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Abstract

Biirkle, Paula Yamada; Vellasco, Marley Maria Bernardes
Rebuzzi  (Advisor); Azevedo, Leonardo (Co-Advisor). Deep
Physics-Driven Stochastic Seismic Inversion. Rio de Janeiro,
2022. 112p. Tese de Doutorado — Departamento de Engenharia Elétrica,
Pontificia Universidade Catolica do Rio de Janeiro.

Seismic inversion allows the prediction of subsurface properties from
seismic reflection data and is a key step in reservoir modeling and
characterization. Traditional seismic inversion methods usually come with a
high computational cost or suffer from issues concerning the non-linearity
and the strong non-uniqueness of the seismic inversion model. With the
generalization of machine learning in geophysics, deep learning methods have
been proposed as efficient seismic inversion methods. However, most of them
lack a probabilistic approach to deal with the uncertainties inherent in
the seismic inversion problems and/or rely on complete and representative
training data, which are often scarcely available. To overcome these limitations,
we introduce a novel seismic inversion method that explores the ability
of deep convolutional neural networks to extract meaningful and complex
representations from spatially structured data, combined with geostatistical
stochastic simulation, to efficiently invert seismic reflection data directly
for high-resolution subsurface models. Our method incorporates physics
constraints, sparse direct measurements, while leveraging the use of imprecise
but widely distributed indirect measurements as represented by the seismic
data. The geostatistical realizations provide additional information with higher
spatial resolution than the original seismic data. When used as input to our
inversion system, they allow the generation of multiple possible outcomes for
the uncertain model. Our approach is self-supervised, as it does not depend
on ground truth input-output pairs. In summary, the proposed method is
able to: (1) provide uncertainty assessment of the predictions, (2) model
the complex non-linear relationship between observed data and model, (3)
extend the seismic bandwidth at both low and high ends of the frequency
parameters spectrum, and (4) lessen the need for large, annotated training
data. The proposed methodology is first described in the acoustic domain
to invert acoustic impedance models from full-stack seismic data. Next, it is

generalized for the elastic domain to invert P-wave velocity, S-wave velocity


DBD
PUC-Rio - Certificação Digital Nº 1821333/CA


PUC-Rio- CertificagaoDigital N° 1821333/CA

and density models from pre-stack seismic data. Finally, we show that the
proposed methodology can be further extended to perform petrophysical
seismic inversion in a simultancous workflow. The method was tested on a
synthetic case and successfully applied to a real three-dimensional case from
a Brazilian reservoir. The inverted models are compared to those obtained
from a full iterative geostatistical seismic inversion. The proposed methodology
allows retrieving similar models but has the advantage of generating alternative
solutions in greater numbers, providing a larger exploration of the model

parameter space in less time than the iterative geostatistical seismic inversion.

Keywords
Deep Learning; Seismic Inversion; Geostatistical Inversion; Subsurface

Characterization.
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Resumo

Biirkle, Paula Yamada; Vellasco, Marley Maria Bernardes Rebuzzi;
Azevedo, Leonardo. Inversdo Sismica Estocastica com
Aprendizado Profundo Orientado a Fisica. Rio de Janeiro,
2022. 112p. Tese de Doutorado — Departamento de Engenharia Elétrica,
Pontificia Universidade Catoélica do Rio de Janeiro.

A inversao sismica é uma etapa essencial na modelagem e caracterizagao
de reservatorios que permite a estimativa de propriedades da subsuperficie a
partir dos dados de reflexdo sismica. Os métodos convencionais usualmente
possuem um alto custo computacional ou apresentam problemas relativos
a nao-linearidade e a forte ambiguidade do modelo de inversao sismica.
Recentemente, com a generalizacdo do aprendizado de maquina na geofisica,
novos métodos de inversao sismica surgiram baseados nas técnicas de
aprendizado profundo. Entretanto, a aplicagdo pratica desses métodos é
limitada devido a auséncia de uma abordagem probabilistica capaz de
lidar com as incertezas inerentes ao problema da inversdo sismica e/ou
a necessidade de dados de treinamento completos e representativos. Para
superar estas limitagoes, um novo método é proposto para inverter dados
de reflexdo sismica diretamente para modelos da subsuperficie de alta
resolucao. O método proposto explora a capacidade das redes neurais
convolucionais em extrair representacgoes significativas e complexas de dados
espacialmente estruturados, combinada a simulacao estocastica geoestatistica.
Em abordagem auto-supervisionada, modelos fisicos sao incorporados no
sistema de inversao com o objetivo de potencializar o uso de medigoes indiretas
e imprecisas, mas amplamente distribuidas do método sismico. As realizacoes
geradas com simulacdo geoestatistica fornecem informacoes adicionais com
maior resolucao espacial do que a originalmente encontrada nos dados sismicos.
Quando utilizadas como entrada do sistema de inversao, clas permitem a
geragao de multiplos modelos alternativos da subsuperficie. Em resumo, o
método proposto é capaz de: (1) quantificar as incertezas das previsoes, (2)
modelar a relagdo complexa e nao-linear entre os dados observados e o modelo
da subsuperficie, (3) estender a largura de banda sismica nas extremidades
baixa e alta do espectro de pardmetros de frequéncia, e (4) diminuir a
necessidade de dados de treinamento anotados. A metodologia proposta é

inicialmente descrita no dominio actstico para inverter modelos de impedancia
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acustica a partir de dados sismicos pés-empilhados. Em seguida, a metodologia
¢é generalizada para o dominio elastico para inverter a partir de dados sismicos
pré-empilhados modelos de velocidade da onda P, de velocidade da onda S e
de densidade. Em seguida, a metodologia proposta é estendida para a inversao
sismica petrofisica em um fluxo de trabalho simultaneo. O método foi validado
em um caso sintético e aplicado com sucesso a um caso tridimensional de
um reservatério brasileiro real. Os modelos invertidos sao comparados aqueles
obtidos a partir de uma inversao sismica geoestatistica iterativa. A metodologia
proposta permite obter modelos similares, mas tem a vantagem de gerar
solucoes alternativas em maior nimero, permitindo explorar de forma mais
efetiva o espago de parametros do modelo quando comparada a inversao sismica

geoestatistica iterativa.

Palavras-chave
Aprendizado Profundo; Inversdo Sismica; Inversao Geoestatistica;

Caracterizagdo de Subsuperficie.
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1
Introduction

This chapter provides the context of this PhD thesis, the statement of
the problem, the challenges, and the contributions of the research conducted.

1.1
Context

Keeping up with the increasing amount of data coming from modern
sensor technologies and advanced data acquisition systems is an ongoing
challenge in the energy industry. Machine learning (ML) is one of the most
promising technologies to deal with big data. Deep learning (DL) is among
the fastest emerging technologies in ML. The rapid development in this area is
supported by the availability of powerful hardware, large datasets and a wide
range of ready-to-use ML solutions provided by open-source frameworks, such
as PyTorch [1] and TensorFlow [2].

DL applies deep neural networks (DNNs), which consist in neural
networks composed of a large number of hidden-layers that are stacked in
a hierarchy of increasing complexity and abstraction. Convolutional Neural
Networks (CNN) [3] are a specialized kind of DNNs that have considerably
outperformed their predecessors in computer vision tasks [4, 5, 6, 7].

In the field of geophysics, CNNs have gained popularity due to the spatial
and multidimensional nature of geophysical data. Examples of applications
of CNNs in geophysics comprise identifying geological features from seismic
attributes [8], seismic structure interpretation [9, 10, 11, 12], and seismic facies
classification [13, 14].

Recently, DL has been applied to seismic reservoir characterization,
overcoming the limitations of traditional methods [15]. In seismic reservoir
characterization, one aims at predicting the spatial distribution of elastic
and/or petrophysical rock properties from seismic reflection data [16, 17, 18,
19].

During the stages of exploration and production of hydrocarbon
resources, reservoir models are required for the understanding of the geological
context and its challenges. They are also critical inputs for improving
and accelerating drilling decisions. Given that the average cost of drilling
an offshore well is approximately US$1 million per day [20], optimal
decision-making might result in saving hundreds of millions of dollars.

This process of building a reliable subsurface model involves several
disciplines, the main ones being geology and geophysics [17, 18, 19]. Geological
data differ from geophysical data in terms of resolution, coverage, and
degrees of precision. The former contains sparse-coverage and fine-scale
information, usually obtained from direct observation of rocks retrieved by
drilling wells. Although more reliable, well data is expensive to acquire
and spatially limited. On the other hand, by taking indirect measures from
the subsurface, geophysical methods provide relatively low-cost and widely
distributed information with large uncertainty.
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Since large-scale exploratory drilling is expensive and impractical, seismic
methods are used in reservoir characterization not only for identifying and
mapping geological features that might contain hydrocarbons, but also for
predicting the physical properties of the rocks within a reservoir [17, 18, 19, 21].
Integrating both geological and geophysical sources of information is important
to preserve small-scale heterogeneity from well data and assimilate large-scale
features from seismic data. This step of the geo-modeling workflow involves
solving a challenging inverse problem - the seismic inversion.

1.2
Problem Definition

Seismic inversion is the process of reconstructing the subsurface model *
that created the recorded seismic data. In this process, the original interface
property, as represented by the seismic reflectivity data, is converted into an
elastic or petrophysical rock property.

Seismic inversion methods ideally compute a complete three-dimensional
(3D) subsurface model of a certain target area. The subsurface model is
typically defined as a finite-dimensional space, usually referred to as the model
parameters’ space, where the continuous parameters in the Earth field pass to
a discrete set of quantities to approximate the continuous space [22].

Most seismic-inversion methods involve forward seismic modeling to
devise synthetic data by simulating seismic field experiments from a predicted
Earth-model. In this process, the model parameters’ space is mapped into the
data space by a seismic forward operator, which may be a function with an
analytic form, a matrix operator, or any computational algorithm.

The seismic inverse problem is commonly expressed as the resolution to
the following mathematical problem [22]:

m = f7(d) +, (1-1)
where m is the set of the model parameters that represents the spatial
distribution of the subsurface property, d is the set of recorded seismic data,
f is the seismic forward operator, and 7 stands for the random noise.

The random noise is associated with inaccuracies of the seismic
measurement method, such as the resolution and band-limited nature of the
seismic data, measurement errors, and modeling uncertainties. Because of it,
finding the solution for equation 1-1 is an ill-posed problem, which means that
many combinations of the model parameters fit the observed data equally well.

1.3
Challenges

Seismic inversion methods can be broadly divided into deterministic and
stochastic inversion [18]. Deterministic seismic inversion methods predict a
single best-fit inverted model with limited capability to assess uncertainty
about the model predictions. On the other hand, stochastic inversion methods

n this thesis, we use the terms Earth model, subsurface model, and reservoir model
interchangeably to mean a 3D numerical representation of subsurface properties that is obtained
by seismic inversion workflows.
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allow for assessing the uncertainty about the predictions by sampling from the
model parameters space.

Different stochastic inversion methods exist depending on assumptions
about the distribution of the model parameters and how the measurement
errors are considered. Iterative geostatistical seismic inversion methods [19, 23,
24, 25] are examples of this family of methods which use stochastic sequential
simulation and co-simulation as the model perturbation and update techniques
[26]. While they allow predicting multiple subsurface models that fit equally
well with the observed geophysical data, they are computationally expensive,
mainly due to the model generation and update steps [27].

Solutions based on DL for the seismic inversion problem most benefit
from the capacity of DNNs in mapping complex and nonlinear relationships
between data and model domains. Since DL techniques have shown to perform
well in problems involving massive amounts of labeled data, early DL-based
approaches to seismic inversion problems are fully data-driven, thus relying
entirely on the completeness of the training data.

However, because of the high cost of acquiring direct measures of the
subsurface, many geophysical problems have a huge amount of unlabeled data
and a limited quantity of annotated data, which is usually obtained from real
elastic and petrophysical data from borehole logging (i.e., well-log data). In
this context, the lack of sufficient and representative samples of the target
subsurface model is one of the biggest challenges in the generalization of DL
in seismic inversion.

The scarcity of labeled data has been addressed using transfer
learning, data augmentation techniques, and generating synthetic data with
geostatistical modeling tools [28, 29, 30, 31, 32]. Such strategies aim at reducing
the dependency on large training data and mitigating overfitting issues.

Concurrently, deterministic physical models can be applied to guide the
training of a machine learning model, a paradigm known as theory-guided
or physics-driven data science [33]. When physics-driven learning is applied
to inverse problems, the known physics laws that explain the system under
investigation (i.e., the propagation of a seismic wavefield) are used to leverage
unlabeled data by constraining the relationship between the subsurface model
and observed seismic data [34, 35, 36, 34, 37, 38, 39, 38, 40].

An additional challenge, still largely open to research, is how to quantify
uncertainty in neural networks’ predictions [41, 42]. This is a crucial concern
in the predictions of subsurface models, where direct observations are rare
and indirect investigation methods are inherently uncertain [40]. Monte Carlo
dropout method [43] has been proposed to capture the network uncertainty
about the subsurface model predictions [34]. Alternatively, deep generative
networks have been applied to learn the underlying set of subsurface models
for uncertainty propagation [28, 44, 45, 46, 47, 48].

1.4
Contributions

We propose a physics-driven DL-based framework to invert multiple
equally probable elastic and petrophysical subsurface models from seismic
reflection data. Our approach mainly differs from others in that it is stochastic
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and fully self-supervised. Existing DIL-based approaches are deterministic
and/or rely, totally or partially, on labeled training data to train a machine
learning model, whether by using an approximate or exact process to generate
input-output pairs, or by adopting a semi-supervised learning strategy.

To compensate for the incompleteness of the seismic data, we borrow
prior information about the spatial distribution of the subsurface properties
from an ensemble of subsurface models generated with geostatistical simulation
[26]. These models are conditioned locally to well data and to a prior belief on
the spatial distribution pattern (i.e., a variogram model). The geostatistical
simulation methods provide the high- and low-frequency information not
captured in the observed seismic data.

In the proposed inversion framework, a deep neural network works as
a surrogate to the inverse of the seismic forward model. The geostatistical
models are fed into the neural network alongside the observed seismic data.
The computational costs of our method come mostly from training, which
happens only once up front. After training, the inference processing time is
virtually zero, thus making the overall computing costs a fraction of that
needed for iterative methods. As a result, the proposed inversion framework
allows exploring the model parameters’ space with low computational effort.

The physics-driven learning is adopted to overcome the lack of sufficiently
large annotated training data. As with other physics-driven approaches, the
seismic forward model is incorporated into the graph of the neural network
to provide the physics-based updates to the network parameters. Additionally,
we propose a physics-based adaptive loss function to automatically control
whether the network assimilates more information from the seismic data or
from the geostatistical models.

Each geostatistical model that is used as input to the trained network
will result in an alternate solution to the inverted model. The final set of
inverted subsurface models can be further used to evaluate the uncertainty of
the network predictions. This is an alternative probabilistic perspective to the
previous studies.

We summarize the main contributions of this work as follows:

1. Self-supervised learning - We adopt the physics-driven learning to
constrain the model-data relationship and leverage the use of unlabeled
seismic data. Our training procedure does not depend on ground truth
models. Instead, it relies on the diversity of unconditional (with respect
to the seismic data) geostatistical models to explore the uncertainty space
of the model parameters.

2. Uncertainty quantification - Alternatively to Monte Carlo dropout
approaches, the predictions are given based on one single deterministic
neural network, but previously simulated models are used to input
stochasticity into the network in order to devise multiple estimates. From
the set of estimates, one can extract the density probability function for
each location and spatially quantify uncertainty.

3. Efficiency - Unlike conventional iterative geostatistical seismic inversion
methods, the computational complexity of the proposed method does
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not scale with the number of realizations. The training procedure is
performed on a subset of the set of geostatistical simulated models for
which the relative computational cost decreases with the number of final
estimates. The network serves as a surrogate for the whole iterative
optimization process. Once trained, the network can efficiently generate
thousands of inverted models to hopefully devise more well-calibrated
uncertainty quantification.

This leads to a novel physics-driven and self-supervised DL-based method
for seismic inversion problems, accounting for uncertainty quantification. An
iterative geostatistical seismic inversion method will be the benchmark for the
proposed inversion framework.

1.5
Organization

The rest of this work is organized as follows:

In Chapter 2 we provide an overview of seismic modeling and acquisition
methods, and review non-DL-based seismic inversion methods that are
well-established in the energy industry.

Chapter 3 reviews key concepts of deep learning and presents related
tasks to the seismic inversion problem in the field of computer vision. We close
Chapter 3 with a review of the existing literature on DL-based methods applied
to seismic inversion problems.

Chapter 4 presents the proposed seismic inversion framework. We
start with a general overview, followed by a detailed description of the
parameterization and architecture of the neural network used to invert acoustic
impedance models from full-stack seismic data. Then, the architecture of the
seismic forward modeling network is described. We follow by generalizing our
methodology for the elastic domain to simultaneously invert P-wave velocity,
S-wave velocity, and density models from pre- or partially stacked seismic data.
Finally, we close Chapter 4 by showing that the proposed methodology can be
further extended to directly invert seismic reflection data for petrophysical
properties.

Chapter 5 comprises the application examples. We first illustrate
and validate the proposed methodology using an one-dimensional synthetic
example. Next, the effectiveness of our approach is demonstrated on a
three-dimensional real case from a Brazilian post-salt area. We further compare
our results in the real case with those obtained by the iterative geostatistical
inversion according to quantitative and qualitative performance metrics, as
well as relative to the computational cost.

Finally, concluding remarks and directions for future research are
presented in Chapter 6.

Appendix A provides supplementary information on geostatistics, while

complementary results for the real application case can be found in Appendix
B.
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2
Background

This chapter covers the background of this research and reviews related
literature used in this study. We start by presenting the theoretical basis of the
seismic refraction method, a geophysical technique for subsurface investigation
that forms the basis of the research problem. An overview of the seismic
inversion solutions that are consolidated in the energy industry is presented in
the last section of this chapter.

2.1
Seismic Data Modeling and Acquisition

The seismic method consists in sending acoustic waves into the Earth
and then recording the strength of the reflected waves and the time it takes
for each wave to reflect back. By studying the propagation of seismic waves
into the rock layers beneath the subsurface, seismic methods provide detailed
images of structures, stratigraphy, and rock physical properties.

