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Abstract

Santos, Ingrid Pires Macedo Oliveira dos; Hultmann Ayala, Helon
Vicente (Advisor); Weber, Hans Ingo (Co-Advisor). Analysis and
Modeling of Torsional Vibrations and Stick-Slip Phenome-
non in Slender Structure Systems: Experimental Investi-
gations and Nonlinear Identification. Rio de Janeiro, 2023.
82p. Tese de Doutorado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

During drilling for oil extraction purposes, the drill string experiences
complex dynamic behavior, and this work delves into the experimental study
and the mathematical modeling of such behavior. Self-excited vibrations, such
as axial, lateral, and torsional vibrations, which can lead to detrimental effects
such as bit bouncing, whirling, and torsional stick-slip are highlighted in this
thesis.

Distinct aspects of drilling dynamics are considered in this investigation
to enhance the understanding of various phenomena. Initially, an experimental
analysis of a lab-scale rig is conducted, providing valuable insights into the
dynamics of such systems. And the influence of control parameters on the
system’s response is examined, particularly in identifying the conditions under
which the stick-slip phenomenon is likely to occur.

Secondly, the thesis proposes system identification strategies for nonli-
near systems, specifically focusing on the same laboratory test rig. An inno-
vative ensemble approach is proposed, which combines gray and black-box
modeling techniques to effectively calibrate the parameters of a dynamical
system, particularly those associated with friction. This approach improves
prediction accuracy compared to traditional gray-box methods while main-
taining interpretability in the dynamic responses. Furthermore, the research
employs physics-informed deep learning to estimate the low-dimensional model
mechanical and friction parameters. Calibration using experimental data ob-
tained from a specialized setup provides insights into the drill-string system’s
behavior.

Finally, the thesis involves experimental investigations on the coupling
between torsional and axial oscillations using a modified and adapted lab-scale
drilling rig equipped with real drill bits and rock samples.

In summary, this thesis advances our understanding of drill-string dyna-
mics and presents helpful applications for system identification techniques.
Keywords

Torsional vibrations; Stick-slip phenomenon; Experimental tests; Non-
linear dynamics; Bit bouncing.



Resumo

Santos, Ingrid Pires Macedo Oliveira dos; Hultmann Ayala, Helon
Vicente; Weber, Hans Ingo. Análise e Modelagem de Vibração
Torcional e Stick-Slip em Sistemas de Estruturas Esbeltas:
Investigações Experimentais e Identificação Não Linear.
Rio de Janeiro, 2023. 82p. Tese de Doutorado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

Durante a perfuração de poços de petróleo, a coluna de perfuração apre-
senta um comportamento dinâmico complexo, esta tese foca no estudo expe-
rimental e na modelagem matemática deste comportamento. Neste trabalho,
destaca-se as vibrações autoexcitadas axiais, laterais e torcionais, que podem
levar a efeitos como o bit bouncing, o whirling e stick-slip torcional.

A primeira contribuição desta tese é a análise experimental de um
bancada de testes, que fornece informações sobre a dinâmica de sistemas
torcionais. A influência dos parâmetros de controle não lineares na resposta
do sistema é investigada, identificando as condições sob as quais o fenômeno
stick-slip ocorre.

Em segundo lugar, a tese propõe estratégias de identificação de sistemas
para sistemas não lineares, utilizando a mesma bancada de testes supracitada.
Uma abordagem híbrida para a identificação é proposta, onde técnicas de mo-
delagem de caixa cinza e caixa preta são combinadas para calibrar os parâme-
tros do sistema, particularmente aqueles associados ao atrito. Essa abordagem
aumenta a precisão das estimativas em comparação com os métodos tradi-
cionais de caixa cinza, mantendo a interpretabilidade. Além disso, a pesquisa
emprega physics-informed deep learning para estimar os parâmetros mecânicos
e de atrito do modelo de dois graus de liberdade. A calibração usando dados
experimentais obtidos de uma bancada de testes fornece informações sobre o
comportamento de sistemas de perfuração.

Finalmente, a tese apresenta investigações experimentais sobre o acopla-
mento entre oscilações torcionais e axiais utilizando uma bancada experimental
de perfuração em escala de laboratório modificada e adaptada equipada com
brocas e amostras de rocha reais.

Em resumo, esta tese aumenta a compreensão da dinâmica de colunas
de perfuração e apresenta aplicações úteis para técnicas de identificação de
sistemas na análise de oscilações torcionais e axiais.
Palavras-chave

Vibrações torsionais; Fenômeno stick-slip; Testes experimentais; Dinâ-
mica não linear; Bit bouncing.
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in your light do we see light.
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1
Introduction

The global demand for oil and gas has been on the rise in recent years
[1]. After experiencing a historic decline due to the Covid-19 pandemic, as
evidenced by the negative growth depicted in the 2020 data on the graph
shown in Fig. 1.1, the industry has rebounded, and forecasts indicate further
growth in the coming years. It is projected that global liquid fuel consumption
will increase by 1.6 million barrels per day (b/d) in 2023, following an average
of 99.4 million b/d in the previous year. Additionally, consumption is expected
to rise by another 1.7 million b/d in 2024, with much of this growth driven by
non-OECD countries [2].

Figure 1.1: Global oil demand growth, 2011-2025 (light blue: historical, dark
blue: forecast, and green: trend)[1].
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While immediate demand continues to rise, the long-term outlook is
uncertain due to factors such as the emergence of alternative fuels and changes
in driver and commuter behavior. In this context, the cost of production plays
a crucial role. Drilling, in particular, poses significant challenges and expenses
in the oil and gas exploration industry. It accounts for approximately 40% of all
production costs [3]. As a result, optimizing drilling operations and reducing
costs remain key priorities for the industry.

Drilling systems play a crucial role in extracting various resources from
the Earth’s surface, including water, oil, natural gas, mineral resources, and
geothermal energy. This thesis specifically focuses on drilling systems used
in oil-field operations. In the past, the drilling process involved raising and
dropping a cable tool to percussively drill wells. However, in the 20th century,
rotary drilling systems emerged as the predominant method. These systems
enabled drilling boreholes to greater depths and with increased efficiency
compared to cable tools. While oil also holds significance in the petrochemical
industry, its primary role lies as a vital energy source [4].

Drilling wells for oil and gas exploration involves the use of a drill string,
which is a set of equipment that undergoes complex dynamic behavior during
operation. This thesis delves into the analysis of vibrations in drilling systems,
specifically focusing on the experimental exploration of nonlinear dynamics
within the drilling process and the development of mathematical models to
understand these vibrations. The experimental arrangements employed in this
research effectively replicate certain nonlinear dynamics observed in actual
drilling rigs, motivating their usage. While this chapter provides an overview of
the entire thesis, the subsequent chapters offer more comprehensive literature
surveys relevant to each specific topic.

1.1
Drilling dynamics

Drilling systems are essential for extracting oil and natural gas from the
ground. Figure 1.2 provides a schematic representation of a drilling system,
which can be divided into two main sections: the top drive and the drill string.
The focus of this thesis is on the drill string, which connects the motor to the
drill bit and is responsible for transmitting rotation and the necessary Weight
On Bit (WOB) during drilling operations [5].

During the drilling process, self-excited vibrations can occur, including
axial, lateral, and torsional vibrations. These vibrations can lead to detrimental
effects such as bit bouncing, whirling, and torsional stick-slip, which can cause
premature failures of drilling components. This work specifically focuses on
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Figure 1.2: Typical drilling rig schematics with the most important components
(adapted from [6]).

torsional vibrations and the stick-slip phenomenon.
The drill string is a long and slender structure, resulting in torsional

vibration being a common occurrence. Torsional vibration involves the twisting
and untwisting of the drill string due to nonlinear interactions with the rock
formation. Stick-slip is a critical stage of torsional vibration, characterized by
alternating stick and slip phases. During the stick phase, the drill bit halts
while the top continues to rotate, storing elastic torsional energy. When the
accumulated torque exceeds the friction torque, the slip phase occurs, leading
to a sudden release of the drill bit and an acceleration to angular velocities
significantly higher than the desired speed.

In addition to torsional vibrations, axial and lateral vibrations can
also occur, leading to phenomena known as bit-bounce and whirling motion,
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respectively. These coupled phenomena increase the complexity of the system
dynamics. Excessive drill string vibrations can result in reduced drilling
efficiency and premature equipment damage.

Axial vibrations are particularly noticeable as they originate from the
bottom of the well and propagate along the drill string to the surface. Bit-
bounce occurs when the drill bit loses and regains contact with the rock
surface, often caused by irregularities or axial resonances induced by the mud
pump. While large axial vibrations can be detrimental to the process and
equipment, controlled axial vibrations can have a positive effect under certain
circumstances [7].

Although drilling and extraction techniques have improved, there is still
room for enhancing the drilling process. This motivates more detailed studies
on the dynamics of drilling systems, as oil companies seek to optimize drilling
operations.

1.2
Objectives and contributions

The previous section provides a brief overview that highlights the signif-
icance of addressing oscillations in drilling systems. Based on this motivation,
this thesis aims to investigate torsional and axial oscillations through the uti-
lization of two laboratory-scale experimental test rigs. The primary goal is to
develop a mathematical model for these nonlinear systems. In summary, the
main objective of this thesis can be stated as follows:

1. Experimental analysis of lab-scale drill-string systems, providing insights
into their behavior;

2. Development of mathematical models for torsional vibrations in slender
systems, enhancing our understanding of their dynamics;

3. Implementation of system identification strategies for nonlinear systems,
improving parameter estimation;

4. Experimental validation of the proposed identification methods, demon-
strating their effectiveness.

This thesis makes significant contributions in several areas, including
modeling torsional and coupled vibrations in drill-string systems, conducting
comprehensive experimental tests under various conditions using a dedicated
lab test rig for torsional oscillations, developing a novel configuration for a
lab-scale drill-string system, experimentally validating the proposed dynamical
models, and performing nonlinear analysis of the systems:
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– Developing a low-dimensional torsional model based on an experimental
setup to simulate the torsional behavior observed in real drilling sys-
tems. The dynamical model is then utilized to explore the influence of
nonlinear control parameters on the dynamics of the system, utilizing
both experimental and numerical data.

– Proposing an ensemble approach, which combines gray and black-box
modeling techniques, to calibrate the parameters of a dynamical sys-
tem, specifically those related to friction. The objective is to enhance
the prediction accuracy compared to a pure gray-box approach while
maintaining interpretability in the dynamic responses. To evaluate the
effectiveness of the proposed method, four widely used friction models of
varying complexity are employed. The analysis highlights that the ensem-
ble of gray and black-box identification techniques yields superior results
for friction modeling and simulation, offering an improved data-driven
approach for constructing mathematical models of complex torsional dy-
namics in slender structures.

– Inferring the mechanical and friction parameters of a low-dimensional
model using a neural network. The mathematical model is calibrated
using experimental data obtained from a setup consisting of a DC motor
and two rotating inertias connected by a slender shaft, where friction
is introduced through braking on one of the inertias. The estimated
parameters obtained from the neural network are then compared with
the parameters identified through experimental measurements.

– Investigating the three types of vibrations observed during drilling,
namely torsional and axial vibrations, using a specially developed lab-
scale drilling rig. The primary focus of this investigation is to examine
the coupling mechanism of these vibrations. A key contribution of this
study is the detailed experimental analysis conducted using a vertical
rig that incorporates real drill bits and rock samples. By utilizing this
rig, the coupling mechanism of torsional and axial vibrations can be
thoroughly examined, providing valuable insights into the dynamics of
drilling operations.

These contributions collectively enhance our understanding of drill-string
dynamics and provide valuable insights into the field.

Throughout the duration of the doctoral research, various articles were
published in both journals and conferences, including:

– Ingrid Pires, Helon V. H. Ayala, and Hans I. Weber.”Nonlinear ensemble
gray and black-box system identification of friction induced vibrations in
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slender rotating structures” Mechanical Systems and Signal Processing,
2023, 186, 109815.

– Ingrid Pires, Helon V. H. Ayala, and Hans I. Weber.”Data-driven Model
for Torsional Oscillations in Slender Structures” XIX DINAME. Pire-
nopolis, Brazil, 2023.

