that particular section. Hence, it is essential
to incorporate a tolerance factor to account for such discrepancies. This premise
is described in [71], where they proposed the use of more suitable metrics for
evaluating seismic fault detections, taking into account a tolerance.

The approach begins by defining a tolerance function tf (.) that exhibits
Gaussian behavior:

tf (d) = e− d2
2σ2 (4-1)
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(a) (b) (c)

Figure 4.4: Synthetic example of possible difference between ground truth
and predictions: (a) ground truth (black curves); (b) prediction (blue-to-red
curves); and (c) ground truth/prediction comparison. Figure adapted from [71].

where d is a measure of distance and σ is the parameter that controls
tolerance and uncertainty.

To calculate the new Precision and Recall values, taking into considera-
tion this tolerance factor, the process relies on Equations 3-1 and 3-2. It can be
observed that the numerator is the same (TP ), while the denominators corre-
spond to pixels predicted as positive (NP ) and those belonging to the ground
truth (NGT ), respectively.

To estimate the numerator TP which represents correct predictions, the
distance (D) between predicted positive pixels and the true ones is computed.
Subsequently, the function tf (d) is applied along both axes (m, n). To maintain
symmetry between Precision and Recall [71], the calculation of TP varies as
follows:

Pnew = 1
NP

∑
(m,n)∈LP

tf (DGT (m, n)) (4-2)

Rnew = 1
NGT

∑
(m,n)∈LGT

tf (DP (m, n)) (4-3)

where:
- LGT : set of pixels assigned to ground truth limits
- DGT (.) : distance function from LGT

- LP : set of pixels assigned to predicted limits
- DP (.) : distance function from LP

The new F1-Score and IOU are computed using the updated Precision
and Recall values in equations 3-3 and 3-4, respectively. These metrics will be
used to assess the study. Once the calculations are defined, it is emphasized
that a tolerance of σ = 7 is used, as recommended by the authors on [71], as
it has been validated to provide fairer results for seismic fault identification.
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From this point on, IOU and F1 will refer to the calculations using this value
of tolerance. Although all metrics used in this project could be represented on
a scale of [0 − 1], a scale of 0 to 100% will be employed for better appreciation
of their values.



5
Experimental Analysis

This chapter addresses all the details regarding the conducted analyses
and the results to be discussed. It begins by describing the involved datasets
and additional points to provide a better understanding of the different
scenarios in domain adaptation. Next, the different configurations of archi-
tectures and hyperparameters used for Supervised and Domain Adaptation
training will be specified. The third stage, fine-tuning, applies the same setup
as supervised training, so further details are not necessary. Finally, the obtained
results for each of the indicated training stages will be discussed.

5.1
Datasets

The proposed method was evaluated on three challenging datasets, both
labeled and unlabeled, which are at different scales and distributions based on
the analysis of the images. The main characteristics are detailed in Table 5.1
as a summary.

The synthetic dataset presented in [7] has allowed for a sequence of papers
and improvements in seismic fault segmentation. For this reason, it was chosen
as reference for patch size: 128 × 128 for all datasets used in this work.

Table 5.1: Main characteristics of used datasets. xl: crossline, il: inline, z : depth.

Dataset Data Labeling Dimensions
Type Type (xl × il × z)

Thebe (TH) [9] Real Manual 1803 × 3174 × 1537
FaultSeg (FS) [7] Synthetic Automatic 128 × 128 × 128

Netherlands F3 (F3) [7] Real - 512 × 384 × 128

5.1.1
Thebe (TH)

This dataset was first used in [9], but its description can be found in [72].
The processed seismic images are derived from a seismic survey conducted in
the Thebe Gas Field, located in the Exmouth Plateau of the Carnarvon Basin
on the northwest shelf of Australia. The dataset consists of a 3D block with
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dimensions of 1803[crossline]×3174[inline]×1537[depth], and it was manually
labeled (crossline by crossline) by specialists using the Petrel software. The
authors provided the following split: the first 900 cross-sections for the training
set, the next 200 cross-sections for the validation set, and the remaining
703 cross-sections for the test set. After conducting some experiments, it
was observed that the manually generated labels using the software were
thicker compared to the other datasets. Therefore, patches of size 256 × 256
were extracted and an additional preprocessing step was performed to reduce
them to 128 × 128 for compatibility with the other datasets during training.
Similarly, for inference, a reverse resizing of 128 → 256 was required for the
reconstruction of the sections.

