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Abstract

Inagaki Pinheiro Fagundes, Suemy; Gattass, Marcelo (Advisor); Trindade
Santos, Luiz Fernando (Co-Advisor). DC-UNet for White Matter
Lesions Segmentation. Rio de Janeiro, 2022. 28p. Final Project –
Department of Informatics, Pontifical Catholic University of Rio de
Janeiro.

Analysis and segmentation techniques of magnetic resonance images of
the brain have been widely explored. Manual interpretation of the brain image
is quite time-consuming and directly depends on the operator’s assessment.
Thus, some automations were previously proposed, but recently, the study
of automation using Deep Learning has gained prominence. In this context,
we propose a model of neural networks with DC-UNet architecture for the
segmentation of lesions in white matter in brain images.

Keywords
DC-UNet; Medical image segmentation; Brain lesions; Brain white

matter.



Resumo

Inagaki Pinheiro Fagundes, Suemy; Gattass, Marcelo (Orientador); Trin-
dade Santos, Luiz Fernando (Coorientador). DC-UNet para segmen-
tação de lesões de substância branca. Rio de Janeiro, 2022. 28p.
Projeto Final – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Técnicas de análise e de segmentação de imagens de ressonância magné-
tica de cérebros vêm sendo amplamente exploradas. A interpretação manual da
imagem do cérebro é bastante trabalhosa e depende diretamente da avaliação
do operador. Assim, algumas automatizações foram propostas previamente,
mas, recentemente, o estudo da automatização usando Deep Learning tem ga-
nhado destaque. Nesse contexto, propomos um modelo de redes neurais com
arquitetura DC-UNet para a segmentação lesões na substância branca em ima-
gens do cérebro.

Palavras-chave
DC-UNet; Segmentação de imagens médicas; Lesões no cérebro; Subs-

tância branca do cérebro.
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1
Introduction

Quantitative analysis of magnetic resonance (MR) of brain images is
necessary for the study of the aging brain and to support diagnostics in clinics
(BOER et al., 2009). The main challenge in the manual segmentation of the
brain is that it is a very time-consuming task and its performance is directly
related to operator experience (DONG et al., 2017). Therefore, there is a large
interest in automating the segmentation and analysis of MR images of the
brain, especially the segmentation of white matter (BOER et al., 2009).

Previous research in medical images segmentation has mainly used tradi-
tional methods such as boundary extraction, threshold-based segmentation and
region-based segmentation (DU et al., 2020). However, deep learning methods
for image segmentation are being widely explored recently (DU et al., 2020).
In this work, we use deep learning to segment lesions in the white matter of
the human brain using DC-UNet architecture, which is a variation of an arch-
tecture proposed by Ronneberger, Fischer e Brox (2015), U-Net. The latter
is commonly used for medical image segmentation task, but the former is an
improved version that approaches our problem better.

One of the main challenges in training this network is data imbalance.
This is particularly problematic in medical imaging applications such as lesion
segmentation, as this causes a higher rate of false negatives than false positives.
As we have very unbalanced data, where the number of pixels without lesions
is many times greater than the number of pixels with lesions, we use the
Tversky loss function, proposed by Salehi, Erdogmus e Gholipour (2017), which
addresses the problem of image imbalance.

Finally, this work is divided into 7 chapters. In the chapter 2, we give an
overview of the project, in the chapter 3 we explain the techniques used for
the data pre-processing, in the chapter 4 we explain the evaluation metrics,
in the chapter 5 we show the work methodology, such as the neural network
architecture and the cross-validation method used, in the chapter 6 we show
our results and also compare the results obtained in each approach and, lastly,
in the chapter 7 we talk about the conclusion and future work.



2
Overview

Our objective is to develop a model capable of segmenting a lesion in
the brain with the least amount of false negatives possible. The solution
we implemented for this involves the use of deep learning. There are many
deep learning architectures available, but the ones that best suit the medical
image segmentation problem are U-Net and its variations (RONNEBERGER;
FISCHER; BROX, 2015). In our case, we chose to use DC-UNet and the reason
is explained in chapter 5.