– Ingrid Pires, Helon V. H. Ayala, and Hans I. Weber.”Ensemble Models
for Identification of Nonlinear Systems with Stick-Slip” 10th European
Nonlinear Dynamics Conference. Lyon, France, 2022.

– Ingrid Pires, Helon V. H. Ayala, and Hans I. Weber.”Nonlinear Sys-
tem Identification of an Experimental Drill-String Setup” 16th Interna-
tional Conference, Dynamical Systems - Theory and Applications. Lodz,
Poland, 2021.

– Ingrid Pires, and Hans I. Weber.”Stick-Slip Phenomenon: Experimen-
tal and Numerical Studies” XV International Conference on Vibration
Engineering and Technology of Machinery. Curitiba, Brazil, 2019.

– Ingrid Pires, Bruno C. Cayres, and Hans I. Weber.”Nonlinear Dynamic
Analysis of Torsional Friction-Induced Vibrations on Slender Structures”
25th ABCM International Congress of Mechanical Engineering. Uberlân-
dia, Brazil, 2019.

– Ingrid Pires, Bruno C. Cayres, Djenane C. Pamplona, and Hans I. We-
ber.”Torsional Friction-Induced Vibrations in Slender Rotating Struc-
tures”XV IFToMM World Congress. Krakow, Poland, 2019.

1.3
Outline

Chapter 2 details the experimental test rig designed at the Dynamic and
Vibration Laboratory of Pontifícia Universidade Católica do Rio de Janeiro. It
introduces the key components of the test rig, encompassing sensors, and offers
an operational overview. Additionally, the chapter presents the mathematical
model utilized in the analysis for this dissertation, along with a compilation of
the mechanical and electrical parameter values associated with the test rig.

Chapters 3, 4, and 5 are structured as self-contained research papers,
allowing them to be read independently. Consequently, there may be some
overlap between these chapters due to their standalone nature.

In Chapter 3, the torsional behavior of the experimental system at PUC
Rio is examined, with a focus on investigating the influence of nonlinear control
parameters on the system’s response. Bifurcation diagrams are utilized, em-
ploying both experimental and numerical approaches, to analyze the system’s
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behavior. The chapter introduces the dynamical model that was developed in a
previous study [8], describes the experimental setup employed to simulate drill
string oscillations, presents the results of numerical and experimental studies,
and provides a comprehensive comparison between them.

Chapters 4 and 5 focus on the parameter estimation of a dynamical
model for an experimental drill string setup using time-domain data. The test
rig utilized in these chapters incorporates dry friction contact to emulate the
nonlinear drill-bit interaction observed in actual drilling processes and dry
friction models are employed in the mathematical model. In Chapter 3, a
gray-box approach is proposed, and it is combined with a black-box technique
in ensemble models. This combination aims to enhance prediction accuracy
while preserving interpretability, as interpretability is crucial in solving real-
world problems. Given the limitations of interpretability in some black-box
methods, the use of a combined approach was chosen. In Chapter 4, a deep
learning approach is introduced to estimate the same parameters discussed in
the previous chapter, and the estimated parameters are compared with those
determined experimentally.

Chapter 6 introduces the redesigned experimental drill-string system at
the University of Aberdeen. The modifications made to the system allow for
practical exploration of the coupling between axial and torsional oscillations, as
well as the examination of specific parameters’ influence on the phenomena of
interest. The key enhancement in the system involves incorporating a contact
region along the shaft, simulating the interactions between the drill string and
borehole walls. This modification enables a more comprehensive investigation
of the dynamic behavior and interactions within the drill string system.

Chapter 7 concludes the thesis by summarizing the findings and providing
recommendations for future research directions.



2
PUC-Rio experimental setup

2.1
Introduction

This chapter describes the experimental test rig developed at the Dy-
namic and Vibration Laboratory of Pontifícia Universidade Católica do Rio
de Janeiro. The design of the experimental system aimed at simulating the
dynamics of an oil-field drill-string system, specifically focusing on torsional
vibrations occurring at certain drilling depths. The creation and utilization
of this experimental drill-string system offer an enhanced comprehension of
the dynamic processes involved during drilling operations. The subsequent
sections introduce the primary components of the test rig, including sensors,
and provide an operational description. Furthermore, the mathematical model
adopted in this dissertation’s analysis is presented, followed by a listing of the
mechanical and electrical parameter values of the test rig. Furthermore, the
experimental findings from this system are leveraged in subsequent chapters
(Chapters 3, 4, and 5)

2.2
The experimental drill-string setup

Replicating the torsional dynamics via laboratory tests permits their
analysis in controllable conditions. The experimental setup employed in this
study was developed at the Dynamics and Vibrations Laboratory of Pontif-
ícia Universidade Católica do Rio de Janeiro. The test rig can replicate the
undesired torsional oscillations observed during drilling processes, such as the
stick-slip phenomenon, but it does not represent any particular system. The
slender structure, designed to isolate the torsional mode from the other vibra-
tion modes, provides a way to investigate the dynamical response associated
with the drilling process. Figure 2.1 presents a photograph, while Fig. 2.2 il-
lustrates the schematics of the experimental setup, providing an overview of
its main components.

The rig consists of a horizontal apparatus composed of a DC motor, a
planetary gearbox with a reduction ratio of 8:1 coupled to the DC motor,
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Figure 2.1: Experimental test rig.

two solid discs, and a low torsional stiffness shaft that transmits the rotation
from the DC motor to the discs. The discs are free to rotate, and bearings
constrain their lateral motion. A pin passing through the bearing support that
comes in contact with the disc is used as a braking device to induce friction
torque in the system. Due to this friction, the system experiences torsional
vibrations resulting in stick-slip. The brake device does not correspond to the
bit-rock interaction mechanism; its sole purpose is to introduce a resistive
torque within the system. This torque allows the replication of the torsional
oscillations commonly observed in drilling systems.

This study narrows its focus to the analysis of a specific system, encom-
passing the motor, intermediary disc, and the connecting shaft within the test
rig. This deliberate choice allows for a systematic and phased approach to an-
alyze the system. The shaft measures 1.7 meters in length with a diameter
of 3 millimeters. Additionally, the inertial disc, connected to the shaft using a
mandrel, possesses a thickness of 27 millimeters and a radius of 91 millimeters.

The motor and disc are equipped with LS Mecapion H40-8-1000VL
encoders. The encoders are of optical quadrature type and have a resolution of
1000 ticks per revolution. The angular velocities of the inertia are calculated
by numerical differentiation of the angular positions measured by the encoders.
SV50 R-5 load cells from Alpha Instrumentos measure the normal force on the
disc and the motor torque. We use a National Instruments cDAQ- 9174 as a
real-time data acquisition platform.
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Figure 2.2: Schematic diagram of the experimental rig.

2.3
Dynamical Model

The authors derived a three degrees-of-freedom dynamical model in [8].
The mathematical representation depicted in Fig. 2.3 simplifies the mechanical
subsystem as a torsional pendulum, which, despite its simplicity, effectively
captures the stick-slip phenomenon. The mechanical subsystem comprises disc
D2 and the shaft that links it to the DC motor. Disc D2 is characterized
by a moment of inertia denoted as J2. The torsional stiffness of the shaft is
indicated by k2, and the linear damping is represented by d2. Conversely, the
electric subsystem is depicted as a voltage source connected in series with a
resistor and an inductor. Thus, the governing differential equations for the
model presented in Fig. 2.3 are given by (2-1) [8].

In Fig. 2.3, τm represents the torque exerted on the shaft by the motor,

V

R L

i

+

e

-

τm, θ̇m

J3

θ̇3

J2
θ̇2

k2
d2

Figure 2.3: Diagram depicting the experimental arrangement featuring a DC
motor, intermediary disc, and shaft. [8].
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often referred to as motor torque. This torque is measured using a load cell.

J2θ̈2 + d2(θ̇2 − θ̇3) + k2(θ2 − θ3) = −Tf2,

d2(θ̇3 − θ̇2) + k2(θ3 − θ2) = η(KT i− Cmηθ̇3 − Tf − Jmηθ̈3),

L
di

dt
+Ri+KEηθ̇3 = V,

(2-1)

here θ2, θ̇2, and θ̈2 are angular displacement, angular velocity and angular
acceleration of D2, respectively, and Tf2 is the resistive friction torque on disc
D2. In (2-1), i denotes the DC-motor electric current, and L and R are the
armature inductance and resistance, respectively. The angular velocity θ̇m is
the velocity of the DC-motor inertia, Jm. Cm is the speed regulation; KT ,
the constant motor torque; KE, the voltage constant; and Tf , the internal
friction torque. The transmission factor, η , is 8 : 1. The input voltage is
V = κp(ωref− θ̇3)+κi

∫ t
0(ωref− θ̇3)dt,where κp and κi are proportional constant

and integral constant, respectively, and ωref is the reference velocity of the
system.

(2-1) constitutes a set of three coupled differential equations, along with
the nonlinearity associated with the friction torque. The resistive friction
torque, Tf2, is explained in detail in [8].

In this thesis, the shaft is represented as a single torsional spring. This
choice stems from prior analyses that employed continuum models and more
degrees of freedom in modeling. The outcomes of these analyses indicated that
a low-degree-of-freedom model sufficed for the objectives of this study.

2.4
Test Rig Parameters

This section lists the mechanical parameters identified in [71] alongside
the cataloged electrical parameters. Table 2.1 presents the mechanical param-
eters of the system.

Table 2.1: Mechanical parameters of the test rig
Parameter Value Unit

J2 149 kgm2 (10−4)
k2 0.3482 Nm/rad
d2 0.0022 Ns/m

The electrical parameters, sourced from the manufacturer datasheet [50],
can be found in Table 2.2. As these parameters have been retrieved from the
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motor catalog without independent identification, it is not possible to ensure
their accuracy.

Table 2.2: DC-motor electrical parameters
Parameter Value Unit

L 8.437(10−4) H
R 0.33 Ω
KT 0.126 Nm/A
KE 0.0602 V/(rad/s)
Tf 0.1196 Nm
Cm 1.784(10−4) Nm/(rad/s)
κp 2.800 -
κi 3.500 -

2.5
Conclusion

In summary, this chapter thoroughly explores the PUC-Rio experimental
system, designed to replicate the dynamics of a drill-string system in an
oil-field setting, particularly emphasizing torsional vibrations encountered at
specific drilling depths. The application of this experimental setup contributes
to a heightened understanding of the intricate dynamics at play throughout
drilling operations. The chapter introduces key components such as the test
rig, dynamical model, and system parameters, some of which find application
and relevance in the subsequent chapters.



3
Stick-Slip Phenomenon: Experimental and Numerical Studies

The stick-slip phenomenon is the most severe stage of the torsional oscil-
lations present in most drilling routines. It results in drilling operations’ inef-
ficiency and damages the drilling equipment. Stick-slip arises from the strong
nonlinear interaction between drill strings and borehole formation. This chap-
ter delves into the analysis of torsional oscillations observed in slender struc-
tures such as drill strings. It utilizes the experimental configuration detailed in
the preceding chapter, capable of emulating the torsional behavior witnessed
in actual drilling systems. It proceeds to analyze the effect of nonlinear con-
trol parameters on the system dynamics by utilizing the experimental data
collected.

It utilizes the experimental setup described in the previous chapter. The
setup is capable of reproducing the torsional behavior experienced by real
drilling systems. Finally, this chapter investigates the influence of the nonlinear
control parameters in the system dynamics employing the experimental data
collected.

3.1
Introduction

The excessive vibration of the drilling system leads to drilling operations
inefficiency and damages the drilling equipment. Therefore, a good understand-
ing of the system dynamics under different system conditions is necessary. The
literature addressing drill string dynamics and experimental studies is vast
[9, 10, 11].

Ideally, the entire drilling system should rotate at a constant speed.
Although, due to the drill string’s slenderness, torsional vibration is present
in most drilling operations. The stick-slip phenomenon is the critical stage of
torsional vibrations when the nonlinear interactions cause a complete arrest of
the drill bit until it is suddenly released. Other modes of vibration are present
during drilling as axial and lateral oscillations. The uncoupling of these three
modes of vibration is considered in some studies as a simplifying hypothesis.