5.1.2
FaultSeg (FS)

This dataset was generated synthetically using the method described
in [7], aiming to replicate the characteristics of a real seismic dataset. The
dataset comprises voxels with dimensions of 128 × 128 × 128, from which 200
blocks were allocated for training and 20 blocks for validation. In this case, the
described patch extraction protocol was not required since the dimensions of
each section already matched the chosen patch size of 128. Both cross-sections
and inline-sections were utilized during training, resulting in a total of 51, 200
samples.

5.1.3
Netherlands F3 (F3)

This dataset is a subset extracted from the widely recognized Netherlands
offshore F3 block seismic data, which is made available by the Dutch
government through TNO and dGB Earth Sciences. It has dimensions of
512[crossline] × 384[inline] × 128[depth]. The dataset was initially introduced
in [7], and subsequently, it has been employed in various studies to assess
unsupervised outcomes through visual analysis [20, 41]. For this dataset, a
crossline-based split was performed, dividing it into two equal halves to create
the training and test sets.

5.2
Supervised Training setup

According to the methodology chapter 4, three architectures were used
to perform seismic fault semantic segmentation: UNet, Atrous UNet, and
DexiNed, for the three datasets presented.
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Figure 5.1: UNet-based architectures.

5.2.1
UNet

The first description of the configuration is our custom UNet architecture,
since the Atrous UNet is derived from it. It is composed of only three blocks in
both the encoder and decoder, as shown in Figure 5.1. These blocks represent
two continuous Conv layers, where each convolution is accompanied by a
BatchNorm layer and a ReLU (Rectified Linear Unit) activation function (Cn).
For more details on the number of filters, stride, and output size at each step,
refer to Table 5.2, which shows a smaller version than the one proposed in
the original UNet paper [35]. This decision was made because the input image
used in this study is 128×128 compared to the 512×512 in the original paper.
As part of the experiments, it was also tried using larger filters, but it was
not observed significant improvements and instead noticed an increase in the
number of parameters and training time per epoch. Therefore, it was remained
with this configuration. Additionally, it should be noted that the network was
adapted to receive single-channel images since seismic images are gray-scale.
Another difference from the original UNet is the use of transposed convolutions
ConvTr instead of upsampling layers in the decoder.

5.2.2
Atrous UNet

The implementation of this architecture differs from UNet only in the
structure of the bottleneck, where a series of consecutive Atrous or Dilated
Layers (AtrConv) are applied with different dilation ratios (r) that are power-
of-2 values. The final output is obtained by summing the outputs from
these Atrous Layers. After conducting several experiments, it was determined



Chapter 5. Experimental Analysis 49

Table 5.2: Details of UNet architecture.

Block level Layer Filter Stride Output size
Input 128 × 128 × 1

Encoder

Level 1
Conv 1 3 × 3/16 1 128 × 128 × 16

Conv 2 (C1) * 3 × 3/16 1 128 × 128 × 16
MaxPooling 2 × 2 2 64 × 64 × 16

Level 2
Conv 3 3 × 3/32 1 64 × 64 × 32

Conv 4 (C2) * 3 × 3/32 1 64 × 64 × 32
MaxPooling 2 × 2 2 32 × 32 × 32

Level 3
Conv 5 3 × 3/64 1 32 × 32 × 64

Conv 6 (C3) * 3 × 3/64 1 32 × 32 × 64
MaxPooling 2 × 2 2 16 × 16 × 64

Bottleneck Conv 7 3 × 3/128 1 16 × 16 × 128
Conv 8 (Cb) * 3 × 3/128 1 16 × 16 × 128

