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Abstract 

Moreira, Pedro Henrique de Lima Ripper; Siqueira, Rogério Navarro Correia 

(Advisor). Thermodynamic model for VLE water - MDEA system: Peng-

Robinson and Uniquac models. Rio de Janeiro, 2023. 66p (paginas). 

Dissertação de Mestrado – Departamento de Engenharia Química e de 

Materiais, Pontifícia Universidade Católica do Rio de Janeiro.  

 

 Determining interaction parameter for equations of state (EOS) of water – 

amines systems are crucial to develop accurate models in chemical engineering 

processes. The binary system of N-methyldiethanolamine (MDEA) and water in biogas 

purification was evaluated using both φ – φ and γ – φ approaches, classic Peng–

Robinson with the empirical “non-random” mixing rule and Peng–Robinson with the 

Wong-Sandler mixing rule EOS to optimize pure components acentric factor, ω, and 

binary interaction parameters, 𝑘𝑖𝑗. The interaction parameters 𝑢𝑖𝑗 from EOS that 

incorporate UNIQUAC model, such as γ – φ approach and Wong-Sandler mixing rule 

were optimized as well. These parameters were evaluated using a bubble pressure 

algorithm, MATLAB coding and minimization of objective functions related to 

absolute average deviation, AAD, between experimental and calculated data at 

different temperatures. The calculated ω of water, CO2 and MDEA were 0.3275, 

0.2039 and 1.0133 respectively with lower AAD than literature values. The 𝜑 − 𝜑 

approach classic Peng–Robinson with Wong – Sandler mixing rule EOS was better 

suited for the MDEA – H2O binary, resulting in as 𝑢12
0 = −234.2841, 𝑢12

𝑇 = 1.0499, 

𝑢21
0 = 266.4326, 𝑢21

𝑇 = 0.1966, 𝑘𝑖𝑗 = −0.0715, with vapor pressure AAD% = 

6.57% and composition AAD% = 17.51%. Due to the highly non-ideal nature of the 

CO2 – H2O binary system, neither φ – φ or γ – φ approaches using the selected EOS 

resulted in accurate vapor – liquid equilibrium (VLE) bubble point pressure diagrams. 

Keywords 

 Bubble pressure; Amine; Thermodynamic modelling; Equilibrium; Peng-

Robinson; UNIQUAC; Wong – Sandler   



Resumo 

Moreira, Pedro Henrique de Lima Ripper; Siqueira, Rogério Navarro Correia. 

Modelo termodinâmico para ELV do sistema água - MDEA: modelos de 

Peng-Robinson e Uniquac. Rio de Janeiro, 2023. 66p (paginas). Dissertação 

de Mestrado – Departamento de Engenharia Química e de Materiais, Pontifícia 

Universidade Católica do Rio de Janeiro.  

 A determinação de parâmetros de interação precisos para equações de estado 

(EdE) em sistemas aquosos de aminas são cruciais para desenvolver modelos 

termodinâmicos em processos da engenharia química. O sistema binário de N-

metildietanolamina (MDEA) e água na purificação do biogás foi avaliado usando as 

abordagens 𝜑 –  𝜑 e 𝛾 –  𝜑, EdE de Peng–Robinson clássico com a regra de mistura 

não aleatória e EdE Peng–Robinson com a regra de mistura Wong-Sandler, para 

otimizar o fator acêntrico, ω, de componentes puros, e os parâmetros de interação 

binária, 𝑘𝑖𝑗. Os parâmetros de interação 𝑢𝑖𝑗  das EdE que incorporam o modelo 

UNIQUAC, como a abordagem γ – φ e a regra de mistura de Wong-Sandler também 

foram otimizados. Esses parâmetros foram avaliados usando um algoritmo de pressão 

de bolha reativa, codificação MATLAB e minimização de funções objetivas 

relacionadas ao desvio médio absoluto, AAD, entre dados experimentais e calculados 

em diferentes temperaturas. Os ω calculados de água, CO2 e MDEA foram 0,3275, 

0,2039 e 1,0133, respectivamente, com AAD inferior aos valores da literatura. A 

abordagem 𝜑 − 𝜑 com EdE clássica de Peng–Robinson com regra de mistura Wong–

Sandler foi mais adequada para o binário MDEA – H2O, resultando em 𝑢12
0 =

−234.2841, 𝑢12
𝑇 = 1.0499, 𝑢21

0 = 266.4326, 𝑢21
𝑇 = 0.1966, 𝑘𝑖𝑗 = −0.0715,  com 

pressão de vapor AAD% = 6,57% e composição AAD% = 17,51%. Devido à natureza 

altamente não ideal do sistema binário CO2 – H2O, nem as abordagens φ – φ ou γ – φ 

usando as EdE selecionadas resultaram em diagramas precisos de pressão de ponto de 

bolha para o equilíbrio vapor – líquido (VLE). 

Palavras-chave  

Termodinâmica; equilíbrio líquido vapor; pressão de bolha; Peng – Robinson; 

UNIQUAC; Wong – Sandler   
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1. Introduction 

Biogas is a renewable energy source that comes from the breakdown, by 

anaerobic digestion, of organic waste materials such as food scraps, animal manure, 

and sewage sludge. Its production systems help to reduce the amount of waste going to 

landfills and can reduce odors and other environmental impacts associated with waste 

handling. Unlike fossil fuels, which are finite resources, biogas can be continuously 

produced as long as there are organic materials to feed into the system, granting it the 

characteristic of being a renewable energy source (Parsaee, 2019). Since its production 

captures methane gas that would otherwise be released into the atmosphere, it is an 

important asset for the reduction of a significant portion of greenhouse gas emissions. 

It plays a fundamental role in Brazilian agrobusiness, providing a source of renewable 

energy and animal waste management. This can reduce reliance on fossil fuels and 

chemical fertilizers, supporting more sustainable agricultural practices (Junior, 2022). 

Overall, biogas production offers a number of benefits, including renewable energy, 

reduced greenhouse gases, waste management, and support for sustainable agriculture. 

Biogas purification leads to the production of biomethane, a refined gas with 

high methane, CH4, which has characteristics that make it interchangeable with natural 

gas in all its applications (ANP, 2017). However, the composition of biogas can vary 

depending on the feedstock used, temperature, pH, and other factors, making it difficult 

to design a purification system that works consistently. It also contains impurities such 

as carbon dioxide, CO2, hydrogen sulfide, H2S, water vapor, and trace amounts of other 

gases, some of which, like hydrogen sulfide, can be corrosive and damage the pipeline 

and equipment used to transport and process the gas (Okamura, 2018). The combustion 

of H2S results in the production of SO2 and SO3, both highly toxic gases that endanger 

the life of the processing plant operator. Among the pollutants, CO2 is the one with the 

highest composition, but due to its inert quality in combustion, it reduces the amount 

of heat generated from biogas.  

The most widely used H2S and CO2 removal process is the water scrubbing 

process, in which, countercurrent water comes into contact with brute biogas in an 

absorption column, where the components of the gas phase can either react (chemical 
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absorption) or dissolve (physical absorption) with the solvent. Even though water has 

shown effectiveness regarding their removal, its reaction with H2S generates sulfuric 

acid, which requires further treatment to be safely removed (Oliveira, 2022). An 

alternative method to solve this problem is the amine scrubbing process, where CO2 is 

absorbed both physically and chemically by an amine-based solution, which depending 

on the selected amine, could display capability of simultaneous H2S removal (Abdeen, 

2016). Therefore, biogas purification is a complex and challenging process that 

requires careful consideration of the composition of the gas and the environmental 

impacts of the purification process. 

Developing an understanding of transfer phenomena and accurate 

thermodynamic models is crucial for properly simulating absorption/stripping 

processes involving amine aqueous solvents. This is because successful simulation, 

design, and optimization of CO2 and H2S capture hinges on the modeling of 

thermodynamic properties like vapor-liquid equilibrium (VLE) and chemical reaction 

equilibrium. These require the appropriate selection and understanding of equations of 

state, capable of predicting accurate and non-ideal system properties, and equilibrium 

approach, relying only on concepts of fugacity coefficient to model system phases (𝜑 −

𝜑 approach) or modelling the liquid phase using activity coefficient models (𝛾 − 𝜑 

approach). Similarly, the availability of reliable experimental data is critical for precise 

thermodynamic modeling and interaction parameter optimization. While there is an 

abundance of experimental data on water – amine systems, recent literature reviews 

have identified some questionable published CO2 solubility data for aqueous amine 

systems. This results in great inaccuracies regarding the predicted and experimental 

data, which can be aggravated by the fact that, in general, authors apply their 

thermodynamic models directly to a complex system, without first applying their 

model to its simpler counterparts. 
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2. Main Objectives 

The purpose of this work is to create a scalable thermodynamic model using 

MATLAB coding, capable of accurately predicting the vapor – liquid equilibrium, at 

different pressure and temperature conditions, for biogas purification systems. The 

selected amine solvent was N-methyldiethanolamine, also known as MDEA, for its 

ternary amine capacity to simultaneously remove CO2 and H2S from the gas phase 

(Moreira, 2022).  

The classic Peng – Robinson equation of state, PR-EOS with two different 

interaction mixture rules, the empirical “non-random”, PRNR-EOS, and Wong – 

Sandler’s mixing rules, PRWS-EOS, were modelled using both 𝜑 − 𝜑 and 𝛾 − 𝜑 

approaches, as to determine parameter values for more accurate models. The excess 

Gibbs energy model used for the Wong Sandler mixing rule and activity coefficient 

calculations was the UNIQUAC model. The UNIQUAC size parameters, 𝑟𝑖 and 𝑞𝑖 will 

be obtained by following the group contribution method as described by Sandler, 2017.  

This model will start from the simpler pure component systems of water, CO2 

and MDEA to optimize acentric factor parameters for binary systems. The binary 

system MDEA-water was modeled and all parameters were optimized following a 

predictive bubble pressure algorithm for their corresponding selected equation of state, 

EOS, and approaches.  

The strategy for parameter optimization is detailed on further sections. All 

predicted data was compared to experimental data using absolute average deviation, 

AAD and absolute relative deviation, ARD, as a metric of accuracy. 
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3. Literature Review 

The selection of an appropriate economically viable purification technique for 

the simultaneous removal of CO2 and H2S is vital to encourage development of biogas 

production technologies. Since water scrubbing applied to biogas results in the 

production of sulfuric acid byproducts, the amine scrubbing has been looked upon as 

an alternative to solve this issue. Gamba et al., 2014, used a mixture of 15% MEA and 

50% MDEA in a pall rings packed column reactor to purify a feed biogas of 

composition 58% CH4 and 36.6% CO2, reporting a biomethane composition of 98% 

CH4 and <2% CO2, with lower power consumption caused by using MDEA. Peralta, 

2013, used 10% MEA in polyethylene jacks packed column reactor to obtain 

biomethane purity of 90% CH4, <10% CO2 and <100 ppm H2S concentrations, which 

shows that more sterically hindered amines are potentially better for CO2 removal from 

the gas mixtures. To corroborate that, Günther, 2012, used 20% DEA solvent on a 

plastic polypropylene packed column reactor to purify a feed biogas of 51.1% CH4, 

46% CO2 and 80 ppm H2S into a product of purity 98.4% CH4, 0.1% CO2 and 0.1 ppm 

H2S. Also, Gaur et al., 2010, used a blend of 30% MEA and 20% DEA in a bubble 

column to purify a biogas of composition 52% CH4 and 48% CO2 into biomethane 

>95% CH4 and <5% CO2, albeit the bubble column requires much lower gas flow rate 

than packed columns to achieve said results. The study review of Abdeen et al., 2016 

concluded that amine scrubbing is more suited for biogas upgrading but requires more 

research to overcome energy loss and solvent degradation for large scaled applications.  

