6 Modernização do Equipamento

Uma vez conhecidos os equipamentos disponíveis no CPrM, estudados os conceitos metrológicos envolvidos em um processo de medição e os conceitos da dinâmica veicular, o trabalho encaminha-se para realizar a modernização dos equipamentos CORREVIT® EEP-2 e EEP-4. Tal modernização, conforme descrito anteriormente, consistirá na substituição das respectivas UCP por um computador portátil com uma placa e um *software* de aquisição e processamento de dados.

6.1. Equipamentos empregados na modernização

Conforme originalmente idealizado, o emprego de um computador portátil restringiu-se às possibilidades de uso das placas existentes no mercado. Realizando-se uma pesquisa dos sistemas de aquisição mais comuns de serem encontrados em ensaios para a industria automobilística, a escolha recaiu sobre os equipamentos de aquisição e processamento de dados fabricados pela National InstrumentsTM. O *software* mais indicado para este caso foi o LabViewTM, principalmente pelo fato de, neste caso, não ocorrer problemas de incompatibilidade. A Tabela 6.1 caracteriza as configurações dos equipamentos empregados e a Figura 6.1 ilustra a placa de aquisição e o condicionador de sinais.

Computador	Compaq Presario com processador Intel® Pentium® III com 1.13 GHz de frequência de	
	Clock e 512 Mb de memória RAM	
Sistema operacional	Windows XP TM	
Placa de aquisição de dados	NI DAQCard-6036E (PCMCIA) da National	
	Instruments ™, com 16 canais analógicos, taxa	
	de amostragem de 200 kS/s, 16 Bits de	
	resolução, duas saídas analógicas de 16 Bits;	
	oito portas digitais e dois contadores de 24 Bits;	
	conversão A/D por aproximações sucessivas	
Condicionador de sinais	BNC-2120 da National Instruments™	
Software de aquisição de dados	LabView™ 7	

Tabela 6.1: Configuração do computador e software empregados.

Figura 6.1: Placa de aquisição de dados PCMCIA e condicionador de sinais.

6.1.1. Integração do transdutor óptico ao condicionador de sinais

Um problema que surgiu em decorrência do condicionador de sinais empregado foi a sua integração ao sensor óptico, devido aos seguintes fatos:

o condicionador possui terminais de entrada no padrão BNC, enquanto o terminal do cabo do transdutor óptico é no padrão *diode socket* de 4 pinos, onde um pino é a saída de sinal do transdutor, outro é o terra e os dois outros são a alimentação de + 6V e - 6V para os sensores fotoelétricos, sendo que este problema poderia ser solucionado

desmontando-se o terminal e ligando os fios num terminal BNC, porém não se desejava destruir o terminal antigo;

 a alimentação dos sensores fotoelétricos é realizada pelo próprio CORREVIT®, mas como se desejava substituí-lo completamente era necessário encontrar uma fonte de alimentação alternativa;

O primeiro problema foi resolvido através do uso de um conector fêmea de cinco pinos existente no mercado, sendo ligado aos seus terminais o conector BNC. Já a solução para o segundo problema seria utilizar a alimentação de 12V do próprio veículo e convertê-la para + 6V e - 6V, porém os circuitos integrados existentes no mercado permitem apenas a conversão para + 5V e - 5V. Nos ensaios realizados esta redução de tensão não ocasionou nenhum problema de medição.

Restrições orçamentárias impediram completar a construção do sistema de conversão, mas os circuitos especificados são o PT78ST105H código 3115318 para + 5V e o PT79SR105H código 3115446 para - 5V de fabricação da Power Trandes.

6.2. Correlação entre a freqüência e a velocidade

A velocidade medida pelo CORREVIT® é proporcional à freqüência do sinal emitido pelo transdutor óptico, assim como a distância percorrida em um determinado tempo é proporcional ao número de pulsos transmitidos neste período, foi necessário, então, determinar quais eram estas correlações. Mas antes disso necessitava-se determinar a característica do sinal emitido pelo transdutor óptico, bem como a sua aquisição e processamento eram realizados para definir quais as ferramentas de aquisição e processamento de sinais que seriam empregadas.

Existem duas alternativas para se captar o sinal do transdutor óptico:

 captá-lo diretamente do transdutor óptico quando o veículo se encontrasse em movimento; captar o sinal gerado pelo simulador de velocidade, realizando o experimento em bancada.

Originalmente não se conhecia nem a forma de onda transmitida pelo transdutor nem a forma de onda gerada pelo simulador.

Como estratégia para se identificar o método mais adequado a ser empregado e se assegurar da validade dos resultados a serem obtidos, resolveu-se fazer uma análise das formas de onda conectando-se um osciloscópio à saída de sinal do transdutor óptico e posteriormente à saída de sinal do simulador. Assim foi possível comparar o sinal emitido por ambas as configurações do sinal da saída TTL do CORREVIT®. Em todos os ensaios realizados neste trabalho empregouse somente o CORREVIT® EEP-4 devido ao seu menor tamanho e consequentemente maior facilidade de manuseio.

Na Figura 6.2 é ilustrada a configuração do sistema e os equipamentos empregados para determinação da forma de onda emitida pelo transdutor óptico e pelo simulador. Os principais equipamentos utilizados foram:

- 1) osciloscópio Tektronix TDS 320;
- 2) mostrador de velocidade;
- 3) CORREVIT® EEP-4;
- 4) fonte de alimentação;
- 5) simulador de velocidade.

Num primeiro momento, o experimento com o simulador permitiu constatar se o sinal emitido de fato reproduzia uma onda quadrada com amplitude variando entre 0 até 6V.

Em seguida realizou-se o experimento com o transdutor óptico, apontandose o feixe luminoso para uma superfície móvel, que no caso era o pneu de um veículo. Com o auxílio de um osciloscópio foi possível verificar a forma de onda emitida, o registro fotográfico foi obtido pelo uso de um osciloscópio virtual gerado pelo *software* LabView™. A Figura 6.3 mostra a configuração empregada para os experimentos realizados.

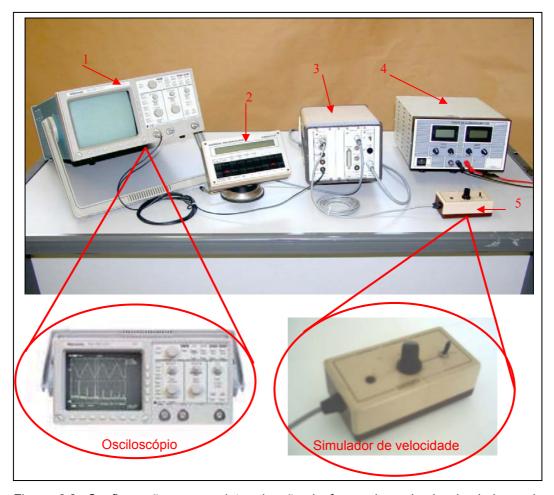


Figura 6.2: Configuração para a determinação da forma de onda do simulador e da correlação entre freqüência e velocidade.

Figura 6.3: Configurações empregadas para determinação da forma do sinal emitido pelo transdutor.

