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Abstract

Nunez Ruiz,Yoiz Eleduvith; da Silva Mello, Luiz Alencar Reis (Ad-
visor); Lovisolo, Lisandro (Co-Advisor). On Machine Learning
Techniques Toward Path Loss Modeling in 5G and Beyond
Wireless Systems. Rio de Janeiro, 2023. 161p. Tese de Doutorado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Path loss (PL) is an essential parameter in propagation models and cri-
tical in determining mobile systems’ coverage area. Machine learning (ML)
methods have become promising tools for radio propagation prediction. Howe-
ver, there are still some challenges for its full deployment, concerning to selec-
tion of the most significant model’s inputs, understanding their contributions
to the model’s predictions, and a further evaluation of the generalization capa-
city for unknown samples. This thesis aims to design optimized ML-based PL
models for different applications for the 5G and beyond technologies. These ap-
plications encompass millimeter wave (mmWave) links for indoor and outdoor
environments in the frequency band from 26.5 to 40 GHz, macrocell coverage in
the sub-6 GHz spectrum, and vehicular communications using measurements
campaign carried out by the Laboratory of Radio-propagation, CETUC, in Rio
de Janeiro, Brazil. Several ML algorithms are exploited, such as artificial neu-
ral network (ANN), support vector regression (SVR), random forest (RF), and
gradient tree boosting (GTB). Furthermore, we have extended two empirical
models for mmWave with improved PL prediction. We proposes a methodology
for robust ML model selection and a methodology to select the most suitable
predictors for the machines considered based on performance improvement and
the model’s interpretability. In adittion, for the vehicle-to-vehicle (V2V) chan-
nel, a convolutional neural network (CNN) technique is also proposed using a
transfer learning approach to deal with small datasets. The generalization tests
proposed shows the ability of the ML models to learn the pattern between the
model’s inputs and PL, even in more challenging environments and scenarios
of unknown samples.

Keywords
Path loss; Machine learning; Interpretability; Millimeter waves; Sub-6

GHz; Vehicular communication.



Resumo

Nunez Ruiz,Yoiz Eleduvith; da Silva Mello, Luiz Alencar Reis; Lo-
visolo, Lisandro . Sobre técnicas de aprendizado de máquina
em direção à modelagem de perda de propagação em sis-
temas sem fio 5G e além. Rio de Janeiro, 2023. 161p. Tese de
Doutorado – Departamento de Engenharia Elétrica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

A perda de percurso (PL) é um parâmetro essencial em modelos de pro-
pagação e crucial na determinação da área de cobertura de sistemas móveis. Os
métodos de aprendizado de máquina (ML) tornaram-se ferramentas promisso-
ras para a previsão de propagação de rádio. No entanto, ainda existem alguns
desafios para sua implantação completa, relacionados à seleção das entradas
mais significativas do modelo, à compreensão de suas contribuições para as
previsões do modelo e à avaliação adicional da capacidade de generalização
para amostras desconhecidas. Esta tese tem como objetivo projetar modelos
de PL baseados em ML otimizados para diferentes aplicações das tecnologias
5G e além. Essas aplicações abrangem links de ondas milimétricas (mmWave)
para ambientes indoor e outdoor na faixa de frequência de 26,5 a 40 GHz,
cobertura de macrocélulas no espectro sub-6 GHz e comunicações veiculares
usando campanhas de medições desenvolvidas em CETUC, Rio de Janeiro,
Brazil. Vários algoritmos de ML são explorados, como redes neurais artificiais
(ANN), regressão de vetor de suporte (SVR), floresta aleatória (RF) e aumento
de árvore de gradiente (GTB). Além disso, estendemos dois modelos empíricos
para mmWave com previsão de PL melhorada. Propomos uma metodologia
para seleção robusta de modelos de ML e uma metodologia para selecionar os
preditores mais adequados para as máquinas consideradas com base na melho-
ria de desempenho e na interpretabilidade do modelo. Além disso, para o canal
veículo-veículo (V2V), uma técnica de rede neural convolucional (CNN) tam-
bém é proposta usando uma abordagem de aprendizado por transferência para
lidar com conjuntos de dados pequenos. Os testes de generalização propostos
mostram a capacidade dos modelos de ML de aprender o padrão entre as en-
tradas do modelo e a PL, mesmo em ambientes e cenários mais desafiadores
de amostras desconhecidas.

Palavras-chave
Perda de percurso; Aprendizado de máquinas; Interpretabilidade;

Ondas milimétricas; Sub-6 GHz; Comunicação vehicular.



Table of contents

1 Introduction 19
1.1 Motivation 19
1.2 Overview of Path Loss Modeling 20
1.3 Machine Learning for Path Loss Prediction 22
1.4 Major Research Contributions 24
1.5 Thesis Organization 26

2 Fundamental Concepts and Background 27
2.1 Characteristics of the Mobile Radio Channel 27
2.2 Machine Learning for Path Loss Prediction 30
2.3 Path loss Prediction using Supervised Learning 34
2.4 Interpretability Machine Learning Techniques 40
2.5 Summary 44

3 Path Loss Prediction for mmWave Indoor Communications
using Machine Learning Techniques 45

3.1 Related Work 45
3.2 The Measurement Campaign: Dataset Description 46
3.3 Empirical Path Loss Models 47
3.4 Methodology for Model Selection 49
3.5 Design of the Empirical Models: Results and Analyses 50
3.6 Design of the ML Models 52
3.7 Performance of the Empirical and the ML-based PL Models 55
3.8 Results: Interpretable Machine Learning Techniques used for Pre-

dictors Selection 56
3.9 Model Interpretation Methodology and Results 58
3.10 Generalization Capacity Analysis 66
3.11 Discussion 68

4 Path Loss Prediction for mmWave Outdoor Communica-
tions using Machine Learning Techniques 70

4.1 Related Work 70
4.2 The Measurement Campaign: Dataset Description 71
4.3 Proposed Empirical Path Loss Model 73
4.4 ML-Based Models 76
4.5 Final Models Comparison 76
4.6 Generalization Capacity Analysis 80
4.7 Discussion 81

5 Path Loss Prediction for Macrocell Coverage at sub 6-GHz
using Machine Learning Techniques 83

5.1 Related Work 83
5.2 The Measurement Campaign: Dataset Description 85
5.3 Path Loss Empirical Model 89



5.4 ML-based PL Models 90
5.5 Final Models Comparison between the GTB and Empirical Models 96
5.6 Generalization Capacity Analysis 99
5.7 Discussion 102

6 Path Loss Prediction for V2I and V2V using Machine
Learning Techniques 104

6.1 PL Prediction for V2I 105
6.2 PL Prediction for V2V 115

7 Conclusions and Future Work 128
7.1 Future Work 134
7.2 Published Works 136

A Hyperparameter Grid Search of the ML Models Design for
Indoor mmWave 153

B Interpretability Results for the ML Models in the mmWave
Indoor Environment 156

B.1 Interpretability Results for the ANN-based Path Loss Model 156
B.2 Interpretability Results for the SVR-based Path Loss Model 157
B.3 Interpretability Results for the RF-based Path loss Model 159

C Evaluation of the Pre-trained CNN model 160



List of figures

Figure 1.1 5G research challenges [1]. 19

Figure 2.1 Multipath propagation effects. 27
Figure 2.2 Approach for supervised learning for regression. 34
Figure 2.3 Basic architecture of a CNN model. 39

Figure 3.1 Map of the indoor measurement scenario, PUC-Rio,
CETUC, and schematic view of the distance predictors. Each
star represents a transmission position, while the circles with the
same color indicate the correspondent positions where receivers
were placed for measuring the path loss. 47

Figure 3.2 Comparison of measured and predicted path losses on
the testing set for the empirical and ML models. 54

Figure 3.3 Scatter plots between predictors and the path loss and
between predictors pairs. Each graph presents the MI value for
the pair of variables evaluated. 57

Figure 3.4 ALE graphs for the four ML models. Each line presents
the graphs for a different model: (1) ANN, (2) SVR, (3) RF,
and (4) GTB. The predictor order in each column corresponds
to their inclusions in the model input from upper to lower. Each
plot presents the ALE graphs for the predictor, considering the
different number of predictors used as input. 61

Figure 3.5 Marginal contributions in performance and interpretabil-
ity for the GTB-based PL model (for the predictors coalitions
see Table 3.7). 63

Figure 3.6 Absolute error between the measured and predicted PL
on the testing against distance and number of obstructing walls
for the frequencies at 27, 33, and 40 GHz. 65

Figure 4.1 Distribution of the transmitter and receivers map of the
outdoor measurement scenario, PUC-Rio [150]. 72

Figure 4.2 Vegetation profile for the receivers partially obstructed
by foliage: (a) RX1, (b) RX2, (c) RX4, (d) RX10, (e) RX15, and
(f) RX16. Each graph presents the vdepth value for the receiver
evaluated. 73

Figure 4.3 Scatter plots between predictors and the path loss for
the mmWave outdoor environment. 74

Figure 4.4 Comparison of measured and predicted path losses on
the testing set for the ML and empirical models. 78

Figure 4.5 ALE plots for the GTB model evaluated from the subset
of one predictor (d) until the four predictor subset (d, f, vdepth,
∆h) in the mmWave outdoor environment. 79

Figure 4.6 Generalization test capacity for unknown receivers for
the mmWave outdoor links. 80



Figure 5.1 Distribution of samples for the model design of the work
proposed in [33]. The regions represented by the red line were
used to adjust the coefficient parameters in the models. 84

Figure 5.2 Map of the measurement campaign in the macrocell
coverage at the sub-6 GHz frequency band. 86

Figure 5.3 Example of the profile environment between the trans-
mitter and receiver. The left-hand graph shows the building,
vegetation and diffraction profile along distance, and the right-
hand graph shows the ground profile. 87

Figure 5.4 CDF of the measured PL in Route #1 and Route #2. 88
Figure 5.5 Scatter plots of the measured path loss versus distance

for each Route and frequency. 89
Figure 5.6 Example of the randomly shuffled (graph on the left) and

unknown streets (on the right), for the training (in blue) and
testing (red) sets division methodology. 91

Figure 5.7 Comparison of measured and predicted path losses on
the testing set for the ML models in the macrocell environment. 94

Figure 5.8 ALE plots for the GTB model evaluated from the subset
of one predictor (bdepth) until the selected subset (bdepth,d,f ,gh

,∆h, vdepth). The y-axis shows the centered accumulated local
effect values. 96

Figure 5.9 Comparison of measured and predicted path losses on
the testing set for the GTB-based PL model measured on the
Route #1. 97

Figure 5.10 Comparison of measured and predicted path losses on
the testing set for the GTB-based PL model measured on the
Route #2. 98

Figure 5.11 Measurements samples for the generalization capacity
test for the sub-6 GHz macrocell environment. Samples in blue
are used for training and in red for testing. 100

Figure 5.12 Comparison of measured and predicted path loss on the
testing set for the ML and empirical models. 101

Figure 6.1 Measurement scenarios for V2I. 106
Figure 6.2 CDF of the measured PL in Route #1 and Route #2 in

the V2I scenario. 108
Figure 6.3 Scatter plot of path loss versus distance for the Route #1

and Route #2 at each frequency. For Route #2, the variability
of PL with distance is lower, more notably in the frequency of
2.54 GHz and 3.5 GHz in the distance higher than 100 m. 108

Figure 6.4 Comparison of measured and predicted path losses on the
testing set (Route #2) for the ML models in the V2I environment.110

Figure 6.5 ALE plots for the GTB model including the subset with
one predictor (f) until the selected subset (f , nb, σb, nv, σv, σg,
d). 112

Figure 6.6 Marginal contributions in performance and interpretabil-
ity for the GTB-based PL model (for the predictors coalitions
see Table 6.4). 113



Figure 6.7 Scatter plots between the predicted and measured data
for each frequency for the log-distance and GTB model. 114

Figure 6.8 Positions of the collected samples in the V2V measure-
ment campaign. 117

Figure 6.9 Scatter plot between path loss and distance for the V2V
scenario. 118

Figure 6.10 The ResNet18 architecture using 18 layers based on a
residual learning framework [113]. 119

Figure 6.11 Obtaining the images containing the Tx and Rx sites and
the link between them: (a) georeferenced image, (b) example
to extract the Tx-Rx patch image, and (c) average latitude
and longitude coordinates between the Tx and Rx. The yellow
dashed line identifies the final square cropped from the image. 121

Figure 6.12 Some examples of clipped patch images considering
different Tx-Rx distances. As seen in the images, the proposed
clipping technique captures the effect of the distance between
the transmitter and receiver on the clipped patch. The Tx-Rx
distance samples range from 12.03 to 103.50 m. 121

Figure 6.13 Experiments for PL prediction using the ResNet18. Two
training approaches are tested: the firts where the model is
trained from scratch (experiment #1), and the second where
only the regression layers are trained (experiment #2). 122

Figure 6.14 The points in blue are used for training and the samples
in red are used for testing. 122

Figure 6.15 RMSE curves for the PL during training when using the
pre-trained ResNet18 model and training the ResNet18 from
scratch. 123

Figure 6.16 Comparison of the measured and predicted PL for the
log-distance, RF and pre-trained CNN model on the testing set. 126

Figure 7.1 Wideband measurement campaign for macrocell cover-
age carried out in Rio de Janeiro Brazil, in November 2017 [157].

135
Figure 7.2 Proposed technique to extract images for macrocell

coverage. 135

Figure A.1 Curve of training and validation set in the CV technique
for the models: (a) ANN, (b) SVR, (c) RF and (d) GTB. 154

Figure A.2 Grid search of the hyperparameter optimization for
the four models: (a) ANN, (b) SVR, (c) RF, and (d) GTB.
Each graph presents the RMSE (color) according to the three
different hyperparameters. The highlighted box presents the
lowest RMSE value in each graph, and the arrow points to the
correspondent hyperparameter point. 155

Figure B.1 Comparison between the value of the PFI and its re-
sponse to vary C. 158

Figure C.1 A snapshot of some images from the dataset (1) EuroSAT
[158] and (2) NWPU-RESISC45 [115] . 161



Figure C.2 Pre-trained CNN model for land use classification. 161
Figure C.3 Accuracy of the land use classifier using the pre-trained

ResNet18 using EuroSAT (left) and NWPU-RESISC45 (right). 161



List of tables

Table 2.1 ML-based studies on PL prediction for urban, suburban,
rural, and indoor environments. 31

Table 2.1 ML-based studies on PL prediction for urban, suburban,
rural, and indoor environments. (cont.). 32

Table 3.1 Coefficients of the ABG and ABGnw models obtained
from the CV subsets. 51

Table 3.2 Coefficients of the CIF and CIFnw models calculated from
the CV subsets. 51

Table 3.3 Performance evaluation of the empirical models with CV,
values are in dB. 51

Table 3.4 Adjusted coefficients of the empirical models. 53
Table 3.5 Computational complexity in the ML models. 55
Table 3.6 Performance evaluation of the empirical and ML models

on both the training and testing sets. 56
Table 3.7 Performance, joint and conditioned mutual information

and IML indicators for the machines constructed for the four
ML models using different subsets evaluated on the training
set. Model performance is measured using RMSE, MAPE, σ,
and R2. 59

Table 3.8 PFI rank of the selected predictor shown in crescent order,
with RMSE loss for different subsets of predictors. 60

Table 3.9 Interaction strength between two predictors (2D-ALE) for
the GTB-based PL model, for each number of predictors used
for machine design, the first row presents the pair having the
lowest interaction, and the pairs follow in increasing interaction
order. 62

Table 3.10 Performances and complexities of the four final regression
having optimized predictors subsets and hyperparameters. 64

Table 3.11 Performance of the proposed GTB-based PL model when
the models are training considering a set of transmitters and
the test employs a different one. 66

Table 3.12 Generalization capability analysis for the GTB-based PL
model. The models are trained using two transmitters and
evaluated (tested) on the four remaining ones. 67

Table 3.13 GTB and empirical PL models performance using the
database from Yonsei University, Korea. 68

Table 4.1 Coefficients of the ABG and ABG∆h, vdepth models ob-
tained from the CV subsets. 75

Table 4.2 Coefficients of the CIF and CIF∆h, vdepth models calcu-
lated from the CV subsets. 75

Table 4.3 Performance evaluation of the empirical models with CV,
values are in dB. 75

Table 4.4 Adjusted coefficients of the empirical models. 77



Table 4.5 Performance evaluation of the ML models on both the
training and testing sets. 77

Table 4.6 Performance and IML indicators for the GTB model using
different coalitions measured on the training set. 78

Table 4.7 2D-ALE for the GTB model for the subset of four predictors. 79
Table 4.8 PFI rank value of the four predictors subset shown in

crescent order. 79
Table 4.9 Generalization capacity analysis for the PL models. The

models are adjusted/trained using seventeen receivers and eval-
uated (tested) on the four remaining ones. 81

Table 4.10 Adjusted coefficients of the ABG and ABG∆h, vdepth
models for the generabizability analysis. 81

Table 4.11 Performance evaluation of the empirical and GTB models
considering a set of receivers for training and the test employs
a different set. 82

Table 5.1 Samples collected in each Route and frequency. 86
Table 5.2 Range values of the predictors for the Route #1 and Route

#2. 88
Table 5.3 Parameters of the distributions for σ2 and mean of the

measured PL. 89
Table 5.4 Comparison of the train-test randomly shuffled and un-

known streets strategies in terms of σ2 and mean for the PL
values they contain. 91

Table 5.5 Performance evaluation of the GTB model measured on
the training and testing sets. 93

Table 5.6 Performance evaluation of the ML-based PL models for
the sub-6 GHz macrocell environment measured on the training
and testing set. 94

Table 5.7 Performance and IML indicators for the GTB model
for macrocell in the sub-6 GHz using different coalitions mea-
sured on the training set. Model performance is measured using
RMSE, MAPE, σ, and R2; interpretability is assessed by IAS
and MEC. 95

Table 5.8 PFI rank value of the selected subset of predictors shown
in crescent order. 96

Table 5.9 Performance evaluation of the GTB model measured on
the training and testing sets using the optimized subset of
predictors for the sub-6 GHz macrocell environment. 97

Table 5.10 Values of the coefficients for the log-distance model in
each frequency, estimated on the training set. 97

Table 5.11 Performance evaluation for each frequency measured on
the testing set from samples of Route #1 in the macrocell coverage. 99

Table 5.12 Performance evaluation for each frequency measured on
the testing set from samples of Route #2 for macrocell coverage. 99

Table 5.13 Coefficients value for the log-distance model estimated
over the training set for the generalization test. 100



Table 5.14 Performance evaluation for the empirical models and
GTB PL model trained using the instances from Route #1
and tested using the samples from Route #2 in the different
frequencies for the sub-6 GHz macrocell environment. 101

Table 5.15 Reported RMSE values in dB at [33] for the compared
PL models for the Route #1 and Route #2, respectively. 102

Table 6.1 Ranges of predictor values in Route #1 and Route #2 in
the V2I scenario. 107

Table 6.2 Variance and mean of the measured PL in Route #1 and
Route #2. 107

Table 6.3 Performance evaluation of the PL-based ML models mea-
sured on the training and testing set for the V2I case. 110

Table 6.4 Performance indicators for the GTB model for the V2I
case using different subsets measured on the training set. Model
performance is measured using RMSE, MAPE, σ and R2 and
the interpretability is measured with IAS and MEC. 111

Table 6.5 PFI ranking in increasing order of the selected subset of
predictors shown. 112

Table 6.6 Coefficient values for the log-distance model for each
frequency, estimated over the training set. 113

Table 6.7 Performance evaluation for the testing set at the different
frequencies for the GTB and log-distance PL models. 114

Table 6.8 Hyperparameters range for the proposed CNN for path
loss modeling. 123

Table 6.9 PL performance evaluation and interpretability for the
ML and log-distance models. The estimated coefficients Lo and
n for the log-distance model for the V2V training set is 46.36
and 1.23, respectively. 125

Table 7.1 Summary results for the different environments. 129

Table B.1 Interaction strength between two predictors (2D-ALE) for
the ANN-based PL model, for each number of predictors used
for machine design, the first row presents the pair having the
lowest interaction, and the pairs follow in increasing interaction
order. 157

Table B.2 Interaction strength between two predictors (2D-ALE) for
the SVR-based PL model. 158

Table B.3 Interaction strength between two predictors (2D-ALE) for
the RF-based PL model. 159



List of Abreviations

5G – Fifth generation mobile network

PL – Path loss

ML – Machine learning

mmWave – Millimeter wave

V2I – Vehicle-to-Infraestructure

V2V – Vehicle-to-Vehicle

ANN – Artificial neural network

SVR – Support vector regression

RF – Random forest

GTB – Gradient tree boosting

CNN – Convolutional neural network

ABG – Alpha-beta-gamma

CIF – Close-in frequency-dependent exponent

MI – Mutual information

IML – Interpretable machine learning

RMSE – Root mean squared error

MAPE – Mean absolute percentage error

CW – Continuous wave

OFDM – Orthogonal frequency-division multiplexing



Man cannot discover new oceans unless he has
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1
Introduction

1.1
Motivation

The next generation of mobile communication systems relies on mil-
limeter wave technology to fulfill high data rates and low latency require-
ments [1, 2]. However, deploying the fifth generation (5G) mobile network and
beyond systems will involve the integration of heterogeneous networks with
overlapping cells to meet capacity and higher data rate transmission [3, 4], as
illustrated in Figure 1.1. The 5G network system is expected to support a va-
riety of scenarios from cellular mobile broadband to vehicular communication,
as well as the integration with existing technologies [1]. While the 4G cellu-
lar network enhanced mobile broadband capabilities, the advent of 5G needs
to meet new and increased performance requirements; however, the resulting
scenarios become more complex and dynamic than for previous technologies,
with a higher demand for greater capacity and coverage, smaller latency, more
flexibility, and increased efficiency exploiting the resources and meeting the
operational requirements [5].

Figure 1.1: 5G research challenges [1].

The expected frequency bands of 5G are defined in Release 15-16 of the
3rd Generation Partnership Project (3GPP) [6], divided into the frequency
range 1 (FR1) considering the sub-6 GHz spectrum from 410 MHz to 7125
MHz and the frequency range 2 (FR2) covering the frequency ranges from 24.25
GHz to 52.6 GHz. Employing the sub-6 GHz spectrum for macrocell coverage
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is expected to increase the performance and capacity of 5G networks [7].
Meanwhile, the millimeter wave band is expected to enable high data rate
communications due to the larger bandwidth available [8, 9]. Additionally,
vehicular communication is a key technology for intelligent transportation
systems (ITS) due to the need for safer, more efficient, and sustainable
transportation [10]. ITS applications consider the exchange of data in different
vehicular communication among vehicles and with road infrastructure referred
to as vehicle-to-vehicle (V2V) [11, 12], vehicle-to-infrastructure (V2I) [13, 14,
15], and vehicle-to-everything (V2X) [16] to provide secure and reliable wireless
communications between vehicles to road infrastructure, and among vehicles,
respectively, expected to operate in the frequency band below 6 GHz [17, 18],
and in millimeter wave [11], oriented to short-range communications [19].

The millimeter wave (mmWave) spectrum is identified as one of the
key technologies to provide multi-gigabit-per-second (Gbps) data rates [8].
Nevertheless, due to the smaller wavelength, the propagating wave suffers
from atmospheric absorption, higher attenuation loss, and blockage from
obstacles [3]. In addition, the employment of array-antenna systems and beam-
forming offer new possibilities at mmWave [1, 8, 20]. However, the frequency
band between 28 GHz and 38 GHz (26.5 GHz to 40 GHz) presents a negligible
atmospheric absorption in short-range links (less than 200 m) suitable for
communication within 5G small cells for indoor and outdoor coverage [20].

Currently, the 5G technology is being deployed across the world. Globally,
5G reached a coverage of 35 percent of the world population at the end of
2022, and only about 25 percent of the 4G sites have been upgraded to 5G as
reported in the 2023 Ericsson Mobility Report [21]. One of the most important
aspects of planning and optimizing these wireless communication systems is the
development of accurate radio propagation models for the different operational
frequency bands, and for indoor and outdoor environments [22, 23].

1.2
Overview of Path Loss Modeling

One important indicator for characterizing the channel of the communi-
cation system is path loss (PL). The PL is the decrease in the signal strength
during propagation from the transmitter to the receiver [24]. PL plays a crucial
role in estimating link budgets for coverage planning when designing wireless
networks. The mmWave spectrum exhibits very different propagation condi-
tions when compared to the microwave bands (below 6 GHz) [25]. At these
frequencies, not only the propagation loss is higher but it is also highly depen-
dent on atmospheric conditions. The result in a wider range of variation of the
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propagation loss and existing channel models designed for microwave bands are
inadequate at mmWave frequencies and the development of new appropriate
PL models becomes necessary [25, 26].

In vehicular communication, the V2I and V2V channels differ and deviate
significantly from those in cellular communications [10]. For the V2I, both
the transmitter and receiver have low antenna heights, and additionally, the
receiver or the transmitter can be moving [14, 17]. For the V2V case, the
channel is more dynamic due to the relative movement between the vehicles’
transmitter and receiver, rapidly changing the surrounding environment [18,
27]. Therefore, other objects, such as moving and stationary vehicles, buildings,
and vegetation, affect the radio propagation environment [15, 28].

Traditionally, PL models have been proposed and employed for specific
environments and frequencies, given the distinctive propagation characteris-
tics in each scenario. Over the years, deterministic and empirical models have
been used to predict the PL at different frequencies and distances with vari-
ous degrees of complexity (number of parameters and algorithm complexity in
the model) [29, 30, 31]. Deterministic models, such as ray-tracing techniques,
are site-specific and accurate. However, in challenging environments, their com-
plexity and computational requirements increase significantly [3]. They become
particularly demanding in the mmWave band since detailed characterizations
of foliage, building geometry and electric characteristics that influence reflec-
tions and refraction phenomena, are required for calculations [32]. Further-
more, these techniques become impractical for macrocell coverage due to the
extensive area and the high number of multipath components [33].

On the other hand, in an empirical model, coefficients are adjusted us-
ing measurement data. These models have low computational complexity and
require less geometric information. However, they may be simplistic and pro-
vide low accuracy leading to inherent prediction errors. The alpha-beta-gamma
(ABG) [34] and the close-in frequency-dependent exponent (CIF) [22] are
multi-frequency PL prediction models covering a wide range of frequencies,
including the microwave and mmWave spectrum [35, 36]. For macrocell cov-
erage, several empirical models have been proposed, such as Egli model [37],
Okumura-Hata [38] and Lee model [39]. For the characterization of the vehic-
ular channel, empirical models such as ITU-R P.1411-5, two-ray, log-distance,
and street canyon have been proposed [10, 14, 15, 17, 19].

More recently, with the motivation of reducing computational demands
while maintaining good accuracy, machine learning methods have emerged as
promising tools for radio propagation prediction in the different 5G application
scenarios and communication environments [40].
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1.3
Machine Learning for Path Loss Prediction

In the last years, artificial intelligence (AI) and, particularly, machine
learning (ML) algorithms have proven to be feasible solutions for a variety
of problems in the wireless communication domain, addressing challenges in
network planning and design, management of resources, optimization, control
and operation of the network, and managed customer service system [5].

ML aims at designing systems that learn and evolve from experience/data
automatically [41]. It encompasses approaches for providing approximate
mappings between inputs (predictors) and output (response). ML algorithms
are classified among supervised, unsupervised, and reinforcement learning [42,
43, 44]. Supervised learning refers to designing systems that predict or estimate
a response using at least one predictor and examples of input and known
output mappings, divided into regression and classification tasks. Unsupervised
learning encompasses techniques to discover patterns and associations within
the data without known responses, that is, without supervision. Reinforcement
learning techniques employ exploration (of the unknown) and exploitation (of
the known) to maximize the reward for dynamic scenarios [43, 44].

PL modeling based on machine learning may be tackled as a regression
problem that, in principle, any supervised algorithm can solve if enough data
is available. The input features for the PL prediction can be extracted from the
system- and environment-dependent parameters created on tabular datasets,
2D/3D digital maps, and topographic databases [45]. For PL prediction
based on tabular data, some studies have demonstrated that the prediction
performance using ML models based on artificial neural networks (ANN),
support vector regressor (SVR) and ensembles of trees perform reasonably
well [45, 46, 47] surpassing those based on k-nearest neighbors (k-NN) [48, 49]
or one single decision tree [49]. Some methods using an ensemble of trees
applied for PL prediction are random forest (RF), and AdaBoost [50, 51].

On the other hand, deep learning techniques for PL prediction extract
features from the environment between the transmitter and receiver using
digital surface/elevation models [52], and satellite images [53] for outdoor
environments, and from local area multi-scanning (LAMS) images for indoor
cases [54]. In addition, deep learning models for PL prediction, in general,
require a vast number of samples obtained from extensive measurement
campaigns or ray-tracing simulations [52, 55]. The studies demonstrate that
ML-based models improve over the traditional PL models with a trade-off
between computational load and efficiency, regardless of frequency and radio
propagation environment. As a result, ML-based models have emerged as a
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promising alternative to model the path loss. However, many ML algorithms
have been regarded as black-box systems because of the lack of knowledge
of the machine’s internal mechanism to output the prediction after training.
Therefore, despite the several studies for PL modeling based on ML techniques,
it is still unclear why the ML models improve over the traditional PL models,
how to interpret them, and how well the trained model can generalize to unseen
data [32, 40].

Consequently, there are some open challenges:

– The selection of the most relevant predictors to obtain a high-quality
model for the radio propagation prediction problem;

– The explanation/interpretability of the ML-based PL model response,
and

– Further exploitation of the trained PL model’s applicability and gener-
alization capacity for unknown samples, i.e., scenarios.

Regarding predictor selection techniques in supervised algorithms, filter,
and wrapper methods are usually employed to forecast the most relevant pre-
dictors for good performance and to understand the model’s response [56].
Filter methods assess the importance of the predictor based on the dataset,
independently of the applied ML algorithm and its performance [57], for exam-
ple, using mutual information (MI) [58]. The MI is calculated on the dataset to
provide pre-interpretations, i.e., before training, aiming to measure the correla-
tion between predictors and the output. Pre-interpretability techniques remain
independent of the model since they are solely applicable to the data itself [59].
However, they can explore and provide an understanding of the data before
model selection.