Aside from the simpler semi-empirical models, assumed for vacuum/low 

pressure or very high temperature operations, for gases, and when there are very small 

interactions (or interactions that cancel each other) in liquids, most thermodynamic 

models can be divided into two categoric approaches: 𝜑 − 𝜑 models that employ the 

same EOS to calculate fugacity coefficients in both liquid and vapor phases, thereby 

ensuring a consistent description, and 𝛾 − 𝜙 models where the liquid phase is 

calculated by an activity coefficient model, while the vapor phase utilizes the equation 

of state to predict its non-ideality.  
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In oil and gas operations, equation of state (ϕ–ϕ approach) models prove useful 

in modeling hydrocarbon systems. They can be applied across a broad temperature and 

pressure range, including subcritical and supercritical regions, and even to mixtures 

involving diverse components such as light gases and heavy liquids (Kontogeorgis and 

Gani, 2004). This approach avoids questions of standard states and necessitates only 

minimal component data to compute thermodynamic properties for the two phases. The 

PR and Soave – Redlich – Kwong, SRK, equations of state are particularly well-suited 

to this purpose. Thermodynamic simulation of gas mixtures and brines conducted by 

Ziabakhsh-Ganji and Kooi (2012) employed PR-EOS, along with random mixing rules, 

to study the impact of impurities on underground CO2 storage. Nevertheless, the 

application of cubic EOS has proven ineffective in numerous instances, particularly 

when relying on standard rules for mixing and component interaction, that involve 

multiphase equilibria and highly non-ideal chemical systems. Poormohammadian et 

al., 2015 reports an extension of the traditional van der Waals one-fluid mixing rule by 

adding a non-random mixing interaction capable of evaluating the effect of polarity 

and asymmetry between components present in the system. Harandi et al., 2021 

modeled the CO2 – MDEA – H2O vapor-liquid equilibrium using five different alpha 

functions for the Peng – Robinson EOS with Wong – Sandler mixing rule and NRTL 

activity model by excess Gibbs energy, obtaining a pressure absolute average deviation 

from experimental data of 18.36%. 

It is important to analyze how thermodynamic models are constructed before 

assuming their reported optimized parameters are accurate representations of the 

physical phenomena they intend to represent. It is a common occurrence for authors to 

model complex systems, like the ternary CO2 – MDEA – H2O system, while omitting 

or using literature parameters for the same model application regarding its binary, CO2 

– H2O, MDEA – H2O and CO2 – MDEA systems. There are also discrepancies 

regarding pure component parameters, such as UNIQUAC volume parameter, 𝑟, and 

surface area parameter, 𝑞. Although these parameters should represent a physical 

property of a given component, the following table displays the inconsistency of their 

values for similar applications. 
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Table 1. UNIQUAC volume parameter (r) and surface parameters (q) from different authors. 

Reference 𝑟𝑀𝐷𝐸𝐴 𝑞𝑀𝐷𝐸𝐴 𝑟𝐶𝑂2
 𝑞𝐶𝑂2

 

Sadegh (2015) 0.13445 0.54315 0.75 2.45 

Al-Rashed (2012) 4.2624 3.42 0.92 1.4 

Faramarzi* (2009) 1.67 1.56 5.741 6.0806 

Prausnitz (1975) –  – 1.3 1.12 
* = CO2 parameters obtained from Thomsen et al., 1999. 

  

 As stated, Sadegh et al., 2015, reported a calculated volume and surface area 

parameters of MDEA lower than that of CO2, which shouldn’t be accurate considering 

MDEA’s molecular structure being larger than CO2. Al-Rashed et al., 2012, used 

values for 𝑟𝐶𝑂2
 and 𝑞𝐶𝑂2

 reported for water by Prausnitz, 1975, even though he reported 

it to be different for CO2 as can be observed. Faramarzi et al., 2009, also reported lower 

size parameters for MDEA compared to CO2, where the reference of Thomsen et al., 

1999, reports 𝑟𝐶𝑂2
 and 𝑞𝐶𝑂2

 much higher than what he used for water (Prausnitz 

parameters). Sandler et al, 2017, proposed a group contribution method, where a 

molecule is considered to be a collection of functional groups where their size 

parameters summation would give an accurate approximation of the whole structure. 

Although this group contribution method reports different water size parameters than 

Prausnitz, 1975, it follows a logic structure that normalizes molecules used by this 

method.  
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4. Theoretical Foundation 

4.1  Equation of State – Classic Peng-Robinson 

Real gases differentiate from ideal gases by the influence of intermolecular 

interactions, attractive and repulsive, on its volumetric behavior. For this matter, it is 

common to apply an adequate equation of state (EOS) capable of describing said 

overall behavior. Therefore, for the purpose of this work, the classic Peng-Robinson 

equation of state (Peng et al., 1976) was chosen. 

𝑃 =
𝑅𝑇

𝜐 − 𝑏
−

𝑎(𝑇)

𝜐(𝜐 + 𝑏) + 𝑏(𝜐 − 𝑏)
 (1) 

where P is the mixture molar pressure, 𝜐 is the fluid molar volume, R is the universal 

gas constant and T is the absolute temperature. The energy parameter, 𝑎, and the 

covolume parameter, b, can be expressed at the critical point as: 

𝑎 =  0.45724
𝑅2𝑇𝑐

2

𝑃𝑐
𝛼(𝑇);   𝑏 = 0.0778

𝑅𝑇𝑐

𝑃𝑐
 (2) 

where 𝛼 is a dimensionless function of reduced temperature, 𝑇𝑟 , and acentric factor, 𝜔, 

which corrects for temperatures other than the critical. There are several alpha (𝛼) 

functions that were developed throughout the years, such as, Mathias and Copeman et 

al., 1983, Trebble and Bishnoi et al., 1987, Twu et al., 1995, and Coquelet et al., 1995, 

but the classical form can be described as: 

𝛼(𝑇) = [1 + 𝑚(1 − √𝑇𝑟)]
2
 ;   𝑇𝑟 =

𝑇

𝑇𝑐
 (3) 

𝑚 =  0.37464 + 1.54226𝜔 − 0.26992𝜔2 (4) 

where ω represents the acentric factor, which is zero for monoatomic fluids of spheric 

geometry, growing positive in magnitude as far as the molecular structure deviates 

from this spheric structural symmetry.   

Equation 1 can be rewritten to determine the molar volume of the saturated 

liquid and vapor phases by substituting the molar volume with the compressibility 

factor, Z. As such, the EOS turns into a cubic polynomial function, which yields three 

roots whenever the operating temperature is lower than the critical temperature of the 
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component. If we analyze the physical significance of these root values, the highest 

root is associated with the saturated vapor compressibility factor, 𝑍𝑣, the lowest root 

with the saturated liquid compressibility factor, 𝑍𝑙, and the intermediary root has no 

physical significance as is associated with an unstable equilibrium condition (𝑍∗).   

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 (5) 

where: 

𝐴 =
𝑎𝑃

𝑅2𝑇2
 ;    𝐵 =

𝑏𝑃

𝑅𝑇
 ;    𝑍 =

𝑃𝜐

𝑅𝑇
 

(6) 

These equations are valid only for pure components, but can be modified to 

predict the components behavior inside a mixture, with the addition of a binary 

interaction parameter 𝑘𝑖𝑗, resulting in the following relations. 

𝑃𝑚𝑖𝑥 =
𝑅𝑇

𝜐𝑚𝑖𝑥 − 𝑏𝑚𝑖𝑥
−

𝑎𝑚𝑖𝑥𝛼(𝑇)

𝜐𝑚𝑖𝑥(𝜐𝑚𝑖𝑥 + 𝑏𝑚𝑖𝑥) + 𝑏𝑚𝑖𝑥(𝜐𝑚𝑖𝑥 − 𝑏𝑚𝑖𝑥)
 (7) 

𝑎𝑚𝑖𝑥 = ∑∑𝑦𝑖𝑦𝑗𝑎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

;   𝑎𝑖𝑗 = √𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗) ;  𝑏𝑚𝑖𝑥 = ∑𝑦𝑖𝑏𝑖

𝑛

𝑖=1

 (8) 

𝑎𝑖 =  0.45724
𝑅2𝑇𝑐,𝑖

2

𝑃𝑐,𝑖
𝛼𝑖(𝑇);  𝑏𝑖 = 0.0778

𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖
 (9) 

𝛼𝑖(𝑇) = [1 + 𝑚𝑖(1 − √𝑇𝑟)]
2
 ;   𝑇𝑟,𝑖 =

𝑇

𝑇𝑐,𝑖
 (10) 

𝑚𝑖 =  0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔𝑖
2 (11) 

where ‘n’ is the number of components, 𝜐𝑚𝑖𝑥 is the mixture molar volume, and 𝑘𝑖𝑗 can 

be considered zero whenever the molecules in the binary pair have similar size and 

chemical nature, otherwise they can be determined using approximation models 

compared to experimental data. 

 These binary interaction parameters can be found by fitting the equation of state 

to vapor – liquid equilibrium mixture data, and the combining rules of Equation 8 are 

referred to as the van der Waals one-fluid mixing rules, since both the mixture and the 
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pure fluids are being described by the same equation of state, albeit the mixture 

becomes concentration dependent. 

4.2  Fugacity coefficient and Fugacity 

In the presence of intermolecular interactions, exerted pressure is no longer 

equal to its pressure value calculated by the EOS, on the basis that said interactions 

will deviate from the ideal behavior. As such, the corrected pressure is called fugacity 

and can be described as follows. 

𝑓𝑣 = 𝜑𝑣. 𝑃 →  𝜑𝑣 =
𝑓𝑣

𝑃
  (12) 

lim
𝑃→0

𝜑𝑣 = 1 →  lim
𝑃→0

𝑓𝑣 = 0 (13) 

where 𝜑𝑣 is the correction factor of pressure, called fugacity coefficient, and 𝑓𝑣 is the 

fugacity. Therefore, the fugacity coefficient measures how far the real gas moves away 

from the ideal behavior, and tends to unity when the pressure tends to zero, at which 

limit the effects of intermolecular interactions initially present will not be perceptible.  

Outside the limits from Equation 13, there are two possible scenarios: 

predominance of repulsive interactions, in which case, there is an increase in the 

exerted pressure in relation to the ideal gas resulting in a fugacity coefficient higher 

than unity, and predominance of attractive interactions, where the opposite occurs and 

fugacity coefficient is a positive number between zero and one. In this sense, the 

fugacity coefficient becomes useful for pure fluids chemical potential calculations 

based on knowledge of the molar Gibbs energy of an ideal gas. The fundamental 

relations for molar Gibbs energy of an ideal and real gases makes it so that they become 

a function solely based on temperature and pressure of the gas. 