Decoder

Level 3

ConvTr 3 (CT3) 2 × 2/64 2 32 × 32 × 64
Concat [C3 : CT3] 32 × 32 × 128

Conv 9 3 × 3/64 1 32 × 32 × 64
Conv 10 (C−3) * 3 × 3/64 1 32 × 32 × 64

Level 2

ConvTr 2 (CT2) 2 × 2/32 2 64 × 64 × 32
Concat [C2 : CT2] 64 × 64 × 64

Conv 11 3 × 3/64 1 64 × 64 × 32
Conv 12 (C−2) * 3 × 3/64 1 64 × 64 × 32

Level 1

ConvTr 1 (CT1) 2 × 2/32 2 128 × 128 × 16
Concat [C1 : CT1] 128 × 128 × 32

Conv 13 3 × 3/64 1 128 × 128 × 16
Conv 14 (C−1) * 3 × 3/64 1 128 × 128 × 16

Output Conv 15 1 × 1/1 1 128 × 128 × 1
(*) branch

that the optimal number of Atrous Layers is 4. To better understand the
architecture, it can be used to previous Figure 5.1, where the details of the
new bottleneck are provided in Table 5.3.

5.2.3
DexiNed

For the implementation of DexiNed, it was used as it was published in
its GitHub repository3 for the paper [53], with the only modification being
the number of input channels changed to 1 since it was originally used for
color images. An important aspect to consider about this network is that
for the calculation of its loss function, 7 outputs are used, where 6 are from
different parts along its architecture, while the seventh is a fusion of the other
6. The architecture is shown in the Figure 5.2, where the outputs of the

3Code repository: https://github.com/xavysp/DexiNed

https://github.com/xavysp/DexiNed
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Upsample Blocks and the Fused edge-map are the mentioned seven outputs
used for the loss function. Furthermore, since there is always a significant
imbalance between the non-edge and edge ground truth in edge detection tasks,
a balanced cross-entropy was also considered, taking into account the frequency
between the edge and non-edge ground truth labels.

Table 5.3: Details of bottleneck used on Atrous UNet architecture.

Layer Filter Dilation Output
rate (r) size

Bottleneck

AtrConv 1 (AC1) 3 × 3/128 1 16 × 16 × 128
AtrConv 2 (AC2) 3 × 3/128 2 16 × 16 × 128
AtrConv 3 (AC3) 3 × 3/128 4 16 × 16 × 128
AtrConv 4 (AC4) 3 × 3/128 8 16 × 16 × 128

Sum [AC1 : AC4] (Cb)* 16 × 16 × 128
(*) branch

For training and selection of the best models for each network, different
parameter configurations were considered, which are described in Table 5.4. For
example, two types of data augmentation were applied: soft and hard, since
this ensured better generalization when inferring on a different dataset than
the one used for training. In the case of soft data augmentation, only horizontal
and vertical flips were considered, while in the hard data augmentation, more
robust versions such as Contrast, Optical Distortion, Sharpen, and Emboss [9]
were used. Additionally, different types of loss functions were tested for
binary classification. These included the classic Binary Cross-Entropy (BCE)
and Weighted BCE, as the problem was highly imbalanced. For DexiNed,
its custom loss function was slightly modified to only utilize the last and
antepenultimate (second-to-last) outputs out of the original 7 outputs, based
on empirical selection. The optimizer used for all experiments was Adam [74],
as it is widely used and has shown reliable performance. Finally, different batch
sizes were also used, considering the prevention of overfitting from the early
stages of training. Therefore, for this supervised training, a maximum of 100
to 150 epochs was set with early stopping based on the loss function and a
patience of 10 epochs.

5.3
Domain Adaptation Training setup

In general, for all the UDA techniques used in the study, experiments
were conducted prioritizing an equal sample size between the source domain
and the target domain. Due to the significant increase in training time and
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Figure 5.2: DexiNed architecture (adapted from [53]).

memory when loading two datasets simultaneously and passing them through
the entire architecture, different sample quantities were tested, such as 48k,
32k, and 16k. It was ensured that reducing the sample size did not have a
negative impact on the performance of the models.

For the feature-level UDA techniques, a selection process was first
conducted to determine where in the original architecture the branch or
multiple branches could be placed for the adaptation process. Tables 5.2
and 5.3 indicate with asterisks the different layers that were considered as
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Table 5.4: Hyperparemeter tuning.