Along with the choice of architecture mentioned above, we have selected
the Tversky and Binary Cross Entropy loss functions. We use each one to train
a model and in the chapter 6 we show that the former trained a better model,
as it deals better with the trade-off between false positive and false negative.

Another relevant point to the problem is our dataset. It consists of
magnetic resonance images of brains provided by the DASA company. Because
they are MR images, they could have different gray scales and this could
negatively impact the performance of our model. In addition, the brains came
with the skull and that could also hamper performance. So we had to deal
with these challenges in the pre-processing step. The images 2.1-a and 2.1-b
and show the before and after of the pre-processing that will be explained in
the chapter 3.

Also related to dataset, we had to use techniques to deal with the limited
amount of data as we have only 46 samples with lesion markings made by
specialists. So we applied the k-fold cross validation technique during the
training stage and this is explained in the chapter 5.

(a) A slice of the original data (b) A slice of pre-processed data

Figure 2.1: Original and pre-processed brain comparison



3
Data Pre-Processing

It is common for medical images to contain unknown noise, poor image
contrast, poor homogeneity, and parts irrelevant to the problem (RAMANI;
VANITHA; VALARMATHY, 2013). The main purpose of pre-processing the
images is to improve the quality of the image and make it ready for training
(RAMANI; VANITHA; VALARMATHY, 2013).

In our case, when analyzing the images, we found that the skull is an
irrelevant part for the segmentation as the lesions are not in the skull. So its
existence would hinder the training, as it would make it difficult to extract
relevant features for the problem. In addition, MRI machines usually generate
images of different intensities and this can be another factor hindering the
extraction of features by our model.

Therefore, in this pre-processing step, we explain how we dealt with each
of the issues to make the images ready for training.

3.1
Skull-stripping

The brain images present parts that are irrelevant to the problem we are
addressing, such as the skull and the entire region external to it. Therefore, it
is crucial that we remove these elements from the images before using them
for training and testing.

Bauer, Fejes e Reyes (2013) developed a filter called StripTsImageFilter
for the Python Insight Toolkit (itk) library that quickly removes the skull from
the brain image. We used this filter for skull-stripping and one of the resulting
images is shown below 3.1.

(a) Brain with skull (b) Brain without skull

Figure 3.1: Brain before (left) and after (right) skull-stripping



3.2
Histogram Matching

MR scanners show variations in scanner sensitivity and these variations
cause the images to have a different grayscale intensity from each other.
This could affect the performance of our model, so we applied the histogram
matching technique to our images. According to the work of Wang et al. (1998),
this method reduces image intensity variation and can equalize the intensity
of the white matter of the brain.

The Histogram matching technique consists of modifying the contrast
of an image based on the contrast levels of a target image. In this way, it is
possible to balance the contrast levels of a group of images. In our dataset,
now that the images are without the skull, we chose the image of index 0 to
be the target and histogram matched the remaining images with the chosen
image.

Below we show one example of histogram matching. In the Figure 3.2,
the change in the histogram is clear. In the histogram after the histogram
matching, the format of the distribution of intensities looks more like the
histogram of the target image. This facilitates the extraction of features over
the network. The Figure 3.2 also shows the resulting image after pre-processing.

Figure 3.2: Comparison of brains and histograms before and after histogram
matching



4
Evaluation Metrics

In this chapter we will discuss the metrics used to evaluate our model:
the accuracy and F1-Score. In the chapter 6, we present the results obtained
in each metric.

Some acronyms necessary to understand the methodology are: TP: the
number of correct positive results; FP: the number of wrong positive results;
TN : the number of correct negative results and FN : the number of wrong
negative results.

4.1
Accuracy

Accuracy is the ratio between the number of correct answers and the total
number of input samples, but it works well only if there are equal number of
samples belonging to each class.

Our images are very unbalanced, as they have many more regions with-
out lesions than regions with lesions. Therefore, the accuracy can give us a
false sense of the model’s high performance.