𝑑𝑔∗,𝑣 = −𝑠∗,𝑣. 𝑑𝑇 + 𝑣∗,𝑣. 𝑑𝑃  (14) 

where the superscript “*” relates to a reference state, which in this case, is the ideal 

pure gas, and the "𝑣" superscript relates to real vapor phase behavior. If the temperature 

is fixed, and correlating pressure to fugacity for real gas as described in Equation 12, 

the following equations.  
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𝑑𝑔∗)𝑇 = 𝑣∗. 𝑑𝑃 =
𝑅. 𝑇

𝑃
 . 𝑑𝑃 = 𝑅. 𝑇. 𝑑𝑙𝑛𝑃  (15) 

𝑑𝑔𝑣)𝑇 = 𝑣𝑣. 𝑑𝑃 = 𝑅. 𝑇. 𝑑𝑙𝑛𝑓𝑣  (16) 

𝑑(𝑔𝑣 − 𝑔∗) = (𝑣𝑣 −
𝑅. 𝑇

𝑃
) . 𝑑𝑃 = 𝑅. 𝑇. 𝑑𝑙𝑛 (

𝑓𝑣

𝑃
) = 𝑅. 𝑇. 𝑙𝑛𝜑𝑣 

(17) 

 By integrating Equation 17 from its ideal gas limit to its real gas limit, we get 

the following relations. 

∫ 𝑑(𝑔𝑣 − 𝑔∗)
𝑔𝑣−𝑔∗

0

= ∫ (𝑣𝑣 −
𝑅. 𝑇

𝑃
)

𝑃

𝑃→0

. 𝑑𝑃 = 𝑅. 𝑇 ∫ 𝑑𝑙𝑛𝜑𝑣
𝑙𝑛𝜑𝑣

0

  (18) 

𝑔𝑣 − 𝑔∗ = 𝑅. 𝑇. 𝑙𝑛𝜑𝑣 =  ∫ (𝑣𝑣 −
𝑅. 𝑇

𝑃
)

𝑃

𝑃→0

. 𝑑𝑃 
(19) 

 Therefore, if the fugacity coefficient is known, the molar Gibbs energy of the 

real pure gas, in other words, its chemical potential, can be calculated from the value 

in absence of interaction between molecules. The calculation of said fugacity 

coefficient can also be used for the liquid phase, and requires the usage of a volumetric 

EOS explicit in molar volume, 𝑣𝑣,𝑙(𝑇, 𝑃). 

𝑔𝑣,𝑙(𝑇, 𝑃) = 𝑔∗(𝑇, 𝑃) + 𝑅𝑇𝑙𝑛𝜑𝑣,𝑙  (20) 

𝑙𝑛𝜑𝑣,𝑙 = ∫ (
𝑣𝑣,𝑙

𝑅𝑇
−

1

𝑃
)

𝑃

𝑃→0

. 𝑑𝑃 
(21) 

 Usually, fluid volumetric equations of state are explicit in pressure, which 

requires a slight alteration in the integral variable from 𝑣 to P. Applying Equation 6 for 

the compressibility factor, we arrive at the function capable of calculating fugacity 

coefficient with the corresponding molar volume EOS. 

∫ (
𝑣𝑣,𝑙

𝑅𝑇
−

1

𝑃
)

𝑃

𝑃→0

. 𝑑𝑃 = 𝑍 − 1 − ln𝑍 − ∫
𝑃

𝑅. 𝑇
−

1

𝑣

𝑣

𝑣→∞

. 𝑑𝑣 (22) 

 Finally, by inserting Equation 21 into 22, and considering the Peng-Robinson 

EOS, the characteristic function used into the thermodynamic model can be written as 

follows.  
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ln𝜑𝑣,𝑙 = 𝑍𝑣,𝑙 − 1 − ln 𝑍𝑣,𝑙 − 𝐵 −
𝐴

2√2
ln (

𝑍𝑣,𝑙 + (1 + √2). 𝐵

𝑍𝑣,𝑙 + (1 − √2). 𝐵
) (23) 

  Therefore, by solving Equation 5, it is possible to arrive at the fugacity 

coefficient for both vapor and liquid phase of a system in a determined temperature and 

pressure.  

4.3  Real mixture: φ – φ approach 

The calculations for vapor-liquid equilibrium involving real mixtures requires 

the development of chemical potential equations capable of accounting for interactions 

between components in the vapor phase, as well as, asymmetry in sizes, shapes and 

chemical natures in the liquid phase. Therefore, an analogous procedure to the one 

previously developed to arrive at Equation 20 can be designed to include the concept 

of components molar partial volume in our mixture and to establish its connection to 

the variation of chemical potential and pressure. 

This component molar partial volume can be defined as the derivative of the 

mixture volume in relation to the number of moles of said component, while fixing the 

temperature, pressure and number of mols of the other components. Since the volume 

of a mixture can be obtained from deriving Gibbs free energy in relation to the pressure, 

we can establish the following relations. 

𝑣̅𝑖 = (
𝜕𝑉

𝜕𝑛𝑖
)
𝑇,𝑃,𝑛𝑗

 ;    𝑉 = (
𝜕𝐺

𝜕𝑃
)
𝑇,𝑃,𝑛⃗ 

  (24) 

𝑣̅𝑖 =
𝜕

𝜕𝑛𝑖
(
𝜕𝐺

𝜕𝑃
) =

𝜕

𝜕𝑃
(
𝜕𝐺

𝜕𝑛𝑖
) =

𝜕𝜇𝑖

𝜕𝑃
)

𝑇,𝑥 
 

(25) 

𝑑𝜇𝑖)𝑇,𝑥 = 𝑣̅𝑖𝑑𝑃 (26) 

Therefore, the partial volume of any component measures how sensitive its 

chemical potential is in relation to system pressure. As a starting point, Equation 26 

can be used for a mixture of ideal gases, which gives the following. 

𝑑𝜇𝑖
∗)𝑇,𝑦⃗ = 𝑅. 𝑇. 𝑑𝑙𝑛(𝑦𝑖. 𝑃) = 𝑅. 𝑇. 𝑑𝑙𝑛𝑃 =

𝑅. 𝑇

𝑃
𝑑𝑃 

(27) 
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 Since the chemical composition of the gas is fixed, for a mixture of ideal gases 

we have: 

𝑑𝜇𝑖
∗)𝑇,𝑦⃗ = 𝑅. 𝑇. 𝑑𝑙𝑛𝑃𝑖 (28) 

 Through the effect of fluid characteristic intermolecular interactions, the partial 

pressure must be replaced by the fugacity of the component in the mixture, which can 

be defined analogously to the definition used in the field of thermodynamics applied to 

pure fluids of Equation 12: 

𝑓𝑖
𝑣 = 𝜑̂𝑖

𝑣. 𝑃𝑖 (29) 

lim
𝑃→0

𝑓𝑖
𝑣 = lim

𝑣→∞
𝑓𝑖

𝑣 = 𝑃𝑖    →    lim
𝑃→0

𝜑̂𝑖
𝑣 = lim

𝑣→∞
𝜑̂𝑖

𝑣 = 1 (30) 

where, 𝜑̂𝑖
𝑣, represents the fugacity coefficient of the ith component in the mixture, 

being the partial pressure correction factor for the effect of intermolecular interactions. 

On the limit in which the mixture behaves as ideal (pressure tending to zero or volume 

tending to infinity) the fugacity becomes identical to the partial pressure of the 

component.  

Following the same train of thought of Equation 14 to 21 we arrive at similar 

equation for fugacity coefficient of each component in relation to the selected EOS. 

𝑙𝑛𝜑̂𝑖
𝑣 = ∫ (

𝑣̅𝑖
𝑣

𝑅𝑇
−

1

𝑃
)

𝑃

𝑃→0

. 𝑑𝑃 (31) 

Similarly, as was explained in its pure component counterpart, fluid volumetric 

equations of state are explicit in pressure, which requires a slight alteration in the 

integral variable from 𝑣 to P. 

𝑙𝑛𝜑̂𝑖
𝑣 = −(ln 𝑍𝑣 + ∫ [

1

𝑅. 𝑇
.
𝜕𝑃

𝜕𝑛𝑖
)
𝑇,𝑣,𝑛𝑗≠𝑖

−
1

𝑣
]𝑑𝑣

𝑣𝑣

𝑣→∞

) (32) 

It should be noted that the implementation of the above equation requires 

knowledge of the molar volume and vapor phase compressibility factor, both properties 

resulting from the resolution of the volumetric EOS chosen for the fluid of interest, 

which must be extended to take into account the effect of chemical composition. This 
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task is carried out by introducing mixing rules, which, in general terms, determine how 

the chemical composition of the mixture affects the values of the characteristic 

parameters of the mixture equation. One such example is the binary interaction 

parameter, 𝑘𝑖𝑗, explained in Equation 8. 

Symmetric equations can be used to calculate chemical potentials in a real 

liquid mixture, being the molar volume and phase compressibility factor also resulting 

from the resolution of the EOS representative of the fluid fixing T, P and the overall 

composition of the mixture. The vapor – liquid equilibrium can be determined as 

follows. 

𝑓𝑖
𝑣 = 𝑓𝑖

𝑙 (33) 

𝑓𝑖
𝑣 = 𝑦𝑖𝜑𝑖

𝑣𝑃   ;    𝑓𝑖
𝑙 = 𝑥𝑖𝜑𝑖

𝑙𝑃  (34) 

This method of evaluating the behavior of vapor and liquid phases only with 

concepts of fugacity coefficient at equilibrium is called the φ – φ method. When we 

apply the classic Peng – Robinson EOS, the fugacity coefficient of each component 

can be obtained as follows. 

ln𝜑𝑖
𝑣,𝑙 =

𝑏𝑖

𝑏
(𝑍𝑣,𝑙 − 1) − ln(𝑍𝑣,𝑙 − 𝐵)

+
𝐴

𝐵. 2√2
((2∑𝑥𝑗𝑎𝑖𝑗

𝑁

𝑗=1

) 𝑎⁄ −
𝑏𝑖

𝑏
) ln (

𝑍𝑣,𝑙 + (1 − √2)𝐵

𝑍𝑣,𝑙 + (1 + √2)𝐵
) 

(35) 

 In this works present algorithm, there is a need to initially guess the systems 

pressure, which may result in some discrepancies in the equality of Equation 33, caused 

by inaccuracies in the EOS ability to predict 𝜑𝑖
𝑣,𝑙

. 

It becomes possible to establish a generic vapor pressure calculation algorithm 

for real fluids as a function of temperature based on the thermodynamic knowledge 

developed in Equation 23. This type of algorithm has been called as “reactive bubble 

pressure algorithm” by Harandi et al., 2021, however, since the authors don’t elaborate 

on their convergence criterion, this work developed the following methodology. 



14 

 

4.3.1 Pure Component Systems 

For the calculation of pure component systems, we establish an initial guess for 

the saturated pressure, followed by the calculation of the EOS interaction parameters 

and root solution of its cubic form as described in the previous sections. After obtaining 

the fugacity coefficients of each phase with Equation 35, at equilibrium, molar Gibbs 

energy in each phase should be equal, and so should be their fugacity coefficients. This 

fact allows the definition of our first convergence criterion. 

|
𝜑𝑙

𝜑𝑣
− 1| < 𝜀 (36) 

where 𝜀, is the defined tolerance of convergence, usually a number in an order of 

magnitude lesser than 10-5 that if reached, the pressure is found. If the convergence 

criterion isn’t reached, a new guess for pressure must be updated at the first step in 

accordance to the following relation based on Equation 21. 