This chapter is centered on analyzing torsional vibrations. The research
employs a purpose-built test rig to emulate torsional behavior akin to actual
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drilling systems. The experimental rig incorporates uncomplicated brake de-
vices to introduce friction into the system, disrupting the rotational motion. By
varying different combinations of parameters, the rig enables the experimental
observation of diverse torsional responses.

This work aims to analyze the torsional behavior of the experimental
system, investigating the influence of the nonlinear control parameters in the
type of system response. For this purpose, experimental bifurcation diagrams
are used.

3.2
Experimental Results

The drilling process is significantly influenced by a multitude of param-
eters, among which Weigh On Bit (WOB) and rotary speed play pivotal roles
[5]. Hence, it is imperative to conduct experiments on a rig that operates un-
der varying conditions, allowing a comprehensive exploration of how changes
in parameters affect the system’s response. In our experimental trials, we pos-
sess the capability to adjust either the normal force between the brake device
and the pin or the reference velocity set by the DC motor.

As highlighted in the preceding chapter, our experimental setup incor-
porates diverse sensors to measure crucial parameters and variables about the
system’s dynamics. These sensors consist of three rotary encoders for track-
ing motor and disc speeds, as well as two load cells to gauge the normal force
exerted by the brake devices. The experimental study covers various system pa-
rameters, including reference velocity and normal force. The experiments are
carried out and documented with precision. To enable real-time monitoring
and data preservation for later analysis, a LabVIEW-based Data Acquisition
System (DAQ) is employed.

Figure 3.1 displays an example of time histories of a test for a certain
combination of parameters where the existence of torsional vibrations with
the stick-slip phenomenon is evident. The rig is driven from the motor with an
angular reference velocity of 55 RPM , and the normal contact force applied
to the disc is equal to 50 N .

Graphs (a) and (b) in Fig. 3.1 depict the friction torque and the normal
contact force. In graph (c), it is possible to observe the oscillation of the disc’s
angular velocity. The normal contact force and angular velocity are measured
as explained in the previous chapter, and the friction torque on the disc is
calculated indirectly by utilizing the simplified mathematical model of the rig,
as presented in (2-1). From the graph in (c), one may observe oscillations with
a peak-to-peak amplitude of 110 RPM, which is twice the reference value.
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As expected, a decrease in the friction torque with increasing speed and an
increase with decreasing speed is noticed, aligning with findings in [13].

Figure 3.1: Torsional oscillations occurring in the reduced experimental rig for
ωref = 55 RPM and N2 = 50 N .

It’s noteworthy that the normal force exhibits variations throughout the
conducted tests. This phenomenon is due to the presence of ball bearings that
support the disc, resulting in a slight deviation between the disc and the plane
orthogonal to the shaft. In simpler terms, the disc rotates slightly out of the
plane of contact between the disc and the pin, causing fluctuations in the
magnitude of the normal force.

3.3
Nonlinear Analysis

As mentioned earlier, the test rig’s dynamic behaviors can vary based
on its parameters, mirroring the diversity seen in actual drilling systems. This
section focuses on studying the experimental torsional vibrations observed in
the rig, specifically emphasizing the stick-slip phenomenon. This critical phase
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of torsional oscillations manifests under various system conditions. To clarify,
various combinations of the control parameters (specifically, normal contact
force denoted as N2 and reference angular velocity denoted as ωref ) were
explored. Additionally, the system demonstrates distinct stick-slip responses
contingent on the combination of these control parameters.

To generate a bifurcation diagram, the mean value of the reference
angular velocity was systematically adjusted, ranging from 5 to 55 RPM in
increments of 2.5 N. This was done while maintaining a mean value of the
normal force exerted by the braking device of 10N, allowing us to observe
its impact on the dynamics of the rig. Figure 3.2 showcases the experimental
bifurcation diagram. The plot includes the maximum and minimum values of
angular velocity during the occurrence of the stick-slip phenomenon, and the
mean value of angular velocity when the stick-slip phenomenon is absent.

Figure 3.2: Bifurcation diagram with respect to reference angular velocity, ωref ,
for N2 = 10 N .

Examining the bifurcation diagram illustrated in Fig. 3.2, it is appar-
ent that with an increase in ωref , the amplitudes of stick-slip oscillations also
increase until they disappear, leaving only observable torsional oscillations.
However, the experimental results reveal regions where stick-slip and oscilla-
tory solutions interchange.

In Fig. 3.2 one may notice that the stick-slip phenomenon happens for
values of ωref until 17.5 RPM and between 42.5 and 47.5 RPM. The system
responses shown in Fig. 3.2 were obtained for a constant value of the normal
contact force between the brake device and disc D2, N2 = 10 N. The conclusion
drawn from Fig. 3.2 is that the stick-slip phenomenon diminishes as ωref

increases.
Similarly, an analogous analysis was carried out to observe how the

system’s response is affected by the normal force, N2. The normal force, N2,
was systematically varied from 0 to 50 N in 2.5 N increments while keeping
ωref = 55 RPM constant. As observed in the previous section, the nature
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of N2 varied during the tests (Fig. 3.1). However, for the sake of simplicity,
we assumed it to remain constant in this analysis. Figure 3.3 showcases the
experimental bifurcation diagrams concerning N2.

Figure 3.3: Bifurcation diagram with respect to normal contact force, N2, for
ωref = 55 RPM .

From Fig. 3.3, one may notice that for the lower values of N2, there
are torsional oscillations. As N2 increases so do the amplitudes of torsional
oscillations, and the stick-slip phenomenon appears.

3.4
Concluding Remarks

In this study, a brief analysis of the torsional dynamics exhibited by an
experimental rig was conducted. The test rig, developed at Pontif’icia Univer-
sidade Cat’olica do Rio de Janeiro, accurately replicates the torsional behavior
observed in real drilling systems. The primary objective of this analysis was
to determine the conditions under which the stick-slip phenomenon is most
likely to manifest. Our findings indicate that the stick-slip phenomenon tends
to occur at lower reference velocity values and higher normal contact force val-
ues. Moving forward, our future research will focus on devising new predictive
control methods to mitigate and suppress the stick-slip phenomenon.



4
Nonlinear Ensemble Gray and Black-box System Identifica-
tion of Friction Induced Vibrations in Slender Rotating Struc-
tures

Due to the nonlinear bit-rock and drill-string-borehole interactions, the
modeling and analysis of drill string dynamics are challenging work. These
slender structures are subjected to torsional, lateral, and axial vibration modes,
which are generally prejudicial to the drilling process. For this reason, proper
mathematical modeling of the system dynamics is necessary to optimize drilling
performance. This chapter focuses on the torsional dynamics and modeling of
an experimental system subjected to friction torque. An ensemble approach,
combining gray and black-box modeling techniques, is used to calibrate some
of the dynamical system parameters, particularly those related to friction.
This combination is chosen with the aim of improving the prediction accuracy
of a pure gray-box approach while retaining physical interpretability in the
dynamic responses. The present analysis compares four well-known friction
models with increasing levels of complexity using experimental data. It is
shown that the ensemble model proposed can improve the gray-box by up to
92.68% in terms of prediction errors, by adding a non-physical layer to it. This
analysis demonstrates that better results can be obtained by using an ensemble
of gray and black-box identification techniques for friction modeling and
simulation, aiming at improving data-driven model construction of complex
torsional dynamics in slender structures.

4.1
Introduction

Drill string dynamics is a challenging problem in dynamical modeling and
analysis. The drill string is the component of the drilling system responsible
for transmitting torque and motion from the top drive to the drill bit. Due
to the nonlinear bit-rock and drill-string-borehole interactions, these slender
structures are subjected to torsional, lateral, and axial vibration modes [14].
Lately, the torsional vibrations related to the so-called stick-slip phenomenon
have become the leading research interest topic in drilling dynamics [11].

Stick-slip is a friction-induced limit cycle. In drilling operations, stick-
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slip occurs when friction causes a halt of the drill bit (stick phase), while the
top drive continues to rotate until the stored energy overcomes the friction
torque, and the bit is set in motion (slip phase). Downhole measurements have
proved that when subjected to stick-slip conditions, the rotational speed of the
drill string changes from rest to more than 300 rev/min in just a fraction of
a second [15]. Typically, friction-induced self-sustained vibrations, like stick-
slip, adversely affect the performance of mechanical systems [16, 17]. Thus,
representative mathematical descriptions are imperative to reduce or avoid
these oscillations, as they enable analysis and simulation of such phenomena.

Many authors have addressed the topic of drill string dynamics and
proposed a variety of mechanical models based on lumped parameters, the
Cosserat continuum, and beam theory formulations [18, 19, 20, 21]. In lumped-
parameter models, the most common approach to study torsional vibrations
is to assume that the system behaves as a torsional pendulum [22] and that
the nonlinear interactions follow a velocity-dependent dry friction law [19]. Xie
et al. [23] studied the dynamic behavior of a drill string in a horizontal well
with a six-degrees-of-freedom model, considering a state-dependent time delay
to account for the cutting process. The drill string vibrations were extensively
investigated through experimental studies. In [9], the authors review some of
the experimental rigs developed to examine drill string vibrations. Liu et al. [24]
analyzed the multistability of drill strings by applying a small-scale downhole
drilling rig and performed a parametric study of the stick-slip phenomenon.
Real et al. [25] proposed a model with hysteresis for the bit-rock interaction
based on laboratory test rig data.

The nonlinear interaction modeling plays an essential part in the research
associated with drilling dynamics. A usual approach considers the dependence
of the forces and torque on the bit speed through dry friction. Regarding
the stick-slip behavior, the complexity of the investigation lies in the fact
that static friction governs the motion during the stick phase, while velocity-
dependent kinetic friction rules govern them during the slip phase [16]. In their
paper, Silveira and Wiercigroch [26] numerically investigated the influence of
friction complexity on the dynamical responses of the system. The complicated
friction interactions were addressed by Hasnijeh et al. [27] using stochastic
interpretation. Riane et al. [28] cited the lack of measurement devices to
accurately measure bottom torque as the major problem in modeling the
rock-bit interaction and overcoming this situation by estimating the unknown
torque with a Kalman filter. The authors of [28] also modeled the nonlinear
dynamics of the downhole using a proportional-integral observer in [29]. Bit-
rock and wellbore interactions, eccentricity, and hydrodynamic forces due to



Chapter 4. Nonlinear Ensemble Gray and Black-box System Identification of
Friction Induced Vibrations in Slender Rotating Structures 32

fluid resistance to lateral bending were taken into account in the investigation
of Moraes, and Savi [30]. The authors worked with a four-degree-of-freedom
nonsmooth model with axial-torsional-lateral vibration coupling.

Mathematical modeling is the first step to consider in studying system
dynamics. Notwithstanding the number of existing numerical and experimen-
tal investigations in the dynamics of slender systems, like drill strings, most of
the mathematical models available were developed analytically. Practical limi-
tations of analytical analysis motivate the application of system identification,
which comprises a set of techniques for building data-based models. Concern-
ing system identification, Aguirre [31] says there are three types of identifica-
tion techniques, distinguished by the amount of prior knowledge. These are
the white-box approach, specified by prior knowledge and physical insight;
the gray-box approach, obtained from less physical insight (physical and semi-
physical models); and the black-box approach, constructed in the absence of
a priori knowledge. In the context of dynamical systems with friction identi-
fication, there are contributions published in [32, 33, 34, 35, 36, 37]. Janot et
al. [33] proposed a state-dependent-parameter method of nonlinear estimation
as an alternative to the standard inverse dynamical identification model with
the least-squares technique. The authors evaluated the performance of the pro-
posed approach on two dynamic systems. One of them is the electromechanical
positioning system (EMPS) detailed in [34]. In Auriol et al. [37], the authors
compare three methods to estimate the friction parameters that describe the
nonlinear drill-string-borehole interactions. The authors of [35] modeled the
same EMPS with a combination of gray and black-box approaches. The au-
thors claim that the hybrid formulation performs better than the gray box
alone. In [32], Worden et al. modeled the friction dependence on displacement
and velocity using physics-based and black-box approaches. They compared
their modeled and experimental force time-series data. Their models showed
good prediction capability, and the ensemble models achieved the best results.
In [38], the authors also discussed the application of gray and black-box tech-
niques in ensemble models. They studied three benchmark problems, one of
them being a Bouc-Wen Hysteretic System.