Hyperparameter Values
Normalization z-score (mean=0, std=1)

Vertical & Horizontal Flip
Data ShiftScaleRotate, Grid & Optical

Augmentation Distortion, Sharpen, Emboss, Brightness,
Contrast and Elastic Transform

Optimizer Adam
Learning rate 0.0001 or adjustable

Loss function BCE
Weighted BCE

Batch size 8, 16, 32, 64
Epochs (max.) 100 or 150
Early stopping patience=10

options for extracting features through branches, where the best results were
observed in branches close to the bottleneck (C3, Cb, C−3) in UNet-based
architectures. For DexiNed, the branches marked with asterisks in Figure 5.2
were also taken into account, with the center branch (×8 Upsample Block)
performing the best.

Different types of architectures were also considered for the branches,
starting with a general Flatten layer, with or without one or two additional
Dense layers. Since the size of the feature map was relatively large in many
parts, adding a convolutional layer to reduce the number of filters accompa-
nied by max pooling to reduce dimensions was also considered. The overall
schemes used for training the feature-level UDA techniques are summarized
in Figure 5.3.

Next, the training setups for each of the UDA techniques used will be
explained in more detail.

5.3.1
MMD

During the various experiments, different variants of Maximum Mean
Discrepancy (MMD) calculations were taken into account. These included
the basic version described in [56], the multiple-kernel version known as MK-
MMD described in [58], and the version proposed for the Domain Separation
Networks (DSN) architecture in [59].

One observation from the various papers applied to semantic segmenta-
tion was the possibility of using multiple branches to reduce the domain gap,
since minimization of discrepancy would be applied at different levels. There-
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Figure 5.3: Overall schemes used for training the feature-level UDA techniques:
MMD and DANN.

fore, our loss function to be optimized or minimized was defined as follows:

LMMD(XS, XT ) =
Nbranch∑

i=1
wi ∗ MMDbranchi

(XS, XT ) (5-1)

Ltotal = Ltask(XS, yS) + LMMD(XS, XT ) (5-2)

Here, Ltask represents the loss for the source domain or supervised task
in semantic segmentation, and wi denotes the different weights assigned to the
MMD loss on branch. It is worth noting that adaptable weights were considered
for single-branch applications.

The number of epochs was increased to values between 100 and 150, as
some experiments required more time to reach their historical minimum in
total loss (Ltotal ) for early stopping. Different implementations of learning
rates, such as fixed and adjustable, were also considered to prevent overly slow
training.

5.3.2
DANN

Unlike MMD, to apply this technique, it was necessary for the branch,
or discriminator in this case, to end with a binary classifier that distinguishes
between source and target domains. Table 5.5 illustrates an example of how
this discriminator needed to be completed in order to generate this new loss
and help reduce the domain gap through the adversarial method. It was
also necessary to experiment with different values of λ since, according to
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Equation 3-6, it serves as a weight for the loss of the discriminator.
As a validation criterion to monitor, the accuracy of the discriminator

was also added, where values close to 0.5 indicate that the discriminator can
no longer distinguish between samples from the source or target domain, which
is the objective. The value of 0.5 is justified by using the same batch size for
both domains in each training iteration.

Table 5.5: Implementation details of an example discriminator architecture,
in which the output size of the branch is notably large. To address this,
convolutional and max-pooling layers were utilized to reduce the output size.

Layer Filter Stride Output size
C−3 (*) 32 × 32 × 64
Conv 3 × 3/32 1 32 × 32 × 32

MaxPooling 2 × 2 2 16 × 16 × 32
Dense + ReLU 100 100

Dense + Sigmoid 1 1
(*) branch

5.3.3
FDA

As mentioned earlier, the application of this technique does not necessi-
tate any changes to the architecture, as it serves as a preliminary step prior
to training the neural networks. Specifically, style transfer is applied from the
target domain to the source domain, followed by training a model using these
new samples along with the source domain labels. After an extensive literature
search, two approaches for applying this technique were identified.