𝑃1 = 𝑃0. (
𝜑𝑖

𝑙

𝜑𝑖
𝑣) (37) 

[
𝑣𝑖

𝑙 − 𝑣𝑖
𝑣

𝑅. 𝑇
] =

𝑑𝑙𝑛(𝑓𝑖
𝑙 𝑓𝑖

𝑣⁄ )

𝑑𝑃
=

𝜕𝑙𝑛(𝜑𝑖
𝑙 𝜑𝑖

𝑣⁄ )

𝜕𝑃
)

𝑇

< 0 
(38) 

 At a fixed temperature, the derivative of Equation 38 will always be negative, 

since liquid molar volume is lower than vapor molar volume. Therefore, the physics 

principle behind the convergence criterion logic of Equation 37 can be understood as 

follows: if the ratio is higher than one, the pressure needs to increase in order to lower 

that ratio, if it is lower than one, the opposite is true. This strategy is useful to predict 

saturated pressure of pure components, and is an important part of this works 

optimization algorithm for the acentric factor. 

4.3.2 Multicomponent Systems 

The second convergence criterion pertains to the equality of Equation 33, in 

which the partial Gibbs free energy of both phases should be equal. An initial guess for 

the composition of the system at the corresponding initial guess of pressure and fixed 

temperature needs to be set as to allow the calculation of said Gibbs free energy. As 

such, we can establish the following relations: 
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𝐾𝑖 =
𝑥𝑖𝜑𝑖

𝑙

𝑦𝑖𝜑𝑖
𝑣   → (𝐾𝑖 − 1)2 < 𝜀𝑖   (39) 

where, 𝐾𝑖, is a constant that should be equal to unity at equilibrium, and 𝜀𝑖, is another 

defined tolerance of convergence for each component, usually a number in an order of 

magnitude lesser than 10-5 that if reached, the vapor – liquid equilibrium is found. 

Instead of getting the absolute value of the difference 𝐾𝑖 − 1, we decided to raise its 

square value to increase the speed of the algorithm. 

 The logic behind Equation 39 loop of convergence is as follows: if the defined 

tolerance, 𝜀𝑖, isn’t reached for all components present in the system, then the initial 

guess of composition should be updated as follows: 

𝑦𝑖,1 = 𝑦𝑖,0. 𝐾𝑖 (40) 

 Since the only update to the algorithm is the composition of the vapor phase, 

the components vapor fugacity coefficient are recalculated using the new values. 

However, after achieving the defined tolerance for all components in the mixture, the 

composition, 𝑦, tends to be higher than unity, a physics incongruency, since the initial 

pressure used was a guess value. As such, there is a need for a second loop inside the 

algorithm. 

𝑦 =  ∑𝑦𝑖

𝑁

𝑖=1

   ∴    |𝑦 − 1| ≥ 𝜀′  →   𝑃1 = 𝑃0. 𝑦 (41) 

The new pressure will then be used to recalculate the fugacity coefficient of 

both phases, restarting the loop described in Equation 39. This condition creates a 

pressure calculation outer loop after the initial composition loop. 

4.4  Real mixture: γ – φ approach 

There are situations where it is not possible to find an EOS capable of 

describing the volumetric properties of the fluid’s liquid state. This usually occurs 

when, in the fluid, coexist molecules with significant differences in shape, size and 

chemistry nature. In this way, in order to extend the formalism of classic 

thermodynamics to these situations it becomes necessary to find a way to calculate the 
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chemical potential of components in the liquid phase without the need for evaluation 

of fugacity coefficients. For this, the concept of chemical activity must be introduced, 

which can be understood as the ratio between the fugacity of the component in the 

mixture divided by the fugacity of the same component in some reference state. 

𝑎𝑖 =
𝑓𝑖
𝑓𝑖

+  (42) 

where, 𝑎𝑖, is the component’s chemical activity, 𝑓𝑖, is the component’s fugacity in the 

mixture and  𝑓𝑖
+, is the same component’s fugacity in the defined set of standard 

conditions. As such, the chemical potential of any component in a liquid mixture can 

be calculated by expanding on Equations 20, 26 and 27: 

 ∫ 𝑑
𝜇𝑖

𝑙−𝜇𝑖
∗

0

(𝜇𝑖
𝑙 − 𝜇𝑖

∗) =  ∫ (𝑣̅𝑖
𝑙 −

𝑅. 𝑇

𝑃
) . 𝑑𝑃

𝑃

𝑃→0

= 𝑅. 𝑇 ∫ 𝑑 ln 𝜑̂𝑖
𝑙

ln 𝜑̂𝑖
𝑙

0

  (43) 

𝜇𝑖
𝑙 = 𝜇𝑖

∗ + 𝑅. 𝑇. ln 𝜑̂𝑖
𝑙    ∴   𝜇𝑖

∗ = 𝑔𝑖
∗ + 𝑅𝑇 ln 𝑥𝑖   (45) 

𝜇𝑖
𝑙(𝑇, 𝑃, 𝑥 ) = 𝑔𝑖

𝑙(𝑇, 𝑃) + 𝑅𝑇 ln (
𝑥𝑖. 𝜑̂𝑖

𝑙

𝜑𝑙
)   (46) 

Taking into consideration that the mixture’s pressure is equal to the pressure of 

the reference state (pure component), it is possible to manipulate Equation 46 to 

calculate the chemical potential of the liquid phase based on Equation 42: 

𝜇𝑖
𝑙 = 𝑔𝑖

𝑙 + 𝑅𝑇 ln (
𝑥𝑖. 𝑃. 𝜑̂𝑖

𝑙

𝑃. 𝜑𝑙
) = 𝑔𝑖

𝑙 + 𝑅𝑇 ln(
𝑓𝑖

𝑙

𝑓𝑖
𝑙) =  𝑔𝑖

𝑙 + 𝑅𝑇 ln 𝑎𝑖
𝑙    (47) 

𝑎𝑖
𝑙 = 𝑥𝑖. (

𝜑̂𝑖
𝑙

𝜑𝑖
𝑙)    (48) 

where, 𝑎𝑖
𝑙, represents the chemical activity of a component in the mixture, being 

directly related with the ratio between fugacity coefficient in the mixture and as a pure 

component. This ratio of fugacity coefficients is called chemical activity coefficient, 

𝛾𝑖
𝑙. 

𝛾𝑖
𝑙 = 

𝜑̂𝑖
𝑙

𝜑𝑖
𝑙         ∴      𝑎𝑖

𝑙 = 𝑥𝑖 . 𝛾𝑖
𝑙 (49) 
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 Chemical activity coefficients can be determined from functions known as 

excess Gibbs energy (𝐺𝑒𝑥
𝑙 ). In this work the Universal Quasi-Chemical model, 

UNIQUAC, is going to be used to calculate the excess Gibbs energy.  

𝐺𝑒𝑥
𝑙 (𝑇, 𝑃, 𝑛⃗ ) = 𝑅𝑇 ∑𝑛𝑖 ln 𝛾𝑖

𝑙

𝑖

 (50) 

The UNIQUAC model treats the mixture as a set of distributed molecules in an 

incompressible lattice of coordination number equal to Z (number of first neighbors 

with respect to a given central atom, varying between 8 and 10 for liquids), where each 

molecule is described by a representative parameter of its contact area (𝑞𝑖) and “size” 

(𝑟𝑖), the latter being the number of constituent segments of the molecule. In this way, 

two fractions can be defined for each component, its volume fraction (∅𝑖) and its 

fraction of area (𝜃𝑖), both defined below (Prausnitz et al., 1975). 

∅𝑖 =
𝑥𝑖. 𝑟𝑖

∑ 𝑥𝑖 . 𝑟𝑖𝑖
 (51) 

𝜃𝑖 = 
𝑥𝑖 . 𝑞𝑖

∑ 𝑥𝑖 . 𝑞𝑖𝑖
   (52) 

 These dimensional parameters are going to be evaluated based on the group 

contribution method of Prausnitz, in which a molecule can be determined to be a 

collection of functional groups, each with its own 𝑟𝑖 and 𝑞𝑖. As such, in this work, these 

parameters are going to be determined based on the values reported by professor J. 

Gmehling of the University of Oldenburg, Germany, presented at Sandler’s “Chemical, 

Biochemical, and Engineering Thermodynamics fifth edition”. As reported in the 

literature review of Sadegh et al., 2015, there isn’t a defined consensus for these 

parameters, and by using the group contribution method, we intend to avert possible 

errors.  

The excess Gibbs energy in the UNIQUAC approach also involves the effect 

of binary interactions between different components. This effect is captured by the 

parameter 𝜏𝑖𝑗 of each binary, which is related to the potential energies of interaction 

between 𝑖𝑗 pairs (𝑢𝑖𝑗) and 𝑖𝑖 pairs (𝑢𝑖𝑖), with 𝑖 and 𝑗 varying among all components 

present in the system. 
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𝜏𝑖𝑗 = exp (
−𝑤𝑖𝑗

𝑇
)   ;    𝑤𝑖𝑗 = 𝑤𝑖𝑗

0 + 𝑤𝑖𝑗
𝑇(𝑇 − 298.15)   ;    𝑤𝑖𝑗 = 𝑢𝑖𝑗 − 𝑢𝑗𝑗  (53) 

where T is the temperature of the system and 𝑤𝑖𝑗
0  and 𝑤𝑖𝑗

𝑇  are the UNIQUAC adjustable 

interaction parameters assumed to be temperature dependent. 

In the expression for 𝐺𝑒𝑥 the effect of the shape and size of the molecules is 

concentrated in the term described as combinatorial, while the effect of intermolecular 

interactions in the residual term. Note that area fractions appear in both terms, because 

the area of a given molecule affects the ability to allocate it in the network 

(combinatorial term), as well as how available it is to interact (residual term).  

It is possible to contemplate the equations for both contributions mentioned in 

a format suitable for multi-component blends. 

𝐺𝑒𝑥(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑜𝑟𝑖𝑎𝑙)

𝑅𝑇
=  ∑𝑥𝑖 ln

𝜙𝑖

𝑥𝑖
𝑖

+
𝑍

2
∑𝑥𝑖𝑞𝑖 ln

𝜃𝑖

𝜙𝑖
𝑖

 (54) 

𝐺𝑒𝑥(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

𝑅𝑇
=  − ∑𝑞𝑖𝑥𝑖 ln (∑𝜃𝑗𝜏𝑗𝑖

𝑗

)

𝑖

   (55) 

 Of course, as expected, the model for calculating the activity coefficient 

chemistry of any component will also involve two contributions, one being from 

combinatorial nature and the other residual, the first associated with the effect of shape 

and size of molecules and the second determined by the nature of the binary interactions 

present. 

ln 𝛾𝑖 = ln 𝛾𝑖(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑜𝑟𝑖𝑎𝑙) + ln 𝛾𝑖(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) (56) 

𝑙𝑖 =
𝑍

2
(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1)  (57) 

ln 𝛾𝑖(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑜𝑟𝑖𝑎𝑙) = ln
𝜙𝑖

𝑥𝑖
−

𝑍. 𝑞𝑖

2
ln

𝜙𝑖

𝜃𝑖
+ 𝑙𝑖 −

𝜙𝑖

𝑥𝑖
 ∑𝑥𝑗𝑙𝑗

𝑗

  (58) 
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ln 𝛾𝑖(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) = 𝑞𝑖 [1 − ln(∑𝜃𝑗𝜏𝑗𝑖
𝑗

) − ∑
𝜃𝑗𝜏𝑖𝑗

∑ 𝜃𝑘𝜏𝑘𝑗𝑘
𝑗

]   (59) 

 In this work, the binary interaction parameters pertaining the potential energy 

of interaction, 𝑢𝑖𝑗, are going to be optimized to allow for accurate and scalable 

predictions of systems pressure following a similar methodology applied to the φ – φ 

approach. The optimization of acentric factor for pure components should follow the 

same methodology as the one presented for the φ – φ method, since in this case, there 

is no difference in shape, size and chemical nature of present molecules in the system. 