Seismic surveys can be conducted onshore and offshore, the latter being
the most common in petroleum exploration. Figure 2.1 shows a graphical
depiction of how an offshore seismic survey works. In offshore surveys, a survey
ship tows an array of sensors (i.e., receptors), referred to as hydrophones,
located just beneath the water surface. Compressed air guns (i.e., the source)
towed behind the ship periodically release a high-pressure pulse of air
underwater. The distance between the source and the receptor is referred to
as the offset. The sound waves propagate through the water column and into
the subsurface until they reach a layer with different elastic properties from
which they may be reflected. The interface between two layers with contrasting
elastic properties is referred to as a seismic reflector. After passing through the
first layers’ discontinuity, the transmitted waves continue traveling down to a
second or third prominent change in subsurface rock properties.
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Reflected wave path

Figure 2.1: Graphical depiction of an offshore seismic survey. Source: [49]

Further processing is conducted to transform recorded seismic reflection
data into various forms of images of reflecting boundaries in the subsurface.
Figure 2.2 shows an example of an offshore seismic reflection profile. During
seismic processing, pre-stack seismic data comprising traces from different
shot records with a common reflection point are stacked to form a single
trace (Figure 2.3). The resulting product of this process is usually referred to
as post-stack (or full-stack) seismic data, while the original recorded seismic
reflection data is referred to as pre-stack seismic data.

Figure 2.2: Example of an offshore seismic reflection profile with 10 x vertical
exaggeration. Source: [50]
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Figure 2.3: Simple illustration of how multiple traces with a common mid point
(CMP) combine to form a single stacked trace.

As the seismic waves propagate, they cause an elastic deformation of
the medium by applying a longitudinal stress (compression or dilation) and
shear stress (parallel to the surface). The medium returns to its original state
when these forces are removed. Essentially there are two types of seismic
waves captured by seismic recordings that geophysicists are interested in:
compressional waves (primary or P-waves) and shear waves (secondary or
S-waves) (Figure 2.4). P-waves are pressure waves that can move through solid
rock and fluids. They cause vibrations that are parallel to the direction of wave
propagation. S-waves are shear waves that can only move through solid rock.
They are slower than P-waves and cause vibrations that are orthogonal to the
direction of wave propagation.
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Figure 2.4: Two types of seismic waves geophysicists are interested in: P-Waves
and S-Waves.

The hydrophones receive and record the reflected seismic waves at
different times. Each recorded time corresponds to the time taken for a seismic


DBD
PUC-Rio - Certificação Digital Nº 1821333/CA


PUC-Rio- CertificagaoDigital N° 1821333/CA

wave to travel from the source down to a reflector and back to it, which is
referred to as two-way travel time (TWT). The time depends on the velocity
at which the scismic waves travel through the subsurface. The velocity of the
P- and S-waves, Vp and Vg, respectively, are defined by the elastic properties
of the rocks that compose the medium:

Voo W (1)
Vs = ﬁ (2-2)

where p is the density and p and A are Lamé constants, which describe the
stress-strain relation within a solid medium.

The acoustic impedance (AI') or P-wave impedance of a rock layer is
equal to the product of density (p) and the P-wave velocity:

Similarly, the shear impedance (SI) or S-wave impedance is the product
of bulk density and S-wave velocity:

Sl=p-Vs (2-4)

While seismic reflection data are related to relative changes in reservoir
properties, elastic properties, such as acoustic and shear impedance, are
directly related to rock properties of interest, such as fluid saturation, porosity,
and lithology [17]. For example, if porosity increases the acoustic impedance
generally decreases.

The poisson’s ratio (¢) is another important elastic parameter as it allows
identifying fluid type in the pores of a reservoir. It is derived from velocity and
density, following:

2 2
g Ve 2Vs (2-5)
2(VE = V3)

Post-stack seismic data contains information about P-impedance, while
pre-stack seismic data contains additional information about the rock physical
properties such as P-impedance, S-impedance and density [17].

When the P-wave ray is normally incident on the layers’ interface, only
other P-waves are reflected and transmitted. For non-normally incident waves,
a pair of reflected and transmitted S-waves is also generated (Figure 2.5).

IThe abbreviation used to describe acoustic impedance is Al. This abbreviation is familiar in
the geophysical context, but it can be mistaken for artificial intelligence by the general reader.
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Figure 2.5: Reflection and transmission of an incident P-wave propagating through
an interface between two layers with different elastic properties. Source: [51].

The Zoeppritz equations [52] are a set of equations that fully describe
the relationship between angles, reflected and transmitted coefficients of
compressional and shear waves at an interface:

cos 0 cos —sin ¢y sin ¢ Rpp cos b
sin 6, — sin 6y COS Py COS ¢ Tpp —sin 6, 26
. _AL o Ve win 94 _8h - ! ( - )
cos 20 ar, 08 205 vk sin 20 37 sin 20, Rps — cos 26
. 2V Ve s Vi | _ p2VsaVp1 Y . e
sin 26, V2 Vi sin 26, vhrcos 201 2, Cos 20 Tps sin 260,

where Ali, Vpo, Voo and Aly, Vps, Vg represent the acoustic impedance and
the P- and S- waves velocities of first and second medium, respectively (see
Figure 2.5). Rpp and Rpg denote reflected coefficients of compressional and
shear waves, respectively, while Tpp and Tpg denote transmitted coefficients
of compressional and shear waves, respectively.

These equations give the exact theoretical amplitude of an incident
P-wave and the amplitude of reflected and refracted P- and S-waves as a
function of the angle of incidence. For a normally incident wave, the reflection
coefficients (Rpp) are given by the ratio of the amplitudes of the reflected and
incident waves, defined as the difference of acoustic impedance (AI) over the
sum:

Rpy = —ib Al (2-7)
Iy + AL

Although the Zoeppritz equations form a system of four equations that
can be solved for the four unknowns, their application to seismic data has
proven to be difficult [53, 51]. Approximations of the Zoeppritz equations
provide simpler models of how the reflection amplitudes vary with the rock
properties involved (e.g., density and velocity). One of the most successful
approximations to the Zoeppritz equations is the 3-term Shuey’s [53], which
assumes Poisson’s ratio to be the elastic property most directly related to the
angular dependence of the reflection coefficient:
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Rop(6) ~ Rpo + Gsin®0 + %F(tange _ sin20), (2-8)

Rpy = E(Tp + 7), (2-9)
8 oY p27s 21

“=37, vp( +27:0) (2-10)
1 AVp

= = 2-11

SV (2-11)

AV, = pa — p1, (2-12)

AVs = Vsa — Vs, (2-13)

AVp = Vpy — Vpy, (2-14)

(2-15)

where 6 is the average of the incident and transmitted P-wave angles.

The first term of equation 2-8 (Rpg) gives the reflection coefficient
for a normally incident wave, while the second term describes Rpp(f) at
intermediate angles, and the last term explains Rpp(#) to the critical angle
(i.e., at large angles/far offsets).

In order to compare the field observation data with modeled data, one
has to perform seismic forward modeling. The main seismic parameters used
to generate a synthetic seismic trace are density and P- and S-wave velocities,
and the source pulse (i.c., wavelet). In this process, at first, synthetic seismic
traces are computed based on these seismic parameters by using the Zoeppritz’s
equations or one of their approximations. A conversion to time is necessary as
the reflection coefficients are a function of depth. Then the seismic traces are
formed by a process called “convolution” of a series of reflection coefficients
with the predefined wavelet (Figure 2.6).

Source pulse Reflectivity Seismic trace

Figure 2.6: Convolutional model in the formation of a seismic trace from a given
source pulse and reflection coefficients. Source: [54].

The synthetic seismic trace, S(t), is obtained through the integration of
all of the reflection events:

S(t) = w(t) * R(t), (2-16)
where w(t) is the assumed source pulse function, and R(t) denotes the
reflectivity function.
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2.2
Seismic Inversion Methods

The inversion of seismic data is challenging due to its under-determined
nature and the non-linearity of the forward model. The existing approaches
can be broadly divided into two main types of problems: deterministic and
probabilistic (or stochastic).

Traditional seismic inversion methods, deterministic and stochastic,
minimize a cost function that consists of a data misfit term, which measures
the residual between the theoretical predictions of the forward problem and
the observed seismic [22]. The model-based seismic inversion approaches apply
successive updates to an initial guess of the subsurface model to minimize the
data misfit. This inverse problem can be deterministically solved by estimating
the parameters of the model that give the minimum data misfit:

arg min || f (i) — d|f3, (2-17)

where 1 represents the parameters of the model to be estimated, ||.]|3 denotes
the squared L2-norm, d is the set of recorded seismic data, and f is the seismic
forward model.

Given an input, deterministic methods will always produce the same
and a single output that represents the best-fit subsurface model or the most
likely to occur. These algorithms are usually based on full-stack seismic data
and rely on simplifications and approximations to the subsurface, for example,
assuming linearized reflection coefficients [55, 22, 56, 57]. Global optimization
techniques, such as simulated annealing [58, 59] and genetic algorithms [60],
can be used to solve nonlinear inversion problems in a deterministic form.

Full-waveform inversion (FWI) [22, 61, 62] is a popular seismic inversion
method based on the wave equation, which reflects the physics nature of the
seismic wavefield propagation. As with any model-based approaches, FWI
starts from an initial model and solves for seismic inversion by minimizing
an objective function that represents the residuals between predicted and
observed seismic traces. In spite of the potential of FWI to provide more
accurate high-resolution reservoir models from seismic data, the method is
highly computationally demanding with no guarantees of global convergence.

Deterministic methods suffer from the strong non-uniqueness of the
seismic inverse problem. However, predicting multiple equally probable
subsurface models and assessing uncertainties is of critical importance to
mitigating risks and optimal decision-making [18]. As a means to deal with the
non-uniqueness of inverse problems, stochastic methods attempt to find all of
the acceptable solutions or express the solution as a probability distribution
function over the model parameters space.

The Bayesian linear inversion provides a probabilistic framework for
quantifying the uncertainty by posing the seismic inversion problem as a
Bayesian inference problem [57, 56, 22, 63]. These methods consider a discrete
linear inverse problem with Gaussian distributed prior and data errors to
analytically devise a complete posterior distribution that is also Gaussian. This
posterior distribution can be further used to estimate the most likely solution or
any population parameter of interest (e.g., mean and variance). In cases where
the solution to the posterior distribution cannot be analytically calculated, the
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posterior probability density can be assessed by using a Markov Chain Monte
Carlo (MCMC) sampling method [22]. In some cases, a Gaussian-Mixture
model framework can be applied to overcome the limitations imposed by the
Gaussian assumption [63].

The linearization of the forward model, the low vertical resolution of the
inverted models, and the Gaussian assumption between all parameters and the
observed data are limiting factors that require consideration in the practical
application of the Bayesian linear inversion methods. Iterative procedures
based on stochastic sequential simulation are able to overcome these limitations
imposed by the Bayesian framework [19]. We next present an example of this
class of stochastic sequential simulation methods, which is used to benchmark
this research.

2.2.1
Iterative Geostatistical Seismic Inversion

Geostatistical seismic inversion methodologies are iterative optimization
methods where the perturbation of the model parameter space is performed
with stochastic sequential simulation and co-simulation [19]. These seismic
inversion methods use geostatistical simulation tools as they provide a
framework to represent reservoir heterogeneity and to model complex
relationships between reservoir properties [17].

Soares et al. [64] introduced the global stochastic inversion methodology,
an iterative approach that uses the principles of crossover from genetic
algorithms as the global optimization technique. The global geostatistical
acoustic inversion (GSI) [64, 65] allows the inversion of post-stack seismic
reflection data for acoustic impedance (Al) models.

The general outline of this family of geostatistical inversion algorithms
is synthesized in Figure 2.7. In GSI, we start by generating a set of M
acoustic impedance models from the set of well-log data and imposing a spatial
continuity model (i.e., a variogram model) with direct sequential simulation

(DSS) [66].

Stochastic simulation s 5 Comparison against
of elastic properties Synthetic seismic real seismic

e

Genetic algorithm (cross-over) principle

Figure 2.7: General outline of the global geostatistical seismic inversion (GSI)
algorithms. Source: [19].

In DSS, the simulation grid (or inversion grid) is visited along a random
path that visits all the grid cells. At each location, the kriging estimate, and
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kriging variance are computed based on direct observations and previously
simulated grid cells. The kriging estimate and variance are then used to draw
a value from an auxiliary probability distribution function built from the global
distribution function of Al as estimated from the well-log data. The simulated
value is then assigned to the inversion grid and considered as conditioning data
for the next simulation location along the random path. As the random path
changes each time the simulation runs, the conditioning data at each location
along the simulation random path changes, and therefore results in alternative
models (i.e., geostatistical realizations).

From the set of M Al realizations we compute the normal incidence
reflection coefficients, which are then convolved with a wavelet to generate M
synthetic full-stack seismic volumes. Each synthetic seismic trace is compared
with the corresponding observed seismic trace following:

2 Zzn:—m(dt+k ' dgik’)
ZZL:—m(dt+k)2 + Zg’:—m(dgik)2’
where S is the local trace-by-trace similarity coefficient, j is the iteration
number, r is the realization number, m is the number of samples of a moving
window, and d; and d?" are the observed and synthetic seismic traces at sample
t.

Qi — (2-18)

S works as Pearson’s correlation coeflicient (ranges from -1 to 1) but is
sensitive to both the waveform and the amplitude content of the seismic traces.
However, due to restrictions related to geostatistical co-simulation used in the
subsequent iteration, negative values of S are truncated at zero.

The AT traces that generate the highest S are selected and stored in
auxiliary volumes along with the corresponding S and used in the co-simulation
of a new set of Al models in the next iteration. The iterative inversion
finishes when the global S, computed between synthetic and recorded full-stack
volumes, is above a given threshold or a pre-defined number of iterations is
reached. The GSI can be summarized with the following algorithm [64, 19]:
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Algorithm 1: Global Geostatistical Acoustic Inversion (GSI)

Input: Variogram model, Al well-log data, post-stack seismic
reflection data
Output: Set of estimated Al volumes

1 Generate a set of M realizations of Al from the existing Al well-log
data and imposing a variogram model that describes the expected
spatial continuity pattern of Al in the subsurface.

2 Forward model each M Al model and compute M synthetic seismic
volumes.

3 Compare, on a trace-by-trace basis, the M synthetic and real seismic
volumes following equation 2-18.

4 For each location within the inversion grid, select the simulated Al
traces that ensure the maximum S. Store the selected Al traces and
the collocated S values in two auziliary volumes.

5 Use the stored auxiliary volumes (step 4) as secondary variables in the
co-stmulation of a new set of M Al models. Locations associated with
a high S will exhibit a similar spatial pattern as observed in the
auxiliary volume, while locations collocated with a low S will have
little influence from the auziliary volume.

6 Return to step 2 and iterate until the global S between real and
synthetic volumes is above a predefined threshold.
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3

Deep Learning

This chapter starts with an introductory overview of deep learning,
including the feedforward networks, the techniques for optimization and
regularization of these models, and convolutional neural networks - the machine
learning models on which the proposed inversion framework is built. The
concepts presented here were mainly adapted from [5], which the reader can
refer to a broad range of topics in deep learning.

Then, we draw a parallel between the seismic inversion problem and
image reconstruction tasks in computer vision, such as super-resolution and
image denoising. We revisit key concepts regarding such tasks and describe
practical building blocks and criteria for addressing them, including the fully
convolutional neural networks and different strategies commonly applied to
train these machine learning models.

Finally, we review the existing literature on the use of deep learning
methods in geophysical inverse problems.

3.1

Basic Concepts

The history of deep learning dates back to the 1950s, when Walter Pitts
and Warren McCulloch, inspired by biological neural networks, created the first
mathematical model of an artificial neuron [67]. The first neural network, the
Perceptron [68], was originally developed by Frank Rosenblatt in 1957. Three
decades later, Yann LeCunn et al. published a seminal paper [3] describing a
“modern” neural network architecture for document recognition, a predecessor
of current deep learning models.

3.1.1
Feedforward Neural Networks

Feedforward neural networks are the most common type of deep learning
models. They are used to approximate some function f*, and can be expressed
as a mapping;:

S’ = fé(x)v (3'1)
where y is the output (e.g., a category), f is a function, x is the input, and 6
are the network parameters that result in the best function approximation [5].

As the name suggest, the information flows in the forward direction
through the function f, starting from the input x towards the output layer,
where it finally produces an output y.

The function f is a composition of functions in a chain. Each function
typically computes an affine transformation controlled by parameters 6,
followed by a fixed nonlinear operation. For example, given an input x, we
can express a network composed of three functions as:
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fe(ll)(x) =h; = gi(x" w1 + by),
£2(hy) = hy = go(h]ws + by),
f5)) (ha) = § = gs(h3 ws + by), (3-2)

where g; is a nonlinear operation, namely the activation function, w; is a linear
transformation, b; is the biases, with 6; consisting of w; and b;, and y is the
output.

In neural networks, each function is represented by a layer. Following the
example above, the input x is referred to as the input layer, whereas féll) and

fg(j) are known as hidden layers, and fe(j) or ¥ represents the output layer. To
count the number of layers in a neural network, only the layers with connections
between them are considered, omitting the first (i.e., the input layer). The
number of layers gives the depth of the model, whereas the dimensionality of
the hidden layers determines the width of the model.

3.1.2
Deep Neural Networks

Deep neural networks (DNNs) are neural networks composed of several
hidden layers that amounts to modeling high-level abstractions from data. This
is done in a hierarchical and incremental manner by stacking low level concepts
on top of each other. Low level concepts are identified in the first layers of the
network and enriched with the number of layers. The capacity of these models
to automatically extract features reduces the need for feature engineering, the
dominant approach until the advent of deep learning.

Although it was originally introduced over 20 years ago, it is only
recently, with the availability of large data and growing availability of massive
computational resources that DL has emerged as a powerful technique in
the ML research domain. In the last two decades, DL-based solutions have
considerably improved the state-of-the-art performance across a variety of
application domains such as computer vision, natural language processing and
bio-informatics [4, 7).

3.1.3
Levels of Supervision for Training Machine Learning Algorithms

Machine learning algorithms can be broadly classified as supervised
and unsupervised. In supervised learning, the training data has a collection
of inputs and expected outputs. Given sufficiently large datasets of labeled
training examples, a deep neural network can represent functions of increasing
complexity [5].

The goal of the supervised training is to learn to predict y from x,
usually by estimating p(Y'|X), where X = {xM, ... x(™} is the set of input
feature vectors and Y = {y(), ... ,y(”)} its observed targets. In supervised
training, several examples of an input vector x are used as inputs to the neural
network and the outputs are compared against the associated value or vector
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y. Then, the parameters of the machine learning model are adjusted to obtain
an improved estimate for the target outputs.

Conversely, no labels are provided within the unsupervised type of
machine learning. These techniques aim at extracting patterns and hidden
structures from unlabeled data, which will be further used to draw inferences.
By observing examples of an input vector x, the unsupervised learning
algorithm attempts to learn the probability distribution p(X) implicitly or
explicitly.

Semi-supervised methods lie between unsupervised and supervised
learning and aggregate the techniques of both approaches. These methods rely
on semi-labeled datasets that usually contain a small amount of labeled data
and a large amount of unlabeled data.