On the other hand, wrapper methods assess the effect of the predictor by
evaluating the performance of a specific ML algorithm using sequential forward
or backward greedy approaches [58]. In the forward approach, the predictor
leading to the largest increase in the model’s performance at each iteration is
included in the subset of already selected predictors. In the backward approach,
the predictor that does not significantly reduce the model’s performance is
removed; the process starts using all the available predictors [60, 61]. In
addition, in [62], the term coalition is incorporated to refer to the union of
predictors used in the input; thus, the coalition incorporates a new predictor
that evaluates the contribution, ranking the importance of each predictor by
its Shapely value [62].

When considering ML-based PL models, some schemes of predictor selec-
tion incorporate principal component analysis (PCA) techniques to reduce the
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dimension of the dataset [63, 64]. Nevertheless, the obtained principal compo-
nents (data that explain a maximal amount of variance) are less interpretable,
and the PCA technique may have a low trade-off between information loss ac-
cording to the number of principal components and dimension reduction [65].

Nonetheless, some of the limitations witnessed in supervised learning,
particularly for wireless communications, are the lack of the capacity to inter-
pret the model’s response [66]. This lack of interpretability leads to uncertainty
regarding the model’s inner workings and decision-making processes [67]. An
interpretability definition for ML models is introduced in [68] to refer to the
degree to which a human can understand the cause of a given decision of the
model. This is related to the cause-and-effect relationship between the model’s
inputs and outputs. Another related term with interpretability in ML models
is explainability. It is associated with explaining the internal logic and mech-
anisms inside the machine [67].

As a result, to gain insight into the connections between the ML model’s
input and output, in the last years, significant contributions have emerged
to advance the interpretability of ML models. These tools provide post-hoc
interpretation, analyzing the models’ responses after training [69]. Methods
assessing interpretability [67] are based on model-specific or model-agnostic
techniques that can be applied to a single model or group of models, or any
model, respectively; assessing and interpreting a single prediction instance
(local interpretation) or the whole model (global interpretation).

Therefore, within the context of radio propagation modeling, diverse en-
vironments result in different propagation characteristics, which influence the
input-output relationship of the channel. Since these relationships vary across
the different scenarios, an appropriate selection of the input features that max-
imize the model’s performance and the interpretability of its response is re-
quired to fully deploy these radio propagation models [49, 66]. In addition, the
conduction of generalization tests is necessary to provide a reliable conclusion
about an ML model’s generalization capacity. The term generalization capacity
denotes the ability of the model to accurately predict the output value when
the instance is unknown during the training of the model [40, 70].

1.4
Major Research Contributions

This thesis addresses the previously mentioned issues in ML-based PL
prediction models considering different frequency bands and environments,
which include mmWave frequencies for indoor and short-range outdoor sce-
narios and sub-6 GHz bands for urban macrocell coverage, V2I, and V2V
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links. The measurement campaigns for all those environments were carried out
by the Laboratory of Radio-propagation, CETUC, in Rio de Janeiro, Brazil.
Accordingly, the following topics of study correspond to our contributions:

– A large-scale review of radio propagation prediction based on ML models
regarding operating frequency, algorithms employed, input features, and
performance indicators is presented.

– Considering the precedent works, different supervised algorithms are ex-
ploited to build PL models for several frequency bands and environments.
A robust methodology for designing the ML models is employed across
the studies to offer a reliable performance comparison.

– A PL model based on deep learning technique and transfer learning is
proposed and studied for the V2V environment.

– Besides the ML algorithms, empirical models are also considered for
each corresponding scenario leading to fair and sound comparisons.
For mmWave in indoor and outdoor environments, extensions of the
multi-frequency empirical models ABG and CIF, including additional
environmental feature inputs, are proposed.

– We propose a predictor selection methodology to form coalitions (a signif-
icant subset of predictors) for the ML-based PL models. It uses a forward
selection approach to rank the predictors according to their performance,
along with interpretable machine learning (IML) techniques, to provide
understandable insights into the connections between the model’s inputs
(predictors) and the PL (output).

– We evaluate the generalization capability of the ML-based PL models
using the conventional random split dataset and considering unknown
transmission/receiver positions and streets, whatever fits better the
application scenario for the model.

We evaluate the proposed ML models and the methodology for
predictor selection in different environments through the dataset ob-
tained from the diverse measurement campaigns. The codes developed,
including the results for Figures and Tables, are available on GitHub:
https://github.com/YoizNunez/ML-based-PL-models
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1.5
Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces
the theoretical basis of the radio propagation channel, a survey on PL modeling
using ML techniques, principles of supervised learning for regression, and the
fundamentals of the proposed interpretability techniques. Chapter 3 considers
PL models for mmWave in the indoor environment; it also presents in detail
the methodology for PL model selection employed for ML techniques and
empirical models. Furthermore, in this chapter, the proposed methodology
to choose the predictor coalitions is explained and applied to the proposed ML
models. The results are discussed and analyzed using the pre and post-hoc
interpretation techniques. In addition, a generalization test is addressed by
considering unknown transmitters and receivers. To reduce the contents, some
results on model tuning and intrepretability are presented in Appendix A and
Appendix B, respectively.

The following chapters address the proposed methodologies and post-
hoc interpretability tools for ML-based PL models in different environments;
the interpretability model’s response analysis focuses on the ML model with
the best PL prediction. Chapter 4 tackles the issue of PL modeling for
the mmWave Outdoor communications, and a generalization test considering
unknown receiver positions is tailored to assess the applicability of the model
in real scenarios. Chapter 5 address the PL modeling for urban macrocell
coverage. Generalization tests regarding unknown streets are presented. In
continuation, Chapter 6 addresses PL models for vehicular communication.
It is divided into two sections, addressing V2I and V2V links. For the V2V
scenario, a deep learning approach is proposed. Conclusions and suggestions
for future work are presented in Chapter 7.



2
Fundamental Concepts and Background

This chapter introduces the fundamental concepts and parameters used
to characterize a radio- propagation channel. Furthermore, it presents a survey
on path loss modeling using machine learning to identify the techniques and
methodologies that have been employed in recent years. The principles of
supervised machine learning employed in this thesis are also described, aiming
at explaining the mechanisms behind the techniques employed. Lastly, It
presents the fundamentals for the pre and post-hoc interpretability techniques
employed in this thesis.

2.1
Characteristics of the Mobile Radio Channel

The mobile radio channel is the physical transmission medium between
the transmitting and the receiving antennas [71, 72]. The transmitted signal
reaches the receiver by means of different propagation mechanisms, such as
free space propagation, reflection, diffraction, and scattering; they arise due
to the different obstacles existing between the transmitter and the receiver, as
illustrated in Figure 2.1 [30, 72, 73]. These propagation mechanisms are briefly
described below.

Figure 2.1: Multipath propagation effects.

– Free space propagation refers to the scenario where there is a direct,
clear and unobstructed line-of-sight (LOS) path between the transmitter
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and the receiver. The attenuation is simply due to the spread of the
transmitted energy in space, in directions other than that of the receiver.

– Reflection occurs when the transmitted wave encounters an object with
dimensions larger than the wavelength of the propagating wave, that
reflect the wave in the direction of the receiver antenna.

– Scattering arises when the medium through which the wave propagates
contains objects with dimensions smaller than the wavelength, such that
multiple attenuated wave fronts are directed at the receiver.

– Diffraction appears when the radio path between the transmitter and
receiver is obstructed by large surfaces, around which the wave "turns"
to reach the receiver.

The received signal may present strength variations with the distance in
large- and small-scales due to the path loss, and fading due to different effects,
among which are the ones arising by multipath [30, 73].

2.1.1
Path Loss

Path loss (PL) is the average attenuation of the received power due
to wave propagation between transmitter and receiver [30, 72]. This average
attenuation can usually be approximately expressed as a function of the
logarithm of the distance between transmitter and receiver [72], given by

PL[dB] = PL(do) + 10nlog10

(
d

do

)
, (2-1)

where PL(do) is the mean path loss at the reference distance do, n is the path
loss exponent, and d is the distance between the transmitter and receiver.

2.1.2
Fading

Fading consists of large- and small-scale fluctuations of the attenuation
experimented by the propagating wave from the transmitter to the receiver.
Large-scale fading (shadowing) represents the average attenuation of the
receiver power due to the presence of large obstructions (buildings, foliage,
walls, and furniture) [73]. On the other hand, small-scale fading refers to the
rapid changes in the amplitude and phase of the propagating wave over a short
period due to wave reflections on obstacles and to the receiver’s motion [73].
The number and type of objects that cause large-scale fading at any receiver
location are typically unknown. Hence, the attenuation due to shadowing is
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modeled statistically by a log-normal distribution [72], and the PL model
becomes

PL[dB] = PL[dB] + Xσ, (2-2)
where Xσ is a zero-mean Gaussian random variable with standard deviation σ

in dB, which reflects the variation of the receiver power due to shadowing.

2.1.3
Multipath Propagation

Due to the multiple reflecting obstacles that the transmitted signal en-
counters when propagating, different multipath components may arrive at the
receiving antenna with different delays, phase shifts, and attenuations [30, 72].
As a consequence, at the receiver, the waves from different paths can mix con-
structively or destructively. Thus, multipath propagation may produce severe
dispersion. The expected degree of dispersion is determined by measuring the
power delay profile (PDP) using wideband channel sounding techniques [74].
The PDP represents the temporal distribution of the power P (τ).

The effect of multipath propagation is commonly measured in terms of
the extent of time dispersion introduced by the multipath channel, known as
delay spread [74]. Delay spread can be quantified through different indicators;
the most common are the root-mean-squared delay spread (RMS DS) and
the mean excess delay, which can be calculated from the PDP [73]. The
RMS DS measures the extent of the delay spread around the mean [75], and
mathematically, it is the square root of the second central moment of the power
delay profile, given by

τrms =

√√√√∑k(τk − τ)2P (τk)∑
k P (τk) . (2-3)

where P (τk) and τk are the power and excess delay of the kth ray, respectively.
In turn, it has been found that RMS DS is directly related to the minimum
symbol length that can be used in order to avoid excessive intersymbol inter-
ference. In general, the RMS DS is modeled statistically using its probabil-
ity density function (PDF) [76]. Distributions such as Lognormal, Nakagami,
Weibull, Rayleigh, and Rice are usually employed in the statistical analysis
of the multipath channel due to their good fit with the one constructed from
empirical data [77]. On the other hand, the mean excess delay describes the
mean propagation delay of the components concerning the first component to
arrive at the receiver; it is the first moment of the PDP, that is, [73]

τ =
∑

k P (τk)τk∑
k P (τk) . (2-4)
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The mentioned channel parameters can provide a basis for predicting
path loss and transmitter coverage to optimize the network performance [48].
This thesis focuses on PL prediction by exploiting different machine learning
techniques and empirical models. The following section presents an overview of
machine learning studies to deal with PL prediction, identifying the techniques
and methodologies employed.

2.2
Machine Learning for Path Loss Prediction

In recent years, several works have attempted to use machine learning
(ML) for PL prediction in different radio-propagation environments, mainly in
urban [47, 78, 79], and suburban areas [63]. Others have focused on vehicle-to-
vehicle (V2V) communications [16, 70], prediction of the received power from
unmanned aerial vehicles (UAV) [48, 51], aircraft communications [50], and
also smart campus environments [80]. The dataset to design these models has
been obtained by conducting measurement campaigns or trough simulation
methods.

The ML algorithms employed for PL prediction encompass ANN [49],
SVR [47], and RF [79], among others. Other works compare the PL prediction
performance among different ML algorithms [45, 50, 51, 81], including deep
neural network (DNN), decision tree, and k-nearest neighbors (k-NN) [49].
Data transferring is suggested in [45, 48] for increasing the training dataset by
fusing data acquired at different frequencies and scenarios.

Table 2.1 presents some relevant aspects of works delving into PL
modeling using ML. Its columns present the channel frequency and propagation
environment, the ML tools employed together with the learning criterion (the
so-called loss function – LF), the input features (the predictors employed)
for the models, and the indices for performance evaluation. They encompass
different frequencies in urban, suburban, rural, and indoor environments. It
shall be noticed that the listed works use different ML models, loss functions,
and predictors subsets.

Considering indoor environments, [46] and [82] propose ANN-based
PL models. Meanwhile, [82] considers models when the wave must propa-
gate through multiple walls (multi-wall) and in multiple-frequency (multi-
frequency) scenarios. Body shadowing and furniture effects in an indoor area
were suggested in [83] for modeling the average received power for multi-
frequency models using neural networks. In [84], the authors combine ANN
and a 3-D ray launching algorithm to predict the received power in an indoor
scenario. Other applications employ ML techniques such as recurrent neural
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network RNN and convolutional neural network (CNN) to model the environ-
mental effect in the received power for positioning and tracking the mobile
terminal in the indoor environment [85].

Table 2.1 lists some works dealing with PL prediction using ML tech-
niques in the ultra high frequency (UHF, 300-3000 MHz). They suggest
different features as input for radio-propagation channel modeling. Some
works [63, 86] indicate that predictor selection techniques to reduce the dataset
dimension may be worthy for PL modeling both in urban [86] and subur-
ban [63] environments. In terms of features selection, in [79] the authors select
the input features from various terrain and environmental parameters. In [87],
image technologies – light detection and ranging (LiDAR) and 2D satellite
images, provide volumetric data, including tree canopies and vegetation, that
feed an ANN for PL prediction. Independently of the different aspects, besides
model training, finding the optimal model hyperparameters is also important,
as in [46] and [83], for example. The hyperparameters define the architecture
of the ML model better described in Section 2.3.

Table 2.1: ML-based studies on PL prediction for urban, suburban, rural, and
indoor environments.

Refer-
ence

Freq.
[MHz] |
Sce-
nario

ML alg. |
Loss
func.

Input features Performance
indicators

[47] 853.71 |
Urban

SVR | ε-
insensitive
loss

Transmitter-receiver distance, terrain
elevation, horizontal and vertical angle,
latitude, longitude, horizontal and vertical
attenuation of the antenna.

Mean error and
σ.

[55] 900 |
Urban

CNN,
ANN |
N/D

Image of building height information.
MAE, MAPE,
MSE, RMSE,
and R2.

[86] 947 |
Urban

ANN,
SVR |
MSE, ε-
insensitive
loss

Inputs features related to the global path:
distance and portion through the buildings. MSE.

[78] 947.53 |
Urban

ANN |
MSE

Latitude, longitude, elevation and
transmitter-receiver distance.

ME, MAE,
MSE, RMSE, σ
and R.

[51] 1800 |
Urban

ANN,
SVR, RF,
AdaBoost
| N/D

Transmitter-receiver distance, frequency,
and relative coordinates of the receiver
position.

MAE, MAPE,
RMSE and R.

[49] 2100 |
Urban

DNN,
Tree,
k-NN |
N/D

Transmitter-receiver distance, horizontal
and vertical angular separation,
LOS/NLOS state, first and last diffraction
point.

RMSE.

[45] 2021.4 |
Urban

ANN,
SVR, RF |
MSE,
N/D

Transmitter-receiver distance.
RMSE, MAPE,
MAE, MaxPE
and σ.

[87]
700 -
2600 |
Urban

ANN |
N/D

3-D image generated from LiDAR
technology and 2-D satellite image. MAPE.

Continue on the next page
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Table 2.1: ML-based studies on PL prediction for urban, suburban, rural, and
indoor environments. (cont.).

Refer-
ence

Freq.
[MHz] |
Sce-
nario

ML alg. |
Loss
func.

Input features Performance
indicators

[79]

operation
in UHF
band |
Urban

RF | MSE Feature of the transmitter, test point
location, and environment features.

RMSE and cost
time.

[52]

operation
in UHF
band |
Urban

CNN |
MSE

Global information systems (GIS) layers
and antenna parameters (location, height,
azimuth, tilt, radiation pattern, and
frequency).

RMSE.

[53]

operation
in UHF
band |
Urban

CNN |
N/D

2D satellite image. The study treats path
loss prediction as an image classification
problem.

Accuracy.

[63]

450,
1450,
2300 |
Subur-
ban

ANN |
MSE

Transmitting and receiving antenna height,
transmitting/receiving antennas heights
ratio, and distance.

RMSE, MAE,
MAPE, MSLE
and R2.

[88] 881.52 |
Rural

ANN |
MSE

Transmitter-receiver distance, antenna
height, terrain clearance angle, terrain
usage, vegetation type, and vegetation
density.

CF.

[89] 900, 1800
| Rural

k-NN, RF
| N/D

Distance, altitude, LOS/NLOS state and
elevation angle. RMSE and R2.

[90] 3700 |
Rural

ANN, RF,
SVR,
B-kNN |
N/D

Distance, LOS/NLOS state, effective height
between the transmitter and receiver.

ME, MAE,
MAPE, and
RMSE, σ.

[91]

operation
in UHF
band |
Rural

SVR,
RBF |
N/D

Elevation, clutter heights,
transmitter-receiver distance, altitude, and
building to building distance.

MSE.

[46] 1890 |
Indoor

ANN,
RBF-NN |
MSE

Position of the transmitter, gain Tx, height
Tx, receiver position, type of interior,
distance, number of walls and windows,
accumulated loss of walls and windows.

MAE, RMSE
and σ.

[83]

900,
1800,
2100,
2400 |
Indoor

ANN |
quadratic
loss error.

Transmitter-receiver distance, frequency,
number of crossed walls and floors, angle of
incidence with wall and floor, furnishing
index, and density of people ratio.

ME, σ and CF.

[82]

900,
1800,
2100,
2400 |
Indoor

ANN |
MSE

Transmitter-receiver distance, frequency,
wall attenuation, and floor attenuation. ME, σ and CF.

[84] 2400 |
Indoor

ANN,
RBF-NN |
MSE

Relative X,Y,Z coordinates.
CPU and time
cost, σ, NMSE
and MAE.

[50]

2400,
3520,
5800 |
Indoor

ANN,
SVR, RF,
AdaBoost
| N/D

Distance, frequency, and relative
coordinates of the receiver position.

MAE, MAPE,
RMSE, and R2.

[54] 28 GHz |
Indoor

CNN |
N/D LAMS images. RMSE.

In addition, some ML-based PL models for rural areas are also available,
as pointed out in Table 2.1. In [90], the authors evaluate the PL prediction
utilizing different ML algorithms at 3.7 GHz, including ANN, SVR, RF, and
bagging with k-NN (B-kNN). In [91], an SVR and a radial basis function (RBF)
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regression are developed for PL prediction in a rural environment. In [89], air-
to-ground PL prediction models for UAV and the Internet of Things (IoT) in
rural environments are carried out using k-NN and RF. In [88], different ANN
architectures are employed for PL prediction for macrocell in rural areas.

Furthermore, from the literature review presented, we identify that most
of the works employ the conventional random split for training and testing set
allocation as described in [45, 46, 55, 63, 78, 82, 83, 84, 88, 90], usually using
80% of the dataset for training and the remaining for testing. We also evaluate
the performance prediction of the PL models using random split. In addition,
we perform tailored generalization tests according to the environment studied
to emphasize the applicability and generalizability of the obtained ML models.

When considering ML-based PL models, some schemes of predictor se-
lection incorporate PCA techniques to reduce the dimension of the dataset [63,
64]. We propose a predictor selection methodology to form coalitions (a signif-
icant subset of predictors) with an interpretability gain. The detailed descrip-
tion of the methodology is presented in Chapter 3, Section 3.9.

In addition, we also identify that most works use a single ML technique
such as ANN, SVR, RF, or CNN. Some compare their performance using
tabular or 2D data. In addition, most of those works consider a single frequency
channel in the UHF band. This thesis employs the ANN, SVR, and RF
due to their usually good performance to solve radio propagation problems.
In addition, we use the GTB model as a PL prediction technique due to
its outstanding performance in a wide range of applications [92]. Thus, the
performance models are compared using the proposed methodologies to find
the optimal ML-based PL model in each scenario and frequency band in the
mmWave and sub-6 GHz spectrum. The CNN technique is also addressed with
a transfer learning strategy to train the model with a small dataset.

From Table 2.1, we see that different indicators to evaluate the model
performance have been used, such as the mean error (ME), mean absolute
error (MAE), mean square error (MSE), root mean square error (RMSE),
standard deviation (σ), mean absolute percentage error (MAPE), mean square
logarithmic error (MSLE), mean square normalized error (MSNE), maximum
prediction error (MaxPE), correlation factor (CF), regression coefficient (R),
and coefficient of determination (R2). We identify that most of the studies
employ the indicators RMSE, MAPE, σ and R2. We use them to compare the
employed models and with the most related works.
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2.3
Path loss Prediction using Supervised Learning

In a regression problem, the aim is to develop machines that map the
predictors to the response. When using machine learning techniques, this
problem is solved as illustrated in Figure 2.2 and described below. The training
set is a collection of I input-output pairs

{
x(i), y(i)

}I

i=1
, such that x(i) ∈ RP ,

P is the number of predictors, and y(i) ∈ R is the target. The goal is to find
a function ŷ = f(x) that minimizes the expected value of the loss function
L(y, ŷ) [93]

ŷ = argmin
ŷ

Ex,y[L(y, ŷ)]. (2-5)

The loss function L(y, ŷ) quantifies how closely the model fits the train-
ing set [94]. The approximation function depends on the model parameters
Θ or degrees of freedom [93], i.e., ŷ = f(x; Θ) [44]. User-defined parameters
called hyperparameters control the learning process and the number of pa-
rameters [94], which are defined through the model selection process using
cross-validation (CV) methods applied on the training set [40, 95]. The pro-
cess of finding hyperparameters that optimize the learning model commonly
involves techniques such as grid search, random search, or Bayesian optimiza-
tion [40, 95]. The selection of method depends on the dimensionality of the
data; for instance, in the case of a large dataset, grid search can become com-
putationally demanding and may not be the most efficient approach.

Figure 2.2: Approach for supervised learning for regression.

Once the hyperparameters are selected, the final model is obtained, and
a generalization test is performed on it using the testing set. Different machine
models present hyperparameters having their own definitions and meanings.
In the following sections, we briefly delineate the models employed and their
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hyperparameters so that later we can describe the procedures applied to obtain
the final models.

2.3.1
Artificial Neural Network

The ANN is inspired by theories about human brain functioning [43]. It
simulates the structure and functionalities of a biological neural network [96].
An ANN consists of interconnected basic-processing elements (artificial neu-
rons) in a multi-layered architecture [43, 96]. Each neuron computes a weighted
sum of its inputs coming from other neurons. The strength of a connection is
determined by the synaptic weight. The resulting value is processed by a non-
linear activation function to produce the output [96].

A feedforward ANN or multilayer perceptron (MLP) [96, 97, 98] is
composed of L layers. The input layer (l = 1) receives the predictor vector{
(x(i))

}I

i=1
and, thus, has n inputs. One or more hidden layers (l < L)

determine the mapping between the input and the output layer (l = L)
that computes the response ŷ of the neural network. The weights connect
the outputs of the neurons in one layer to the next layer’s inputs. At layer
l > 1, there are Jl neurons. The connection from the output of the i-th neuron
in layer l − 1 to the input of the j-th neuron in layer l is the weight w

(l)
ji . The

response of the j-th neuron in layer l is given by

o
(l)
j = φ

(l)
j

Jl−1∑
i=1

w
(l)
ji o

(l−1)
i + b

(l)
j

 , (2-6)

where φ
(i)
j (·) is the activation function, o

(l−1)
i is the response of the i-th neuron

in the previous layer, b
(l)
j is the bias of the neuron j in layer l. Common

activation functions for MLPs are the sigmoid [43], tansig [99], and ReLU [96].
The training process of an MLP consists of adjusting the weights and biases
that minimize the loss function [97]. For regression, the squared error loss is
commonly used

L(y, ŷ) =
I∑

i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2

. (2-7)

Back-propagation is among the most employed training algorithms for
MLPs [96, 97]. The algorithm initially computes the response for each neuron
from the input to the output layer. Subsequently, the output error is computed
L(y, ŷ) and propagated through the network in the backward direction [97].
For the gradient descent method [100], one computes the partial derivatives
of the output error with respect to the weights and biases using the chain
rule [100]. Then, one updates the weights and biases in the gradient descent
direction of the output error [97, 100]. Consequently, the parameter updates
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at iteration t = 1, .., T are computed using

∆w
(l)
ji (t) = −η

∂E

∂w
(l)
ji

+ α∆w
(l)
ji (t − 1), (2-8)

∆b
(l)
j (t) = −η

∂E

∂b
(l)
j

+ α∆b
(l)
j (t − 1), (2-9)

where 0 < η < 1 is the learning rate that multiplies the gradient, i.e.
η is the step-size for the parameters updates [63]. Equations (2-8) and (2-
9) also add the update from the previous step (t − 1) multiplied by the
weight decay 0 < α < 1 to restrain parameter changes during training (L2-
regularization) in order to reduce the model complexity and avoid over-fitting
(poor generalization) [101]. Adjustment of weights and biases is performed
repeatedly using batches of entries from the training dataset until some
stopping criterion is met, such as a number of predefined iterations or early
stopping. Other standard training algorithms are Levenberg Marquardt and
Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [102].

2.3.2
Support Vector Regression

SVR makes linear regression using [103]

ŷ = ⟨w, x⟩ + b, (2-10)

where ⟨·, ·⟩ is the dot product in RP , w and x ∈ RP , and b ∈ R. The normal
vector w, the weight, and the bias b are the parameters to be learned [104].
Therefore, the SVR learning process aims to find w and b that minimize the
ε-insensitive loss function [103, 105]

L(y(i), ŷ(i)) =

|y(i) − ŷ(i)| − ε if |y(i) − ŷ(i)| > ε

0, otherwise
, (2-11)

where ε represents the tolerated deviation between the target and the predicted
value. The ε-insensitive function defines a tube of width ε (ŷ ± ε), and the
datapoints whose y(i) value differs from ŷ(i) by more than ε are penalized [104].

Therefore, the design objective is to find a function ŷ, the hyperplane
defined by w and b in Equation (2-10), such that ŷ(i) deviates from y(i) by less
than ε. Meanwhile, the tube must be as flat as possible [105], while containing
most of the data points [103]. The data points outside the tube are known
as support vectors and are used to build the model [103]. A small value of ε

indicates a low error tolerance, impacting the number of support vectors that
are stored/learned [104].
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The SVR model is obtained by minimizing

min
w,b,ξ(i),ξ(i)∗

1
2 ||w||2+C

(
I∑

i=1
(ξ(i) + ξ(i)∗)

)
, subject to


y(i) − ŷ(i) ≤ ε + ξ(i),

ŷ(i) − y(i) ≤ ε + ξ(i)∗,

ξ(i), ξ(i)∗ ≥ 0,

(2-12)
where ŷ(i) is computed using Equation (2-11), and ξ(i) and ξ(i)∗ indicate the
differences between the target y(i) and the upper and lower bound in the tube,
respectively [47]. C is a regularization factor that determines the trade-off
between the flatness of the tube and the amount up to which deviations that
are larger than ε are tolerated [104]. Given the Lagrange multipliers αp and α∗

p,
a kernel function K(x, xp), and a number of support vectors (Psv), the desired
hyperplane is given by [103]

ŷ =
Psv∑
p=1

(αp − α∗
p)K(x, xp) + bp, (2-13)

bp = yp − wT xp − ε for αp ∈ (0, C), (2-14)

bp = yp − wT xp + ε for α∗
p ∈ (0, C). (2-15)

When the Kernel function performs a non-linear mapping, the SVR
makes the linear regression in the transformed space, allowing improved
performance for problems departing from linear maps. A commonly employed
kernel is the radial basis function (RBF) K(x, xp) = exp(∥ x − xp ∥2 /σ2),
where σ controls the shape of the non-linear mapping [104].

2.3.3
Random Forest

A decision tree is given by [43]

T (x; Θ) =
J∑

j=1
γjI(x ∈ Rj). (2-16)

It is defined by the parameters Θ = {(Rj, γj)}J
j=1. The subscript j is the

number of the leaf or terminal nodes of the tree. At each node, a partition using
rules (if-then conditions) on the predictors is applied [44, 106]; g predictors
randomly selected from all the existing m predictors are applied in the rule
to decorrelate the tree and reduce variance [107]. The rules define regions Rj,
and γj is γ̂j = yj, the average yj for the samples that fall in the region Rj.

A widely used recursive partitioning algorithm to obtain the rules is the
classification and regression tree (CART) algorithm [108]. It searches for the
initial node of the tree considering s possible split nodes for every predictor.
The best predictor and split value that minimizes the loss function is chosen
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to split the data into two child nodes or regions [43, 109]. To find the split into
the regions Ri and Rj in each tree, for the g predictors and split values s, one
solves

min
g,s

min
yi

∑
xp∈Ri(g,s)

(yp − yi)2 + min
yj

∑
xp∈Rj(g,s)

(yp − yj)2

 , (2-17)

it sums the squared errors of attributing the response value yi to the input
values belonging to Ri and yj to the input values belonging to Rj. In each
split, the response is modeled by the mean y in each region. Then, one or both
child nodes are divided into two regions using the same splitting rule design
criterion [43] to make the tree grow; the process continues until a stopping rule
is met, such as the maximum depth tree, which defines the complexity of the
model [43].

A RF is a collection of tree-based models [110]. Bootstrapping is em-
ployed to create Q independent subsets with s randomly chosen training sam-
ples with replacement from the original training set [93]. They are used to learn
different regression trees {T (x; Θq)}, q = 1 . . . Q, in parallel, that is, each tree
is trained with a different subset of the input-output pairs. Their individual
responses are averaged to compute the response [93, 110],

ŷ = 1
Q

Q∑
q=1

T (x; Θq). (2-18)

2.3.4
Gradient Tree Boosting

The GTB algorithm obtains an ensemble of trees similarly to the RF.
However, while the RF independently builds each tree from the bootstrap
samples, the GTB learns the tree sequentially using the residuals (errors)
between the target and predicted values by the previous trees to compensate
for prediction errors [93]. At each iteration q = 1, ..., Q [44, 93], for training
the q-th tree one computes the residual values r(i)

q = y(i) − ŷ
(i)
q−1, where ŷ

(i)
q−1

is the predicted value obtained using up to the q − 1 tree. This applies for all
training sample

{
(x(i), r(i)

q )
}I

i=1
. Consequently, for the j-th terminal node of

the q-th tree, the optimal predicted value is the one minimizing

γjq = argmin
γ

∑
x(i)∈R

(i)
j

L
(
y(i), ŷ

(i)
q−1 + γ

)
. (2-19)

Once the residuals r(i)
q and the node values γjq are computed for the new tree,

the model is updated using
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ŷq = ŷq−1 + η
Jq∑

j=1
γjqI(x ∈ Rjq), (2-20)

where η is the learning rate (0 < η < 1), until q = Q.