 However, for multicomponent systems, there is need for a slight alteration 

regarding the presence of activity coefficient for the liquid phase. Analogous to the 

previous model, an initial guess of pressure and composition is set into the algorithm, 

which will be used to predict the vapor – liquid equilibrium similarly to Equation 36, 

with the corresponding substitution of activity coefficient for the liquid phase. 

𝐾𝑖 =
𝑥𝑖 . 𝛾𝑖

𝑙. 𝑃𝑖
𝑠𝑎𝑡

𝑦𝑖. 𝜑𝑖
𝑣. 𝑃

  → (𝐾𝑖 − 1)2 < 𝜀𝑖  (60) 

where, 𝑃𝑖
𝑠𝑎𝑡, is the saturated pressure, 𝛾𝑖

𝑙, is the activity coefficient and 𝜑𝑖
𝑣, is the 

fugacity coefficient of each component. The defined tolerance, 𝜀𝑖, should also be a 

number of lower magnitude than 10-5.  

 The logic for convergence follows the exact same methodology as the one 

described by Equations 40 and 41 of the φ – φ method. 

4.5  Empirical “Non – random” mixing rule 

The empirical “non-random” mixing rule aims to overcome the difficulty of 

binary interaction parameter, 𝑘𝑖𝑗, to describe system interaction with polar and 

asymmetric compounds. The chemical nature of these systems develops regions of 

non-uniform distribution at the molecular level, which should be accounted for when 

calculating the EOS energy parameters (Poormohammadian et al., 2015), as described 

below. 
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𝑎 = 𝑎𝐶 + 𝑎𝐴  (60) 

𝑎𝐴 = ∑∑−𝑙𝑖𝑗(𝑥𝑖 − 𝑥𝑗)𝑥𝑖𝑥𝑗(𝑎𝑖𝑎𝑗)
1/2

𝑗𝑖

   ;    𝑙𝑖𝑗 = −𝑙𝑗𝑖 
(60) 

where 𝑎𝐴 is the asymmetric term due to polarity, 𝑙𝑖𝑗 is the binary interaction coefficient 

for the asymmetric term and 𝑎𝐶 is the conventional random mixing term described in 

Equation 8. 

4.6  Wong – Sandler mixing rule 

As was explained in section 2.1, the van der Waals one-fluid mixing rule is used 

in this work to describe the components interaction effect in the classic Peng – 

Robinson’s equation of state’s parameters. However, the simplicity of this mixing rule 

may not be appropriate whenever the underlining system deviates considerably from 

the ideal behavior.  

To try and solve this issue, the Wong – Sandler mixing rule was proposed as 

the combination of an equation of state and excess Gibbs energy, allowing simple EOS 

to describe all mixtures. Since, in this work, we intend to predict the liquid – vapor 

equilibrium of binary systems involving CO2, which has a low critical temperature and 

form a highly nonideal CO2 – H2O binary system, this mixing rule shows enough 

potential to improve on our classic Peng – Robinson thermodynamic model.  

It is described in Wong et al., 1992, that through the analysis of the second virial 

coefficient of any cubic EOS, it is feasible to arrive at the following relations for 

calculating the interaction parameters of said EOS. 

𝑎 = 𝑏 [
𝐺𝑒𝑥

𝐶∗
+ ∑

𝑥𝑖𝑎𝑖

𝑏𝑖
𝑖

]   ;    𝑏 =

∑ ∑ 𝑥𝑖𝑥𝑗 (𝑏 −
𝑎
𝑅𝑇)

𝑖𝑗
𝑗𝑖

1 −
𝐹(𝑥)
𝑅𝑇

 (61) 

𝐹(𝑥) =
𝐺𝑒𝑥

𝐶∗
+ ∑𝑥𝑖

𝑎𝑖

𝑏𝑖
𝑖

  (62) 
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(𝑏 −
𝑎

𝑅𝑇
)
𝑖𝑗

=

(𝑏 −
𝑎
𝑅𝑇)

𝑖
+ (𝑏 −

𝑎
𝑅𝑇)

𝑗

2
 (1 − 𝑘𝑖𝑗) (63) 

where 𝐺𝑒𝑥 denotes the excess Gibbs energy that will be obtained using the UNIQUAC 

model, 𝐶∗ is a constant whose value depends upon the EOS used, being equal to 

−0.62323 for Peng – Robinson, 𝑘𝑖𝑗 is the binary interaction parameter and 𝐹(𝑥) is a 

function of composition. 

4.7  Overall thermodynamic methodology 

This work’s proposed algorithm is our take in the so-called “reactive bubble 

pressure algorithm”, starting from lower complexity of pure component systems, and 

incrementally optimizing model parameters whenever there is an increase in 

complexity towards binary and multicomponent systems. In this section, a step-by-step 

procedure, as well as, the reasoning behind the initial guesses used, are described. 

As such, to corroborate the accuracy of the optimized parameters, the predicted 

pressure and compositions are compared with experimental data and evaluated based 

on the absolute relative average deviation, ARD%, of each dataset. For the pure 

component systems, the objective function minimized by the “fminsearch” 

MATLAB’s function, based on the predicted pressure obtained from guesses of the 

acentric factor, ω, and can be described as follows:  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑|
𝑃𝑐𝑎𝑙 − 𝑃𝑒𝑥𝑝

𝑃𝑐𝑎𝑙
| (64) 

 The logic behind the “fminsearch” function is to arrive at an objective function 

local minimum value by altering the argument value of its supplied model parameter. 

Since it obtains a local minimum, it is recommended to run this function with multiple 

different initial guesses, on the possibility that there is a global minimum lower than 

your initial guesses local minimum. If multiple arguments converge to the same value, 

it is possible to assume that it is a global minimum for that application. A modelling 

flowchart for the optimization of acentric factor is described in Figure 1. 
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Figure 1. Pure component modelling flowchart for acentric factor optimization. 

 The sequential steps for pure components systems saturated pressure 

calculations can be described as follows: 

1) Choose an equation of state capable of predicting the behavior or real gases, 

preferably one that has a well-defined polynomial form with thermodynamic 

significant roots, such as this work’s classic Peng – Robinson.  

2) Input intrinsic molecular properties necessary for the calculation, in this case, 

critical pressure, 𝑃𝑐, and critical temperature, 𝑇𝑐, as well as, supplying accurate 

experimental data corroborated by literature. This experimental data will determine 

the temperatures at which the algorithm will predict the pressure. 

3) Set an initial guess for the acentric factor, ω, which in this work, was considered to 

be equal to the literature values for each component (Harandi et al., 2021). The 

following steps 4 – 8 are optimized inside the objective function minimization 

procedure described in Equation 64. 
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4) Set an initial guess for the system pressure, 𝑃0, which is used in the EOS’s cubic 

form of as described by Equation 6.  

a. In this work, the experimental data’s temperature range was previously 

sorted in an ascending order. That way, the initial guess of pressure for the 

first dataset was equal to its experimental data equivalent. After the first 

predicted pressure is calculated by the model, its value is supplied as the 

initial guess for the second dataset, as we believe it would give an 

approximate order of magnitude for that guess.  

b. If the model still find trouble converging in this step, because the 

experimental data isn’t sorted, or the system behaves erratically, it is 

recommended to always supply the experimental datapoint as the initial 

guess for pressure. 

5) Find the equation of state interaction parameters. In this work, classic Peng – 

Robinson requires the calculation of energy parameter, 𝑎, and covolume parameter, 

𝑏.  

6) Solve the cubic EOS form to obtain 𝑍𝑣 and 𝑍𝑙, reminding that the solution should 

present three roots when the temperature of the system is lower than the critical 

temperature of components. The higher value root is the vapor phase, while the 

lower value root is the liquid phase. 

7) Find the fugacity coefficients 𝜑𝑣 and 𝜑𝑙 using Equation 32 adapted to the selected 

EOS of Step 1. 

8) Check if the convergence criterion is achieved, updating the pressure according to 

Equation 38 in case it hasn’t. After the tolerance has been reached, print the value 

for acentric factor. 

For binary systems the flowchart has some modifications regarding the 

optimized interaction parameter and calculation structures and can be seen bellow. 



24 

 

 

Figure 2. Binary system modelling flowchart for interaction parameters optimization. 

The sequential steps for pure components systems saturated pressure calculations can 

be described as follows: 

1) Choose an equation of state and thermodynamic approach (𝜑 − 𝜑 𝑜𝑟 𝛾 − 𝜑).  

2) Input pure component parameters such as critical pressure, 𝑃𝑐, critical temperature, 

𝑇𝑐, and acentric factor, 𝜔, as well as, supplying accurate experimental data 

corroborated by literature. This experimental data will determine the temperatures 

at which the algorithm will predict the pressure. 

3) Set an initial guess for the interaction parameters according to the selected EOS 

and mixture rule. In this work, it is the interaction parameters, 𝑘𝑖𝑗 and 𝑙𝑖𝑗 for the 

classic Peng – Robinson with non-random mixing rule and UNIQUAC parameters 

𝑢12
0 , 𝑢12

𝑇 , 𝑢21
0 , 𝑢21

𝑇  for the Wong – Sandler mixing rule. The following steps 4 – 8 

are optimized inside the objective function minimization procedure described in 

Equation 64. 

4) Set an initial guess for the system pressure, 𝑃0 and composition, 𝑦0, which is used 

in the EOS’s cubic form of as described by Equation 6.  
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a. In this work, the experimental data’s temperature range was previously 

sorted in an ascending order. That way, the initial guess of pressure and 

composition for the first dataset was equal to its experimental data 

equivalent. After the first predicted pressure and composition are calculated 

by the model, their values are supplied as the initial guess for the second 

dataset, as we believe it would give an approximate order of magnitude for 

that guess.  

b. If the model still find trouble converging in this step, because the 

experimental data isn’t sorted, or the system behaves erratically, it is 

recommended to always supply the experimental datapoint as the initial 

guess. 

5) Find the equation of state pure parameters. In this work, classic Peng – Robinson 

requires the calculation of energy parameter, 𝑎𝑖, and covolume parameter, 𝑏𝑖.  

6) Solve the cubic EOS form to obtain 𝑍𝑣 and 𝑍𝑙, following the same logic as 

previously described. 

7) For 𝜑 − 𝜑 approach: Find the fugacity coefficients 𝜑𝑣 and 𝜑𝑙 using Equation 32 

adapted to the selected EOS of Step 1. For 𝛾 − 𝜑 approach: Find the activity 

coefficient, 𝛾𝑙 using Equation 56, and 𝜑𝑣 using Equation 32 adapted to the selected 

EOS of Step 1. 