The first approach involves defining a fixed set of images from the target
domain, from which a random one is chosen to transfer its style for each sample
within the source domain batches during training. This was achieved using the
Python library Albumentations4, which already includes an implemented FDA
class where the parameter β can also be adjusted. In simple terms, it is applied
as a data augmentation technique consistently. This fixed set consisted of 1024
random samples to prevent any bias. No additional samples were used, as it
had an impact on the duration of each epoch.

For the second approach, the instructions provided in the original pa-
per [18] were followed. In contrast to the previous approach, here, it is not a
fixed set but rather a different batch from the target domain is selected in each
training iteration, with the batch size matching that of the source domain. The

4Albumentations Python Library: https://albumentations.ai/

https://albumentations.ai/
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use of various batch sizes was also explored to assess their influence on trans-
fer quality, as well as reducing the number of data augmentation techniques.
This reduction aimed to avoid confusing the network when understanding the
original distribution of the target domain.

In both approaches, for each experiment, a different value of the param-
eter β was used, which as mentioned above helps us control the magnitude of
the spectral signal transfer between domains. Similar to the supervised training
stage, it was expected that the loss for the source domain in semantic segmen-
tation would reach its minimum value with early stopping. After conducting
multiple experiments, the first approach using β values around 0.1 yielded the
best results.

5.4
Results and Discussion

5.4.1
Supervised Training

After training each of the labeled datasets on each network, the results are
summarized in Table 5.6. The rows represent the datasets on which the models
were trained or the source domain, while the columns represent the datasets
on which they were evaluated or the target domain. It is important to note
that the values in bold indicate the upper bounds, as they were trained and
evaluated on the same dataset, representing the ideal scenario where labeled
data is available.

Table 5.6: Results of IOU & F1-score for Supervised stage.

Model Source
Target TH FS

IOU F1 IOU F1

UNet TH 75.3 85.8 44.8 58.8
FS 45.7 62.7 92.5 95.4

DexiNed TH 74.7 85.5 66.0 75.4
FS 37.1 54.0 93.5 96.0

Atrous UNet TH 75.1 85.6 55.5 67.5
FS 54.1 70.2 92.8 95.6

On the other hand, the non-bold values indicate the lower bounds for
each pairwise combination. For instance, when inferring on Thebe dataset
(TH) using the custom-trained UNet model with FaultSeg dataset (FS), we
obtained an IOU = 45.7% and F1 = 62.7%, which we aim to surpass
UDA methods. The analysis of the table also reveals a considerable difference
between the distributions of TH and FS, indicating domain shift, as there is a
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5.4(a): Real seismic section input.

5.4(b): Seismic faults manually identified by experts.

5.4(c): Our best predictions using Atrous UNet trained on TH.

0.0 0.2 0.4 0.6 0.8 1.0

5.4(d): Our best predictions using Atrous UNet trained on FS.

Figure 5.4: The results on the 100th crossline of the test set of TH for the
supervised training stage are represented as probabilities ranging from 0 to 1.

significant margin when comparing with their upper bounds. Additionally, it
is noteworthy that utilizing the FS dataset contributes to improved inference
results across the labeled datasets when using UNet-based architectures.

As a complementary part of this analysis, the visual outcomes for the real
datasets are also provided. In the case of the Thebe dataset, the test process
focuses on the 100th crossline of the test set, as indicated in [9]. Figure 5.4
showcases both the input section and the manually labeled seismic faults.
Furthermore, it presents the predictions generated by our best model trained
on the same TH dataset (see Figure 5.4(c)), and by using the FS dataset
(see Figure 5.4(d)), as it demonstrated the best generalization according to
the metrics in Table 5.6. From this last sub-figure, it can be observed that
the model successfully recognizes several seismic faults, but it suffers from the
common issue of generating numerous artifacts.

Given that we have observed significantly finer seismic faults in compar-
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ison to those identified in the benchmark study [9], which primarily employs
edge detection-based architectures such as HED, we have conducted an analysis
using the same set of edge detection metrics. Table 5.7 showcases a compari-
son of AP, ODS, and OIS metrics, highlighting the exceptional and comparable
performance achieved through the utilization of UNet-based architectures in
contrast to the top-performing models from the benchmark study. Moreover,
our most proficient model surpassed these benchmark models in all metrics, in-
dicating the establishment of a new State-of-the-Art on the TH dataset. These
findings emphasize the significance of not only considering the choice of the
model type but also carefully reviewing the data preprocessing and training
protocols.