Constatou-se que o sinal emitido pelo sensor comporta-se de duas formas distintas:

- quando o veículo está parado o sensor emite um sinal de frequência variável (de 0 a 40 kHz) e de baixa amplitude (50 mV);
- quando o veículo inicia o seu deslocamento o sinal passa a ter uma forma senoidal com amplitude em torno de 1 a 2 V.

Outra constatação é que o sinal da saída TTL é o *Trigger* do sinal do sensor, conforme pode ser observado na Figura 6.4.

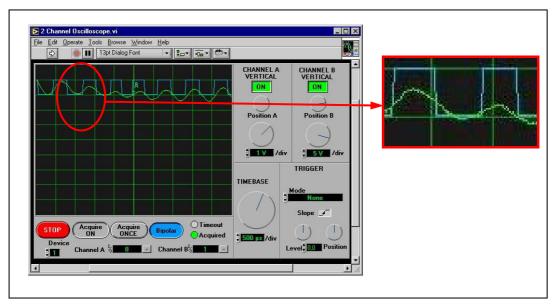


Figura 6.4: Comparação entre o sinal emitido pelo transdutor e o sinal TTL.

Conhecidas as duas formas de onda, constatou-se não haver problema em se empregar o simulador para a determinação da correlação entre a frequência e a velocidade. Assim, garantiu-se uma melhor condição de manuseio e leitura dos instrumentos, o que é extremamente complicado quando o veículo encontra-se em movimento, além do fato de o simulador varrer toda a faixa de utilização do equipamento, o que é praticamente impossível para o caso de um veículo terrestre comum.

Para se garantir uma medição mais exata do valor da frequência do sinal emitido, empregou-se um medidor de frequência (Figura 6.5), sendo a velocidade monitorada através do mostrador. Foram também determinadas as incertezas associadas à medição de cada instrumento (Tabela 6.2) como forma de se fazer posteriormente uma análise metrológica dos resultados obtidos.

Figura 6.5: Medidor de freqüência HP 5386A.

Tabela 6.2: Incertezas dos equipamentos empregados.

Equipamento	Faixa de Medição	Resolução	Ince	rteza
Osciloscópio	0 – 100 MHz	IHz 0,01 Hz Vertic		± 2%
			Horizontal	± 0,01%
Medidor de frequência	10 – 100 MHz	0,01 Hz	± 0,01	kHz (*)
Mostrador de velocidade	0 - 400 km/h	0,1 km/h	± 0,1 kr	n/h (**)

^(*) Segundo o manual do equipamento

6.2.1. Sistemática de medição

Este experimento foi realizado na faixa de velocidade variando entre 0 km/h e 200 km/h em intervalos aproximados de 10 km/h, medindo-se, sempre, a freqüência do sinal. Os resultados obtidos durante a execução do experimento são mostrados na Tabela 6.3.

Com base nos dados de velocidade e freqüência mostrados na Tabela 6.3, construi-se o gráfico da Figura 6.6 e realizou-se um ajuste de curva linear passando pela origem segundo o método de mínimos quadrados. Com isso a expressão para este ajuste de curva foi assim definida:

$$V = a_1.f \tag{6.1}$$

com o coeficiente linear sendo dado pela expressão:

^(**) Por não existir nenhum dado sobre a incerteza do mostrador de velocidade, esta calculada segundo o previsto pelo Guia para a Expressão da Incerteza de Medição (1998) para uma incerteza do tipo B, porém como o seu valor ficou menor do que a resolução do equipamento preferiu-se ser mais conservativo e adotar-se esta como o valor mínimo de incerteza.

$$\mathsf{a}_1 = \frac{\sum \mathsf{x}_i \cdot \mathsf{y}_i}{\sum \mathsf{x}_i^2} \tag{6.2}$$

Tabela 6.3: Medições de velocidade e frequência do CORREVIT®.

	Velocidade (km/h)	Freqüência de Saída (kHz)	• •	
			Positivo	Negativo
1	10,20	1,12	420,00	476,00
2	20,10	2,21	210,00	242,00
3	30,00	3,34	138,00	161,50
4	40,30	4,44	103,00	122,00
5	50,10	5,52	82,00	98,00
6	60,30	6,64	68,00	83,00
7	70,00	7,70	58,30	71,40
8	80,30	8,87	50,50	62,60
9	90,10	9,90	44,50	56,00
10	100,10	11,03	40,00	50,50
11	110,30	12,15	36,30	46,20
12	120,30	13,25	33,00	42,40
13	130,20	14,34	30,30	39,30
14	140,50	15,49	20,00	36,60
15	150,40	16,60	26,00	34,40
16	160,10	17,66	24,40	32,30
17	170,20	18,76	22,80	30,50
18	180,50	19,89	21,30	28,90
19	190,90	21,03	20,20	27,40
20	200,00	22,04	18,90	26,40

Para este ajuste de curva o coeficiente linear a₁ é igual a 9,074, com um coeficiente de correlação R igual a 1.

Como forma de validar se este realmente refere-se ao melhor ajuste de curva para as medições realizadas, desenvolveu-se uma análise metrológica que indica a incerteza padrão do ajuste. A Tabela 6.4 mostra os valores ajustados com os seus respectivos erros de medição. Para o cálculo da incerteza expandida, em conformidade com os preceitos do Guia para a Expressão da Incerteza de Medição (1998), adotou-se a incerteza dos resultados como sendo a do tipo A, em uma distribuição Gaussiana, com o valor verdadeiro compreendido em um nível de confiança de 95,45%. Este procedimento produz, segundo o Guia para Expressão da Incerteza de Medição (1998), um fator de abrangência k_p igual a 2. Vale lembrar que este fator será empregado em todos os cálculos de incerteza referentes às medições que suportam a presente investigação experimental.

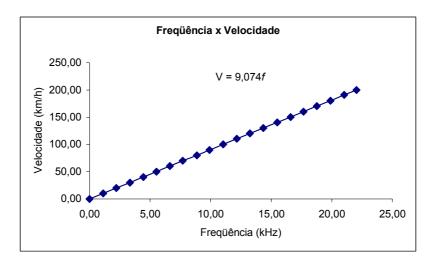


Figura 6.6: Freqüência x velocidade.

Tabela 6.4: Velocidade medida, velocidade ajustada e erro de medição.