Self-supervised learning is a type of unsupervised learning as it uses
unlabeled data and learns on itself without supervision. However, instead
of finding high-level patterns to analyze and cluster unlabeled datasets,
self-supervised learning attempts to solve classification and regression tasks
that are traditionally targeted by supervised learning.

3.1.4
Cost Function

The cost function determines how inaccurate the model is for a given
dataset and is considered an important aspect of the design of a deep neural
network. The most commonly used cost functions are based on the maximum
likelihood estimation (MLE) principle. The MLE algorithm attempts to
maximize the probability of observing data given a specific probability
distribution known as the likelihood function.

The likelihood function is defined as the joint density of the observed
data as a function of the model’s parameters. Consider X = {x1), ... xM)} a
set of N data instances drawn independently from the same data-generating
distribution denoted by paata(X). Let pmode(X,0) be our parametric model
with some learnable parameters denoted by 6. The likelihood function, L(#),
is then given by:

L(Q) = pmodel(X; 9), (3_3)
= H Prodet (XY, 0) (3-4)

Usually, for analytical and numerical simplifications, the log likelihood
function, [(#), is used instead of the likelihood function. The maximum
likelihood estimator for @ is thus defined as:
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OnLe = arg mgxl(@), (3-5)

N

= arg max ; 10 Prodel (X(i), 0) (3-6)

(3-7)

Recall that in supervised learning, the machine learning model learns to
predict y from x, usually by estimating p(Y|X), where X = {x® ... x(M} is
the set of input feature vectors and Y = {y(l), e ,y(”)} its observed targets.
The MLE can be thought of as the cross-entropy between the training data and
the model’s predictions [5]. In this case,the MLE algorithm can be generalized
to estimate the conditional probability, given by:

Z(@) = Z 1ngmodel(y(i)|X(i); 9)7 (3-8)
i=1
fuLe = arg max 3" 10g Pmoda (P x5 0) (3-9)

=1

As we demonstrate next, the Mean Squared Error (MSE), one of the
most commonly used cost functions for regression, is derived from the MLE
principle. For simplification purposes, we chose the linear regression example.
In linear regression, the goal is to build a system that can take a vector x
and predict the values of a scalar y. The data is described by a linear model
y=wlx+ ¢, where w is a vector of parameters and ¢ ~ N(¢;; 0, 02).

Consider that o2 is known and that the data points are drawn
independently from the same fixed distribution. Given that o2 is Gaussian
(i.e., normally distributed), the log likelihood of our model is also Gaussian
and can be expressed by:

l(w) = p(Y[X;w), (3-10)
N
= logN(e;;0,07), (3-11)
=1
N (y) — wTx(@))2

N
=-3 log 202 — >

=1

(3-12)

2 Y
207

where N is the number of data points. Eliminating the terms that do not
depend on w gives:

N
I(w) ~ — Z(y(i) — wlx®)2, (3-13)
i=1
and the linear regression problem can be expressed following:
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WMLE = arg max l(w), (3-14)

N
= arg max — Sy — whx®)2) (3-15)
i=1
N . .
= argmin Z(y(’) — wlix(®)2, (3-16)
i=1
= argmin MSE(w), (3-17)

which proves that maximizing the log likelihood amounts to minimizing the
mean squared error.

3.1.5
Gradient-Based Learning

The non-linearity of the neural networks causes the loss functions to
become non-convex in the way that these models are usually trained by
using iterative, gradient-based optimizers. Gradient descent, a first-order
optimization algorithm, is the most commonly used approach. Starting from a
random point, it takes steps in the opposite direction to the gradient of the cost
function with respect to the network parameters. This process is repeated until
a stopping criterion is satisfied, which is typically when a predefined number
of iterations is reached. This optimization process is expressed as:

0 =0—ave,

where 6 are the network parameters, « is the learning rate and V@ are the
gradients of the loss function with respect to the network parameters. This
update step is performed for every iteration.

Standard gradient descent computes the gradients for the entire dataset
to perform one update afterwards. In the case of convex error surfaces, it
guarantees the convergence to the global minimum (or to a local minimum
in the case of non-convex error surfaces). However, it can be extremely slow
depending on a large dataset. Conversely, stochastic gradient descent (SGD)
attempts to approximate the gradient by performing a parameter update for
one randomly picked data sample on every iteration, which drastically reduces
the training time. These high-frequency updates with high variance cause
repeated fluctuations in the cost function, and the algorithm might end up
overshooting close to the target actual minima.

To address these challenges, mini batch gradient descent tries to find a
balance between the stability of standard gradient descent and the speed of
SGD. The parameters update is performed considering a batch with a fixed
size, usually referred to as a “mini batch”. At each iteration, the algorithm
trains on a different mini batch. Because of the way computer memory is laid
out and accessed, mini batch sizes are usually a power of 2, typically ranging
from 64 up to 1024, depending on the data size. As a result, the algorithm is
less noisy than SGD and requires a smaller number of iterations to converge
for large datasets.
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Gradient descent with momentum is a method used to accelerate the
training process carried out by SGD approaches. It is based on the exponential
moving average of the previously computed gradients and the current one. The
exponential moving average is a moving average that assigns a greater weight
to the most recent values. The momentum term avoids the slow down caused
by the oscillations of the cost function and prevents the network from getting
stuck in local minimums. The rule update for gradient descent with momentum
is expressed as:

vy = By + (1 - B)V0, (3-18)

0=0—av,
where (3 is a hyperparameter (5 € (0, 1]) that controls the exponential decay
rate. Large values of [ averages over more older observations. The most
common value for § is 0.9 when it averages over the last ten iterations’
gradients.

Adaptive moment estimation (Adam) [69] is an optimization algorithm
that combines the advantages of two other extensions of SGD: adaptive
gradient algorithm (AdaGrad) [70] and root mean square propagation
(RMSProp) [71]. It was designed to accelerate the optimization process and to
improve the performance of the algorithm. This is achieved by calculating an
adaptive learning rate per-parameter being optimized from estimates of first
and second moments of the gradients. The Adam’s update rule is given by:

my =1 -m_1+ (1= 1)V,

v = P2 v+ (1 — B2) VO,
g = my/(1— 57) (3-19)

o =w/(1— By)

92(9—047%/( ﬁt—f—ﬁ),

where m; and v; denote the exponential moving averages of the gradient
and of the squared gradient, respectively, 5; and fy are hyperparameters
(61,82 € (0,1]) that control the exponential decay rates of these moving
averages, and € is a small positive constant. Recommended values for the
exponential decay rates are 5, = 0.9 and fy = 0.999. Since m; and v, are
initialized as 0, they gain a tendency to be biased towards 0. This problem is
fixed by computing the bias-corrected estimates m; and 7.

Intuitively, the ratio 77;/v/?; represents the spread (or simply
uncertainty) in the gradient’s history. The greater the uncertainty, the smaller
the individual learning rate for each particular weight. Another advantage of
Adam algorithm is that the magnitudes of parameter updates are invariant to
rescaling of the gradient. This is because rescaling the gradients with a factor
c will scale 7y, with a factor ¢ and 7, with a factor ¢?, which cancel out. The
authors show empirically that Adam is robust and well-suited to a wide range
of non-convex optimization problems. It has become popular as one of the
most effective and robust optimization algorithms in the field of deep learning.
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3.1.6
Backpropagation

Gradient-based learning algorithms require the computation of the
gradient of the cost function with respect to the parameters of the model.
The backpropagation algorithm [72] is a method to compute the gradient of
the cost (i.e., error) associated with an output y, that was produced by forward
propagation of an input x through a feedforward neural network.

As the name backpropagation suggests, the calculation of the gradient
proceeds backwards through the network. It is based on computational graphs,
with each node corresponding to a variable. The method is highly efficient as
it computes the chain rule of calculus instead of calculating the gradient of
each node separately. The partial computations of the gradient from one node
are reused in the computation of the gradient for the previous node.

For example, to compute the gradient of some scalar z with respect to
one of its ancestors x in the graph, it begins by observing that the gradient
with respect to z is given by % = 1. Then it computes the gradient with
respect to each parent of z in the graph by multiplying the current gradient
by the Jacobian of the operation that produced z. This is continued in the
backward direction until it reaches x. Gradients arriving from different paths
in one node are simply summed up.

The backpropagation method enables every weight of the neural network
to be individually updated to gradually reduce the error over many iterations.
It was one of the first methods to demonstrate that neural networks could learn
good internal representations and is widely used to train deep neural networks
because of its efficiency.

3.1.7
Activation Functions

The activation function is an essential part of a neural network,
which defines how the weighted sum of the inputs is transformed into the
output of a particular node, introducing nonlinearity to the model. Two
well-known activation functions are the hyperbolic tangent and sigmoid
activation functions. Both have the nice properties of activation functions:
nonlinearity, continuously differentiable, and having a fixed output range.

The curve of the hyperbolic tangent (tanh) function looks like a S-shape.
It takes a real value as input and outputs values between -1 and 1. The tanh
function is expressed as: g(z) = (e —e™*)/(e"+e~*), where e is a mathematical
constant also known as the Euler’s number. The larger the input (i.e., more
positive), the closer the output will be to 1, whereas the smaller the input (i.e.,
more negative), the closer the output will be to -1.

The sigmoid activation function, also called the logistic function, has the
same S-shape curve as the tanh function. It takes a real value as input and
outputs another value between 0 and 1. The sigmoid function is denoted by:
g(x) = 1/(14 €*). Similar to the tanh function, large values are squashed into
1, while small values are transformed to the value 0.

Activation functions such as the tanh and sigmoid functions that saturate
(i.e., become very flat) for both very negative and very positive inputs came out
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to be a major reason behind the vanishing gradients, an issue where the network
is unable to back-propagate useful gradient information to the first layers. The
vanishing gradients occurs because the backpropagation of the gradients of the
error is based on the chain rule, which is basically multiplication operations.
Repeated multiplication with small values renders gradients very close to zero
in earlier layers of the network.

The ReLU is the default activation function recommended for use in
modern neural networks [5]. It is defined as the positive part of its argument:
g(x) = max(0,x). The ReLU gradient is either 0 or 1 for the entire range.
This effectively addresses the vanishing gradient problem as the gradient does
not become increasingly small as it back-propagates through the network.
Moreover, ReLLU is less computationally expensive than sigmoid and tanh since
it involves simpler mathematical operations.

Some drawbacks with ReLLU are that it is non-zero-centered and is not
differentiable at zero, which limits its use to the hidden layers. Additionally,
ReLU units can be vulnerable during training and die, which means that they
output the same value and remain inactive no matter the input supplied. Once
it ends up in this state, the unit is unlikely to recover, as the function gradient
at zero is also zero.

Leaky ReLU is an improved version of the ReLU activation function.
Instead of a flat slope, it has a small slope for negative values. The
mathematical formula for Leaky ReLU is g(x) = max(0.05z,z). It allows a
small positive gradient when the unit is not active and is the most common
method to solve the “dying ReLLU” problem.

The RelLU and Leaky ReL.U activation functions only partly solve the
vanishing gradients as there is no guarantee on the values of the model
parameters and on the representations of input data throughout the network.

3.1.8
Regularization

Generalization is an important problem in machine learning, which is
concerned with the performance of a trained model on unseen data. When
training deep neural networks with a large number of parameters and limiting
training data, overfitting becomes particularly critical. Goodfellow et al. [5]
defined regularization as: “any modification we make to a learning algorithm
that is intended to reduce its generalization error but not its training error”.

Many methods have been developed for reducing the generalization error.
Some of them, such as the weight decay method, add extra constraints on a
machine learning model. In the weight decay approach, a penalty term is added
to the cost function to bias the learning model towards solutions that have
smaller weights. The smaller the weights are, the smaller the change in the
network behavior if we change a few random inputs. This forces the network
to put weight on fewer features that are seen across the training set, improving
its generalization ability.

The most common form of weight decay regularization is the sum of the
squared weights, also known as the L2-norm. For example, to perform linear
regression with L2-norm regularization, we add the squared magnitude of the
weights to the cost function L:
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A
L(w) = MSE(w) + §||w||§

where ||.||? is the squared L2-norm, w is the set of parameters and X is
the regularization constant, a non-negative hyperparameter that controls the
trade-off between weights being small and fitting the training data. The half
and the square of the L2-norm are taken for mathematical convenience.

The L1-norm is another form of weight decay regularization. It adds the
absolute value of the magnitude of the weights as a penalty term to the loss
function:

L(w) = MSE(w) + A|w||,

where |[|.|]; is the L1-norm and ) is a hyperparameter that controls the strength
of the regularization, as with L2-norm regularization.

While L1-norm regularization tends to confine the weights near to zero,
resulting in solutions that are sparer, L2-norm regularization tends to shrink
the weights evenly. The sparsity induced by L1l-norm regularization works as
an automatic feature selection mechanism, as it can eliminate unimportant
variables associated with weights that become zero. On the other hand,
L2-norm regularization can be helpful when the output variable is the function
of the whole set of input variables. In addition, L2-norm regularization leads
to more accurate customized models as it disperses the error terms in all the
weights.

Dataset augmentation is another regularization technique that artificially
increases the size and diversity of the training set by applying transformations
to existing training examples without invalidating the distribution of the data
itself. Creating modified data can be straightforward, as for a large-scale
problem in computer vision concerned with object recognition in images. New
and different synthetic examples can be created by simple operations such as
rotating, translating, or scaling an image.

While data augmentation techniques have proven to be effective for
computer vision applications, in other cases, whether those invariances do not
apply or if the training set distribution is unknown, it might be difficult to
generate new fake data. In deep learning, physics-informed data augmentation
techniques have been successfully applied to generate additional training data
that are physically meaningful [73, 74, 74, 75].

Adding noise in the hidden units of a neural network can also be seen
“as a form of dataset augmentation at multiple levels of abstraction” [5]. This
strategy can also prevent overfitting associated with the co-adaptation of
feature detectors. Dropout [76] (from dropping out units) is a regularization
technique that adds binary noise to the hidden units, randomly setting some
of them to zero. It works by temporarily deleting neurons from the network
along with all their incoming and outgoing connections, with a fixed probability
q = 1 — p. Applying dropout prevents any neuron from relying excessively on
the output of any other neuron, forcing it to create useful features on its own.
At test time, the weights are multiplied by p, which ensures that the expected
output is the same as the actual output for any hidden unit.

In addition, dropout provides a computationally inexpensive and effective
approximation of an averaging method, which involves training and evaluating
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a bagged ensemble of many neural networks. During training, for each
presentation of each training example, each unit is randomly removed from
the network. This is equivalent to sampling and training a subnetwork from
it for each presentation of each training case. With dropout, a neural network
with n units, can be seen as an ensemble of 2" possible subnetworks.

Early stopping is an effective and the most commonly used technique
for reducing generalization errors. The method involves monitoring the train
and validation set errors as the number of training iterations over the dataset
(or epochs) goes by. During training, the algorithm learns and the error on
the train set naturally decreases, as does the validation set error. The training
procedure is interrupted when the validation set error begins to rise. Beyond
this point, the model starts to overfit the training data. In practice, the
algorithm stores a copy of the model parameters every time the error on the
validation set goes down and terminates when no improvement is observed for
some pre-specified number of iterations. The model parameters that resulted
in the best validation error are then used instead of the latest parameters.

3.2
Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [3] are a class of DL models
that revolutionized computer vision [77], achieving outstanding results in
processing image tasks [4, 6, 7]. Unlike conventional neural networks, CNNs
make the explicit assumption that inputs have a spatial-temporal structure of
multidimensional arrays, such as images, videos, audio signals, and volumetric
data (i.e., a three-dimensional grid of pixels). These types of data have two
basic properties in common: first, they have one or more axes for which order is
important; second, there is one axis, namely the channel axis, that is dedicated
to accessing different perspectives of the data.

Convolution is a specialized kind of linear operation that replaces the
matrix multiplication performed in conventional neural networks and preserves
this notion of ordering. A neural network is considered a convolutional neural
network if it uses convolution in at least one of its layers.

The convolution operator is denoted by the symbol * and is expressed
as the integral of the product of two functions z(t) and w(t). To define a
convolution operation, each function is first expressed in terms of an auxiliary
variable a. The function is then reversed as w(a) = w(—a). In this context,
a convolution operation s(t) can be described as the area under the function
x(a) weighted by the function w(—a), and shifted by amount t:

s(t) = (xxw)(t) = /x(a)w(t —a)da, (3-20)
For discrete functions, the convolution bperation is given by:
+oo

s(t)= > z(a)w(t—a) (3-21)

a=—00
In a convolutional layer, the functions x, w, and s are multidimensional
vectors (x, w, s) and the summation is implemented over a finite number of

vector elements. The vector x is referred to as the input image or the input
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feature map, w is known as the kernel (or filter), and the output s is referred
to as the output feature map.

For simplicity, many neural network libraries implement the convolution
as a cross-correlation function, which differs from convolution only in that the
kernel is not reversed and shifted. The kernel slides over the whole input feature
map. When training a CNN, the results will be the same, the only difference
is that the resulting weights are flipped from each other.

The output for each location (i, j) is calculated as the sum of the products
between each element of the kernel and the input element that it overlaps
(i.e., element-wise multiplication). In this new formulation, the convolutional
operation between an image x and a two-dimensional kernel k of size m x n
is defined as:

s(i,7) = (xxk)(4,7) = D_>_x(i +m,j+n)k(m,n) (3-22)

The kernel can be a 1-dimensional (1D), a 2-dimensional (2D) or a
3-dimensional (3D) array. The number of dimensions defines the number of
directions in which the kernel will move over the input data performing an
element-wise multiplication. A 1D kernel moves in one direction and is mostly
used on time-series data. The most common type is the 2D kernel to process
2D image data. A 3D kernel slides in three dimensions as opposed to two
dimensions with 2D kernels and is usually applied to 3D medical images and
video-based data.

The area in the input space that a particular kernel is looking at is called
the receptive field. Typically, more than one kernel is used to produce different
output feature maps. Thus, this procedure is repeated to convolve the input
feature map with each distinct kernel. If there is more than one input feature
map, the output feature maps will be summed up element-wise to produce the
final output feature map.

In some cases, either for computational efficiency or because one wishes to
reduce the resolution of the output, it is desirable to move the kernel window
more than one element at a time, skipping the intermediate locations. The
number of elements traversed per slide is known as the stride.

The interaction of the filter with the border of the image causes a
reduction in the size of the input feature map. Many successive convolution
operations in a deep CNN will eventually reduce the size of the feature maps
to zero. Extra pixels are added around the perimeter of the input image to
preserve the spatial dimensions of the input feature map post-convolution.
These extra pixel values are typically set to zero. The number of pixels added
to an input image is referred to as padding.