5.4.2
Domain Adaptation Training

5.4.2.1
Source: FS | Target: TH

Within our first DA analysis, the FS and TH datasets were chosen as
the source and target domains, respectively, as they fulfilled the synthetic-real
condition. The detailed results of the best metrics among all the conducted
experiments are shown in Table 5.8, where different behaviors can be observed
regarding the utilized UDA techniques and architectures. It is worth noting
that the values in the table represent a single execution per configuration due
to the extensive time required for training and tuning, making it impractical
to conduct multiple executions.

Table 5.7: Results using edge detection metrics for Thebe dataset.

Model Augmentation Step size AP ODS OIS

HED [9]
- 1 82.3 80.6 81.1

Elastic Transform 1 80.1 84.2 84.7
Hard 10 81.3 83.6 84.1

UNet
Hard 3

89.3 83.2 83.8
DexiNed 90.7 85.0 85.6

Atrous UNet 91.3 86.1 86.5

Starting with the baseline, which represents the case where no adaptation
technique is applied, it is evident that the Atrous UNet achieved the best
generalization, while DexiNed performed the worst. This discrepancy may be
attributed to the deeper architecture of DexiNed, which could have led to
overfitting on the training and validation set of the source domain (FS).
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Moving on, the application of MMD reveals that it delivered the best
result when used with the UNet network, but it did not yield similar improve-
ments when applied to the other two networks. In the case of DexiNed, this
could be due to its multiple outputs for calculating the loss function, mak-
ing it less affected by one or more branches responsible for MMD reduction.
As for Atrous UNet, its already strong baseline performance and the relative
simplicity of the technique might hinder its further improvement.

A similar scenario is observed in the application of DANN, where
improvements ranging from 3% to 4% on average are seen for the UNet and
DexiNed networks, but they still struggle to surpass the Atrous UNet baseline.
These comparable outcomes to MMD might be attributed to the fact that both
methods belong to the feature-level adaptation type of UDA, which has shown
challenges when applied to imbalanced data [37].

Lastly, the results obtained by applying FDA show improvements for
each network, with DexiNed experiencing an enhancement of up to 13% on
average, while UNet and Atrous UNet achieve improvements of 6% and 3%,
respectively. This increment can be justified by the fact that FDA focuses more
on the aspect of input images (image-level adaptation), which is more relevant
in the context of semantic segmentation.

Overall, it could be concluded that the best result obtained by applying
any UDA technique (Atrous UNet + FDA) achieves an increase of nearly 20%
compared to the baseline with the lowest scores (DexiNed).

Similarly to the previous stage, a visual analysis is conducted using the
predicted faults by the architectures that yielded the best scores for each UDA
technique, according to Table 5.8. This analysis is in comparison to the results
obtained without employing any adaptation technique, utilizing the Atrous
UNet architecture, which also proved to be the most effective in this particular
scenario. To better distinguish the introduced improvements, a zoom-in is
conducted on the 100th cross-section of the test set. This examination displays
both the probability map and the identified faults with probabilities exceeding
0.5, as depicted in Figure 5.5. Initially, it can be observed that the application
of DA techniques reduces the occurrence of artifacts that might result in
false positives. Additionally, employing DA leads to the identification of more
continuous faults, thereby instilling greater confidence in the identification and
quantification of seismic faults throughout the sections.

Regarding these observed improvements, it can be confirmed that the
technique with the highest score, Atrous UNet + FDA, is also accompanied
by a reduced amount of noise or artifacts and more continuous faults. Never-
theless, it is worth noting that the visual results obtained with Atrous UNet
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Table 5.8: Results using FaultSeg (FS) as source domain and Thebe (TH)
as target domain. The values in parentheses indicate a comparison of the
application of each DA technique with respect to the scenario without DA
(No-adaptation).