8) Check if the convergence criterions are achieved, updating the pressure and 

composition of the gas phase according to Equation 38 in case it hasn’t. After the 

tolerance has been reached, print the value for the interaction parameters. 
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5. Results Discussion 

5.1  Pure components 

As previously stated, this work intends to determine all parameters used in its 

overall model calculations, as to not allow for potential propagated errors present in 

the literature to influence its results. The critical properties from the literature, and the 

experimental data temperature and pressure ranges can be observed in the following 

table: 

Table 2. Critical properties and experimental data ranges for the components. 

Component 

Critical 

Temperature 

(K) 

Critical 

Pressure 

(MPa) 

Acentric 

Factor 

(literature) 

Experimental Data 

Temperature 

Range (K) 

Experimental 

Data Pressure 

Range (kPa) 

Bibliographic 

Reference 

Water 647.3 22.12 0.344 293 – 571  
2.4E+00 – 

8.37E+03 

Dortmund Data 

Bank 

MDEA 677.1 3.70 1.24 293 – 402 
6.1E-04 – 

1.48E+00 
Noll et. al., 1998 

CO2 304.21 7.29 0.224 223 – 298 
6.79E+02 – 

6.44E+03 

Dortmund Data 

Bank 

 

The vapor-liquid systems were determined sequentially, starting from the least 

complex ones, the pure components, while moving towards greater complexity, the 

binary systems. As such, the acentric factor, ω, was calculated for each of the 

components, and the absolute average deviation, AAD, was compared with their 

corresponding literature values. 

5.1.1 Water 

The experimental data for vapor pressure of water was obtained from the 

Dortmund Data Bank (DDBST) website as shown in the appendix.  

The initial guess for pressure was set as the first experimental pressure of 2.400 

kPa, and the objective function for calculating the acentric factor was minimized using 

MATLAB “fminsearch” function. The initial guess value used for the minimization 

was its literature correspondent. 
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The optimization resulted in an acentric factor ω = 0.3275, which is a slight 

alteration to its literature counterpart of ω = 0.344. Both the optimized and literature ω 

were used to calculate the saturated pressure of 1000 equally distanced temperatures 

between the lowest and highest experimental values of temperature (K) in Figure 3.  

 

Figure 3. Calculated saturation pressure of water at low temperature (1) and high temperature (2), while using 

the optimized acentric factor, w = 0.3275 (-), and its literature counterpart, w = 0.344 (-). The experimental data 

from DDBST was plotted as well (□). 

 As can be observed, both values agree with the experimental data from DDBST, 

however, to further understand which deviates more, the absolute relative deviation 

pressure error of each point, and the absolute average deviation, AAD, were calculated 

and are shown in Figure 4. 
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Figure 4. Average relative and absolute deviations of pure water for the optimized (□) and literature 

(□) values of ω at different temperatures (K). 

 While the optimized ω resulted in better calculated saturation pressures at lower 

temperatures, which coincides with the temperature range in which chemical 

absorption processes in biogas purification occurs, at around 400 K there is a shift 

towards better results using the literature value. In this sense, the AAD% for the 

optimized ω was calculated as 2.81% while the literature ω resulted in 4.67%, 

demonstrating that, overall, the EOS is capable of predicting the saturated pressure 

across the temperature range, but the optimized ω should be better suited for the 

thermodynamic model, since the chemical absorption process usually occurs at 

temperatures lower than 400 K.  

5.1.2 MDEA 

Following the same methodology used for the water pure component, the initial 

guess value of ω was the literature value, and the initial pressure guess was the first 

experimental data of 6.10x10-4 kPa value, as described in Table 1.  
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The optimization resulted in ω = 1.0133, which is fairly different from the 

literature value of ω = 1.2400. Similarly, to the previous step, these values were used 

to plot the calculated saturated pressure at different temperatures and compared to its 

experimental data, as shown in Figure 5. 

 

Figure 5. Calculated saturation pressure of MDEA at low temperatures (1) and high temperature (2), while using 

the optimized acentric factor, w = 1.0133 (-), and its literature counterpart, w = 1.2400 (-). The experimental data 

from Noll et al., was plotted as well (□). 

 As can be observed, the literature value is not very well suited to calculate the 

saturated pressure of MDEA via the classic Peng – Robinson EOS, which decreases its 

viability when using it for more complex models involving other components. This fact 

is evident whenever we analyze the pressure errors and its AAD, as shown in Figure 6. 
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Figure 6. Average absolute deviation of pure MDEA for the optimized (1) and literature (2) values of ω at 

different temperatures (K). 

 Opposite to the errors obtained for the water saturated pressure, MDEA agreed 

with experimental data at higher temperatures inside the analyzed range. This fact 

could be associated with the increase in polarity of this component at lower 

temperatures, while PR-EOS being fundamentally and equation of state aimed at 

modelling apolar systems for petroleum cracking. 

Even though the optimized ω is apparently better for calculating the saturated 

pressure, it still resulted in an AAD% = 15.86, which can be concerning when using 

the model for binary calculations. However, the literature value expresses an 

astounding AAD% = 299.61, deviating a lot from experimental data.  

 The reason for this disparity between model and experimental data could be 

associated with the capacity of the EOS to accurately calculate the correct saturated 

pressure. Another reason could be the fact that the experimental data was gathered in 

1998 and could be outdated or low quality. Unfortunately, open-source data for the 

pure MDEA is limited, and we can only assume that our optimized ω should result in 

better binary models.  

5.1.3 CO2 

Since the overall objective of this work is the purification of CO2 from brute 

biogas production plants, it becomes apparent the need for pure CO2 parameters 
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optimization. The experimental data for vapor pressure of CO2 was also obtained from 

the Dortmund Data Bank (DDBST) website as shown in Table 1.  

The first apparent problem we encountered is the fact that CO2’s critical 

temperature of 304.21 K could prove to be a challenge when creating the vapor-liquid 

equilibrium diagrams, since the operating temperatures of the chemical absorption 

process usually ranges higher than its critical value. In these cases, CO2 would cease 

to behave as a standard vapor, displaying characteristics of both liquid and vapor 

phases, as a supercritical fluid. 

Nevertheless, the procedure for this optimization of ω was the same as for pure 

water and MDEA, since the available experimental data ranges from temperatures 

lower than its critical value. The optimized ω = 0.2039, which is similar to its literature 

counterpart of ω = 0.224 and the saturated pressure vs temperature plot can be seen in 

Figure 7. 

 

Figure 7. Calculated saturation pressure of CO2 at lower temperatures (1) and higher temperature (2), while 

using the optimized acentric factor, w = 0.2039 (-), and its literature counterpart, w = 0.224 (-). The experimental 

data from DDBST was plotted as well (□). 

 After analyzing the plots of all three pure components, it is fair to conclude that 

the classic Peng – Robinson EOS is accurate to calculate the saturated pressure of 

smaller and simpler molecules such as CO2 and water, but starts deviating from 

experimental data whenever the molecules present bigger and more complex chemical 
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nature, such as MDEA. Still, to evaluate the accuracy of the optimized acentric factor, 

the error plot and AAD% can be observed in Figure 8. 

 

Figure 8. Average absolute deviation of pure CO2 for the optimized (□) and literature (□) values of ω at different 

temperatures (K). 

 The optimized value of ω is shown to calculate more accurate saturated pressure 

across the entire temperature range, with and AAD% = 0.62, which is very agreeable 

with the experimental data. In this sense, the literature value of ω also predicted 

accurate calculated pressure values, with an AAD% = 1.68.  

In line of standardizing the procedure for this works thermodynamic algorithm, 

as well as, overall better AAD% of the optimized ω calculated saturated pressures, the 

optimized values of all pure components were utilized to calculate all following binary 

interaction parameters. The overall results obtained for this pure component section 

can be observed in the following table: 

Table 3. Pure components acentric factor optimization and their corresponding AAD%. 

Component Acentric Factor (Optimized) AAD% (Optimized) AAD% (Literature) 
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Water 0.3275 2.81 4.67 

MDEA 1.0133 15.86 299.61 

CO2 0.2039 0.62 1.68 

5.2  MDEA – water using φ – φ approach. 

Since the φ – φ approach demonstrated a capable aptitude in predicting the 

vapor-liquid equilibrium for binary systems of very similar, slightly different and 

considerably different chemical natures, as previously explained in our “previous 

models” section, it was the first approach chosen for this thermodynamic algorithm. 

Since MDEA – water and CO2 – water systems are more akin to non-ideal systems, the 

lack of activity coefficient calculations for the components should provide an easier 

algorithm structure for the model.   

The experimental data provides values for system pressure and composition of 

MDEA in the vapor phase at fixed temperatures of 40 °C, 60 °C, 80 °C and 100 °C 

from Kim et al. It was separated into two groups: correlation group, which was used 

inside the objective function minimization algorithms to optimize both interaction 

parameter, and testing group, which was used to compare the calculated VLE with the 

experimental data. Therefore, when evaluating the error of our predicted results, two 

AAD% are obtained, one for the system pressure and another for the composition of 

MDEA on the vapor phase. 

All experimental data of a set temperature was compiled into a single dataset to 

increase the number of available setpoints for better optimization and error 

calculations. The setpoints with composition values of zero were removed from the 

dataset, since their presence creates an error during fugacity mathematical calculations. 

Finally, since the number of setpoints for the 100 °C was the highest out of the four 

temperatures, but overall lower than the combined setpoints of 40 °C, 60 °C and 80 °C, 

the dataset for 100 °C was chosen as the testing group while the other three were 

selected as the correlation group. Each separate experimental dataset can be found in 

the appendix section; however, an overview can be seen on the following table: 

Table 4. Experimental dataset for MDEA (1) – Water (2). 

Temperature (ºC) Pressure (kPa) z1 y1 

40 6.47 – 7.27 7.60E-03 – 1.07E-01 1.00E-06 – 3.00E-05 
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60 12.87 – 19.77 4.70E-03 – 3.05E-01 3.00E-05 – 4.10E-04 

80 31.97 – 47.19 1.00E-08 – 3.06-01 1.00E-08 – 7.40E-04 

100 64.18 – 100.40 5.90E-03 – 3.57E-01 3.00E-05 – 1.40E-03 

 

5.2.1 Classic Peng – Robinson Equation of State with non-random 

mixing rule 

With the classic Peng – Robinson with non-random mixing rule there are two 

parameters that need to be optimized before plotting the vapor – liquid equilibrium at 

a fixed temperature, the binary interaction parameter, 𝑘𝑖𝑗, and the non-random mixture 

parameter, 𝑙𝑖𝑗. As such, the non-random mixture parameter was fixed at zero when 

optimizing 𝑘𝑖𝑗 as an initial assumption, since the methodology presented by 

Poormohammadian et al., only reports a solution procedure to calculate 𝑙𝑖𝑗, which leads 

to believe that 𝑘𝑖𝑗 was previously known or optimized without the non-random mixing 

rule. Afterwards, the optimized 𝑘𝑖𝑗 value is used inside the optimization algorithm for 

the 𝑙𝑖𝑗 parameter. 

The initial guess for the binary parameter 𝑘𝑖𝑗 was tested across a range between 

-0.5 and 0.5, however, positive values higher than 0.02 were incapable of converging 

to a single value since they resulted in an error caused by a complex root value for the 

fugacity calculation. Across the values that managed to complete the objective function 

minimization, the binary parameter for the MDEA – water system converged as 𝑘𝑖𝑗 = 

-0.2226 and used for the 𝑙𝑖𝑗 optimization.  