A typical convolution operator is controlled by three parameters: kernel

size, stride and padding. The size of the image post-convolution (n4y) is a
function of these parameters given an input image:
Mout = [%MJ +1, (3-23)
where ny, is the size of the input image along a given axis, p is the padding, k&
is the kernel size, and s is the stride. Figure 3.1 illustrates an example of a 2D
convolution operation performed on an image.
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Figure 3.1: Example of a convolution operation performed on a tensor of size 3 x 4
using a kernel of size 2 x 2, stride of 1 and zero padding. The output is a tensor
of size 2 x 3.

Influenced by the feature hierarchy of the human visual system, CNNs
are based on three fundamental ideas: sparse interactions, parameter sharing,
and equivariance [5]. Unlike traditional fully connected (FC) neural networks,
which allocate one weight per unit in the previous layer for each unit in the
following layer, in a CNN, the interactions are sparse. This is done by making
the kernel smaller than the input, which enables the network to capture local
and small features, such as an edge, a corner or a part of an object. As
long as these features are successively fed into the next layer, they become
progressively and hierarchically more complex. As a result, when compared
to dense matrix multiplication from FC neural networks, the convolution
operation is more efficient in terms of memory requirements and statistical
efficiency (i.e., requires fewer training examples to learn).

In a convolution operation, the same parameter value is applied to
more than one input unit. The consequence of the parameter sharing is the
equivariance to translation (or translation invariance). A function f(z) is said
to be equivariant to a function g(z) if f(g(x)) = g(f(x)). This means that
the result of a convolution applied to a translated input, will be the same
as if we applied a translation to the convolution of this input. This property
is important to detect features (e.g., edges and eyes) regardless of its exact
location in an image.

The convolution operation is typically followed by a non-linear
transformation and, sequentially, by a sub-sampling operation. The
sub-sampling operation, often referred to as pooling, is performed to create a
low-resolution version of the input by replacing values within sub-regions in
the input image with a summary statistic calculated over them. Pooling helps
to increase noise-resilience and translation invariance. Moreover, it reduces
the computational cost by reducing the number of learnable parameters.

Max-pooling [78] is a common type of pooling, which takes the maximum
value within each patch of the input feature map to create a new element in the
output matrix. Figure 3.2 illustrates an example of a max-pooling operation.

There are three stages that compose a typical convolutional layer: an
affine transformation performed by the convolution operator, a non-linear
transformation, and the pooling function (Figure 3.3). A standard CNN is
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Figure 3.2: Example of a max-pooling operation performed on a tensor of size
4 x 4. The output is a tensor of size 2 x 2.

composed of repeatedly stacking these convolutional layers, optionally followed
by a fully connected (FC) layer, depending on the required task. The FC layer
is usually responsible for mapping the extracted features into the final output
(e.g., the scores for each category in a classification task).

Input

Convolution

Pooling

Figure 3.3: The components of a typical convolutional layer.

3.2.1
Very Deep Convolutional Neural Networks

Depth has been identified as a key factor in the success of DL models in
dealing with complex concepts representations, which are frequent in most
computer vision applications. However, the assumption that adding more
layers increases the network performance holds true up to a certain point
[79]. Training very deep neural networks can be a challenging task as they are
more likely to suffer from overfitting, vanishing gradients, loss in information
flow, long training time, and other issues that might emerge as the number of
layers of the network increases [80, 81, 82, 83, 84, 79]. In recent years, different
approaches have been proposed to overcome these problems and enable deeper
neural networks.

Batch Normalization (BN) [85] is a standard practice technique to
improve the performance and speed up the convergence in the training of
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deep neural networks. The idea behind BN is to avoid the erratically changing
input values of the layers as the model parameters are updated, a phenomenon
referred to by the authors as internal covariate shift (ICS). This is accomplished
by including additional layers that control the first two moments of the layers’
input distributions. These extra parameters are learnt along with the original
model parameters.

When training with BN, the mean and standard deviation of each input
variable to a unit are computed with respect to each mini-batch. These
statistics are then used to normalize the input to each unit to have zero mean
and unit variance. By stabilizing the distribution of inputs, it ensures that the
expectation of a unit on the distribution of its inputs will not change during the
weights updates, which speeds up the learning process. Moreover, BN prevents
the activation function from amplifying into larger and sub-optimal output
values and getting stuck in the saturated regimes of non-linearities. Ultimately,
similar to dropout, by adding some noise to the values within a mini-batch,
BN helps with the generalization capability of the model.

Concurrently, much research has focused on the definition of new
architectures of neural networks to reduce complexity and further improve
accuracy in DL. Residual Neural Networks (ResNets) [79] were motivated by
experiments that demonstrated that the accuracy gets saturated and degrades
rapidly as the network depth increases. The authors conjecture that, similar
to the gradients in a backward pass, the information on a forward flow can
also vanish and “wash out” as it passes through many successive layers, which
results in a higher training error. Residual (or identity) blocks attempt to ease
the training of deep neural networks by reformulating the layers as learning
residual functions.

The ResNet architecture is simpler and more efficient when compared
to its predecessors. ResNets are formed by stacking several residual blocks
together. Residual blocks are implemented by means of skip connections (aka
identity connections), where the inputs are connected back to their outputs
with the goal of creating identity mappings. If we denote the underlying
mapping as H(x), the residual mapping is then expressed as F(z) = H(z) —x,
and the original mapping becomes F'(z) + z. A typical residual block is shown
in Figure 3.4.

By enabling the identity mapping, the residual blocks allow the network
to be considerably deeper as these extra layers do not affect its performance. A
higher layer will perform as well as a lower layer, and better whenever it learns
new information from data. As the authors stated: “a deeper model should
have a training error no greater than its shallower counterpart.” Additionally,
the short connections allow the propagation of information directly from the
shallow to the deeper layers, which helps with the vanishing gradient challenge
and loss in information flow in training very deep networks.

3.3
Deep Learning Methods in Inverse Problems

Many computer vision tasks are concerned with artificially generating
new examples that are similar to those in the training data. This group of
generative tasks is often referred to as synthesis and sampling [5]. In some
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Figure 3.4: A residual block has two convolutional layers followed by a batch
normalization layer and a ReLU activation function. The short connection skips
these two convolution operations and adds the input directly before the last RelLU
activation function.

cases, the generator process can be conditioned to some specified constraints
from users, such as a class label, an image, or a text description (e.g.,
synthesizing images from a text description). Most of these tasks are inherently
ill-posed, when there is no single correct output and a large amount of
variation in the output is desirable. Image synthesis and sampling methods
have been extensively explored for a wide variety of applications. Among
them, CNN-based solutions have been empirically shown to be useful and have
become the dominant approach.

When the input and output data are images, the problem is known
as image-to-image translation [86], in which the algorithm attempts to
learn a mapping or “translation” between two images (typically taken from
different domains) so that the output image has some particular desired
content of the input image (e.g., structure, style, or texture). Isola ct
al. [86] defined image-to-image translation as “the task of translating one
possible representation of a scene into another, given sufficient training data.”
Examples of applications from computer vision include synthesizing real-world
images from a sketch [86, 87, 88] and adapting satellite images into map routes
[86, 89].

One challenging type of image-to-image problem is semantic image
segmentation, which involves, as the name suggests, segmenting parts of an
image that belong to the same class by assigning a predefined class label for
each pixel in the input image. This task has application for a wide variety
of domains, ranging from autonomous cars [90] to medical imaging analysis
[91, 92, 93].

Some image-to-image translation tasks take a noisy version of an image to
produce an image that represents the “best guess” of the original image. These
inverse problems in imaging, commonly referred to as image recovery or image
reconstruction [94, 95, 96|, are concerned with reconstructing an unknown
signal /image y* € RY from a set of measurements x € R” which are related
via a forward model f, in some cases known, typically non-invertible, of the
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form:

x=f(y)+n (3-24)
where n € R” represents the noise vector.

Additional information representing a prior belief about the sought
solution is typically applied to overcome the ill-posed conditions of inverse
problems [22]. In this case, the goal is to find a vectorized image y* that
match the observations x, which is likely given the prior knowledge.

Examples of imaging tasks that fit under this framework are image
inpainting, image denoising and super-resolution (SR). SR has become an
important class of image processing techniques in computer vision. SR, focuses
on the task of recovering high-resolution images from low-resolution images.
This problem is inherently ill-posed because high frequency information is
lacking, which is usually solved by exploiting prior information.

The seismic inversion problem, the object of analysis in this study, fits
under the latter group of inverse problems, more specifically, the ones in which
an analytical model of the laws underlying the measurement process is known.
Along with other application domains, such as medical imaging, deep learning
techniques are currently transforming inverse problems’ methods in geophysical
imaging. Next, we outline CNN-based models that are commonly used to
address inverse problems in imaging and some related problems.

3.3.1
Fully Convolutional Networks

Because image reconstruction involves predicting an output value for
every pixel in the input image (i.e., pixels-to-pixels), this task is commonly
referred to as dense prediction. Long et al. [91] first introduced the framework of
an architecture without fully connected layers, namely, the fully convolutional
network (FCN). Because FCNs only perform convolution operations, they can
process arbitrary-sized inputs and be trained end-to-end for individual pixel
prediction.

A naive approach is to directly learn a mapping from the input image
to its corresponding output image through consecutive convolutional layers
while preserving the original full spatial resolution. However, this would
be computationally costly as the number of channels of almost any CNN
rapidly increases with depth. Instead, a standard FCN has an encoder-decoder
architecture, a special case of feedforward neural networks.

Encoder-decoder networks include a middle bottleneck layer (i.e., a
lower dimensional hidden layer) to force the compression of the input into
a lower dimensional representation of the latent space, reducing the number of
parameters of the network and consequently its computational cost.

The encoder-decoder architecture is symmetric and composed of two
parts: a contracting path (i.e., encoder) and an expansive path (i.e., decoder).
The encoder part (e) parameterizes a high-dimensional input image (x) into
a low-dimensional latent space representation (h): h = e(x). One can roughly
think of an encoder as a classification network that maps the input image
into an embedded representation of this image, in this case a class (e.g., apple
or orange). Then, in the decoder part (d), h is used as input to the decoder
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part to reconstruct a new high-dimensional output image: y = d(h). Figure
3.5 illustrates in a didactic manner a representation of an encoder-decoder
architecture.

Figure 3.5: A schematic representation of the encoder-decoder architecture given
an input x and an output y. Each box represents a multi-channel feature map. The
encoder is the first half of the diagram (in blue), the latent code representation
is in the middle (in gray) and the decoder is the second half (in green). Based on
[86].

A known benefit of encoder-decoder networks concerns the reception
field size. Recall that the receptive field in CNNs is the region of the input
space that affects a particular unit of the network. Given a constant filter size,
down-sampling broadens the receptive field with respect to the input. This is
important to capture information about larger objects since larger regions of
the input space will affect a particular unit in the output layer.

A typical encoder is composed of a series of convolution blocks followed by
a max-pooling operation to reduce (i.e., down-sample) the spatial dimensions
of the input. Conversely, in the decoder part, the size of the feature maps
can be increased (i.e., up-sampled) by a fast deterministic method, such as
the nearest and bi-linear operators. The first simply copies the values from the
nearest pixels, while the second applies a linear interpolation from the values of
nearby pixels. Alternatively, transposed convolution (i.e., fractionally-strided
convolution) [97] attempts to recreate the original input before the convolution
operation. By replacing the deterministic simple scaling with a convolution
operation, it enables the network to learn the inverse to the convolution
function by itself.

Given an input tensor of size h x w and a kernel of size k X k, a transposed
convolution operates as follows. The kernel window slides w times in each row
and h times in each column, resulting in a total of h x w intermediate results.
The intermediate results are tensors initialized as zeros. Each intermediate
tensor is computed by multiplying each element in the input tensor by the
kernel so that the resulting tensor replaces a portion of each intermediate
tensor. This portion corresponds to the position of the element in the input
tensor used for the computation. The final output tensor is the sum of all the
intermediate results. The output is a tensor of size (h+k — 1) x (w+ k —1).

In transposed convolution, the padding parameter specifies the number
of border elements to be removed from the output. Stride is used to determine
how long the kernel jumps for each intermediate result. Figure 3.6 shows
an example of a transposed convolution on a tensor of size 2 x 2 using a
kernel of size 2 x 2, stride of 1 and zero padding. The expansion of the
condensed intermediate feature maps is usually followed by regular convolution
operations.
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Figure 3.6: Example of a transposed convolution operation performed on a tensor

of size 2 x 2 using a kernel of size 2 x 2, stride of 1 and zero padding. The output
is a tensor of size 3 x 3.

The combination of the encoder and decoder modules promotes the
reconstruction of images that look similar to the input ones. Auto-encoders are
a common type of encoder-decoder architecture whose goal is to approximate
the identity function. While compressing the input into an embedded
representation, it aims at preserving as much information as possible to be able
to reconstruct the output in the decoder part. This is achieved by minimizing
the distance between the input and the reconstructed output on the training
data. Auto-encoders are particularly useful for dimensionality reduction and
for representation learning [98].

In [91], the authors proposed the adaptation of well succeeded image
classification networks (e.g., AlexNet and GoogLeNet) to work as encoders,
appending a decoder network with transposed convolutional layers to
up-sample the latest feature maps into a dense segmentation map. This
adaptation involves turning fully connected layers into convolutional layers.
Skip connections from earlier layers in the network were added to up-sampling
layers to help recover the full spatial resolution at the network output.

In image reconstruction problems, it is often beneficial to use skip
connections to shuttle information directly across the network, since there
is a great deal of low-level information shared between the input and output.
Even though ResNet was originally proposed for image classification, it has
been used in many image reconstruction applications [99, 100]. Networks with
more complicated hierarchical skip connections, such as U-Net [92], are also
commonly used.

U-Net [92] (named after its U shape) is a well-known encoder-decoder
network whose architecture was primarily used for biomedical images
segmentation. While up-sampling, it also concatenates (instead of summing
as FCN) the higher resolution feature maps from the encoder part with the
up-sampled feature maps at the same resolution. With these extra connections,
features learnt at different stages of the encoder are projected onto the output
pixel space. These skip connections are important to avoid spatial information
from getting lost while being compressed in the encoding stage. A simplified
representation of the U-Net architecture is shown in Figure 3.7.
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Figure 3.7: A simplified representation of the U-Net architecture [92] given an
input x and an output y. Each box represents a multi-channel feature map. The
blue boxes from the encoder part of the network are copied and concatenated with
up-sampled feature maps at same level, as represented by the green boxes. Based
on [86].

3.3.2
Image Matching

Recall that in image reconstruction tasks, we are interested in finding
a vectorized image y* € RY from measurcments x € R, of the form
x = f(y) +n, where n € R” represents the noise vector and f is the forward
measurement operator.

DL-based methods to solve image inverse problems typically minimize
a cost function composed of a data-fit term, which measures if the predicted
image y* is a good fit to the observations, and a regularizer, which measures the
lack of conformity of y* to a prior model, and promotes images with desirable
properties. This optimization procedure usually involves image matching, i.e.,
the computation of a difference criterion between a reference image and the
predicted image or the synthesized response obtained from the predicted image
via the forward model.

A per-pixel classification or regression loss assumes an unstructured
output space, where pixels are conditionally independent of each other. The
most common types are either the mean squared error (MSE) or cross-entropy
between the output and ground-truth images. Alternatively, the mean absolute
error (MAE) is used instead of MSE to not over-penalize larger errors and
produce sharper results.

Structure losses, on the other hand, penalize the joint distribution of the
output. These metrics have a higher correlation with the human perception of
visual quality when compared to unstructured losses. In this case, we assume
that a pixel value is influenced by the values of nearby pixels in an image.

A popular choice is the structural similarity index (SSIM) [101], which
is based on a weighted combination of three comparative measures: luminance
(1), contrast (c) and structure (s). The SSIM metric is calculated over a window
of an image. Given two windows z and y of common size, the SSIM metric is
given by:
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(2M$My + Cl)
(x,y) =
9= + piy + 1)
(20’131 + CQ)
02+ 0%+ c)
_ (Omy + /) (3-25)
s(z,y) = (020y + 2)2)

0.0y + C2/2)
SSIM(z,y) = l(z,y) x c(z,y) x s(z,y)
(24 py + €1)(204y + c2)

(12 + g + )0 + of + c2)

c(x,y) = (

SSIM(z,y) =

where p, and g, denote the averages of x and y, respectively, o, and o, are
the variances of x and y, respectively, o,, represents the covariance of z and
y, and c; and ¢y are small constants.

In [102], the authors studied the effects of different types of loss functions
applied to image restoration tasks (e.g., super-resolution), including MSE,
MAE, SSIM, and MS-SSIM. The latter is an extension to SSIM performed at
multiple scales through a multi-step down-sampling process. They proposed a
novel loss function by combining MAE and MS-SSIM metrics. In the performed
experiments, the proposed loss function attained the best quality, followed
closely by the MAE loss used on its own.

In recent years, feature-wise losses have been explored to increase
the perceptual visual quality of the networks’ output [103, 104, 105, 106].
The feature-wise loss is based on differences between visual representations
computed in the feature space of a trained CNN, such as the VGG network
[107] trained on the ImageNet dataset [108]. By comparing distances in the
feature space, the network is encouraged to produce images that have similar
feature representations rather than generating outputs that match the ground
truth images. For example, Gatys et. al. [103] proposed a loss function based
on statistics computed over the extracted feature representations to match the
style (i.e., texture) of a reference image, a problem in computer vision known
as style transfer.

Rather than hand-crafting a loss function, the Generative Adversarial
Network (GAN) [5] can learn a function that reflects the distance between the
ground truth distribution and the distribution of the data generated by the
network. Given a deep neural network of the generative type G : z € RE —
y € RY, K < N that accurately models the prior information on the signal we
are interested in, it is straightforward to decode an image y* = G(z) that best
fits the measures in some sense, for example, by minimizing ||x — f(G(2))|]5-

The GAN framework is composed of two networks, namely generator
(G) and discriminator (D). During training, the two networks act like players
in a competitive game. The generator’s goal is to fool the discriminator by
producing fake samples that follow similar distribution to the actual data
distribution. Meanwhile, the discriminator tries to distinguish real data from
fake data produced by the generator. In standard GAN, the generator takes
random noise (z) as input and maps it into a fake image. The discriminator
is a classifier that takes an image y as input and outputs if it is real or fake.
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The objective of a standard GAN can be expressed as:
Lean(G, D) = Eyflog D(y)] + E.[log(1 — D(G(2))] (3-26)

where G tries to minimize this objective against D tries to maximize it.

