
Isabella de Freitas Lima Aguiar Mariz

Control Interfaces for Intermittent Operation in
Microcontrollers Powered by Energy Harvesting

Final Project

Thesis presented to the Programa de Graduação em Engenharia
da Computação, do Departamento de Informática da PUC-Rio in
partial fulfilment of the requirements for the degree of Bacharel
em Engenharia da Computação.

Advisor: Prof. Markus Endler

Rio de Janeiro
July 2023



Isabella de Freitas Lima Aguiar Mariz

Control Interfaces for Intermittent Operation in
Microcontrollers Powered by Energy Harvesting

Thesis presented to the Programa de Graduação em Engen-
haria da Computação da PUC-Rio in partial fulfilment of the
requirements for the degree of Bacharel em Engenharia da Com-
putação. Approved by the Examination Committee:

Prof. Markus Endler
Advisor

Departamento de Informática – PUC-Rio

Prof. Noemi de La Rocque Rodriguez
PUC-Rio

Prof. Adriano Francisco Branco
PUC-Rio

Rio de Janeiro, July 20th, 2023



All rights reserved.

Isabella de Freitas Lima Aguiar Mariz

Bibliographic data
de Freitas Lima Aguiar Mariz, Isabella

Control Interfaces for Intermittent Operation in Micro-
controllers Powered by Energy Harvesting / Isabella de Freitas
Lima Aguiar Mariz; advisor: Markus Endler. – 2023.

51 f: il. color. ; 30 cm

Projeto Final (graduação) - Pontifícia Universidade
Católica do Rio de Janeiro, Departamento de Informática,
2023.

Inclui bibliografia

1. Informática – Teses. 2. Internet das Coisas. 3. Energy
harvesting. 4. Armazenamento de energia. 5. Computação
intermitente. 6. Microcontroladores. 7. FRAM. I. Endler,
Markus. II. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. III. Título.

CDD: 004





Acknowledgments

Ao meu orientador Markus Endler pelo estímulo e parceria para a realização
deste trabalho.

Ao professor Adriano Branco pela disposição e auxílio no processo de traçar o
caminho seguido pelo projeto.

A PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia
ter sido realizado.

Aos membros do laboratório GistLab, em especial João Gabriel Drumond
e Pablo Nascimento, cuja contribuição foi essencial para a realização dos
experimentos realizados nesse trabalho.

A minha familia por todo suporte e carinho durante todos os anos de faculdade,
e em especial à minha mãe Lizia, que sempre foi minha maior torcida.

Aos meus melhores amigos Anna, Leo, Ana Vono, Duda e Pablo por toda a
paciência e apoio incondicional durante os meus momentos mais difíceis.

Aos meus colegas de trabalho pela compreensão, motivação e reconhecimento
de todo o meu esforço.

Ao meu cachorro Balu pelo comforto oferecido nas horas que eu mais precisava.



Abstract

de Freitas Lima Aguiar Mariz, Isabella; Endler, Markus (Advisor). Con-
trol Interfaces for Intermittent Operation in Microcontrollers
Powered by Energy Harvesting. Rio de Janeiro, 2023. 51p. Projeto
Final – Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

The number of globally connected IoT devices continues to rise every
year. The power requirements faced by them have evolved beyond the limita-
tions brought by the usage of batteries as the main energy source. This has
paved the way for the development of a new type of power supply: energy har-
vesting. New challenges arose alongside it, including the intermittent operation
of computer systems sustained by it. Many solutions have been presented, but
related works lacked easily comparable parameters for studying their efficiency,
as energy harvesting applications vary considerably. Therefore, a control inter-
face was proposed to facilitate integration between strategies for intermittent
computing and energy management. The implemented design focused more on
the execution control of the microcontroller, but was evaluated experimentally
with a real energy harvester. Despite the difficulties with energy harvesting
architecture, a suitable solution was reached, leaving room for improvement in
future works.

Keywords
Internet of Things; Energy harvesting; Energy storage; Intermittent

computting; Microcontrollers; FRAM.



Resumo

de Freitas Lima Aguiar Mariz, Isabella; Endler, Markus. Interfaces de
Controle para Operação Intermitente em Microcontroladores
Alimentados por Energy Harvesting. Rio de Janeiro, 2023. 51p.
Projeto Final – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

O número de dispositivos IoT conectados continua a crescer. Os requesi-
tos de energia enfrentados por eles evoluiram além das limitações trazidas pelo
uso de baterias como fonte de energia principal. Isso abriu o caminho para o
desenvolvimento de um novo tipo de fornecimento de energia: o energy har-
vesting. Novos desafios acompanharam seu surgimento, incluindo a operação
intermitente de sistemas computacionais por ele alimentados. Diversas soluções
foram propostas, mas os trabalhos relacionados não possuem parâmetros facil-
mente comparáveis para o estudo da sua eficiência, devido à variabilidade das
aplicações de energy harvesting. Logo, uma interface de controle foi proposta
para facilitar a integração entre as estratégias de computação intermitente e
controle de energia. O projeto implementado tem seu foco maior no controle de
execução do microcontrolador, mas foi avaliado experimentalmente com uma
fonte real de energy harvesting. Mesmo perante dificuldades com o sistema de
energia, uma solução adequada foi atingida.

Palavras-chave
Internet das Coisas; Energy harvesting; Armazenamento de energia;

Computação intermitente; Microcontroladores; FRAM.



Table of contents

1 Introduction 11

2 Related Works 16
2.1 Motivation 16
2.2 Energy Harvesting Architecture 17
2.2.1 Energy Harvesting Devices 19
2.2.2 Energy Storage 20
2.2.3 Power Management Integrated Circuits 21
2.3 Intermittent Computing 22
2.3.1 Memory System 23
2.3.2 Program Execution Model 23

3 Methodology 25
3.1 Technology and Platforms 27
3.2 Understanding the MCU and IDE 28
3.3 Program Execution Control 29
3.3.1 Case Studies: Mementos and Hibernus++ 31
3.3.2 Save-and-Restore Library 32
3.3.3 Computing Through Power Loss 35
3.3.4 Program Execution Model 36
3.4 Project Design of Control Interface 39

4 Results 42

5 Conclusion and Future Works 45

6 Bibliography 47



List of Abreviations

IoT – Internet of Things

EH – Energy Harvesting

RF – Radio-Frequency

RFID – Radio-Rrequency Identification

CPU – Central Processing Unit

MCU – Microcontroller

RAM – Random Access Memory

FRAM – Ferroelectric Random Access Memory

EDLC – Electric Double Layer Supercapacitor

EB – Electrochemical Battery

PMIC – Power Management Integrated Circuit

AC – Alternating Current

DC – Direct Current

EHCD – Energy Harvesting Computing Devices

SRAM – Static Random Access Memory

NVM – Non-Volatile Memory

NVRAM – Non-Volatile Random Access Memory

TI – Texas Instruments

IDE – Integrated Development Environment

CCCS – Code Composer Studio

CTPL – Compute Through Power Loss



, .



1
Introduction

According to the research platform Iot Analytics [Hasan, 2022, Sinha,
2023], the number of globally connected Internet of Things (IoT) devices grew
18% between 2021 and 2022, from 12.2 billion to 14.3 billion devices. As of
2023, the prediction is that this number will reach nearly 30 billion in 2027,
as shown in the projection below:

Figure 1.1: Globally connected IoT devices market prediction [Sinha, 2023]

This increase in the number of devices naturally accompanies a modern
trend of significant growth in market opportunities for IoT applications. A
study provided by the consulting company Fortune Business Insights on Global
IoT Market Share [Fortune, 2023], showed that the IoT market size was valued
at USD 544.38 billion in 2022, stipulating a growth of up to USD 3.35 trillion
by 2030. End-of-use for this market varies, with healthcare, manufacturing
and telecommunications being the most prominent industry spenders on IoT
technology globally in 2022, as shown by Figure 1.2.

Figure 1.2: Global Internet of Things Market Share [Fortune, 2023]



Chapter 1. Introduction 12

Consequently, as the demand for IoT devices and solutions continues to
rise worldwide, so does the interest in finding ways to power these devices as
efficiently as possible. Jayakumar et al. [2014] brought forth this discussion in
their publication Powering the Internet of Things, where it was argued that
“one of the biggest challenges to realising this IoT vision is the problem of
powering these tens of billions of IoT devices”. Unsurprisingly, this situation
is still under eager debate nearly a decade later, with a recent article by the
magazine Control Automation proclaiming power as the biggest challenge IoT
devices face [Dietrich, 2022].

As of late, the leading solution for powering these devices has remained
heavily centred around the usage of batteries [Chatterjee et al., 2023], and
this could be because of numerous reasons, such as “cost, convenience, or the
need for untethered operation” [Jayakumar et al., 2014]. The current forecast
is for the IoT battery market to grow at a compound annual rate of 10.16%,
rising from its current value of USD 9.5 billion in 2021 to USD 22.7 billion by
2030, as reported by market researcher and consulting organization Precedence
Research [Precedence, 2022] in Figure 1.3.