Despite the endeavor dedicated to the analysis and modeling of drill
string dynamics, there is no consensus on a model that is considered to be com-
prehensive [11]. Experimental investigations employing small-scale laboratory
rigs have been a good approach. However, most of the mathematical models
developed for the experimental setups of drilling rigs are developed applying
analytical modeling and not measurements [9]. Regarding the construction of
data-based models for friction systems, most of the related literature deals with
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systems where the stick-slip phenomenon is not present [32, 33, 38]. Moreover,
the researchers usually utilize friction force data to calibrate their models.

This study uses time-domain data to propose a dynamic model for
an experimental drill string setup. The test rig used in this study employs
dry friction contact to simulate the nonlinear drill-bit interaction present in
drilling processes. Although most friction research focuses on phenomenological
formulations, this chapter proposes the application of the gray-box approach
and the combination with a black-box technique in ensemble models. This
technique is adopted to increase the accuracy of the predictions without
losing physical interpretability. As some black-box methods have limitations of
interpretability, and solving real-world problems requires it, the option made
in this work was a combination of approaches. As the intent is to use a
dynamical model for prediction and analysis, it is expected to replicate the
system’s dynamic behavior and, at the same time, diminish the prediction
errors. The main contribution of this work is that it explores the suitability of
an ensemble of gray and black-box approaches for the identification of friction
models, particularly with systems that exhibit the stick-slip phenomenon.
Other contributions of this work are: (i) the model identification of the stick-
slip phenomenon in a slender experimental system based on input and output
data; (ii) the analysis of different friction models’ capability of reproducing the
phenomenological aspect; and (iii) the use of hybrid formulations for nonlinear
system identification.

This chapter is organized as follows. Section 4.2 presents the theoretical
background of this study, including friction models and system identification
approaches. Section 4.3 briefly describes the model for the experimental setup
and presents the experimental data employed in the investigation. Section 4.4
introduces the ensemble model proposed in this work. Section 4.5 evaluates the
performance of the proposed methodology and discusses its numerical results.
Finally, the conclusions are outlined in Section 4.6.

4.2
Theoretical Background

Many different dynamical models have been devised to study drill-string
dynamics, and it has been observed that, among other factors, the accuracy of
the simulations depends on the choice of a friction model and its calibration.

Adjusting the parameters of a friction model is not a simple endeavor.
Among the many methods available to perform this task, the focus relies on
studying and comparing a gray-box approach against an ensemble (mixed)
one used to calibrate the parameters associated with friction, stiffness, and
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damping.

4.2.1
The Friction Models

Many mathematical formulations to describe dry friction have been
developed over the years. For example, [39, 40] include a review of some of
the most common models employed in dynamical systems. In this study four
different friction formulations are considered to obtain the resistive torque Tf

that will be used in the dynamical model of the test rig, these are:

– The regularized Coulomb friction model

– The regularized Stribeck friction model

– The Dahl friction model

– The Stefanski et al. friction model

The classical Coulomb friction model states that friction opposes the rel-
ative motion between contacting surfaces, and its magnitude is proportional to
the normal contact force [41]. The following equation defines the unregularized
model:

Ff = FCsign(v), (4-1)
where Ff is the friction force, FC = µkFN is the magnitude of Coulomb friction,
v is, from the perspective of the body, the relative tangential velocity between
the contacting surfaces, FN is the normal force, and µk is the kinetic friction
coefficient. This model presents a velocity dependence by the sign function that
introduces a discontinuity in the system of ODEs. Instead, this study considers
a regularized approximation using the hyperbolic tangent with a transition
velocity vt to avoid discontinuities. Therefore, the regularized Coulomb friction
is:

Ff = FCtanh
(
v

vt

)
. (4-2)

Because of its simplicity, the regularized Coulomb model is very suitable for
System Identification.

The second model employed was the Stribeck curve. Stribeck [42] proved
that friction decreases as the relative velocity increases for low velocities. In
a general form, the Stribeck curve is defined by some function g(v), and the
friction equation is:

Ff = (FC + (FS − FC)g(v)tanh
(
v

vt

)
(4-3)

Tustin [43] described g(v) as:
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Figure 4.1: Comparison of friction models.

g(v) = exp

(
−|v|
vs

)
(4-4)

where vs is the Stribeck velocity, a limit value of the relative velocity at which
the friction behavior changes from boundary high friction at low velocity to
lower friction at higher velocity [40].

The friction models mentioned above do not account for the hysteresis
loops observed in reality. Therefore, two other friction models were also
utilized: Dahl [44], and Stefanski et al. [45, 46, 40], to consider the hysteresis
effect. The Dahl model characterizes the friction behavior in the pre-sliding
stage by considering:

Ḟf = σ0

(
1− v

FC

)
sign(v)v, (4-5)

where σ0 is the stiffness coefficient.
The model proposed by Stefanski et al. (2003) [45] takes into consider-

ation the dependence on both relative velocity and acceleration. This model
defines the g(v) function of (4-3) as:

g(v) = exp

(
− α1|v|
|v̇|+ α2

)
sign(vv̇) (4-6)

where α1 and α2 are constants. A summary of the four friction models, showing
their shape and differences, is given in Fig. 4.1.

4.2.2
Gray-box aproach

White, gray, and black-box approaches differ in the amount of theoret-
ical knowledge. While the white-box models are entirely theoretical and the
black-box, experimental, gray-box models combine the benefits of both [47].
Physical or semi-physical models are special cases of gray-box modeling and
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deal with estimating the physical parameters of a system. The parameter esti-
mation problem, in this work, is framed as an optimization problem with the
objective/cost function defined as a mean-square error between experimental
data and predictions:

C(β) = 1
N

N∑
i=1

(yi − ˆyi(β))2. (4-7)

C is the cost function to be minimized. yi and ŷi are the experimental and
predicted data, respectively. The unknown parameters vector is named β.

4.2.3
Black-box approach

The black-box approach is constructed in the absence of a priori infor-
mation. Data acquired from experimentation is used to capture the system
dynamics in this modeling. Regarding Black-box, the AutoRegressive eXoge-
nous (ARX) model was employed. The error was modeled using the ARX
structure [31]:

y(k) = +A1y(k − 1)...+ Anyy(k − ny)
+B1u(k − 1)...+Bnuu(k − nu) + ε(k),

(4-8)

where y(k), u(k) are the system output and input, respectively; ε(k) is the
model error at instant k; A and B are linear estimators matrices; and ny and
nu are the maximum lags at the system output and input, respectively.

4.3
The experimental system

The setup detailed in Chapter 2 is utilized for this study.

4.3.1
The system dynamical model

The system dynamics is modeled by assuming that the experimental
rig presented in Chapter 2 behaves as a torsional pendulum. It was assumed
that the only resistive torque in the system was caused by the friction torque
induced by the braking device. The mechanical subsystem, composed of one
of the discs and the shaft connecting it to the DC motor, is modeled as:

Jdθ̈d + c(θ̇d − θ̇m) + cdθ̇d + k(θd − θm) = −Tf ,

Jmθ̈m + c(θ̇m − θ̇d) + cmθ̇m + k(θm − θd) = τm,
(4-9)

where θ, θ̇, and θ̈ are the angular displacement, angular velocity, and angular
acceleration of the two inertias, respectively. Jd and Jm are the moments of
inertia of the disc and the DC motor. The shaft stiffness is denoted by k, and
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internal damping is denoted by c. The external dampings are cd and cm. Tf is
the resistive friction torque on disc D2, and τm is the torque transmitted to
the mechanical subsystem.

The resistive friction torque Tf , required for the dynamical system model,
is given by:

Tf = Ffa, (4-10)
where a is the distance between the disc center and the disc-pin contact area.
For simplicity, TC = FCa is considered the resistive torque related to the kinetic
Coulomb friction, and TS = FSa is the one related to the static friction.

The electric subsystem is composed of a voltage source connected in series
with a resistor and an inductor, providing torque τm. The angular velocity
imposed by τm is eight times greater than the angular velocity ˙θm transmitted
to the mechanical subsystem due to the transmission factor η = 8 : 1.
Mathematically, the electric subsystem can be expressed as:

L
di

dt
+Ri+ ηKE θ̇m = V,

τm = η(KT i− Tfm),
(4-11)

where i denotes DC-motor electric current. L and R are the armature induc-
tance and resistance, respectively. KT is the constant motor torque; KE, the
voltage constant; and Tfm, the internal friction torque. The input voltage is
denoted by V and is given by

V = κp(ωref − ˙θm) + κi

∫ t

0
(ωref − ˙θm)dt, (4-12)

where κp and κi are proportional constant and integral constant, respectively,
and ωref is the reference velocity of the system.

In the present model and simulations, the electrical subsystem was
disregarded. Instead, only the mechanical is considered, using the torque
generated by the electric motor, τm as the input for the mechanical system.

To simulate (4-9) the following state-variables were defined:

X =
[
δ θ̇d

˙θm

]T
,

where δ = θd − θm is the angular difference. Therefore, (4-9) can be rewritten
as a state-space system as follows:
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Ẋ =


0 1 −1

−k/Jd −(c+ cd)/Jd c/Jd

k/Jm c/Jm −(c+ cm)/Jm



δ

θ̇d

˙θm

+


0 0

−1/Jd 0
0 1/Jm


Tf

τm



ym =
[
0 1 0

] 
δ

θ̇d

˙θm

 ;

(4-13)
ym is the output of our mathematical model.

4.3.2
Measured data

The measurements of forces, displacements, and velocities were con-
ducted using a LabVIEW-based Data Acquisition System (DAQ). The sam-
pling frequency during these measurements varied in a non-constant manner,
ranging between 38.46 and 43.48 Hz. To standardize the data, the signals were
resampled to a uniform frequency of 100 Hz through interpolation. Subse-
quently, the resampled data was processed using a low-pass Butterworth filter,
a process carried out using Matlab.

The test rig is a closed-loop electromechanical system with an output
motor velocity driven by a Proportional-Integral (PI) controller (4-12). The
velocity set-point is called reference velocity. According to [49] closed-loop
identification can be performed for consistent models or unmodelled dynamics.

The input trajectory was obtained by measuring the motor torque in
the mechanical system, which is driven by the PI controller of the motor,
described in (4-11) and (4-12). Figure 4.2 presents the time histories of an
experiment: Fig. 4.2a depicts the time history of the disc angular velocity
(system output) whereas Fig. 4.2b shows the time history of the motor torque,
τm (system input). The disc angular velocity, ωd, is derived through numerical
differentiation of the angular position, which is measured using an encoder,
and the motor torque, τm, is measured employing a load cell, as detailed in
section 2.2. This result was acquired for a reference angular velocity of 5.76
rad/s and an average normal contact force between pin and disc of 50 N . This
combination of values was selected because it induces stick-slip oscillations in
the system, which is the condition of interest in this study. The signals were
recorded for 270 seconds.
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Figure 4.2: Measured time history of (a) disc angular velocity, ωd; and (b)
motor torque, τm.

4.4
The proposed methodology

This study aims to utilize the prior knowledge of the experimental test
rig physical model to enhance the accuracy and to reproduce the stick-slip
phenomenon by employing an ensemble model (a combination of a gray-box
and a black-box component). Firstly, estimating the parameters of the physical
model, and secondly, fitting a network to the residuals. In addition, the results
will be compared to those obtained with a sole gray-box approach to determine
if any improvement is achieved.

The methodology employed for the simulations considering the sole gray
box is presented. After that, a description of the ensemble approach is provided.

As aforementioned, the first step of this work is the estimation of the
mechanical parameters of the experimental system. At this point, a gray-box
approach was developed by fitting a semi-physical model. To do so, it employed
the measured input and output data of the time interval from 30 to 90 seconds
of the recording in Fig. 4.2. The validation used the measured input and output
data of the time interval from 120 to 180 seconds.

The interest of the present analysis is to estimate the mechanical pa-
rameters of the test rig, shaft stiffness and damping, and friction parame-
ters. Although certain parameters have been determined through experimental
analysis, this study involves their estimation as a fundamental aspect of the
proposed methodology. These specific parameters of interest are collectively
represented by the vector β as follows:
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β1 =
[
k c cd cm TC

]
, β2 =

[
k c cd cm TC TS VS

]
,

β3 =
[
k c cd cm TC σ0

]
, β4 =

[
k c cd cm TC TS α1 α2

]
,

subscripts 1, 2, 3, and 4 correspond to the optimization problems with the four
friction models: Coulomb, Stribeck, Dahl, and Stefanski et al., respectively. For
the optimization problem, lower and upper bounds for the unknown parameters
were defined by physical restrictions.