	Freqüência de Saída (kHz)	Vel. Ajustada (km/h)	Velocidade (km/h)	Erro
1	1,12	10,16	10,20	0,04
2	2,21	20,05	20,10	0,05
3	3,34	30,31	30,00	-0,31
4	4,44	40,29	40,30	0,01
5	5,52	50,09	50,10	0,01
6	6,64	60,25	60,30	0,05
7	7,70	69,87	70,00	0,13
8	8,87	80,49	80,30	-0,19
9	9,90	89,83	90,10	0,27
10	11,03	100,09	100,10	0,01
11	12,15	110,25	110,30	0,05
12	13,25	120,23	120,30	0,07
13	14,34	130,12	130,20	0,08
14	15,49	140,56	140,50	-0,06
15	16,60	150,63	150,40	-0,23
16	17,66	160,25	160,10	-0,15
17	18,76	170,23	170,20	-0,03
18	19,89	180,48	180,50	0,02
19	21,03	190,83	190,90	0,07
20	22,04	199,99	200,00	0,01

Para os dados da Tabela 6.4, a incerteza de medição será igual à incerteza do ajuste, que pode ser descrita como sendo o desvio médio quadrático das medições, expresso pela seguinte pela seguinte expressão:

$$s_{T} = u_{ajuste} = \sqrt{\frac{1}{n-1} \sum (y_{i} - y_{ajuste})^{2}}$$
 (6.3)

Realizados os cálculos, encontra-se o seguinte valor para a incerteza padrão do ajuste:

$$(u_{aiuste}) = \pm 0.13 \text{ km/h}.$$

Cabe observar que este valor é da mesma ordem de grandeza da incerteza do visor, portanto o ajuste linear aplicado é válido e uma vez calculado U_{ajuste}, devese calcular a incerteza do valor medido pelo mostrador (U_{vel}), calculado pela seguinte expressão:

$$(u_{vel})^2 = (u_V)^2 + (u_{ajuste})^2 + (C_f.u_f)^2$$
 (6.4)

nesta expressão:

- **u**_V é a incerteza padrão do mostrador de velocidade;
- **u**ajuste é a incerteza padrão do ajuste;
- C_f é o fator de sensibilidade que é dado pela expressão $C_f = \frac{dV}{df} = a_1 = 9,074 \; ;$
- u_f é a incerteza padrão do medidor de frequência.

O cálculo das incertezas padrão do medidor de frequência e do mostrador de velocidade foram calculados com base no mesmo fator de abrangência $k_p = 2,0$. A Tabela 6.5 mostra estes valores.

Tabela 6.5: Valores das incertezas padrão do medidor de frequência e mostrador de velocidade para um fator de abrangência $k_p = 2,0$.

Incerteza da velocidade em	$U_{v} = 0,1$	$u_v = 0.05$
km/h em toda a faixa		
Incerteza da frequência em kHz	$U_f = 0.01$	$u_f = 0,005$
em toda a faixa		

Como u_V , u_{ajuste} e u_f são constantes ao longo de toda a faixa de medição, o valor u_{vel} também será constante ao longo desta faixa, assumindo o valor de 0,15 km/h. Aplicando-se o fator de abrangência $k_p = 2,0$ obtêm-se o seguinte valor para a incerteza expandida:

$$(U_{vel}) = \pm 0.30 \text{ km/h}.$$

Por último calcula-se a incerteza padrão do coeficiente linear que é dada pela expressão:

$$(u_A)^2 = (dA/df_1.uf_1)^2 + --- + (dA/df_n.u_{f_n})^2 + (dA/dV_1.u_{V_1})^2 + --- + (dA/dV_n.u_{V_n})^2$$
(6.5)

lembrando que:

$$\frac{dA}{df} = -\frac{V}{f^2} \tag{6.6}$$

e

$$\frac{dA}{dV} = \frac{1}{V}.$$
 (6.7)

Realizados os cálculos, obtém-se os seguintes valores para as incertezas padrão e expandida do coeficiente, respectivamente:

$$(u_{a1}) = \pm 0.05$$

$$(U_{a1}) = \pm 0,10.$$

A Tabela 6.6 mostra o cálculo realizado e a Tabela 6.7 apresenta os valores de incerteza obtidos.

Os procedimentos acima descritos e todos os demais adotados neste trabalho, são baseado nos conceitos do Apêndice I e não duplicados no corpo deste trabalho.

n	A _{Vn}	dA/dV	Uv	$(dA/dQ.u_P)^2$	dA/df	U_f	$(dA/df.u_f)^2$
	• • • • • • • • • • • • • • • • • •			(0.0000)	0.7 L 0.1		(32 2 31134)
1	9,074	0,09804	0,05	0,0000240	-8,13138	0,005	0,001653
2	9,074	0,04975	0,05	0,0000062	-4,11539	0,005	0,000423
3	9,074	0,03333	0,05	0,0000028	-2,68923	0,005	0,000181
4	9,074	0,02481	0,05	0,0000015	-2,04427	0,005	0,000104
5	9,074	0,01996	0,05	0,0000010	-1,64422	0,005	0,000068
6	9,074	0,01658	0,05	0,0000007	-1,36767	0,005	0,000047
7	9,074	0,01429	0,05	0,0000005	-1,18064	0,005	0,000035
8	9,074	0,01245	0,05	0,0000004	-1,02063	0,005	0,000026
9	9,074	0,01110	0,05	0,0000003	-0,91929	0,005	0,000021
10	9,074	0,00999	0,05	0,0000002	-0,82278	0,005	0,000017
11	9,074	0,00907	0,05	0,0000002	-0,74718	0,005	0,000014
12	9,074	0,00831	0,05	0,0000002	-0,68523	0,005	0,000012
13	9,074	0,00768	0,05	0,0000001	-0,63316	0,005	0,000010
14	9,074	0,00712	0,05	0,0000001	-0,58556	0,005	0,000009
15	9,074	0,00665	0,05	0,0000001	-0,54580	0,005	0,000007
16	9,074	0,00625	0,05	0,0000001	-0,51335	0,005	0,000007
17	9,074	0,00588	0,05	0,0000001	-0,48361	0,005	0,000006
18	9,074	0,00554	0,05	0,0000001	-0,45626	0,005	0,000005
19	9,074	0,00524	0,05	0,0000001	-0,43165	0,005	0,000005
20	9,074	0,00500	0,05	0,0000001	-0,41172	0,005	0,000004
			Σ	0,0000388		Σ	0,002653

Tabela 6.6: Cálculo da incerteza do coeficiente linear a₁.

Tabela 6.7: Incertezas associadas à medição de velocidade.

Parâmetro	Incerteza		
	Padrão	Expandida	
Ajuste	± 0,13 km/h	± 0,26 km/h	
Valor medido	± 0,15 km/h	\pm 0,30 km/h	
Coeficiente	± 0,05	± 0,10	

6.3. Correlação entre o número de pulsos e a distância percorrida

Com base no cálculo da correlação entre a frequência do sinal emitido pelo transdutor óptico e a velocidade medida pelo CORREVIT®, deve-se determinar a correlação entre o número de pulsos emitidos em um determinado tempo e a distância percorrida pelo veículo neste mesmo tempo. Re-escrevendo a expressão para o cálculo da velocidade em função frequência sob a forma de equação diferencial e, posteriormente, integrando-a, obtém-se a seguinte expressão para o cálculo da distância em função do número de pulsos:

$$\frac{dS}{dt} = a_1 \cdot \frac{dP}{dt} \Rightarrow \int \frac{dS}{dt} dt = a_1 \cdot \int \frac{dP}{dt} dt \Rightarrow S = a_1 \cdot P$$
 (6.8)

nesta expressão:

- **S** é a distância percorrida;
- P o número de pulsos;
- **a**₁ o fator de linear.

Como os valores medidos de velocidade e freqüência foram expressos em km/h e kHz, respectivamente, foi necessário realizar a conversão destas unidades para m/s e Hz. Com esta conversão o valor do coeficiente da curva passou a ser de 0,0025. Pode-se observar que este valor poderia ser encontrado dividindo-se o coeficiente da curva por 3.600 (9/3.600 = 0,0025). A Tabela 6.8 e o gráfico da Figura 6.7 exemplificam o acima descrito.