Figure 1.3: IoT Battery Market Size [Precedence, 2022]

This reality brings with it a unique set of challenges, as it is desirable that
these IoT devices maintain long operational lifetimes despite facing significant
difficulties that come with the use of batteries [Jayakumar et al., 2014], such as
the need for frequent replacements, unreliable operation due to their natural
limitations, and their negative impact on the environment. Although there
appears to be “a rich body of literature [...] on deploying battery-powered
embedded sensing systems at different scales and in various environments”,
a common insight in late research is that a significant source of frustration to
many of these studies is a “hectic experience with frequent battery replacements”
[Afanasov et al., 2020].



Chapter 1. Introduction 13

Additionally, as the number of IoT wireless devices continues to grow
at an expressive rate, a pattern of frequent battery substitution for these
devices could lead to an equally expressive number of battery disposals.
According to the European Union’s Community Research and Development
Information Service (CORDIS) [EnABLES, 2022], around 78 million batteries
used to power IoT devices will be discarded globally every day by 2025.
This is a significant concern, as improper disposal of batteries could bring
severe consequences to the environment, since the toxic heavy metals in their
composition can irreparably contaminate the soil, underground layers of water-
bearing and even living organisms [Ribeiro et al., 2022]. For example, the
lithium-ion battery is the most popular type among IoT devices [Partida,
2021], but the lithium in their composition has an end-of-life recycling rate
lower than 1% [Statista, 2020].

Therefore, in order to mitigate the many challenges induced by powering
wireless IoT devices with batteries, academic and industrial research commu-
nities have been turning to alternative powering strategies, such as Energy
Harvesting (EH) [Ku et al., 2016]. This methodology consists of using a self-
powered subsystem capable of harnessing sufficient power from ambient energy
sources and converting it into electrical energy, such as thermal, solar, wind, vi-
brations, radio-frequency (RF), and others [Chatterjee et al., 2023, Elahi et al.,
2020]. Hence, depending on the energy sources available and the efficiency of
the energy conversion technology used, EH systems are more than capable of
powering a variety of IoT devices [Chatterjee et al., 2023]. This type of tech-
nology has been often advertised as “a direct alternative to battery-powered
operation” [Afanasov et al., 2020] and is understood to “extend deployment
lifetimes as well as reduce battery replacement and overall maintenance costs”
[Bakar and Hester, 2018].

Despite its attractive advantages, however, systems powered by EH are
not without their limitations. As indicated by Bakar and Hester [2018], battery-
less wireless sensing is “essential to a sustainable future of computing”, but
these systems “do not always have the energy necessary to maintain operation
because of the unpredictability of energy harvesting”. The amount of energy
collected depends greatly on the natural inconsistency of the environment,
putting these systems at risk of multiple power failures that vary in frequency
and duration [Bakar and Hester, 2018, Kwak et al., 2021].

Consequently, operation in devices powered by EH becomes intermittent
and so does the execution of any software running on its computer systems,
a phenomenon known as intermittent computing. This way, any executing
programs must continue in bursts through power failures, with periods of in-



Chapter 1. Introduction 14

activity when energy is not available and of execution when it is, and one
cannot assume they will be run to completion before a loss of power occurs
[Lucia et al., 2017]. Intermittent computing brings with it several new chal-
lenges including, but not limited to, inconsistent control flows, compromising
program continuity, memory and data inconsistency and complicated commu-
nication between devices. These challenges appear to be heavily influenced by
the choice of hardware and software design, and so to better understand the
intermittent operation of devices powered by EH, it is important to examine
how the chosen system architecture influences its own behaviour [Lucia et al.,
2017].

Research towards EH applications has gained significant traction in the
past few years, with studies ranging from RF [Pinuela et al., 2013, Talla
et al., 2015], vibrational and thermal energy [Maiwa et al., 2012] and even
kinetic energy [Magno et al., 2016], to piezoelectric [Jousimaa et al., 2016]
and photovoltaic power [Simjee and Chou, 2006, Xie et al., 2021]. Moreover,
low-power computing components such as Central Processing Units (CPUs)
and microcontrollers (MCUs) are often present in EH deployment as a way
of processing data [Lucia et al., 2017]. Great interest has been shown towards
strategies to handle intermittent program execution in these components by
use of techniques that adequately save and restore the application’s state
in the event of a power loss [Balsamo et al., 2015, Colin and Lucia, 2016,
Hoseinghorban et al., 2021, Ransford et al., 2011]. For this reason, Lucia et al.
[2017] highlights the following design parameters as essential for analysis: (a)
energy harvesting and storage mechanisms, (b) memory system and program
execution strategy, and (c) development environment.

Therefore, the final project seeks to investigate the effectiveness of dif-
ferent control interfaces for intermittent operation in microcontrollers powered
by EH. Through a careful study of existing literature on EH architecture and
intermittent software processing, the main objective is to experimentally com-
pare the energy efficiency of possible interfaces for these systems. These will
be based on a review of previous proposals for EH power systems and inter-
mittent computing strategies, seeking to further understand the advantages
and limitations of the existing procedures. Additionally, this project seeks to
amend certain observed gaps in previous works, as several prominent solutions
(detailed in Chapter 2) were limited to using simulated intermittent energy
sources instead of real EH systems [Balsamo et al., 2015, Bhatti and Mot-
tola, 2017, Hoseinghorban et al., 2021, Jayakumar et al., 2017, Ransford et al.,
2011, Ruppel et al., 2022]. The goal is to experiment with a system genuinely
powered by an EH architecture, in order to better observe and understand its



Chapter 1. Introduction 15

behaviour. This will be done by assembling an EH circuit that collects energy
from photovoltaic cells and will be responsible for powering the chosen com-
putational system, a microcontroller with embedded non-volatile memory. A
software routine for handling intermittent computing will be implemented to
run concurrently with a test program, in order to assess the effectiveness of
the control interface in handling an intermittent operation.

This way, the development of the presented project makes use of ex-
tensive technical knowledge obtained throughout the undergraduate course of
Computer Engineering, such as:

– Understanding the operation of electric and electronic circuits, especially
those involving low-power electronics;

– Designing projects based on digital electronics techniques;

– A thorough study of computer architecture and operating systems,
obtaining detailed knowledge of both computer hardware and software.

– Acquiring skills in several programming languages and different software
development environments, also obtaining familiarity with constructing
computational routines and algorithms.

– Extensive practice in devising and implementing projects that involve
software and hardware control of microcontrollers, integrated circuits
and embedded systems.

This document is structured as follows. In Chapter 2 previous work
relevant to the described problem is presented. In Chapter 3 the proposed
solution and project design are explained. In Chapter 4 the results of the
experimental work are displayed and discussed. Finally, in Chapter 5 the final
conclusions and discussions of future works are expressed.



2
Related Works

This Chapter is divided into the following sections.
Section 2.1 further elaborates on the problem introduced on Chapter 1

and the motivations behind this work.
Section 2.2 describes relevant EH architectures proposed up until re-

cently, contemplating different energy sources, energy storage mechanisms and
power management integrated circuits for controlling the energy flow through
the system.

Section 2.3 surveys prominent techniques for overcoming the difficulties
of intermittent computing, through an adequate choice of memory system and
program execution model.

2.1
Motivation

Recent research involving IoT and wireless sensor systems have adver-
tised about the challenges of working with battery-powered deployments. A
notorious example is Afanasov et al. [2020], who experimented with battery-
less embedded sensing at the Mithræum of the Circus Maximus in Italy. Their
first deployment of an embedded sensing system, Kingdom, was fully battery-
powered and it suffered numerous failures where batteries were responsible for
all such cases, except for two. According to the study, the peculiar environmen-
tal conditions of the Mithræum cavern made “predicting the system lifetime
extremely difficult”, with high humidity and fluctuations in temperature caus-
ing the alkaline batteries to “fail unpredictably”. Despite their efforts to use
sturdier types of batteries, such as industry-grade alkaline, pro-alkaline and
lithium, no improvement was observed in their system’s operational lifetime
and “maintenance [represented] a hampering factor regardless of the value of
the data”. The study also pointed out that commercial chemical batteries were
considered dangerous by the restorers working on site, as the natural conditions
were not favourable to the physical integrity of the batteries. It was explained
that “with average relative humidity values in excess of 90% at the Mithræum,
[. . . ] the chances that batteries start leaking greatly increase”, and this was not
ideal for a monitoring deployment in such a sensitive environment.

Hence, it cannot be overlooked how the first deployment of the sensing
system at the Mithræum was hindered greatly by their choice of a battery-
powered approach. The batteries behaved quite unpredictably when faced with



Chapter 2. Related Works 17

unfavourable ambient conditions, leading to frequent operational failures and
a constant need for maintenance. This further frustrated all involved as the
sensitive nature of the Mithræum site required maintenance operations to be
kept to a minimum so as to preserve the site’s structural integrity and the
safety of the restorers. In addition, the chemical composition of the batteries
posed an environmental concern to the already sensitive environment as well
as a risk to the personnel present. These challenges, however, are not limited
to the scope of the previously presented Mithræum case study, and the need
for frequent battery replacements continues to be a challenge for many in
the fields of IoT and wireless devices. Jayakumar et al. [2014] argued that
“many IoT devices will be required to have long operational lifetimes (from a
few days to possibly several years) without the need for battery replacement,
because frequent battery replacement at scale is not only expensive, but often
not even feasible”. Likewise, Bi et al. [2015] further highlighted the negative
aspects of maintaining this practice when explaining that “the performance of
wireless communication is fundamentally constrained by the limited battery life
of wireless devices, the operations of which are frequently disrupted due to the
need of manual battery replacement/recharging”.