The disc inertia was obtained straightforwardly by direct measurement,
and the motor inertia from its manual [50]. The values are Jd = 0.0149 kgm2

and Jm = 0.0234 kgm2.
To solve this nonlinear optimization problem, this work applied the

CasADi [51] interface to Interior-Point OPTimzer (IPOPT) [52]. CasADi is
a symbolic framework for numerical optimization. In this framework, solving
an optimization problem consists of the symbolic representation of the problem
construction and the minimization of the objective function (5-5) with IPOPT.
The IPOPT open-source code is a widespread implementation of an Interior-
Point method.

The second step was to build a black-box model of the error between the
measurements and the estimations obtained from the gray-box approach.

The author simulated the system for each one of the friction models
selected with the set of estimated parameters obtained from the minimization
of the cost function in (5-5) and calculated the error between estimation and
measured data. Then, a toolbox in Matlab was used to determine the black-box
model parameters of the error. This work used 60 seconds of motor torque and
disc angular velocity data for system identification and 60 seconds to validate
the identified models.

As aforementioned, it was intended to use both the prior knowledge of
the physical model and the black-box component to enhance the accuracy of
the predictions. According to [38], one way to do this is to use a white box
as a mean function and fit the model residuals using a black-box algorithm.
Instead, in this study, the gray-box model was used as a mean function and the
residuals were modeled with a black-box algorithm in a difference equation:

ye(k) =
gray-box︷ ︸︸ ︷

f(x(k), u(k)) +
black-box︷ ︸︸ ︷

g(e(k − 1), ..., e(k − ne), u(k − 1), ..., u(k − nu))
(4-14)

where ye is the output of the ensemble model. ye is a sum of the system model
output (4-13) and the model residual. f(x(k), u(k)) is a function of the system
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Table 4.1: Estimated parameters values
Coulomb Stribeck Dahl Stefanski et al.

k (Nm/rad) 0.1614 0.1593 0.1534 0.1550
c (Ns/m) 0 0.0012 0 0
cd (Ns/m) 0 0.0033 0.0035 0.0036
cm (Ns/m) 0.0071 0.0175 0.0209 0.0205
TC (Nm) 0.2278 0.1167 0.1203 0.1131
TS (Nm) 0.4146 0.4120
VS (rad/s) 0.1138
σ0 0.0149
α1 33.64
α2 33.64

input u, and states x, and the residual is a function of the system input u and
itself.

The general idea of the proposed method is to combine the physics-based
approach and an ARX model to capture the response aspects missed by the
physical model alone, improving the predictions.

4.5
Validation and discussion

This work evaluated the performance of the proposed identification
methodology via simulation. First, it integrated the equations of motion (4-9)
utilizing the solver ode45 from Matlab for each one of the friction models
selected. The simulations employed the experimental data for input τm. The
error was incorporated into the model as in (4-14). The data set employed for
validation analyses is different from the one used for model identification and
is composed of experimental data from 120 to 180 seconds.

4.5.1
Gray-box model

Table 5.1 gives the set of estimated parameters obtained from the
minimization of the cost function in (5-5). This work performed the parameter
estimation employing the system dynamics forward simulation. Using the
estimated parameter depicted in Table 5.1 the system was simulated and
the computed free-run predictions were compared with the experimental data
in the validation time interval. Fig. 4.3 depicts the direct comparison of
experimental and estimated time histories of the disc angular velocity for the
validation set.

From Fig. 4.3, one may observe that there are differences in the amplitude
of oscillation, whereas no differences in the vibration frequency are found. One
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Figure 4.3: Comparison of measured and predicted disc angular velocity using
gray-box model based on (4-9): (a) Coulomb (RMSE 2.0063); (b) Stribeck
(RMSE 2.1110); (c) Dahl (RMSE 2.2558); (d) Stefanski et al. (RMSE 2.1462).

can observe that the disc angular velocity obtained from the mathematical
model in Fig. 4.3a properly recovers measured data. While the three other
models (Figs. 4.3b-d) result in responses with negative angular velocities. How
well the models capture the friction phenomena - transitions from stick to
slip and vice versa - determines the model’s accuracy. To better observe this
aspect, Fig. 4.4 shows one stick phase interval, comparing measurements and
estimations for each one of the models. Figure 4.4 shows that three of the
friction models fail to reproduce the stick-slip phenomenon.

4.5.2
Ensemble model

The ARX model with motor torque τm as input, and error e as output
was built as follows:

e(k) = a1e(k − 1) + a2e(k − 2) + b1τm(k − 1) + b2τm(k − 2), (4-15)

where a1, a2, b1 and b2 are the parameters of the ARX model. The black-
box model was trained with the recorded input and output data of the time
interval from 30 to 90 seconds of the recording in Fig. 4.2 and validated by
employing the recorded input and output data of the time interval from 120
to 180 seconds. The choice of the mathematical model architecture (4-15)
was motivated by the analysis of the prediction errors and the capability to
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Figure 4.4: Comparison of measured and predicted disc angular velocity using
gray-box model based on (4-9), one stick phase interval: (a) Coulomb; (b)
Stribeck; (c) Dahl; (d) Stefanski et al.

Table 4.2: Mean stick duration for all four friction models tested
Gray-box model Ensemble model

Coulomb 0.2761 0.3662
Stribeck 0.1614 0.3628
Dahl 0.0701 0.3662

Stefanski et al. 0.0665 0.3677

reproduce stick intervals.
The ensemble model was constructed as displayed in (4-14). Fig. 4.5

depicts the accuracy of the free-run prediction obtained with this method,
plotting the direct comparison of experimental and estimated time histories of
the disc angular velocity for the validation set. All the ensemble model simu-
lations are able to reproduce the experimental system dynamics, which means
that one can observe torsional oscillations with the stick-slip phenomenon in
all four outputs. It is possible to notice the same general dynamic response at
this point when comparing the graphs of Fig. 4.5.

Fig. 4.6 shows one interval of the stick phase, comparing measurements
and estimations for each one of the friction models. From Fig. 4.6 one may
conclude that the ensemble model formulation was a far more effective model.
In Table 4.2, the estimated mean stick duration for all models studied is
presented. The mean stick interval duration calculated from experimental
measurements equals 0.3770. Among gray-box models, Columb is the one with
the closest value, as expected from the observation of Fig. 4.4. Concerning the
model using the ensemble approach, the closest value was obtained by using the
Stafansi et al. friction model. From Table 4.2, one can see significant differences
in the values of mean stick interval duration obtained from the gray-box and
the ensemble approaches for three of the four friction models tested.
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Figure 4.5: Comparison of measured and predicted disc angular velocity using
ensemble model based on (4-9), (4-8) and (4-14): (a) Coulomb (RMSE 0.1697);
(b) Stribeck (RMSE 0.1748); (c) Dahl (RMSE 0.1652); (d) Stefanski et al.
(RMSE 0.1587).
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Figure 4.6: Comparison of measured and predicted disc angular velocity using
ensemble model based on (4-9), (4-8) and (4-14), one stick phase interval: (a)
Coulomb; (b) Stribeck; (c) Dahl; (d) Stefanski et al.

Table 4.3: RMSE and maximum error scores for all four friction models tested
Gray-box model Ensemble model
RMSE max error RMSE max error RMSE reduction

Coulomb 2.0063 6.1665 0.1697 0.5194 91.54 %
Stribeck 2.1110 5.5305 0.1748 0.4763 91.72 %
Dahl 2.2558 6.1787 0.1652 0.4505 92.68 %

Stefanski et al. 2.1462 6.0054 0.1587 0.4663 92.60 %
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Figure 4.7: Phase-plane portrait of the system dynamics for a reference angular
velocity of 5.76 rad/s and an average normal contact force of 50 N : (a) gray-
box numerical and experimental reconstructed phase-plane portrait; (b) gray-
box numerical phase-plane portrait; (c) ensemble numerical and experimental
reconstructed phase-plane portrait; and (d) ensemble numerical phase-plane
portrait.

Table 4.3 presents the Root Mean Squared Error (RMSE) and the
maximum error for each model type. From these errors, one can verify the
improvement achieved by using an ensemble model. Both RMSE and maximum
errors decreased compared to the gray-box simulations. At this point, it is
interesting to note that if the gray box were sufficiently accurate, the addition
of a black-box element would not be capable of improving the predictive
performance. The ensemble models constructed with the Dahl and Stefanski et
al. friction models presented lower RMSE scores and higher RMSE reduction.
However, the Coulomb friction model was selected for further analysis since it
performed better in replicating friction mechanisms in the gray-box approach.

Figure 4.7 displays the measured and numerically predicted phase-
plane portraits. In Fig. 4.7a and Fig. 4.7c, the numerical and experimental
reconstructed phase-plane portraits obtained from the gray-box and ensemble
models built with the Coulomb friction model, respectively, are presented.
The reconstructed phase-plane portraits are done by plotting y(t− T ) against
y(t) [53]. The graphs of Fig. 4.7a and Fig. 4.7c were utilized to compare
measurements and predictions. Figures 4.7b and 4.7d present the numerical
phase-plane portraits formed by plotting the angular disc velocity against the
angular difference between motor output and disc.

Comparing Fig. 4.7a and Fig. 4.7c, it is possible to observe that the
ensemble model better reproduces the system’s dynamical behavior. Moreover,
one may visualize that the system follows a bounded trajectory in Fig. 4.7b
and Fig. 4.7d, with minor differences in the amplitudes of vibrations for the
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Figure 4.8: Amplitude spectrum of disc angular velocity.

ensemble model.
The numerical simulations reveal the primary vibration frequency at

0.7934 Hz, precisely corresponding to the frequency at which the stick-
slip phenomenon occurs. Figure 4.8 displays the amplitude spectrum of the
recorded angular velocity, ωd, as well as the simulated angular velocity, ω̂d,
employing the ensemble model and Coulomb friction. The plot distinctly shows
a prominent peak at f = 0.7934 Hz, aligning with the anticipated frequency.

In addition, the graph in Figure 4.8 emphasizes that only the ensemble
model effectively replicates these specific harmonic frequencies, highlighting its
capability to capture the nuanced behavior of the system.

The test rig exhibits different dynamical behaviors depending on its
parameters. According to [54, 55, 56] bifurcation diagrams are effective criteria
for validating nonlinear system dynamics. To construct bifurcation diagrams,
the mean value of the braking device’s normal force was varied from 0 to 50
N in steps of 5 N for a reference angular velocity of 5.76 rad/s to observe
its influence on the rig dynamics. Figure 4.9 presents both experimental and
numerical bifurcation diagrams. In this figure, the maximal and minimal values
of angular velocity are plotted when the stick-slip phenomenon is present, and
the mean value of the angular velocity when it is not.

Concerning the results, it is possible to make the following remarks:

– For the lower values of the normal force (lower or equal to 20N), the
system exhibits oscillations without stick-slip. In the bifurcation diagram,
for this region, the points depict the mean value of the angular velocity.
In a phase-portrait representation, this would correspond to an orbit
around a stable fixed point.

– As the normal force increases so does the amplitude of the torsional
oscillations.
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Figure 4.9: Bifurcation diagram with respect to normal contact force for
a reference angular velocity of 5.76 rad/s: (top) gray-box numerical and
experimental bifurcation diagrams and (bottom) ensemble numerical and
experimental bifurcation diagrams.

– After 20N, the stick-slip phenomenon appears due to the nonlinearities
in the friction torque at the disc. Further studies should be performed to
accurately classify the behavior that the system is exhibiting, although,
with the information herein presented and the phase-portrait represen-
tation in Fig. 4.7, the authors expect this bifurcation to be Hopf-type.
This would mean that the system is following a bounded trajectory that
no longer surrounds a stable fixed point.

The aforementioned remarks can be made for both experimental and
numerical tests. Comparing the graphs of Fig. 4.9, one may observe that both
approaches can determine whether the system is going to present stick-slip
oscillations or not. Figure 4.9 indicates that the ensemble model predicts better
the amplitude of oscillations. The prediction accuracy of the amplitudes of
the vibrations is a relevant aspect since it is directly related to the stick-slip
severity, an indicator in the analysis of torsional dynamics in drill strings [57].