2.3.5
Convolutional Neural Network

The CNN is a deep learning model that has shown great performance to
extract features from 2D images and other data [55, 111, 112]. This ability has
surpassed the manual design of features/predictor extraction for classification
problems [111]. Nowadays, CNNs are employed to solve computer vision tasks,
including classification, detection, and segmentation [113, 114]. Some archi-
tectures that are being widely used in computer vision are LeNet, AlexNext,
U-Net, VGG, InceptionNet, and GoogleLeNet, which are usually trained with
huge datasets [115, 116]. Figure 2.3 shows a basic CNN architecture with three
layers, including a convolutional, pooling, and fully connected layer [117].

Figure 2.3: Basic architecture of a CNN model.

The convolution layer performs a linear operation to extract Q feature
maps (patterns) for q = 1, . . . , Q from the input matrix; the convolution
process entails sliding a set of trainable kernels or filters of an user-defined
size over an input region defined by xp. The convolution layer aims to learn
the weights (kpq) and biases (bq) to detect a specific pattern, such as edges
and corners [117, 118]. The summation of the convolution operations is passed
through a nonlinear activation function φ(·); and the output for the q-feature
map is given by [119]

oq = φ

 ∑
p∈Mq

xp ∗ kpq + bq

 , (2-21)

where Mq defines the selection of inputs (i.e., the number of pixels to be
processed by the kernel), ∗ represents the convolution operation, kpq is the
trainable convolution kernel, and a bias bq is added after the convolution
operation [119]. The pooling layer performs a transformation that reduces
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the size of the feature map (oq), summarizing its outputs by calculating
the maximum or average values in non-overlapping regions as illustrated in
Figure 2.3 [117, 118]. Finally, the output obtained from the convolution,
activation, and poling layer process is referred to as the feature/predictor map,
representing the detected patterns [120], which is flattened to a vector υ that
is fed to a fully connected neural network layer as described in Section 2.3.1,
Equation (2-6). This last layer performs the mapping between the input υ and
the final prediction ŷ = φ(wυ + b) adjusting their weights (w) and biases (b)
during training.

Therefore, the trainable parameters of the CNN include the convolution
kernels, the weights in the fully connected layer, and biases in the different
layers [117]. Those parameters are learned through a recursive iteration of
forward- and back-propagation. In the forward propagation, the input data
is propagated forward through the CNN layer by layer to perform predic-
tion [117]. In the back-propagation, the gradient of the loss function is calcu-
lated with respect to each parameter in the CNN (kpq, bq, w, b) using the chain
rule [117].

The inclusion of deeper convolution layers allows the detection of more
complex shapes [121]. During the training of the CNN model, it is possible
to freeze either the entire or a fraction of the parameters within the predictor
extractor for application in a different task; this is called transfer learning [106].
This is justified by the rationale that the extractor predictor learned for
a given task may identify patterns from unseen images far better than a
predictor extractor being trained from scratch and even better if using a small
dataset [106]. The decision to freeze parameters may depend on the specific
domain of the new task. If the CNN parameters are already trained to extract
relevant features, only the parameters of the fully connected layer have to be
trained for the task – to adjust it adequately for the new [106, 122].

2.4
Interpretability Machine Learning Techniques

This section provides the fundamental for proposed interpretability ma-
chine learning techniques with applications for radio-propagation modeling.
They are based on mutual information (MI) and interpretable machine learn-
ing (IML) tools. The MI is model agnostic and computed on the dataset,
providing pre interpretations. Meanwhile, IML tools provide post-hoc inter-
pretations, analyzing the models’ responses after training; they are post-hoc
interpretation tools. They try to assess how the model behaves if the predictors
change [69]. In this sense, we use some IML tools to examine the relations be-
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tween the predictors and the path loss (response) and interpret the ML models
and their complexities.

2.4.1
Mutual Information

The MI may be an analysis tool to detect relevant and redundant pre-
dictors before building the machines [123]. One may employ such prior knowl-
edge to select the most relevant predictors for training the models ignoring
less relevant ones. The MI measures linear and non-linear correlations between
variables [124]. If MI is equal to zero, then the variables are independent; mean-
while, higher values indicate higher dependency [125]. Thus, assessing the MI
within the dataset analyzes the relations between predictors and the response.
Furthermore, the joint mutual information (JMI) [124] and conditional mutual
information (CMI) [126, 127] may detect relevant and redundant predictors
prior to model specification and training, and we employ them in a greedy
predictor selection algorithm. The JMI I(xp, . . . , xp+l; y), p, . . . , p+ l ∈ 1 . . . P ,
quantifies the information shared by the subset of predictors {xp, . . . , xp+l}
and the target y. Meanwhile, the CMI I(y; xp|x\p) quantifies the MI between
y and xp conditioned on the subset of other predictors x\p.

2.4.2
Interpretable Machine Learning Tools

IML techniques aim at obtaining (approximate) explanations for the
model behavior [128]. Their goal is to discover the relationship between the
model’s inputs and outputs globally and locally. The global interpretation tools
reflect the response changes to predictors changes considering the entire model
behavior. Local interpretation indicates which predictors mainly influence a
single model response instance [129]. This section employs them to look into
the ML-based PL models to devise the more appropriate predictors coalitions
to use (a significant subset of predictors).

Permutation feature importance. The PFI for a predictor is computed by
randomly permuting its values in the dataset and computing the resulting
change in the response. If we measure the loss in performance with the RMSE,
the PFI for the predictor xp is given by

PFIp = 1
D

D∑
j=1

RMSE(permuted)
p,j − RMSE(original)

p,j , (2-22)
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the average difference between the response errors for the original and the
permuted dataset, using D permutations. It tests if the permutation neutralizes
the predictor influence on the response [130]. One notes that the larger the PFI
is for a given predictor, the more it impacts the response. Consequently, the
PFI helps ranking the predictors’ influence on the model response.

Accumulated local effect. The ALE quantifies the overall individual effect
(the main effect) of a predictor (xp) in the model, ignoring the effect of all
other predictors (x\p) [131, 132]. To compute the ALE, one partitions the
predictor distribution using Q intervals. For each instance of the p-th predictor
(x(i)

p ) belonging to the correspondent q-th interval, one computes the difference
between the responses obtained when replacing x(i)

p by the upper and the lower
limits of the interval, z(q)

p and z(q−1)
p , respectively. This is accumulated over all

the intervals for the p-th predictor leading to

ALE(xp) =
q(xp)∑
q=1

 1
Mp(q)

∑
i | x

(i)
p ∈Mp(q)

[
ŷ(z(q)

p , x
(i)
\p ) − ŷ(z(q−1)

p , x
(i)
\p )
] . (2-23)

The inner summation adds the effects of all instances within the q-th intervals,
it considers the number of instances |Mp(q)| in each q-th interval and Mp(q)
represents this list, while the outer sum spans all the intervals into which xp

may fall, q(xp) is the index for the last interval.
At last, ALE is centered around the average mean effect, that is,

ALEcent(xp) = ALE(xp) − 1
I

I∑
i=1

ALE(x(i)
p ). (2-24)

The term on the right averages the ALE over instances I of the p-th predictor.
The ALEcent(xp) is graphically presented using a curve. This curve analyzes
the effect of the predictor value (abscissa) w.r.t the average effect of the
predictor [130]. It can reveal whether the predictor effect on the response is
mainly linear or non-linear.

Interaction effects. One may extend the ALE to compute the interaction
effects for predictor pairs. The base formulation follows the one for ALE, but
instead of one-dimensional intervals, one uses rectangular cells (2D intervals)
to accumulate the second-order effects [130, 132]. If the second-order ALE
value is close to zero for two features, they have a low interaction effect [130].

Interaction strength. The IAS considers the overall interaction between
predictors. It quantifies the extent to which the prediction function can be
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approximated by the first-order effects of the predictors [131]. In [131], the
IAS is estimated using a functional decomposition that employs the ALE and
the prediction function, that is

IAS =
∑I

i=1(ŷ(x(i)) − ALE1st(x(i)))2∑I
i=1 (ŷ(x(i)) − ŷ)2 = 1 − R2, (2-25)

where ŷALE1st is the sum of the first-order ALE effects for all the predictors,
ŷ(x(i)) is the prediction function, and ŷ is the average response. IAS values close
to 0 indicate very low interaction strength between predictors. In this case, the
response is mainly influenced by individual predictor effects. Meanwhile, high
IAS values suggest significant interactions between predictors and their effects
on the response derived from interactions.

Main effect complexity. The average MEC derives from ALE curves to
quantify the non-linearity of first-order effects [131, 133]. First, one finds MECp

the number of linear segments for approximating the ALE curve for predictor
p ∈ {1, ..., P} – clearly a measure of the complexity of the mapping between
the predictor and the response. MECp is estimated if the approximation given
by a linear model reaches the condition R2 ≥ 1 − ϵ (or a maximum number of
segments is already employed), ϵ is the user-defined maximum approximation
error; we use ϵ equal to 0.05. To obtain the mean complexity of the model,
one averages the MECp overall predictors. Thus, the average MEC is obtained
using [131]

MECp = number of linear segments approximating ALE(xp), (2-26)

σp =1
I

I∑
i=1

ALE(x(i)
p )2, (2-27)

MEC = 1∑m
p=1 σp

m∑
p=1

σpMECp. (2-28)

We note that to compute the average, the weight for each MECp is the variance
of the ALE main effect (σp), strengthening predictors that greatly contribute to
the outcome. One readily sees that if MEC is close to unity, then the model has
low complexity – one obtains a good approximation with few linear segments.
Consequently, the relations among the model’s inputs (predictors) and outputs
(responses) are easier to interpret. IML indicators computed on the training set
assess how much the model response relies on each predictor and how the model
behaves upon changes in the predictor values. IML indicators computed on the
testing set provide insights into the model’s behavior for unseen data [128].
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2.5
Summary

In this chapter, we have described the main aspects of the radio-
propagation effects that are usually considered for channel modeling. The
mathematical formulation presented for each supervised learning regression
and IML technique gives a deeper understanding of the internal mechanisms of
each machine, which are useful for hyperparameters selection and model design,
as well as the fundamental characteristics of the interpretability techniques
employed in the following chapters.



3
Path Loss Prediction for mmWave Indoor Communications
using Machine Learning Techniques

The design of mmWave communication systems requires accurate PL
prediction, which is critical to determining coverage area and system capacity.
In mmWave indoor scenario, existing objects, including walls and constitutive
materials, influence propagation. The wave propagates along corridors and
other open areas, depending on the structure of the building [46]. All obstacles
cause multiple paths through reflection, refraction, and diffraction phenomena,
as well as waveguide effects in corridors [3, 36].

This chapter addresses PL models for an indoor environment at frequen-
cies between 26.5 GHz and 40 GHz. Several supervised machine learning tech-
niques are employed and their performances are compared with appropriate
empirical PL models for the mmWave frequency band.

3.1
Related Work

Previous works of PL prediction based on ML models for indoor envi-
ronments present some interesting results for comparison. The study in [46]
employs ten predictors containing information about the transmitter and re-
ceiver sites, distance, and parameters for the objects in the environment; the
authors report root mean squared error (RMSE) between the measured and
the predicted PL of 4.23 and 4.38 dB and correspondent standard deviation
(σ) values of 2.88 dB and 3.15 dB for the ANN and RBF in the 1.89 GHz
frequency band, respectively.

In [83], the authors achieve a σ value of 4.4 dB using an ANN model
with eight inputs, considering the body shadowing and furniture effects, in the
frequency range from 900 MHz to 2400 MHz. In [84], combining ray-launching
and ANN model, authors achieve a σ value of 5.96 dB in the frequency of
2.4 GHz, using relative coordinates between transmitter and receiver. In [82],
the authors report a standard deviation (σ) value of 5.22 dB using four
predictors, including frequency, distance, and the traversed walls and floors.
Finally, in [54], a CNN model achieves RMSE values between 5.01 to 5.35 dB
for different training set configurations for 28 GHz waves.
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This study employs four ML algorithms: ANN, SVR, RF, and GTB.
The model hyperparameters are tuned for every algorithm, thus obtaining
reliable results. We compare their performances, including also the empirical
PL models ABG and CIF and their extended versions incorporating the
number of traversed walls. For the ML models, we present a methodology
to select the predictor coalitions by examining the marginal performance and
interpretability gains. The methodology allows choosing the most appropriate
predictor coalition for building machines, while not overlooking the non-linear
connections between predictors and the path loss. Also, pre and post-hoc
interpretation tools are proposed and employed to select and analyze the
different ML models for comparison. At last, the generalization capacity of the
resulting models is assessed by applying the models for unknown transmitter
and receiver locations, i.e., for links with characteristics ignored when obtaining
the PL models.

3.2
The Measurement Campaign: Dataset Description

3.2.1
Path Loss Measurement Campaign

We employ data from a measurement campaign in an indoor environ-
ment at the Center for Telecommunication Studies in PUC-Rio (CETUC) on
frequencies ranging from 26.5 GHz to 40 GHz in steps of 0.5 GHz. The mea-
surements occurred in October 2018 and were conducted by colleagues from
the radio propagation laboratory in CETUC [134]. The measurement at each
point and frequency lasts between 40 to 60 seconds. The building is composed
of offices, classrooms, and laboratories. A signal generator Anritsu MG3696B
was used to transmit a continuous wave (CW) at 0 dBm. The receiver is a sig-
nal analyzer Anritsu MS2668C. If PRx is the received power level measured in
dBm, one obtains the PL in dB from the measured received power and system
parameters from

PL = PT x + GT x + GRx − PLc − PRx, (3-1)

where PT x is the transmitted power in dBm, GT x, and GRx are the transmitter
and receiver antenna gains in dBi, PLc is the cable loss, with maximum values
of 2.40 dB at 20 GHz and 3.61 dB at 40 GHz. The transmitting and receiving
antennas are WR-28 waveguide horns with a 20 dBi gain. The signal analyzer
sensitivity is -101 dBm, and the transmission power is 0 dBm. Therefore, it is
possible to measure path losses as low as -139 dB with a precision error in the
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measurements around ±0.5 dB. This precision error value can be considered
for all the measurement campaigns presented in this thesis.

Six transmitter positions were considered for full coverage of the indoor
environment, and there were 40 reception points. The number of reception
points perceiving each transmission point is limited by the walls, other con-
struction aspects, and receiver sensitivity. As observed in Figure 3.1, TX1 (gray
star) is perceived at 9 RX points (gray circles); TX2 (red star), at 6 RX points
(red circles); TX3 (blue star), at 8 RX points (blue circles); TX4 (green star),
at 7 RX points (green circles); TX5 (orange star), at 7 RX points (orange
circles) and TX6 (brown star), at 3 RX points (brown circles).

Figure 3.1: Map of the indoor measurement scenario, PUC-Rio, CETUC, and
schematic view of the distance predictors. Each star represents a transmission
position, while the circles with the same color indicate the correspondent
positions where receivers were placed for measuring the path loss.

The campaign produces a dataset of 1,120 measured PL instances
through Equation (3-1), considering the six transmissions versus the 40 possi-
ble reception points and the 28 frequencies. All the 1,120 measurements corre-
spond to non-line-of-sight (NLOS) cases. Each sample is associated with four
numerical attributes: carrier frequency (f) in GHz, the Tx-Rx distance (d)
in meters, and its decomposition into vertical (dy) and horizontal (dx) com-
ponents, together with a category attribute: the number of obstructing walls
(nw) between Tx and the Rx.

3.3
Empirical Path Loss Models

Empirical PL models fit curves or analytical expressions to the mapping
between physical parameters (mainly frequency and distance) of the link and
the measured path loss [30, 31, 135, 136]. In practice, the parameters of the
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empirical model are adjusted using non-linear regression techniques. Some
common PL models for indoor environments at mmWave are the ABG and CIF
models [22]. The ABG model is a multi-frequency PL model commonly used
for a broad spectrum of frequencies [34]. The model is based on a regression
fit that includes frequency and distance dependence and is given by

PLABG[dB] = 10α log10(d) + β + 10γ log10(f) + XABG
σ , (3-2)

where d is the Tx-Rx distance in meters, f is the frequency in GHz, α and γ

represent the PL coefficients that characterize the dependence on distance and
frequency, respectively, and β indicates the PL offset. In the expression, XABG

σ

is a zero-mean Gaussian random variable (in dB) describing the large-scale
shadowing [63].

The 3GPP proposed the CIF model [35] as an extension of the close-
in (CI) model. It includes a frequency-distance combined dependence term
using [35]

PLCIF[dB] = FSPL[dB] + 10n log10(d)
(

1 + b

(
f − fo

fo

))
+ XCIF

σ , (3-3)

where FSPL denotes the free space PL model (20 log10

(
4π d f

c

)
). The coeffi-

cients n and b are the distance and the linear frequency PL coefficients. The
reference frequency fo =

∑J

j=1 fjNj∑J

j=1 Nj
, where J is the number of unique frequen-

cies, Nj is the number of data points corresponding to the jth frequency fj,
and XCIF

σ represents the shadow fading deviation describing large-scale signal
fluctuations. The CIF model becomes the CI model when a single frequency is
available to adjust the model (fo = f or b = 0).

Inclusion of the number of traversed walls in the ABG and CIF models
Various indoor PL models have been proposed in the literature to address
attenuation loss due to obstructing walls. In [137], the proposed model incor-
porates a wall loss factor derived by multiplying an attenuation loss associated
with each type of wall by the number of such walls. The accumulated wall
losses are then calculated for the PL prediction at 864 MHz and 1728 MHz.
The model in [138] considers the average attenuation losses for the frequency at
2.4 GHz, considering the type of wall material. In our study, since the construc-
tive material in the different offices, classrooms, and laboratories is the same
(plaster panels), we mainly evaluate the effect of the number of walls in the
empirical models. The adjusted PL models ABGnw and CIFnw are proposed,



Chapter 3. Path Loss Prediction for mmWave Indoor Communications using
Machine Learning Techniques 49

given by

PLABGnw[dB] = 10α log10(d) + β + 10γ log10(f) + δnw + XABG
σ , and (3-4)

PLCIFnw[dB] = FSPL[dB] + 10n log10(d)
(

1 + b

(
f − fo

fo

))
+ δnw + XCIF

σ .

(3-5)

They include the number of traversed walls nw multiplied by the parameter δ

representing the wave’s average attenuation when traversing the wall. Other
scenarios considering the wall material types could also be addressed to
evaluate its effect on indoor mmWave PL prediction.

3.4
Methodology for Model Selection

Model selection aims to tune the model’s hyperparameters to improve
learning [93, 102]. Next, we present the hyperparameters that define each
model. The hyperparameters for the ANN design include the number of hidden
layers, the number of neurons in each layer, activation function, learning rate,
and weight decay. Some hyperparameters of the ANN define its structure and
how many parameters (the weights and biases) must be learned; meanwhile,
others manage how the parameters are learned.

The SVR machine depends on the number of support vectors, which de-
pend on the regularization parameter C and the width of the tube ε, controlling
the model’s complexity and prediction accuracy [105]. The hyperparameters
of a tree are its depth, the number of predictors considered selecting the best
split, and the leaf size, which refers to how many samples are required for a
leaf node to exist [44, 139]. The tree parameters define the regions (predictors
and split values for the nodes) and the correspondent responses. The RF and
the GTB hyperparameters include the number of trees, their maximum depth,
minimum leaf size, and the number of predictors at each split node. In addi-
tion, the learning rate must be defined as well for the GTB that controls the
effect of each new tree on the final response [93].

For the presented results, we first obtain the hyperparameters that
minimize the indicator function (maximize performance and, by extension,
learning). More specifically, we apply cross-validation (CV) for model selec-
tion [93, 102]. We use the K-fold CV, dividing the training data into K subsets
Dk, k = 1 . . . K, of approximately equal sizes |Dk|. Thus, we train the model
using K − 1, and the remaining subset is used for validation.

To evaluate performance, we apply the indicator root mean squared error
(RMSE), given by
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RMSEk,λ =
√√√√ 1

|Dk|
∑

x(i)∈Dk

[
y(i) − ŷ

(i)
λ

]2
, (3-6)

where ŷ
(i)
λ denotes the model response to x(i) with the hyperparameters λ. The

average CV RMSE is

RMSECV = 1
K

K∑
k=1

RMSEk,λ. (3-7)

We use the entire dataset, but part of it is reserved as the test set to
evaluate the final learned model. Upon the tuning of the model hyperparam-
eters, we use them when training the final model. Therefore, to refer to the
performance evaluation when tuning the hyperparameters (or making a model
selection), we will use the term “validation”; meanwhile, the term “test” refers
to the performance of final models.

Besides the RMSE, in this thesis, three other performance indicators
are employed to evaluate the final models: the mean absolute percentage error
(MAPE), the standard deviation (σ), and the coefficient of determination (R2).
MAPE is the average of the absolute percentage errors of the predictions given
by

MAPE = 100%
I

I∑
i=1

∣∣∣∣∣y(i) − ŷ(i)

y(i)

∣∣∣∣∣ , (3-8)

where I is the total number of test samples. In addition, the σ of the error is
given by

σ =

√√√√1
I

I∑
i=1

(
|y(i) − ŷ(i)| − µ

)2
, (3-9)

where µ is the mean prediction error.
The indicator R2 describes the percentage of variability of the regressed

values that can be explained by the model [45]. In general terms, R2 measures
how well the inputs predict the output [140] and it is given by

R2 = 1 − SSE
SST = 1 −

∑I
i=1

(
y(i) − ŷ(i)

)2

∑I
i=1 (y(i) − y)2 . (3-10)

R2 depends on the sum of squared errors (SSE) of the outputs, and on the
sum squared total (SST), the standard deviation of the output.

3.5
Design of the Empirical Models: Results and Analyses

This section presents the results obtained for PL models using the
techniques described in the previous section. We use 80% of the dataset to
adjust the coefficients of the empirical models and tune the hyperparameters
for the ML models. We evaluate the results using the K-fold CV approach
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with K = 5, leading to a reliable comparison between models. We obtain the
coefficients of the empirical models, Section 3.3, using four randomly drawn
subsets from the training dataset and evaluate the prediction accuracy using
the remaining instances. Table 3.1 and Table 3.2 present the coefficient values
for the ABG and CIF models, respectively, for each fold. Finally, the average
CV RMSE for the four empirical models are presented in Table 3.3.

Table 3.1: Coefficients of the ABG and ABGnw models obtained from the CV
subsets.

CV Subset
ABG ABGnw

α β γ α β γ δ

1 4.83 -7.36 5.47 1.39 1.22 5.34 11.02
2 4.60 -4.53 5.39 1.35 8.12 4.95 10.53
3 4.90 -9.46 5.56 1.56 -2.62 5.56 10.34
4 5.06 6.45 4.39 1.68 2.57 5.12 10.55
5 4.78 -11.66 5.77 1.35 -2.21 5.57 11.03

Table 3.2: Coefficients of the CIF and CIFnw models calculated from the CV
subsets.

CV Subset
fo CIF CIFnw

n b n b δ

1 31.81 3.69 -0.19 1.63 -0.41 8.70
2 31.88 3.94 -0.11 1.98 -0.22 8.00
3 31.86 3.98 -0.11 1.87 -0.30 7.80
4 31.81 3.63 -0.17 0.52 -0.72 4.58
5 31.88 3.77 -0.16 1.67 -0.31 9.00

Table 3.3: Performance evaluation of the empirical models with CV, values are
in dB.

CV Subset ABG CIF ABGnw CIFnw

1 11.20 11.47 10.07 10.84
2 11.63 11.51 9.36 9.61
3 11.36 11.79 8.87 9.86
4 11.90 12.58 9.30 10.71
5 10.68 10.91 9.13 9.78

Average 11.35 11.65 9.35 10.16

The ABGnw presents the lowest CV RMSE (9.35 dB), which is 2 dB
smaller than the one for the ABG (11.35 dB). At the same time, the CIF
presents the highest one, 11.65 dB, which is larger than the one for the CIFnw,
10.16 dB. It is clear that including the number of walls between the transmitter
and receiver improves the model accuracy.
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3.6
Design of the ML Models

3.6.1
Hyperparameters Tuning for the ML Models

For the ML models, the predictors xp, p = 1 . . . P with numerical values
and the response y (measured path loss) are independently scaled using the
mean and the standard deviation. This allows the data to be normalized and
ensures that the predictors and output are on a similar scale. We encode the
number of obstructing walls, including cases of one, two, or three walls, to
0.25, 0.5, and 0.75, respectively. The selection process employs the 5-fold CV
procedure. We employ a grid search to tune the hyperparameters of the models.
All grids contain 180 points to evaluate the performance of the models by
considering a wide range of hyperparameter values.

The ANN has one hidden layer where we tested different activation
functions, such as ReLU (Rectified Linear Unit), Logistic, and Tanh; the
ReLU led to the best results as can be seen in Appendix A. In addition, three
hyperparameters are varied; the number of neurons in the hidden layer, the
learning rate (η), and the weight decay (αwd) ranging from 10 to 86, 0.001 to
0.01, and 0.001 to 0.01, respectively. The L-BFGS solver [139] is employed for
weight optimization using at most 6,000 iterations and early stopping to avoid
over-fitting.

For the SVR, one considers an RBF kernel evaluated with σRBF between
0.1 and 0.3. The other two hyperparameters considered are C and ε ranging
between 200 to 2100, and 0.005 to 0.1, respectively. We consider the number
of trees ranging from 8 to 246 for the RF hyperparameters. Each tree has
a maximum depth ranging from 3 to 6, and each leaf’s minimum number of
samples varies between 1 and 3. The entire set of predictors can be employed
in every node of the trees. For the design of the GTB regression, we employ
from 8 to 246 trees. Again, as for the RF, the rules at every node may employ
all the predictors, each tree has a maximum depth between 3 and 6, and the
minimum number of samples in each leaf varies between 1 and 3. Meanwhile,
the learning rate was set to 0.1.

The ANN model attains its lowest 5-fold average RMSE (5.05 dB). As
observed from Figure A.1.(a), when the number of neurons increases, the CV
RMSE value on the validation set decreases, indicating better performance
with increasing the number of neurons. Thus, the optimal hyperparameters
are for 74 neurons in the hidden layer, a learning rate set to 0.1, and a weight
decay equal to 0.1. The SVR model attains its lowest 5-fold average RMSE
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(5.83 dB) for σRBF, C, and ϵ equal to 0.2, 2,100 and 0.1, respectively. The
RF model attains its lowest 5-fold average RMSE (5.18 dB) using 178 trees,
maximum depth equal to 6, and minimum samples in each leaf equal to 1,
considering the entire set of predictors. For the GTB model, we also observe
an improvement in performance (lower CV RMSE value) when the number of
trees increases as seen in Figure A.1.(d). Therefore, the GTB model attains its
lowest 5-fold average RMSE (4.37 dB) using 246 trees, maximum depth equal
to 3, and minimum samples in each leaf equal to 3, considering the entire
set of predictors. As one sees, the GTB attains the best performance among
the considered models. The visualization plot for the average CV RMSE grid
points can be seen in Appendix A, Figure A.2.

3.6.2
Final Models Comparison

To obtain all final models, we employ the same training set. They are
obtained using the 80% of the dataset employed for the empirical models’
consistency analysis in Section 3.5 and the ML models hyperparameters tuning
in Section 3.6.1. The remaining 20% of the dataset instances test the models,
and we present the results now. Meanwhile, the adjusted coefficients of the
empirical models are presented in Table 3.4 and the hyperparameters of the
ML algorithms in Section 3.6.1.

Table 3.4: Adjusted coefficients of the empirical models.

α β γ δ

ABG 4.65 -0.59 5.03 -
ABGnw 1.47 7.30 4.94 10.38

n b fo δ

CIF 4.28 0.311 33.17 -
CIFnw 2.12 0.58 33.17 9.04

Figure 3.2 illustrates the degree of correlation between the measured
and predicted PL values for the different models. For the ML models, in
the right-hand graph in Figure 3.2, the value of R2 is always greater than
0.87, indicating a good fit between the measured and predicted values. For the
empirical models, in the left-hand graph in Figure 3.2, the R2 is less than 0.62
presenting greater dispersion and a worse fit.
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(b) ML based models
ANN, R2 : 0.89
SVR, R2 : 0.88
RF, R2 : 0.88
GTB, R2 : 0.92
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(a) Empirical based models

CIF, R2 : 0.36
ABG, R2 : 0.39
CIFnw, R2 : 0.52
ABGnw, R2 : 0.61

Figure 3.2: Comparison of measured and predicted path losses on the testing
set for the empirical and ML models.

3.6.3
Computational Complexity in the ML Models

The training time complexity of an ML algorithm depends on the
number of examples used for training, the data dimension, and the number of
parameters learned. In the following, we employ simple approximate estimates
for the number of operations in naive implementations of the algorithms,
for comparison purposes. Consequently, the training time complexity of SVR
can be assumed to be O(I2P ), where I is the dataset cardinality and P the
dimension of the input vectors [103], although, the use of a kernel function and
computational tricks may reduce it. Similarly, for a decision tree, the training
complexity is O(I log(I)P ) [141]; consequently, the RF and the GTB present
a training complexity of O(I log(I)PQ), where Q is the number of decision
trees employed.

For the ANN, since the learning algorithm is iterative, besides the ANN
structure, we have to account for the number of epochs (passes through the
dataset), and the training complexity is roughly O(EIPN), where E is the
number of epochs and N the number of neurons in the network [93]. Meanwhile,
the run-time complexity corresponds to the number of computations required
to obtain the output from the input, thus, it depends on the number of
parameters composing the machine and how they are used to produce the
output. Again, we consider estimates for the run-time complexity for the
purpose of simple comparison. The run-time complexity of the SVR O(V )
depends on the number of support vectors V . For the decision tree, the run-
time complexity O(J) depends on the maximum depth of the tree J ; thus, for
the RF and the GTB, the run-time complexity is in the order of O(JQ). The
ANN run-time complexity O(W ) depends on the number of weights W .
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Table 3.5 lists complexity indicators of the final ML-based regression
models: the required time to train the final models (training time), and the
space complexity – the memory resources required to run the algorithm also
presenting the number of parameters stored. We note that they agree with the
discussion in the previous paragraph. The RF and the GTB require storing
more information relative to their parameters but are more rapidly learned.
On the other hand, the ANN and SVR require less storage but at the expense
of higher training time. The experiments were carried out in Python with the
Sklearn library [139] on a workstation with an Intel Core i7 8th Gen processor
and memory RAM of 16 GB.

Table 3.5: Computational complexity in the ML models.