Tabela 6.8: Conversão dos valores de valores de velocidade em km/h e de freqüência

em kHz para m/s e Hz, respectivamente.

	Freqüência de Saída		Veloc	idade
	kHz	Hz	km/h	m/s
1	0,00	0,00	0,00	0,00
2	1,12	1,12	10,20	2,83
3	2,21	2,21	20,10	5,58
4	3,34	3,34	30,00	8,33
5	4,44	4,44	40,30	11,19
6	5,52	5,52	50,10	13,92
7	6,64	6,64	60,30	16,75
8	7,70	7,70	70,00	19,44
9	8,87	8,87	80,30	22,31
10	9,90	9,90	90,10	25,03
11	11,03	11,00	100,10	27,81
12	12,15	12,15	110,30	30,64
13	13,25	13,25	120,30	33,42
14	14,34	14,34	130,20	36,17
15	15,49	15,49	140,50	39,03
16	16,60	16,60	150,40	41,78
17	17,66	17,66	160,10	44,47
18	18,76	18,76	170,20	47,28
19	19,89	19,89	180,50	50,14
20	21,03	21,03	190,90	53,03
21	22,04	22,04	200,00	55,56

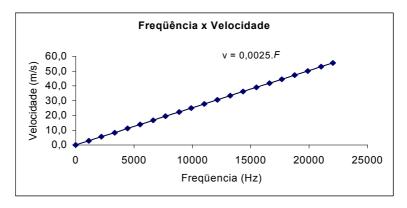


Figura 6.7: Freqüência (Hz) x velocidade (m/s).

Conclui-se que o novo coeficiente a₁ corresponde ao número de pulsos por metro percorrido. Nota-se que quanto maior a freqüência maior será a velocidade e, consequentemente, o número de pulsos e a distância. Outra forma de se calcular o número de pulsos por metro percorrido é através da seguinte expressão:

$$pulsos / m = \frac{3600000}{\text{Fator de calibração}}$$
 (6.9)

Para a expressão acima, empregando-se um Fator de Calibração de 9000, obtém-se 400 pulsos/m, que é o mesmo valor encontrado quando se divide 3600 por um fator de correlação a₁ de valor 9. O motivo desta multiplicação por 10³ deve-se ao fato do sistema de processamento de dados garantir uma melhor exatidão de cálculo trabalhando com os valores inteiros ao invés de valores decimais.

Para este caso as incertezas padrão e expandida do coeficiente serão, respectivamente:

$$(u_{a1}) = \pm 13,9.10^{-6}$$

 $(U_{a1}) = \pm 27,8.10^{-6}$.

6.4. Fator de calibração

Determinados os valores das correlações velocidade/frequência e distância/número de pulsos, será comentado sobre o Fator de Calibração e sobre a necessidade de realizar o seu ajuste.

O manual do CORREVIT® recomenda que o Fator de Calibração seja ajustado de acordo com as condições de piso no qual o veículo será testado, pois a reflexão dos sinais luminosos emitidos pela lâmpada do transdutor varia com estas condições. Ou seja, dependendo do piso o valor medido de velocidade pode não corresponder ao valor real. Logo o ensaio de calibração tem por objetivo ajustar o coeficiente da relação linear entre a freqüência e a velocidade e consequentemente o número de pulsos por metro.

O ensaio de calibração consiste em trafegar com o veículo por uma distância, por motivos estatísticos, maior ou igual que 500 metros. Distância esta que deve ser devidamente balizada. Com o veículo em movimento inicia-se o ensaio no momento que este passa na baliza de 0 metros, sendo interrompido ao passar na baliza da distância programada. Após isso um novo Fator de Calibração é gerado. O manual do CORREVIT® recomenda o uso de uma barreira óptica para que se garanta que o ensaio seja tanto iniciado quanto encerrado no ponto exato.

A expressão abaixo mostra como é feito a cálculo do Fator de Calibração:

$$f_2 = \frac{(D_1, f_1)}{D_2} \tag{6.10}$$

nesta expressão:

- **D**₁ é a distância programada de ensaio;
- **f**₁ é Fator de Calibração programado;
- **D**₂ é a distância percorrida pelo veículo;
- **f**₂ é o novo Fator de Calibração.

Como forma de facilitar o entendimento, serão mostrados dois exemplos:

1) Selecione um Fator de Calibração qualquer (por exemplo, 9000) e a distância de ensaio (por exemplo, 1000 m). Após o ensaio o CORREVIT® mede a distância de 1003 m, logo o novo Fator de Calibração será determinado da seguinte forma:

Fator de Calibração = 9000 . 1000 / 1003 \Rightarrow Fator de Calibração = 8973 com 401 pulsos/m.

2) Mantendo o mesmo Fator de Calibração e a mesma distância de ensaio do exemplo anterior, porém a distância medida é 995 m. O novo Fator de Calibração será:

Fator de Calibração = 9045 com 398 pulsos/m.

O gráfico da Figura 6.8 mostra a três curvas com cada Fator de Calibração.

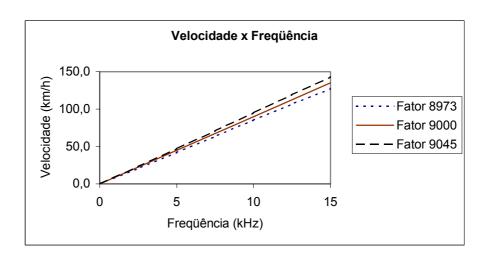


Figura 6.8: Freqüência x velocidade para diferentes Fatores de Calibração.

Pela análise do gráfico constata-se que quanto maior for o Fator de Calibração maior será a inclinação da curva, ou seja, menor será a frequência medida para uma velocidade. Consequentemente serão necessários menos pulsos por metro e vice-versa. Para este caso, a análise da incerteza da medição da distância percorrida foi calculada e apresentada no item 6.6.2.

6.5. Implementação do s*oftware* e ferramentas para a aquisição de dados

Conhecidas a forma do sinal emitido pelo transdutor óptico e a lógica de processamento do CORREVIT®, esta lógica foi implementada no novo ambiente de aquisição de dados, mais precisamente no ambiente em LabViewTM.

6.5.1. O Ambiente computacional LabView™

O LabVIEW™ é a sigla para o termo em inglês *Laboratory Virtual Instrument Engineering Workbench*. Ele pode ser compreendido como um ambiente computacional baseado em programação gráfica, empregando terminologias, ícones e idéias familiares a técnicos, pesquisadores e engenheiros. As ações do *software* são expressas através de símbolos que estão relacionados às várias rotinas computacionais disponíveis para a aquisição e processamento de dados.

Um dado importante que levou à escolha desta ferramenta computacional é a sua interface com os protocolos de comunicação mais comuns como GPIB, VXI, RS-232, RS-485. Convenientemente, faz uso de placas de aquisição de dados conhecidas como *plug-in*, de fácil conexão e de reconhecimento automático.