In an attempt to overcome these challenges, many in the fields of both
academics and industry opted to seek energy sources other than batteries to
power IoT and wireless sensor applications. Especially motivated by recent
advances in green technology, a shift was made towards more renewable energy
sources, like Energy Harvesting (EH) [Ku et al., 2016]. Afanasov et al. [2020]
followed through with this exact strategy in an attempt to improve their
deployment of Kingdom, by turning “a battery-operated system into an energy-
harvesting one”. Its successor, Republic, made use of two EH strategies for
powering each of their sensor systems: a thermoelectric energy generator for
the temperature and humidity nodes, and piezoelectric energy harvester for
the accelerometer and inclinometer. Thus, choosing EH as an alternative power
source to batteries seems like a suitable strategy, as energy harvesters provide
wireless communication applications with promising benefits that traditional
battery power cannot offer, such as self-sustainability, no need for battery
replacement and easier deployment in difficult environments [Ku et al., 2016].

2.2
Energy Harvesting Architecture

Energy Harvesting is understood as the process of converting available
energy from the environment into usable electrical energy [Zeadally et al.,
2020]. By means of this process, an EH system combines several subsystems



Chapter 2. Related Works 18

that work concurrently to generate continuous power for low-power applica-
tions (e.g. IoT) [Elahi et al., 2020]. Extensive research has been made over
the years on EH architecture geared towards IoT devices, offering several tech-
niques for collecting and storing energy, and exploring integrated circuits for
power management. A review of previous literature [Afanasov et al., 2020, Bal-
samo et al., 2016, Elahi et al., 2020, Zeadally et al., 2020] has shown that the
design of these systems is heavily characterized by the following elements:

– The energy harvester through which energy collected from the envi-
ronment is converted into electrical energy.

– The choice of energy storage, when a decision is made to reserve
harvested energy for future use.

– The power management integrated circuit responsible for balancing
the generation of energy by the harvester and the consumption of power
by the application’s IoT device.

This architecture is presented more clearly through the block diagram
in Figure 2.1, illustrating the flow of energy starting from the environmental
resource, through the energy harvesting device and storage mechanism, until
it is finally consumed by the endpoint IoT application device.

Figure 2.1: Block diagram explaining the general architecture of an EH system [Zeadally
et al., 2020]



Chapter 2. Related Works 19

2.2.1
Energy Harvesting Devices

Energy harvesters vary significantly, as different environments offer dif-
ferent sources of energy from which these devices can draw power [Zeadally
et al., 2020]. Each of these devices usually work with transducers responsible
for the conversion of the collected energy into electrical energy, which may
change according to the device’s electrical characteristics [Elahi et al., 2020].
Photovoltaic cells can harvest and convert both sunlight and artificial light, for
example, while RF energy can be harnessed from radio, television, Wi-Fi and
cellular signals, and piezoelectric devices can collect mechanical energy from
both motion or vibration.

Figure 2.2 depicts a comparison between the specific power requirements
of various wireless sensors and the energy-supplying capabilities of different
EH devices. It shows how one type of harvesting device is capable of supplying
enough power to a significant range of applications.

Figure 2.2: Power requirements of different wireless sensors versus energy-supplying
capabilities of different harvesting devices [Chatterjee et al., 2023]

For example, thermoelectric generators are able to maintain electronic
watches and calculators, as well as radio-frequency identification (RFID)
medical devices. Alternatively, one single application could have a wide variety
of EH choices available to it, as illustrated by hearing aids having their energy
demand met by thermoelectric generators, photovoltaic devices and mechanical
energy harvesters.

When designing EH systems, it is seen as important to choose an energy
source that is appropriate and easily available in the environment where the
application is being deployed [Zeadally et al., 2020]. For example, Pinuela et al.
[2013] investigated the possibility of implementing an RF harvesting platform



Chapter 2. Related Works 20

in urban and semi-urban settings, where this type of energy is abundantly
available. Likewise, Talla et al. [2015] proposed a wearable temperature sensor
that harvests RF energy from Wi-Fi transmissions, whilst Magno et al. [2016]
designed a kinetic harvester circuit to power autonomous wearable devices
through energy produced by human motion.

2.2.2
Energy Storage

After energy has been properly collected and converted by the harvesting
device, two main strategies could be followed: energy is put to use immediately
to power the application device (known as harvest-use architecture), or it
is stored in an energy buffer for future use (known as harvest-store-use
architecture) [Elahi et al., 2020]. Energy storage could be used to reserve
enough energy to meet the power requirements of the application’s endpoint
device [Zeadally et al., 2020]. The system would first accumulate energy (while
consuming as little as possible), and with sufficient power stored, the system
would begin operation until all energy was depleted [Lucia et al., 2017].

The choice of energy buffering device is seen as critical for the EH
system being designed, as it determines the system’s physical size and heavily
influences its operational lifetime [Elahi et al., 2020, Lucia et al., 2017]. A
wide range of energy storage devices exist, differing in properties such as
power, capacity and charge/discharge rates [Elahi et al., 2020], with the two
most traditional choices being rechargeable/non-rechargeable electrochemical
batteries (EBs) and electric double-layer capacitors (EDLCs) [Vatamanu and
Bedrov, 2015]. As previously discussed in Section 2.1, deployments of IoT
applications can suffer greatly from the usage of batteries, then making
capacitors the advantageous alternative. A capacitor with a higher power
or energy density than ordinary capacitors is known as a supercapacitor
[Zeadally et al., 2020], with its notable advantages being a large number of
charge/discharge cycles [Elahi et al., 2020] and a fast recharging operation
with a 98% charging efficiency [Zeadally et al., 2020]. Even more interestingly,
they are known to have significantly longer lifetimes than batteries, because
they use purely electrostatic processes for storing energy, although their main
limitation is having a relatively low energy density when compared to batteries
[Vatamanu and Bedrov, 2015].

Previous studies have shown that capacitors and supercapacitors seem
to have been continuously used as energy storage devices in the deployment of
EH systems, although their configuration can vary. In the early 2000s, Simjee
and Chou [2006] published Everlast, a design for a sensor node powered by



Chapter 2. Related Works 21

a supercapacitor that was recharged through solar harvesting. More recently,
Colin et al. [2018] proposed Capybara, an energy storage architecture for EH
that uses an array of capacitor banks that is reconfigurable according to the
system’s energy demand. Another relevant project is UFoP by Hester et al.
[2015], an energy storage system comprised of multiple independent (federated)
small capacitors powered by RF and solar energy harvesters. Afanasov et al.
[2020] used a single 20µF capacitor as an energy buffer in each of their sensing
platforms for all deployment versions. Morphy by Yang et al. [2021] is a charge
storage system for IoT applications composed of a polymorphic capacitor array
that can be configured in different topologies by software control.

2.2.3
Power Management Integrated Circuits

Having understood the processes behind harvester devices and storage
mechanisms in EH architecture, a last point of observation is the use of Power
Management Integrated Circuits (PMICs).

PMICs are often used in order to control the energy flow between the
energy harvester, buffer storage and endpoint IoT device [Zeadally et al., 2020],
but could also help enhance the EH system’s lifespan by reducing the power
consumption of the IoT device [Elahi et al., 2020]. A traditional PMIC could
be comprised of two subsystems, an rectifying circuit and a power converter,
whose output voltage is fixed to a specified DC voltage [Ballo et al., 2021].

Figure 2.3: Block diagram of a traditional power management integrated circuit (PMIC)
[Ballo et al., 2021].



Chapter 2. Related Works 22

As Figure 2.3 shows, the rectifying circuit is an AC-DC converter used to
convert input alternating current (AC) into output direct current (DC), while
the power converter is normally used to regulate the output voltage to the load
circuit (either by boosting or limiting, depending on the application).

However, it must be taken into consideration that, because of the differ-
ent electric properties of EH devices, each one might require a different type of
PMIC [Ryu et al., 2019]. For example, piezoelectric and electromagnetic gen-
erators produce an AC output voltage, usually requiring output rectification.
But thermoelectric generators and photovoltaic cells generate a DC output,
therefore an AC-DC converter is not necessarily required, depending on the
application. Illustrating even further, Afanasov et al. [2020] made use of two
distinct PMIC strategies in order to manage the two EH systems deployed. For
both the thermoelectric generator and the piezoelectric harvester, the BQ25570
module [Texas Instruments, 2023a] was used as both a charger for the energy
buffer and an output voltage regulator between the energy harvester and the
buffer. Interestingly enough, however, since the BQ25570 module only accepts
positive input and the thermoelectric harvester can produce a negative out-
put, an additional low-power rectifier was needed between them. Hence, this
example clarifies the point of how PMICs can vary according to the EH system
implemented and the application it is being used for.