Model Training
time [s]

Memory
storage [KB]

No. of parameters

ANN 13.54 8 444 (weights), 75 (biases)
SVR 13.97 36 681 Sup. Vectors, with 5 features

seen during the fit.
RF 0.11 1,399 178 trees (max. deep: 6)

GTB 0.21 289 246 trees (max. deep:3)

In Section 3.8, we further analyze the complexity of the models regarding
their input-output mappings as prescribed by interpretability and explainable
ML viewpoints. Nevertheless, before that, we assess the performances of the
different models we have already discussed.

3.7
Performance of the Empirical and the ML-based PL Models

Table 3.6 presents the performance indicators for the final models for
both the training and testing sets. The indicators resulting during training are
presented to assess possible over-fitting. The RMSE values for the empirical
models for both the training and testing set in Table 3.6 closely match the ones
returned by the CV method in Section 3.5. Meanwhile, for the ML models,
there is a small gain in the final models compared to those obtained during
model selection. Nevertheless, the accordance between the RMSE values for
the final models for both the training set (slightly smaller) and the testing
set (slightly greater) indicates good generalization performance and no over-
fitting.

The ABGnw achieves the best performance among the empirical models,
with RMSE, MAPE, σ, and R2 equal to 9.11 dB, 6.52%, 5.70 dB, and 0.61,
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Table 3.6: Performance evaluation of the empirical and ML models on both
the training and testing sets.

Model
RMSE [dB] MAPE [%] σ [dB] R2

Train Test Train Test Train Test Train Test

ABG 11.30 11.40 8.35 8.41 6.54 6.52 0.38 0.39
CIF 11.73 11.67 8.51 8.42 6.88 6.86 0.34 0.36

ABGnw 9.34 9.11 6.58 6.52 5.71 5.70 0.58 0.61
CIFnw 10.28 10.13 7.18 6.98 6.51 6.58 0.49 0.52

ANN 3.82 4.85 2.65 3.27 2.42 3.25 0.93 0.89
SVR 4.90 4.96 3.21 3.43 3.32 3.22 0.88 0.88
RF 4.53 5.21 3.13 3.62 2.85 3.38 0.90 0.88

GTB 3.45 4.28 2.34 3.00 2.25 2.76 0.94 0.92

respectively. The CIFnw follows it, then follows the ABG, and at last, the
CIF. The inclusion of the number of wall produces accuracy gains for the
mmWave propagation indoor scenario, as previously indicated. Regarding the
ML regression for PL, the GTB presents the best performance – the lowest
RMSE (4.28 dB), the smallest MAPE (3.00%), the lowest σ (2.76 dB), and
the greatest R2 (0.92). Meanwhile, the ANN reaches RMSE, MAPE, σ, and
R2 equal to 4.85 dB, 3.27%, 3.25 dB and 0.89, respectively. They are followed
by the SVR (RMSE, MAPE, σ, and R2 equal to 4.96 dB, 3.43%, 3.22 dB and
0.88, respectively).

3.8
Results: Interpretable Machine Learning Techniques used for Predictors
Selection

The previous section has shown that ML models may provide accurate PL
prediction for multi-frequency mmWave indoor environments. However, it is
still unclear why the ML models improve over empirical models. Considering
that, in this section, we investigate how the different predictors affect the
responses of the ML-based PL models. Comprehending that, one may devise
the best-suited coalition of predictors for the different models.

3.8.1
Mutual Information

We compute MI for predictors pairs and between each predictor and
the outcome in the training set. To asses the MI, we use the histogram
method [142]. To avoid bias, we use 20-bins histograms for all the predic-
tors [143] presenting continuous values and for the outcome. However, we em-
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ploy only three bins for the categorical numbers-of-walls predictor. Figure 3.3
shows the results and the scatter plots for the visualization of the relations
between predictors and the path loss and between predictors.
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Figure 3.3: Scatter plots between predictors and the path loss and between
predictors pairs. Each graph presents the MI value for the pair of variables
evaluated.

The predictor d attains the largest MI with the path loss followed by dx

(both are very similar). Figure 3.3 shows a low MI between path loss and f

(0.27); this fact may be explained by the presence of strong multipath effects
diminishing the path loss dependence with frequency. However, we observe
a higher dependency between the path loss and the predictor nw (0.41). As
expected, the higher the number of walls, the higher the path loss. Furthermore,
the predictor dy presents the lowest MI with the path loss. Between predictors
pairs, the pairs d–dx, d–dy, and dx–dy provide the highest MI values; this is
expected given their mathematical relations. The MI reduces for the pairs
d–nw and dx–nw (and both are similar). When the pair contains f , low MI
consistently occurs.
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3.9
Model Interpretation Methodology and Results

Our predictor selection methodology examines whether fewer predictors
grant more interpretability without compromising prediction performance. We
apply the IML tools to the training set for the optimized hyperparameter
models described in Subsection 3.6.1.

3.9.1
Methodology

We design machines that employ subsets of predictors (coalitions) S

of increased cardinality (but not every possible subset of predictors) for
each model. The order in which a new predictor is incorporated employs a
forward strategy. The predictors are included in the subset according to their
performances for the one-predictor ML regression. We rank the predictors
according to the machines’ performances – measured using the RMSE, MAPE,
σ, and R2. The rank is then used to train models using coalitions containing
more predictors until encompassing all predictors. Each subsequent coalition
is the joining of a new predictor with the previous coalition.

3.9.2
Indicator Values

The resulting ranks of predictors for the four models are presented in the
second column of Table 3.7. The rows listing the coalitions are obtained using
the ranking described in Subsection 3.9.1. Table 3.7 also presents the resulting
machines’ performance (RMSE, MAPE, σ, and R2) for the different coalitions.
In addition, the pre interpretation of the model uses the JMI and CMI. The
post-hoc interpretation uses IAS and MEC.

Table 3.7 also presents the JMI and the CMI for the coalitions and the
response. They are computed using the k-nearest neighbors algorithm [144].
Since each coalition may present a different distribution for the data, we find
the most suitable value of k for computing JMI and CMI for each subset. In
[123], the authors compute the MI from the mean of the results for a range
of k = 6, . . . , 20. In this study, we compute JMI and CMI for k = 3, . . . , 71.
One returns the value of k for which the changes are smaller than 5% for
the following 25 values. This methodology allows us to find the value of k in
a region where the change in JMI and CMI is small, meaning that they are
reasonably stable.

Table 3.7 also presents the IML indicators IAS and MEC. Nevertheless,
IAS and MEC can be better examined and interpreted if one considers the
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Table 3.7: Performance, joint and conditioned mutual information and IML
indicators for the machines constructed for the four ML models using different
subsets evaluated on the training set. Model performance is measured using
RMSE, MAPE, σ, and R2.

M
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R
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[d

B
]
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PE
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]
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M
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A
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N

dx 9.18 6.51 5.72 0.59 - - - 6.00
dx,dy 6.90 4.75 4.52 0.77 0.31 (k=29) 0.03 (k=44) 1.53 2.58
dx,dy,f 5.47 3.40 3.98 0.85 0.24 (k=30) 0.02 (k=47) 1.18 2.75
dx,dy,f ,nw 3.97 2.76 2.52 0.92 0.23 (k=31) 0.02 (k=10) 1.10 3.61
dx,dy,f ,nw,d 3.82 2.65 2.42 0.89 0.23 (k=31) 0.01 (k=60) 1.17 2.20

SV
R

nw 9.70 7.01 6.08 0.54 - - - 1
nw,dy 8.01 5.65 5.07 0.69 0.25 (k=33) 0.04 (k=45) 1.49 2.37
nw,dy,dx 6.34 4.51 3.91 0.80 0.34 (k=29) 0.20 (k=36) 2.13 2.95
nw,dy,dx,f 5.13 3.36 3.47 0.87 0.23 (k=31) 0.02 (k=47) 2.00 2.97
nw,dy,dx,f ,d 4.90 3.21 3.32 0.88 0.23 (k=31) 0.01 (k=60) 2.22 1.99

R
F

d 7.10 4.88 4.65 0.75 - - - 10
d,nw 6.22 4.45 3.78 0.81 0.33 (k=30) 0.02 (k=46) 0.44 3.90
d,nw,f 5.11 3.46 3.37 0.87 0.19 (k=33) 0.01 (k=50) 0.38 3.56
d,nw,f ,dy 4.59 3.18 2.88 0.90 0.20 (k=34) 0.01 (k=55) 0.92 3.42
d,nw,f ,dy,dx 4.53 3.13 2.85 0.90 0.23 (k=31) 0.01 (k=43) 0.48 3.03

G
T

B

d 6.89 4.74 4.51 0.77 - - - 10
d,f 5.21 3.15 3.90 0.87 0.21 (k=28) 0.02 (k=47) 0.23 9.90
d,f ,nw 3.58 2.44 2.33 0.94 0.19 (k=33) 0.03 (k=10) 0.21 4.69
d,f ,nw,dy 3.49 2.34 2.30 0.94 0.20 (k=34) 0.01 (k=55) 0.51 3.84
d,f ,nw,dy,dx 3.45 2.34 2.25 0.94 0.23 (k=31) 0.01 (k=43) 0.26 3.40

PFI, main effects, and interaction effects jointly. Table 3.8 shows the PFI rank
for every model and coalition. We order the predictors vertically for increasing
PFI for each model and coalition. The PFI is computed using Equation (2-22)
for D = 10.

Besides, to visualize the main effect of each predictor on the path loss, we
observe the ALE curves for the different coalitions using each model in Figure
3.4. In the figure, the ALE curves in each column correspond to a model,
and each row indexes a different predictor. The first row presents the graphs
for the best-ranked variable in each of the five predictor subsets. The second
row considers the second-ranked predictor, and so on. The abscissa presents the
predictor range in each graph, and the ordinate presents the centered ALE (the
horizontal dashed line at zero reflects the average main effect). The different
curves in each graph present the ALE curves for the correspondent predictor
and model when it is included in the coalition following the order of predictors
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Table 3.8: PFI rank of the selected predictor shown in crescent order, with
RMSE loss for different subsets of predictors.

Number of
predictors

Predictors ranked by the PFI (loss: RMSE [dB])
for the different models and coalitions.

ANN SVR RF GTB

2
dy 9.68 dy 3.21 d 5.56 f 2.92
dx 12.12 nw 10.94 nw 10.24 d 13.10

3
f 2.52 dy 21.93 f 2.18 f 3.57
dy 10.25 nw 27.82 d 6.10 d 8.21
dx 14.49 dx 31.01 nw 10.67 nw 10.09

4

f 3.31 f 2.18 f 2.25 f 3.66
nw 15.21 dy 22.51 d 2.27 d 4.20
dy 16.59 nw 29.69 dy 5.00 dy 5.05
dx 19.78 dx 34.31 nw 12.62 nw 10.87

5

f 3.26 f 2.36 dx 1.02 d 1.96
nw 16.83 dy 35.43 d 1.32 dx 2.49
dy 21.81 nw 36.05 f 2.35 f 3.65
dx 33.16 d 108.97 dy 5.10 dy 4.40
d 34.39 dx 110.90 nw 12.70 nw 10.86

in the legends. We use at most 30 intervals to divide the predictor range for
computing the ALE effects.

A positive ALE in a given predictor interval means an increased effect
on the response relative to the average main effect. Negative values denote a
decreasing effect relative to the average main effect. The higher the ALE is in
a given range, the more informative the predictor is in that range. Thus, if in a
given range (x-axis) for a predictor the ALE curve deviates markedly from the
horizontal line, then within this range, the predictor significantly influences
the model response. One also sees that the predictor’s ALE curves vary upon
the predictors in the coalition, reflecting the interaction between predictors.

3.9.3
Analysis of the Results

Since the GTB-based PL regression shows the best performance, as
readily seen in Table 3.7, we discuss its results first. Complementary to the
PFI and ALE effects results for every subset, we also examine the interaction
strength between two predictors (2D-ALE) for the GTB-based PL model
shown in Table 3.9. The predictor pairs are arranged in increasing order of
interaction for every subset of predictors.

In Table 3.7, we note that the more predictors employed, the better the
performance irrespective of the considered indicator. Although, for more than
three predictors, the performance improvement is meager (we are analyzing
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Figure 3.4: ALE graphs for the four ML models. Each line presents the graphs
for a different model: (1) ANN, (2) SVR, (3) RF, and (4) GTB. The predictor
order in each column corresponds to their inclusions in the model input
from upper to lower. Each plot presents the ALE graphs for the predictor,
considering the different number of predictors used as input.
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Table 3.9: Interaction strength between two predictors (2D-ALE) for the GTB-
based PL model, for each number of predictors used for machine design, the
first row presents the pair having the lowest interaction, and the pairs follow
in increasing interaction order.

Interaction between two predictors (2D-ALE)

Subset of predictors
2 3 4 5

d,f 0.110 f ,nw 0.009 d,dy 0.004 f ,nw 0.011
d,f 0.114 f ,nw 0.009 nw,dx 0.026

d,nw 0.181 f ,dy 0.040 d,dx 0.030
d,nw 0.044 d,nw 0.032
d,f 0.080 f ,dy 0.039

nw,dy 0.256 f ,dx 0.040
dy,dx 0.047
d,f 0.062
d,dy 0.166

nw,dy 0.260

the GTB models’ performance). The pre-interpretability indicators reported
in Table 3.7 indicate that, for the three predictor subset, when the model
performance significantly improves, the JMI value reduces. This reflects that
larger JMI values do not fully correspond to obtaining machines of improved
prediction performance.

Meanwhile, since we compute the CMI of adding a predictor to the
previous coalition of predictors, the values in the CMI column reflect the
information gained by adding a new predictor to a coalition. Considering the
GTB regression, Table 3.7 reports the maximum CMI when incorporating nw

to the coalition containing d and f . Further, the CMI of dy conditioned on nw,
f , and d is 0.01, lower than the previous two. Finally, when including dx, the
information gain is as irrelevant as the previous one. Although being model
agnostic, one notes that the CMI relates to model performance since smaller
CMI values correspond to smaller performance improvements as indicated by
the RMSE, MAPE, σ, and R2. This connection is observed for all models.

To quantify the contribution of the predictors we use post-hoc interpre-
tation tools. We compute the marginal contributions to the RMSE, IAS, and
the MEC when the coalition expands to include the predictor p,

∆RMSEp = RMSE(S) − RMSE(S ∪ {xp}), (3-11)

∆IASp = IAS(S) − IAS(S ∪ {xp}), (3-12)

∆MECp = MEC(S) − MEC(S ∪ {xp}). (3-13)
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The ∆RMSEp is the difference in the RMSE for the coalition of the predictor p

and the previous coalition (subset) of predictors. It evaluates the contribution
of xp to the model performance. If ∆RMSEp is negative, then there is a loss
when including xp in the coalition (the RMSE reduces). In this case, the smaller
the modulo of ∆RMSEp, the smaller the performance improvement. A similar
analysis applies to ∆MECp.
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Figure 3.5: Marginal contributions in performance and interpretability for the
GTB-based PL model (for the predictors coalitions see Table 3.7).

Figure 3.5 shows these marginal contributions for the GTB-based PL
model. The largest marginal contribution in the RMSE and MEC occur
when passing from the two to the three predictors (d, f, nw) coalition; when
adding dy and dx to the coalition, the marginal contributions are significantly
smaller. Thus, the 3-predictors coalition offers a reasonable trade-off between
performance and model complexity/interpretability. For this coalition, the
values of IAS and MEC are 0.21 (the lowest among the coalitions tested for the
GTB) and 4.69, respectively. Thus, when moving from the two for the three
predictors coalition, the performance improvement derives from interactions
between d and nw as seen in Table 3.9, and also on the main effects of nw and
f on the response as seen in Figure 3.4.(4)(c). Notwithstanding, the PFI for f

does not reflect that, although the PFI for nw does, as seen in Table 3.8. For
this coalition, the ALE curve for d presents less spread in all the range of d,
suggesting that the main effect of d is smaller than in the previous coalitions.

A similar analysis for the 4-predictors coalition shows a complexity
increase that is not reflected in the performance. The PFI and the ALE for f

and nw remain very similar (Table 3.8), as well as the ALE value of d, as seen
in Figure 3.4.(4). The decrease in the marginal contribution of IAS as shown in
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Figure 3.5 suggests that the marginal performance improvement is produced
mainly by the interaction effects between nw and dy as seen in Table 3.9.
The marginal contribution of MEC in Figure 3.5 slightly decreases (indicating
that the approximation of the ALE curve for the new predictor requires as
many linear segments as before) despite employing a new predictor. A similar
analysis can be presented for the full-predictors coalition, though there is no
significant improvement over the previous ones. Similar analyses apply to the
other three ML models, which are presented in Appendix B.

3.9.4
Final ML Models

The results indicate that including dx in the coalition does not signifi-
cantly improve performance for the ANN, RF, and GTB models. Besides, the
IML indicators are very similar for the four (f , d, dy, nw) and five-predictor
coalitions, irrespective of the model. For the subset of three predictors, the per-
formances of the ANN, SVR, and RF are significantly degraded with respect
to the four predictors coalitions, but not for GTB regression, which already
presents a good performance for the three-predictors coalition. Consequently,
for the GTB regression, the three-predictors coalition (f , d, nw) is selected.
Meanwhile, for the ANN and the RF, we select four-predictors coalitions (f ,
d, dy, nw). At last, the five-predictor coalition (f , d, dx,dy, nw) is chosen for
the SVR. Using these coalitions, we reapply the grid search using a 5-fold
CV to find the optimal hyperparameters for each model and, subsequently,
train them. Table 3.10 shows the final models, their interpretability indicators
(computed on the training set), and their performances.

Table 3.10: Performances and complexities of the four final regression having
optimized predictors subsets and hyperparameters.

Model
ML alg. ANN SVR RF GTB

Coalition dx,dy,f ,nw nw,dy,dx,f ,d d,nw,f ,dy d,f ,nw

Hyperpa-
rameters

neurons=70,

η=0.1,

αwd=0.1

C=2100,

ε=0.1,σRBF =0.2

trees=178,

max.depth=6,

min. samples leaf=1

η=0.1, trees=246,

max.depth=3,

min. samples leaf=3

IAS 2.15 2.22 0.92 0.21
MEC 2.76 1.99 3.42 4.69

Performance (Training set | Testing set)
RMSE [dB] 3.77 | 4.82 4.90 | 4.96 4.59 | 5.24 3.58 | 4.29
MAPE [%] 2.62 | 3.23 3.21 | 3.43 3.18 | 3.66 2.44 | 3.03

σ [dB] 2.38 | 3.26 3.32 | 3.22 2.88 | 3.38 2.33 | 2.75
R2 0.93 | 0.89 0.89 | 0.89 0.90 | 0.87 0.94 | 0.92



Chapter 3. Path Loss Prediction for mmWave Indoor Communications using
Machine Learning Techniques 65

As seen in Table 3.10, the GTB presents the best performance – the lowest
RMSE (4.29 dB), the smallest MAPE (3.03%), the lowest σ (2.75 dB), and
the greatest R2 (0.92), together with the lowest interaction among predictors
(IAS equal to 0.21) and the highest complexity (MEC equal to 4.69). In terms
of performance, the GTB is followed by the ANN, the SVR, and, at last,
comes the RF regression. The IML indicators are ranked almost inversely,
although the SVR presents the greatest IAS and the smallest complexity. To
better assess the predictors’ influence on the path loss, Figure 3.6 displays the
absolute error between the measured and predicted path loss versus distance
and the number of traversed walls for the ABGnw and GTB models, evaluated
on the testing set for the single frequencies of 27 GHz, 33 GHz, and 40 GHz.
The ML model shows its ability to follow the data distribution with respect
to distance, number of traversed walls, and frequency.
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Figure 3.6: Absolute error between the measured and predicted PL on the
testing against distance and number of obstructing walls for the frequencies at
27, 33, and 40 GHz.

From the obtained models, we observed for the ANN and SVR that the
horizontal and vertical components of the distance (dx and dy) contributed to
improving the model’s performance than simply using the predictor d. This
can be attributed to the geometric characteristics of the indoor environment
which presents an elongated rectangle implying an asymmetry.
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3.10
Generalization Capacity Analysis

We further evaluate the generalization capability of the ML-based PL
models. Since the GTB model obtains the best performance with the coalition
of three predictors, as seen in Table 3.10, one examines its generalization
capability considering that the transmitter point is unknown. We train the
GTB model without any instance of the transmitter and, consequently, the
correspondent reception points. This best fits a real-world scenario where the
transmitter and receiver locations are unknown and the objective is to use the
ML-based path loss model to predict the coverage area of potential transmitter
locations for which no or limited measured data are available [46].

To this end, first, we partition the database to train it using PL instances
from five transmitter points and test it with the instances from the segregated
transmitter point. The results are presented in Table 3.11. The first row and
column indicate the point of the instances in the testing Tx point (we train the
model using the instances associated only with the other five Tx points). The
second and third columns show the number of instances in the train and test set
resulting from the above-discussed partition of the dataset. The following two
columns present the RMSE during training and testing. We note that for each
test, we optimize hyperparameters: learning rate (η), trees, maximum depth
(md), and minimum samples leaf (msl), which optimal values are listed in the
last column in Table 3.11. The results present performance decreases (RMSE
increases) in comparison with Table 3.10. However, the performance remains
good. Besides, the accordance between the RMSE values for the training set
and the testing set (the last is slightly greater) indicates no over-fitting. The
highest RMSE (5.62 dB) occurs when Tx 5 is unknown, and the lowest (4.77
dB) when Tx 2 is.

Table 3.11: Performance of the proposed GTB-based PL model when the
models are training considering a set of transmitters and the test employs
a different one.

Tx-Test
No. samples RMSE [dB]

Hyperparameters
Train Test Train Test

1 812 308 4.63 5.46 η=0.01,trees=161,md=6,msl=2
2 952 168 4.35 4.77 η=0.04,trees=246,md=3,msl=2
3 896 224 4.90 5.20 η=0.07,trees=246,md=2,msl=2
4 924 196 4.13 4.86 η=0.04,trees=246,md=3,msl=2
5 952 168 4.55 5.62 η=0.10,trees=246,md=2,msl=2
6 1064 56 4.60 5.01 η=0.05,trees=246,md=3,msl=3
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We move to a harder scenario when fewer training samples are available.
We use the measurements collected using only two transmitters for training
and the remaining four transmitters for testing. The results are presented in
Table 3.12. The results show that the GTB-based PL model still performs
well with fewer training samples, for example, using transmitters 2 and 6 (224
samples) for training, the testing RMSE is still reasonably low, 6.15 dB, since
it is not far from the previous case with one unknown transmitter location.

Table 3.12: Generalization capability analysis for the GTB-based PL model.
The models are trained using two transmitters and evaluated (tested) on the
four remaining ones.

Tx’s (No. samples) RMSE [dB]
Hyperparameters

Train Test Train Test

1,3 (532) 2,4,5,6 (588) 4.19 6.74 η=0.1,trees=246,md=2,msl=3
1,4 (504) 2,3,5,6 (616) 3.64 5.84 η=0.1,trees=140,md=2,msl=10
2,4 (364) 1,3,5,6 (756) 4.23 5.94 η=0.1,trees=40,md=3,msl=10
2,6 (224) 1,3,4,5 (896) 4.14 6.15 η=0.1,trees=30,md=3,msl=10

In order to further assess the generalization capabilities of the proposed
GTB PL model, we apply the design methodology to the indoor database fur-
nished by the Yonsei University, Korea [145, 146]. This database is constructed
using mixed measurements and Ray-tracing models at 28 GHz, a bandwidth
of 100 MHz, omnidirectional antennas, transmission power of 20 dBm, and a
receiver threshold equal to -100 dBm [146]. It reports the PL in dB for various
floors inside Yonsei University’s building. (http://www.cbchae.org/). We ex-
tract the data corresponding to floors 2, 3, and 4. On each floor, there are 90
instances accounting for ten transmission locations and nine reception points
with distances ranging between 20 to 80.46 meters. There are up to nine tra-
versed walls on floors 2 and 4 and up to ten on floor 3. The PL spans between
76.85 dB to 158.70 dB on the second floor, 76.73 dB to 135.89 dB on the third
floor, and 77.15 dB to 144.38 dB on the fourth floor.

Due to the greater Tx-Rx distances and spanned number of traversed
walls for the Yonsei database, it is not possible to apply directly the trained
models in Table 3.10. However, we can verify if the proposed methodology
performs well by evaluating if the GTB-based PL model using the selected
predictors (f, d, nw) provides accurate responses for this different scenario.
The small number of training samples in the Yonsei database may hamper
learning good models. Therefore, we optimize and train (with the learning
rate set to 0.1) the models using one floor and the remaining two floors are
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used for testing, as presented in Table 3.13. For the GTB-based PL model,
similar RMSE results are obtained for training and testing when any floor is
used to build the model with optimized hyperparameters. Furthermore, the
RMSE for the testing sets present similar values to those presented in Table
3.12 when only two transmitters are used to train the models at the PUC-Rio,
CETUC environment. The RMSE values for the training and testing for the
ABGnw and CIFnw are higher than the ones returned by the GTB-based PL
model.

Table 3.13: GTB and empirical PL models performance using the database
from Yonsei University, Korea.

Floor Set Samples
RMSE [dB]

Hyperparameters
ABGnw CIFnw GTB

2 Train 90 9.98 9.97 5.96
trees=150, md=2,msl=33 Test 90 11.42 11.36 6.43

4 Test 90 10.49 10.43 6.91
3 Train 90 7.80 7.29 5.12

trees=200,md=2,msl=42 Test 90 13.04 13.22 6.55
4 Test 90 10.34 9.96 5.52
4 Train 90 9.54 9.12 5.75

trees=200,md=4,msl=22 Test 90 10.91 11.17 6.64
3 Test 90 8.76 8.32 6.01

In conclusion, since the proposed GTB-based path loss model provides
accurate responses from few measurements, it can be used for practical PL
prediction for mm-wave links in medium-size buildings.

3.11
Discussion

This chapter has investigated mmWave indoor PL modeling. We obtained
different machine learning- and empirical-based models for the PL of mmWaves
in an indoor environment. They are based on a measurement campaign
considering a wide frequency band spanning from 26.5 GHz to 40 GHz.
We proposed extensions of two empirical models, ABGnw and CIFnw, that
incorporate the number of traversed walls and improve the accuracy of the PL
prediction over the original ABG and CIF. The machine learning regression
PL models significantly improved the performance over empirical models.
Notwithstanding, we observed that the four ML regression models are much
more accurate than the empirical ones. The GTB led to the best PL prediction
among the ML models.
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We proposed a methodology to approach the selection of the coalition of
predictors for ML regression, aiming at model interpretability. The results show
that the presented methodology can select a good coalition of predictors with
interpretability gains without compromising the predictive performance. In
addition, by analyzing the predictors belonging to the coalitions, we observed
that the pre-interpretation tool known as conditional mutual information
might be helpful in detecting relevant predictors before training when the data
dimension is low.

The GTB regression attains the best performance, followed by the ANN,
the SVR, and the RF. A possible explanation for the best performance of
the GTB comes from the post-hoc interpretation tools. They indicate that
this regressing model relies most heavily on the main effects of each predictor
in the coalition. We also saw that the resulting GTB-based PL model can
accurately predict the PL at unforeseen transmission and reception locations.
Therefore, the model is of practical use for mmWave PL prediction.

Using the methodology described in this chapter, in the following chapter,
PL prediction in mmWave outdoor links is tackled using a measurement cam-
paign performed at the university campus of PUC-Rio. Besides, two extended
empirical models are also proposed considering system- and environment-
parameters predictors and compared with the ML models, as presented for
the path loss for mmWave indoors in this chapter.



4
Path Loss Prediction for mmWave Outdoor Communications
using Machine Learning Techniques

The outdoor propagation of mmWaves in non-line-of-sight (NLOS) con-
ditions presents very high losses due to blockage by buildings, vegetation, and
absorption by atmospheric gases. In addition, the multipath propagation in
NLOS conditions is less effective due to lower diffraction effects. Thus, line-of-
sight (LOS) is required in short-range links [23, 34, 147]. Propagation through
vegetation suffers losses that increase proportionally with the logarithm of
the frequency [23]. This severely impacts the mmWave link with attenuations
around 6 dB/m at 28 GHz and 11 dB/m at 60 GHz [23].

This chapter addresses PL prediction for short-range links in an outdoor
environment at frequencies between 27 GHz and 40 GHz. We design several ML
models including ANN, SVR, RF, and GTB. The model’s inputs regard the
influence of the frequency, distance, height difference between the transmitter
and receiver, and the link vegetation depth. The predictor coalition selection
technique described in the previous chapter is applied searching to the ML
model with the best performance; thus, using the post-hoc interpretation tools,
we examine the interpretability for each predictor subset.

4.1
Related Work

The multi-frequency ABG and CIF models are also commonly employed
for outdoor environments, while the AB and CI models are used for single-
frequency scenarios [148, 149]. The work in [148] studied the effect of the
rain attenuation in path loss prediction for short-range millimeter wave link
at 38 GHz on a path length of 300 m using an extended version of the CI
model. The proposed model obtained an adjusted R2 value of 0.85. In [149], the
authors employed the ABG model using measurement campaign conducted in a
parking environment at 28 GHz and 38 GHz, and compared their results using
a extension of the log-distance model that incorporates the effects of presence
of cars around the transmitter and receiver by considering link distances from
14 to 30 m. In the experiments, the ABG model achieved an average σ value
of 2.4 dB and the proposed model achieved an average σ value of 3.25 dB.
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Concerning machine learning techniques, in [32], an ML-based PL model
is proposed at 28 GHz for a measurements campaign in Manhattan City. The
predictors are extracted from the LiDAR point cloud, and a deep learning
model is proposed for PL prediction. The authors in [25] propose a deep
learning algorithm to predict the path loss exponent at 28 GHz in an outdoor
environment. Terrain data and the shape and height of the buildings were
used as input images, and ray-tracing simulations were employed to generate
the data. In [26], a deep learning method is proposed for large-scale fading
prediction for mmWave using the environment topographical predictors as
inputs.

We propose two extended empirical models based on the ABG and CIF
using the vegetation profile and heigth difference between the transmitter and
receiver as predictors for comparison with the ML models. We also compare
the results of the obtained models with the study proposed in [150] based on
the Fuzzy technique derived from the measurement campaign employed in this
chapter. Finally, we analyze the generalization capacity of the model to assess
the performance of the ML and empirical models. Given that the measurement
campaign used only one transmitter location with multiple receiver positions,
we evaluate the generalization capability of the models considering unknown
receiver points.