Model IOU F1

Supervised
UNet 75.3 85.8

DexiNed 74.7 85.5
Atrous UNet 75.1 85.6

No-adaptation
UNet 45.7 62.7

DexiNed 37.1 54.0
Atrous UNet 54.1 70.2

MMD
UNet 54.3 (+8.6) 70.3 (+7.6)

DexiNed 32.9 (-4.2) 49.5 (-4.5)
Atrous UNet 53.7 (-0.4) 69.8 (-0.4)

DANN
UNet 49.6 (+3.9) 66.2 (+3.5)

DexiNed 41.0 (+3.9) 58.1 (+4.1)
Atrous UNet 53.6 (-0.5) 69.7 (-0.5)

FDA
UNet 51.9 (+6.2) 68.3 (+5.6)

DexiNed 50.5 (+13.4) 67.0 (+13.0)
Atrous UNet 57.0 (+2.9) 72.6 (+2.4)

+ DANN identify faults of comparable quality to those mentioned previously.

5.4.2.2
Source: FS | Target: F3

Just like in Thebe dataset, the initial step involved direct inference using
pre-trained models on FS to establish a baseline. Then, training for each of
the three architectures was conducted using the Fourier Domain Adaptation
(FDA) technique, which yielded the best results in the previous analysis.

Since this dataset lacks labels, the previously discussed metrics could not
be calculated, and evaluations were carried out visually. First, inferences were
made on the 30th crossline and 30th inline sections, which are presumed to be
two of the three sections visualized in the results of [7] for F3. The UNet
network yielded the best predictions without applying domain adaptation,
while surprisingly, for the FDA application, the DexiNed architecture exhibited
more continuous seismic faults. These predictions are illustrated in Figure 5.6.

The primary observation is that fault identification was easier in the
crossline, both with and without domain adaptation, while there was more
difficulty in the inline when domain adaptation was not applied. Although
more faults were identified in the crossline, it also resulted in false positives.

For a more direct comparison with [7], predictions were also made
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5.5(a): Real seismic section input and identified faults.

5.5(b): No-adaptation (Atrous UNet).

5.5(c): MMD (UNet).

5.5(d): DANN (Atrous UNet).

5.5(e): FDA (Atrous UNet).

Figure 5.5: The results on part of the 100th crossline of the test set of TH for
the DA training stage are represented as probabilities ranging from 0 to 1, and
predicted faults (values greater than 0.5).
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5.6(a): Real seismic cross-section and inline-section input.

5.6(b): No-adaptation (UNet).

5.6(c): FDA (DexiNed).

Figure 5.6: Results on the 30th crossline (left) and 30th inline (right) of F3
dataset for the DA training stage are represented as predicted faults.

throughout the entire block along both crossline and inline axes, and the
average of these predictions was taken as the final estimation. The results
are represented by three sections of the general block, which were plotted in
3D, as shown in Figure 5.7. From this image, it is evident that applying domain
adaptation makes the existing faults in the 3D block much more visible.

5.4.3
Fine-tuning Training

Finally, as part of the comparative analysis, the use of pre-trained models
on another seismic dataset and its potential for significant improvement will
be examined. This study serves also as a complementary component to [66],
which presents similar tests but utilizing pre-trained models from well-known
datasets like ImageNet, BSDS500, and COCO. In this case, the experiments
were constrained to the utilization of solely the labeled TH and FS datasets
with the three previously mentioned architectures to explore whether pre-
trained models with seismic data offer a more effective initialization compared
to the previously described datasets.

From Table 5.9 and Table 5.10, similar conclusions can be drawn as stated
in [66], where some cases showed improvement, while in others, performance
was even reduced. For instance, when using the Atrous UNet architecture, there
is a nearly insignificant gain from fine-tuning, while no consistent improvement
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5.7(a): No-adaptation (UNet)

5.7(b): FDA (DexiNed)

Figure 5.7: Results on the 30th crossline, 30th inline and 100th depth of F3
dataset for the DA training stage are represented as probabilities ranging from
0.5 to 1.

or deterioration is observed in the other two networks. However, it is worth
noting that the number of epochs to reach the local minimum was significantly
reduced when fine-tuning was applied, resulting in a shorter training time.