6.5.2. Aquisição de dados

Uma vez definido o ambiente computacional, foi possível definir as ferramentas e as rotinas necessárias para a aquisição e processamento do sinal emitido pelo transdutor óptico. Estabeleceu-se, em conjunto com os usuários do equipamento no CPrM, que o novo sistema de processamento de dados deveria fazer praticamente tudo que o processador do CORREVIT® faz, assim requerendo as seguintes características:

 realizar a leitura da velocidade de deslocamento, da distância percorrida e do tempo decorrido;

- possuir três possibilidades para o início do ensaio (manualmente, após o veículo atingir uma determinada velocidade ou através do acionamento da chave de freio);
- possuir quatro possibilidades para o encerramento do ensaio (manualmente, após o veículo atingir uma determinada velocidade, após percorrer uma distância estipulada ou após o decorrer de um determinado tempo);
- gerar um Fator de Calibração para cada condição de piso de ensaio;
- armazenar os dados gerados durante o ensaio no disco no disco rígido do computador para serem analisados posteriormente;
- realizar leituras de aceleração;
- realizar leituras de consumo de combustível.

Como primeira etapa, criou-se *softwares* com apenas as rotinas de aquisição e processamento. Outro detalhe é que ao invés de se testar os *softwares* com o veículo em movimento, empregou-se o simulador para tornar mais fácil realizar quaisquer modificações necessárias. A Figura 6.9 mostra a configuração dos equipamentos empregados para o ensaio do *software*, que são os seguintes:

- 1) computador portátil;
- 2) mostrador de cristal líquido;
- 3) CORREVIT® EEP-4;
- 4) fonte de alimentação;
- 5) simulador de velocidade;
- 6) condicionador de sinais.

Conforme descrito anteriormente o sinal do emitido pelo transdutor é uma composição de vários sinais de várias frequências, com a média delas (frequência central representativa) relacionada com a velocidade de deslocamento. Devido a isso a aquisição do sinal é realizada através de uma das portas analógicas da placa de aquisição. Um outro problema que ocorreu durante os ensaios foi a presença de um sinal de baixa amplitude que o sensor emite quando o veículo esta imóvel. A solução para este problema foi através de uma rotina computacional que permite somente a leitura de sinais com amplitude acima de 1 V.

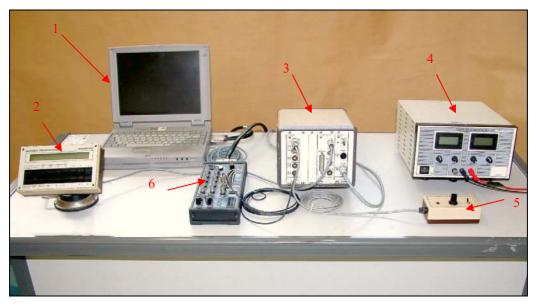


Figura 6.9: Configuração para a aquisição de dados com o computador portátil.

Sendo o sinal adquirido pela porta analógica foi necessário determinar a sua freqüência de aquisição. Como a freqüência máxima do sinal de entrada é de 20 kHz, segundo o teorema de aquisição de Nyquist (Apêndice II), o sinal deve ser adquirido com uma freqüência mínima de 40 kHz. A placa de aquisição de dados empregada fornece freqüência de aquisição máxima de 200 kHz, porém uma freqüência de aquisição de 100 kHz é suficiente para uma boa leitura sem estar no limite da placa, sendo as medições realizadas a cada 1.000 amostras, ou seja, a cada 0,01 s.

Para a medição da distância percorrida é necessário fazer a contagem do número de pulsos. Em princípio fez-se isto através de rotina computacional utilizando o mesmo sinal que entrava pela porta analógica, porém tal alternativa acarreta, devido ao tempo para processamento, um erro na medição da distância. Para sanar tal problema, converte-se o sinal do sensor em um sinal TTL, de forma que sua aquisição possa ser feita por um dos contadores digitais da placa. Restrições orçamentárias aliadas às limitações de tempo impediram a confecção deste conversor sendo empregado nos ensaios o sinal TTL do próprio CORREVIT®.

O tempo decorrido é medido através do segundo contador digital da placa, tendo como base de tempo o mesmo sinal TTL empregado para a medição da distância.

A chave de freio nada mais é que um contato normalmente aberto que, quando acionado, muda o seu estado para fechado. Sua implementação no sistema é através das portas digitais na qual um terminal da chave é conectado a uma delas e o outro ao terra digital. O sistema verifica continuamente a situação da porta e no momento que a chave é acionada a situação da porta muda permitindo que uma nova ação seja executada.

Não foi possível completar os procedimentos para o cálculo de aceleração e medição de consumo, porém eles se mostraram completamente possíveis e pertinentes podendo a virem ser implementados mais adiante.

6.5.3. Softwares de aquisição de dados

Definidas as ferramentas de aquisição, criou-se três softwares:

- um denominado Ensaio de Calibração que é, como o próprio nome diz, um software específico para este ensaio, gerando o Fator de Calibração para o piso no qual será ensaiado o veículo e armazenando-o no disco rígido do computador;
- um denominado Configurador, no qual se escolhe as condições de início e parada do ensaio;
- um denominado **Ensaios** que realiza efetivamente quaisquer ensaios que se deseje.

A Figura 6.10 mostra os painéis frontais de cada software.

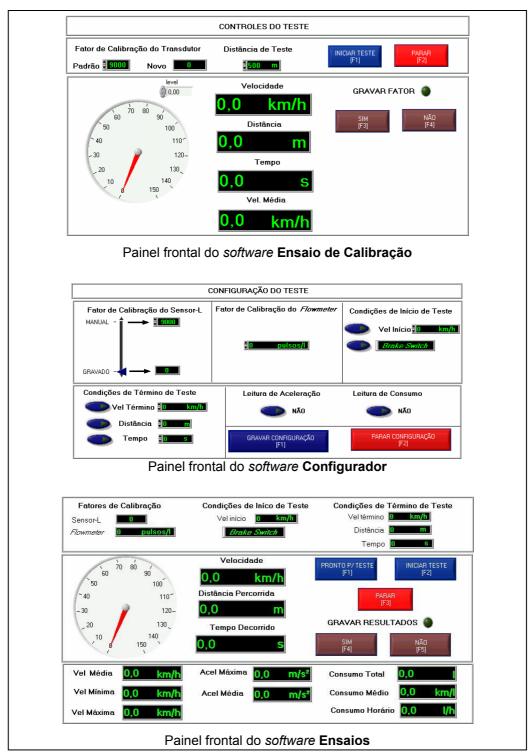


Figura 6.10: Painéis frontais dos softwares desenvolvidos.

6.5.4. Validação dos *softwares*

Como as rotinas de aquisição de dados eram as mesmas para os *softwares* **Ensaio de Calibração** e **Ensaios** foi necessário validar apenas os resultados obtidos pelo primeiro. Como forma de validar os *softwares*, realizaram-se cinco medições de velocidade com o *software* e fez-se a comparação com a velocidade medida pelo CORREVIT®. Empregou-se o simulador como forma de manter uma velocidade constante Os resultados obtidos são mostrados na Tabela 6.9.

Tabela 6.9: Valores de velocidades obtidos pelo software de aquisição de dados.