4.2
The Measurement Campaign: Dataset Description

We consider measurements performed at frequencies between 27 GHz
to 40 GHz in steps of 1 GHz at the university campus of PUC-Rio. The en-
vironment comprises two of the tallest buildings on the university campus,
surrounded by abundant vegetation and other shorter buildings, as seen in
Figure 4.1. The measurements were carried out in October 2018 and were con-
ducted by colleagues from the radio propagation laboratory in CETUC [151].
The transmitter was located at the rooftop of a university building at a height
of 50 m from the ground to simulate a typical micro-cell system, with the base
station represented by the yellow star in Figure 4.1.

In the measurement campaign, 23 receiver positions were utilized, varying
heights and distances to the transmitter. Tx-Rx distances range from 50
to 280 m, corresponding to points around the university campus where the
transmitted wave was detectable. To capture the influence of height differences
between the transmitter and receiver, different heights for the receiver antenna
relative to the transmitter were considered. The height differences range from
15 to 53 m. The measurement campaign used a directional antenna at the
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transmitter and the receiver, which are aligned with each other to maximize
the measured power. The alignment process was facilitated by Bosch GRL 825
laser pointers.

Figure 4.1: Distribution of the transmitter and receivers map of the outdoor
measurement scenario, PUC-Rio [150].

For this mmWave environment, the same system setup described in
Chapter 3, Subsection 3.2.1 was employed. At each receiver position and
frequency, measurements were taken three times and the results were averaged.
The PL in dB is obtained from the measured received power and system
parameters utilizing Equation (3-1).

Due to abundant vegetation in the university campus, we evaluate the
influence of vegetation depth (vdepth) on PL prediction for mmWave short-range
links. This predictor is determined based on the obstruction of the link caused
by vegetation. To obtain the vegetation depth values, a satellite image was
utilized to derive the vegetation profile between the transmitter and receiver
positions using an algorithm to process the maximum height vegetation as
proposed in [33]. Some receivers partially obstructed by foliage, such as RX1,
RX2, RX4, RX10, RX15, and RX16 were identified. The profile vegetation of
those receivers is shown in Figure 4.2. The data from two receiver positions
(RX3 and RX13) were not considered due to their high path loss values arising
from foliage fully obstructing the link to the transmitter. Thus, the dataset
provides 294 PL instances. The points of vegetation intersection along the
direct path are used to calculate the vdepth value.

Thus, each PL sample considered is associated with four numerical
attributes: carrier frequency (f) in GHz, the Tx-Rx distance (d) in meters,
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Figure 4.2: Vegetation profile for the receivers partially obstructed by foliage:
(a) RX1, (b) RX2, (c) RX4, (d) RX10, (e) RX15, and (f) RX16. Each graph
presents the vdepth value for the receiver evaluated.

the height difference between the transmitter and the receiver ∆h in meters,
and the vegetation depth (vdepth) in meters. Figure 4.3 shows the dependency
between those predictors and the path loss and the correspondent MI value.
The predictor d has the largest MI with the path loss (0.75), followed by
∆h and f . The lowest MI is between vdepth and path loss (0.30). From these
scatter plots and MI values, one sees that path loss tends to increase with
frequency. In addition, as the distance between the transmitter and receiver
increases, the signal strength decreases and, subsequently, the higher the path
loss [34]. Also, the height difference between the transmitter and receiver can
significantly impact the path loss; when there is a larger height difference,
the signal encounters additional obstacles, such as buildings and other terrain
features, which can obstruct or scatter the signal [20]. Finally, the vegetation
depth can have an impact on path loss in the mmWave spectrum, since dense
vegetation absorbs and scatters the signal, causing higher path loss [71].

4.3
Proposed Empirical Path Loss Model

To evaluate the influence of the predictors ∆h and vdepth in the ABG and
CIF models, two adjusted path loss models are also proposed. Their proposal
aims to incorporate the effects of those predictors into the path loss and they
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Figure 4.3: Scatter plots between predictors and the path loss for the mmWave
outdoor environment.

are given by

PLABG∆h, vdepth [dB] = 10α log10(d) + β + 10γ log10(f)+

ζ log10

(
∆h

d

)
+ φ(vdepth) + XABG

σ ,
(4-1)

PLCIF∆h, vdepth [dB] = FSPL[dB] + 10n log10(d)
(

1 + b

(
f − fo

fo

))
+

ζ log10

(
∆h

d

)
+ φ(vdepth) + XCIF

σ .

(4-2)

where ζ represents the PL coefficient characterizing the dependence on the
relative height between the transmitter and receiver, and φ represents the
mean vegetation attenuation.

4.3.1
Model Selection and PL Model Design

As in Chapter 3, 80% of the dataset is used for adjusting the coefficients
of the empirical models and tuning the hyperparameters of the ML models.
The 5-fold CV technique is applied to the training set to obtain the best
hyperparameters in each ML model. The empirical model coefficients are
also adjusted on each training set and evaluated on the remaining validation
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set. The coefficient values for the ABG and ABG∆h, vdepth, and CIF and
CIF∆h, vdepth are presented in Table 4.1 and Table 4.2, respectively.

Table 4.1: Coefficients of the ABG and ABG∆h, vdepth models obtained from
the CV subsets.

CV Subset
ABG ABG∆h, vdepth

α β γ α β γ ζ φ

1 1.92 68.82 0.28 2.32 63.38 0.21 4.11 0.16
2 1.87 72.05 0.14 2.26 65.50 0.16 4.01 0.16
3 1.84 71.97 0.19 2.23 64.41 0.27 3.87 0.21
4 1.95 68.49 0.27 2.29 62.47 0.29 3.42 0.20
5 1.93 70.15 0.21 2.38 63.19 0.18 4.37 0.12

Table 4.2: Coefficients of the CIF and CIF∆h, vdepth models calculated from
the CV subsets.

CV Subset fo
CIF CIF∆h, vdepth

n b n b ζ φ

1 33.64 0.43 -0.79 0.53 -0.73 5.08 0.13
2 33.44 0.44 -0.91 0.54 -0.74 5.31 0.12
3 33.43 0.45 -0.98 0.54 -0.71 5.34 0.17
4 33.50 0.44 -0.80 0.52 -0.72 4.58 0.17
5 33.55 0.45 -0.88 0.55 -0.74 5.18 0.10

The performance evaluation of the empirical models, conducted on each
subset, is summarized in Table 4.3. The ABG∆h, vdepth model attains the
lowest average CV RMSE (2.18 dB). This model presents an improvement
of 0.18 dB compared to the ABG model. On the other hand, the CIF model
achieves the highest average CV RMSE (2.57 dB). However, when ∆h and
vdepth are included as predictors in the CIF model, its performance improves
to 2.20 dB. Overall, the evaluation results indicate that the inclusion of ∆h and
vdepth leads to performance improvements for both the ABG and CIF empirical
models.

Table 4.3: Performance evaluation of the empirical models with CV, values are
in dB.

CV Subset ABG CIF ABG∆h, vdepth CIF∆h, vdepth

1 2.39 2.69 2.25 2.29
2 2.35 2.51 2.16 2.14
3 2.51 2.50 2.42 2.37
4 2.49 2.79 2.21 2.25
5 2.05 2.36 1.87 1.93

Average 2.36 2.57 2.18 2.20
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4.4
ML-Based Models

We consider the four ML models described in Chapter 3, Subsection 3.6.1.
The ML models’ predictors and measured PL values are independently scaled
using the mean and standard deviation.

4.4.1
Hyperparameter Tuning for the ML Models

The 5-fold CV technique is employed on the training set for each ML
model to find the optimal hyperparameters. The ranges of the values of the
hyperparameters are those described in Subsection 3.6.1. The ANN model
achieves its lowest average CV RMSE (1.96 dB) by using 78 neurons in the
hidden layer, with a learning rate and weight decay equal to 0.1 and 0.1,
respectively, and the ReLU activation function. The SVR attains its lowest
average CV RMSE (1.98 dB) for σRBF , C, and ϵ equal to 0.1, 200, and 0.05,
respectively. The RF model attains its lowest average CV RMSE (1.77 dB)
by utilizing 110 trees. The maximum depth of each tree is set to 6, and the
minimum number of samples required to be at each leaf node is set to 3. Lastly,
the GTB model attains its lowest average CV RMSE (1.61 dB) by employing
161 trees, maximum depth equal to 3, minimum samples in each leaf equal to
2, and learning rate of 0.1, considering the entire set of predictors.

4.5
Final Models Comparison

The final models are designed using 80% of the dataset to adjust and
train the empirical and ML models, respectively. The remaining 20% of the
dataset is reserved for testing the models. The adjusted coefficients of the
empirical models are shown in Table 4.4. The ML models are trained using the
hyperparameters reported in Subsection 4.4.1. Table 4.5 shows the final model
comparison for both the training and testing sets. In the last row in Table
4.5, we include the results for the Fuzzy clustering model reported in [150] for
comparison.

The results in Table 4.5 show that the performance of the ABG and
CIF improve when the relative height between the Tx-Rx and the vegetation
depth are included as seen in the average CV RMSE values in Subsection 4.3.1.
Among the empirical models, the ABG∆h, vdepth achieves the best performance
with RMSE, MAPE, σ, and R2 equal to 2.52 dB, 1.63%, 1.64 dB, and
0.66, respectively. The CIF∆h, vdepth achieves a performance very close to the
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Table 4.4: Adjusted coefficients of the empirical models.

α β γ ζ φ

ABG 1.93 64.93 0.53 - -
ABG∆h, vdepth 2.27 58.94 0.55 3.43 0.27

n b fo ζ φ

CIF 0.44 -0.68 33.37 - -
CIF∆h, vdepth 0.52 -0.61 33.37 4.65 0.24

Table 4.5: Performance evaluation of the ML models on both the training and
testing sets.

Model
RMSE [dB] MAPE [%] σ [dB] R2

Train Test Train Test Train Test Train Test

ABG 2.29 2.69 1.64 1.87 1.38 1.67 0.71 0.61
CIF 2.49 2.91 1.75 2.01 1.54 1.81 0.66 0.54

ABG∆h, vdepth 2.08 2.52 1.35 1.63 1.34 1.64 0.76 0.66
CIF∆h, vdepth 2.11 2.54 1.48 1.71 1.31 1.64 0.76 0.65

ANN 1.23 2.00 0.83 1.34 0.82 1.31 0.92 0.78
SVR 1.52 1.98 0.93 1.29 1.12 1.35 0.87 0.79
RF 1.38 1.68 0.95 1.13 0.89 1.11 0.90 0.85

GTB 0.94 1.39 0.64 0.94 0.62 0.90 0.95 0.90
Fuzzy [150] - 2.20 - - -

ABG∆h, vdepth with RMSE, MAPE, σ, and R2 equal to 2.54 dB, 1.71%, 1.64
dB, and 0.65, respectively.

The GTB presents the best performance among the proposed ML models,
with RMSE, MAPE, σ, and R2 equal to 1.39 dB, 0.94%, 0.90 dB, and 0.90,
respectively. It is closely followed by the RF model, which attains RMSE,
MAPE, σ, and R2 equal to 1.68 dB, 1.13%, 1.11 dB, and 0.85, respectively.
The ANN and SVR models present lower performances compared to the GTB
and RF models. Figure 4.4 displays the measured and predicted path loss
values for the empirical and ML models for comparison.

The work in [150] presents a Fuzzy technique based on the subtracting
clustering algorithm to predict the PL. The approach uses data from the same
measurement campaign described in this chapter. In that study, a number of
samples from the dataset were dedicated to specifying the fuzzy logic, while
the remaining samples were reserved for testing. However, the authors did
not provide detailed information about the train-test split technique employed
and the allocation of samples to each set. The Fuzzy model in [150] reported
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Figure 4.4: Comparison of measured and predicted path losses on the testing
set for the ML and empirical models.

an RMSE of 2.20 dB for the PL prediction on the testing set for the multi-
frequency case. The RMSE value is very similar compared to the proposed
ABG∆h, vdepth and CIF∆h, vdepth models, with values of 2.52 dB and 2.54 dB,
respectively. However, its performance is worst than that of all the proposed
ML models, more significantly for the GTB model (1.39 dB).

We now employ the predictor selection technique described in Section 3.9
to investigate the relations between predictors and PL, specifically in the
GTB model, which presented the best performance among the designed ML
models. The performance evaluation results of each predictor coalition and
their interpretability are shown in Table 4.6, while Figure 4.5 displays the
ALE curves. From the results in Table 4.6, one sees that the prediction
performance is significantly dependent on the predictors d and f ; when adding
more predictors to the coalition, the improvement is very small. In addition,
the IAS and MEC values are similar for all the coalitions, this can be also seen
in the ALE curves; when adding a new predictor, the centered accumulated
local effects (y-axis) remain similar. Besides, the predictors d and f show the
highest ALE values indicating a larger effect on the path loss prediction.

Table 4.6: Performance and IML indicators for the GTB model using different
coalitions measured on the training set.

Predictors
coalitions

R
M

SE
[d

B
]

M
A

PE
[%

]

σ
[d

B
]

R
2

IA
S

M
EC

d 1.62 1.09 1.07 0.86 - 3.00
d,f 1.04 0.68 0.72 0.94 0.09 3.02
d,f , vdepth 0.99 0.66 0.68 0.95 0.11 3.02
d,f , vdepth,∆h 0.94 0.64 0.62 0.95 0.11 3.02
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Figure 4.5: ALE plots for the GTB model evaluated from the subset of one
predictor (d) until the four predictor subset (d, f, vdepth, ∆h) in the mmWave
outdoor environment.

For the subset of four predictors, the model relies mainly on the inter-
action between d and f as seen in Table 4.7. The low IAS values for all the
subsets suggest that the model depends more heavily on the individual effects
of each predictor than on interactions between pairs of them. In addition, the
PFI technique is applied to the subset of four predictors obtaining the results
shown in Table 4.8. From the results, the higher dependency on the predictor
d is observed, which is followed by f , vdepth, and ∆h.

Table 4.7: 2D-ALE for the GTB model for the subset of four predictors.

Predictor 2D-ALE value

vdepth,∆h 0.00
f ,∆h 0.02

f , vdepth 0.03
d,∆h 0.06

d, vdepth 0.08
d,f 0.40

Table 4.8: PFI rank value of the four predictors subset shown in crescent order.

Predictor PFI value (loss: RMSE [dB])

∆h 0.25
vdepth 0.53

f 0.98
d 4.51

Therefore, the predictor ∆h and vdepth present the lower influence to
improve PL prediction for the GTB model; however, given the observed
improvement on the ABG and CIF models upon including the predictors ∆h

and vdepth, we maintain them in the following subsection for comparison.
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4.6
Generalization Capacity Analysis

To address the generalization capacity of the models for short-range PL
at mmWave, an additional evaluation is performed by considering unknown
receivers. In this experiment, the GTB model using the subset of four predictors
is trained using seventeen randomly selected receivers (approximately 80%
of the total samples, resulting in 238 PL instances), and the remaining four
receivers are used for testing (56 PL instances). This process is repeated three
times, resulting in three different sets for training and testing, as shown in
Figure 4.6 and Table 4.9. For each set, the optimal hyperparameters are
determined using a 5-fold CV, and the selected hyperparameters are listed
in the last column in Table 4.9. The coefficients of the ABG and ABG∆h,vdepth

are fit for each training set, and their values are presented in Table 4.10.

Figure 4.6: Generalization test capacity for unknown receivers for the mmWave
outdoor links.

Table 4.11 compares the final models using the different training and
testing sets partitions. The results show that the GTB-based PL prediction
reaches the best generalization performance, although the ABG∆h,vdepth attain
good results, and the ABG presents the lowest performance.
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Table 4.9: Generalization capacity analysis for the PL models. The models are
adjusted/trained using seventeen receivers and evaluated (tested) on the four
remaining ones.

Rx’s employed

Partition Train Test hyperparameters

1

RX2,RX4,RX5,RX6,

RX7,RX8,RX9,RX10,

RX11,RX12,RX14,RX15,

RX17,RX18,RX20,RX21,RX22

RX1,RX16,RX19,RX23
η=0.1,trees=260,

md=2,msl=2, absolute error loss

2

RX1,RX2,RX5,RX6,

RX8,RX9,RX11,RX12,

RX15,RX16,RX17,RX18,

RX19,RX20,RX21,RX22,RX23

RX4,RX7,RX10,RX14
η=0.1,trees=30,

md=2,msl=1, squared error loss

3

RX1,RX2,RX4,RX6,

RX7,RX8,RX9,RX10,

RX11,RX14,RX16,RX17,

RX18,RX19,RX21,RX22,RX23

RX5,RX12,RX15,RX20
η=0.1,trees=60,

md=1,msl=3, absolute error loss

Table 4.10: Adjusted coefficients of the ABG and ABG∆h, vdepth models for
the generabizability analysis.

α β γ ζ φ

ABG
Partition 1 1.96 66.34 0.41 - -
Partition 2 1.90 68.76 0.29 - -
Partition 3 2.01 67.35 0.27 - -

ABG∆h,vdepth

Partition 1 2.35 59.87 0.41 3.69 0.22
Partition 2 2.17 64.47 0.29 3.18 0.23
Partition 3 2.40 60.84 0.27 4.05 0.19

4.7
Discussion

This chapter has investigated PL modeling for mmWave in an out-
door environment. The study proposed two adjusted empirical models,
the ABG∆h,vdepth and CIF∆h,vdepth . By considering the additional predictors
(∆h, vdepth), the derived models can capture the influence of the difference in
antenna height between the transmitter and the receiver and vegetation depth
along the path profile. Also, we delved into the design of optimized ML-based
PL models for mmWave links outdoors. In this category, the best performance
was attained for the GTB-based PL model. The GTB-based PL model has
shown the potential to accurately predict path loss in the considered envi-
ronment. However, additional measurement data from different scenarios still
need to be addressed to further evaluate the proposed ML-based PL model.
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Table 4.11: Performance evaluation of the empirical and GTB models consid-
ering a set of receivers for training and the test employs a different set.

Training set Testing set

Partition

R
M

SE
[d

B
]

M
A

PE
[%

]

σ
[d

B
]

R
2

R
M

SE
[d

B
]

M
A

PE
[%

]

σ
[d

B
]

R
2

ABG
1 2.42 1.74 1.44 0.68 2.21 1.56 1.33 0.67
2 2.33 1.60 1.50 0.71 2.70 1.90 1.60 0.54
3 2.42 1.73 1.46 0.63 2.24 1.55 1.36 0.78

ABG∆h,vdepth

1 2.23 1.53 1.45 0.73 1.91 1.38 1.09 0.75
2 2.14 1.47 1.37 0.75 2.40 1.51 1.65 0.63
3 2.22 1.54 1.42 0.68 2.00 1.36 1.25 0.83

GTB
1 1.41 0.83 1.09 0.89 1.89 1.37 1.56 0.75
2 1.84 1.21 1.38 0.82 2.29 1.62 1.43 0.66
3 1.95 0.76 1.37 0.80 1.98 1.36 1.24 0.83

Given that the measurement campaign for the outdoor environment presents
mostly LOS conditions in comparison with the indoor environment, the connec-
tions between predictors and path loss are best learned in this environment, as
demonstrated by the better performance prediction for the ML and empirical
models for outdoor propagation models than for indoors.

The following chapter studies the applicability of the ML models design
methodology for links provided by an urban macrocell in lower frequencies
(sub-6 GHz), in which the propagation environment is defined by larger
Tx-Rx distance and the presence of buildings and dense vegetation in the
surroundings.



5
Path Loss Prediction for Macrocell Coverage at sub 6-GHz
using Machine Learning Techniques

The next generation of mobile communication systems relies on mmWave
technology to fulfill high data rates and low latency requirements. However,
5G technology involves the integration of overlapping cells consisting of macro-
cells designed to provide extensive coverage for the so-called heterogeneous
network [4, 33]. Typically, the macrocells will operate using sub-6 GHz bands,
such as 700 MHz, 2.5 GHz, and 3.5 GHz [33].

This chapter tackles modeling PL prediction for macrocell coverage in the
sub-6 GHz bands. The models are derived using an extensive measurement
campaign that encompasses two Routes in Rio de Janeiro, Brazil. For the
design of the ML models, one extracts predictors (features) from the path
profile between the transmitter and the receiver.

5.1
Related Work

With the deployment of macrocell mobile networks, many models
have appeared to help predict the coverage considering different system-and
environment-dependent predictors. The Egli model [37] includes predictors
such as distance, frequency, and antenna heights; Okumura’s model proposes
different models according to the terrain type [38] considering frequency, dis-
tance, and antenna heights; and Lee model [39] uses predictors such as fre-
quency, distance, antenna heights, building heights and street orientation.

The site-specific model proposed in [33] combines three models to a single
model: the discrete mixed Fourier transform split-step parabolic-equation
(DMFT-SSPE) [152], the building-transmission model (BTM) [153], and the
International Telecommunication Union of Radio-communications (ITU-R)
model for attenuation in vegetation [33]. The study employs profile information
from the ground, the buildings, and the vegetation. In addition, the diffracted
components arising from the building rooftops and terrain peaks present in the
radio path are also considered. The model’s performance was assessed using
data from a measurement campaign in Rio de Janeiro conducted in two Routes.
Some sub-regions from the two Routes refereed as calibration scenarios were
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used to adjust the coefficient parameters of the proposed propagation model
represented by the red line in Figure 5.1. The results were also compared
with the log-distance and Okumura-Hata models; the authors claim a better
performance for their model. We employed the same dataset for PL modeling
for macrocell coverage at the sub-6 GHz spectrum and compare the obtained
results against the ones in [33].

Figure 5.1: Distribution of samples for the model design of the work proposed in
[33]. The regions represented by the red line were used to adjust the coefficient
parameters in the models.

ML-based PL modeling for macrocell coverage has already been proposed
in [63, 64]. In [63], an ANN model is developed to predict PL and shadowing in
a suburban environment considering frequencies 450 MHz, 1500 MHz, and 3600
MHz. The dataset is split for training (80%) and testing (20%) using random
sampling. The principal component analysis (PCA) algorithm is applied to
extract relevant predictors. The ANN model was evaluated using different
predictor subsets, including a subset with only one predictor (distance) and
a subset with four predictors (transmitting antenna height, receiving antenna
height, transmitting/receiving antenna height ratio, and distance). When using
only the distance as the predictor, the ANN model achieved an RMSE, MAPE,
and R2 of 8.61 dB, 4.94%, and 0.66, respectively, on the testing set. With
the inclusion of four predictors, the model performance shows almost no
improvement, attaining an RMSE, MAPE, and R2 equal to 8.40 dB, 4.86%,
and 0.67, respectively.

The work in [64] focuses on the development of a combined PL model
for an urban environment in the 3.5 GHz frequency band using a ray-tracing
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technique to generate the dataset. It proposes an ABG model for PL prediction
when LOS conditions exist, while for NLOS cases, a model optimized by
least-square regression is employed. The study includes the PCA algorithm
for predictor selection, and nine predictors are employed to characterize
the building profile. The authors report the performance prediction by the
mean error and σ, with values of 0.00 dB and 12.28 dB, respectively, using
a transmitter height of 30 m. Most of the previously cited works employ
predictors such as distance, antenna height, and building information. In
contrast, this thesis considers a more extensive framework; we identify fourteen
predictors from the building, vegetation, and ground profiles and employ
several ML techniques to characterize the entire profile.

The ML-based PL models are first built using the entire set of predictors.
Then, the predictor coalitions methodology (see Section 3.9) is applied to
identify the most significant predictors for the ML-based PL model with the
best performance for macrocell coverage within the sub-6 GHz frequency band.
The performance of the final ML model is compared with the empirical models
log-distance and Okumura-Hata, and the model proposed in [33]. Furthermore,
to assess the generalization capacity of the ML techniques, we compare the
performances obtained using conventional training-testing splitting and a
training-testing approach that segregates the data from different streets.

5.2
The Measurement Campaign: Dataset Description

The measurements campaign was carried out in 2020 and was conducted
by colleagues from the radio propagation laboratory in CETUC and the
Polytechnic Institute of Leiria, Portugal. The measurement campaign includes
two Routes, as depicted in Figure 5.2. The blue line corresponds to the first
Route, where the transmitter is positioned on the rooftop of a building with
an antenna height of 53 meters from the ground, represented by the blue star.
The second Route, represented by a magenta line, covers the Leblon area.
The magenta star marks the transmitter’s position for this scenario, with an
antenna height of 71 meters. The measurements were carried out at different
frequencies, including 750 MHz, 2.5 GHz, and 3.5 GHz [33].

The campaign used vector signal generators to generate continuous-wave
(CW) signals at 10 dBm. The transmitter is an Aaronia HyperLOG 60100
antenna with a 5 dBi gain. The receiver is an RFS I-ATO1-380/6000 H-plane
omnidirectional antenna. The measurement software also controlled a GPS
device to assign the position coordinates to each measurement sample acquired
[33]. The PL in dB is obtained from the measured received power (PRX) and



Chapter 5. Path Loss Prediction for Macrocell Coverage at sub 6-GHz using
Machine Learning Techniques 86

system parameters using Equation (3-1). The samples collected from both
Routes and the three frequencies are shown in Table 5.1. There were 15,824
samples collected during the measurement campaign.

Figure 5.2: Map of the measurement campaign in the macrocell coverage at
the sub-6 GHz frequency band.

Table 5.1: Samples collected in each Route and frequency.

Route Frequency Samples

#1
750 MHz 3,887
2.5 GHz 3,886
3.5 GHz 3,747

#2
750 MHz 1,459
2.5 GHz 1,459
3.5 GHz 1,386

5.2.1
Identification of the Predictors from the Profile Path between the Trans-
mitter and the Receiver

The path profile for each measured PL is available at [33]. They include
buildings, vegetation, and ground profiles, as well as the identification of the
diffraction heights in the path. The profile path between the Tx and the
Rx provides extensive information to identify valuable predictors for the PL
prediction. An example of the profile path between the transmitter and the
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receiver is shown in Figure 5.3. From the profile environment and system
parameters, fourteen predictors are identified. They include frequency, in
MHz (f), the height difference between the transmitter and receiver (∆h), in
meters, and the Tx-Rx distance (d), in meters. Given the urban environment
characteristics, where buildings can obstruct radio paths, leading to additional
propagation loss [64], we identified four predictors related to building height
variability along the link. They are quantified by the mean and standard
deviation of the building height (bh and σb), in meters, as well as the
obstruction caused by buildings, measured by the building depth (bdepth), in
meters, and the number of intersected buildings (nb).
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Figure 5.3: Example of the profile environment between the transmitter and
receiver. The left-hand graph shows the building, vegetation and diffraction
profile along distance, and the right-hand graph shows the ground profile.

In addition, the presence of vegetation can significantly impact signal
propagation, leading to additional path loss and signal attenuation [33], we
extract four predictors from the vegetation profile that include the mean and
standard deviation of the vegetation height along the radio path (vh and
σv), in meters, and the obstruction of vegetation measured by the vegetation
depth (vdepth), in meters, and the number of intersected vegetation/trees (nv).
Furthermore, we also consider the variability of the ground height along
the direct path by measuring its mean and standard deviation (gh and σg),
in meters. Lastly, from the diffraction profile, we obtain the mean of the
diffraction height (difh), in meters. The ranges for the predictors in each Route
are shown in Table 5.2.
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Table 5.2: Range values of the predictors for the Route #1 and Route #2.

Predictor Route #1 Route #2

f 750 MHz - 3.5 GHz 750 MHz - 3.5 GHz
∆h 31.58 - 49.50 m 56.07 - 63.53 m
d 171.28 - 3,542.11 m 121.93 - 1,881.94 m
bh 2.91 - 27.34 m 6.32 - 21.84 m
vh 2.14 - 28.05 m 0.94 - 14.51 m
gh 5.76 - 26.09 m 6.31 - 18.50 m
σb 4.49 - 20.48 m 6.29 - 20.73 m
σv 5.24 - 27.46 m 6.79 - 20.37 m
σg 0.64 - 16.90 m 4.50 - 13.55 m

bdepth 0 - 241.71 m 0 - 353.30 m
vdepth 0 - 307.04 m 0 - 153.13 m

nb 0 - 26 0 - 37
nv 0 - 27 0 - 29

difh 20.50 - 81.79 m 27.45 - 88.44 m

5.2.2
Distribution of the Measured PL

Figure 5.4 provides a visual representation of the distribution of the
measured PL samples using the cumulative distribution function (CDF). The
plots show that the CDFs for the measured PL are similar across the three
frequencies in each Route. Furthermore, Figure 5.5 displays a scatter plot
showing the dependence of path loss on distance, which shows that there is a
great dispersion in the PL when ordered by the Tx-Rx distance.
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Figure 5.4: CDF of the measured PL in Route #1 and Route #2.
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Figure 5.5: Scatter plots of the measured path loss versus distance for each
Route and frequency.

In addition, we calculate the variance (σ2) and mean (y) of the measured
PL to examine the similarity between the statistical distribution in both Routes
and frequencies, which are presented in Table 5.3. The results show that the
mean of the measured PL in both Routes is similar. Route #2 presents higher
variances, indicating a wider dispersion of the samples in Route #2 than in
Route #1.

Table 5.3: Parameters of the distributions for σ2 and mean of the measured
PL.

σ2 of measured PL [dB2] mean of measured PL [dB]
750 MHz 2.5 GHz 3.5 GHz 735 MHz 2.5 GHz 3.5 GHz

Route #1 263.88 231.42 213.84 107.94 117.88 117.64
Route #2 331.42 331.26 308.51 104.69 116.63 116.58

5.3
Path Loss Empirical Model

This section describes two common empirical models used for macrocell
coverage. They are the log-distance and Okumura-Hata models. The log-
distance PL model is an extension of Friss free-space model [27], given by

PL[dB] = L0 + 10n log10(d), (5-1)
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where L0 is the reference PL, n is the path loss exponent, and d is the Tx-
Rx distance in meters, indicating the rate at which the path loss increases
with the distance. The coefficients L0 and n are estimated using the least
squares regression technique [154]. Its values can vary depending on the specific
environment and frequency.

The Okumura-Hata model is valid for microwave frequencies from 150 to
1500 MHz and covers receiver antenna heights between 1 and 10 m, transmitter
antenna heights ranging from 30 to 200 m, and link distances from 1 to 10 km.
For an urban environment [52], the Okumura-Hata is given by

PL[dB] =69.55 + 26.16log10(f) − 13.82log10(hb)−

CH + (44.9 − 6.55log10(hb))log10(d),
(5-2)

where f is the frequency, in MHz, hb is the heigth of the transmitter, in meters,
hm is the height of the receiver, in meters, CH is the antenna height correction
factor (3.2(log10(11.75hm))2 −4.97), in dB, and d is the distance, in kilometers.