Accuraccy = Correct answers
Total input samples (4-1)

Accuracy = TP + TN

TP + FP + TN + FN
(4-2)

4.2
F1 Score

F1 Score is a value between 0 and 1 and uses harmonic mean to seek a
balance between precision and recall. It evaluates the model’s precision and
robustness, so the higher the F1 Score, the better the model performs. It can
be mathematically calculated by the equation below.

F1-Score = 2 · Recall · Precision
Recall + Precision (4-3)

Where precision is the ratio between the number of correct positive
results and the number of positive results predicted.

Precision = Correct positive results predicted
Total positive results predicted (4-4)



On the other hand, recall is the ratio between the number of correct
positive results and the number of all samples that should have been classified
as positive.

Recall = Correct positive results predicted
All samples that should have been classified as positive (4-5)

In a simplified way, we have the expressions 4-6 and 4-7 below for
precision and recall, respectively.

Precision = TP

TP + FP
(4-6)

Recall = TP

TP + FN
(4-7)



5
Methodology

In this chapter we cover the architecture of the neural network, the cross-
validation method, the loss function and the optimizer we used in the project.
The choice of each methodology significantly impacts the performance of the
model due to the low number of images with masks that we have for training.
Thus, we chose to use a U-Net based neural network architecture: DC-UNet.
This architecture can train with very few images, giving us satisfactory results.
Furthermore, the cross validation method allows us to obtain a more generic
model and the loss functions we are using handles unbalanced data well. We
cover each choice in the sections below.

5.1
Architecture

Despite U-Net being very well known and popular for segmenting medical
images, according to Ibtehaz e Rahman (2020), the MultiRes U-Net architec-
ture surpasses U-Net and gives us much better results than the first one, as
it is capable of to extract features of different scales. However, according to
Lou, Guan e Loew (2021) when medical imaging is very challenging, MultiRes
U-Net does not perform well. Therefore, Lou, Guan e Loew (2021) suggest a
new architecture: the DC-UNet. We’ll use DC-UNet and explain all three in
the sections below.

5.1.1
U-Net

The U-Net architecture consists of two parts: the left part is contraction,
also called encoder and the right part is expansion, also called decoder. The
name comes from the U-shaped architecture, as shown in the Figure 5.3. The
training image enters from the left, in the encoder, receives some layers of
convolutions and then the decoder uses the transpose convolution to generate
the segmentation mask as output. (RONNEBERGER; FISCHER; BROX,
2015; ANJOS et al., 2022).

The contraction part consists of four blocks, each containing two convo-
lution layers 3 × 3 with ReLU as activation, followed by a 2 × 2 max pooling
layer. The Figure 5.1 demonstrates the structure well.



Figure 5.1: U-Net contraction (RONNEBERGER; FISCHER; BROX, 2015)

On expansion, the image is upsized to its original size via 4 blocks,
each containing a 2 × 2 transpose convolution step, a concatenation with
the corresponding block from the contraction step and then two more 3 × 3
convolution layers as shown in Figure 5.2 (RONNEBERGER; FISCHER;
BROX, 2015).

Figure 5.2: U-Net expansion (RONNEBERGER; FISCHER; BROX, 2015)

The transposed convolution is responsible for expanding the size of the
images. After that, in the concatenation step, by combining information from
the corresponding contraction part, a more accurate prediction is achieved
(RONNEBERGER; FISCHER; BROX, 2015).



Figure 5.3: U-Net architecture (RONNEBERGER; FISCHER; BROX, 2015)

5.1.2
MultiRes U-Net

MultiRes U-Net is an architecture that modified the U-Net and surpassed
it in 5 datasets in the image segmentation task (IBTEHAZ; RAHMAN, 2020).
The main difference between the two architectures is that MultiRes U-Net
replaces the two U-Net 3 × 3 convolution sequences at each level with a block
that the authors call MultiRes Block and that it uses MultiRes Path to combine
encoder and decoder features (see Figures 5.5 and 5.6). Figure 5.4 below shows
the MultiRes U-Net architecture.