The initial guess for 𝑙𝑖𝑗  was set as zero, correlating to only random mixing 

within the components, and was optimized as 0.0273. The relative low value for 

indicates that this parameter, potentially, is not that influential in the pressure 

calculations. 

Finally, the experimental data at 100 °C was used to plot the VLE diagram, but 

in lieu of getting a better visualization of the predicted data, the bubble point curve and 

dew point curve were separated into two different plots, as shown in Figure 9. 
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Figure 9. Dew point curve (left) and bubble point curve (right) vapor – liquid equilibrium diagrams of MDEA – 

water classic Peng – Robinson Equation of State with non-random mixing rule, at 100 °C. 

Assuming that the first MDEA composition point of 1x10-6 as pure water, it can 

be observed that the predicted saturated pressure of 103619 Pa deviates from the well-

established water pressure at 100 °C of 760 mmHg or 101325 Pa, an error of about 

2.26%, which is expected since the calculated AAD% for the pure water component 

was 2.81%. The predicted system pressure and composition errors can be observed on 

Figure 10. 
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Figure 10. Absolute relative and average deviations for pressure (1), and composition (2), respectively, as well as, 

comparison of predicted pressure (3) and composition (4) with experimental data at 100 °C, for MDEA – Water 

classic Peng – Robinson Equation of State with non-random mixing rule. 

The pressure plots (1) and (3) illustrates that, overall, predicted system pressure 

points were fairly agreeable with the experimental data, amassing to an AAD% of 

4.61%. However, the absolute error for composition (2) deviates greatly from 

experimental data, especially on composition containing lower amounts of MDEA, 

with the highest predicted composition error 2.8 times higher than the supposed 

experimental data. The AAD% of composition was equal to 100.38%, which could be 

explained by the fact that these initial setpoints at low amounts of MDEA, with order 

of magnitude of 10-3, accentuates higher deviations. Another reason is the possibility 

that our EOS is unable to accurately predict these minute variations of composition, 

albeit predicting fairly accurate system pressures. 
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5.2.2 Classic Peng – Robinson EOS with Wong – Sandler mixture 

rule. 

The addition of the Wong – Sandler mixing rule requires the calculation of 𝐺𝑒𝑥 

as was described in Equations 61 and 63. Since Harandi et al., 2021, opted for the e-

NRTL activity model, this work computed the excess Gibbs energy at low pressures 

using the UNIQUAC model, as it was already implemented on the 𝛾 − 𝜑 approach. 

As explained in section 2.4, the number of first neighbors with respect to a given 

central atom, Z, was set as equal to eight for all simulations regarding UNIQUAC. The 

dimension parameters 𝑟𝑖 and 𝑞𝑖 were calculated using Sandler’s functional groups 

volume and surface area parameters as displayed in the following table (water is 

considered as functional group because of its unique properties): 

Table 5. Group Volume and Surface Area Parameters, R and Q, for use with the UNIQUAC model. 

UNIQUAC Parameters R Q 

CH3N 1.0746 1.176 

CH2 0.6325 0.7081 

OH(p) 1.2302 0.8927 

Water 1.7334 2.4561 

  

Therefore, according to MDEA structural shape, each molecule consists of four 

CH2 groups, two OH(primary) groups and one CH3N group. The following equation was 

used to calculate its parameters: 

𝑟𝑀𝐷𝐸𝐴 = (4 ∗ 𝑟𝐶𝐻2
) + (2 ∗ 𝑟𝑂𝐻(𝑝)

) + 𝑟𝐶𝐻3𝑁 ;     𝑟𝑀𝐷𝐸𝐴 =  6.065  (65) 

𝑞𝑀𝐷𝐸𝐴 = (4 ∗ 𝑞𝐶𝐻2
) + (2 ∗ 𝑞𝑂𝐻(𝑝)

) + 𝑞𝐶𝐻3𝑁  ;   𝑞𝑀𝐷𝐸𝐴 = 5.7938  (66) 

 In that regard, the UNIQUAC equation contains only two adjustable parameters 

𝜏12 and 𝜏21, each dependent on two adjustable parameters, 𝑢12
0 , 𝑢12

𝑇 , 𝑢21
0  and 𝑢21

𝑇 , for a 

total of four adjustable parameters. With the additional binary interaction parameter, 

𝑘𝑖𝑗, from the classic Peng – Robinson EOS, each binary system will have five 

adjustable parameters. As such, this work developed two strategies of optimization: 
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1) Sequential optimization: Setting 𝑘𝑖𝑗 = 0, 𝑢12
0 = 100, 𝑢12

𝑇 = 0, 𝑢21
0 = 100, 

𝑢21
𝑇 = 0 and optimizing the four UNIQUAC parameters, 𝑢12

0 , 𝑢12
𝑇 , 𝑢21

0  and 𝑢21
𝑇 . 

Afterwards, using these optimized parameters for 𝑘𝑖𝑗 optimization. 

2) Simultaneous optimization: With the same initial values, optimizing all five 

parameters simultaneously. 

5.2.2.1 Sequential Strategy – Results  

This strategy aims to focus on the mixing rule as the center of optimization, 

since the excess Gibbs energy calculation is a precursor to the EOS parameters 

definition (Equation 61). UNIQUAC parameters were compared to experimental data 

assuming the effect of the binary interaction parameter (Equation 63) is negligible. 

 The group separation of the experimental data into correlation and testing 

follows the same methodology applied to the classic Peng – Robinson EOS with non-

random mixing rule, as to allow for comparisons between both models. Once again, 

the experimental data at 100 °C was used to plot the VLE diagram and the bubble point 

curve and dew point curve were separated into two different plots, as shown in Figure 

11. 

 

Figure 11. Dew point curve (left) and bubble point curve (right) vapor – liquid equilibrium diagrams of MDEA – 

water classic Peng – Robinson Equation of State with Wong – Sandler mixing rule, at 100 °C (Sequential 

Strategy). 

 The optimized UNIQUAC parameters resulted in 𝑢12
0 = −404.0766, 𝑢12

𝑇 =

11.084, 𝑢21
0 = 455.8335, 𝑢21

𝑇 = −10.8765 and binary interaction parameter, 𝑘𝑖𝑗 =

0.0418. The predicted water saturated pressure of the Wong – Sandler model with the 
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first strategy was 98749.4 Pa, an error of about 2.54%, which is higher than the one 

from non-random mixing rule.  

The predicted bubble point curve can be observed as agreeing with the 

experimental data, but the same cannot be said for the predicted dew point curve, where 

a clear deviation is apparent. This deviation could be associated with the predicted 

saturated pressure being lower than the established water pressure at 100 °C of 101325 

Pa, since the curve also tends towards predicting lower pressures than the experimental 

data. The predicted system pressure and composition errors can be observed on Figure 

12. 

 

Figure 12. Absolute relative and average deviations for pressure (1), and composition (2), respectively, as well as, 

comparison of predicted pressure (3) and composition (4) with experimental data at 100 °C, for MDEA – Water 

classic Peng – Robinson Equation of State with Wong - Sandler mixing rule (Sequential Strategy). 

 As can be observed in plots (1) and (3), the predicted pressure for the MDEA-

water system agrees with the experimental data, amassing an AAD% of 3.76%, which 

is lower than the non-random mixing rule of 4.61%. However, the composition AAD% 
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was equal to 341.26%, which is more than three times higher than 100.38% from the 

non-random mixing rule, with a maximum deviation of 7.68 times higher than 

experimental data. It is safe to conclude that the increase in pressure accuracy directly 

results in a decrease in composition accuracy for the thermodynamic model. 

5.2.2.2 Simultaneous Strategy – Results 

This strategy aims to correlate all interaction effects present in the experimental 

data as a basis for parameter optimization. Therefore, all experimental data group 

separation follows the same principles previously described, but the optimization 

includes all UNIQUAC parameters and the EOS binary interaction parameter. The 

VLE diagram at 100 °C can be observed in Figure 13. 

 

Figure 13. Second Strategy - Dew point curve (left) and bubble point curve (right) vapor – liquid equilibrium 

diagrams of MDEA – water classic Peng – Robinson Equation of State with Wong - Sandler mixing rule, at 100 

°C. 

The optimized UNIQUAC parameters resulted in 𝑢12
0 = −234.2841, 𝑢12

𝑇 =

1.0499, 𝑢21
0 = 266.4326, 𝑢21

𝑇 = 0.1966 and binary interaction parameter, 𝑘𝑖𝑗 =

−0.0715. The predicted water saturated pressure of the Wong – Sandler model with 

the second strategy was 110940 Pa, an error of about 9.49%, which is higher than both 

first strategy and non-random mixing rule models. The predicted system pressure and 

composition errors can be observed on Figure 14. 
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Figure 14. Absolute relative and average deviations for pressure (1), and composition (2), respectively, as well as, 

comparison of predicted pressure (3) and composition (4) with experimental data at 100 °C, for MDEA – Water 

classic Peng – Robinson Equation of State with Wong – Sandler mixing rule (Second Strategy). 

 It becomes apparent that predicted composition accuracy increased drastically, 

while predicted pressure accuracy decreased when compared to both the first strategy 

of Wong – Sandler mixing rule and non-random mixing rule. The AAD% for predicted 

pressure and composition were 6.57% and 17.51%, respectively, which corroborate 

this “see-saw” effect, where increasing precision in pressure decreases composition 

accuracy and vice versa. The choice in optimization strategy was shown to greatly 

influence parameter values, as well as, overall thermodynamic model accuracy. 

5.3  MDEA – water using γ – φ approach 

The methodology for experimental data group separation follows the same 

procedure as the one described in the 𝜑 –  𝜑 approach. The initial value for binary 

interaction and UNIQUAC parameters were set as 𝑘𝑖𝑗 = 0, 𝑢12
0 = 100, 𝑢12

𝑇 = 0, 𝑢21
0 =
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100, 𝑢21
𝑇 = 0. The parameter optimization will follow both strategies as described in 

section 3.2.2. 

5.3.1 Classic Peng – Robinson Equation of State with non – random 

mixing rule 

The equations of state selected for the 𝛾 − 𝜑 approach is the same as 𝜑 − 𝜑 

approach to allow structure similarity for result comparison. Since the 𝛾 − 𝜑 approach 

always require calculations of excess Gibbs free energy via UNIQUAC model, the 

optimization strategies were also applied to this model with the addition of the non-

random binary interaction parameter, 𝑙𝑖𝑗. Therefore, the sequential strategy optimizes 

the parameters in the following order: first the UNIQUAC parameters, followed by 

both interaction parameters, 𝑘𝑖𝑗 and 𝑙𝑖𝑗.  

The sequential strategy to optimize UNIQUAC parameters before the binary 

interaction parameters resulted in a 𝑘𝑖𝑗 = −5.7881 and 𝑙𝑖𝑗 = −33.9484, which 

deviates from its expected value range. The UNIQUAC parameters were optimized as 

𝑢12
0 = 506.4185, 𝑢12

𝑇 = 0.0011, 𝑢21
0 = −319.581, 𝑢21

𝑇 = −0.0037 with a 

corresponding pressure and composition AAD% of 2.25% and 21.81%. Even though 

these results show potential, this is an example of incorrect parameters since it gives 

accurate predictions towards the selected experimental data but the binary interaction 

parameters anomaly would give inaccurate results towards new data. Therefore, this 

work shall refrain from displaying the resulting plots of this strategy. 