5.4
ML-based PL Models

This section compares the conventional methodology for train-test split-
ting and a proposed approach for splitting the dataset for designing the macro-
cell PL prediction model. A comparison of the obtained ML model with the
empirical models and with the study in [33] are presented in Section 5.5 and
Section 5.6, respectively.

5.4.1
Training-Testing Methodology to Force ”Unknown Streets”

As we have already discussed in the previous chapter, for the development
of the ML model, it is necessary to use a percentage of the data for learning the
behavior of the predictors and separating the remaining data to test the model
obtained. Furthermore, the training set must represent the testing set [40].
The conventional approach is to randomly shuffle the dataset and allocate
a certain percentage, such as 70% or 80% for training the model [32]. By
using this split technique in the context of PL macrocell coverage prediction,
we can assess the model’s capacity to interpolate, that is, to measure the
generalization prediction for instances (and cases) that are close to those
presented for the model learning as discussed in [32, 40]. In that case, the
samples (predictors and output) on the training and testing set would have a
very similar statistical distribution; and, the model is expected to generalize
well using the conventional train-test split and relevant predictors since model
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prediction is sensitive to the training data domain. However, it is important
to measure how well the model performs on completely new and unseen data
from unknown streets, that is, when extrapolating [32].

Therefore, we compare different train-test splits as illustrated in Figure
5.6. In the first, one randomly shuffles the dataset instance (80% for training
and 20% for testing) from both Routes. In the second, the train-test splitting
considers the streets (samples’ positions) such that the testing set has instances
collected in streets that are unknown during training to further analyze the
generalization performance of the models.

Figure 5.6: Example of the randomly shuffled (graph on the left) and unknown
streets (on the right), for the training (in blue) and testing (red) sets division
methodology.

Table 5.4 presents the variance and mean of the PL instances in the
training and testing sets using the two dataset splits above discussed. As
expected, the σ2 and mean of the measured PL on the training and testing sets
divided using random split have very close values compared with the training
and testing for “unknown streets”, where the mean of the measured PL is
similar, however, σ2 is higher for the training set.

Table 5.4: Comparison of the train-test randomly shuffled and unknown streets
strategies in terms of σ2 and mean for the PL values they contain.

σ2 of measured PL [dB2] mean of measured PL [dB]
Splitting technique Set 750 MHz 2.5 GHz 3.5 GHz 735 MHz 2.5 GHz 3.5 GHz

Randomly shuffled
Train 285.87 259.00 240.72 107.02 117.73 117.30
Test 278.32 258.18 235.30 107.21 116.77 117.56

Unknown street
Train 298.14 272.81 245.54 104.91 115.34 115.44
Test 114.90 83.54 87.99 116.48 127.20 127.42

The GTB model is employed considering all the predictors available in
the dataset to compare the impacts of using the train-test splits discussed.
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For the random shuffling approach, the dataset is randomly divided into 80%
of the instances for training (12,659) and 20% for testing (3,165). The 5-fold
CV technique using a grid search explores the range of the hyperparameters
for the GTB PL model. For this scenario, we observe for all the machines
that using the same hyperparameters values as those used in the mmWave
scenarios tend to produce over-fitting; therefore, for the macrocell coverage,
we employ a narrower range of hyperparameters values to avoid that issue.
The hyperparameters considered include the number of trees (ranging from 2
to 70), the maximum depth (ranging from 1 to 3), the minimum number of
samples in a leaf (ranging from 1 to 3), and the learning rate (ranging from
0.001 to 0.1). During the grid search, two different loss functions are tested,
squared error and absolute error. The lowest CV RMSE (6.41 dB) is achieved
with 70 trees, maximum depth equal to 3, minimum samples leaf equal to 1,
and a learning rate of 0.1, using the squared error loss function.

For the train-test split considering unknown streets, the train-test split
follows the division presented in Figure 5.6.(b) – employing samples from both
Routes to highlight the effects of training using different environments. The
training set contains 13,024 samples extracted from both Routes (9,575 from
Route #1 and 3,449 from Route #2). The remaining samples (2,800) are
assigned to the testing set; among these samples, 1,945 are from Route #1,
while 855 are from Route #2. The GTB model reaches the lowest CV RMSE
(6.37 dB) using 70 trees, a maximum depth of 3, and the minimum samples
per leaf equal to 1 with the squared error loss function. Wrapping up, if the
two strategies of train-test splits use very different numbers of instances (and
from different numbers of scenarios), the comparison is hindered.

The performance evaluation of these GTB models for both train-test
splits is shown in Table 5.5. As expected, the model using the random train-
test split has the best generalization PL prediction. This can be attributed
to the testing set containing samples that are very close (in the predictor
and output spaces) to those on which the model was trained, which achieves
an RMSE, MAPE, σ and R2 equal to 6.41 dB, 4.33%, 4.22 dB and 0.85,
respectively. However, for PL prediction on similar streets, the proposed train-
test split emphasizes the applicability of the trained ML-based PL model. For
the proposed train-test split, the GTB model achieves an RMSE, MAPE, σ,
and R2 on the testing equal to 7.36 dB, 4.61%, 4.86 dB, and 0.56, respectively.
Although the performance prediction is lower than the train-test random split,
this approach considers the actual application of the trained ML-based model.
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Table 5.5: Performance evaluation of the GTB model measured on the training
and testing sets.

Training set Testing set
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random split 6.26 4.22 4.10 0.86 6.41 4.33 4.22 0.85
unknown street 6.17 4.21 4.06 0.87 7.36 4.61 4.86 0.56

5.4.2
ML-based PL Models

In this subsection, the “unknown streets” train-test split is applied to
design four ML models: ANN, SVR, RF, and GTB for macrocell at sub 6-GHz
links. The training and testing sets are depicted in Figure 5.6.(b). The training
set is used to optimize the hyperparameters of each model using a 5-fold CV.
The predictors for the models are shown in Table 5.2.

During the grid search, the ANN model considers a number of neurons
varying from 1 to 20, learning rate and weight decay from 0.001 to 0.1 for
both hyperparameters, activation functions ReLU, Logistic, and Tanh, with
the solver L-BGS and early-stopping. The lowest average CV RMSE (5.91
dB) is achieved using 19 neurons, a learning rate equal to 0.001, and a weight
decay of 0.1 with the activation function ReLU. The grid search for the SVR
model considers C ranging from 1 to 100, ϵ ranging from 0.0001 to 0.01, and
σRBF ranging from 0.0002 to 0.02. The lowest average CV RMSE (6.63 dB) is
achieved for C equal to 100, ϵ to 0.0001, and σRBF to 0.002.

The grid search for the RF model includes the number of trees varying
from 2 to 70, the maximum depth varying from 1 to 3, and the minimum
samples per leaf varying from 1 to 3 with the squared error or the absolute
error as the loss function. The lowest average CV RMSE (8.52 dB) is attained
using 44 trees, with a maximum depth of 3, minimum samples leaf of 3, with
the squared error loss function. For the GTB, the employed hyperparameters
are those found in Subsection 5.4.1: 70 trees, maximum depth of 3, minimum
samples leaf of 1, learning rate of 0.1, and squared error loss function.

The results for the final ML models are displayed in Table 5.6. The GTB
model achieves the best generalization performance with an RMSE, MAPE,
σ, and R2 equal to 7.36 dB, 4.61%, 4.86 dB, and 0.56, respectively. The lowest
performance prediction is provided by the SVR model with an RMSE, MAPE,
σ, and R2 equal to 10.80 dB, 6.19%, 7.79 dB, and 0.05, respectively. Figure
5.7 shows the measured and predicted path loss values for the ML models.
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Table 5.6: Performance evaluation of the ML-based PL models for the sub-6
GHz macrocell environment measured on the training and testing set.

Training set Testing set
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ANN 5.71 3.91 3.73 0.89 10.51 6.98 6.30 0.10
SVR 6.57 4.40 4.42 0.85 10.80 6.19 7.79 0.05
RF 8.55 5.96 5.46 0.75 9.18 5.80 5.80 0.31

GTB 6.17 4.21 4.06 0.87 7.36 4.61 4.86 0.56

50 75 100 125 150 175
Measured path loss [dB]

50

75

100

125

150

175

Pr
ed

ict
ed

 p
at

h 
lo

ss
 [d

B]

(a) ANN
R2 : 0.10

50 75 100 125 150 175
Measured path loss [dB]

50

75

100

125

150

175
Pr

ed
ict

ed
 p

at
h 

lo
ss

 [d
B]

(b) SVR
R2 : 0.05

50 75 100 125 150 175
Measured path loss [dB]

50

75

100

125

150

175

Pr
ed

ict
ed

 p
at

h 
lo

ss
 [d

B]

(c) RF
R2 : 0.31

50 75 100 125 150 175
Measured path loss [dB]

50

75

100

125

150

175

Pr
ed

ict
ed

 p
at

h 
lo

ss
 [d

B]

(d) GTB
R2 : 0.56

Figure 5.7: Comparison of measured and predicted path losses on the testing
set for the ML models in the macrocell environment.

5.4.3
Predictor Coalition Selection

Since the GTB model achieves the best performance, as can be seen
in Table 5.6, our predictor selection methodology described in Section 3.9
is employed to identify the most relevant predictors for this model. Table
5.7 presents the results of performance evaluation and interpretability on
each subset. One notes that the inclusion of a new predictor in the coalition
leads to an improvement in performance, more significantly for the first three
predictors bdepth, d, and f . After the sixth predictor (vdepth), the influence
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of a new predictor in the performance reduces. Furthermore, the IAS and
MEC indicators consistently maintain similar values in all subsets, implying
that including a new predictor does not introduce strong interactions with the
previously selected predictors.

Table 5.7: Performance and IML indicators for the GTB model for macrocell
in the sub-6 GHz using different coalitions measured on the training set. Model
performance is measured using RMSE, MAPE, σ, and R2; interpretability is
assessed by IAS and MEC.
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bdepth 10.25 7.61 6.19 0.65 - 2.00
bdepth,d 8.63 6.34 5.21 0.75 0.11 2.68
bdepth,d,f 6.94 4.79 4.46 0.84 0.10 2.52
bdepth,d,f ,gh 6.51 4.49 4.24 0.86 0.11 2.04
bdepth,d,f ,gh,∆h 6.43 4.42 4.20 0.86 0.11 2.11
bdepth,d,f ,gh,∆h,vdepth 6.32 4.35 4.14 0.87 0.11 2.01
bdepth,d,f ,gh,∆h,vdepth,vh 6.31 4.33 4.13 0.87 0.10 1.99
bdepth,d,f ,gh,∆h,vdepth,vh,bh 6.30 4.32 4.13 0.87 0.10 2.01
bdepth,d,f ,gh,∆h,vdepth,vh,bh,σb 6.29 4.30 4.13 0.87 0.11 1.96
bdepth,d,f ,gh,∆h,vdepth,vh,bh,σb,σg 6.15 4.21 4.04 0.87 0.10 2.03
bdepth,d,f ,gh,∆h,vdepth,vh,bh,σb,σg,σv 6.13 4.19 4.03 0.87 0.10 2.01
bdepth,d,f ,gh,∆h,vdepth,vh,bh,σb,σg,σv,nv 6.13 4.19 4.02 0.87 0.11 2.06
bdepth,d,f ,gh,∆h,vdepth,vh,bh,σb,σg,σv,nv,difbh

6.12 4.19 4.01 0.87 0.11 2.04
bdepth,d,f ,gh,∆h,vdepth,bh,vh,σb,σg,σv,nv,difbh

,nb 6.17 4.21 4.06 0.87 0.09 2.07

In addition, Figure 5.8 and Table 5.8 present the ALE curves and PFI
values for the selected subset (coalitions) of predictors, respectively. The PFI
values indicate that the predictor bdepth has the highest influence in improving
PL prediction, followed by the predictors d, f , and gh. The lower PFI values
are for the predictors vdepth and ∆h. From the ALE curves (Figure 5.8.(c)),
it can be seen that the predictor f has a quite linear effect on the predicted
PL, contrary to the GTB models in mmWave when frequency had a non-linear
effect as discussed in Chapter 3, Subsection 3.9.3.

The previous results indicate that including the predictors such as
vh,bh,σb,σg,σv,nv,difbh

, and nb do not significantly enhance the performance
of the model. As a result, the subset of six predictors (bdepth,d,f ,gh ,∆h,vdepth)
is selected to build the final GTB model.
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Figure 5.8: ALE plots for the GTB model evaluated from the subset of one
predictor (bdepth) until the selected subset (bdepth,d,f ,gh ,∆h, vdepth). The y-axis
shows the centered accumulated local effect values.

Table 5.8: PFI rank value of the selected subset of predictors shown in crescent
order.

Predictor PFI value (loss: RMSE [dB])

∆h 0.51
vdepth 0.89

gh 1.36
f 3.38
d 4.94

bdepth 8.23

5.5
Final Models Comparison between the GTB and Empirical Models

In this section, we compare the performance at the different frequencies
of the GTB-based PL model against single-frequency empirical models, such
as the log-distance and Okumura-Hata models obtained in Section 5.3. For the
GTB, a grid search with a 5-fold CV is applied to identify the optimal hyper-
parameters for the selected subset using the same range of values described in
Subsection 5.4.2. The GTB model achieves the lowest CV RMSE (6.47 dB)
using 70 trees, with a maximum depth equal to 3, a minimum samples leaf of
3, a learning rate of 0.1, and the squared error loss function. The performance
evaluation results on the training and testing, for each set of samples obtained
for Route #1 and Route #2 are presented in Table 5.9.

Figure 5.9 and Figure 5.10 compare the measured and predicted PL
values on the GTB model on the testing set for each Route. Furthermore,
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Table 5.9: Performance evaluation of the GTB model measured on the training
and testing sets using the optimized subset of predictors for the sub-6 GHz
macrocell environment.

Training set Testing set
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6.33 4.35 4.14 0.86
#1 7.88 4.92 5.29 0.44
#2 6.40 4.03 3.98 0.72

we compare the performance of the GTB model and the empirical models
log-distance and Okumura-Hata shown in Table 5.11 and Table 5.12. The
coefficients for the log-distance model (Lo and n) are estimated using Equation
(5-1) and employed on the training set. They are reported in Table 5.10. For
the Okumura-Hata model, Equation (5-2) is employed on the testing set for
PL prediction.
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Figure 5.9: Comparison of measured and predicted path losses on the testing
set for the GTB-based PL model measured on the Route #1.

Table 5.10: Values of the coefficients for the log-distance model in each
frequency, estimated on the training set.

Coefficients 750 MHz 2.54 GHz 3.5 GHz

Lo 13.82 27.28 34.55
n 3.05 2.95 2.70

Table 5.11 and Table 5.12, present the performance indicators including
RMSE, MAPE, σ, R2 and R2

oos, which measures the out-of-sample R2 [155]
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Results for Route #2 (R2 : 0.72)

Figure 5.10: Comparison of measured and predicted path losses on the testing
set for the GTB-based PL model measured on the Route #2.

and is given by

R2
oos = 1 − SSE

SST = 1 −
∑I

i=1

(
y(i) − ŷ(i)

)2

∑I
i=1 (y(i) − ytrain)2 . (5-3)

R2
oos compares the sum of squared errors (y(i) − ŷ(i))2 from the trained or

adjusted model, and the sum of squared errors (y(i) − ytrain)2 concerning the
mean of the measured PL on the training set (the simplest fit), instead from
the testing set as calculated for R2 in Equation (3-10). The evaluation of
similarity in those indicators could provide additional insight into how close
the statistical distribution of the PL instances on the training and testing set
is. Thus, when the mean of the measured PL from both sets is similar, the
values of R2 and R2

oos are also expected to be similar.
The results presented in Table 5.11 and Table 5.12 show a significant

improvement by the GTB model compared to the log-distance and Okumura-
Hata in both testing subsets. The GTB model achieves the best generalization
performance for the samples from Route #2 (as seen in Table 5.12), with the
lowest RMSE, MAPE, and σ, and the highest R2 and R2

oos values; also the
smallest difference between R2 and R2

oos for each frequency is obtained for
this testing subset; which means a closer value of ytest and ytrain, consequently
its generalization is better. The negative value for R2 on the testing for the
empirical models indicates that the mean of the measured PL performs better
in predicting the PL than the adjusted model.
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Table 5.11: Performance evaluation for each frequency measured on the testing
set from samples of Route #1 in the macrocell coverage.

Model Frequency RMSE [dB] MAPE [%] σ [dB] R2 R2
oos

Log-distance
750 MHz 11.70 8.40 7.05 -0.32 0.40
2.5 GHz 9.97 6.55 6.04 -0.42 0.45
3.5 GHz 10.01 6.44 5.99 -0.20 0.53

Okumura-Hata
750 MHz 15.61 11.45 9.48 -1.34 -0.07
2.5 GHz 17.44 12.29 9.24 -3.34 -0.69
3.5 GHz 19.88 14.31 9.64 -3.74 -0.86

GTB
750 MHz 8.76 5.84 5.87 0.26 0.66
2.5 GHz 6.62 3.95 4.48 0.37 0.76
3.5 GHz 8.18 5.01 5.26 0.20 0.68

Table 5.12: Performance evaluation for each frequency measured on the testing
set from samples of Route #2 for macrocell coverage.

Model Frequency RMSE [dB] MAPE [%] σ [dB] R2 R2
oos

Log-distance
750 MHz 13.91 10.49 6.24 -0.38 0.35
2.5 GHz 14.48 9.75 6.28 -1.09 0.37
3.5 GHz 13.12 8.88 5.94 -0.81 0.36

Okumura-Hata
750 MHz 11.65 8.44 6.59 0.03 0.54
2.5 GHz 9.83 6.49 5.31 0.04 0.71
3.5 GHz 9.97 6.71 6.14 -0.05 0.63

GTB
750 MHz 7.05 4.55 4.65 0.64 0.83
2.5 GHz 6.20 3.89 3.59 0.61 0.88
3.5 GHz 5.85 3.64 3.57 0.64 0.87

5.6
Generalization Capacity Analysis

When applying the trained model to a new scenario, an additional
test is performed to assess the GTB model’s generalization capacity to learn
the relationship between predictors and PL in macro-condition environments.
The testing set is selected to represent a different scenario and enables the
evaluation of the model’s generalization to unseen data. The test involves
training the model on the entire set of samples from Route #1 (11,520 samples)
and evaluating its performance on the complete set of samples from Route
#2 (4,304 samples). The spatial distribution of the PL instances in the two
Routes is provided in Figure 5.11. The 5-fold CV technique is applied over the
training set to determine the optimal hyperparameters using the grid search
values described in Subsection 5.4.2.

The final GTB model is designed using 70 trees, a maximum depth equal
to 3, and a minimum number of samples per leaf equal to 2. On the training set,
this model achieves an RMSE, MAPE, σ and R2 equal to 6.38 dB, 4.23%, 16.07
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dB of 0.84, respectively, and an RMSE, MAPE, σ and R2 on the testing set
equal to 9.45 dB, 6.72%, 18.86 dB and 0.75, respectively. The results for each
frequency on the testing set are summarized in Table 5.14, which compares the
performance prediction achieved by the GTB, the log-distance, and Okumura-
Hata models. The estimated coefficients Lo and n for the log-distance model at
each frequency are presented in Table 5.13. When comparing the results of the
GTB model to the previous ones, we observe a little decrease in performance
indicated by higher values of RMSE, MAPE, and σ. This decrease can be
attributed to the ML model being tested in a new scenario from its training
environment. However, the GTB model still performs better than all the other
empirical models.

Table 5.13: Coefficients value for the log-distance model estimated over the
training set for the generalization test.

Coefficients 750 MHz 2.54 GHz 3.5 GHz

Lo 21.59 35.75 39.26
n 2.77 2.64 2.52

Figure 5.11: Measurements samples for the generalization capacity test for the
sub-6 GHz macrocell environment. Samples in blue are used for training and
in red for testing.
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Table 5.14: Performance evaluation for the empirical models and GTB PL
model trained using the instances from Route #1 and tested using the samples
from Route #2 in the different frequencies for the sub-6 GHz macrocell
environment.

Model Frequency RMSE [dB] MAPE [%] σ [dB] R2 R2
oos

Log-distance
750 MHz 14.50 12.54 6.37 0.36 0.39
2.5 GHz 14.46 11.13 6.20 0.37 0.37
3.5 GHz 13.98 10.84 5.93 0.37 0.43

Okumura-Hata
750 MHz 14.18 12.40 7.22 0.39 0.41
2.5 GHz 13.77 10.81 7.28 0.43 0.43
3.5 GHz 14.78 11.15 9.10 0.29 0.29

GTB
750 MHz 8.42 6.32 5.43 0.79 0.79
2.5 GHz 9.95 6.81 5.85 0.70 0.70
3.5 GHz 9.90 7.03 5.71 0.68 0.68

From Table 5.14, it is noted that R2 and R2
oos values are equal for the

three frequencies, indicating very similar values of the mean of the measured PL
on the training and testing set as seen in Table 5.3. The scatter plots between
the measured and predicted PL for the ML and empirical models are shown
in Figure 5.12. Furthermore, when examining the ranges of the values for the
selected coalitions in Table 5.2, it is observed that certain predictor values on
the testing set lie outside the range of values observed in the training set, as
for bdepth, ∆h, and d, although close. Hence, if the range of the predictor values
on the unseen testing sets are within or close to the training inputs and output
ranges, the model is expected to present good generalization, as discussed in
[32].
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Figure 5.12: Comparison of measured and predicted path loss on the testing
set for the ML and empirical models.

The results presented in [33] are displayed in Table 5.15. The adjusted
model, derived from the sub-regions shown in Figure 5.1, is used to predict PL
using all samples on both Routes at 750 MHz, 2.5 GHz, and 3.5 GHz. This
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study performs a thorough comparison between the proposed PL model, the
log-distance, and the Okumura-Hata models, as outlined in Table 5.15. While
the study in [33] employed a small number of samples from both Routes for
model adjustment, the approach we presented used samples from Route #1
for training and Route #2 for testing, i.e., a dataset crossed split methodology.
As a result, a closer comparison between the models becomes possible by
specifically examining the results for Route #2 in Table 5.15 and comparing
them to the GTB model results provided in Table 5.14.

Table 5.15: Reported RMSE values in dB at [33] for the compared PL models
for the Route #1 and Route #2, respectively.

Study in [33] Route 750 MHz 2.5 GHz 3.5 GHz

Log-distance
#1 13.64 12.75 13.08
#2 14.53 14.17 13.60

Okumura-Hata
#1 14.24 13.92 13.61
#2 19.21 21.31 21.19

Proposed model
#1 12.69 12.55 13.94
#2 14.20 13.19 14.20

The GTB model shows an outstanding generalization performance in
comparison to the log-distance and Okumura-Hata models, as shown by the
results in Table 5.14 and the study in [33] detailed in Table 5.15. This empha-
sizes the applicability of the ML-based PL model as an effective alternative for
coverage planning in macrocell environments.

5.7
Discussion

This chapter has presented an optimized ML-based PL model design
based on the profile terrain along the direct path between the transmitter
and receiver for a macrocell coverage in sub-6 GHz considering a multi-
frequency scenario. The results show that the GTB model can predict PL
for multiple frequencies, antenna heights, and the macro conditions of the
environment, such as building depth, vegetation depth, and the average ground
height in the area. A higher dependency on the total number of intersected
buildings is observed. Since the optimized GTB-based PL considers a variety of
radio-path parameters such as multi-frequency, distance, antenna heights, and
environment conditions, it is suitable for PL modeling in a macrocell coverage.

Examining the overall interpretability complexity of the final optimized
GTB models in the mmWave and sub-6 GHz bands, we observe a lower level
of complexity for the sub-6 GHz GTB model. This can be seen from the lower
IAS and MEC values presented in Table 5.7 than the ones in Table 3.7. The
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reduced complexity in the sub-6 GHz model can be attributed to more linear
effects of the predictors on the response, more significantly for frequency and
distance. Additionally, in the case of the lower frequencies (sub-6 GHz), the
GTB model relies more on the individual effects of the predictors rather than
on their interactions, as seen from the IAS values. Consequently, one can say
that the ML-based PL prediction for higher frequencies, more specifically for
mmWave in the indoor environment, is more complex to interpret.

The following chapter addresses dynamic scenarios faced by vehicular
communications assessing V2I and V2V links PL prediction. Predictors from
building, vegetation, and ground profiles are also used, and their effects on PL
prediction – considering a lower transmission antenna height (as defined by the
V2I link condition), are assessed for V2I links. Meanwhile, a satellite image
extraction process is proposed to feed the input of a deep learning model based
on CNN and transfer learning to predict the PL in the V2V scenario.



6
Path Loss Prediction for V2I and V2V using Machine Learning
Techniques

In recent years, vehicular communications involving vehicle-to-
infrastructure (V2I) and vehicle-to-vehicle (V2V) scenarios have gained
significant attention since they can contribute to improving vehicle road
safety, reduce traffic congestion, and support applications such as autonomous
vehicles, emergency services and traffic optimization, among others [10, 18].
However, the PL prediction for vehicular wireless channels presents a more
challenging scenario than the traditional cellular channel [10]. In V2I, both
the transmitter and receiver have low antenna heights, and additionally, the
receiver or transmission can be in motion [14, 17]. In the V2V case, the channel
is even more dynamic due to the relative movement between the transmitter
and receiver vehicles, rapidly changing the surrounding environment [18, 27].

Therefore, existing objects, such as moving and stationary vehicles,
buildings, and vegetation, affect the radio propagation [15, 28]; in particular,
the presence of buildings poses a challenge to model PL due to multiple
propagation mechanisms such as diffraction and reflections [15]. In conclusion,
V2I and V2V channel propagation characteristics are influenced by the type
of environment, vehicle speed, and road traffic density [12, 19].

This chapter addresses PL modeling for V2I and V2V wireless channels
through a measurements campaign carried out in Rio de Janeiro, Brazil. For
the V2I study, the profile environment is employed to design the ML-based
PL models; the proposed methodology for coalition selection is applied to
determine the optimal predictors for this vehicular channel, and the final model
is compared with the log-distance model.

For the V2V environment, we use measured data considering the case
when vehicles are driving in the same direction for training ML-based PL
models. To design the ANN, SVR, RF, and GTB models, the distance and the
speed between vehicles predictors are evaluated, as well as their decomposition
into the vertical and horizontal components. In addition, as the environment
highly affects path loss in a vehicular channel, we explore the potential of
using satellite imagery to improve PL prediction using a convolutional neural
network (CNN) for automatic predictor extraction.
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6.1
PL Prediction for V2I

6.1.1
Related Work

Most V2I PL modeling studies have focused on empirical models in the
5 GHz frequency band. In [14], the Doppler effect is studied in an urban
environment at 5.9 GHz, and the path loss is modeled with the ITU-R P.1411-5,
two-ray and street canyon model for LOS conditions with the Tx-Rx distance
ranging from 1 to 1,000 m. In [17], different antenna heights are tested in
urban and suburban environments, and the two-ray and log-distance model
are employed considering distances from 5 to 700 m, in the frequency band
of 5.9 GHz. The estimated coefficients for Lo and n in the urban environment
are equal to 44.8 and 1.98, respectively, for a transmitter height of 3.5 m, and
45.5 and 1.92, for a transmitter height of 1.5 m.

The work in [28] considers the 2.4 GHz band and studies the effect of trees
in a rural area for varying heights of the receiver antenna. The results indicate
that the trees considerably affect the received power for V2I communications;
the experiments were performed using the ITU-R, FITU-R, and COST235
models. At a receiver antenna height equal to 5 m, the models attain σ values
equal to 5.55 dB, 6.30 dB, and 9.32 dB, respectively. In [15], the authors
addressed the impact of building obstruction for a V2I communication link
at 2.4 GHz for an urban micro-cell. The experiments were compared with
free-space loss, log-distance, and log-normal models. The log-normal model
achieved the best performance with RMSE equal to 11.85 dB.

Limited studies in the literature concerning ML techniques address PL
prediction for the V2I channel. In [13], angle spread and delay spread in a V2I
urban environment at 28 GHz are predicted using a deep learning network;
the ray-tracing technique is used to generate the simulated data employed, in
order to capture the point-cloud information of the 3D scenario directly and
map it with the channel characteristics using a deep learning model.

In this study, we investigate if using predictors extracted from the profile
environment as the model’s input can provide effective PL prediction in a V2I
urban environment within the sub-6 GHz frequency band. Two Routes (streets)
are considered, with one route allocated for training and the other for testing.
The predictor coalition methodology of Subsection 3.9.1 is applied to the ML
model leading to the best performance, and the final optimized ML model is
compared with the log-distance model.
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6.1.2
The Measurement Campaign: Dataset Description

We employ the data from a wideband measurement campaign carried
out in Rio de Janeiro during 2020 conducted by colleagues from the radio
propagation laboratory in CETUC and the Polytechnic Institute of Leiria,
Portugal. The campaign considers using a low-height transmitter antenna to
enable V2I communication with the receiver under real driving conditions. The
measurements were performed at 735 MHz, 2.54 GHz, and 3.5 GHz frequencies
in two Routes as depicted in Figure 6.1. In the first Route, the transmitter was
located in Baixo Gávea, as represented by the white start, while in the second
Route, it was positioned on João Borges Street. The transmitting antenna
height was 3 meters from the ground while the receiver antenna height was set
to 3.5 meters in both Routes. The environments are characterized by dense
vegetation and building surroundings. The collected samples shown in Figure
6.1 correspond to the points leading to valid OFDM symbols after applying the
constant false alarm rate (CFAR) filtering technique [156]; thus, the PL in dB
is obtained from the measured received power (PRX) and system parameters
using Equation (3-1). This results in 756 samples on Route #1 and 825 samples
on Route #2 in NLOS conditions.

Figure 6.1: Measurement scenarios for V2I.

Route #1 contains 198 samples at the frequency of 735 MHz, 289 samples
at 2.54 GHz, and 269 samples at 3.5 GHz. On the other hand, Route #2
consists of 353 samples at 735 MHz, 235 samples at 2.54 GHz, and 237 samples
at 3.5 GHz. Predictors are extracted from the profile environment to design the
ML-based PL model for the V2I case. In total, 12 predictors are considered,
including the frequency (f) in MHz, Tx-Rx distance (d) in meters, mean (bh,
vh, gh), and standard deviation (σb, σv, σg) of building, vegetation, and ground
height, in meters. Additionally, the building depth (bdepth), vegetation depth
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(vdepth), and the number of intersections of building and vegetation (nb, nv)
along the path from the transmitter to the receiver are also included.