Conditional GAN (cGAN) is a variation of GANs in which the generator
and discriminator are conditioned on auxiliary data. In this context, the
generator learns a conditional mapping from an observed image x plus a
random noise vector z to an output image y. The objective of a cGAN can be
expressed as:

Lecan(G, D) =E,  llog D(x,y)] + Ex z[log(1 — D(x, G(x, z))], (3-27)

where G tries to minimize this objective against D tries to maximize it.

Conditional GANs are explored in [86] to solve image-to-image
translation problems. The idea behind the paper is that a general-purpose
solution to image-to-image translation problems can be built by replacing the
hand-engineering of the problem-specific mapping function with the high-level
loss function automatically learnt by GANs.

3.3.3
Deep Learning Models to Solve Geophysical Inverse Problems

Following its success in imaging inverse problems from computer vision,
such as super-resolution and image denoising, deep learning has received
considerable attention in the context of geophysical inverse problems. The
central idea of these approaches is to train a deep neural network to work
as a surrogate for the inverse mapping or, in other words, to train a network
that takes in recorded seismic data (i.e., measurements) and reconstructs the
corresponding parameters of the subsurface model.

In seismic inversion, the measurements are typically denoted by d,
whereas m is used to refer to the parameters of the subsurface model. In this
formulation, the goal of the seismic inversion problem is to find the parameters
of the subsurface model m € RY from measurements d € RY, of the form
d = f(m) + 7, where n € R represents the noise vector and [ is the seismic
forward model.

Related work in this study can be organized by broadly dividing the
ML-based methods according to their level of supervision. Previously, seismic
inversion problems were tackled using fully supervised approaches [109, 110,
111, 30, 36]. An example of annotated data in the seismic inversion problem
is the acoustic impedance log at the well locations and the corresponding
seismic data at the same locations. In this supervised approach, the network
learns from the labeled dataset empirically by minimizing an objective function
following;:

= [ (), (3-28)
Lyr = || — m]; (3-29)
arg min K, q (L], (3-30)
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where |.||3 is the squared L2-norm, (m,d) is a sample from the training
dataset, f, ' is the inverse network and @ are the parameters to be estimated.
The loss Ly is referred to as model misfit, which measures the difference
between the predicted subsurface model m and the ground truth subsurface
model m.

The fully supervised framework may suffer from generalization issues due
to the limited availability of ground truth models corresponding to measured
data, which hinders them from practical application in exploration geophysics.
As an alternative, including domain knowledge makes it possible to enhance
well-log or training data based on geological processes.

In [28, 11, 30, 31, 32, 112, 29], a geological modeling algorithm
(e.g., geostatistical simulation and process-mimicking methods) is used to
synthetically generate multiple realistic subsurface models that represent the
expected target spatial field, from which the forward operator is simulated to
devise pair-wise instances for training a machine learning model.

Once trained on the synthetic examples, the network is used to make
predictions on a real dataset outside the spatial domain of the training data.
However, the synthetic geological models that compose the training dataset
must be exhaustive and representative of the system under study, which is
often difficult to obtain. If either the measurement process changes (e.g., source
wavelet) or the target geological setting is different from the training data (e.g.,
subsurface models with different spatial correlations or facies proportions), a
new network needs to be trained. This process can be very laborious and
subject to errors.

In unsupervised and semi-supervised learning, vast amounts of unlabeled
seismic data are applied in both the input and output layers of the network
as a proxy for the ground truth. In the physics-driven learning framework,
geophysical constraints are incorporated into the network architecture to guide
the training process. Karpane et al. [33] refer to this paradigm that attempts to
integrate scientific knowledge and data science as theory-guided data science.

The physics-driven framework is usually composed of two neural
networks: one to learn an inverse mapping f, ' : d € R — m € RY, and
another one to perform the forward simulation f, : m € RY — d € R”. The
computational graph of the forward simulation keeps track of dependencies
of the arithmetical operations, stores intermediate results and computes the
gradient of a loss function based on the mismatch between observed and
simulated seismic data:

m = fa_l(d)7
Lo = | fu(d) - d]l;
arg min Eq [Lp],

where d is an unlabeled sample from the training dataset, f,, is the forward
simulation network, f, ' is the inverse network and 6 are the parameters of
fy ! to be estimated.
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In general, the forward simulation network f, has non-learnable
parameters. The data misfit £p measures the difference between observed
measures and synthetic responses obtained via f,, applied to a predicted
subsurface model.

Since the data loss is computed in the band-limited seismic data domain,
the most common approach is the semi-supervised learning strategy, where the
network is simultaneously guided by the misfits between observed measures
and synthetic responses (i.e., data misfit) and between the predicted and
the expected subsurface model parameters (i.e., model misfit). In this case,
a weighted sum of the data misfit (i.e., the unsupervised term) and the model
misfit (i.e., the supervised term) is used to compose the final cost function:

L= NLq~+ AL,

where Ay and )\,, are hyper-parameters dictating scaling and relative
importance of the two misfit terms. The data loss stabilizes the convergence
of the training process and mitigates the overfitting problem. The model loss,
on the other hand, provides essential high- and low-frequency information for
the reconstruction of the subsurface model.

A number of physics-guided DL-based models have recently been
proposed to solve geophysical inversion problems, such as velocity inversion [37,
38, 113, 34], impedance and amplitude-variation-with-offset (AVO) inversion
[36, 35, 39], geosteering inversion [38] and porosity estimation [40].

A set of experiments were carried out in [34] to evaluate and compare fully
data-driven, fully physics-driven and semi-supervised DL-based approaches to
solve the seismic full wave inversion (FWI) problem. The trade-off between
data misfit and model misfit is analyzed through a set of experiments based on
a 2D synthetic velocity dataset. The experiments show that the physics-based
objective function significantly improves the accuracy of the estimated velocity
models.

In [28, 38, 114] a semi-supervised approach is devised by formulating
the seismic inversion problem as a domain-transfer task. In these studies, the
cycleGAN framework [115] is applied to map between the seismic amplitude
domain and velocity models. The inversion system using the cycleGAN
framework consists of two networks: one to learn a surrogate function of
forward modeling f, : m € RY — d € R”, and the other one to learn an
inverse mapping f, ' : d € R” — m € RY. The cycle-consistent loss ensures
that subsurface models obtained by transforming from the seismic amplitude
to the velocity domain and back to the amplitude representation are consistent
(i.c., f, and f, ! are reverse to cach other), which can be calculated both on
labeled and unlabeled data.

Alternatively, a standard GAN [5] can be used to learn a generative prior
from samples of the expected geological patterns, as represented, for example,
by synthetically created subsurface models. The generative model defines a
low-dimensional representation of the original high-dimensional space of the
model parameters G : z € Rf — m € RY, K < N. Once the generative
model G is trained, the estimate of a measured seismic data is obtained by
searching in the latent space for a inverted subsurface model that best explains
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the observed seismic data [46, 47, 48]. This is achieved by solving the following
optimization problem:

i = G(2), (3-31)
2 = argminE,[L,], (3-32)
L. = |f.(G(2)) —dl, (3-33)

where the subsurface model estimate is given by m.

The parameterization of geological models by deep generative models
can be particularly useful to address the non-uniqueness of inverse problems,
as they can generate stochastic realizations of the underlying subsurface model
that match the measured data. However, deep generative models are unstable
and difficult to train. GANs have been notorious for their mode collapse, when
only a few modes of data are generated, and the difficulty of reaching Nash
equilibrium during training [116].

Conventional supervised (or semi-supervised) deep neural networks
define a deterministic function from the input to the output from a given
training dataset. However, the uncertainties inherent to seismic inversion
problems make it crucial to quantify the uncertainty associated with the
network estimates.

In [34], the authors propose the use of the Monte Carlo dropout method
[43] to approximate a deep ensemble Bayesian model and quantitatively
analyze the performance of a DNN in inverting velocity models from seismic
reflection data. From the set of predicted velocity models, they compute the
mean and the standard deviation statistics. With these statistics at hand, it
is possible to identify high uncertainty areas related to illumination issues and
susceptibility to missing or incomplete data.

A variety of CNN architectures have been applied in the seismic inversion
methods referenced in this thesis, including FCN, U-Net and residual based
feedforward architectures. In [36], a recurrent DL network is applied to
capture the temporal dynamics of seismic traces in a physics-driven framework
for elastic inversion. With few exceptions, most of these works apply 1D
convolutions to process 2D and 3D datasets in a per-trace manner.

Despite many recent advances, there are still key challenges regarding
the unavailability of labeled data (real or synthetically gencrated), and the
uncertainty assessment of the predictions. As will be shown in the next
chapter, we deal with these challenges by coupling geostatistical simulation to
assess uncertainty about the subsurface predictions and to exploit the model
parameters’ space in a physics-driven and self-supervised manner.
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4
Deep Physics-Driven Stochastic Seismic Inversion

We propose a new self-supervised DL-based method to invert multiple
fine-scale 3D subsurface models that fit equally well to the observed
seismic reflection data. This methodology shares the principles of the Global
Geostatistical Seismic Inversion [19].

We start by describing the proposed methodology in the acoustic domain
to invert acoustic impedance models from full-stack seismic data. Next, we
generalize our methodology for the elastic domain to invert P-wave velocity,
S-wave velocity, and density models from pre-stack seismic data. We close by
showing that the proposed methodology can simultaneously integrate pre-stack
seismic data with petrophysical data to invert directly for reservoir properties,
such as porosity.

4.1
Acoustic Inversion

Acoustic inversion aims at predicting the parameters of the acoustic
impedance (AI) model, h € Y C RY, from observed seismic data, d € X C
R?, of the form d = f(m) + 7, where € R represents the noise vector and
f is the seismic forward model. Usually P < N (i.e., m is a much denser
grid), so we start by performing an up-sampling operation in d to match the
dimensions of m.

The architecture of the proposed inversion system consists of two
components: f, ', a CNN of the type encoder-decoder parameterized by weights
and biases in a multidimensional space (# € © C RE), and f,,, a physics-based
CNN with non-learnable weights. The network f;' is any encoder-decoder
backbone. It is used as a surrogate to the inverse of the seismic forward model,
ie., f;': X — Y. The network f, is used to implement the seismic forward
model f,ie., f,:Y — X.

The goal of f; ! is to synthesize Al models that match observed data from
a prior distribution on the model parameters, as represented by geologically
consistent AI models generated with geostatistical simulation.

We introduce two workflows, one for training and one for inference, as
explained next.

41.1
Training the Inverse Network

We start by generating a set of M Al models (M : {m; € Y C RV}, j =
1,---, M) from the set of Al well-log data and imposing a variogram model
with direct sequential simulation (DSS) [66].

These geostatistical models are used as input to f, ', additionally to the
observed seismic data, to account for both low and high frequency content that
cannot be predicted from the limited bandwidth seismic data. Also, this set
of geostatistical models works as a random noise in a high-dimensional latent
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space that introduces stochasticity to ensure the diversity between the network
outcomes.
During training, f, ' learns a non-lincar mapping, such that:

m,; = fe_l(d,m;) A~ m, (4-1
where m; is the estimated Al model, d is the observed seismic data, m
is a geostatistical model drawn from the set of previously simulated model
(m; ~ prq), and m represents the unknown ground truth Al model.

)
/
J
S

In such a setting, f, ' assumes a role similar to that of the generator
in a conditional GAN framework, in which the generative model learns a
conditional mapping from the observed seismic data (d) plus a random noise
(m; ~ ppy) into an inverted Al model (1h).

As in other physics-based learning approaches, the physical forward
network (f,) is applied to devise the gradients with respect to the misfit
between the observed seismic data and the synthesized seismic data computed
from the network predictions:

Lo = |[(fu(dy) — )5, (4-2)

A second objective function, namely the model reconstruction loss, is
defined to encourage the network to be sensitive to the geostatistical model
and to preserve its statistical properties (i.e., mean, variance, and spatial
distribution pattern). The model reconstruction loss is defined as:

L =T © (i —m))]5, (4-3)

where I' is a matrix representing the confidence in the geostatistical model.
The symbol ® is used to denote the element-wise multiplication between two
multidimensional vectors.

The matrix I' is utilized to assign confidence levels to the geostatistical
models. The confidence level is lower for regions where the synthesized seismic
responses from the geostatistical model present a poor match with the observed
seismic data. For these regions, the update of the network parameters will
assimilate more information from the seismic data rather than from the
geostatistical model.

The matrix I' is computed for cach geostatistical model used for training
(m; ~ pr) by performing the following steps. First, by applying the physical
forward network, we synthesize seismic data from the geostatistical model.
Then, we compute the matrix I' based on the residuals between the retrieved
synthetic seismic data and the observed seismic data, as follows:

z=d— f.,(m)), (4-4)
I = A(|z)), (4-5)

where A is a function that maps the values of z € Z C RY into a vector
AeLCRMN O< AL,
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The function A describes the process of decreasing the relative
importance of the geostatistical model as the values of its corresponding seismic
data misfit increase. It can assume many forms, such as the linear form (i.e.,
constant rate decay) and be in the shape of an exponential function (i.e.,
exponential rate decay).

The choice of A is subjective and based on the quality of the information
available. For example, in areas with a considerable number of wells and where
the subsurface geology is well understood, one can increase the confidence
level related to the prior information. On the other hand, for high-quality
seismic data and relatively unexplored regions where few wells are available,
the confidence level associated with the seismic data should be increased. For
this reason, the choice of A is adjusted depending on the application examples.

In this work, we propose a function A based on the complementary Gauss
error function. The complementary Gauss error function, often denoted by
erfc, is a special type of sigmoid function, defined as:

A(z) = erfe(z), (4-6)
erfc(z) = 1 — erf(2), (4-7)

erf(z) = % /OZ et dt (4-8)

In statistics, for a random variable Z that is normally distributed with
mean zero and standard deviation 1/4/2, the Gauss error function, for z > 0, is
interpreted as the probability that Z falls in the range [—z, z]. If we assume the
seismic data misfit normally distributed with mean zero, i.e., Z ~ N(Z;0,0?),
|Z| follows a half-normal distribution parameterized by a scale parameter

o > 0, such that:
2
B(|7]) = oy, (49)

Var(|Z]) = o? (1 - —> , (4-10)

™

F(Z|,0) = ef (ULZ\/Q , (4-11)

Q(q,0) =ov2erf ()0 < g <1, (4-12)

Where erf™'(z) is the inverse error function, F denotes the cumulative
distribution function (CDF) and @ the quantile function of the random variable
|Z].

By the choice of o, one can control whether the results will assimilate
more information from the seismic data or from the geostatistical models. The
larger the scale parameter the more spread out the distribution of |Z| and,
consequently, the smaller the decay factor. Figure 4.1 shows an example of
a half-normal distribution with ¢ = 0.13, where A(z) = erfc(z) > 0.7 for
|z| <0.05.
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Figure 4.1: On the left, the probability density function and, on the right, the
cumulative density function (CDF) of a half-normal distribution with o = 0.13,
where erfc(z) > 0.7 for z < 0.05. The A(z) function is defined by the
complementary Gauss error function (erfc), defined as 1 — erf (or CDF).

One intuitive way to define the scale parameter is to choose a maximum
acceptable error value 2™#* such that o is given as:

Zmax
S — 4-13
C T Vet (g) (+15)

Where ¢ is the lower bound limit of the values in the confidence matrix I" for

which the data misfit is less than the maximum acceptable error (|z] < 2™*).
The parameters of the inverse network are updated to simultaneously

minimize the data loss and the model reconstruction loss, such that:

arg m@in Ed,m;.NpM L], (4-14)
L=Ly+Lp, (4-15)

While the geostatistical models match exactly the Al well-log data after
the up-scaling due to the use of geostatistical simulation, the proposed method
does not impose any local constraint, which might lead to a mismatch between
measured and predicted Al values. This might be an advantage as well, as we
are accounting for any uncertainty or measurement errors that might be present
in the log data.

However, one can force the network to be locally conditioned at the well
locations (i.e., reproduce exactly the well-logs) by adding a new term to the
objective function in equation 4-15:

Ly = [M© (m) - 1iy)]f5, (4-16)
L=Ly+Lp+ Ly, (4-17)

where M is a matrix with elements 1 for the well-log data locations and 0 for
the rest (i.e., a mask).
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The inverse network is trained on a randomly chosen subset from the
set of geostatistical models to reduce the training time. This approximation is
valid as long as all of the models generated with geostatistical simulation share
the same spatial variability and well data information. The size of the training
subset is data dependent and can be empirically defined by taking into account
the generalization error. If the geological context contains different statistical
and spatial characteristics, then one should train a f, per set of realizations
(i.e., per prior distribution).

A schematic representation of the training workflow is shown in Figure
4.2. The workflow consists of two main components: the inverse network
(f,!) with learnable parameters, and the physical forward network (f.,) with
non-learnable parameters. The inverse network takes full-stack seismic data
and a geostatistical AT model as inputs, and outputs the best estimate of
the inverted AI model. Next, the forward network is used to synthesize
seismograms from the inverted AI model. The error is computed between
the synthesized and the input seismic data (Equation 4-2), and between the
predicted and the input AI model (Equation 4-3). The parameters of the
inverse network are adjusted by combining both losses as in Equation 4-15
using a gradient-descent optimization.

Figure 4.2: Schematic representation of the training workflow of the proposed
acoustic inversion.

4.1.2
Prediction of the Al Models

In the prediction stage, the trained inverse network is applied to invert
one high-frequency AI model, m;, for each pair (d,m;) composed of the
observed seismic data and the j** model in the set of geostatistical AI models
(M {m] EYCRN}j=1,--- M)

The values estimated at each grid cell define a posterior distribution from
which we can calculate the statistics (e.g., mean, variance, and percentiles) in
order to quantify the uncertainty about the network predictions. As the cost
of training is fixed and independent of the number of estimates, this method
is especially appropriate for inverting many thousands of models to better
explore the model’s uncertainty space.
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4.1.3
Implementation

A pseudo-3D strategy, in which we assume 2D multi-slice representation
of the 3D input and output data, is adopted. A 2D-CNN architecture was
used for both inverse and forward networks. Recall that, in a 2D convolutional
layer, a 2D convolutional kernel slides over 2D input data along two spatial
dimensions.

The 3D-CNN architecture involves a much larger number of parameters
than that of its 2D counterpart. Although there have been significant advances
in developing resource-efficient 3D-CNN architectures, the current well-known
resource-efficient CNN architectures are built with 2D convolutional kernels.

The inversion grid is composed of a set of hexahedral cells regularly
aligned along layers and conformed to the reservoir stratigraphy. This
structure, usually referred to as a stratigraphic grid, represents the skeleton
of the reservoir framework. Due to the large number of model parameters to
invert, usually of the order of magnitude of 10® [17], the computation cost is a
constraining factor that requires consideration in the practical use of 3D-CNN
architectures for seismic inversion problems.