2.3
Intermittent Computing

It has been agreed that “a primary challenge in developing IoT sys-
tems with micro-powered environmental energy harvesters is the unpredictable
nature of the sources” [Balsamo et al., 2016]. As mentioned previously, the
amount of power produced by energy harvesters highly depends on the ap-
plication’s deployment location and the specifications of the harvester itself.
Consequently, energy supply becomes irregular and inconsistent, thus result-
ing in an unstable operation of the computer systems powered by them, i.e.
intermittent computing [Colin and Lucia, 2016]. Under these circumstances,
software progress becomes dependent on the system’s power cycle, restarting
execution from the beginning after the energy ends [Balsamo et al., 2016].

This way, previous research on intermittent computing began to charac-
terise a new class of computer systems that specifically deal with intermittent
operation as a result of an EH power supply [Colin and Lucia, 2016, Maeng
et al., 2017, Majid et al., 2020, Ransford et al., 2011]. These Energy Harvesting
Computing Devices (EHCDs) are usually marked by the presence of an energy
buffer (typically a capacitor), that when fully charged allows the EHCD to be-



Chapter 2. Related Works 23

gin and continue operation until the buffer is depleted, moment at which the
EHCD shuts down. Additionally, they normally execute software according to
an intermittent execution model, i.e. “an intermittent execution includes the
power failures, in contrast to continuously powered execution that ends at a
power failure” [Colin and Lucia, 2016].

Therefore, in order to better understand how EHCDs handle the effects
of intermittent operation, it is important to study the memory system and
execution model techniques established for preserving software progress.

2.3.1
Memory System

A point of concern for EHCDs is that when they lose power, all volatile
content is cleared from memory, including SRAM data and CPU registers,
which hold vital information as to the current state of program execution
[Colin and Lucia, 2016]. This way, EHCD solutions have often used non-volatile
memory (NVM) to store a copy of the execution state, seeing as their data is
preserved through a power loss [Maeng et al., 2017].

The first studies on intermittent computing usually used Flash as their
choice of NVM, but more recently, researchers have been turning to non-
volatile RAM (NVRAM) technology, such as ferroelectric RAM (FRAM).
On top of saving and restoring program state more efficiently than Flash,
NVRAMs can also be used as regular RAM, making them a more attractive
choice [Berthou et al., 2020]. One of the founding publications on intermittent
computing, Mementos [Ransford et al., 2011] made use of Flash memory, but
more recently, many studies have worked with MCUs embedded with FRAM,
such as Afanasov et al. [2020], Hibernus++ [Balsamo et al., 2016], Alpaca
[Maeng et al., 2017] and Chain [Colin and Lucia, 2016].

2.3.2
Program Execution Model

A strategy to maintain the executing program’s control flow in-between
periods of intermittency is also crucial to EHCDs [Lucia et al., 2017], with
checkpointing and task-based systems being some of the most notable solutions
to preserve a system’s state and progress.

Mementos [Ransford et al., 2011] famously introduced the concept of
checkpointing. Their proposed strategy is to insert function calls that estimate
available energy during compile time, and during run time, Mementos predicts
when a power loss will occur and saves the program state to NVM. This
way, the execution state is restored and the program continues from where



Chapter 2. Related Works 24

it left off, instead of restarting from the beginning. Therefore, checkpointing
is a technique that “periodically captures a consistent system state and after a
reboot resumes the execution by restoring the state captured in the checkpoint”
[Colin and Lucia, 2016]. Other noteworthy EHCD works, such as Kingdom by
Afanasov et al. [2020] and Hibernus++ [Balsamo et al., 2016], have also used
the strategy of checkpointing to save and restore program state.

In contrast, studies such as Alpaca [Maeng et al., 2017] and Chain [Colin
and Lucia, 2016] identified some disadvantages in using checkpointing method-
ology. It was noticed that the size of the checkpoints appears to determine the
program’s energy and time overhead, and so in implementations where the
program state was large, checkpointing presented significant overhead and en-
ergy costs. Instead, several previous works chose to operate with task-based
systems instead of checkpointing.

In the task-based approach, the programmer can decompose the applica-
tion program into tasks, described as user-defined regions of code that execute
in a transactional manner and over a consistent snapshot of memory [Afanasov
et al., 2020, Maeng et al., 2017]. With Alpaca, Maeng et al. [2017] proposed
a task-based strategy where the programmer specifies the order in which the
tasks will be executed, and the program’s control flow is determined by the
sequence of execution of these tasks. Additionally, Alpaca uses a control strat-
egy that if a power failure occurs during the execution of a task, its results are
scrapped and the task is re-executed and the memory is updated before con-
trol advances to the following tasks. Afanasov et al. [2020] also implements a
task-based strategy for their system Empire, adding an energy-aware schedul-
ing system that only writes the results of a task’s execution after it is finished
and if there is sufficient energy to do so.



3
Methodology

As previously illustrated, by attempting to overcome the many challenges
caused by batteries in deployments of IoT applications, a popular growing so-
lution has been to replace them with Energy Harvesting architecture. However,
this approach brings a new set of challenges, as its operation provides an unpre-
dictable power supply to the endpoint IoT device, resulting in an intermittent
execution of any running software. As such, many solutions have been pro-
posed to tackle intermittent operations in computer systems powered by EH.
The analysis made in Chapter 2 attempts to understand the similarities and
differences between some of the most featured publications, in an effort to trace
a baseline between them.

Ultimately, it was observed that each surveyed solution had its own ap-
plication context and focus of study, and thus their approaches to a solu-
tion varied accordingly to their objectives. For example, the goal of Mementos
[Ransford et al., 2011] was to introduce a new software strategy for check-
pointing a program’s execution based on the measured energy levels. Hence,
no energy storage was used and they forewent testing with a real EH supply
entirely. Likewise, Hibernus++ [Balsamo et al., 2016] proposed a checkpoint-
ing strategy where they also monitored energy thresholds without the need
for energy buffers. But, their system was an improvement of Mementos, as it
self-calibrated according to the available energy and a practical validation with
real EH sources was done. Meanwhile, works like Capybara [Colin et al., 2018]
and Chance [Hoseinghorban et al., 2021] are both task-based solutions that
use capacitors as energy buffers and monitor available energy levels, but their
capacitor topology and charge management strategies still differed. As Capy-
bara’s objective was to design a reconfigurable energy storage architecture, its
power management technique was to calculate and store the amount of energy
needed by each task, and then switch the capacitor bank configuration in case
more energy was needed. However, Chance used a single fixed-size capacitor
to store energy and managed it by using a voltage trigger controller. This
controller acted as a switch between the capacitor and the computing system,
disconnecting them from one another when energy was low and an imminent
power failure was detected.

Therefore, when it came to integrating the power management of EH
architecture, with control techniques for intermittent software execution, prior
works differed significantly when specifying their chosen approach. The in-



Chapter 3. Methodology 26

terface between these systems varied according to each solution’s focus and
objectives, and no explicit definition exists as to how to properly categorize
their approaches. A preliminary tabulation of the strategies used by a selected
few of these related works can be seen in Figure 3.1:

Figure 3.1: Classifying related works according to their Charge Management Interface and
Program Execution Control.

From the examinations summarized in Figure 3.4, it was observed that
the proposed solutions could be classified according to the two following
elements:

1. Charge Management Strategy - Refers to the techniques adopted
for controlling the energy storage mechanism, including

– the type of energy storage mechanism e.g. a single capacitor, super-
capacitors, capacitor banks, polymorphic or federated capacitors.

– the energy monitoring strategy chosen to observe the energy levels,
normally by use of hardware devices, e.g. analogue-digital convert-
ers (ADCs), voltage comparators. Two monitoring strategies were
isolated from the available works:

– Active - The computer system is actively monitoring to know
when the energy supply is too low to continue software execu-
tion.

– Passive - The computer system is informed (e.g. by an inter-
rupt routine) when the energy supply is too low and/or when
there is sufficient energy again to continue software execution.



Chapter 3. Methodology 27

2. Program Execution Control - Refers to how the computer system
progresses with program execution given the intermittent energy supply,
by use (or not) of the already proposed execution models (e.g. check-
points or tasks). The challenge here is understanding how to best imple-
ment a secondary program, that operates on top of the main program
in order to save/restore its state, whilst also being affected by the same
energy intermittency. This includes

– the technique used for saving and restoring the main program’s
state, examining what volatile data must be preserved and how to
persist it on non-volatile storage.

– the strategy of when to call this secondary routine in relation to the
execution of the main program.

Ideally, these factors can be used to properly organise and categorize
solutions that study the control between an intermittently operated computer
system and the EH architecture that powers it. With this system, the main
objective is to help outline a proper classification scheme for deployments
of MCUs intermittently powered by EH, based on their choice of control
interface, which is characterised by its charge management strategy and
program execution control. This way, future works that strive to further evolve
the current solutions can have a clearer grasp of where to begin.

Hence, the main objective of this final project is to devise and implement
an example of a simple control interface for a microcontroller operating under
intermittent operation and powered by an EH architecture. The goal is to
evaluate experimentally the performance of the presented system, in order to
better understand the advantages and limitations of its chosen methodology.
The hope is that this project will serve as the beginning of a road map,
which will facilitate comparison between different control interfaces based
on the efficiency of their chosen architecture. Due to the broadness of the
proposed control interface methodology, however, the study parameters of this
project are limited solely to the examination of the Program Execution Control
element. No practical study was made as to the Charge Management Strategy
of the control interface.