4.6
Concluding Remarks

This chapter proposed an ensemble approach for identifying the dynamics
of a nonlinear system. The investigated system is a laboratory test rig designed
to reproduce the torsional vibration of a drill string in drilling operations. As
a first step, the measured responses were used to estimate the unknown rig
mechanical parameters and dry contact friction parameters. Next, the error
between predictions with the estimated parameters and the measurements
was obtained with a black-box technique. Finally, the ensemble model was
constructed by adding the black-box component to the physical model.
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In the initial step, the cost function was minimized using the CasADi
interface with IPOPT. Four distinct friction models of varying complexity
were employed to assess their efficacy in capturing the system dynamics. In
the subsequent step, parameters for the residuals of the black-box model were
estimated. The ensemble model proposed integrates a physics-based approach
and an ARX model to encompass aspects of the dynamical response that
are not fully captured by the physical model alone. This hybrid approach was
embraced to enhance prediction accuracy while retaining interpretability based
on physics.

The results of the identification were validated via simulation. The
comparison between the friction models showed a difference in the capacity to
reproduce stick-slip vibrations. The simulation results demonstrated that the
identified system can accurately reproduce the experimental results and that
the inclusion of a black-box component effectively attenuates the predictions’
inaccuracies by up to 92.68% in terms of RMSE. The bifurcation diagrams
prove that both approaches can predict whether the system is going to exhibit
stick-slip oscillations or not. The precision improvement inspires additional
analysis on ensemble model construction for nonlinear system identification in
other challenging applications, such as structural health monitoring [58, 59],
and modal analysis [60].

In conclusion, the hybrid approach offers more benefits than uncombined
identification techniques, particularly in systems that exhibit vibrations with
the stick-slip phenomenon. The analysis proves that, in the ensemble model,
different friction models can replicate the bounded trajectory aspect of the
friction phenomenon. Further work will be carried out to investigate the
existence of a limit cycle. The author believes that the identification results
presented in this paper are a significant improvement in the state of the art
and may be adequate for analysis and simulation.



5
Data-driven Model for Torsional Oscillations in Slender Struc-
tures

This work focuses on the parameter identification of a 2-DOF model
to study the torsional dynamics. The system studied is a slender structure
subjected to friction. This study calibrates the mathematical model with
experimental data. It utilizes an experimental setup composed of a DC motor
and two rotating inertias connected by a slender shaft, with friction resulting
from braking acting over one of the inertias. The mechanical and friction
parameters of the low-dimensional model are inferred using a neural network.
Finally, the parameters are compared with those experimentally identified.

5.1
Introduction

Excessive drill string vibration leads to loss of the drilling process
effectiveness and premature damage to the equipment: this makes the drilling
system behavior a challenge to the process enhancement. The drill string
vibrations can either be induced by drill bit-formation or drill string-borehole
interactions. Due to the drill string’s slenderness, torsional vibration is present
in most drilling routines, ultimately reaching the stick-slip phenomenon. Stick-
slip is characterized by two phases: one in which the drill bit remains stopped
due to the resistive torque, and the other that begins when the stored energy
overcomes the resistive torque, and the bit is set in motion.

The stick-slip phenomenon is a complex nonlinear problem since static
friction rules the motion during the stick phase, while velocity-dependent
kinetic friction rules it during the slip phase ([16]). Despite the complexity of
the bit-rock interaction, researchers often treat the relationship between torque
and bit velocity as a dry friction function. Surveys on drill string modeling and
dynamics can be found in [18, 19]. Most of the mathematical models of slender
systems, like drill strings were developed analytically.

This work applies system identification, which comprises a set of tech-
niques for building data-based models ([31]), to calibrate a 2-DOF torsional
model. This chapter uses data-driven identification to provide physically inter-
pretable models. The experimental setup utilized is composed of a DC motor
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and two rotating inertias connected by a slender shaft, with friction result-
ing from braking acting over one of the inertias. The mechanical and friction
parameters of the low-dimensional model are inferred using a neural network.
The parameters estimated are compared with those experimentally identified.

5.1.1
Dynamical Model

The experimental system is modeled as a torsional pendulum, considering
the resistive torque due to the friction from the braking device as the only
torque affecting the system. The resulting equations of motion for the system
are:

Jdθ̈d + c(θ̇d − θ̇m) + cdθ̇d + k(θd − θm) = −Tf (θ̇d),
Jmθ̈m + c(θ̇m − θ̇d) + cmθ̇m + k(θm − θd) = τm

(5-1)

where the moments of inertia of the disc and the motor are Jd and Jm. The
shaft stiffness is denoted by k and the internal damping by c. cd and cm are the
external dampings. θ, θ̇, and θ̈ are the angular displacement, angular velocity,
and angular acceleration of the inertias, respectively. The torque transmitted
to the mechanical subsystem is denoted by τm, and the resistive friction torque
on disc D2 is denoted by Tf . Tf is given by:

Tf = Ffa, (5-2)
where a is the distance between the disc center and the disc-pin contact area.
For simplicity, TC = FCa is considered the resistive torque related to the kinetic
Coulomb friction.

5.1.2
Friction Model

The study of the complex characteristics of the bit-rock interaction is
indispensable to the drill string dynamics analysis. Despite the complexity
of this interaction, studies often treat the torque on the bit as dry friction
torque. The friction force is the resistance to the relative motion of two contact
surfaces ([13]). [39, 40] include a review of some of the most common models
employed in dynamical systems. This study uses the regularized Coulomb
friction formulation to obtain the resistive torque Tf that will be used in the
dynamical model of the test rig.

The classical Coulomb friction model states that friction opposes the
relative motion between contacting surfaces, and its magnitude is proportional
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to the normal contact force. The following equation defines the unregularized
model:

Ff = FCsign(v), (5-3)
where Ff is the friction force, FC = µkFN is the magnitude of Coulomb friction,
v is, from the perspective of the body, the relative tangential velocity between
the contacting surfaces, FN is the normal force, and µk is the kinetic friction
coefficient. This model presents a velocity dependence by the sign function that
introduces a discontinuity in the system of ODEs. Instead, this study considers
a regularized approximation using the hyperbolic tangent with a transition
velocity vt to avoid discontinuities. Therefore, the regularized Coulomb friction
is:

Ff = FCtanh
(
v

vt

)
. (5-4)

Because of its simplicity, the regularized Coulomb model is very suitable for
System Identification.

5.1.3
Experimental Results

Forces and velocities are measured using a LabView-based Data Acqui-
sition System (DAQ). In Figure 5.1, time histories of motor torque (a), motor
inertia angular velocity (b), and disc angular velocity (c) are displayed. The
measurements were taken at a nominal angular velocity of 55 RPM and an
average normal contact force between the pin and disc of 25 N. This combi-
nation results in the system exhibiting stick-slip oscillations, as evident in the
graphs of Figure 5.1.

5.2
Methodology

Physical or semi-physical models deal with estimating the physical pa-
rameters of a system. To perform the parameter estimation from measure-
ments, this work applies a deep learning approach as proposed in [61]. As
input and output data, the torque transmitted from the motor, τm, and the
angular velocities θ̇d and ˙θm, respectively, are used.

In this study, the motor and disc inertia are assumed to be known, and
stiffness, damping, and friction parameters turn into parameters of the physics-
informed neural network.

Both motor and disc angular velocities are approximated by deep neural
networks. Therefore, the required derivatives are calculated to compute the
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Figure 5.1: Measured time history of (a) motor torque, τm; (b) motor inertia
angular velocity, θ̇m; (c) disc angular velocity, θ̇d.

residual networks applying automatic differentiation. Finally, the physics-
informed neural network using (5-1) is obtained. The parameters of the neural
networks and the system mechanical and friction parameters are estimated by
minimizing the following sum of squared errors cost function:

N∑
i=1

(y(ti)− ŷi)2 +
N∑

i=1
(u(ti)− ûi)2, (5-5)

in this cost function, the first summation corresponds to the training data
on the output, y(t), and the second summation carries out the dynamic
motion equations. In (5-5), yi and ŷi are the experimental and predicted data,
respectively. The use of deep neural networks is motivated by the advances in
solving forward and inverse problems [61].

The applied methodology is exemplified by Fig. 5.2.

5.3
Results and discussion

For system identification, input and output data from the specific 30-90
second timeframe in Fig. 5.1 were utilized. A specialized neural network model,
featuring 12 layers with 32 nodes in each, was developed using TensorFlow, a
deep learning framework. The training involved optimizing network parame-
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Figure 5.2: Physics-informed neural network.

Table 5.1: Estimated parameters values
Deep Learning Experimental Identification

k (Nm/rad) 0.311 0.3482
c (Ns/m) 0 0.0022
cd (Ns/m) 0 0
cm (Ns/m) 0 0
TC (Nm) 0.650 -

ters with the Adam optimizer through four stages of 10,000 epochs each, using
a batch size matching the total training samples (6000). The objective was to
minimize mean squared error during training, reducing the gap between pre-
dicted and actual system responses. The code, written in Python, relied on key
libraries like TensorFlow for neural network operations, NumPy for numerical
computations, Matplotlib for plotting, and SciPy for effective data handling
and manipulation. This effort resulted in a set of estimated parameter values
presented in Table 5.1, enabling a comparative analysis with experimentally
identified parameters.

Table 5.1 demonstrates a slight variance in the estimated stiffness com-
pared to the experimental value. Notably, the friction parameter was not ob-
tained through experimental tests. However, in deep learning identification,
all parameters are acquired simultaneously. The time series reconstruction for
disc angular velocity is illustrated in Fig. 5.3.

5.4
Concluding remarks

This work applied physics-informed deep learning to infer the mechanical
and friction parameters of the low-dimensional model. The mathematical
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Figure 5.3: Time series reconstruction for disc angular velocity.

model describes a laboratory test rig designed to mimic the torsional dynamics
of drilling operations, and it is a slender structure subjected to friction. Because
of its simplicity, the regularized Coulomb model was adopted for system
identification.

Besides the excellent reconstruction of the time series for angular velocity,
the methodology employed is capable of identifying the values for stiffness,
damping, and friction parameters. The obtained values were compared with
those experimentally identified.



6
Experimental studies of coupled axial and torsional oscilla-
tions of slender structures

6.1
Introduction

Drill strings are critical components in drilling operations, and under-
standing the coupled oscillations, specifically axial and torsional oscillations,
is essential for optimizing drilling performance and ensuring operational safety.
Over the years, numerous experimental studies have been conducted to inves-
tigate the dynamics of coupled oscillations in drill strings [9].

Drill strings can be divided into three main sections from a structural
perspective. The first section is comprised of the drill pipes, which are a series of
tubes responsible for transmitting the power generated by the motor at the top
of the well to the lower components. Typically, the total length of the drill pipes
varies between 1 to 10 kilometers. The second component is the bottom hole
assembly (BHA), which consists of thick-walled tubes designed to provide the
necessary weight-on-bit (WOB) during the drilling process. Additionally, the
BHA often includes devices used for measuring and controlling the direction of
the bit. The third element is the bit itself, responsible for cutting the formation
[5].

During the drilling process, self-excited vibrations can manifest in three
forms: axial, lateral, and torsional vibrations. These vibrations can result in
detrimental effects such as bit bouncing, whirling, and torsional stick-slip,
which can lead to premature component failures. This study focuses on the
coupling between torsional and axial vibrations, acknowledging the significance
of understanding their interaction.

The experimental setup utilized in this chapter is well-established in the
literature, and numerous previous works have extensively investigated its dif-
ferent facets. In [62], the authors delve into the analysis of drill-string dynam-
ics by combining theoretical modeling with experimental investigations. Their
study explores the effects of drilling parameters on the stability and dynamics
of drill strings, shedding light on the complex behavior observed during ex-
periments. The same authors focus on understanding forward and backward
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whirls in drill strings in [63], where they experimentally investigate the occur-
rence and characteristics of whirl vibrations, examining the influence of drill
string parameters and operating conditions. Moreover, in the pursuit of unrav-
eling the complexity of drill string vibrations, [64] takes an experimental and
modeling approach. Laboratory experiments are conducted to characterize the
nonlinear dynamics of drill strings and validate the developed mathematical
models. These findings contribute to a deeper understanding of the complex
dynamics involved in coupled oscillations.