Figure 5.4: MultiRes U-Net architecture (IBTEHAZ; RAHMAN, 2020)

The structure of each MultiRes block is illustrated in Figure 5.5. It
basically consists of successive layers of 3 × 3, 5 × 5 and 7 × 7 convolutional
filters, where the last two, which are more expensive and larger, are factorized
into successions of 3×3 filters. Furthermore, it has a concatenation of a residual
connection for the conservation of dimension.



Figure 5.5: MultiRes Block (IBTEHAZ; RAHMAN, 2020)

To combine the encoder and decoder feature maps, instead of doing it in a
straight-forward manner, Ibtehaz e Rahman (2020) pass the encoder features
through a sequence of convolution layers, as illustrated in Figure 5.6. This
reduces the semantic gap between encoder and decoder features.

Figure 5.6: ResPath (IBTEHAZ; RAHMAN, 2020)

5.1.3
DC-UNet

According to Ibtehaz e Rahman (2020), the residual connection they
added in the MultiRes Block provides a few additional spatial features and
this may not be enough for more challenging segmentation tasks, such as
segmenting very small lesions (LOU; GUAN; LOEW, 2021) . To solve the
problem of lack of spatial features, Lou, Guan e Loew (2021) proposed the
DC-UNet, which replaces the residual connection of the MultiRes Block with
a sequence of three convolutions 3 × 3. The authors called this new block Dual
Channel Block and its structure is shown in Figure 5.7.

Figure 5.7: Dual Channel Block (ANJOS et al., 2022)

By replacing the MultiRes block with the DC block shown in Figure 5.7,
we obtain the DC-UNet architecture shown in Figure 5.8.



Figure 5.8: Dual Channel U-Net architecture (LOU; GUAN; LOEW, 2021)

5.2
K-fold Cross-Validation

A common problem faced when we want to evaluate a model is that it
may have good prediction ability on training data, but poor prediction ability
on unseen data. Cross-validation is a procedure to estimate performance in a
generalized way and that allows us to compare the performance of different
models and find out the best one for the modeled problem. (REFAEILZADEH;
TANG; LIU, 2009)

K-fold cross-validation is one of the most used methods in machine
learning and consists of dividing the data into k folds of equal or nearly equal
size. In sequence, k training iterations are performed so that in each iteration,
a different fold is chosen for testing and the remaining (k − 1) are used for
training (REFAEILZADEH; TANG; LIU, 2009).

The Figure 5.9 shows the scheme of the 4-fold method. It shows the
data separated into training and testing for each iteration, represented as a
row. After the four iterations, we will have four different models, each with
a performance. The overall performance of our model will be the arithmetic
mean of the performances.

Figure 5.9: K-fold scheme when k = 4

We use K-fold cross-validation with K = 11 and show the performances
of each fold in the chapter 6.



5.3
Loss Function

The loss function evaluates how good the model is. The higher the value
returned by the loss function, the worse the prediction of our model. And
the smaller the value given by the loss function, the better the prediction of
the model. So, in a simplified way, the loss function measures the absolute
difference between the value predicted by the model and the correct value
(HENNIG; KUTLUKAYA, 2007).

Choosing the loss function should be as important as defining the
architecture used to address the problem. Zhao et al. (2015) compared several
loss functions and showed that choosing the appropriate function for the
problem directly impacts the result. In our case, we chose to train the model
with the Binary Cross Entropy function and with Tversky, both explained
below. We compare the results in the chapter 6.

5.3.1
Tversky

As mentioned before, our data are unbalanced. Not balancing them
causes the learning process to converge to a local minimum of a loss function
that is not the best for this case and leads the predictions to a skewed result
(SALEHI; ERDOGMUS; GHOLIPOUR, 2017). To achieve a better tradeoff
between precision and recall, we use the Tversky loss function, which is based
on the Tversky index, proposed by Salehi, Erdogmus e Gholipour (2017).