3.1
Technology and Platforms

In order to replicate a control interface for computer systems powered
by EH, a choice had to be made as to what technologies and platforms would
be used to implement each system. Regarding the microcontroller, a desire



Chapter 3. Methodology 28

was to use FRAM as the choice of NVM, because of its benefits over other
memory systems, such as Flash. The choice for the Texas Instruments (TI)
MSP430 was an attractive one, as they had been known for developing fine
MCUs with embedded FRAM, as well as having ready-to-buy development kits
that facilitated practical experimentation. As to the EH architecture, it was
desired to keep as uncomplicated as possible, with an energy harvester that
could easily collect energy from the application’s deployment location and an
uncomplicated storage system.

Thus, based on the previously defined parameters, the following tech-
nologies were chosen for developing the intended testbench:

1. The EH architecture is a circuit comprised of photovoltaic cells as an
energy harvester, a CJMCU-2557 as a PMIC [AliExpress, 2023] and a
1mF capacitor as an energy storage.

2. The computing system is the development board of the MSP430FR5994
microcontroller by Texas Instruments, with embedded 256KB of FRAM
and 8KB of SRAM [Texas Instruments, 2023c].

3. The integrated development environment (IDE) is Code Composer Stu-
dio (CCS) [Texas Instruments, 2023b], the Texas Instruments official
platform for programming and debugging its MCUs.

4. Windows was chosen as the preferred operating system as it handled
CCS’s user interface better.

5. Programming is done on CCS with both C/C++ and assembly languages
being used.

3.2
Understanding the MCU and IDE

Since the focus of the project is the Program Execution Control system,
the logical first step was to understand how to work the microcontroller and the
IDE. Although previous experience was had in programming microcontrollers
of all levels of computer language (e.g. Arduino, RaspberryPi, NodeMCU
ESP8266), the Texas Instruments MCU and IDE were not one of them. A
simplifying factor, however, is that CCS is an Eclipse-based IDE and previous
background with programming Java in the Eclipse platform facilitated the ini-
tial operation of CCS. Hence, project development began with understanding
how to program the MSP430FR5994 development kit through the operation
of CCS.



Chapter 3. Methodology 29

By reading through the appropriate MCU and CCS datasheets, and
reading through example programs offered by TI, the following key findings
were obtained:

– The MSP430FR5994 development board offers an on-chip debugger and
bootstrap loader, discarding the need for external devices for booting
and debugging the microcontroller.

– The board also contains an embedded energy monitoring system called
EnergyTracing Technology, which allows the user to trace the energy
consumption of the MCU’s systems.

– During debugging mode with the execution paused, the user can make
use of the Memory Browser and Register features offered by CCS to
visualize the MCU’s memory contents.

– CCS allows users to pick which compiler will be used for the project,
with the main ones being its default TI C/C++ compiler or the GNU
C compiler (GCC). The current project chose to use the default TI
compiler.

– The default TI compiler offers a configurable module called linker com-
mand file [Texas Instruments, 2023f], where the user can manually con-
figure the MCU’s memory map for the running application.

These were all features of interest, as they allow the user to trace an
energy profile for the running programs, configure the memory sections as the
best fit for the application being developed, and provide a friendly display of
the content being written into memory and registers. The latter was especially
useful when debugging a program’s execution flow, as it showed a step-by-step
of the values altered in the memory system as the program progressed.

Figure 3.2 shows a reference picture for the CCS’s user interface, display-
ing the Memory Browser and Register windows:

3.3
Program Execution Control

The first part of understanding how a control interface implements a
Program Execution Control mechanism, is studying the technique used for
saving and restoring the executing program’s state. As stated in Section 3.4,
this is done by assessing what volatile data should be preserved and how
it will be persisted in non-volatile storage. Hence, this part of the project’s
development focused on creating a secondary program that would save the
necessary volatile data of the primary program into the MSP430FR5994’s



Chapter 3. Methodology 30

Figure 3.2: User interface for Code Composer Studio, TI’s IDE for MCUs.

FRAM. The second part, however, would be choosing an adequate strategy
for executing this second program concurrently with the primary program it
seeks to preserve the context of, as they will both be affected by the energy
intermittency.

This development was split into different processes, listed below:

1. Save-and-Restore Library - In order to develop a software routine
that saves and restores a program’s state, the following steps were taken:

– Mementos1 and Hibernus++2 both made their software available in
public online platforms and so the first approach was to study their
code to identify what data needed to be saved and how they saved
it.

– The next step was to try and replicate their logic for the
MSP430FR5994 specifically, determining what information needed
to be saved and how it could be written into the FRAM.

– Then, an attempt was made to develop a library from scratch based
off Mementos and Hibernus++, that would be used to copy contents
from non-volatile sections of memory into the FRAM and correctly
restore it back, so the execution would continue where it left off
after a power failure.

2. Intermittent Execution Model - Having a library that saves and
restores the execution state, a strategy was developed for testing this
routine with an example test program.

1https://github.com/spqr/mementos/tree/wolverine
2http://www.transient.ecs.soton.ac.uk/transient.php



Chapter 3. Methodology 31

3.3.1
Case Studies: Mementos and Hibernus++

Firstly, it was noticed that Mementos and Hibernus++ used a somewhat
similar strategy to saving and restoring program context. They both evaluated
that it would be necessary to save the CPU registers (Program Counter, Stack
Pointer, Status Register and General Purpose Registers), CPU stack and any
required RAM data, which are all erased when power to the MCU is shut off.
Both applications did experiments on the MSP430FR framework, where global
and static variables are allocated in the RAM by default, whilst constants
and program code are stored in the main non-volatile memory (FRAM, ROM
or Flash). This is equally true for the MSP430FR5994, with constants and
program code being stored in the FRAM by default. Therefore, in order to
properly restore the application execution state after a power loss in the target
MCU, the save-and-restore program must save the CPU registers and stack,
as well as the global and static data stored in the RAM.

Mementos and Hibernus++ followed this same procedure, but while
Hibernus++ decided to save the entire RAM content, Mementos only saved
the necessary sections of RAM that held the static and global variables.
Hibernus++ followed a less complex approach, hard-coding the origin and
destination addresses of the relevant memory locations into their program,
and using in-line assembly code in their C file to call these routines (Figure
3.3). To decide where in the FRAM to save the copied data, they used a
dedicated section of the FRAM that was manually configured in the MCU’s
linker command file.

Figure 3.3: A snippet of Hibernus++’s save-and-restore program state routine.

Mementos, however, uses a more sophisticated methodology by dynam-



Chapter 3. Methodology 32

ically calculating the size of the data it needs to allocate into the NVM. To
save the CPU registers, they use in-line assembly instructions to pile them
into the CPU stack. Since they knew where the original stack began, they now
have the original stack size summed with the size of the CPU registers. Next,
they calculate the size of the RAM section used by global and static variables.
Lastly, having estimated the total size of the data they need to save, they now
iterate over the FRAM to allocate the CPU and RAM data, starting at the
next available address (that they also calculate). This strategy is illustrated in
Figure 3.4.

This way, unlike Hibernus++, Mementos does not need to save the entire
RAM content into the FRAM, as they calculate and allocate only the space
they need. This makes Mementos approach more efficient in terms of memory
usage, but they do have the disadvantage of having to recalculate the addresses
of the memory sections every time. In contrast, Hibernus++ appointed an
available address range in the FRAM separated exclusively for holding the
CPU registers, stack and the full RAM data they sought to save. This way,
no address calculations were necessary and the configuration of the memory
map guaranteed a dedicated memory section. Not to mention that, by saving
the entire RAM, all its data is preserved and there is no risk in calculating
the wrong address for restoring the data later. However, if the memory map
changes, the user needs to manually alter the hard-coded address values in the
code, which would not be an issue for Memento’s implementation.

3.3.2
Save-and-Restore Library

Therefore, having properly mapped the strategies used by Mementos
and Hibernus++ to save and restore program context, the next step in the
project’s development was to make an effort to implement a similar and simpler
routine from scratch, without having to rely on the specificities and framework
constraints of Mementos’s or Hibernus++’s code.

A choice was made to base this new save-and-restore library on the ap-
proach followed by Hibernus++, mainly due to their simplicity in methodol-
ogy when compared to Mementos’s strategy. The memory addressing was easily
configurable in the linker command file and having to save the entire RAM was
seen as less of a disadvantage when considering that the MSP-EXP430FR5994
has a dedicated FRAM storage of 256KB while the RAM size is merely 8KB.
Not to mention, Mementos makes use of the GCC compiler which does not
have the same linker command file as the TI compiler. This made it harder
to understand the memory addressing calculations they made, let alone how



Chapter 3. Methodology 33

Figure 3.4: A diagram explaining Memento’s save-and-restore program context routine.



Chapter 3. Methodology 34

to replicate them, so following Hibernus++ strategy felt like a more clear and
uncomplicated approach.

Following this strategy, the MCU’s linker command file was reconfigured
to create a dedicated section in the FRAM for the volatile data that the library
needs to save and restore. Considering the physical FRAM addressing space
ranges from 0x004000 to 0x043FFF (with a dedicated section for interrupt
vectors between 0x00FF80 and 0x00FFF), Figure 3.5 shows the designed
memory map for the prototype memory library. In total, 10KB were assigned
to store the RAM’s 8KB data (FRAM_RAM), while 64B were used to store
the CPU registers. Since the MSP430 processor was configured to use 20-bit
sized registers (except for the Status Register with 16 bits), a total of 15 CPU
registers would need 38B, but extra space was allocated just in case, totalling
64B (FRAM_REG).