Several additional experimental studies have been conducted to inves-
tigate drill string vibrations. The authors of [65] utilized a slender rotating
structure and measured vibrations using sensors to identify the underlying
nonlinear dynamics caused by friction-induced vibrations. [66] explores the ef-
fects of different drilling parameters and operating conditions on drill string
vibrations, providing valuable insights into their behavior under various cir-
cumstances. [67] focuses on stick-slip vibrations in drilling with drag bits, con-
ducting experimental studies to examine the characteristics and mechanisms of
this detrimental phenomenon. The authors of [68] investigated the construction
of an autonomous laboratory-scale drilling rig, which served as a controlled
environment for experimental studies on drill string vibrations, allowing for
in-depth analysis and understanding of coupled oscillations. Additionally, [69]
concentrates on the vibrational behaviors of horizontal drill strings, employing
experimental investigations to analyze the characteristics and factors influenc-
ing vibrations in horizontal drilling operations.

However, it is important to note that not all of the experimental studies
mentioned in the literature specifically address the coupling between axial and
torsional oscillations. Among those that do, certain noteworthy findings can
be highlighted. Some experimental rigs employ shakers at the extremity to
provide constant axial displacement amplitude excitations [66]. Conversely, in
the case of horizontal rigs, such as in the study conducted by Lin et al. [69],
axial vibrations are not as significant due to the radial direction of gravity.
Therefore, conducting a meticulous experimental investigation of the coupling
mechanism of vibrations utilizing a vertical rig that employs actual drill bits
and rock samples would be of great value.

This chapter is the result of a cooperation between Prof. Hans I. Weber
from PUC-Rio University and Prof. Marian Wiercigroch from the University
of Aberdeen and focuses on the experimental investigations conducted using a
specially developed drilling rig at the Centre for Applied Dynamics Research,
University of Aberdeen. The rig’s configuration was customized specifically for
the purposes of this study. The adaptation of the setup was a collaborative
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effort between the author and the CADR team. The primary objective is to
replicate and study fundamental modes of vibrations observed during drilling,
specifically torsional and axial vibrations. The chapter begins by introducing
the key components of the drilling rig. These components include the drilling
machine, flexible shafts that approximate the drill string, drill bits, and the
availability of rock samples for testing. Subsequently, the experiments are
described, highlighting the specific measurements of interest and the data
acquisition system employed to collect the experimental data. The next step
involves identifying the essential system parameters, such as the stiffness and
damping characteristics of the flexible shafts, which play a crucial role in the
dynamics of the drilling rig. Lastly, the chapter presents examples of different
types of system responses observed during the experiments. These examples
encompass various scenarios of torsional and coupled oscillations, illustrating
the range of dynamic behaviors exhibited by the drilling rig.

6.2
Aberdeen drill string dynamics experimental rig

This section describes the experimental setup developed in the Centre for
Applied Dynamic Research (CADR) laboratory at the University of Aberdeen,
which was used to acquire the experimental data presented in this chapter. The
experimental bench of CADR is widely known in the literature, with several
works exploring its various aspects. It is explained here, but more details
are explored in the contributions of its developers [64, 62]. The intent of the
experimental rig is to provide a comprehensive test bed for the investigation
of different types of undesired vibrations associated with the operation of an
oil drilling column.

This work aims to investigate, in a practical manner, the coupling
between axial and torsional oscillations, and the influence of certain parameters
on the phenomena of interest For this purpose, the experimental apparatus
was modified. Figure 6.1 shows a picture and the schematics of the new
configuration of the rig, indicating the main components of the setup. The
author collaborated with the CADR team to modify and adapt the setup.

The experimental system is composed of a drilling machine, two flexible
shafts, a steel cylinder, BHA, a drill bit, and a rock sample. The drilling
machine is located at the top of the column and provides the angular and
axial displacement to perform drilling. Steel cables are used to transfer the
motion from the motor to the system as they have high torsional rigidity and
low flexural rigidity. As Fig. 6.1 shows, one of the cables is connected to the
motor at the top and at the bottom to the steel cylinder placed at the hub of
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Figure 6.1: Picture of the test rig’s latest configuration, accompanied by
detailed schematics.

the rig, and the other cable connects the cylinder to the BHA, which is another
steel cylinder, where the drill bit is fastened. Moreover, the experimental setup
may be used with several different industrial drill bits as well as different rock
samples with varying compositions, allowing for the investigation of numerous
scenarios. For the experimental tests realized for this work, a PDC bit and a
sandstone sample were used.

For data acquisition, the system is equipped with three identical encoders
of quadrature type to measure angular displacement in different positions;
a Kistler 9272 four-component dynamometer, which is placed beneath the
rock sample to measure the WOB and TOB; a laser, to measure the axial
displacement of the drill bit (Fig. 6.2); and two Eddy current probes, positioned
90° apart on the sides of the bearing in the BHA in order to capture its
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Figure 6.2: A photograph showcasing the laser positioned above the BHA.

lateral displacements. It’s important to note that this study did not include
measurements for Weight on Hub (WOH) and Torque on Hub (TOH), and
implementing further modifications is necessary to enable the measurement
of these signals. The sensors communicate with an interface developed in
LabView through a National Instruments acquisition board and are installed
as shown in Fig. 6.1

6.3
Experiments

This section delves into the examination and analysis of several experi-
mental studies carried out using the CADR laboratory’s experimental setup.
As previously mentioned, the CADR experimental setup is a valuable resource
for conducting experimental investigations, as it replicates diverse types of
undesirable drill string vibrations.

The experimental investigations conducted in this study involved con-
ducting a sweep of the top speed of the drill string, ranging from 0 to 54
rpm. Data regarding angular positions, and the axial position of the bottom
BHA, WOB, and TOB were recorded using LabView. The recorded angular
displacements were then used to calculate angular velocities through differen-
tiation performed in MATLAB. Throughout these experiments, different tor-
sional and axial vibrations were observed depending on the applied angular
velocity.
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6.3.1
Parameters identification

Accurate estimation of the physical parameters of the experimental ap-
paratus is crucial for achieving good agreement between experimental obser-
vations and numerical predictions. This subsection provides a detailed expla-
nation of the mechanical parameter identification process. Figure 6.3 presents
schematics of the test rig indicating some geometrical aspects.

The moments of inertia were determined by treating the steel cylinders
as rigid bodies and considering their physical properties. Table 1 displays the
measured parameters along with the calculated moments of inertia.

Table 6.1: Masses and moment of inertia
m [kg] J [kg.m2] (10−3)

hub 4.532 5.382
BHA and bit 18.641 18.9

As explained in section 6.2, flexible shafts are used to imitate the
mechanical properties of slender structures like drill strings. Due to the length
of a drill string, the transversal stiffness of the structure, when compared to
the axial one, is negligible. The kind of shafts used are utilized to transmit
power in rotating machines as they have high torque capacity transmission
and high flexibility. In this research, two flexible shafts with diameters of 8
mm were used, one of the cables connects the motor at the top to the steel
cylinder placed at the hub of the rig, and the other cable connects the cylinder
to the BHA, as depicted in Figure 6.1.

To find out the torsional stiffness and viscous damping of the shafts,
an initial angular displacement was applied, separately, to the inertia and
measured the decaying free torsional oscillations. Figure 6.4 plots both shafts’
responses. It is worth mentioning that the motor was mechanically locked to
get the hub response, likewise, to get the response of the BHA, the rotation
of the hub was restricted. The free responses are then used for estimating the
damped and natural frequencies, and the damping coefficients.

The damping ratio, ξ, was computed using the logarithmic decrement
described in (6-1) and (6-2) [70].

υ = ln ( δi

δi+1
), (6-1)

ξ = υ√
(2π)2 + υ2

, (6-2)

where δi and δi+1 are the ith and ith+ 1 amplitude peaks, respectively.
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Figure 6.3: Depiction of the utilized test rig.
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Figure 6.4: Free torsional oscillations: assessing stiffness and damping charac-
teristics of the flexible shaft through initial torsional deformation. (a) top part
and (b) bottom part.

The natural frequencies, stiffness, and damping coefficients were calcu-
lated using (6-3), (6-4), and (6-5), respectively [70].

ωn = ωd√
1− ξ2 , (6-3)

k = ω2
n

J
, (6-4)

d = ξ(2Jωn). (6-5)
Table 6.2 contains the natural frequencies, the stiffness, and damping

coefficients estimations.

Table 6.2: Natural frequency, stiffness, and damping calculations.
ωn [rad/s] k [Nm/rad] d [Ns/m]

top cable 31.1 5.22 4.41
bottom cable 11.52 2.51 6.31

6.3.2
Experimental study of different torsional motions

One of the objectives of this study is to investigate the stick-slip phe-
nomenon, and for this purpose, 8mm flexible shafts were adopted. During the
conducted experiments, different torsional vibrations at various applied angu-
lar velocities were observed for two different configurations. In the first con-
figuration, the only resistive torque present in the system was the dry friction
between the cylinder at the hub and its support, with no contact between the
bit and the rock sample. In the second configuration, both contacts (at the hub
and the bit) were present. The decision to analyze only one point of contact
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Figure 6.5: Example of different types of torsional oscillations: (a) ωt = 5 RPM
and (b) ωt 20 RPM.

was motivated by two reasons: firstly, to model the dry friction torque at the
hub, and secondly, to understand its influence on the dynamics of the system.

The influence of the motor angular speed on the two configurations was
examined. Regarding the first configuration, Fig. 6.5 illustrates the two distinct
behaviors observed during the tests, each recorded for a duration of 40 seconds.
To provide a closer look at the results presented in Figure 6.5, Figure 6.6 zooms
in on a 10-second window. Figures 6.5 and 6.6 depict the angular velocity
applied at the top by the motor and captured by the upper encoder (ωt), the
angular velocity at the hub (ωh), and the angular velocity of the bit recorded
by the lower encoder (ωb).

In Figure 6.5, the motor’s angular velocity (ωt) is approximately 5 rpm in
the top results and around 20 rpm in the bottom results. The system exhibits
distinct behavior for these different velocities. In the case of the lower velocity
(Figure 6.5a), the stick-slip phenomenon is observed, evident from the hub
and drill’s angular velocity both assuming zero values and remaining in that
state for a short period. On the other hand, for the higher velocity, significant
oscillations of the bit speed are observed around the angular velocity set by
the motor, but stick-slip is not observed.
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Figure 6.6: Zoomed-in example of different types of torsional oscillations: (a)
ωt = 5 RPM and (b) ωt 20 RPM.

A similar analysis was conducted for the case where both contact
points, hub-wall, and bit-rock, are considered. Figure 6.7 depicts the different
behaviors observed in the tests, each recorded for 120 seconds. Additionally,
Figure 6.8 provides a closer view of a 10-second window of the data.

Figure 6.7 presents the motor’s angular velocity (ωt) at approximately
13.5, 27, 40.5, and 54 rpm in graphs a, b, c, and d, respectively. The results
highlight the impact of the investigated parameter on the system’s behavior.
The angular velocity applied to the rig has a significant influence on the
system’s dynamics, leading to diverse torsional vibrations and, in certain
instances, causing stick-slip phenomena. The graphs in Fig. 6.8 provide a closer
view of the system’s dynamics, revealing two distinct behaviors. The results
displayed in Figure 6.8a and 6.8b clearly exhibit the occurrence of the stick-slip
phenomenon. In Figure 6.8a, it is evident that when the drill experiences the
slip effect, its rotational speed reaches values close to 45 rpm, which is more
than three times the speed set by the motor. To prevent stick-slip under the
given WOB condition, the motor’s rotation speed was adjusted. The resulting
behavior, as depicted in Figure 6.8d, shows a completely different pattern
characterized by a circular phase portrait, where stick-slip is absent.
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Figure 6.7: Example of different types of torsional oscillations: (a) ωt = 13.5
RPM, (b) ωt 27 RPM, (c) ωt = 40.5 RPM, and (d) ωt = 54 RPM.