The simultaneous optimization strategy did not show a similar anomaly, 

allowing its results to be considered as valid. The bubble point and dew point curves 

can be seen below.  
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Figure 15. Dew point curve (left) and bubble point curve (right) for γ – φ approach vapor – liquid equilibrium 

diagrams for γ – φ approach MDEA – water classic Peng – Robinson Equation of State and non-random mixing 

rule, at 100 °C (Simultaneous Strategy). 

 The binary interaction and UNIQUAC parameters were optimized as 𝑘𝑖𝑗 =

−0.0045, 𝑙𝑖𝑗 = −0.0047,  𝑢12
0 = 507.5088, 𝑢12

𝑇 = 0.0042, 𝑢21
0 = −320.239, 𝑢21

𝑇 =

0.0001. The predicted water saturated pressure was 103600 Pa, an error of 2.25%, 

which is almost the same as predicted by the 𝜑 − 𝜑 approach with classic Peng – 

Robinson EOS and non-random mixing rule. The predicted system pressure and 

composition errors can be observed on Figure 16. 
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Figure 16. Absolute relative and average deviations for pressure (1), and composition (2), respectively, as well as, 

comparison of predicted pressure (3) and composition (4) with experimental data at 100 °C, for γ – φ approach 

MDEA – Water classic Peng – Robinson Equation and non-random mixing rule (Simultaneous Strategy). 

The predicted AAD% for both pressure and composition were equal to 2.38% 

and 25.37%, respectively, both higher than its sequential strategy counterpart but 

without the binary interaction parameters anomaly. This fact shows the importance of 

knowing the expected behavior of optimized parameters, in any thermodynamic model, 

to avoid false values. The simultaneous strategy gave the lowest reported absolute 

average deviation for predicted pressure, but the composition error is still higher than 

what was obtained by the 𝜑 − 𝜑 approach classic Peng – Robinson with Wong – 

Sandler mixing rule (simultaneous strategy).  

5.3.2 Classic Peng – Robinson EOS with Wong – Sandler mixture 

rule. 

Opposite to the non-random mixing rule, the simultaneous strategy of 

optimization resulted in a 𝑘𝑖𝑗 = −13.257, which greatly deviates from its expected 
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value range. The UNIQUAC parameters were optimized as 𝑢12
0 = −114.1834, 𝑢12

𝑇 =

−5.0021, 𝑢21
0 = −82.5110, 𝑢21

𝑇 = 13.6729, but should be discarded as a result of 

being incorrect.  

On the other hand, the sequential strategy resulted in an optimized 𝑘𝑖𝑗 =

−0.6285, which allows the results to be taken into consideration. As such, the VLE 

diagrams can be observed as follows. 

 

Figure 17. Dew point curve (left) and bubble point curve (right) for γ – φ approach vapor – liquid equilibrium 

diagrams of MDEA – water classic Peng – Robinson Equation of State with Wong – Sandler mixing rule, at 100 

°C. 

 The UNIQUAC parameters were optimized as 𝑢12
0 = −41.4703, 𝑢12

𝑇 =

−5.6713, 𝑢21
0 = −181.273, 𝑢21

𝑇 = 13.9313. The predicted water saturated pressure 

was 102990 Pa, an error of 1.64%, the lowest error throughout all models. The 

predicted system pressure and composition errors can be observed on Figure 18. 
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Figure 18. Absolute relative and average deviations for pressure (1), and composition (2), respectively, as well as, 

comparison of predicted pressure (3) and composition (4) with experimental data at 100 °C, for γ – φ approach 

MDEA – Water classic Peng – Robinson Equation and Wong – Sandler mixing rule (Sequential Strategy). 

 The AAD% for both pressure and composition were equal to 7.34% and 

267.27%, respectively, the highest-pressure error and a very high composition error, 

indicating that the 𝛾 − 𝜑 approach Peng – Robinson and Wong – Sandler mixture isn’t 

an ideal model for this application. This could be related to the fact that the UNIQUAC 

parameters are being used for both excess Gibbs energy used on the Wong – Sandler 

mixing rule and for the activity coefficient of the liquid phase, correlating the 

dimensional parameters with two regions of optimization, causing it to give inadequate 

results.  

 The overall results of all applied models to the binary system MDEA – water 

can be observed on the following table: 
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Table 6. MDEA – water optimized parameters and associated absolute average deviation for all presented models.  

Models 

(Temperature = 100 °C) 
𝑘𝑖𝑗  𝑙𝑖𝑗 𝑢12

0  𝑢21
0  𝑢12

𝑇  𝑢21
𝑇  

AADP% 

(Pressure) 

AADC% 

(Composition) 

𝜑 − 𝜑 PRNR -0.2226 0.0273 − − − − 4.61 100.38 

𝜑 − 𝜑 PRWS (sequential) 0.0418 − -404.077 455.8335 11.084 -10.8765 3.76 341.26 

𝜑 − 𝜑 PRWS (simultaneous) -0.0715 − -234.284 266.4326 1.0499 0.1966 6.57 17.51 

𝛾 − 𝜑 PRNR* (sequential) -5.7881 -33.9484 506.4185 -319.581 0.0011 -0.0037 2.25 21.81 

𝛾 − 𝜑 PRNR (simultaneous) -0.0045 -0.0047 507.5088 -320.239 0.0042 0.0001 2.38 25.37 

𝛾 − 𝜑 PRWS (sequential) -0.6285 − -41.4703 -181.273 -5.6713 13.9313 7.34 267.27 

𝛾 − 𝜑 PRWS* (simultaneous) -13.257 − -114.183 -82.511 -5.0021 13.6729 − − 

PRNR = Classic Peng – Robinson with non-random mixing rule; PRWS = Classic Peng – Robinson with Wong – Sandler mixing rule 

Sequential = Optimization of UNIQUAC parameters first, followed by the optimization of binary interaction parameters 

Simultaneous = Optimization of both UNIQUAC and binary interaction parameters at the same time 

* = Overfitted parameters 

 

It becomes apparent that any chosen approach and equation of state, as well as, 

the strategy at which the operator decides to do the optimization, greatly influences 

interaction parameter values and the overall accuracy of the thermodynamic model. 

The possibility of erroneous values establishes a need to fundamentally understand the 

physical significance of optimized parameters as demonstrated by the 𝛾 − 𝜑 PRNR 

(sequential strategy) model.  

Both 𝜑 − 𝜑 and 𝛾 − 𝜑 approaches proved to be effective at modeling the binary 

MDEA – water system, with 𝜑 − 𝜑 PRWS (simultaneous strategy) and 𝛾 − 𝜑 PRNR 

(simultaneous strategy), the former being more accurate to predict system pressure and 

the latter more accurate to predict system composition. Predicted saturated pressure of 

components was shown to agree with the associated AAD% obtained on the pure 

components optimization, demonstrating that classic Peng – Robinson’s lack of 

accuracy could propagate this error for more complex systems. 
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6. Conclusion 

The optimization of interaction parameters pertaining the MDEA – Water 

binary system were evaluated by a bubble pressure algorithm thermodynamic model 

using both φ – φ and γ – φ approaches, classic Peng–Robinson with the non-random 

mixing rule and Wong-Sandler mixing rule EOS. The calculated acentric factor, ω, of 

water, CO2 and MDEA were 0.3275, 0.2039 and 1.0133 respectively with lower vapor 

pressure AAD than literature values. The 𝛾 − 𝜑 approach was sensitive in regards to 

the optimization strategy of parameters, displaying cases of thermodynamically false 

values for both PRNR and PRWS equations of state. The PRNR with simultaneous 

strategy gave accurate predictions regarding vapor pressure, with AAD% = 2.38%, on 

the other hand, the composition errors were considerable at AAD% = 25.37%. The 𝜙 −

𝜙 approach did not suffer from incorrect parameter estimation across models, 

displaying the best overall result via classic Peng – Robinson with Wong – Sandler 

mixing rule and simultaneous parameter optimization strategy. The parameters were 

optimized as 𝑢12
0 = −234.2841, 𝑢12

𝑇 = 1.0499, 𝑢21
0 = 266.4326, 𝑢21

𝑇 = 0.1966, 

𝑘𝑖𝑗 = −0.0715, with vapor pressure AAD% = 6.57% and composition AAD% = 

17.51%. The choice in optimization strategy was shown to greatly influence parameter 

values and model accuracy, probably as a result of our minimizing function’s inability 

to find a global minimum, instead of a local minimum. For future works, the 

substitution of the classic PR-EOS, for its more robust and complex α parameters 

calculation counterparts, may reduce the predicted errors associated with pressure, 

from pure component saturated pressure to higher complexity systems. More complex 

minimization functions to find global minimum, such as, particle swarm optimization, 

could prevent local minimum predictions. The acentric factor optimization could be 

tested to include the coefficients of its quadratic equation as parameters, to examine 

their effects on pressure errors.  
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8. Appendix 

 

Table 7. Vapor pressure of water experimental data from DDBST. 

Temperature (K) Pressure (kPa) 

293.15 2.40E+00 

303.15 4.27E+00 

313.15 7.33E+00 

323.15 1.23E+01 

333.15 1.99E+01 

343.15 3.12E+01 

412.75 3.57E+02 

432.85 6.13E+02 

451.25 9.60E+02 

463.15 1.26E+03 

473.35 1.56E+03 

482.55 1.89E+03 

492.65 2.30E+03 

504.15 2.85E+03 

507.77 3.04E+03 

521.28 3.85E+03 

535.18 4.85E+03 

541.49 5.36E+03 

552.6 6.37E+03 

557.97 6.90E+03 

561.69 7.29E+03 

571.31 8.37E+03 

 

Table 8. Vapor pressure of MDEA experimental data from Noll et al. 

Temperature (K) Pressure (kPa) 

293.69 6.10E-04 

303.56 1.48E-03 

303.56 1.47E-03 

313.46 3.42E-03 
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313.47 3.47E-03 

323.3 7.98E-03 

323.3 7.95E-03 

333.23 1.81E-02 

333.23 1.81E-02 

343.04 3.93E-02 

343.06 3.97E-02 

351.94 7.71E-02 

351.97 7.68E-02 

352.96 8.15E-02 

353 8.09E-02 

361.94 1.57E-01 

361.97 1.57E-01 

371.87 2.90E-01 

371.89 2.91E-01 

381.89 5.45E-01 

381.9 5.28E-01 

381.91 5.21E-01 

391.96 8.84E-01 

391.97 8.81E-01 

401.96 1.48E+00 

401.97 1.48E+00 

 

Table 9. Vapor pressure of CO2 experimental data from DDBST. 

Temperature (K) Pressure (kPa) 

223.15 6.79E+02 

230 8.95E+02 

233.15 1.00E+03 

240 1.28E+03 

243.15 1.41E+03 

246 1.57E+03 

250 1.78E+03 

253.15 1.97E+03 

254 2.02E+03 

256 2.15E+03 

260 2.42E+03 

263.15 2.63E+03 

266 2.87E+03 



54 

 

270 3.20E+03 

273.15 3.48E+03 

273.15 3.48E+03 

273.15 3.49E+03 

278.15 3.97E+03 

283.15 4.50E+03 

283.15 4.50E+03 

287.91 5.06E+03 

288.15 5.08E+03 

293.15 5.73E+03 

293.15 5.74E+03 

293.34 5.75E+03 

296.79 6.23E+03 

298.15 6.44E+03 

 

 