In image segmentations, it is very common to choose Dice similarity
coefficient, shown in the equation 5-1, to calculate the loss function. If it were
used for the loss function in the training, it would weigh the FN and FP
equally. However, we need to weigh the FN more than the FP as we want to
detect even small lesions and we have unbalanced data. So instead of the Dice
similarity coefficient, the Tversky cost function is based on the Tversky index,
as shown in the equation 5-2 (SALEHI; ERDOGMUS; GHOLIPOUR, 2017).

P and G are the set of predicted and ground truth binary labels, re-
spectively and α and β control the magnitude of penalties for FPs and FNs,
respectively.

Dice similarity coefficient

D(P, G) = 2 | PG |
| P | + | G |

(5-1)

Tversky index

S(P, G; α, β) = | PG |
| PG | +α | P/G | +β | G/P |

(5-2)

The Tversky loss function is defined below, where p0i is the probability
of pixel be a lesion and p1i is the probability of pixel be a non-lesion. Fur-
thermore, g0i = 1 for a lesion pixel and g0i = 0 for a non-lesion pixel and vice



verse for the g1i (SALEHI; ERDOGMUS; GHOLIPOUR, 2017).

T (α, β) =
∑N

i=1 p0ig0i∑N
i=1 p0ig0i + α

∑N
i=1 p0ig1i + β

∑N
i=1 p1ig0i

(5-3)

The gradient of the equation 5-3 with respect to p0i and p1i are shown in
the equations 5-4 and 5-5 below.

∂T

∂p0i

= 2g0j(
∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i) − (g0j + αg1j)
∑N

i=1 p0ig0i

(∑N
i=1 p0ig0i + α

∑N
i=1 p0ig1i + β

∑N
i=1 p1ig0i)2

(5-4)

∂T

∂p1i

= − βg1j
∑N

i=1 p0ig0i

(∑N
i=1 p0ig0i + α

∑N
i=1 p0ig1i + β

∑N
i=1 p1ig0i)2 (5-5)

By adjusting the α and β hyperparameters, it is possible to control the
trade-off between FPs and FNs. Larger βs lead to greater recall than preci-
sion, as more emphasis is placed on false negatives (SALEHI; ERDOGMUS;
GHOLIPOUR, 2017). Salehi, Erdogmus e Gholipour (2017) demonstrated that
using larger βs in the generalized loss function during training allows for greater
generalization and better performance in cases of unbalanced data, giving more
emphasis to FNs to improve recall.

5.3.2
Binary Cross Entropy

Binary Cross Entropy is used for binary classifications. In our work, we
want to classify whether or not each pixel is a lesion, so it’s an option that
makes sense for the problem. It returns predictions that are either 0 or 1
(RUBY; YENDAPALLI, 2020). Below we explain how it is calculated.

The equation 5-6 represents the probability mass function, where yi is
the ground truth and can take values 1 or 0 as it is a binary classification
(WATT; BORHANI; KATSAGGELOS, 2020).

p(yi) = yyi
pred(1 − ypred)1−yi (5-6)

The probability of a pixel belonging to the category "with lesion" or
"without lesion" is shown in the equation 5-7 (WATT; BORHANI; KAT-
SAGGELOS, 2020).

P (yi) =
n∏

i=1
p(yi) =

n∏
i=1

yyi
pred(1 − ypred)1−yi (5-7)



Now we take the log of the expression 5-7, as this makes the calculation
simpler and the result is in equation 5-8 (WATT; BORHANI; KATSAGGE-
LOS, 2020).

log P (yi) =
n∑
i

[yi log(ypred) + (1 − yi) log(1 − ypred)] (5-8)

We want to maximize the expression 5-8, which is exactly the probabil-
ity that a pixel belongs to the same class as yi. On the other hand, we can
minimize the expression − log P (yi) below:

− log P (yi) = −
n∑
i

[yi log(ypred) + (1 − yi) log(1 − ypred)] (5-9)

The above equation represents the loss function itself. To calculate the
average value of the loss function, we need to divide the value by the number
of samples. So the final expression for the binary cross entropy (BCE) is given
by the equation 5-10.