Typically, the seismic grid is laterally denser (i.e., with a higher
resolution) than the stratigraphic grid, and samples have to be averaged
laterally into one cell of the stratigraphic grid. Vertically, the seismic samples
are sparser (i.e., with a lower resolution) and an operation to increase the
seismic sample interval is needed.

The vertical slices are extracted from the input volumetric data in a given
direction, such as the inline and crossline directions. However, depending on
the complexity of the geological background, a multiple-direction strategy can
be applied.

4.1.3.1
Architecture of the Inverse Network

The network f,' maps an input vector, x € X, Y C R*>***W "into an
output vector, m € Y C R>*T*W where H and W correspond to the height
and width of the 2D vertical slices extracted from input volumetric data, i.e.,
observed seismic data and geostatistical model. The first dimension of the
vector represents the number of channels in the input and output data. The
input vector has two channels: the first one is dedicated to the seismic data,
while the latter is used for the geostatistical model.

The data samples are normalized to be between zero and one, by using
the expression:

/

r = (Z’ - xmin)/(xmu:c - mem), (4'18)
where x,,;, and x,,,, are the global minimum and maximum values of each
input channel, respectively, considering the prior distribution (i.e., set of
geostatistical models).

The network f, ' follows an encoder-decoder architecture based on the
residual learning framework [79]. The reason is that we want to benefit from
residual blocks to avoid vanishing gradients and degradation of accuracy in
training f, '. Furthermore, the use of identity connections is often beneficial for
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image reconstruction tasks, in which the output image should share structure
with the input image.

A convolutional layer (Conv) or a transposed convolutional layer
(Deconv) subsequent to a batch normalization layer (BN) and a rectified linear
unit (ReLLU) activation layer is a popular choice because of its fast convergence.
We use those as building blocks to implement the encoder-decoder architecture
for the inverse network.

The features are extracted and encoded by a series of Conv-BN-ReLLU
blocks. All convolutional layers use a 3 x 3 kernel size. Then they are
passed through the bottleneck, implemented by a residual layer, followed
by another series of Deconv-BN-ReLU blocks that perform the decoding
operation. Finally, the output is adjusted with a convolutional layer with a
sigmoid activation function to the desired dimensions and to bound the values
into the range of [0, 1].

The residual blocks follow the architectural guidelines given by [79].
Each residual block has a 3 x 3 convolutional layer subsequent to a batch
normalization layer and a rectified linear unit (ReLU) activation function. A
second 3 x 3 convolution layer plus a batch normalization layer is stacked on
top of the previous block. The skip connection bypasses both these layers and
adds directly before the ReLU activation function. These residual blocks are
repeated five times to compose the residual layer.

Table 4.1.3.1 summarizes the architecture of the inverse network given
input data of size H = 128 x W = 550.

Layer Filter size, Stride Output (C x H x W)
Input - 2 x 128 x 550
Conv, BN, ReLU 3x3,1 32 x 128 x 550
Conv, BN, ReLLU 3x3,2 64 x 64 x 275
Conv, BN, ReLU 3x3,2 128 x 32 x 138

5 x Residual Blocks

Conv, BN, ReLLU, Conv, BN 3x3,1 128 x 32 x 138
Deconv, BN, ReLLU 3x3,1 64 x 64 x 275
Deconv, BN, ReLU 3x3,1 32 x 128 x 550
Conv, BN, Sigmoid 3x3,1 1 x 128 x 550

Total # parameters: 1,664,547

4.1.3.2
Architecture of the Physical Forward Network

By assuming a normally incident wave, we restrict ourselves to primary
waves and post-stack data. In this case, the physical forward network f,,
performs the simulation of synthetic seismic data based on the simple
convolution-based forward modeling [117].

The network f,, receives as input a vector of the form m € Y C
in the AI domain and outputs a vector d € X C R>™#>*W i the amplitude
domain.

RIXHXLV


DBD
PUC-Rio - Certificação Digital Nº 1821333/CA


PUC-Rio- CertificagaoDigital N° 1821333/CA

The reflection coefficient log is obtained as a function of the contrast of
the acoustic impedance values, from which the seismic trace is calculated by
the convolution of the source wavelet. The forward operator is implemented as
a convolutional model of the form:

d=wsxr, (4-19a)
rfi, j] = R(Ifl[ivj]') | N (4-19b)
R(mli, j]) = L 1 20 ] — mli, j] (4-19¢)

m(i + Ai, j] + mli, j]’

where w is the source wavelet and r represents the reflection coefficients
calculated from the acoustic impedance model through the function R, for
i=1,---  Hand j=1,--- |/ W.

Equation 4-19a can be modeled as a two-layer CNN, including an input
layer (m) and output layer (d). In the input layer, the reflectivity coefficients
are obtained from the input data by performing a series of differentiable
operations as follows. First, the input AI model is scaled back to the Al
global minimum and maximum values. Then, the re-scaled Al vector is used
to calculate the normal incidence reflectivity coefficients (Equation 2-7). In
the convolutional layer, w is convolved with the reflectivity coefficients along
the vertical profile (i.e., the height dimension). Finally, the retrieved synthetic
seismic data is scaled back to the interval [0,1] in the output layer of the
network.

4.1.4
Workflow

Figure 4.3 shows the main outline of the Deep Physics-Driven
Stochastic Acoustic Inversion. A set of M acoustic impedance models is
simulated from the set of Al well-log data and imposing a variogram model
with direct sequential simulation (DSS). The training procedure is performed
on a subset of the set of geostatistical models, along with the observed seismic
data. Each j* prediction in the set of inverted AI models is obtained by taking
the j'" geostatistical AI model, along with the observed seismic data, as input
to inverse network.


DBD
PUC-Rio - Certificação Digital Nº 1821333/CA


PUC-Rio- CertificagaoDigital N° 1821333/CA

DSS (AI)

DL ESTIMATED (AI)

Figure 4.3: Main outline of the Deep Physics-Driven Stochastic Acoustic
Inversion.

4.1.5
Pseudo-Algorithm

The proposed Deep Physics-Driven Stochastic Acoustic Inversion method
can be summarized by the following pseudo-algorithm:

Algorithm 2: Deep Physics-Driven Stochastic Acoustic Inversion
Input: Variogram model v, Al well-log data w, post-stack seismic

reflection data d
Output: Set of inverted AI models M : {m;},j=1,--- M

Generate the set of AI models, M : {m;},j=1,--- M, with
geostatistical simulation using v and w as input data.
Concatenate d with each model in M to create

X {(my,d)},j=1,--,M.

3 Randomly select a subset X € X for training.

Train f; ' on X7 using the mini batch gradient descent algorithm.

5 Apply the trained fg_1 using each pair in X as input to obtain

M:{m;},j=1--- M.
Return the set of inverted AI models M computed in the previous step.

4.2
Amplitude-Versus-Angle Inversion

Amplitude variation with the angle of incidence (AVA) analysis is a
technique of reservoir characterization which involves the use of pre-stack
seismic data to infer density, compressional wave (P-wave) and shear wave
(S-wave) velocity models. In this section, we show that the proposed
methodology to invert acoustic impedance from the normal angle of incidence
can be generalized for the pre-stack domain.

The main outline of the Deep Physics-Driven Stochastic AVA
Inversion is similar to the algorithm proposed for acoustic inversion. When the
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observed seismic data is sorted by angle gathers (i.e., multi-angle), the model
parameters may represent subsurface elastic properties like P- and S-wave
velocities (Vp and Vg) and density (p). Each triplet of inverted p, Vp and
Vs models is used to compute its corresponding elastic response (i.e., angle
dependent synthetic reflection seismic data) by convolving the source wavelet
with the reflection coefficients computed based on the Zoeppritz equations
(Equation 2-6).

The geostatistical simulation process comprises the simulation of elastic
models following a cascading approach. We start by simulating a sct of M
elastic models of density and P- and S-wave velocities using direct sequential
simulation (DSS) and co-simulation (Co-DSS). As usual, a spatial continuity
pattern is imposed in the sequential simulations for each elastic property.
Density is simulated with DSS using the existing well-log data as experimental
data. Then, Vp is co-simulated using the retrieved Density model as auxiliary
variable. Finally, Vs is co-simulated using the previous simulated Vp model as
auxiliary variable.

The workflows for training and prediction follow the same guidelines as
the proposed acoustic version of this algorithm. The training workflow (Figure
4.4) consists of two main parts: the inverse network (f, ') with learnable
parameters, and the forward model (f,) with non-learnable parameters. The
inverse network takes as inputs partial angle stacks, alongside the geostatistical
clastic models, and outputs the best estimate of the corresponding elastic
models. Then, the forward network is used to calculate synthetic partial angle
stacks from the estimated elastic models. The error is computed between the
synthesized and the input seismic data (4-2), and between the predicted and
the input elastic models (4-3). The parameters of the inverse network are
adjusted by combining both losses as in equation 4-15 using a gradient-descent
optimization.

Figure 4.4: Schematic representation of the training workflow of the proposed AVA
inversion.

The architectures of the networks for the inverse and forward mappings
are adapted to work with the multiple channels that comprise the elastic
models, one channel for each elastic property, and one channel for each partially
stacked angle. With the exception of the input and output layers, the AVA
inverse network follows the same architecture as the acoustic inverse network.

In this new formulation, the inverse network maps an input vector,
x € X, Y C REEHEXW “into an output vector, th € Y C RV where
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K is the number of partially stacked angles of the seismic data, and H and
W correspond to the height and width of the 2D vertical slices extracted from
input volumetric data.

The 3-term Shuey’s approximation (Equation 2-8) [53] is used to calculate
the synthetic seismic gather with offset angles from the inverted elastic models.
The physical forward network receives as input a vector of the form m € Y C
R3*H>W in the elastic domain and outputs a vector d € X C REXXW i the
amplitude domain. The convolutional layer of the physical forward network
operates with a kernel composed of K channels, one for each partially stacked
angle.

A schematic representation of the training workflow of the Deep
Physics-Driven Stochastic AVA Inversion is shown in Figure 4.5. A set
of M triplets of elastic models is simulated from the set of density, P-wave and
S-wave velocities well-log data and imposing a variogram model with direct
sequential simulation (DSS). The training procedure is performed on a subset
of the set of geostatistical models, alongside the observed seismic data. Each
4" prediction in the set of inverted models is obtained by taking as input to
inverse network the j™ triplet of geostatistical elastic models, alongside the
observed seismic data.

DSS (p) DSS (V) DSS (Vg)

OBSERVED SEISMIC DATA

DL ESTIMATED (p)

DL ESTIMATED (V) DL ESTIMATED (V)

Figure 4.5: Main outline of the Deep Physics-Driven Stochastic AVA
Inversion.

4.3
Petrophysical Inversion

While the Zoeppritz equations and the seismic convolutional model link
the elastic properties to the seismic reflection data, the elastic and rock
property domains are related through a rock physics model [118]. A rock
physics model is a set of mathematical equations describing the elastic response


DBD
PUC-Rio - Certificação Digital Nº 1821333/CA


PUC-Rio- CertificagaoDigital N° 1821333/CA

of a rock given a set of petrophysical properties, such as fluid saturation,
porosity, and volume of minerals.

The goal of petrophysical inversion is the joint prediction of both elastic
and rock properties directly from the observed seismic reflection data. Unlike
the traditional sequential workflows, where elastic inversion is followed by a
rock physics inversion, the direct petrophysical inversion workflows guarantee
consistency between the elastic and reservoir properties.

This problem can be mathematically summarized as follows:

v = p(m) (4-20)
d=f(v)+n (4-21)

where v € Y C R¥, is the elastic model, m € P C R¥ is the rock
property model, d € X C RY is the observed seismic data, p is the rock
physics model, f is the seismic forward model and 1 € R represents the noise
vector.

In this study, we propose a DL-based workflow to directly estimate
reservoir porosity models from post-stack seismic reflection data (Figure 4.6).
A set of M porosity models is simulated from the set of porosity well-log data
and imposing a variogram model with direct sequential simulation (DSS). The
training procedure is performed on a subset of the set of geostatistical models,
alongside the observed seismic data. Each j** prediction in the set of inverted
porosity model is obtained by taking the j** geostatistical porosity model,
alongside the observed seismic data, as input to inverse network.

DSS (4)

OBSERVED SEISMIC DATA

DL ESTIMATED (¢)

PREDICT

Figure 4.6: Main outline of the Physics-Driven Stochastic Petrophysical
Inversion.

The space of the model parameters lies in the petrophysical domain (P),
as represented by the porosity models. In the proposed petrophysical inversion,
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the rock physics model (p) for the simulation of the rocks’ elastic responses is
a simplification of the full physics, defined as a linear relation of the form:

m=axv-+bdb

where a and b are parameters (a,b € R) empirically defined from well-log data.

The inputs to the inverse network are the observed seismic data and
the geostatistical porosity models generated with direct sequential simulation
(DSS) [66]. The networks’ architectures of the inverse and forward operators
are the same as the networks used in the proposed acoustic inversion method.

The inverse network maps an input vector, x € X, P C RZ>**>*W "into an
output vector, m € P C R>H>*W where H and W correspond to the height
and width of the 2D vertical slices extracted from the input volumetric data.

We start by generating M porosity models (M : {m}},j = 1,---, M)
from the set of porosity well-log data and imposing a variogram model with
direct sequential simulation (DSS) [66].

The rock physics model is incorporated into our DL-based inversion
system through the implementation of a series of differentiable operations,
namely py, : P — Y, with ¢ consisting of a and 0. The data loss misfit
is reformulated to take the petrophysical and seismic forward models into
account:

;= f;'(d, m}) (4-22)
¥ = py(ihy) (4-23)
Lo = [(fu(¥;) = D3 (4-24)

where |[|.|[3 is the squared L2-norm, d is the observed scismic data and m is a
geostatistical porosity model.

The training workflow (Figure 4.7) follows the same idea as the proposed
acoustic inversion. The inverse network takes full-stack seismic data and a
geostatistical porosity model as inputs, and outputs the best estimate of the
inverted porosity model. We start by estimating the inverted porosity model
(h) using the inverse network f,'. Then, we obtain the corresponding Al
model (¥) from the inverted porosity model by applying the rock physics
network (py). In the next step, the physical forward network (f,) is applied
to the retrieved AI model (¥) to obtain the synthetic seismic data (d). The
parameters of the inverse network are updated to simultaneously reduce the
model reconstruction loss (Equation 4-3) and the seismic data loss (Equation
4-24).
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Figure 4.7: Schematic representation of the training workflow of the proposed

petrophysical inversion.

VO/EEETZST oN [eNbiqoedeoiad -014-ONd


DBD
PUC-Rio - Certificação Digital Nº 1821333/CA


PUC-Rio- CertificagaoDigital N° 1821333/CA

5
Application Examples

The proposed acoustic inversion is first applied to a 1D synthetic example
to illustrate and demonstrate the robustness of the method on synthetic data.
Then, the proposed acoustic, AVA and petrophysical inversions are carried out
in a 3D real application example. Both datasets are related to the same Albian
post-salt carbonate sequence of Bacia de Santos in the Brazilian offshore.

We ran the training and prediction workflows on eight NVIDIA Tesla
V100 GPUs with 32GB of memory. The implementation of the method was
based on PyTorch [1], a popular open-source machine learning library for
Python.

As in other applications of deep learning, the results shown herein were
obtained after running several experiments to tune the hyper-parameters of
the network. Adaptive Moment Estimation (Adam) optimizer [69] was used
with learning rate of 0.001, 5; 0.9 and (S 0.999.

We want to make sure we match the observed seismic data while
preserving the statistical properties of the geostatistical models. We evaluate
whether the results reproduce the prior variability and spatial continuity
by comparing the histograms and variograms of inputs and outputs. The
absolute value of the model reconstruction loss along with the absolute
value of the seismic data residuals are evaluated as well. In addition, two
quantitative metrics, the structural similarity index measure (SSIM) [101] and
the correlation coefficient (CC) between inputs and outputs are adopted to
provide a general idea of the prediction accuracy.

The results obtained with the proposed deep learning method will
be indicated as DL, while the geostatistical models generated with direct
sequential simulation and co-simulation will be referred to as DSS.

5.1
1D Synthetic Case Application

We start with a one-dimensional synthetic example built from a real Al
well-log to illustrate and validate the proposed methodology. The synthetic
seismogram was obtained from the true log using the wavelet extracted
from the real seismic. The real Al well-log represents the true but unknown
data-generating distribution. The vertical variogram model was fitted to the
experimental variogram computed from the true log.

The inversion grid is defined by 128 vertical samples. We carried out
the Deep Physics-Driven Acoustic Inversion on this synthetic dataset,
considering an input data size of H = 128 x W = 1. The total number
of parameters of the inverse network is approximately 550 thousand. An
ensemble of geostatistical Al logs composed of 1000 realizations was generated
with direct sequential simulation [66] using six samples of the true log as
experimental data.

From the ensemble of geostatistical Al logs, we selected a subset of 32
examples to illustrate the input and output data to our DL-based inverse
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system (Figure 5.1). In Figure 5.1, the first track (a) shows the ensemble of
geostatistical Al logs (gray dashed lines) along with the experimental data
(black dots) and the true Al log (black line). In track (b), the synthetic
seismograms retrieved from the geostatistical Al logs are shown (gray dashed
lines) along with the seismic trace obtained from the true Al log (black line).
As expected, the synthetic seismograms retrieved from the geostatistical Al
logs do not match the target seismic trace.

(a) DSS Al (b) DSS Synthetic Seismic

Ground Truth — Observed
* Experimental Data

20

40

60

Samples

80

100

120

S

10 11 12 13 14 15 16 17-200 -100 0 100 200
Kpa.s/m led Amplitudes

Figure 5.1: (@) Thirty-two geostatistical Al logs (dashed gray lines), along with
the experimental data (black dots) and the real Al well-log (black line). (b) The
synthetic seismograms (dashed gray lines) retrieved from the geostatistical Al logs
and the target seismic trace (black line).

We first performed several experiments to evaluate the ability of the
network to generalize on unseen data. Deciding the sizes for data set
division in train and test sets is very dependent on the data available. As
with other network hyper-parameters, this is done through trial-and-error
experimentation.

We randomly divide the ensemble of geostatistical AI logs into
non-overlapping train and test subsets of different lengths, within the range
[1%, 100%] with 10% increment. Figure 5.2 shows the absolute mean error
(MAE) between the input and output models, and between the observed and
synthetically simulated seismic data on the train and test sets monitored at
every epoch, for 500 epochs, and split ratios of 1%, 10%, and 50%.
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The inverse network does not fit the test dataset with a 1% split ratio.
A better fit of the test subset is obtained with a 10% split ratio. We find that
with 50% of the dataset (i.e., 500 geostatistical Al logs) in the train subset,
there is an overlap between the train and test curves, which indicates a good
fit to the test subset. Once trained, f, ' can be applied to the full ensemble of
geostatistical Al logs or to any other unseen Al log within the same distribution
as that on the train set.