Figure 3.5: Memory map outlined for the save-and-restore context prototype library.

Having mapped the address range for allocation in the FRAM, a C
module was developed that called the same in-line assembly function as
Hibernus++ and Mementos, in order to move content from the registers and
RAM addresses to the mapped FRAM destination. Figure 3.6 shows a snippet
of that code3, specifically implementing save and restore functions for the CPU
registers.

3https://github.com/bellamariz/MSP430FR-SaveContext



Chapter 3. Methodology 35

Figure 3.6: Snippet code of the save-and-restore context prototype library.

Nevertheless, despite a strong effort to replicate Hibernus++’s strategy
and create an independent save-and-restore context library, several difficulties
and limitations were observed during development. For example, the value of
the Status Register was being saved correctly in the FRAM, but every time the
system was rebooted, the last byte of its value kept getting overwritten in the
FRAM address where it was stored. The source of this issue was investigated,
suspecting an overwrite triggered by the MCU’s reset or a configuration of the
assembly instruction used. However, no satisfactory solution was found at the
time.

Moreover, it was felt that the library developed did not adequately
implement the full objective of a save-and-restore context routine. Although
critical volatile data from the CPU and the RAM was handled decently, no
strategy was developed to handle the persistence of any peripherals, as that
would take an even higher complexity. As a consequence, it was necessary to
follow a different strategy and a solution was found in the TI official API
package FRAM Utilities.

3.3.3
Computing Through Power Loss

It was discovered that TI microcontrollers from the MSP430FRx family
can make use of the FRAM Utilities library, a collection of software modules
created by Texas Instruments to help users develop with the MCU’s FRAM.
One of the utilities provided was an API called Compute Through Power Loss
(CTPL) that “allows an application to save and restore critical system com-



Chapter 3. Methodology 36

ponents when a power loss is detected” [Texas Instruments, 2023d]. Therefore,
this API seemed like a suitable alternative for a save-and-restore context li-
brary, and so it was sought to understand how it worked in order to rate its
applicability in the final project.

The CTPL API offers two main functions, ctpl_enterLpm and
ctpl_enterShutdown, which when called save to FRAM: the state of all pe-
ripheral registers, the context of the CPU and the active stack to non-volatile
RAM. The difference between them is:

– ctpl_enterLpm - After being called, program execution is halted, the
current system state is saved to FRAM, and the MCU enters into sleeping
mode. The restoring routine will occur and execution will resume only
on a device reset/power on or if an interrupt event is detected.

– ctpl_enterShutdown - After being called, program execution is halted, the
current system state is saved to FRAM, and the MCU waits in active
mode for an imminent shutdown. Here, interrupt and wake-up sources are
disabled, the restoring routine will occur and execution will resume only
on a device reset/power up, or if the timeout value passed as parameter
is exceeded. That is, after the MCU begins the shutdown, if the timeout
value is exceeded and no power loss occurs, the saved state is restored
and execution resumes.

Notably, when a system state is saved, it is flagged as valid, and when
it is restored, the API marks it as invalid. This means that, once a state
was restored, it cannot be used again, and program execution must wait until
the next API call is made to have the system state saved to FRAM. This is
because the API was designed specifically in use cases where a loss of power is
a certainty, not just a possibility, and that’s why its strategy involves stopping
the execution of the MCU on top of saving the system state. Despite this, it
was understood that the CTPL library could be well-adapted and utilized as
a save-and-restore library for this final project.

3.3.4
Program Execution Model

With a library selected for saving and restoring the execution state of a
program after a power loss occurs, the next development stage in completing
the interface’s Program Execution Control is to define an execution model.
Here, the challenge is how to efficiently use the proposed library in relation
to the concurrent execution of the primary program it operates over. That is,



Chapter 3. Methodology 37

how to guarantee the execution of a program that is used to persist the state
of another program, in spite of both being at risk of a power loss.

At this point, it was necessary to define a test program that would be
used for evaluating the performance of the chosen save-and-restore library.
Seeking to begin with a naive simplistic approach, a code was developed for a
3-bit counter that posts the counter value to three GPIO ports, each connected
to a LED to display the counter value. This counter is a global variable that
resets every time it reaches eight (8) since three bits in binary can only count
up to seven (7). Additionally, since the standard for programming with the
MSP430FR5994 microcontroller is to operate directly on the MCU registers,
an additional TI library called DriverLib [Texas Instruments, 2023e] was used
as a higher-level language interface for the register bitwise operations. This
library was used to initialize and alter the state of the GPIO pins in the
MSP430FR5994 development board.

Then, with the test program created, an execution model was needed
to control the execution flow between this program and the save-and-restore
library. It was decided to implement a task-based model, where the tasks
would be set up, posted for execution and then processed by a scheduler. This
scheduler receives pointers to functions (tasks) and queues them for execution,
only processing them one at a time. Therefore, the main test code consists
of an eternal loop that calls the scheduler function that processes the posted
tasks. This solution schedules only one task for in-loop execution, the counter
function, so each task is an instance of the counter being incremented and
posted to the GPIO pins. The counter function posts itself for future processing
every time it is called, guaranteeing that there will always be a task to be
processed. Figure 3.7 shows the complete code4 for the main test program.

4https://github.com/bellamariz/MSP430FR5994-SaveRestoreContext



Chapter 3. Methodology 38

Figure 3.7: Code snippet of the developed test code.

This way, all there was left to evaluate is where to place the call to
the CTPL library, in order to save and restore the system state through a
power loss. The examined related works about task-based systems normally
processed the sets of tasks atomically, by executing them one at a time (as was
done here), but also by waiting for the successful completion of a task before
executing the next one. Seeking to somewhat reproduce this technique, it was
decided that the call to the CTPL library would be done inside the scheduler
function that processes the tasks, placed right before the execution of the next
task. This code can be seen in Figure 3.8.

The chosen CTPL function was ctpl_enterShutdown with the timeout
parameter, and a modification was made to the library so that the saved
states would not be invalidated after restoring. This way, each time a task
is successfully executed, the CTPL library saves the current system state to
the FRAM. If a power loss occurs before the timeout is reached, the system
state will be restored when the MCU powers on again. However, if the CTPL
detects a timeout and energy is still available, it restores the saved system state



Chapter 3. Methodology 39

Figure 3.8: Call to save-and-restore function inside the scheduler model.

and continues the execution flow for the next queued task. If a power failure
occurs during the execution of a task, the system state is saved. When the MCU
eventually powers on again, the restored context identifies the last executed
task as the one that was finished before the one that was executing when the
power loss occurred. Therefore, when the system powers on, it re-executes the
task that was interrupted from the beginning, instead of continuing execution
in the middle of the task where it was cut off.

3.4
Project Design of Control Interface

At the beginning of this Chapter, the concept of a control interface for
computing systems powered by EH was introduced. It was outlined, that based
on an analysis of related works, a proposal for this interface was defined by
two main systems: the charge management of the EH system’s energy buffer,
and the methodology chosen for controlling software execution given the power
intermittency. Since the scope of the final project was narrowed to focus on the
development of the program execution control, this report does not approach
detailed solutions for charge management strategies for EH systems.



Chapter 3. Methodology 40

Nonetheless, one of the main project objectives was to implement and
evaluate an example of control interface with a real EH architecture. In Section
3.1, the proposed EH technology was introduced, and these can be drawn
together to the MCU system to compose the following circuit:

Figure 3.9: Schematic of the proposed control interface.

As shown in Figure 3.9, the energy harvester implemented was a pho-
tovoltaic cell, given the usual abundant sunlight availability in the deployed
location. The harvester is then connected to the power management device
CJMCU-2557, that has an internal power converter with a 3.3V reference
voltage. This device has two outputs: (1) one to charge the 1mF capacitor cho-
sen for energy buffer (VBAT) and one to supply to the MSP-EXP430FR5994
board (VOUT). When the stored voltage is higher than the reference voltage,
the device converts this exceeding voltage into electrical current to optimize
the system’s power. The usage of this technique is important, since the op-
erating voltage of the MCU is between 1.8V and 3.6V, and the capacitor is
capable of providing a higher voltage than that.

Finally, connected to the MCU through three GPIO pins, there is 3-LED
circuit used to evaluate the operation of the counter test program. As explained
in Section 3.3.4, the program counts up to seven (7) before resetting the count
to zero (0) and beginning again, and the counter progress is represented by
three LEDs in binary. Each LED was naturally coupled with a resistor, and
although a resistance of 100Ω was tested and proven to be enough, it was
decided to use a value as high as possible without compromising the LED’s
brightness. This is because, given the scarcity of energy in EH deployments,
a high resistance would guarantee a lower current and, thus, a lower power



Chapter 3. Methodology 41

consumption for the same voltage value. At the end, after testing a few different
values, it was decided that a 4.7kΩ resistor was enough.

In the end, the final project’s experimental model can be summarized as
illustrated in Figure 3.10.

Figure 3.10: Final project’s experimental model platforms.