As part of further analysis, it would be beneficial to test with different
data proportions to better observe the advantageous qualities of applying fine-
tuning.
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Table 5.9: Results using fine-tuning with pre-trained model on FS to start the
weights of the training for TH.

FS → TH
Model IOU F1 # epochs

Supervised
UNet 75.3 85.8 39

DexiNed 74.7 85.5 24
Atrous UNet 75.1 85.6 33

Fine-tuning
UNet 76.0 (+0.7) 86.3 (+0.5) 14

DexiNed 74.3 (-0.4) 85.2 (3) 13
Atrous UNet 76.2 (+1.1) 86.4 (+0.8) 19

Table 5.10: Results using fine-tuning with pre-trained model on TH to start
the weights of the training for FS.

TH → FS
Model IOU F1 # epochs

Supervised
UNet 92.5 95.4 66

DexiNed 93.5 96.0 26
Atrous UNet 92.8 95.6 42

Fine-tuning
UNet 92.1 (-0.4) 95.2 (-0.2) 39

DexiNed 93.6 (+0.1) 96.1 (+0.1) 31
Atrous UNet 93.1 (+0.3) 95.7 (+0.1) 33



6
Conclusions and Future Works

In general, the identification of seismic faults aids in fluid flow and serves
as boundaries for hydrocarbon reservoir management, significantly influencing
the Oil & Gas industry. This process is known to be time-consuming and
manual. Among the current methods that enable more accurate automation
of fault identification, DL-based approaches have shown promise. However,
these methods also face challenges such as the need for a substantial amount
of labeled samples to train the model in identifying seismic faults.

In this dissertation, it was proposed the use of techniques of Unsuper-
vised Domain Adaptation (UDA). UDA offers the advantage of transferring
knowledge acquired from a source domain to a target domain without relying
on labeled samples in the target domain. The three techniques examined were
MMD, DANN and FDA, all of which involve two types of domain adaptation:
feature-level and image-level. This allowed for a more comprehensive analysis
through comparison between the techniques.

6.1
Conclusions

As a first conclusion, it can be stated that the difference between the
datasets becomes evident when direct inference is applied without any domain
adaptation technique. However, this difference is not pronounced as values of
up to 54.16% in IOU and 70.19% in F1 are achieved, as shown in Table 5.8.

Furthermore, it was demonstrated that regardless of whether the network
is dedicated to edge detection or not, good metrics can be achieved by simply
altering the preprocessing and training approach, as detailed in Table 5.7,
where the best results of [9] are surpassed.

Regarding the use of UDA techniques, an improvement was achieved
both in terms of metrics (up to 13% on average) and visual quality for the
identification of seismic faults with less noise and more continuity in Thebe
dataset. It is also observed that the application of FDA technique, being
an image-level adaptation approach, easily surpasses feature-level adaptation
techniques like MMD and DANN, although the use of a suitable architecture
like Atrous UNet also has an impact.
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A similar situation was observed in the F3 dataset, where seismic faults
were predicted with higher confidence when using FDA, along with the
DexiNed architecture.

Finally, it can be observed that fine-tuning does not yield substantial
advantages in this particular application, except for the reduction in training
time when utilizing all the samples from labeled datasets.

6.2
Future Works

Given that there is evidence indicating that the implementation of 3D
input networks has led to improved result consistency across all three axes [7],
it should be considered to replicate the study using networks that accept these
inputs, such as the classic UNet3D or its improved versions like ResUNet [36]
and UNet++ [12].

It should also be considered to attempt using 2.5D inputs as defined
in [41], which proposes the use of multiple consecutive sections to estimate the
central section to avoid computational cost and maintain smoother inferences.

As observed, image-level-based UDA techniques have shown better
results for this application, so the use of methods within this category, such
as CyCADA [63], which combines both approaches, could potentially improve
the outcomes.

Further analysis could also be conducted when working with different
seismic frequencies, as well as optimizing the step size.

For a more focused evaluation on fine-tuning, training with different
sample quantities and analyzing the dependency of this technique on data
availability could provide valuable insights.

Lastly, exploring the combination of multiple UDA techniques during
training to assess if certain methods complement or hinder each other in this
specific application could also be a beneficial direction for future investigation.
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