Table 6.1 provides an overview of the predictor value ranges in both
Routes. The predictor value ranges in Route #1 encompass the ones in Route
#2, except for the predictor nv. Additionally, Table 6.2 presents the variance
σ2 and mean values of the measured PL values at each frequency. For the
frequency of 735 MHz, the mean values are similar in both Routes. However,
for the frequencies of 2.54 GHz and 3.5 GHz, Route #2 shows a higher mean
accompanied by lower σ2. This difference in the statistical distribution pattern
can be assessed in the CDF curves presented in Figure 6.2. In addition, for
the frequencies 2.54 GHz and 3.5 GHz, Route #2 shows a narrower range of
measured PL values, ranging from 60.52 dB to 81.02 dB and from 68.34 dB to
90.65 dB, respectively.

Table 6.1: Ranges of predictor values in Route #1 and Route #2 in the V2I
scenario.

Predictor Route #1 Route #2

d 1.26 - 275.48 m 51.06 - 233.90 m
f 735 MHz - 3.5 GHz 735 MHz - 3.5 GHz
σb 2.17 - 18.66 m 7.32 - 18.66 m
σv 0 - 11.81 m 5.01 - 11.81 m
σg 0.01 - 3.26 0.32 - 0.73 m
bh 0 - 19.06 m 5.54 - 19.06 m
vh 0 - 19.10 m 1.23 - 19.10 m
gh 0 - 153.02 m 16.86 - 17.92 m

bdepth 0 - 188.92 m 1.06 - 109.79 m
vdepth 0 - 275.48 m 0 - 112.48 m

nb 0 - 16 1 - 14
nv 0 - 8 0 - 14

Table 6.2: Variance and mean of the measured PL in Route #1 and Route #2.

σ2 of measured PL [dB2] mean of measured PL [dB]
735 MHz 2.54 GHz 3.5 GHz 735 MHz 2.54 GHz 3.5 GHz

Route #1 128.71 110.14 108.99 39.17 62.12 69.96
Route #2 66.07 21.71 29.87 34.97 76.05 84.09

Figure 6.3 presents the scatter plots between path loss and distance in the
different Routes and frequencies. The plots show that the path loss increases
for higher frequencies. Additionally, when the distance is small, reflections from
the surrounding environment significantly influence the power of the received
signal, dispersing the path loss to higher values as reported in [17].
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Figure 6.2: CDF of the measured PL in Route #1 and Route #2 in the V2I
scenario.
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Figure 6.3: Scatter plot of path loss versus distance for the Route #1 and
Route #2 at each frequency. For Route #2, the variability of PL with distance
is lower, more notably in the frequency of 2.54 GHz and 3.5 GHz in the distance
higher than 100 m.
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6.1.3
ML-based PL Model Design

In this study, we select the samples from Route #1 for training and
the samples from Route #2 for testing, aiming at the practical application
of the models. The 5-fold CV technique is employed to identify the optimal
hyperparameters while considering all predictors for each ML model on the
training set. During the grid search, the ANN model considers the same
hyperparameters range values employed in the macrocell environment, Chapter
5, that include a number of neurons varying from 1 to 20, learning rate and
weight decay from 0.001 to 0.1, and activation functions ReLU, Logistic, and
Tanh. Using the Logistic activation function, the lowest CV RMSE (4.55 dB)
is achieved with 11 neurons, a learning rate equal to 0.01, and a weight decay
of 0.1.

For the SVR, the hyperparameters C, ϵ, and σRBF are explored with the
same hyperparameters values described in Chapter 5. C is varied from 1 to
100, ϵ ranges from 0.0001 to 0.01, and σRBF spans from 0.0002 to 0.02. The
lowest CV RMSE (5.49 dB) is attained with C, ϵ, and σRBF equal to 100, 0.01,
and 0.02, respectively. For the RF model, the number of trees varies from 2
to 70. For this vehicular scenario, we employ a higher range of values for the
hyperparameters maximum depth and minimum number of samples to assess
their effect in the model’s prediction. Thus, the maximum depth varies from 2
to 12, and the minimum number of samples per leaf varies from 2 to 10 with
the squared error and absolute error as loss functions. The lowest CV RMSE
(5.99 dB) is attained using 34 trees, with a maximum depth of 2, a minimum
number of samples of 10, and the squared error loss function.

The grid search for the GTB considers the same ranges for building the
trees as the RF, with a learning rate equal to 0.14 and squared error and
absolute error loss functions. The lowest CV RMSE (4.88 dB) is reached using
70 trees, with a maximum depth of 8, minimum samples of 10, and the absolute
error loss function. The results for the final ML models are presented in Table
6.3.

One notes that the models cannot generalize well with a notably high
over-fitting. One possible reason for that is because the training and testing
sets are disjointed (different range values for the predictors and also for the
output), as can be seen in Table 6.1 and Figure 6.2, and as also discussed
in [40]. Path loss and distance differ in each Route, as reflected in the PL
values in Figure 6.3, more markedly for the frequencies at 2.5 GHz and 3.5
GHz. Although the RF model presents the closest performance values between
the training and testing sets, the GTB model performs better, as observed
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Table 6.3: Performance evaluation of the PL-based ML models measured on
the training and testing set for the V2I case.

Training set Testing set

Model
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ANN 3.48 4.32 2.55 0.95 28.80 37.95 17.36 -0.51
SVR 4.56 5.11 3.66 0.92 35.79 75.23 23.52 -1.33
RF 8.85 11.23 6.49 0.70 15.20 25.55 6.93 0.58

GTB 3.58 3.09 3.18 0.95 12.99 23.82 6.40 0.69

in the evaluation of the testing set. The predictor selection methodology is
then employed in the GTB model to address over-fitting and identify the most
significant predictors for further generalization testing.
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Figure 6.4: Comparison of measured and predicted path losses on the testing
set (Route #2) for the ML models in the V2I environment.

6.1.4
Predictor Selection

Following the methodology in Subsection 3.9.1, the resulting coalitions
of predictors for the GTB PL model are shown in Table 6.4. Upon examining
the predictor’s coalition formed, one observes that the performance predic-
tion on the training set improves steadily as new predictors are included. This
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improvement continues until reaching the final subset, which incorporates all
predictors. Also, from Figure 6.6, it is noted that the higher marginal contribu-
tion (∆RMSEp) occurs for the subset of seven predictors (f ,nb,σb,nv,σv,σg,d),
beyond this subset, the marginal contribution significantly reduces. There is a
risk of producing over-fitting by incorporating new predictors, as reported by
the MEC values, which increase for more than seven predictors, indicating a
more complex model. The increase of the IAS value to 0.43 for the subset of
seven predictors suggests that the model improvements depend on the inter-
action with the predictor d, also seen when including bdepth (0.45). The same
behavior is not as strong when including other predictors in the coalition. Fur-
thermore, from the ALE curves shown in Figure 6.5, it can be seen that the
coalition with seven predictors presents quite linear effects on the predicted
PL.

Table 6.4: Performance indicators for the GTB model for the V2I case using
different subsets measured on the training set. Model performance is measured
using RMSE, MAPE, σ and R2 and the interpretability is measured with IAS
and MEC.

Predictors
coalitions

R
M

SE
[d

B
]

M
A

PE
[%

]

σ
[d

B
]

R
2

IA
S

M
EC

f 10.87 16.29 6.97 0.55 - 1.00
f ,nb 9.24 11.69 6.62 0.68 0.14 1.23
f ,nb,σb 7.11 6.87 5.96 0.81 0.26 2.09
f ,nb,σb,nv 6.26 5.93 5.26 0.85 0.27 1.78
f ,nb,σb,nv,σv 5.89 5.42 5.07 0.87 0.27 1.79
f ,nb,σb,nv,σv,σg 5.54 4.83 4.85 0.88 0.26 1.74
f ,nb,σb,nv,σv,σg,d 4.45 3.77 4.00 0.92 0.43 1.87
f ,nb,σb,nv,σv,σg,d,bdepth 4.07 3.46 3.65 0.94 0.45 1.94
f ,nb,σb,nv,σv,σg,d,bdepth,gh 3.99 3.35 3.59 0.94 0.27 2.25
f ,nb,σb,nv,σv,σg,d,bdepth,gh,bh 4.03 3.41 3.62 0.94 0.26 2.60
f ,nb,σb,nv,σv,σg,d,bdepth,gh,bh,v 3.70 3.08 3.20 0.95 0.25 2.57
f ,nb,σb,nv,σv,σg,d,bdepth,gh,bh,vh,vdepth 3.58 3.09 3.18 0.95 0.25 2.77

Using the subset of predictors f , nb, σb, nv, σv, σg, and d, the GTB model
achieves an RMSE, MAPE, σ, and R2 on the testing set equal to 8.24 dB, 14.87
%, 4.45 dB and 0.88, respectively. The results indicate a significant reduction
in over-fitting by employing a smaller subset of predictors. In addition, the
PFI values of the selected subset of predictors are shown in Table 6.5. The
results show that the predictors f , d, and σv present the highest influence for
improving the predicted PL in the V2I environment. Meanwhile, the predictors
nb, σg, and σb have lower but similar importance values, which emphasize that
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Figure 6.5: ALE plots for the GTB model including the subset with one
predictor (f) until the selected subset (f , nb, σb, nv, σv, σg, d).

knowing the building and ground profiles also contribute to improving PL
prediction; at last, the lowest PFI value is observed for nv.

Table 6.5: PFI ranking in increasing order of the selected subset of predictors
shown.

Predictor PFI value (loss: RMSE [dB])

nv 0.13
σb 1.24
σg 1.86
nb 1.98
σv 3.47
d 7.34
f 14.32

6.1.5
Final Models Comparison

In this subsection, the performance of the GTB regressor is compared
with the log-distance model obtained from Equation (5-1). The 5-fold CV
technique is applied to find the optimal hyperparameters for the selected subset
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Figure 6.6: Marginal contributions in performance and interpretability for the
GTB-based PL model (for the predictors coalitions see Table 6.4).

of predictors. The number of trees in the grid search varies from 2 to 70, the
maximum depth varies from 2 to 12, with the squared error and absolute error
as loss functions. The minimum number of samples per leaf in this case varies
from 10 to 20, to address over-fitting as discussed in [79]. The lowest RMSE
value (5.66 dB) is obtained using 70 trees, maximum depth equal to 10 and
minimum samples leaf equal to 14, for a learning rate of 0.14 and the absolute
error loss function. The final model reaches an RMSE, MAPE, σ and R2 on the
training set of 4.46 dB, 3.80%, 4.00 dB, respectively, and 0.92, and an RMSE,
MAPE, σ and R2 on the testing set equal to 6.33 dB, 10.22%, 3.79 dB and
0.93, respectively.

To compare against the log-distance model, first, its coefficients Lo and
n are estimated, and the resulting values are shown in Table 6.6. Values of the
path loss exponent n lower than 2 indicate better propagation than free space
conditions as a result of constructive interference due to multi-path [19]. For
the V2I environment, this is expected due to the existence of building faces on
both sides of the street [14].

Table 6.6: Coefficient values for the log-distance model for each frequency,
estimated over the training set.

Coefficients 735 MHz 2.54 GHz 3.5 GHz

Lo 14.09 54.72 61.74
n 1.34 1.77 0.43

The performance indicators of the ML-based and log-distance PL models
for each frequency on the testing set are shown in Table 6.7. The results show
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a significant improvement in the GTB model over the log-distance model at
the three frequencies. The GTB model achieves the highest R2 value of 0.37
at 735 MHz, followed by an R2 value of 0.14 at 2.54 GHz. However, the GTB
model does not generalize well for the 3.5 GHz data, as shown in the R2 value
(-0.97). The log-distance, model also performs better for the subset sample at
735 MHz and smaller performance at higher frequencies.

Table 6.7: Performance evaluation for the testing set at the different frequencies
for the GTB and log-distance PL models.

Model Frequency RMSE [dB] MAPE [%] σ [dB] R2 R2
oos

Log-distance
735 MHz 9.88 28.57 4.50 -0.48 -0.17
2.54 GHz 15.91 20.63 3.67 -10.66 -0.17
3.5 GHz 14.26 15.63 4.80 -5.80 0.11

GTB
735 MHz 6.46 15.74 3.74 0.37 0.50
2.54 GHz 4.32 4.01 3.26 0.14 0.91
3.5 GHz 7.66 8.18 3.13 -0.97 0.74

In addition, Table 6.7 presents a marked difference between the R2 and
R2

oos values for the frequency at 2.54 GHz and 3.5 GHz, suggesting that the
distribution of the measured PL samples differ in terms of variance and mean
between the training and testing sets – as analyzed in Table 6.2, and further
visualized in Figure 6.2 and Figure 6.3. The comparison between the predicted
and measured path loss for each frequency are shown in Figure 6.7.
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Figure 6.7: Scatter plots between the predicted and measured data for each
frequency for the log-distance and GTB model.
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6.2
PL Prediction for V2V

6.2.1
Related Work

Traditional approaches for PL prediction in V2V links consider the log-
distance model based on measurement campaigns [10, 19]. In [10], an extensive
overview of channel characteristics for highway, urban, suburban, and rural
V2V communications is presented. Considering a suburban area of the city of
Valencia, Spain, the authors of [19] analyze the influence of Tx-Rx distance
in the prediction of the PL in V2V links at 5.9 GHz; authors report that the
path loss exponent in the log-distance model ranges from 1.83 to 3.27, and σ

from 2.57 dB to 4.55 dB.
Most recently, ML techniques have also been explored for channel mod-

eling in V2V scenarios [11, 18, 157]. For example, in [157] the power delay
profile (PDP) and PL are the predictors for estimating the angle-of-arrival
using an SVR model in V2V channels. In [11], the vehicular channel parame-
ters (PL, shadow fading, RMS-DS, and K-factor) extracted from measurement
campaigns in different scenarios are used to train an ANN to classify the ve-
hicular scenario.

In [18], the authors propose using ANN, RF, and CNN for PL and root
mean squared delay spread (RMS DS) prediction in a V2V urban environment.
Ray tracing technique was used to simulate data, in a total of 24,500 instances,
considering LOS and NLOS conditions. The three ML models employed
twelve predictors related to Tx and Rx positions: Tx-Rx distance, number
of intersected buildings, street widths at the Tx and Rx positions, link type
(LOS/NLOS), and the speed of vehicles. The best PL model was the RF model
with an RMSE equal to 0.63 dB in LOS and to 0.44 dB in NLOS condition.

A comparison of the performances of the RF and the log-distance models
for V2V PL prediction is presented in [70] using data from a measurement
campaign held in an urban environment. The measurements were collected
at the same location during day and night, and 10,000 samples are used for
training and 3,000 for testing. Four predictors were employed including the
transmitter and receiver positions, Tx-Rx distance, link type (LOS/NLOS),
and different subsets of these predictors were also used. The performance
evaluation used the mean absolute error and standard absolute error as
indicators. Concerning PL models based on deep learning techniques, some
studies propose CNN models primarily focusing on urban environments. These
models aim to learn patterns extracted from images such as the distance
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between transmitter and receiver and the density of buildings and vegetation
surrounding the pair of Tx and Rx [18, 52, 55, 111, 112]. In [52], some layers
provided by a geographic information system (GIS) enter the CNN model; they
include the land clutter classification, terrain, and building. In addition, data
from antenna height, azimuth, tilt, and antenna gain are also employed. To
generate the dataset, ray-tracing techniques and measurement campaigns were
combined, covering 40 cities worldwide, resulting in around 800,000 simulated
samples and 400,000 field measurements.

The work in [55] used a CNN for PL modeling for the frequency of
900 MHz. The dataset contained more than 35,000 instances from 146 urban
environments, which were generated using ray-tracing techniques. Building
height was used to construct the input image. For each PL instance, a square
patch image was assigned, taking into account the region bounded from the
transmitter and the receiver between Tx and Rx. Various sizes of input images
were tested, ranging from 16x16 to 256x256 pixels. The dataset was randomly
split into 80%/20% for training/testing.

In [112], the authors propose using satellite images extracted from the
Mapbox API for PL prediction at 811 MHz and 2630 MHz frequencies. Ray-
tracing simulations with urban and suburban characteristics were conducted
at the Technical University of Denmark. Each PL sample was associated with
a square patch image centered in the receiver position. The simulated data
consisted of 60,000 data points from which some Routes on the campus were
used for training and the remaining for testing. In addition, data augmentation
was used to increase the number of images during training. The work in [120]
proposes a CNN model for operation at the UHF frequency band. The authors
proposed concatenating four satellite images tiled to extract four different
positions along the Tx-Rx path.

The previously cited works dealing with CNN models for PL prediction
are trained from scratch. They are based on large datasets generated via
ray-tracing simulations; the need for large datasets derives from the many
parameters that need to be learned when training these models. However, one
of the significant challenges in developing a CNN model for radio-propagation
prediction is the usually small cardinality of the datasets available.

To tackle this challenge, our study employs a strategy known as transfer
learning [106]. This approach entails using a pre-trained model on a large
dataset considering a given task and applying it to a new task as explained in
Subsubsection 2.3.5. In the context of radio propagation, the work in [114]
proposed the use of a pre-trained model for path loss exponent (n) and
shadowing factor classification at 900 MHz for an urban scenario. However, to
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the best of our knowledge, no works address the use of CNNs for PL prediction
using pre-trained models. We employ transfer learning to develop a PL model
for V2V using real-world V2V measurements. The proposed methodology
for image extraction is explained in Subsubsection 6.2.4. Subsequently, the
performance of the proposed CNN-based PL model is compared with the ANN,
SVR, GTB, and log-distance models.

6.2.2
The Measurement Campaign: Dataset Description

The measurement campaign used for this study was carried out in
neighbor of Jardim Oceânico, Barra da Tijuca, Rio de Janeiro, in November
2017, conducted by colleagues of the radio propagation laboratory of CETUC.
The vehicles move on a Route of high traffic density and are surrounded by
buildings, trees, vegetation, and other obstructing objects. The Tx and Rx
vehicles moved in the same directions with approximation and estrangement
conditions, thus mostly in line-of-sight (LOS). The LOS condition considers a
scenario without an obstacle vehicle between Tx and Rx.

Figure 6.8: Positions of the collected samples in the V2V measurement cam-
paign.

A signal generator from Anritsu model MG3700A was used to transmit
orthogonal frequency division multiplexing (OFDM) symbols with a Zadoff-
Chu (ZC) sequence at 10 dBm. The receiver is a signal analyzer from Anritsu,
model MS2692A. Ten dBi gain omnidirectional antennas were used in the
transmitter and the receiver with heights of 1.7 meters from the ground. The
number of received multi-paths and their amplitudes were characterized using
tools developed in MATLAB for the data post-processing [158]. Finally, the
PL in dB is obtained from the measured received power (PRX) and system
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parameters using Equation (3-1). The campaign provides a collection of 1,374
PL instances. Each instance has five numerical attributes associated with
it: the Tx-Rx distance (d) in meters and its decomposition into horizontal
(dx) and vertical (dy) components, the relative speed between the vehicles
(v) in meters/second and its decomposition into horizontal (vx) and vertical
(vy) components. The predictor d varies from 3.31 to 176.54 meters, and the
predictor v varies from 0 to 10.79 meters/second. The scatter plot between the
Tx-Rx distance and path loss is shown in Figure 6.9.
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Figure 6.9: Scatter plot between path loss and distance for the V2V scenario.

6.2.3
Proposed CNN-based PL model

To address the limitation of the small dataset when designing a CNN
model for PL prediction, we propose using a pre-trained CNN model as
an automatic predictor extractor to capture the environment characteristics
between the transmitter and receiver positions. In the literature review, we
initially identified the pre-trained residual network (ResNet) capability to
perform land use classification using satellite images [106, 115, 159]. The
ResNet architecture has multiple variations, including ResNet16, ResNet18,
ResNet50, ResNet110, and ResNet164 [115]. The number in the architecture
name indicates the number of layers that are employed.

Land use datasets often contain images with various elements such as
objects, buildings, and vegetation [115]. Meanwhile, the work in [115] uses
two pre-trained CNN architectures, ResNet and dense convolutional network
(DenseNet), to solve the land use classification considering two datasets: the
FMOW (470,086 images and 63 classes) and the NWPU-RESISC45 (31,500
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images JPG and 45 classes with a resolution of 256 x 256 pixels). In [159],
the EuroSAT dataset was used in the ResNet50 and GoogLeNet for land use
classification. The dataset consists of 27,000 satellite images from European
cities from 34 countries, obtained from the satellite mission Sentinel-2 (the
images present a resolution of 20 meters). The results in [159] show that
even though the pre-trained network was trained on images from a totally
different domain (ImageNet dataset), the pre-trained model generalized well.
Given the good results of adapting pre-trained models for tasks like land use
classification, and since satellite imagery has demonstrated its efficacy as input
for PL prediction as in [112, 120], we propose using the pre-trained ResNet18
for designing a PL model.

Figure 6.10 shows the architecture of the ResNet18. There are 18 layers in
this network (17 convolutional layers and a fully connected layer, additionally
a Soft-max layer performs the classification task). The model uses a residual
learning method for training, since deeper layers can results in a degradation
of the output [113]. Thus, the architecture employs shortcut connections in
a residual block framework that facilitates the optimization of the overall
network [113]. Lastly, the layers are stacked to learn a residual mapping
(function) to solve the issue of accuracy degradation in deeper networks [113].
The ResNet18 has been originally trained on the ImageNet dataset containing
14 million images and 1,000 classes.

Figure 6.10: The ResNet18 architecture using 18 layers based on a residual
learning framework [113].

6.2.3.1
The ResNet18

The main hyperparameters defining the CNN consist of the kernel size,
the number of kernels, and the activation functions. In the pooling layer, the
important hyperparameters are the pooling method, and the filter size; and,
in the fully connected layer, they are the number of hidden layers and num-
ber of neurons in each layer, and activation function. Other hyperparameters
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are the optimizer, the learning rate, the loss function, batch size, and regu-
larization [117, 118]. The evaluation of the pre-trained CNN model to solve
the land use classification is presented in Appendix C. As seen in the results,
the predictor extractor of the pre-trained ResNet18 can extract patterns from
the satellite images. We adapt the pre-trained ResNet18 model for PL pre-
diction in the V2V environment. The feature extractor is performed by the
convolutional layers while prediction is done by the regression layers.

6.2.4
Proposed Methodology for Image Extraction

To enable detailed observation of buildings, vegetation, and other struc-
tures that significantly impact the magnitude and variability of the receiver
power (e.g., large-scale fading) high-resolution images are necessary [112].
Thus, in our image extraction process, we use satellite images from Google
Earth (GE) and obtain their georeferencing using the QGIS software. The
methodology for clipping each patch image is visualized in Figure 6.11. The
main image (see Figure 6.11.(a)) was extracted from GE using a zoom with
an altitude eye of 1.61 Km. That zoom allowed to georeference the image with
0.48 meters per pixel using the QGIS Georeferencer tool [160]. In that tool,
different ground control points are used to find common points between the ex-
tracted image and a defined GIS layer (GE map) to assist in the georeferencing
process using a re-sampling method for extrapolation.

To extract the patch image having the transmitter and receiver positions
and given the shorter Tx-Rx distance in this V2V environment, at most 175 m
– as can be seen in Figure 6.9, we calculate the average latitude and longitude
coordinates between the Tx and Rx. The height and width of the cropped
image are determined based on the Tx-Rx distance as shown in Figure 6.11.(c),
this allows capturing the propagation environment, i.e., the path between
transmitter and receiver sites. The patch image is then automatically cropped
from the extracted satellite image (see Figure 6.11.(a)) using the Python
libraries Pyproj and GDAL [161]. Finally, each image is resized to a square
of 224×224 pixels that feeds the ResNet18 model. Some samples of clipped
patch images for our V2V dataset are shown in Figure 6.12.

Figure 6.13 shows the proposed CNN-based PL model and methodologies
used for the experiments, which comprises the pre-trained ResNet18 as the
predictors (features) extractor and a fully connected layer that receives an
input vector of dimensions 512×1. The architecture employs a single hidden
layer with 256 neurons before the output neuron computing the PL for V2V. To
train and test the proposed architecture, we employ a training set containing
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Figure 6.11: Obtaining the images containing the Tx and Rx sites and the
link between them: (a) georeferenced image, (b) example to extract the Tx-Rx
patch image, and (c) average latitude and longitude coordinates between the
Tx and Rx. The yellow dashed line identifies the final square cropped from the
image.

Figure 6.12: Some examples of clipped patch images considering different Tx-
Rx distances. As seen in the images, the proposed clipping technique captures
the effect of the distance between the transmitter and receiver on the clipped
patch. The Tx-Rx distance samples range from 12.03 to 103.50 m.
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1,000 samples and the remaining instances (374) for the testing set from the
measurement campaign described in Subsection 6.2.2. The sites of the vehicles
in the two subsets are displayed in Figure 6.14.

Figure 6.13: Experiments for PL prediction using the ResNet18. Two training
approaches are tested: the firts where the model is trained from scratch
(experiment #1), and the second where only the regression layers are trained
(experiment #2).

Figure 6.14: The points in blue are used for training and the samples in red
are used for testing.
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The experiments were carried out in Python with the Pytorch framework
on a workstation with an Intel Core i7 8th Gen processor, 64 GB of RAM,
and the GPU GeForce RTX 2060. For the hyperparameters setting, the 5-fold
CV technique is applied on the training set, varying the hyperparameters as
shown in Table 6.8. The best performance is provided by the learning rate
equal to 0.001, with a drop-out coefficient of 0.2, batch size of 15, Adam
optimizer, ReLU activation function, mean squared error loss function, with
early-stopping. The measured PL is normalized using the MinMaxScaler to
scale the output in the range of 0 to 1.

Table 6.8: Hyperparameters range for the proposed CNN for path loss model-
ing.

Category Value

Learning rate 0.001 - 0.005
Dropout rate 0.1 - 0.5

Batch size 10 - 30
Optimizer Adam/AdamW/SGD

Activation function ReLU/Tanh

We also train the model from scratch to assess if there is a gain in
using a pre-trained CNN model and how large it is. Figure 6.15 compares
the RMSE of the predicted PL using the pre-trained ResNet18 and training it
from scratch. The training curves demonstrate that using the pre-trained CNN
model presents consistently better performance than training the model from
scratch. Besides, when using the pre-trained CNN, one reaches more rapidly
the lower and stable region of the RMSE curve.
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Figure 6.15: RMSE curves for the PL during training when using the pre-
trained ResNet18 model and training the ResNet18 from scratch.
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6.2.5
Final Model Comparison

In this subsection, we compare the ML models for V2V PL prediction.
The ML models trained using tabular data – including ANN, SVR, RF, and
GTB, consider two predictor coalitions. The first subset includes the predictors
d and v, while the second subset uses its components dx, dy, vx, and vy. The
5-fold CV technique is employed to find the optimal hyperparameters for each
ML model. The ranges of the hyperparameters in the four ML models are those
described in Subsection 6.1.3.

The ANN using the subset of two predictors attains the lowest CV RMSE
(4.93 dB) using 11 neurons, a learning rate equal to 0.1, a weight decay of 0.001
with the ReLU activation function. When using four predictors, the optimal
hyperparameters (providing RMSE equal to 4.79 dB) are 16 neurons, with a
learning rate equal to 0.1, and a weight decay of 0.1 with the ReLU activation
function. Using two predictors, the SVR reaches the lowest CV RMSE (5.45
dB) for C equal to 75, ϵ to 0.0001 and σRBF to 0.02; and, using four predictors,
C is equal to 65, ϵ to 0.0001 and σRBF to 0.02 leading to (5.37 dB).

The two-predictors RF presents the lowest CV RMSE (4.85 dB) using 14
trees, with a maximum depth of 3, minimum samples of 10, and the squared
error loss function; meanwhile, when four predictors are employed, the best
performance (4.74 dB) is obtained using 12 trees, the maximum depth of 4,
minimum samples of 10 and the squared error loss function. When the GTB
uses two predictors, the lowest CV RMSE (4.88 dB) is obtained using 14 trees,
with a maximum depth of 3, a minimum number of samples equal to 10, and
the absolute error loss function; and, using four predictors, the lowest CV
RMSE (4.73 dB) is reached using 58 trees, with the maximum depth of 11, at
least 10 samples per node and the absolute error loss function. The ML-based
and log-distance model performances are compared in Table 6.9 together with
the CNN-based PL models.

The log-distance model achieves an RMSE, MAPE, σ, and R2 on the
testing set equal to 9.74 dB, 12.80%, 5.75 dB, and -0.77, respectively. Table
6.9 shows that the ML models using tabular data are vulnerable to over-
fitting, mainly for the ANN and SVR (two predictors), which present the
highest difference between the RMSEs for the training and the testing sets. A
possible reason for this behavior is the small size of the training data hampering
learning the patterns from the dataset. When using four predictors, the over-
fitting increases for the ANN model, leading to the worst generalization
performance on the testing set. The performance prediction of the SVR on
the testing improves significantly when using the subset of four predictors.
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Table 6.9: PL performance evaluation and interpretability for the ML and log-
distance models. The estimated coefficients Lo and n for the log-distance model
for the V2V training set is 46.36 and 1.23, respectively.
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Log-distance 6.16 8.58 3.36 0.18 9.74 12.80 5.75 -0.77 - -

ANN (two predictors) 4.84 5.85 3.23 0.49 16.66 18.81 11.54 -4.17 0.21 2.43

ANN (four predictors) 4.35 5.24 2.92 0.59 19.12 21.08 13.77 -5.80 0.37 2.59

SVR (two predictors) 5.43 6.73 3.51 0.36 15.52 18.02 10.32 -3.48 0.11 2.00

SVR (four predictors) 5.27 10.52 3.58 0.40 8.50 10.50 5.17 -0.35 0.19 1.95

RF (two predictors) 4.73 5.62 3.24 0.51 7.59 9.55 4.57 -0.07 0.27 2.49

RF (four predictors) 4.43 5.18 3.07 0.57 7.53 9.50 4.47 -0.06 0.25 2.62

GTB (two predictors) 4.78 5.53 3.37 0.50 8.55 10.80 5.03 -0.36 0.33 2.90

GTB (four predictors) 3.28 2.90 2.75 0.77 7.78 9.89 4.60 -0.13 0.46 3.78

CNN trained from scratch 4.97 6.11 3.11 0.36 8.81 10.93 5.43 -0.44 - -

pre-trained CNN 3.94 5.15 2.36 0.60 6.97 9.18 3.85 0.10 - -

The performance in the RF on the training and testing sets slightly improves
using four predictors. The GTB model achieves a better performance using
four predictors. Finally, the best performance among the tabular ML models
is provided by the RF model with four predictors, which achieves an RMSE,
MAPE, σ and R2 of 7.53 dB, 9.50%, 4.47 dB, and -0.06, respectively.