Train split ratio 1% Train split ratio 10% Train split ratio 50%
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Figure 5.2: Progress of the mean absolute error (MAE) between the input and
output models (first row), and between the observed and synthetically simulated
seismic data (second row) on the train and test sets at every epoch, for 500
epochs, for the split ratios of 1%, 10%, and 50%. The split ratios correspond to
the percentage of the ensemble of geostatistical Al logs used to train the neural
network. The black curves are the train losses, and the test losses are shown in
gray dashed lines.

We further investigate the influence of the confidence matrix (I') on
the performance of the network f,'. In this experiment, the progress of the
losses on the train set was monitored considering different values for the
scale parameter of the half-normal distribution used as reference to define
the confidence in the geostatistical models. Figure 5.3 shows different types of
functions to compute the matrix I', which are used in this experiment. We also
tested another scenario with equally distributed weights for seismic data and
geostatistical models. For all the experiments, we trained the inverse network
with a batch of size 32 for 300 epochs and 50% of the ensemble of geostatistical
AT logs in the train subset.
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Figure 5.3: Different types of functions to compute the matrix I". Each line
represents the erfc function considering the scale parameter () computed based
on a given maximum acceptable error value (2™**) between the observed seismic
and the simulated seismic from the geostatistical model. The histogram of the
z values computed over the ensemble of geostatistical Al logs is shown in the
background.

Figure 5.4 summarizes the set of experiments performed. The absolute
mean error (MAE) between the input and output models (first row), and
between the observed and synthetically simulated seismic data on the train set
are shown at every epoch, for 300 epochs. The graph shows how the matrix I'
controls whether the results assimilate more information from the seismic data
or from the geostatistical models. In extreme cases, with 2™ = 0.001 (o =
0.003) and I = 1, the inverse network is only able to match either the seismic
data or the DSS model.
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Figure 5.4: Progress of the absolute mean value errors of the Al model and of
the seismic data on the train set at every epoch, for 300 epochs. Each curve
represents a different scale parameter (o) used to define the confidence level in
the geostatistical models.

Figures 5.5-a, 5.6-a and 5.7-a present the inverted Al logs when the
observed seismic trace and the geostatistical Al logs in Figure 5.1-a are used
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as inputs to the trained f,'. The synthetic seismograms retrieved from the
inverted Al logs and the observed seismic trace are shown in Figures 5.5-b,
5.6-b and 5.7-b.

Figure 5.5 shows the results when the confidence in the geostatistical
model is low. In this case, there is no variability among the network outcomes.
The network ignores the geostatistical Al log and produces similar outputs
that represent the best fit to the observed seismic data. The score metrics
related to the scismic data arc extremely high, while the metrics related to the
reconstruction of the geostatistical Al log are very poor.

On the other hand, when the confidence in the geostatistical model is
higher, the network learns to preserve information from the geostatistical Al
log (Figures 5.6 and 5.7). However, this may come at the cost of increased
mismatch between observed and synthetic seismograms (Figure 5.7).

= 0.7 forz= 0.001 (0=0.003)
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Figure 5.5: (@) Thirty-two predicted Al logs (dashed gray lines), along with the
experimental data (black dots), the real Al well-log (black line), and the mean curve
calculated over the set of predicted Al logs (red line). In this case, all the predicted
Al logs coincide with each other. (b) The synthetic seismograms retrieved from
the predicted Al logs (dashed gray lines) the target seismic trace (black line), and
the mean curve calculated over the ensemble of synthetic seismograms.
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Figure 5.6: (@) Thirty-two predicted Al logs (dashed gray lines), along with the
experimental data (black dots), the real Al well-log (black line), and the mean
curve calculated over the set of predicted Al logs (red line). (b) The synthetic
seismograms retrieved from the predicted Al logs (dashed gray lines), the target
seismic trace (black line), and the mean curve calculated over the ensemble of
synthetic seismograms.
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Figure 5.7: (@) Thirty-two predicted Al logs (dashed gray lines), along with the
experimental data (black dots), the real Al well-log (black line), and the mean
curve calculated over the set of predicted Al logs (red line). (b) The synthetic
seismograms retrieved from the predicted Al logs (dashed gray lines) the target
seismic trace (black line), and the mean curve calculated over the ensemble of
synthetic seismograms.

5.2
3D Real Case Application

We applied the proposed methodology to a real case study of a Brazilian
carbonate reservoir. The area is located approximately 175 km offshore, in
southern Santos Basin. The seismic volume has an arca of approximately 13
km in the North-South direction and 7,5 km in the East-West direction. The
thickness of the target interval is about 200 meters.

Figure 5.8 shows the base map of the study arca and the relative locations
of the wells inside the seismic volume. The real dataset consists of well-logs
from four different locations. The four wells have Al, Vp, Vs, density, and
porosity logs. The inversion grid is defined by 315 (inline) x 550 (crossline) x
128 (time) cells. The vertical slices were extracted from the input volumetric
data in the inline direction. Well-logs are acquired at a much higher vertical
resolution than the typical inversion grid size, which requires up-scaling the
well logs to the inversion grid scale.

Three partial angle stack seismic volumes with mean incident angles of 5°
(near), 15° (mid) and 25° (far) were considered (Figure 5.9). The near seismic
data was assumed to be zero offset in the acoustic and porosity inversion
workflows. The wavelets were extracted following a conventional seismic-to-well
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tie procedure. The detailed description of this step is beyond the scope of this

study.
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Figure 5.9: Vertical well section extracted from observed seismic data: (a) partial
stacks of near offsets (0° — 10° range angle); (b) partial stacks of mid offsets
(10° — 20° range angle); (c) partial stacks of far offsets (20° — 30° range angle).
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The spatial continuity patterns imposed in the DSS and Co-DSS methods
were modeled using 3D exponential variograms. The vertical direction was
modecled based on the available well-log data. Given the scarcity of data in
the horizontal directions, we modeled these spatial correlations using seismic
amplitudes. The horizontal variograms were computed considering a lag size
(distances between pairs) of 200 meters and 20 lags, while the variogram in the
vertical direction was computed with 30 lags of 2 milliseconds. We previously
generated 100 models for each subsurface property (i.e., Al, Vp, Vg, density,
and porosity) using DSS and Co-DSS conditioned on the existing well-log data.

We  performed trial-and-error experimentation to tune the
hyper-parameters of the network as well as to define the size of the train subset
by monitoring the loss progress on the train and test sets. When trained on
a train set composed of four geostatistical models (i.e., 4 x 315 = 1260 2D
vertical slices), the network was able to fit the train and test sets equally well.
This indicates that the model does not over-fit the training data and is able
to produce accurate outcomes for previously unseen geostatistical realizations.
The number of epochs was empirically defined as well.

Using this dataset, we carried out the proposed inversion methods to
invert 3D high-resolution Al, Vp, Vs, density, and porosity models from seismic
reflection data, as described next. For each inversion performed, we trained the
inverse network with a batch size of 32 for 350 epochs. We observed that after
300 epochs no relevant improvement is obtained for the objective function.

5.2.1
Acoustic Inversion

We first present the results from the proposed Deep Physics-Driven
Stochastic Acoustic Inversion. We trained the inverse network in
approximately 60 minutes using the computing infrastructure described above.

We start by showing in Figure 5.10 a DSS Al model (a), its corresponding
synthetic seismic (b), the point-wise average (c) and the point-wise standard
deviation (d) computed over the ensemble of DSS Al models. As expected, the
synthetic seismic data have no structure and do not match the observed seismic
data. The average Al model shows the influence of the well data around the
wells, but at locations far from the wells, the values tend to the average value of
the distribution. Similarly, as these models were generated with geostatistical
simulation, the standard deviation at the well locations is null and increases
with the distance.
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Figure 5.10: Vertical well section extracted from: (a) a DSS Al model, (b) synthetic
seismic computed from (a), (c) point-wise average, and (d) point-wise standard
deviation models computed over the set of DSS realizations.

Figures 5.11-a and -b show the vertical well sections extracted from:
a DSS Al model and the result obtained when this DSS model and the
observed seismic data are used as input to f, *. To assess the robustness of the
predictions we computed the point-wise average and the point-wise standard
deviation models from the set of inverted AI models (Figures 5.11-c¢ and -d,
respectively).
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Figure 5.11: Vertical well sections extracted from: (a) a DSS Al model, (b) inverted
Al model from (a) and observed seismic data, (c) point-wise average and (d)
point-wise standard deviation models computed from the set of inverted Al models.

Figures 5.12-a and -b show the vertical well sections extracted from:
the observed seismic data and the synthetic seismic data computed from the
inverted Al model from 5.11-a. The point-wise average and the point-wise
standard deviation models from the set of simulated seismic data are shown
in Figures 5.12-c and -d, respectively.
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Figure 5.12: Vertical well section extracted from: (@) observed seismic data, (d)
synthetic seismic computed from (a), (c) point-wise average and (d) point-wise
standard deviation models computed from the set of synthetic seismic data.
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The inverted AI model contains the structure of the observed seismic,
while preserving the spatial continuity pattern from the DSS model (Figures
5.11-a and -b). The synthetic seismic data match the observed one in terms of
amplitude content and location of the seismic reflections (Figures 5.12-a and
-b).

The spatial continuity pattern of the point-wise average models agrees
with the one observed in the observed seismic (Figures 5.11-c¢ and 5.12-c).
At the same time, they present the influence of the well data around the
wells. The standard deviation (STD) models are null at the well locations
and increase with the distance (Figures 5.11-d and 5.12-d). They also point
to regions of higher uncertainty in locations where the signal-to-noise ratio of
the original seismic is low, i.e., there is a larger variability when the geometry
of the reflections is more complex (e.g., around well W2). This region of low
STD values depends on the horizontal range of the variogram model imposed
to build the ensemble of DSS Al models.

We next assess the results obtained at several locations within the

inversion grid. Figure 5.13 shows a 3D visualization of an inverted Al model.
Figure 5.14 shows inlines extracted from the inverted AI model along with
the DSS AI model used as input, the synthetic seismic data, and the observed
seismic data. For each output image, we show the correlation coefficient (CC),
the mean absolute error (MAE) and the structural similarity index (SSIM)
between the inputs and outputs. The global correlation coefficient between the
observed and synthetic seismic data for this inverted Al model is 0.85.

AI (DL)

10K Kpa.s/m 17K

Figure 5.13: 3D visualization of an inverted Al model.
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Figure 5.14: Inversion grid inlines extracted from: (a) the DSS Al model, (b)
the inverted Al model, (c) the synthetic seismic computed from (b), and (d) the
observed seismic. Below each predicted image are the correlation coefficient (CC),
the mean absolute error (MAE) and the structural similarity index (SSIM) between
the inputs and outputs.
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Figure 5.15 compares the experimental variogram models (i.e., the
spatial continuity pattern) between the DSS and the inverted AT models. The
variograms for the inverted model are similar to the variograms of the DSS
model and the ranges for all directions were also preserved.
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Horizontal Vertical

Lo W AAVA
g M__,_K-*-x—w«,-:\)::kgere- = fi \/ =
N
0.8 X
¥
5 0.6 4
0.4 ?‘f —e— HL(DSS)
ﬂ,. -»¢- H2 (DSS)
0.2 H1 (DL) —— DSS
H2 (DL) DL
0.0 T
0 500 1000 1500 2000 2500 3000 O 10 20 30 40 50
Distance (m) Distance (ms)

Figure 5.15: Comparison between the variograms obtained from the DSS Al model
and the inverted Al model, calculated along the directions of maximum continuity
(H1), minimum continuity (H2), and along the vertical direction.

We then evaluate the performance of the proposed inversion method at
the well locations. Figure 5.16 shows a comparison between the measured Al
well-logs and the predicted ones. For each well, we computed the correlation
coefficient between the up-scaled well-log and the values extracted from the
predicted point-wise average Al model at the well locations.
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Figure 5.16: Al values at the well locations for the inverted Al models (light gray
lines), the up-scaled well-logs (black lines), and the point-wise average over the set
of inverted Al models (red lines). The correlation coefficients (CC) were computed
between the up-scaled well-logs and the values extracted from the point-wise
average Al model at the well locations.
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Ultimately, the comparison between the prior and predicted statistics is
an additional representation of the goodness of fit of the produced models.
A comparison between the histograms from the input DSS model and the
inverted AI models at the well locations is shown in Figure 5.17. The prior
and the predicted histograms are similar in terms of shape and maximum and
minimum.
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Figure 5.17: Original and predicted histograms for the Al models and the seismic
data at the well locations.

5.2.2
Amplitude-Versus-Angle (AVA) Inversion

We next present the results of the proposed Deep Physics-Driven
Stochastic AVA Inversion. This AVA inversion ran at a similar time to
that of the acoustic inversion (/~ 60 minutes).

To assess the results obtained with the proposed method, we show one
set of elastic property models of density, Vp and Vg generated with deep
learning (Figure 5.18) and the synthetic partial angle stacks calculated from
these models (Figure 5.19). The inverted elastic models do reproduce the DSS
elastic models and exhibit the spatial patterns observed in the observed seismic
reflection. The synthetic seismic data computed for each partial angle stacks
also reproduce the location of the main seismic reflections and their amplitude
content.
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Figure 5.18: Vertical well sections extracted from: the DSS models of (a) density,
(c) Vp, and (e) Vs, and the predicted models of (b) density, (d) Vp and (f) V.
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Figure 5.19: Vertical well section extracted from: (@) the synthetic near, (b) mid,
and (c) far partial angle stacks simulated from the triplet of inverted elastic models

in Figure 5.18.

Figure 5.20 shows a 3D visualization of an inverted Vg model. Figures
5.21 and 5.22 show inlines extracted from the triplet of inverted elastic models
along with the input DSS models and the observed and synthetic partial angle
stacks. In both figures, we provide a quantitative analysis of the similarity
between the inputs and outputs by computing the correlation coefficient (CC),
the mean absolute error (MAE), and the structural similarity index (SSIM).

vs (DL)

Figure 5.20: 3D visualization of an inverted Vs model.
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Figure 5.21: Inversion grid inlines extracted from: (a) the density, (c) Vp and
(e) Vs DSS models, and (b) the inverted density, (d) the Vp and (f) Vs models.
Below each predicted image are the correlation coefficient (CC), the mean absolute
error (MAE), and the structural similarity index (SSIM) between the inputs and
outputs.
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Figure 5.22: Inversion grid inlines extracted from: the observed (@) near, (b) mid,
and (c) far partial angle stacks, and the synthetic (d) near, (e) mid, and (f)
far partial angle stacks. Below each predicted image are the correlation coefficient
(CC), the mean absolute error (MAE) and the structural similarity index (SSIM)
between the inputs and outputs.

We then evaluate the performance of the proposed method at the location
of well W1. Figure 5.23 shows a comparison between the measured well-logs
and the predicted ones. The correlation coefficient between the up-scaled
well-logs and the values extracted from the predicted point-wise average models
at the well location are CCgepsiry = 0.81, CCy,, = 0.715 and CCy, = 0.585.
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Figure 5.23: Density, Vp and Vg values at the location of well W1 for the
inverted elastic models (light gray lines), the up-scaled well-logs (black lines),
and the point-wise average over the set of inverted elastic models (red lines). The
correlation coefficients (CC) are computed between the up-scaled well-logs and the
values extracted from the point-wise average elastic models at the well location.

As we are using direct sequential simulation and co-simulation methods
to generate the set of input AI models, these resulting elastic models do
reproduce the marginal and joint distributions retrieved from the well-log
data. Figure 5.24 illustrates the prior and predicted distributions of the elastic
models at the well locations. The predicted elastic models do reproduce the
prior distributions.
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Figure 5.24: Comparison between the marginal and joint distributions extracted
from the DSS elastic models and from the inverted elastic models at the well
locations.

We also show in Figure 5.25 that the synthetic partial angle stacks do
reproduce the histograms of the observed seismic data.
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Figure 5.25: Original and predicted histograms of the seismic data at the well
locations.

Finally, we show a comparison between the experimental variograms (i.e.,
the spatial continuity pattern) computed from the DSS and inverted elastic
models. The horizontal variograms are shown in Figures 5.26-a and -c. Figures
5.26-b and -d present the vertical variograms. The variograms for the predicted
values are similar to the variograms of the DSS models, and the ranges for all
directions are also preserved.
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Figure 5.26: Comparison between the variograms obtained from the DSS and from
the inverted elastic models, calculated along the directions of maximum continuity
(H1), minimum continuity (H2), and along the vertical direction.

See Appendix B for complementary results on this AVA inversion.

5.2.3
Petrophysical Inversion

We further validate the proposed Deep Physics-Driven Stochastic
Petrophysical Inversion on the same 3D real case application. Using the
available well-data, we calibrated a rock physics model to infer acoustic
impedance (Al) from porosity (¢) based on a linear relation of the form:

Al = —35794 x ¢ + 16489 (5-1)

Figure 5.27-b shows the inverted porosity model with the proposed
method when the DSS model from Figure 5.27-a and the observed seismic data
are used as input to f,'. The inverted porosity model contains the structure
of the observed seismic, while preserving the spatial continuity pattern from
the DSS model.

The predicted Al model obtained from the inverted porosity model using
equation 5-1 is shown in Figure 5.27-c. The synthetic seismic data retrieved
from the predicted Al model is shown in Figure 5.27-d. The synthetic seismic
data match the observed ones in terms of amplitude content and location of
the seismic reflections.
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Figure 5.27: Vertical well sections extracted from: (a) a DSS porosity model; (b)
the inverted porosity model from (a), (c) the predicted Al model from (b), and

(d) synthetic seismic data from (c).

Figure 5.28 shows inlines extracted from the inverted porosity model
along with the input DSS model, the predicted AI model, and the observed
and synthetic seismic data. We provide a quantitative analysis of the similarity
between the inputs and outputs by computing the correlation coefficient (CC),
the mean absolute error (MAE) and the structural similarity index (SSIM).
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Figure 5.28: Inversion grid inlines extracted from: (a) a DSS porosity model, (b)
the inverted porosity model, (c) the predicted Al model from (b), (d) the synthetic
seismic data computed from (c), and (e) the observed seismic data. Below the
porosity and synthetic seismic images are the correlation coefficient (CC), the mean
absolute error (MAE) and the structural similarity index (SSIM) between the inputs
and outputs.