BCE = − 1
N

n∑
i

[yi log ypred + (1 − yi) log(1 − ypred)] (5-10)

5.4
AdamW Optimizer

One of the main challenges in machine learning is the minimization of the
loss function. The optimizer is responsible for changing network parameters
(such as weights and learning rate) to minimize the loss function. Each
optimizer has a different methodology to approach this problem and in this
work we chose to use the optimizer proposed by Loshchilov e Hutter (2018),
AdamW, an improved version of Adam that generalizes better and can compete
with stochastic gradient descent, another optimizer.

5.4.1
Adam

First, let’s understand how Adam works. To minimize a loss function f ,
you randomly initialize the weights of the network and the goal is to reach a
minimum for the loss function as quickly as possible. Before each step, you
need to define which direction has the greatest slope, that is, which direction
has the greatest gradient ∇f . Thus, the weight x(t) is updated as in the
expression 5-11 (LOSHCHILOV; HUTTER, 2018).

x(t) = x(t − 1) − α∇f (5-11)



What the Adam optimizer does is adapt the steps according to how much
the gradient changes. So it allows us to take bigger steps when the gradient
doesn’t change much, keeping step in the same order as α and to take smaller
steps when it varies rapidly, making step size much smaller (LOSHCHILOV;
HUTTER, 2018).

5.4.2
Weight decay

According to Loshchilov e Hutter (2018), networks with lower weights
are less likely to overfit and are able to generalize better. Adding weight decay
is a strategy to try to keep the weights smaller for better generalization.

The weight decay rate per step ω determines the relative importance of
minimizing the original cost function (when the ω is small, 1 − ω is close to 1)
and finding smaller weights (when the ω is very large, 1 − ω is close to 0). The
weights update expression is shown in 5-12 (LOSHCHILOV; HUTTER, 2018).

x(t) = (1 − ω) · x(t − 1) − α∇f (5-12)

The term (1 − ω) exponentially decays the weights x and thus forces the
network to learn smaller weights.

Loshchilov e Hutter (2018) applied the weight decay strategy in the
Adam optimizer and got the AdamW. They experimentally showed that the
latter can generalize better than models trained with Adam and besides, it
achieves results as interesting as the ones of the stochastic gradient descent
with momentum, which is one of the most used by researchers.



6
Results

In the Table 6.1 we describe the distribution of samples from our dataset
between training, validation and testing. As our dataset is small, with only 46
samples, we had to choose a larger K to perform the K-fold cross validation,
otherwise we would have very few images for training and the model would
not present a good result. We chose K = 11 and in each fold approximately
10% of the samples were left for testing and the rest was left for training and
validation.

Number of samples
Fold Number Train Validation Test

1 37 (80%) 5 (11%) 4 (9%)
2 37 (80%) 5 (11%) 4 (9%)
3 37 (80%) 5 (11%) 4 (9%)
4 37 (80%) 5 (11%) 4 (9%)
5 37 (80%) 5 (11%) 4 (9%)
6 37 (80%) 5 (11%) 4 (9%)
7 37 (80%) 5 (11%) 4 (9%)
8 37 (80%) 5 (11%) 4 (9%)
9 37 (80%) 5 (11%) 4 (9%)
10 36 (78%) 5 (11%) 5 (11%)
11 36 (78%) 5 (11%) 5 (11%)

Table 6.1: K-Fold description

After distributing the samples between training, validation and testing,
we performed the training for each fold both with the Binary Cross Entropy
loss function, whose results are in the Table 6.2, and with the Tversky loss
function, whose results are in the Table 6.3.