Chapter 6. Experimental studies of coupled axial and torsional oscillations of
slender structures 66

Figure 6.8: Zoomed-in example of different types of torsional oscillations: (a)
ωt = 13.5 RPM, (b) ωt 27 RPM, (c) ωt = 40.5 RPM, and (d) ωt = 54 RPM.
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The experimental analysis revealed the presence of the stick-slip phe-
nomenon under various WOB conditions and top angular velocities. However,
it was observed that stick-slip tends to diminish with an increase in the top
angular velocity, as illustrated in Figure 6.7.

6.3.3
Experimental study of coupled oscillations

In this study, the focus lies on experimentally investigating the coupling
between torsional and axial vibrations in drill strings. The coupling between
these vibration modes is a complex phenomenon influenced by various factors,
including changes in axial load and torque, friction and contact forces, and
drill string properties. Understanding this coupling behavior is crucial for
optimizing drilling operations and mitigating vibrations. Unlike previous works
utilizing pre-buckled configurations, this study introduces a new configuration
with a cylinder at the hub to examine the coupling between vibration modes.
The nonlinear interactions between the hub and wall, as well as the bit and rock
samples, result in helical buckling and axial displacement without relying on
pre-existing buckling. The findings, illustrated in Figure 6.9 and a closer view
in Figure 6.10, provide valuable insights into the coupled vibrations observed
in the system.

The experimental results captured for a duration of 60 seconds with
an applied angular velocity of approximately 16.2 rpm are presented in Fig.
6.9. The observed behavior of the system is notably distinct from previous
observations. Figure 6.9(a) illustrates the angular velocities (ω) of the top,
hub, and bit, while Fig. 6.9(b) displays the axial displacement (x) of the bit.
Additionally, Fig. 6.9(c) and 6.9(d) represent the WOB and TOB, respectively.
To provide a closer view of the data, a 10-second window is presented in Figure
6.10, plotting the same results.

It is important to note that for the conducted test, both cables were
subjected to tension. From the observations in Fig. 6.9, it can be concluded that
the system exhibits stick-slip phenomena. This means that resistive torques
cause the bit to come to a halt, while the top drive continues rotating until
the stored energy surpasses the resistive torques, initiating the motion of the
bit. Consequently, the rotational speed of the bit transitions from rest to
approximately 50 rpm, which is more than three times the imposed velocity.
As a result and a consequence of these torsional oscillations, axial oscillations
are observed. The axial oscillation is measured from the laser to the bit, as
depicted in Fig. 6.2, where a higher value of x corresponds to a lower position
of the bit.
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Figure 6.9: Analysis of system response for the selected set of parameters: time
histories of (a) angular velocities for top, hub, and bit (marked in yellow, blue,
and red, respectively); (b) bit axial displacement; (c) WOB; and (d) TOB.
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Figure 6.10: Zoomed-in time histories of (a) angular velocities for top, hub, and
bit (marked in yellow, blue, and red, respectively); (b) bit axial displacement;
(c) WOB; and (d) TOB.
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The observed behavior can be attributed to the dynamics of the new
configuration, which differs from previous studies. Previous studies in this
test rig solely considered the bit-rock interaction, whereas, in this study,
the additional hub-wall contact introduces additional resistive torque to the
system. This hub-wall contact simulates the contacts between the drill string
and the wellbore wall encountered in directional drilling. As a result of this
additional resistive torque, more energy is required to overcome the resistance
and initiate the movement of the bit.

The sensors integrated into the experimental setup allow for a more
detailed investigation of the coupling between the mechanisms. Figure 6.10
is employed to analyze the TOB and WOB in conjunction with the drill’s
rotational speed and axial position. To facilitate the analysis, five points of
interest, labeled A, B, C, D, and E, are identified.

Point A represents the occurrence of bit sticking, indicating the region
between A and B as the stick region. During this phase, the motor’s rotation
speed, depicted in yellow, continues uninterrupted. Consequently, the flexible
shaft absorbs and stores the energy supplied by the motor, leading to an
increase in TOB, as observed. The stuck bit results in energy accumulation
within the flexible shaft, which is subsequently transferred from torsion to
other directions, causing the shaft to adopt a helical configuration. This helical
buckling effect causes the entire system to move upwards. Consequently, the
momentarily loosened bit leads to a rapid decrease in torque, approaching
values close to zero, which is also reflected in the WOB. Only when the
accumulated energy surpasses the resistive torque of the drill, does it exit
the inert state and resume rotation, entering the slip region.

Once the accumulated energy surpasses the resistive torque, it is released
in kinetic form, denoted by point B. Within the region from B to C, the bit
rotates at low angular velocities, while still moving upward. Notably, both the
WOB and TOB remain at zero during this phase.

Within the region from C to D, notable observations include the bit
rotating at higher velocities while moving downward, resulting in an increase
in both WOB and TOB. At point D, the bit reaches a rotational speed of
approximately 80 rpm, which is a direct consequence of the accumulated
energy stored in the flexible shaft during the period of drill obstruction. The
phenomenon known as "bit-bounce" becomes apparent between points B and
D.

In the final phase, from point D to point E, the resistive torque caused
by friction begins to act in the opposite direction of the drill’s rotation. As a
result, the energy released during the slip region is dissipated. This dissipation
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leads to a gradual reduction in the rotation speed. As the system approaches
the stick region once more, the helical configuration of the flexible shaft is
undone, and the bit returns to its initial position. With the drill’s rotation
being obstructed again, the cycle restarts, initiating a new sequence of stick-
slip and bit-bounce behavior.

Hence, the presented and discussed results hold significant value as they
facilitate an experimental investigation, discussion, and comprehension of the
phenomena documented in the literature and previously studied numerically
in the next section.

6.4
Conclusions

In conclusion, this chapter has presented the experimental investigations
conducted at the University of Aberdeen, aimed at exploring the coupling
between torsional and axial oscillations in slender structures. The experimental
setup was carefully modified and adapted to facilitate the study of this coupling
phenomenon, enabling us to gain a deeper understanding of the dynamic
behavior of the system.

Utilizing sensors to monitor and analyze the system’s behavior, with a
specific focus on the influence of imposed angular velocity parameters, it is
possible to extract valuable insights from the experimental data. The observa-
tions made during these investigations shed light on the intricate interactions
between torsional and axial vibrations, providing crucial information for our
overall research.

The combination of experimental tests and data analysis has proven to be
instrumental in comprehending the coupling mechanism within the drill-string
systems. These insights will significantly contribute to the development of
accurate mathematical models and further our understanding of the torsional
vibrations and stick-slip phenomenon in slender structures.



7
Conclusions and Recomendations

7.1
Conclusions

This research gave emphasis to studying torsional vibrations and analyz-
ing the stick-slip phenomenon. Self-excited vibrations are a common occurrence
during the drilling process, with axial, lateral, and torsional vibrations being
the main types. These vibrations can have negative consequences such as bit
bouncing, whirling motion, and torsional stick-slip, which can result in early
wear and tear of drilling components.

The main objective of this thesis (as stated in Section 1.2) is to explore
torsional and axial oscillations using two laboratory-scale experimental test
rigs. The focus of the research is to gain a deeper understanding of these
types of vibrations and their behavior in controlled experimental settings.
By conducting experiments on these rigs, the thesis aims to provide valuable
insights into the dynamics and characteristics of torsional and axial oscillations
in drilling systems.

The thesis makes significant contributions in several areas related to
the investigation of torsional and axial oscillations. Firstly, it focuses on
the experimental analysis of lab-scale drill-string systems, providing valuable
insights into the dynamics and behavior of such systems. Secondly, it involves
the development of mathematical models specifically designed to capture
torsional vibrations in slender systems, improving our understanding of their
characteristics. Thirdly, the thesis proposes and explores system identification
strategies for nonlinear systems, enhancing our ability to accurately estimate
and predict system parameters. Finally, the proposed identification methods
are experimentally validated, demonstrating their effectiveness in practical
applications. The contributions of this thesis can be summarized as follows:

– As a first contribution, an analysis of the torsional behavior of an
experimental rig developed at Pontifícia Universidade Católica do Rio de
Janeiro was conducted. The rig was designed to replicate the torsional
dynamics observed in real drilling systems. To investigate the system’s
behavior, a mathematical model representing the rig as an actuated
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torsional pendulum was employed. Specifically, it focuses on examining
the influence of the control parameters, namely the reference angular
velocity and the normal contact force, on the system’s response. This
analysis aimed to identify the conditions under which the stick-slip
phenomenon is more likely to occur. Based on the results presented in
this study, it is possible to conclude that the stick-slip phenomenon tends
to manifest at low values of the reference velocity and high values of the
normal contact force.

– This thesis proposed an ensemble approach for identifying the dynam-
ics of a nonlinear system, specifically focusing on a laboratory test rig
designed to replicate torsional vibration in drill string systems. The ap-
proach involved estimating mechanical and friction parameters using
measured responses and minimizing a cost function. The work compared
different friction models and incorporated a black-box component to en-
hance the accuracy of predictions. Simulation results validated the identi-
fication, showing that the ensemble model effectively reduced predictions’
inaccuracies and accurately reproduced experimental results. The ensem-
ble model demonstrated the ability to predict stick-slip oscillations, and
its precision improvement suggests potential applications in structural
health monitoring and modal analysis. Overall, the hybrid approach of-
fers advantages over traditional techniques, particularly for systems with
stick-slip phenomena, and further investigations will explore limit cy-
cle behavior. The results contribute significantly to the field and have
implications for analysis and simulation.

– This thesis utilized physics-informed deep learning to estimate the me-
chanical and friction parameters of a low-dimensional model. The dynam-
ical model represents a laboratory test rig that replicates the torsional
dynamics of drilling operations, incorporating friction effects. Specifi-
cally, this study employed the regularized Coulomb model for system
identification due to its simplicity and effectiveness. The results demon-
strated not only accurate reconstruction of angular velocity time series
but also successful estimation of stiffness, damping, and friction param-
eters. These estimated values were compared with experimental identifi-
cations, validating the effectiveness of the methodology.

– This thesis also involves experimental investigations using the apparatus
available at the University of Aberdeen. The study focuses on the cou-
pling between torsional and axial oscillations. The experimental setup
was modified and adapted to enable the investigation and understanding
of this coupling phenomenon. Sensors were utilized to analyze the sys-
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tem’s behavior, particularly examining the influence of imposed angular
velocity parameters. These experimental investigations provided valuable
insights for the study.

Overall, these contributions contribute to the advancement of knowledge
in the field of torsional and axial oscillations in drilling systems.

7.2
Recomendations

As a suggestion for future research, the following areas can be explored
to build upon the work presented in this doctoral thesis:

– Further exploration and analysis of the coupled dynamics of torsional and
axial oscillations in drill-string systems is recommended. This can involve
investigating different combinations of system parameters to understand
their effects on the coupling behavior. Additionally, it would be beneficial
to explore the coupling between torsional and axial vibrations with the
lateral mode of vibration, considering the three-dimensional behavior of
the drill-string system.

– To enhance the understanding and modeling of drill-string systems,
the author suggests integrating additional sensing and monitoring tech-
niques. By incorporating these techniques, a more comprehensive dataset
can be obtained, providing detailed information on the behavior and dy-
namics of the drill-string system.

– To further validate and enhance the proposed identification methodolo-
gies in this thesis, it is recommended to conduct experiments where the
resistive torque is intentionally kept low. This approach allows for a two-
step identification process: first, the estimation of mechanical parameters,
and second, the estimation of resistive torque (friction) parameters. By
separating these identification steps, the accuracy and reliability of the
parameter estimates can be improved, as the influence of resistive torque
on the measurements is minimized.

– Development of advanced control strategies to effectively mitigate tor-
sional and axial vibrations in the analyzed systems. These control strate-
gies can be designed based on the identified models obtained in this work.
Implementing these advanced control techniques to achieve better vibra-
tion suppression and enhanced performance in drill-string systems.

– Application of the proposed identification methods to real-world drilling
operations. This would entail evaluating the effectiveness and practicality
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of the identified models in industrial settings. By implementing these
methods in actual drilling operations, one can assess their performance,
accuracy, and applicability in practical scenarios.

By directing attention to these specific areas, the author is confident
that significant progress can be achieved in the realms of understanding,
modeling, and controlling torsional and axial vibrations in drill-string systems,
contributing to the drilling operations improvement.
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