Velocidades Obtidas (km/h)						
CORREVIT			Software			Média
	Medida 1	Medida 2	Medida 3	Medida 4	Medida 5	
10,0	10,8	9,7	10,4	10,1	10,2	10,24
20,0	20,3	20,5	21,1	20,0	20,7	20,52
30,0	30,9	30,3	30,4	30,2	29,3	30,22
40,0	40,4	40,3	40,4	41,0	40,2	40,46
50,0	50,8	50,2	50,5	50,8	50,4	50,54
60,0	60,4	60,5	60,2	59,2	60,9	60,24
70,0	69,8	71,0	70,9	69,2	69,4	70,06
80,0	80,1	80,9	80,2	80,8	80,0	80,4
90,0	90,2	90,2	89,6	90,2	90,8	90,2
100,0	100,4	100,7	100,7	100,2	100,0	100,4

Pode-se observar que os valores obtidos pelo *software* estão muito próximos dos valores obtidos pelo CORREVIT®. Para uma maior validação dos resultados obtidos levantou-se a incerteza padrão de medição realizada pelo *software* em relação às medições de velocidade do CORREVIT®. O procedimento empregado foi:

- realização do ajuste entre os valores lidos no CORREVIT® e os lidos pelo *software*, determinação da incerteza do ajuste, do coeficiente linear e da incerteza da média dos valores lidos;
- cálculo da incerteza padrão de medição associada ao software.

Os resultados das incertezas estão descritos na Tabela 6.10.

Tabela 6.10: Tabela com as incertezas associadas à medição de velocidade pelo software Ensaio de Calibração.

Soltware Elisalo de Calibração.				
Parâ	imetro	Ince	rteza	
		Padrão	Expandida	
Ajuste		\pm 0,23 km/h	\pm 0,46 km/h	
(V _{ajustada} = 1,00	45.V _{CORREVIT})			
Coeficiente linea	r	± 0,03	± 0,06	
Valor medido pel	lo CORREVIT®	\pm 0,15 km/h	\pm 0,30 km/h	
Valor medido pel	lo <i>software</i>	\pm 0,30 km/h	\pm 0,60 km/h	
	10,24	\pm 0,23 km/h	\pm 0,46 km/h	
	20,52	± 0,23 km/h	\pm 0,46 km/h	
	30,22	\pm 0,32 km/h	\pm 0,64 km/h	
	40,46	\pm 0,17 km/h	\pm 0,34 km/h	
Média	50,54	\pm 0,15 km/h	\pm 0,30 km/h	
Ivicuia	60,24	\pm 0,35 km/h	\pm 0,70 km/h	
	70,06	\pm 0,47 km/h	\pm 0,94 km/h	
	80,4	\pm 0,23 km/h	\pm 0,46 km/h	
	90,2	\pm 0,24 km/h	\pm 0,48 km/h	
	100,4	\pm 0,17 km/h	\pm 0,34 km/h	

A avaliação da incerteza de medição foi realizada como se o veículo estivesse em movimento, ou seja, a velocidade era aumentada de forma uniforme, sem paradas, de 0 até 100 km/h. O motivo para isto é que durante a execução do ensaio o valor de velocidade oscila em intervalos muito pequenos, devido ao próprio veículo e/ou pelas deformidades do piso, produzindo uma leitura praticamente dinâmica da velocidade. Então era necessário saber se o *software* estava acompanhando esta variação dinâmica de leitura. Os valores encontrados para a incerteza padrão de medição do *software* demonstram que ele realizou a medição de forma satisfatória.

6.5.5. Exatidão de medição da placa de aquisição de dados DAQCard-6036E

Da mesma forma que qualquer outro equipamento a placa de aquisição de dados também deve ser calibrada, como forma de lhe atribuir confiabilidade no processamento dos dados.

A exatidão de medição da placa é a especificação que deve ser utilizada para a determinação do erro máximo da medição, a qual assume que os dispositivos de aquisição de dados estejam calibrados dentro de um período de um ano. O

fabricante da placa denomina esta exatidão de medição como **exatidão absoluta** de medição.

Existem quatro componentes para a especificação da exatidão absoluta de medição:

- **percentual de medição:** que é o percentual da tensão de entrada atual;
- desvio (offset): que é um valor constante aplicado em todas as medições;
- ruído do sistema e quantização: que é baseado no ruído e depende do número de pontos médios em cada medição;
- erro de leitura devido à temperatura: que é baseado na variação das condições ambientais do local de medição.

Pela natureza das incertezas da placa acima caracterizada são do tipo B, com a exatidão de medição calculada pela seguinte expressão:

$$U_{c} = \pm (V_{i}.\%) + \Delta_{i} + r + \Delta_{T}$$

$$(6.11)$$

nesta expressão:

- **U**_c é a exatidão de medição;
- **V**_i é a tensão de entrada;
- % é o percentual de medição;
- Δ_i é o desvio inicial;
- r é o ruído do sistema;
- Δ_T é o desvio pela temperatura.

Já a incerteza de medição em relação à entrada (RTI) é calculada pela expressão:

$$RTI = \pm \frac{U_c}{V_i}$$
 (6.12)

nesta expressão:

- RTI é a incerteza de medição em relação à entrada;
- Uc é a exatidão de medição;
- **V**_i é a tensão de entrada.

6.5.6. Influência da temperatura

Os efeitos da temperatura devem ser considerados também quando o ambiente encontra-se fora da faixa de 15 a 35° C. Caso o ambiente esteja a uma temperatura de 45° C, a medição deve ser compensada pelo valor do desvio referente à diferença de 10° C excedente. Este desvio pode ser calculado pela expressão:

$$\Delta_{\mathsf{T}} = \pm (\mathsf{V}_{\mathsf{i}}.\% \, \mathsf{/^{\mathsf{o}}} \, \mathsf{C} + \Delta_{\mathsf{i}} \, \mathsf{/^{\mathsf{o}}} \, \mathsf{C}).\Delta\mathsf{T} \tag{6.13}$$

nesta expressão:

- Δ_T é o desvio pela temperatura;
- V_i é a tensão de entrada;
- %/° C é o percentual de medição por graus Celsius;
- Δ_i / ° C é o desvio inicial por graus Celsius;
- ΔT é a diferença de temperatura.

6.5.7. Incerteza da medição de freqüência

A exatidão para a medição de freqüência é, normalmente, expressa em ppm (partes por milhão), que não é uma unidade aceita pelo SI. Por exemplo, caso se empregue um dispositivo com um *clock* de exatidão de 25 ppm e uma taxa de amostragem de 100 kS/s, a exatidão da amostragem do *clock* será:

 U_{clock} = 100.000 x 25 / 1.000.000 = 2,5 Hz.

Logo o valor da freqüência do *clock* será:

 $Clock = 100 \text{ kHz} \pm 2,5 \text{ Hz}.$

Considerando o caso em que se mede um sinal senoidal de frequência 1 kHz, com uma taxa de amostragem de 100 kS/s, a exatidão da medição será:

 $U_f = 1.000 \times 25/1.000.000 = 0,025 Hz.$

Logo o valor medido de frequência será:

Freqüência = 1 kHz ± 0,025 Hz..

.