We then evaluate the performance of the proposed method at the well
locations. Figure 5.29 shows a comparison between the measured well-logs and
the predicted ones. The correlation coefficient between the up-scaled well-logs
and the values extracted from the point-wise average porosity model at the well
location are CCy; = 0.676, CCyo = 0.635, CCyrz = 0.462 and CCyyy = 0.743.
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Figure 5.29: Porosity values at the well locations for the inverted porosity models
(light gray lines), the up-scaled well-logs (black lines) and the point-wise average
over the set of inverted porosity models (red lines). The correlation coefficients
(CC) are computed between the up-scaled well-logs and the values extracted from
the point-wise average Al model at the well locations.

Figure 5.30 illustrates the prior and predicted distributions of the
porosity values extracted at the well locations. The inverted porosity models
do reproduce the prior distributions.
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Figure 5.30: Comparison between the histograms extracted from the DSS porosity
models and from the inverted porosity model at the well locations.
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We also show in Figure 5.31 that the histogram of the synthetic seismic
data do reproduce the histogram of the observed seismic data.
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Figure 5.31: Original and predicted histograms of the seismic data at the well
locations.

Finally, we show a comparison between the experimental variograms (i.e.,
the spatial continuity pattern) computed from the DSS and inverted porosity
models. The variograms for the predicted values are similar to the variograms
of the DSS model and the ranges for all directions are also preserved.
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Figure 5.32: Comparison between the variograms obtained from the DSS and the
inverted porosity models, calculated along the directions of maximum continuity
(H1), minimum continuity (H2), and along the vertical direction.

Appendix B provides complementary results on this application example.

5.3
Comparison with the Geostatistical Seismic Inversion Method

We compare the results obtained with the proposed Deep
Physics-Driven Stochastic Acoustic Inversion against the Geostatistical
Seismic Inversion Method (GSI) method [64, 19]. For the real case application
dataset, we ran the GSI method on a Xeon Gold 6242 processor with 32-cores
(2.8GHz, DDR4-2933, 12GB) with 6 iterations and 100 realizations. We
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started from the same ensemble of geostatistical realizations used as input to
our application example.

Figure 5.34 shows vertical sections extracted from inverted AI models and
corresponding synthetic seismic data using both methods. A visual analysis of
the inverted AI models indicates that the model inverted with our method
presents higher lateral and vertical variability than the GSI one.

The point-wise average and standard deviation results over all the
inverted models for both methods are shown in Figure 5.35. Both methods
have considerable differences regarding the predicted spatial uncertainty as
represented by the point-wise standard deviation.

In GSI, we often observe a decrease in the exploration of the uncertainty
space due to fast convergence in initial iterations [119]. The variability of the
inverted model with DL presents higher values and a more uniform spatial
distribution. These results indicate that our method was able to explore far
more of the uncertainty space when compared with the GSI method.

To corroborate this idea, we compare the inverted Al models in a lower
dimension space computed with multidimensional scaling (MDS) [120]. MDS
is a method for reducing the dimensionality of the data while maintaining the
distances in the original high-dimensional space. It is used in data sciences for
analyzing similarity or dissimilarity data. In seismic inversion, the distribution
of the inverted models in the MDS space allows an estimation of how the
uncertainty space is being sampled [121]. By plotting all the inverted AT models
with both methods in the MDS space (Figure 5.33), it is easily recognizable
that the parameter model space is considerably better explored by the models
computed with the proposed method.

Multidimensional Scaling
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Figure 5.33: Inverted models with the proposed and with the GSI methods plotted
in a MDS space of two dimensions - D1 and D2.

In terms of perceptual visual quality, the synthetic seismic data obtained
with the proposed method does not present the artifacts caused by the
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trace-by-trace-based optimization from the GSI method. The correlation
coefficient between the synthetic and observed seismic data of GSI is 0.88,

quite close to the correlation coefficient obtained with the proposed method
(0.85).
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3500 3500

TWT (ms)

3600 3600 M

3700 vl AT (GSI) 3700 AT (DL)

(a) 10K Kpa.s/m 17K 10K Kpa.s/m 17K
o 2 4 6 8 10 12 14 16 18 4 2 4 6 8 10 12 14 16 18
S-N S-N WL w2 W3 w4

3500 3500

(ms)

3600 3600 (i

TWT

3700 | ), \ Seismic (GSI) 3700 Seismic (DL)

(d) o -350 Amplitudes 350

Amplitudes

0 2 4 6 8 10 i 14 16 18 [ 2 4 6 8 10 12 14 16 18

Distance (km) Distance (km)

Figure 5.34: Comparison between vertical well sections extracted from an inverted
Al model using: (@) the GSI method, (b) the proposed DL method, and the
synthetic seismic obtained with: (c) the GSI method, and (d) the proposed DL
method.
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Figure 5.35: Comparison between vertical well sections extracted from point-wise
average of the inverted Al models with: (@) the GSI method, (b) the proposed DL
method, and point-wise standard deviation of the inverted Al models with: (c) the
GSI method, and (d) the proposed DL method.

GSI is computationally expensive mainly due to the perturbation of
the model parameter space, which is performed with stochastic sequential
simulation and co-simulation. In this implementation, each individual
realization is parallelized given the number of CPUs available in the system.
It took 45 minutes to perform the simulation step for each iteration. The total
processing time, considering all the calculations of the inversion procedure,
was about 3 hours.

The time complexity for deep-learning models is evaluated in terms of
the total time taken by the training and the prediction time. This may involve
millions of calculations and be quite expensive computationally. However, most
of these matrix operations are performed in parallel on GPUs which can
considerably reduce the processing time. In practice, a comparison between
the computational complexity of the GSI, and the proposed method is not
straightforward as both methods leverage different parallelization strategies.

It took approximately one hour to train the inversion network for the real
application example. Considering the initial step of generation of the ensemble
of Al models with stochastic sequential simulation and the prediction step,
the total processing time of our method was very similar to the GSI one.
However, in the proposed method, as the network is trained on a subset of the
prior models’ ensemble, the training time does not scale with the number of
estimates and the inference is performed almost in real time. As a consequence,
for a large number of realizations, the computational cost of our method is
dramatically improved when compared to the GSI one.
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6

Conclusion

We introduced a novel physics-driven DL methodology to invert 3D
high-resolution subsurface models from reflection seismic data and a limited
number of well-logs. There are two major advantages to our approach: 1) it
provides uncertainty estimation about the inverted models and 2) it does not
require annotated training data.

The method proposed herein builds on two neural networks that act as
the seismic inverse and forward models. The “physics-driven” part comes from
the forward network, which is used to convolve the source seismic pulse with
a reflectivity series devised from the outcomes of the inverse network.

We base our approach on a geostatistical framework to assess uncertainty.
An ensemble of prior simulated models with geostatistics is used to provide
additional information and to induce stochasticity in the input layer of
the inverse network. In contrast to other existing DL-based methods, our
approach is fully unsupervised, only requiring prior information on the spatial
distribution pattern and available well-log data.

The inverse network is trained to simultaneously minimize the misfits
between the synthetic and observed seismic data, and between the inverted
model and the geostatistical model. A deep convolutional neural network of the
type encoder-decoder was used to help with the extraction and reconstruction
of the relevant features from the seismic data and the geostatistical models.

The generalization and parameterization of the proposed method are
discussed and verified in a synthetic one-dimensional case. We show that the
size of the train set can be empirically defined by testing the inverse network
against a non-overlapping test set. As shown by our real case application,
the computational cost of the proposed methodology is not prohibitive.
We performed a series of experiments to demonstrate the influence of the
confidence matrix on the performance of the network.

The robustness of our methodology is demonstrated in a practical
application example - a real 3D case study related to the Albian carbonate
sequence in the Brazilian offshore. We carried out the proposed workflows for
acoustic, amplitude-versus-angle (AVA), and petrophysical seismic inversion.

The absolute value of the model reconstruction loss, the absolute value of
seismic data residuals, and the correlation coefficient between the inputs and
outputs to the network are used to quantitatively evaluate our method. We
additionally use the structural similarity index between inputs and outputs for
a better assessment of the preservation of the structural information.

The application of the real case study demonstrated that the network
successfully captured and preserved the desired features from the inputs -
the spatial distribution from the prior simulated models, and the large-scale
structures and spatial continuity from the seismic data. The inverted models
presented a good fit to the observed seismic data.

A comparison with the existing geostatistical seismic inversion method
(GSI) was carried out. The inversion results are consistent with those obtained
from the GSI method. We achieved comparable performance, considering the
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quantitative metric. From the aspect of visual perception quality, our inversion
results are more consistent with the target.

We assessed the exploration of the model parameters space by
plotting the posterior models in a lower dimension space computed with
multidimensional scaling (MDS) [120]. In spite of sampling from the same
region, the solution space is considerably better explored by the models
computed with the proposed method.

The GSI method is parallelized at the CPU level, and our method runs on
multiple GPUs. For this reason, it is hard to compare the computational costs
of both methods. It is important to stress that with our hardware configuration,
it is possible to generate a larger number of alternative solutions faster than
with the GSI method. This is because the computational cost related to our
method is mainly due to the training stage. The cost related to prediction
is virtually zero. Therefore, unlike the GSI approach, our solution is well
suited to generating thousands of alternate solutions for better uncertainty
quantification.

The proposed Deep Physics-Driven Stochastic Seismic Inversion
method produces improvements over the baselines and achieves promising
performance on a 3D real application example according to quantitative and
qualitative evaluation metrics. These results indicate that our methodology
may possess great potential for inverting many possible property models to
assess uncertainties with relatively fast convergence and lower computation
cost.

6.1
Future Work

We do believe that the proposed method could be successfully applied in
a different sedimentary depositional environment, as long as the seismic data
has relatively high quality and the spatial continuity patterns of the ensemble
of geostatistical realizations used to train the network agree (at a large-scale)
with the true subsurface geology. This will require a reasonable number of
wells and/or a good geological knowledge. An exhaustive discussion of the
generalization of the proposed inversion, however, is beyond the scope of this
work.

We foresee models being trained with specific data belonging to different
sedimentary depositional environments, such as carbonate reef deposits, and
submarine fan deposits.

In terms of implementation, one alternative to the pseudo-3D approach
is to use a stack of adjacent slices as input and produce a prediction for the
central slice. This strategy gives the network the possibility to better capture
3D spatial information, with only a minor additional computational cost.
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A
Geostatistics

Geostatistics is defined as a set of statistical methods for describing random
variables (RVs) distributed in space (i.e., regionalized variables) that are spatially
correlated. The set of all these RVs defined over some field of interest (A C R?)
is known as a random function (RF), which is typically denoted by Z(u), where u
is a localization vector inside the field.

Geostatistical spatial interpolation is a well-established tool to interpolate a
reservoir's internal properties of interest between wells [17]. Kriging is the most
known geostatistical algorithm for estimating unobserved locations given nearby
observations. The method was developed by Georges Matheron in 1960 based on
the seminal work [122] of Daniel Krige in mining engineering. Geostatistics relies
on the decision of stationarity to provide the best linear unbiased estimate for an
unsampled location u.

A fundamental assumption of geostatistical methods is the second order (i.e.,
two-point) stationarity of a RF Z(u). By considering the first two moments of the
spatial law, a RF Z(u) is said to be second-order stationarity if:

1. The expectation E[Z(u)] is constant over the entire field domain, which
means that they do not depend on the location u:

E[Z(u)] = p.Vu € A (A-1)

2. The covariance between a pair of RVs, C[(Z(u), Z(u + h)], only relies on
the separation vector h:

Cl(Z(u), Z(u+h)] = C(h),Yu € A (A-2)

The stationarity of the covariance implies the stationarity of the variance:

C(0) =E[Z(u) - Z(u +0)] — %,
=E[Z(u)’] — 1,
=Var[Z(u)] = 0% Vu € 4, (A-3)
The theory behind geostatistical estimation and simulation requires the use
of the variogram or covariance. The variogram, or semi-variogram, is another

second-order moment considered in geostatistics, defined as the half of the variance
of the increment in a given direction:

() :%Var[Z(u) — Z(u+h)),

—~ 3 [(Z(0) - Z(u + h)’ (A-4)
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Figure A.1: Example of an experimental variogram.

where N (h) is the number of pairs of observations with the distance h within the
sample data. The experimental variogram is plotted as a two-dimensional graph
(Figure A.1) to describe the spatial variability between all pairs of points at several
distances.

Under the stationarity assumptions, it is possible to derive that the covariance
and variogram are equivalent:

C(h) = C(0) —~(h) (A-5)

A.l
Mean Values Estimates

Based on nearby observations (Z(u,),« = 1, ..., N), kriging gives the best
unbiased linear estimate of an unobserved point (Z*(ug). The general form of the
Kriging estimator is:

2*(wn) = () + 3 o (Z00) = o) (2-5)

Simple Kriging (SK) requires knowledge of the stationary mean (E[Z(u)] =
i, Yu € A) and the residual between the unobserved point and its mean is predicted
based on the residuals between the IV samples:

2w~ = 3 0 (Z(00) ~ 1) (A7)

A linear system of equations is devised by posing the problem as an
optimization problem subject to minimizing the estimation variance. The weights
Ao are obtained by solving this system of N equations with N unknown weights,
known as the Simple Kriging (SK) system:

N
> AaCug —ug) =C(u—ug),ug=1,..,N (A-8)
a=1

The covariance values are retrieved from the variogram model, a positive
definite model of spatial variability valid within all the field A. As the experimental
variogram cannot be used directly, an appropriate variogram model is chosen by
matching the shape of the theoretical curve to the experimental calculated points.
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The variogram model ensures that the variance will always be positive or equal to
zero, and thus guarantees the existence of a solution for the SK system.

A.2
Stochastic Simulation

Stochastic simulation is the process of generating multiple equally probable
solutions (aka as realizations) for a random variable within a random function
model [26]. The probability distribution function obtained from the set of
realizations at several locations allows the assessment of uncertainty about the
spatial distribution of the attribute being modeled.

As an estimation method, Simple Kriging provides the most likely value at
each location and creates an estimate that is often too smooth. This smoothing
is directly proportional to the kriging variance:

Var[Z*(u)] = C(0) — o (),

oz (u) = zn: AaC(u —uy) (A-9)

a=1

where 02 (u) is the Kriging variance. Because of the overestimation of low values
and underestimation of high values, the samples histogram and spatial variability
are not reproduced.

Conversely, geostatistical stochastic simulation methods calculate a
good /reasonable estimate at each location and are able to reproduce the actual
histogram and spatial variability (i.e., variogram) of the samples. Among several
algorithms that can be devised to create stochastic simulations, the Sequential
Gaussian Simulation (SGS) [123, 124] is one of the most commonly used in
reservoir modeling applications [21]. The algorithm is based on a recursive
decomposition of the joint probability, p, of a set of M random variables, Z, and
N conditioning data:

Plan+1 < Znity s 2NeMm < Ingm | 21,000 20) =
plenit < Zyia | 21,00 5 20) Planvge S 2z | 21,000 20y 2N 41)
panem S Znam | 21, 2y AN ENEM-1)

As a Gaussian-based simulation method, SGS works with normal scores of
the original data and thus requires a prior normal score transformation step. The
simulation grid is visited along a random path that visits all the cells of the
simulation grid. At each location, the kriging estimate, and kriging variance are
computed based on direct observations (i.e., known data points) and previously
simulated grid cells.

The simple kriging estimate Z%,(u) and kriging variance 0%, (u) are used
to define the parameters of the distribution of Z*(u) ~ N (Z%x(u),c%,(u)).
Monte Carlo simulation of a realization Z*(u) is obtained by drawing a uniform
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random number p¥) € [0, 1] and retrieving the ccdf) (complementary cumulative
distribution function) p quantile.

The simulated value is then assigned as conditioning data for the next
location along the random path. As the random path changes each time the
simulation runs, the conditioning data at each location changes and therefore
results in alternative models. Ultimately, the simulated values are then transformed
back into their original distribution space.

Under the multi-Gaussian assumption, SGS suffers from some limitations in
reproducing highly skewed or multimodal distributions [19]. The direct sequential
simulation (DSS) method [66] attempts to overcome this problem by direct
sampling from an auxiliary probability distribution function built from the global
conditional distribution function as predicted from the experimental data.
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B
Complementary Results
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Figure B.1: Vertical well sections extracted from: (a) a DSS density model, (b)
inverted density model from (a), (c) point-wise average, and (d) point-wise
standard deviation models computed from the ensemble of inverted density models.
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Figure B.2: Vertical well sections extracted from: (a) a DSS S-wave velocity (Vp)
model, (b) inverted S-wave velocity model from (a), (c) point-wise average, and
(d) point-wise standard deviation models computed from the ensemble of inverted
S-wave velocity models.
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Figure B.3: Vertical well sections extracted from: (a) a DSS S-wave velocity (Vs)
model, (b) inverted S-wave velocity model from (a), (c) point-wise average, and
(d) point-wise standard deviation models computed from the ensemble of inverted
S-wave velocity models.
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Figure B.4: Vertical well sections of partial stacks of near offsets (0° — 10° range
angle) extracted from: (@) observed seismic data, (d) synthetic seismic calculated
from the inverted elastic models, (c) point-wise average, and (d) point-wise
standard deviation models computed from the synthetic seismic ensemble.

3500
0
&
g 3600
&
3700
Amplitudes 350
0 2 4 6 8 10 12 14 16 18
S-N W1 W2 W3 w4
3400
3500
0
&
£ 3600
&
8760 Mid (DL Mean)

(c) = = " _350 Amplitudes 350

[ 2 4 6 8 10 12 14 16 18

Distance (km)

S-N W1 w2 W3 wa

3500

3600

Mid (DL)

3700

(1)) = = -350 Amplitudes 350

o 2 4 6 8 10 12 14 16 18

S-N W1 w2 w3 w4

3500

3600

Mid (DL STD)

20 Amplitudes 45

3700

o 2 4 6 8 10 12 14 16 18

Distance (km)

Figure B.5: Vertical well sections of partial stacks of mid offsets (10° — 20°
range angle) extracted from: (a) observed seismic data, (d) synthetic seismic
calculated from the triplet of inverted elastic models, (c) point-wise average, and
(d) point-wise standard deviation models computed from the ensemble of synthetic

seismic data.
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Figure B.6: Vertical well sections of partial stacks of far offsets (20° — 30°
range angle) extracted from: (@) observed seismic data, (d) synthetic seismic
calculated from the triplet of inverted elastic models, (c) point-wise average, and
(d) point-wise standard deviation models computed from the synthetic seismic
ensemble.
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Figure B.7: Vertical well sections extracted from: (@) a DSS porosity model, (b)
inverted porosity model from a, (c) point-wise average and (d) point-wise standard
deviation models computed from the ensemble of inverted porosity models.
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Figure B.8: Vertical well section extracted from: (@) observed seismic data; (d)
synthetic seismic computed from the Al model predicted from the inverted porosity
model; (c) point-wise average and (d) point-wise standard deviation models
computed from the ensemble of synthetic seismic data.
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