Fold Number Accuracy Precision Recall F1 Score
1 98,0% 67,4% 86,2% 75,7%
2 98,9% 67,2% 79,3% 72,6%
3 99,4% 50,3% 78,4% 59,7%
4 98,1% 75,2% 86,6% 80,4%
5 98,4% 55,1% 80,2% 64,9%
6 98,5% 55,6% 76,5% 63,9%
7 98,9% 43,1% 60,4% 48,4%
8 98,3% 67,2% 79,8% 73,0%
9 98,4% 66,4% 62,3% 64,2%
10 98,4% 67,1% 87,0% 75,7%
11 97,8% 78,6% 81,9% 80,2%

Average 98,4% 66,8% 79,6% 68,7%

Table 6.2: Metrics results using the Binary Cross Entropy loss function



Some folds obtained better results than others. In the Table 6.2, the best
fold was Fold 4, whose F1 Score reached 80.4%, while the worst was Fold 7. The
difference between the results of each fold is expected, since the data separated
for training is different in each case. Therefore, the overall performance of the
model is given by the average of each metric, as shown in the last rows of
the Tables 6.2 and 6.3. To facilitate the comparison, the general result of each
model is in Table 6.4.

Fold Number Accuracy Precision Recall F1 Score
1 97,9% 82,6% 74,7% 78,4%
2 98,4% 82,6% 60,6% 69,8%
3 99,4% 71,8% 66,8% 68,9%
4 98,0% 78,4% 83,4% 80,8%
5 98,3% 61,5% 70,1% 64,3%
6 98,4% 74,3% 66,4% 69,6%
7 98,7% 71,7% 65,3% 66,4%
8 98,3% 76,9% 75,7% 76,2%
9 98,6% 79,8% 75,8% 77,5%
10 98,3% 83,5% 75,4% 79,2%
11 97,4% 85,6% 70,3% 76,8%

Average 98,4% 77,6% 72,4% 73,0%

Table 6.3: Metrics results using the Tversky loss function

Loss Accuracy Precision Recall F1 Score
Tversky 98,34% 78,37% 70,28% 76,23%
Binary 98,35% 77,61% 70,28% 73,03%

Table 6.4: Comparison of overall performance between models trained with Tversky
and with Binary Cross Entropy

In the two models presented above, the accuracy is always very high with
values above 90%. Since accuracy measures the ratio between the correct pixels
and total pixels, this is expected, because our model correctly predicts almost
every region of the brain.

Below we present some results that we obtained with the model trained
using Binary Cross Entropy loss function and with the model trained using
Tversky loss function. The two models made very similar predictions, but in
some cases, as in the Figure 6.1, the prediction of the former is a little worse
than the latter. Other results are in Figures 6.2 and 6.3.

In the figures below, Binary is the result generated by the model trained
using the Binary Cross Entropy loss function and Tversky is the result
generated by the model trained using the Tversky loss function.



Figure 6.1: Result in which the model with the Binary Cross Entropy loss function
is worse than the model with the Tversky loss function

Figure 6.2: Some results comparing the two models - Part 1



Figure 6.3: Some results comparing the two models - Part 2
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Conclusion and Future Work

In this work we developed a deep learning model to perform lesion
segmentation in brain images. We had a very small dataset and we had to take
some actions to get around this problem, performing K-fold cross validation
and choosing the DC-UNet architecture that handles this situation well. Also,
we selected two loss functions to compare the results and choose the best one
for our problem: Binary Cross Entropy and Tversky. The latter performed a
little better than the former.

In addition, the pre-processing of the images was essential for the
performance of the model, since the skull and the difference in intensity of the
magnetic resonance images could prevent the neural network from extracting
important features.

In general, our results were very encouraging and this indicates that, in
the future, techniques such as the one applied in this work may be used by
specialists to aid in the diagnosis of brain lesions. Furthermore, we still have
about 500 data without masking and some techniques can take advantage of
this data to improve the result. For example, as future work, we can use self-
supervised learning techniques, such as Masked Autoencoder (ZHOU et al.,
2022), to improve training performance and model generalization or perform
finetune for models like U-NetR (HATAMIZADEH et al., 2022) or ViTDet (LI
et al., 2022) to improve segmentation.



8
Bibliography

ANJOS, G. et al. Automatic segmentation of breakouts in acoustic borehole image
logs using convolutional neural networks. Proceedings of the XLIII Ibero-Latin-
American Congress on Computational Methods in Engineering, ABMEC,
CILAMCE, 2022.