Cabe ressaltar que deve ser sempre feita a aquisição seguindo o Teorema da Amostragem de Nyquist, como forma de se para evitar o *aliasing* e garantir uma medição de freqüência exata. No caso da placa empregada a exatidão de *clock* é de 100 ppm, logo para a amostragem empregada de 100 kS/s o valor da freqüência de *clock* será:

 $Clock = 100 \text{ kHz} \pm 10 \text{ Hz}.$

e para a frequência medida máxima de 22 kHz o valor medido será:

Freqüência = 22 kHz \pm 2,0 Hz.

O Anexo I documenta o certificado de calibração fornecido pelo fabricante no ato de compra da placa. Conforme informação fornecida pela própria National Instruments™, os seus produtos são calibrados, após sua fabricação, por laboratório acreditado rastreável ao NIST (*National and International Standards*), assim disponibilizando uma calibração válida já que a simples calibração do fabricante não possui valor metrológico. Na Tabela 6.11 são mostradas as suas exatidões absoluta e relativa de medição para as portas de entrada de sinal analógico, além da incerteza do contador.

Portas Analógicas Exatidão Relativa Faixa Exatidão Absoluta Nominal % de Medição Exatidão Quantização do Resolução (µV) Ruído $+ (\mu V)$ Absoluta Offset Drift Fundo Fundo de (μV) Temp Fundo de Uma Uma de (%/°C) Escala Média de Média Escala 24 Horas 1 Ano Medida Medida Positivo Negativo Escala (mV) -10 0,0549 0,0591 2.602,05 1.500,21 137,329 0,0010 1.808,17 180,82 +10 8,653 1.311,53 -5,0 0,0149 0,0191 750,10 68,665 0,0005 904,08 90,408 +5,0 2,337

84,319

32,779

7,782

3,204

0,0010

0,0010

0,454

0.067

102,463

42,191

10,246

4,219

Tabela 6.11: Exatidão absoluta e relativa da placa de aquisição de dados e incerteza do contador.

Exatidão da medição de frequência 100 ppm

0,0549

0.0549

0,0591

0.0591

150,053

33,905

+0,5

+0.05

-0,5

-0,050

Contador					
Freqüência	Valor Medido	Valor Medido			
(MHz)	Máximo MHz)	Mínimo (MHz)			
5,00	4,9995	5,0005			

A inserção da exatidão da medição de frequência no cálculo da incerteza do valor de velocidade medido pelo *software* não provoca nenhuma alteração, podendo, portanto, ser desprezada.

6.6. Calibração do CORREVIT® e do *softwar*e de aquisição de dados

Conhecidas as características metrológicas da placa foi possível realizar a calibração do sistema de medição como um todo. A calibração foi realizada não só para o sistema modernizado como também para o próprio CORREVIT®, assim permitindo determinar a exatidão de medição desses sistemas.

A calibração dos equipamentos foi dividida em duas etapas:

- calibração da leitura de velocidade;
- calibração da distância percorrida.

6.6.1. Calibração da leitura de velocidade

A calibração da leitura de velocidade foi realizada utilizando-se o dinamômetro de rolos do Laboratório de Engenharia Veicular (LEV) da PUC-Rio.

Montou-se o sensor óptico sobre o rolo motor fazendo-o girar a uma velocidade conhecida. Como a superfície do rolo é extremamente uniforme o sinal gerado pelo sensor não apresenta grandes oscilações, porém é necessário que a incerteza associada à medição de velocidade pelo dinamômetro seja conhecida. O dinamômetro do LEV consegue manter a velocidade dentro de uma faixa de incerteza expandida U_d de \pm 1 km/h (incerteza padrão u_d de \pm 0,5 km/h) ao longo de toda a faixa de trabalho.

Os valores permitidos para distância de montagem do transdutor em relação ao solo, bem como os desvios angulares, são mostrados na Tabela 6.12 e na Figura 3.2. Já os valores das incertezas de medição do CORREVIT® e do *software* são os constantes na Tabela 6.10.

Tabela 6.12: Valores de montagem do transdutor óptico.

	Valor Permitido	Valor de Montagem
Distância em relação ao solo	$380 \pm 10 \text{ mm}$	380 mm
Perpendicularidade em relação ao eixo longitudinal <i>x</i>	90° ± 5°	89°
Perpendicularidade em relação ao eixo transversal <i>y</i>	90° ± 5°	89°
Perpendicularidade em relação ao eixo vertical <i>z</i>	90° ± 5°	89°

Os ensaios de calibração foram executados numa faixa de 20 km/h (menor velocidade que o dinamômetro pode manter sem oscilações) até 120 km/h (velocidade máxima que o dinamômetro pode operar com sem carga) em intervalos 20 km/h (intervalos mínimos que o dinamômetro pode alterar a velocidade sem oscilações), sendo realizadas quatro medições. Tanto o CORREVIT®, quanto o *software* operavam com fator de calibração de 9.000. A Figura 6.11 mostra a configuração utilizada para a realização do teste de calibração e a Tabela 6.13 apresenta os valores encontrados durante o teste e a Tabela 6.14 os valores das incertezas padrão e expandida.

Tabela 6.13: Resultados obtidos durante a calibração da medição de velocidade.

Velocidades (km/h)						
Dinamômetro	Software			Média	Ajustada	
	Medida 1	Medida 2	Medida 3	Medida 4		
20,0	20,2	21,0	21,0	20,0	20,6	20,0
40,0	40,3	40,5	40,2	39,8	40,2	40,1
60,0	60,8	60,2	59,8	60,0	60,2	60,1
80,0	80,6	79,9	81,0	80,0	80,4	80,2
100,0	101,0	99,8	100,5	99,3	99,9	100,2
120,0	120,3	120,3	120,0	120,0	120,2	120,2

Dinamômetro	CORREVIT®			Média	Ajustada	
	Medida 1	Medida 2	Medida 3	Medida 4		
20,0	20,3	20,0	20,0	19,9	20,1	20,0
40,0	41,2	40,3	40,3	40,0	40,5	40,0
60,0	60,3	60,1	59,7	60,3	60,1	60,0
80,0	80,2	80,3	80,3	80,2	80,3	80,0
100,0	100,1	99,8	100,2	99,2	99,8	100,0
120,0	119,5	119,5	119,8	119,8	119,7	120,0

Tabela 6.14: Incertezas da calibração da medição de velocidade.