4
Results

The first batch of tests were made without the influence of the EH archi-
tecture. Since a relevant part of the final project’s methodology is implementing
a solution for a program execution control, the performance of the designed
software was evaluated with simulated power outages. This was done by simply
unplugging the USB cable that connects the MSP-EXP430FR5994 board to
the computer. Figure 4.1 shows the first test bench for the proposed system,
with only the MCU and the LED circuit.

Figure 4.1: Test bench for the MCU coupled with the LED counter.

After the test program discussed in Chapter 3 was loaded into the MCU,
it ran as smoothly as it was expected. The LEDs were powered in a combination
that correctly represented the counter value, from zero (0) to seven (7) and then
repeated this cycle on a loop. In order to test the Program Execution Control
methodology implemented, a power failure was introduced by unplugging the
USB cable in two moments: (1) in between tasks i.e. in between incremented
values of the counter, (2) in the middle of the program counter execution, just
as the LEDs were changing state. For the first test case, after the MCU was
powered up, the test program execution resumed exactly from where it left off



Chapter 4. Results 43

between tasks. If the last state was the counter equal to three, when power
was restored, execution continued where it left off, with the LEDS displaying
four, and so on. On the second test case, however, as execution was shut off
before the task could be completed, when the power was restored, the program
correctly re-executed the task that was interrupted. If the interrupted task
was in the middle of couting up to four, then the MCU began execution with
the LEDs displaying three and then incremented to four. This behaviour was
exactly what was expected, as it reflects the task-based strategy proposed in
the the methodology.

An additional test was made that followed the exact strategy as the
previous one, but instead of being powered by the computer via USB cable, an
attempt was made to test the on-board supercapacitor featured on the MSP-
EXP430FR5994 as the power supply. The supercapacitor was then charged
accordingly the datasheet instructions, and a jumper was used to select its
Use operation, before the USB cable was disconnected. Almost immediately,
the LEDs dimmed and their brightness was not as strong as it was when
connected to the computer, which is expected. Then, the previously described
tests were repeated, but when a power failure was staged by disconnecting the
jumper, the results were not as satisfactory. For the first test case, the control
flow of the program was restored successfully, but for the second case, it was
noticed that the program execution reset the counter entirely. Although no
detailed explanation could be found, a possible explanation could be that the
power fluctuation when connecting and disconnecting the jumper negatively
interfered in the restore routine.

Subsequently, the next and most anticipated test case, was experimenting
with EH as the energy supply source, and as such the MCU system was
connected to the EH architecture, as illustrated in Figure 4.2. In this test
case, the first problem arose when the circuit was connected, but the MCU
did not power on. After checking the capacitor storage and verifying it was
around 4V - more than enough to power the MCU - a quick re-inspection
of the circuit was made. It was noticed that, apparently, the Vout output of
the PMIC module was not supplying energy correctly to the microcontroller,
despite the capacitor being more than sufficiently charged. An attempt was
made to open the jumper connection of the on-board debugging probe on the
EXP-MSP430FR5997, since it was theorized that the internal regulator present
on that section of the developed board could add a heavy energy consumption
load to the circuit. However, this attempt made no difference and the MCU still
did not power on. Another more probable theory was that the EH circuit just
could not generate enough power to feed the MCU. This could have been likely



Chapter 4. Results 44

influenced by the constant rainy weather during the week when the tests were
implemented, on top of the fact it was already winter season when daylight is
shorter.

Therefore, a workaround solution was found to try and at least evaluate
the test program within the scope of the EH architecture. Instead of supplying
the MCU with the output voltage from the power regulator, two jumpers were
used to connect the capacitor in parallel with the MCU and a resistor was
added to shield the MCU from the higher voltage of the capacitor. When the
MCU was connected, it immediately turned on and the engraved firmware with
the test program began to execute correctly. A power shortage was triggered by
disconnecting the Vcc jumper that supplies the MCU, and when reconnected,
the program state was restored and execution continued correctly, without
resetting the counter.

Figure 4.2: Test bench for the entire control interface (MCU and EH).



5
Conclusion and Future Works

In conclusion, the final project managed to present a suitable solution
for intermittent operation in a microcontroller powered by EH. Despite the
unexpected behaviour of the EH supply and the difficulties in developing
software for program execution control, the results presented were satisfactory
and represented a real chance at testing the proposed methodology.

One of the main project objectives was to suggest an outline for a control
interface for computer systems powered by EH, in an attempt to help categorize
the many related works that remain difficult to compare. Despite the plurality
of EH applications making it harder to fit all these related works into a single
category system, the hope is that this final project can help promote the idea
of new control interface solutions. This would help in comparing their strategy
and efficiency, in order to develop better and more clever solutions in the
future.

Additionally, another goal that was hoped to be achieved was to be able to
experiment practically with a real energy harvesting system. Even though the
unfavourable environmental conditions hindered the effort of properly powering
the MCU with the correct EH architecture, this was seen as an excellent
learning opportunity. Related works had already mentioned the importance
of choosing an appropriate and readily available energy source when deploying
an EH system. It was expected that, since the city location where project
experimentation took place was well-known for its sunny weather, that a
photovoltaic energy harvester - capable of even harnessing energy from artificial
light - would be a good choice. However, this was not the case, and the
unpredictable ambient conditions significantly restrained the performance of
the EH system.

Furthermore, the designing of this project helped immensely in applying
and refining a considerable amount of technical knowledge that was necessary
to implement it. Concepts on low-power electronics were revised in order to
assemble the different circuits of both the MCU and the EH. The attempt
to develop a save-and-restore program context software from scratch was very
challenging, as it dealt with a lot low-level programming and having to analyse
the MCU’s registers one by one. Although this process was quite taxing,
it was an excellent educational opportunity, allowing for a very thorough
understanding of how the MSP430FR5994 microcontroller functions. This will
make any future developments using this embedded system considerably less



Chapter 5. Conclusion and Future Works 46

strenuous.
Finally, throughout the development of the final project, several points

for future works were raised and are listed below.

– Developing and experimenting with more complicated interfaces, that
use complex storage systems or more efficient methodology for calling
the save-and-restore application. For example, using hardware to monitor
the system energy levels and trigger the intermittent execution model.

– Testing with other EH devices that have more resource availability than
the photovoltaic cells, or that are at least capable of drawing more power
than the ones used.

– Improving on top of Texas Instrument’s CTPL API, so that the save-and-
restore functions do not freeze the program execution after saving the
system state. This would make it harder to test alternatives for program
execution control, since these would be restricted by the API’s mandatory
execution freeze.

– Develop more complex test programs, that use sensor readings and even
data transmission through radio, for example. These would allow for
studying how the state of peripheral devices is affected by an intermittent
operation.

– Improve the visualization strategy used to externalize the program data
and verify its correctness through periods of power intermittency. Instead
of using LEDs, the MCU’s own UART could be used with a serial module
to create log files of more expressive data.



6
Bibliography

Afanasov, M., Bhatti, N. A., Campagna, D., Caslini, G., Centonze, F. M., Dolui, K.,
Maioli, A., Barone, E., Alizai, M. H., Siddiqui, J. H., and Mottola, L. (2020).
Battery-less zero-maintenance embedded sensing at the mithræum of circus
maximus. In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, pages 368–381, Virtual Event Japan. ACM.

AliExpress (2023). CJMCU-2557 bq25570 nano power energy harvester.

Bakar, A. and Hester, J. (2018). Making sense of intermittent energy harvesting. In
Proceedings of the 6th International Workshop on Energy Harvesting & Energy-
Neutral Sensing Systems, pages 32–37, Shenzhen China. ACM.

Ballo, A., Bottaro, M., and Grasso, A. D. (2021). A Review of Power Management
Integrated Circuits for Ultrasound-Based Energy Harvesting in Implantable
Medical Devices. Applied Sciences, 11(6). Number: 6 Publisher: Multidisciplinary
Digital Publishing Institute.

Balsamo, D., Weddell, A. S., Das, A., Arreola, A. R., Brunelli, D., Al-Hashimi,
B. M., Merrett, G. V., and Benini, L. (2016). Hibernus++: A Self-Calibrating
and Adaptive System for Transiently-Powered Embedded Devices. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
35(12):1968–1980.

Balsamo, D., Weddell, A. S., Merrett, G. V., Al-Hashimi, B. M., Brunelli, D., and
Benini, L. (2015). Hibernus: Sustaining Computation During Intermittent Supply
for Energy-Harvesting Systems. IEEE Embedded Systems Letters, 7(1):15–18.

Berthou, G., Marquet, K., Risset, T., and Salagnac, G. (2020). MPU-based incre-
mental checkpointing for transiently-powered systems. In 2020 23rd Euromicro
Conference on Digital System Design (DSD), pages 89–96, Kranj, Slovenia.
IEEE.

Bhatti, N. A. and Mottola, L. (2017). HarvOS: Efficient Code Instrumentation for
Transiently-Powered Embedded Sensing. In 2017 16th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), IPSN ’17,
pages 209–220, Pittsburgh, PA, USA. Association for Computing Machinery.

Bi, S., Ho, C. K., and Zhang, R. (2015). Wireless powered communication:
opportunities and challenges. IEEE Communications Magazine, 53(4):117–125.
Conference Name: IEEE Communications Magazine.