BAUER, S.; FEJES, T.; REYES, M. A skull-stripping filter for itk release 1 . 0. In:
. [S.l.: s.n.], 2013.

BOER, R. D. et al. White matter lesion extension to automatic brain tissue
segmentation on mri. Neuroimage, Elsevier, v. 45, n. 4, p. 1151–1161, 2009.

DONG, H. et al. Automatic brain tumor detection and segmentation using u-
net based fully convolutional networks. In: SPRINGER. annual conference on
medical image understanding and analysis. [S.l.], 2017. p. 506–517.

DU, G. et al. Medical image segmentation based on u-net: A review. Journal of
Imaging Science and Technology, Society for Imaging Science and Technology,
v. 64, p. 1–12, 2020.

HATAMIZADEH, A. et al. Unetr: Transformers for 3d medical image segmentation.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. [S.l.: s.n.], 2022. p. 574–584.

HENNIG, C.; KUTLUKAYA, M. Some thoughts about the design of loss functions.
REVSTAT-Statistical Journal, v. 5, n. 1, p. 19–39, 2007.

IBTEHAZ, N.; RAHMAN, M. S. Multiresunet: Rethinking the u-net architecture
for multimodal biomedical image segmentation. Neural networks, Elsevier, v. 121,
p. 74–87, 2020.

LI, Y. et al. Exploring plain vision transformer backbones for object detection.
arXiv preprint arXiv:2203.16527, 2022.

LOSHCHILOV, I.; HUTTER, F. Fixing weight decay regularization in adam. 2018.

LOU, A.; GUAN, S.; LOEW, M. Dc-unet: rethinking the u-net architecture with
dual channel efficient cnn for medical image segmentation. In: SPIE. Medical
Imaging 2021: Image Processing. [S.l.], 2021. v. 11596, p. 758–768.

RAMANI, R.; VANITHA, N. S.; VALARMATHY, S. The pre-processing techniques
for breast cancer detection in mammography images. International Journal of
Image, Graphics and Signal Processing, Modern Education and Computer
Science Press, v. 5, n. 5, p. 47, 2013.

REFAEILZADEH, P.; TANG, L.; LIU, H. Cross-validation. Encyclopedia of
database systems, Springer, v. 5, p. 532–538, 2009.



RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for
biomedical image segmentation. In: SPRINGER. International Conference on
Medical image computing and computer-assisted intervention. [S.l.], 2015.
p. 234–241.

RUBY, U.; YENDAPALLI, V. Binary cross entropy with deep learning technique
for image classification. Int. J. Adv. Trends Comput. Sci. Eng, v. 9, n. 10,
2020.

SALEHI, S. S. M.; ERDOGMUS, D.; GHOLIPOUR, A. Tversky loss function for
image segmentation using 3d fully convolutional deep networks. In: SPRINGER.
International workshop on machine learning in medical imaging. [S.l.], 2017.
p. 379–387.

WANG, L. et al. Correction for variations in mri scanner sensitivity in brain studies
with histogram matching. Magnetic resonance in medicine, Wiley Online
Library, v. 39, n. 2, p. 322–327, 1998.

WATT, J.; BORHANI, R.; KATSAGGELOS, A. K. Machine learning refined:
Foundations, algorithms, and applications. [S.l.]: Cambridge University Press,
2020.

ZHAO, H. et al. Loss functions for neural networks for image processing. arXiv
preprint arXiv:1511.08861, 2015.

ZHOU, L. et al. Self pre-training with masked autoencoders for medical image
analysis. arXiv preprint arXiv:2203.05573, 2022.


	DC-UNet for White Matter Lesions Segmentation
	Resumo
	Table of contents
	Introduction
	Overview
	Data Pre-Processing
	Skull-stripping
	Histogram Matching

	Evaluation Metrics
	Accuracy
	F1 Score

	Methodology
	Architecture
	K-fold Cross-Validation
	Loss Function
	AdamW Optimizer

	Results
	Conclusion and Future Work
	Bibliography