Parâmetro		Incerteza		
		Padrão	Expandida	
Ajuste		\pm 0,29 km/h	\pm 0,58 km/h	
$(V_{ajustada} = 1,00)$	19.V _{dinamômetro})			
Coeficiente linear		± 0.03	± 0,06	
Valor medido pelo	o software	\pm 0,40 km/h	\pm 0,80 km/h	
	20,6	\pm 0,35 km/h	\pm 0,70 km/h	
	40,2	\pm 0,19 km/h	\pm 0,38 km/h	
25/11	60,2	\pm 0,29 km/h	\pm 0,58 km/h	
Média	80,4	\pm 0,35 km/h	± 0,70 km/h	
	99,9	\pm 0,50 km/h	± 1,00 km/h	
	120,2	\pm 0,12 km/h	± 0,24 km/h	

Ajuste		± 0,3 km/h	± 0,6 km/h
(V _{ajustada} = 0,9996.V _{dinamômetro})			
Coeficiente linea	r	± 0,03	± 0,06
Valor medido pelo CORREVIT®		\pm 0,30 km/h	\pm 0,60 km/h
	20,1	\pm 0,12 km/h	± 0,24 km/h
	40,5	\pm 0,35 km/h	± 0,70 km/h
3.67.11	60,1	\pm 0,19 km/h	\pm 0,38 km/h
Média	80,3	\pm 0,10 km/h	\pm 0,20 km/h
	99,8	\pm 0,30 km/h	± 0,60 km/h
	119,7	$\pm 0,12 \text{ km/h}$	$\pm 0,24 \text{ km/h}$

Segundo o Guia para a Expressão da Incerteza de Medição (1998) e de acordo com os dados da Tabela 6.12, os valores lidos de velocidade pelo *software* e pelo CORREVIT® serão expressos, respectivamente, da seguinte forma:

Velocidade pelo software = (valor do mostrado \pm 0,80) km/h Velocidade pelo CORREVIT® = (valor do mostrado \pm 0,60) km/h.

Figura 6.11: Configuração dos equipamentos usados nos ensaios de calibração.

6.6.2. Calibração da leitura de distância percorrida

A calibração da distância percorrida foi realizada na pista para o Ensaio de Calibração existente no CPrM, a qual possui uma distância de 800 m determinada por meio de um distânciometro com incerteza de 1cm em cada 1.000 m e fazer com que o veículo trafegasse por ela. Desta forma se verificaria a incerteza da medição da distância e da geração do Fator de Calibração. A Tabela 6.15 mostra os valores de distância obtidos no testes, os Fatores de Calibração e as incertezas associadas a estes parâmetros.

Tabela 6.15: Valores de distância, fatores de calibração e incertezas.

	Valores de o	listância perc	orrida em me	etros medida p	pelo <i>software</i>	
Medições					Média	
801	803	802	801	802	800	802
Incer	teza padrão da	média	± 0,5 m			
Incerte	za expandida d	a média	± 1,0 m			
	Valore	s dos fatores d	le calibração	obtidos pelo s	oftware	
		Med	ições			Média
8989	8966	8978	8989	8978	9000	8983
Incertez	a padrão do co	eficiente	± 50			
Incerteza expandida do coeficiente		± 100				

Valores de distância percorrida em metros medida pelo CORREVIT®						
	Medições					Média
805	802	800	800	798	800	801
Incer	Incerteza padrão da média ± 0,5 m					
Incerte	za expandida d	a média	± 1,0 m			
	Valores do	os fatores de c	alibração obt	idos pelo CO	RREVIT®	
		Med	ições			Média
8944	8978	9000	9000	9023	9000	8991
Incerteza padrão do coeficiente			± 50			
Incerteza expandida do coeficiente		± 100				

Segundo o Guia para a Expressão da Incerteza de Medição (1998), os valores para a medição da distância percorrida e Fator de Calibração serão expressos da seguinte forma, tanto pelo CORREVIT®, quanto pelo *software*:

Distância = (valor medido \pm 1,0) m

Coeficiente = (coeficiente \pm 0,10).

A incerteza do coeficiente foi calculada pela expansão para o cálculo da incerteza padrão da expressão apresentada no item 6.4. A Tabela 6.16 mostra as incertezas dos componentes da expressão.

Tabela 6.16: Incertezas da distância percorrida e do fator de calibração.

	Incerteza Padrão	Incerteza Expandida
Distância programada para o ensaio (D ₁)	± 0,5 m	± 1 m
Distância percorrida pelo veículo (D ₂)	± 0,5 m	± 1 m
Fator de calibração programado (f ₁)	± 50	± 100

Obs:

- 1) Como o CPrM não possui barreira óptica as incertezas para a distância programa para o ensaio já incluem os erros devido ao acionamento manual dos equipamentos;
- 2) A incerteza da distância percorrida pelo veículo foi calculada acima;
- 3) A incerteza do fator de calibração programado foi calculada no item 6.2.

6.7. Viabilidade econômica da modernização do equipamento

O presente tópico discute a viabilidade econômica da proposta, ou seja, se a sua realização é mais econômica comparada ao custo de aquisição de um equipamento novo.

6.7.1. Preço associado à aquisição de um equipamento novo

A cotação de um equipamento novo foi fornecida pela Techtarget, que representa a CORRSYS-DATRON (fabricante do CORREVIT®) no Brasil. O equipamento em questão é um sistema de aquisição e processamento de dados com um sensor óptico para medidas longitudinais. A Tabela 6.17 mostra os valores dos equipamentos.

Quantidade	Equipamento	Valor Unitário	Valor Total
01	Sensor L-400 com cabo de		
	alimentação e sinal		
01	Sensor de calibração		
01	Software		
01	Caixa distribuidora 12 V	€ 13.300,00	€ 13.300,00
01	Chave de Parada	(R\$ 48.013,00)*	(R\$ 48.013,00)*
01	Caixa de <i>Trigger</i>		
01	Unidade de Montagem		
	Universal – Ventosas		
01	Cabo extra de alimentação de		
	10 m de comprimento		
01	Sistema de Aquisição de Dados	€ 5.850,00	€ 5.850,00
	– DAS2AD com impressora	(R\$ 21.118,50)*	(R\$ 21.118,50)*
	Total	€ 19.150,00	€ 19.150,00
		(R\$ 69.131,50)*	(R\$ 69.131,50)*
	(*) € 1,00 = R\$ 3,61, taxa do dia	22/11/2004 – Fonte: Ban	nco Central do Brasil

Tabela 6.17: Cotação com os valores de um equipamento novo.

6.7.2. Aquisição dos componentes para a modernização do equipamento

A cotação dos componentes para a modernização foi fornecida pelo representante da National InstrumentsTM no Brasil (NI Brasil). Embora o CPrM já possua um computador portátil, fez-se uma pesquisa de mercado para se levantar o preço da compra de um equipamento com as mesmas características. A Tabela 6.18 mostra os valores dos equipamentos.

Tabela 6.18: Cotação com os valores dos equipamentos necessários à modernização.

Quantidade	Equipamento	Valor Unitário	Valor Total
01	NI DAQCard-6036E for PCMCIA and NI-	R\$ 4.035,00	R\$ 4.035,00
01	DAQ Software BNC-2120 Accessory for 68 Pin and 100 Pin E Series Devices	R\$ 1.605,00	R\$ 1.605,00
01	SHC68-68-EP Shielded Cable, 68-Pos. D-Type to 68-Pos. VHDCI Offset, 1 m	R\$ 390,00	R\$ 390,00
01	Notebook Pavilion ze4920. Processador Celeron M 330 com 1.40GHz.	R\$ 6.000,00	R\$ 6.000,00
	Total	R\$ 12.030,00	R\$ 12.030,00

6.7.3. Comparação de preços

Comparados os preços acima, fica claro que a modernização constituiu-se numa alternativa economicamente viável já que o preço dos equipamentos para ela é menor que a compra de um equipamento novo, sendo que os primeiros possuem a mesma exatidão de medição do segundo.