Chapter 6. Bibliography 48

Chatterjee, A., Lobato, C. N., Zhang, H., Bergne, A., Esposito, V., Yun, S., Insinga,
A. R., Christensen, D. V., Imbaquingo, C., Bjørk, R., Ahmed, H., Ahmad, M., Ho,
C. Y., Madsen, M., Chen, J., Norby, P., Chiabrera, F. M., Gunkel, F., Ouyang,
Z., and Pryds, N. (2023). Powering internet-of-things from ambient energy: a
review. Journal of Physics: Energy, 5(2):022001. Publisher: IOP Publishing.

Colin, A. and Lucia, B. (2016). Chain: Tasks and Channels for Reliable Intermittent
Programs. In 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, pages
514–530. Association for Computing Machinery.

Colin, A., Ruppel, E., and Lucia, B. (2018). A Reconfigurable Energy Storage
Architecture for Energy-harvesting Devices. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’18, pages 767–781, New York, NY, USA.
Association for Computing Machinery.

Dietrich, S. (2022). Solving the Biggest Challenge of IoT Devices: Power.

Elahi, H., Munir, K., Eugeni, M., Atek, S., and Gaudenzi, P. (2020). Energy
Harvesting towards Self-Powered IoT Devices. Energies, 13(21):5528.

EnABLES (2022). Up to 78 million batteries will be discarded daily by 2025,
researchers warn.

Fortune (2023). Internet of Things [IoT] Market Size, Share & Growth by 2030.

Hasan, M. (2022). State of IoT 2022: Number of connected IoT devices growing
18% to 14.4 billion globally.

Hester, J., Sitanayah, L., and Sorber, J. (2015). Tragedy of the Coulombs: Feder-
ating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proceedings
of the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys
’15, pages 5–16, New York, NY, USA. Association for Computing Machinery.

Hoseinghorban, A., Bahrami, M. R., Ejlali, A., and Abam, M. A. (2021). CHANCE:
Capacitor Charging Management Scheme in Energy Harvesting Systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(3):419–429. Conference Name: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

Jayakumar, H., Lee, K., Lee, W. S., Raha, A., Kim, Y., and Raghunathan, V.
(2014). Powering the internet of things. In Proceedings of the 2014 international



Chapter 6. Bibliography 49

symposium on Low power electronics and design, pages 375–380, La Jolla
California USA. ACM.

Jayakumar, H., Raha, A., Stevens, J. R., and Raghunathan, V. (2017). Energy-
Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in Intermittently-
Powered IoT Devices. ACM Transactions on Embedded Computing Systems,
16(3):1–23.

Jousimaa, O. J., Xiong, Y., Niskanen, A. J., and Tuononen, A. J. (2016). Energy
harvesting system for intelligent tyre sensors. In 2016 IEEE Intelligent Vehicles
Symposium (IV), pages 578–583, Gotenburg, Sweden. IEEE.

Ku, M.-L., Li, W., Chen, Y., and Ray Liu, K. J. (2016). Advances in Energy
Harvesting Communications: Past, Present, and Future Challenges. IEEE
Communications Surveys & Tutorials, 18(2):1384–1412.

Kwak, J., Kim, H., and Cho, J. (2021). ICEr: An Intermittent Computing
Environment Based on a Run-Time Module for Energy-Harvesting IoT Devices
with NVRAM. Electronics, 10(8):879.

Lucia, B., Balaji, V., Colin, A., Maeng, K., and Ruppel, E. (2017). Intermit-
tent Computing: Challenges and Opportunities. In Lerner, B. S., Bodík, R.,
and Krishnamurthi, S., editors, 2nd Summit on Advances in Programming Lan-
guages (SNAPL 2017), volume 71 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 8:1–8:14, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

Maeng, K., Colin, A., and Lucia, B. (2017). Alpaca: intermittent execution
without checkpoints. Proceedings of the ACM on Programming Languages,
1(OOPSLA):1–30.

Magno, M., Spadaro, L., Singh, J., and Benini, L. (2016). Kinetic energy
harvesting: Toward autonomous wearable sensing for Internet of Things. In 2016
International Symposium on Power Electronics, Electrical Drives, Automation
and Motion (SPEEDAM), pages 248–254, Capri, Italy. IEEE.

Maiwa, H., Ishizone, Y., and Sakamoto, W. (2012). Thermal and vibrational energy
harvesting using PZT- and BT-based ceramics. In Proceedings of ISAF-ECAPD-
PFM 2012, pages 1–4, Aveiro, Portugal. IEEE.

Majid, A. Y., Donne, C. D., Maeng, K., Colin, A., Yildirim, K. S., Lucia, B., and
Pawełczak, P. (2020). Dynamic Task-based Intermittent Execution for Energy-
harvesting Devices. ACM Transactions on Sensor Networks, 16(1):1–24.



Chapter 6. Bibliography 50

Partida, D. (2021). What Kinds of Batteries Are Best for IoT Devices?

Pinuela, M., Mitcheson, P. D., and Lucyszyn, S. (2013). Ambient RF Energy
Harvesting in Urban and Semi-Urban Environments. IEEE Transactions on
Microwave Theory and Techniques, 61(7):2715–2726.

Precedence (2022). IoT Battery Market Size To Hit Around USD 22.7 Bn by 2030.

Ransford, B., Sorber, J., and Fu, K. (2011). Mementos: System Support for
Long-Running Computation on RFID-Scale Devices. ACM SIGARCH Computer
Architecture News, 39(1):159–170.

Ribeiro, J. G. R., Chagas, N. S., and dos Santos, M. F. (2022). O Impacto causado
ao meio ambiente pelo descarte incorreto de pilhas e baterias. Graduação e
especialização, Faculdade Una Pouso Alegre - Minas Gerais.

Ruppel, E., Surbatovich, M., Desai, H., Maeng, K., and Lucia, B. (2022). An
Architectural Charge Management Interface for Energy-Harvesting Systems. In
2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 318–335, Chicago, IL, USA. IEEE.

Ryu, H., Yoon, H.-J., and Kim, S.-W. (2019). Hybrid Energy Harvesters: Toward
Sustainable Energy Harvesting. Advanced Materials, 31(34).

Simjee, F. and Chou, P. (2006). Everlast: Long-life, Supercapacitor-operated
Wireless Sensor Node. In Proceedings of the 2006 International Symposium
on Low Power Electronics and Design, volume 2006 of ISLPED’06, pages 197–
202, Tegernsee, Germany. Association for Computing Machinery.

Sinha, S. (2023). State of IoT 2023: Number of connected IoT devices growing
16% to 16.7 billion globally.

Statista (2020). End of life recycling rates of battery metals worldwide, by type.

Talla, V., Pellerano, S., Xu, H., Ravi, A., and Palaskas, Y. (2015). Wi-Fi RF energy
harvesting for battery-free wearable radio platforms. In 2015 IEEE International
Conference on RFID (RFID), pages 47–54, San Diego, CA, USA. IEEE.

Texas Instruments (2023a). BQ25570 data sheet, product information and support.

Texas Instruments (2023b). CCSTUDIO code composer studio integrated devel-
opment environment (ide).

Texas Instruments (2023c). MSP-EXP430FR5994 msp430fr5994 launchpad devel-
opment kit.



Chapter 6. Bibliography 51

Texas Instruments (2023d). Msp mcu fram utilities version 03.10.00.10 user’s
guide.

Texas Instruments (2023e). Msp430 driverlib for msp430fr5xx 6xx devices user’s
guide.

Texas Instruments (2023f). Msp430 family linker description.

Vatamanu, J. and Bedrov, D. (2015). Capacitive Energy Storage: Current and
Future Challenges. The Journal of Physical Chemistry Letters, 6(18):3594–3609.
Publisher: American Chemical Society.

Xie, L., Song, W., Ge, J., Tang, B., Zhang, X., Wu, T., and Ge, Z. (2021). Recent
progress of organic photovoltaics for indoor energy harvesting. Nano Energy,
82.

Yang, F., Thangarajan, A. S., Michiels, S., Joosen, W., and Hughes, D. (2021).
Morphy: Software Defined Charge Storage for the IoT. In Proceedings of the
19th ACM Conference on Embedded Networked Sensor Systems, SenSys ’21,
pages 248–260, New York, NY, USA. Association for Computing Machinery.

Zeadally, S., Shaikh, F. K., Talpur, A., and Sheng, Q. Z. (2020). Design
architectures for energy harvesting in the Internet of Things. Renewable and
Sustainable Energy Reviews, 128.


	Control Interfaces for Intermittent Operation in Microcontrollers Powered by Energy Harvesting
	Resumo
	Table of contents
	Introduction
	Related Works
	Motivation
	Energy Harvesting Architecture
	Energy Harvesting Devices
	Energy Storage
	Power Management Integrated Circuits

	Intermittent Computing
	Memory System
	Program Execution Model


	Methodology
	Technology and Platforms
	Understanding the MCU and IDE
	Program Execution Control
	Case Studies: Mementos and Hibernus++
	Save-and-Restore Library
	Computing Through Power Loss
	Program Execution Model

	Project Design of Control Interface

	Results
	Conclusion and Future Works
	Bibliography