In addition, the interpretability indicators in Table 6.9 can bring some
further conclusions. In the ANN model, when adding more predictors in the
subset, both IAS and MEC increase, with values of 0.37 and 2.59, respectively,
indicating a higher interaction between predictors. In the case of the SVR using
four predictors, the IAS increases to 0.19, with similar MEC values between
the two subsets. The IAS and MEC values on the RF models remains similar
for the two subset. The GTB report an increase in the IAS value when using
four predictors and a more significant increase of the MEC value for the GTB
(3.78).

Table 6.9 also brings the results for the pre-trained and trained from
scratch CNN models. As seen in Figure 6.15, the best performance prediction
during training occurs for the pre-trained model, performing the best gener-
alization results on the testing set. Therefore, the best performance among
the ML and empirical models is obtained with the pre-trained CNN with an
RMSE, MAPE, σ and R2 on the testing set equal to 6.97 dB, 9.18%, 3.85
dB, and 0.10, respectively. The comparison between the measured and pre-
dicted path loss values for the log-distance, RF and pre-trained CNN model
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are shown in Figure 6.16. For this vehicular environment, more measurement
samples could be collected to explore the improvement in the PL prediction in
this scenario.
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Figure 6.16: Comparison of the measured and predicted PL for the log-distance,
RF and pre-trained CNN model on the testing set.

There are some interpretability methods to explain deep learning models
that can be employed for the CNN models. Among them, one finds the gradient
explanation technique based on the gradient attribution method [67]. This tool
quantifies how much a change in each input would change the predictions in
a small neighborhood around the input; and the guided back-propagation for
visualizing the predictors learned by CNNs using a deconvolution technique.
Deconvolution networks are employed to provide insight into the function of
intermediate feature layers of an already trained CNN, mapping the feature
activity in intermediate layers back to the input feature space.

6.2.6
Discussion

This chapter started with models for path loss between Tx-Rx pairs for
a V2I channel using the profile along the direct path. The V2I results indicate
that the 735 MHz channel was easier to model since its models attained the
best performance indicators. This is most probably due to the closer statistical
distributions between the training and testing sets in the different Routes
considered. The receiver’s velocity, traffic street density data, and the width
of the street impact on the model accuracy still need to be further addressed
for the V2I scenario.

In continuation, the chapter studied PL models for the V2V environment.
A pre-trained model extracts the feature map from a satellite image. The
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results show a performance improvement when using the transfer learning
approach compared to training from scratch and better performance compared
to log-distance and ML models using the tabular dataset. For both scenarios,
we believe that using more extensive datasets may improve the performances of
the V2I and V2V models. The greater the dataset, the larger the chance for the
models to learn a broader range of patterns and variations of the propagation
environment, leading to improved generalization capacity.



7
Conclusions and Future Work

The design of empirical path loss models aims at specific frequency bands
and environments, given the particular propagation characteristics in each
channel. This thesis has employed the same approach for machine learning-
based path loss models. Starting with an extensive literature review, we
identified key aspects from the most relevant works on ML techniques and
methodologies for PL modeling. Those aspects include the machine learning
technique, operating frequency, data generation for training, and train-test
split methods for generalization testing. We considered them for designing,
comparing, and analyzing the PL models in this thesis.

Many previous studies propose using ML techniques (ANN, SVR, and
RF) with varying predictors, mainly for links operating at a single frequency
in the UHF band. While some are based on measurements, others employ
data simulated using the ray-tracing technique for training. However, in
the last case, the representative radio propagation characteristics for model
training depend on the accuracy of the solver generating the synthetic data.
Furthermore, most previous works use the conventional random training-
testing split, which may not be well-suited for predicting path loss for unknown
positions of the transmitter or receiver involved.

Concerning the ML techniques, we have proposed several models with
usually good performance for PL regression based on the tabular dataset pro-
duced by measurement campaigns carried out in Rio de Janeiro, Brazil, and
thus representing real environments. We considered PL models for mmWave
frequencies links in indoor and outdoor environments and multi-frequency
macrocell coverage in the sub-6 GHz. For each environment, and consider-
ing the characteristics of the measurement campaigns, we have tailored dif-
ferent generalization tests to emphasize and assess the applicability of each
trained model. Furthermore, we also dealt with the more dynamic propaga-
tion environment resulting from V2I and V2V wideband channels, considering
measurement campaign data. For the V2V channel, a deep learning-based PL
model has been proposed using a pre-trained model (ResNet18), i.e., based on
transfer learning to counteract the effects of using a small dataset.
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In Table 7.1, we summarize the results obtained for the different scenarios
in terms of propagation problem complexity, data size for training, generaliza-
tion improvement over the empirical path loss model (EPLM), and evaluation
of additional measurement data.

Table 7.1: Summary results for the different environments.

Scenario Propagation
problem

complexity

Data
size for
training

Generalization
improvement

over the EPLM

Additional
measurement

data
mmWave

indoor
High

·Multi-frequency
and multi-walls

scenario. ·All the
links presented

NLOS condition.

Medium
·Higher

than 700
PL

instances.

Major
·Performance gain
higher than 4 dB

in the average
RMSE (for the

generalization test
of unknown
transmitter).

The proposed
ML-based PL

model presented
a good

performance in
the tailored

generalization
tests.

mmWave
outdoor

Medium
·Multi-frequency
scenario ·Most of

the links presented
LOS condition.

Small
·Lower

than 250
PL

instances.

Low
· Performance gain
lower than 0.1 dB

in the average
RMSE (for the

generalization test
of unknown
receivers).

Additional
measurement

data from
different

scenarios still
need to be

addressed to
further evaluate

the proposed
ML-based PL

model.
Macrocell
coverage

High
·Multi-frequency
scenario. ·Larger
Tx-Rx distance.
·Dense buildings
and vegetation.

High
·Higher

than
12,000

PL
instances.

Major
·Performance gain
higher than 4 dB

in the average
RMSE (for the

three frequencies,
unknown streets).

To further
investigate the
generalization
capacity of the
ML-based PL

model, an
additional

dataset can be
employed.

V2I High
·Multi-frequency

scenario ·Low
transmission

antenna heigth.
·Most of the links
presented NLOS

condition.

Medium
·Higher

than 700
PL

instances.

Major
· Performance gain
higher than 6 dB

in the average
RMSE (for the

three frequencies,
unknown streets).

Using more
extensive

datasets may
improve the

performances of
the V2I and V2V

models.

V2V High
·Higher dynamic

channel. · Most of
the links presented
NLOS condition.

Medium
·Higher

than 700
PL

instances.

Medium
·Performance gain
lower than 3 dB in

RMSE for
unknown streets.
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The hyperparameters Θ of each proposed ML model have been carefully
chosen according to their performance, using cross-validation for reliable model
selection. We have employed performance indicators such as the RMSE,
MAPE, σ, and R2 to compare the ML techniques and the proposed empirical
models. We defined the propagation problem complexity of the addressed
scenarios such as low, medium and high in terms of multi-frequency prediction
and obstruction of the direct link. Regarding the data size used for training,
we classified the obtained volume of data such as small, medium or high. We
discuss the table results below, along with the conclusions drawn for each
scenario addressed.

In Chapter 3, the PL modeling for the mmWave indoor links has ad-
dressed a multi-frequency scenario ranging from 26.5 GHz to 40 GHz. Consid-
ering the multi-frequency and multi-wall conditions, along with the presence
of NLOS conditions in all the links, this propagation problem presented a high
level of complexity. Different transmitters and receiver positions were consid-
ered to fully coverage in the building floor obtaining a volume data of medium
size. Four ML models have been proposed: ANN, SVR, RF, and GTB; and
their performance were compared against adjusted empirical models. When
using the conventional random train-test split (80% for training and 20% for
testing), the proposed empirical model ABGnw achieved the best generaliza-
tion performance among the empirical models, with an RMSE of 9.11 dB, an
MAPE of 6.52%, an σ of 5.70 dB and R2 of 0.61. Although worse than the
ABGnw, the CIFnw achieved a performance with an RMSE of 10.13 dB, an
MAPE of 6.98%, an σ of 6.58 dB, and R2 of 0.52.

An extensive comparison has been conducted using the proposed method-
ology for coalition selection for all the ML models. Furthermore, since the
GTB-based PL model presents the best performance among the machines pre-
and post-hoc interpretation tools were applied and analyzed over its response.
The final optimized GTB model using the predictors f , d, and nw attained a
generalization performance with an RMSE of 4.29 dB, an MAPE of 3.03%, an
σ of 2.75 dB and R2 of 0.92; with a performance gain over the ABGnw of 4.82
dB in RMSE, 3.49% in MAPE, 2.95 dB in σ and 0.31 in R2. In the general-
ization test considering an unknown transmitter point to best fits a real-world
scenario, the GTB-based PL model achieved an average generalization perfor-
mance with an RMSE of 5.15 dB from evaluation from the five models when
using a set of transmitters for training and the test employed a different one.
Therefore, as presented in Table 7.1, we considered the improvements in gen-
eralization as major. For additional generalization tests, more data might be
desired.
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Chapter 4 also dealt with mmWave links, in a multi-frequency case
ranging from 27 GHz to 40 GHz, but outdoors. The measurement campaign
data encompassed one transmitter and different receiver positions around
the campus of PUC-Rio leading to a medium propagation complexity in
terms of most LOS conditions and shorter transmission distances. However,
the measurement campaign provided a small volume of data in comparison
with the indoor case. The influence of the height difference between the
transmitter and receiver and vegetation has been assessed for this environment.
When adding those predictors to the ABG and CIF models leading to the
ABG∆h, vdepth and CIF∆h, vdepth models, that show improved performance
over the original ones. When using the conventional random train-test split
(80% for training and 20% for testing), one observes a performance gain of
0.17 dB in RMSE, 0.24% in MAPE, and 0.03 in σ, and 0.05 in R2 for the
ABG∆h, vdepth and improvements of 0.37 dB in RMSE, 0.30% in MAPE, 0.17
dB in σ, and 0.11 in R2 for the CIF∆h, vdepth.

Among the ML models, the GTB with the predictors f , d, ∆h and
vdepth in the coalition achieves the best generalization performance with an
RMSE of 1.39 dB, an MAPE of 0.94%, an σ of 0.90 dB, and R2 of 0.90; with
a performance gain over the ABG∆h, vdepth of 1.13 dB in RMSE, 0.69% in
MAPE, 0.74 dB in σ, and 0.24 in R2 on the testing set. In the generalization
test considering unknown receiver points, the GTB-based PL model achieved
an average generalization performance with an RMSE of 2.05 dB from the
evaluation of the three models when using a set of receivers (seventeen) for
training and testing with four unknown points. However, since the empirical
models perform significantly well, the gain given by the ML models showed
minor improvements. Additional data for training and testing could be desired
to further investigation in this environment.

In Chapter 5, we have tackled the PL modeling for macrocell coverage
in the sub-6 GHz (750 MHz, 2.5 GHz, and 3.5 GHz). As described in Table
7.1, the propagation complexity level is considered high in this environment.
We have characterized the entire environment profile to extract the most
significant predictors in this scenario. The conducted campaigns considered
two fixed positions of the transmitters, and measurements were collected
from two routes. In comparison to the mmWave scenarios, this measurement
campaign provided a high volume of data. The GTB regression has shown the
best generalization capabilities among the ML models. Using the predictors
coalition containing bdepth, d, f , gh, ∆h, and vdepth, the final optimized model
using one route for training and the other for testing to assess generalization
performance on a similar street, achieved an average RMSE on the testing set



Chapter 7. Conclusions and Future Work 132

of 9.42 dB (considering the performance prediction in the three frequencies),
an average MAPE of 6.72%, an average σ of 5.66 dB, and an average of R2

0.72. Between the empirical models, the best results were obtained for the
Okumura-Hata, with an average RMSE on the testing set of 14.24 dB, an
average MAPE of 11.45%, an average σ of 7.87 dB, and an average of R2 0.38.
In terms of gain performance, the ML model presented a major improvement
in comparison with the empirical models.

Generally, among the machine learning models, those based on trees
such as RF and GTB presented superior performances for PL model design
using tabular datasets, and the GTB model has presented the best agreement
between the predicted and the testing PL values. Also, the interpretability
results showed that the GTB model relies most heavily on the main effects
of each predictor in the coalition, irrespective of the frequency band and
environment. Also, examining the overall interpretability complexity of the
final optimized GTB models in the mmWave and sub-6 GHz bands, we have
observed a lower complexity for the sub-6 GHz GTB-based PL model. The
reduced complexity in the sub-6 GHz band can be attributed to more linear
effects of the predictors on the response, given the operating frequency and
distance of the links.

Chapter 6 has addressed the vehicular to infrastructure (V2I) in the
sub-6 GHz frequency (735 MHz, 2.5 GHz, and 3.5 GHz). The data from
the measurement campaigns employed had two routes using a low-height
antenna transmitter for V2I communications representing a high level of
propagation complexity, with a volume of data of size medium. Among the ML
models, the GTB model presented the best generalization capacity for the V2I
scenario. Using the coalition composed of f , nb, σb, nv, σv, σg, and d, the final
optimized model (using one route for training and the other for testing to assess
generalization performance on a similar street) achieved the best performance
over the log-distance model with an average RMSE on the testing set of 6.14 dB
(considering the performance prediction in the three frequencies), an average
MAPE of 9.31%, and average σ of 3.38 dB. The log-distance achieved an
average RMSE of 13.35 dB, an average MAPE of 21.61%, and average σ of
4.32 dB. The GTB showed the best generalization performance for the 735 MHz
link, which presented the more similar PL distribution in both routes, for the
links operating at 2.54 GHz and 3.5 GHz, it presents the lowest generalization.
We noted a major improvement of the ML model in comparison with the
empirical model.

Finally, continuing vehicular scenario channels, Chapter 6 also considered
V2V links at 5.8 GHz. This scenario is characterized by a high level of
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propagation complexity in terms of a higher dynamic channel and most of the
links presented NLOS conditions. In this case, we proposed a deep learning
model using a pre-trained CNN (i.e., using transfer learning), instead of
training the CNN from scratch. The proposed approach leads to the best
predictive performance among the ML models in the unknown street scenario.
The pre-trained CNN model achieved a performance generalization with an
RMSE of 6.97 dB, MAPE of 9.18%, σ of 3.85 dB and R2 of 0.10. The
performance gain over the log-distance is 2.77 dB in RMSE, 3.62% in MAPE,
1.9 dB in σ and 0.67 in R2; and the performance gain over the RF model with
the predictors dx,dy,vx, and vy, which attained the best performance among
the tabular data-based models is 0.56 dB in RMSE, 0.32% in MAPE, 0.62 dB
in σ and 0.16 in R2. The results indicate that the proposed approach points
to potential gains of using CNN for V2V PL prediction, considering the small
dataset, with a medium performance improvement in comparison with the
empirical model. For the vehicular channels, using more data may improve the
performance of the ML models.

Summarizing, in this thesis we have proposed and evaluated ML models
and associated methodologies for predictor coalition selection and database
split for the different frequency bands and environments. Therefore, besides
the obtained models, our contributions also encompass the following aspects.

The most relevant predictors for each radio propagation problem were
selected using a predictor coalition methodology. This approach is adequate
for radio propagation channel modeling since the dimensional data associated
with the number of predictors and the output are usually small, which
allows for examining each predictor’s importance in improving the predictive
performance.

We have interpreted the mappings provided by the selected coalitions
(a significant subset of predictors) using global interpretability indicators
such as IAS and MEC to quantify the global linear and non-linear effects
of the predictors on the predicted path loss. Higher values of IAS and MEC
in the ML models suggest a more complex model and harder to interpret
due to the higher non-linear effects of predictors on path loss and higher
interactions between predictors. The response of those indicators has been
further examined using visual tools such as the ALE curves. Other tools
presented in this thesis include evaluating the interaction between pairs of
predictors and permuted feature importance values in the subset. The analysis
methodology has shown that the predictor coalition methodology consistently
has presented the ability to select the most relevant predictors to improve
path loss prediction without compromising the model’s predictive performance,
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reducing the model complexity and leading to an improved interpretation of
the model irrespective of the frequency and environment where it is applied.

Finally, we assessed the effects of using the conventional train-test ran-
dom split and a tailored train-test split, based on the particular characteristics
of the measurement campaigns, on model performance. As expected, models
using train-test random split presented the best PL prediction since the test-
ing set is contaminated by some samples collected very close to those used for
training the model. However, the tailored train-test division best assesses the
generalization capacity of the trained ML models for their practical applica-
tion when they are trained using similar but not the same scenario where the
model shall work. The proposed train-test split results have shown that the
presented ML models present good generalization capacity and can be useful
for path loss prediction for the different radio link categories addressed. The
ML models have demonstrated the ability to capture the patterns and relation-
ships between the predictors and path loss that challenge traditional empirical
models.

7.1
Future Work

For the continuation of the work on ML-based PL prediction models, we
can list problems related to each chapter of this thesis.

Upon examining the predictors obtained in each selected subset for each
environment investigated, specifically for the mmWave Outdoor, macrocell,
and V2I cases, similarities have been observed in the coalition members, such
as frequency, distance, height difference between the transmitter and receiver,
and predictors related to variability of the building height and vegetation
height along the links. Therefore, one can ask if it is possible to build a single
ML-based PL prediction model that allows the integration of heterogeneous
urban cells considering different frequencies and scenarios. Looking to answer
the above question, the selected subset obtained for the macrocell in the sub-
6 GHz scenario and V2I could be interchanged to investigate the resulting
prediction accuracy, leading to the use of a general subset of predictors that
maximizes in all the environments the prediction of the model.

To further investigate the generalization capacity of the GTB-based PL
model for macrocell coverage proposed in Chapter 5, the additional dataset
available from a wideband measurement campaign, illustrated in Figure 7.1,
can be employed. This measurement campaign was carried out in Rio de
Janeiro, Brazil, in November 2017 for the frequency bands of 700 MHz, 2.5
GHz, and 3.5 GHz [158].
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Figure 7.1: Wideband measurement campaign for macrocell coverage carried
out in Rio de Janeiro Brazil, in November 2017 [157].

To adapt the proposed CNN model to urban macrocell links prediction,
considering the longer Tx-Rx links involved in that scenario, image extraction
as depicted in Figure 7.2 can be explored. In this technique, the parameter w

can be varied to extract an image encompassing the propagation environment
along the direct path from transmitter to receiver. However, the large distance
between the transmitter and the receiver may lead to information loss when
resizing the image; thus, countermeasures should be taken.

Figure 7.2: Proposed technique to extract images for macrocell coverage.

For the wideband measurement campaign data, obtained from the vehic-
ular environments shown in Chapter 6, the prediction of the power profile delay
could also be investigated as a strategy to derive other channel parameters such
as the delay spread, as described in Subsection 2.1.3, which is critical for the
design of wideband radio channels due to the effect of multipath propagation.
Joint modeling of path loss and delay spread for wideband wireless systems can
also be investigated using the proposed ML techniques. Although, other ML
algorithms, such as recurrent neural networks (RNN) and Long Short Term
Memory (LSTM), could also be of interest to this problem.
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7.2
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The author has contributed the following published works:

– Y. Nunez, L. Lovisolo, L. da Silva Mello and C. Orihuela, "On the
Interpretability of Machine Learning Regression for Path Loss Prediction
of Millimeter-wave Links." Expert Systems with Applications 215 (2023):
119324.

– Y. Nunez, L. Lovisolo, L. da Silva Mello and C. Orihuela, "Path Loss
Prediction of Millimeter-wave using Machine Learning Techniques." 2022
IEEE Latin-American Conference on Communications (LATINCOM).
IEEE, 2022.

– Y. Nunez, L. da Silva Mello and C. Orihuela "Path Loss Prediction for
5G Millimeter Waves Propagation based in Artificial Neural Networks"
2020, Simpósio Brasileiro de Micro-ondas e Optoeletrônica (MOMAG),
2020.
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A
Hyperparameter Grid Search of the ML Models Design for
Indoor mmWave

Figure A.1 shows a comparison between the average CV RMSE for the
training and validation set regarding some hyperparameters values from the
grid search described in Chapter 3, Subsection 3.6.1 for the model selection
in the mmWave indoor environment. For the ANN model, Figure A.1.(a),
a comparison is performed among different activation functions, including
Logistic, Tanh and ReLU varying the number of neurons in the hidden layer.
The training and validation curves show that the lowest CV RMSE in the
validation set is for the activation function ReLU. For the SVR model, Figure
A.1.(b) shows the CV RMSE curves varying the hyperparameters ϵ, number of
support vectors, and C. For the RF model, Figure A.1.(c), the hyperparameters
varied are the number of trees and maximum depth (md). The curves show that
higher maximum depth lead to lower CV RMSE values. Lastly, the GTB model
is tested with different learning rates (lr); after 246 trees, the CV RMSE values
in the validation set are very similar for the evaluated learning rate values.

Figure A.2 presents the average CV RMSE at the grid points for the
four ML models in the indoor mmWave from Chapter 3, Subsection 3.6.1.
Each graph also highlights the grid point presenting the best performance as
described in Subsection 3.6.1.
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Figure A.1: Curve of training and validation set in the CV technique for the
models: (a) ANN, (b) SVR, (c) RF and (d) GTB.
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Figure A.2: Grid search of the hyperparameter optimization for the four
models: (a) ANN, (b) SVR, (c) RF, and (d) GTB. Each graph presents
the RMSE (color) according to the three different hyperparameters. The
highlighted box presents the lowest RMSE value in each graph, and the arrow
points to the correspondent hyperparameter point.



B
Interpretability Results for the ML Models in the mmWave
Indoor Environment

The following sections discuss the interpretability results for the models
ANN, SVR and RF in the different coalitions for the mmWave indoor environ-
ment.

B.1
Interpretability Results for the ANN-based Path Loss Model

We first look at the pre-training indices reported in Chapter 3, Table 3.7.
The highest JMI was observed for the subset dx, dy (0.31), followed by dx, dy, f

(0.24). However, adding the predictor nw, the JMI is slightly reduced to 0.23.
The CMI values among coalitions remain similar. The best one-predictor ANN-
based path loss model is provided by dx (RMSE: 9.18 dB, MAPE: 6.51%,
σ: 5.72 dB and R2: 0.59). Including dy as a predictor significantly improved
the model’s performance (RMSE: 6.90 dB, MAPE: 4.75%, σ: 4.52 dB, R2:
0.77). Adding f to the model input further improved performance (RMSE:
5.47 dB, MAPE: 3.40%, σ: 3.98 dB, R2: 0.85). Lastly, the lowest performance
improvements are for the predictors nw and d, respectively.

For the ANN model, the predictors of distance d,dx, and dy show the
most significant importance to improve path loss as presented in the PFI
values (see Table 3.8) for the coalitions when they are added. However, the PL
prediction mainly relies on the stronger interactions between them, specifically
for dx,dy, and dx,d as seen in Table B.1, and summarized in the IAS values
for the different subsets in Table 3.7. Other strong interactions between pairs
of predictors appear between distance and the number of walls, specifically in
dx,nw, and d,nw. Higher IAS and lower MEC values have been observed for
the ANN model compared to the machines based on decision trees. The lower
MEC values point to less non-linear effects of the predictors on the output,
more markedly in distance and frequency compared with the RF and GTB
models.

In addition, looking at the correlation that d and dx share in Figure 3.3,
the results suggest that d and dx provide the same information to the model,
where the model still perform well without dx. Thus, in the permutation process
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(as seen in Table 3.8), when calculating PFI, the model still has access to the
information through the remaining d or dx. As a result, the rank of predictor
importance for the subset of four and five predictors remains the same, and
their PFI values are similar.

Table B.1: Interaction strength between two predictors (2D-ALE) for the ANN-
based PL model, for each number of predictors used for machine design, the
first row presents the pair having the lowest interaction, and the pairs follow
in increasing interaction order.

Interaction between two predictors (2D-ALE)

Subset of predictors
2 3 4 5

dx,dy 1.540 dy,f 0.025 f ,nw 0.020 f ,nw 0.020
dx,f 0.190 dy,f 0.060 dy,f 0.027
dx,dy 10.38 dy,nw 0.080 dx,f 0.111

dx,f 0.090 dy,f 0.162
dx,nw 0.700 f ,d 0.184
dx,dy 3.930 dy,d 0.244

dx,nw 0.440
nw,d 0.522
dx,dy 0.735
dx,d 0.757

B.2
Interpretability Results for the SVR-based Path Loss Model

It was observed similar JMI values in the coalitions compared to the
ANN model. The hightest JMI is for the subset of three predictors nw,dy and
dx (0.34). In adittion, when adding dx to the coalition, the CMI value increase
to 0.20. In the SVR-based path loss model, the best-one predictor showed that
nw provided the best performance (RMSE: 9.70 dB, MAPE: 7.01%, σ: 6.08 dB,
R2: 0.54), similar to the ANN model. Adding dy resulted in a lower performance
improvement compared to the ANN model. Including dx improved the model’s
performance (RMSE: 6.34 dB, MAPE: 4.51%, σ: 33.91 dB, R2: 0.80). Adding
the last predictor d the improvement of the model’s is meager (RMSE: 4.90
dB, MAPE: 3.21%, σ: 3.32 dB, R2: 0.88).

In comparison with the ANN, RF and GTB, this machine presents the
hightest IAS values from the subset of two until five predictors, which suggest
that the PL prediction is highly dependent of the interaction between predic-
tors. The MEC values remains similar compared to the ANN model. Examining
the interaction between pair of predictors in Table B.2, the strongest interac-
tion are presented between dy and nw in all the coalitions. As seen in the ALE
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curves in Figure 3.4.(d), the individual effect of f on the path loss is similar
compared to the ANN model and the predictor d in the SVR has a opposite
effects in comparison with the ANN regressor. Among all the machines and
coalitions, the predictor d and dx show the highest accumulated local effects
on the path loss.

Table B.2: Interaction strength between two predictors (2D-ALE) for the SVR-
based PL model.

Interaction between two predictors (2D-ALE)

Subset of predictors
2 3 4 5

nw,dy 0.478 nw,dx 0.419 nw,f 0.041 nw,f 0.101
dy,dx 0.698 dy,f 0.114 dy,f 0.138
nw,dy 0.946 dx,f 0.149 nw,dx 0.189

nw,dx 0.337 dy,dx 0.258
dy,dx 0.809 nw,d 0.289
nw,dy 0.883 dx,f 0.298

nw,dy 0.324
d,f 0.571
d,dy 0.621

nw,dy 1.060

For the SVR regressor, we have observed that the model suffers a greater
impact on the magnitude of PFI, as seen in Table 3.8. The phenomena occur
because the PFI indicator relies on estimates of model errors and changes in
prediction; thus, its magnitude value can be affected by the hyperparameter of
regularization C. An example of that effect is shown in Figure B.1; when the
C value is larger, the error penalty is more affected when the model’s predictor
is permuted or changed.
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Figure B.1: Comparison between the value of the PFI and its response to vary
C.
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B.3
Interpretability Results for the RF-based Path loss Model

In the RF model, the order of the coalitions differed from ANN and
SVR. The JMI values are similar compared to the them, and the CMI values
remains similar compared to the GTB. For the RF-based path loss model, the
best one-predictor is attained by d (RMSE: 7.10 dB, MAPE: 4.88%, σ: 4.65
dB, R2: 0.75). Adding nw improved the model’s performance (RMSE: 6.22
dB, MAPE: 4.45%, σ: 3.78 dB, R2: 0.81), which shows better performance in
comparison when using two predictors for the ANN and SVR models. Lastly,
the lowest performance improvements correspond to the predictors dy and dx,
respectively.

Examining the global interaction between predictors summarized by the
IAS values in the coalitions, higher values are obtained compared to the GTB,
even considering the same coalitions in the subsets as seen in Table 3.7.
Therefore, the performance prediction relies more on the interaction between
predictors than their main effect. The strongest interaction occurs between nw

with dy,d and f . Furthermore, the most significant predictor, as seen in Table
3.8 is for nw, followed by dy and f , as also seen for the GTB model. In addition,
the MEC values are lower compared to the GTB model, but with similar
ALE curves for the predictors d, nw, and dy, as seen in Figure 3.4.(a)(b)(d),
respectively.

Table B.3: Interaction strength between two predictors (2D-ALE) for the RF-
based PL model.

Interaction between two predictors (2D-ALE)

Subset of predictors
2 3 4 5

d,nw 0.184 d,nw 0.013 d,dy 0.004 d,f 0.013
d,f 0.115 d,f 0.013 d,dx 0.004

nw,f 0.161 d,nw 0.054 nw,f 0.014
f ,dy 0.072 f ,dx 0.021
nw,f 0.129 dx, dy 0.021
nw,dy 0.390 f ,dy 0.044

nw,dx 0.053
d,f 0.054

d,nw 0.055
nw,dy 0.339



C
Evaluation of the Pre-trained CNN model

To assess the possibility of using the pre-trained ResNet18 model, we
conducted experiments on land use classification tasks. We employed two
distinct datasets, EuroSAT and NWPU-RESISC45. Figure C.1 shows some
representative examples belonging to these datasets. The parameters of the
first layers of the ResNet18 (which are said to extract the predictors or features)
are not trained; only the (last) fully connected layer (classifier) is trained to
classify images among 45 classes.

The classifier incorporates three hidden layers with 4096 neurons, as
shown in Figure C.2. During training the learning rate is set to 0.0001, the
batch size to 64, the activation function is the ReLU, the optimizer is the Adam
loss and early-stopping. The fully connected layer for land classification was
trained using a random split to 80%/20% for training/testing. The experiments
were carried out in Python with the Pytorch framework on a workstation with
an Intel Core i7 8th Gen processor, 64 GB of RAM, and the GPU GeForce
RTX 2060. The classification performance is shown in Figure C.3.

The results show that using the EuroSAT dataset, the model achieves an
accuracy of 91.12% and 90.89% on the training and testing sets, respectively.
Moreover, for the NWPU-RESISC45, the model achieves an accuracy of
81.38% and 80.16% on the training and testing sets, respectively. As seen
in the above results, the predictor extractor of the pre-trained ResNet18 can
extract patterns from the satellite images.
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Figure C.1: A snapshot of some images from the dataset (1) EuroSAT [158]
and (2) NWPU-RESISC45 [115] .
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Figure C.2: Pre-trained CNN model for land use classification.
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Figure C.3: Accuracy of the land use classifier using the pre-trained ResNet18
using EuroSAT (left) and NWPU-RESISC45 (right).
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