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Abstract

Fischer Abati, Gabriel; Meggiolaro, Marco Antonio (Advisor); Soares,
João Carlos Virgolino (Co-Advisor). Visual SLAM in Dynamic En-

vironments using Panoptic Segmentation. Rio de Janeiro, 2023.
91p. Dissertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

Mobile robots have become popular in recent years due to their ability

to operate autonomously and accomplish tasks that would otherwise be too

dangerous, repetitive, or tedious for humans. The robot must have a map of

its surroundings and an estimate of its location within this map to achieve

full autonomy in navigation. The Simultaneous Localization and Mapping

(SLAM) problem is concerned with determining both the map and localization

concurrently using sensor measurements. Visual SLAM involves estimating the

location and map of a mobile robot using only visual information captured by

cameras. Utilizing cameras for sensing provides a significant advantage, as they

enable solving computer vision tasks that offer high-level information about

the scene, including object detection, segmentation, and recognition. There

are several visual SLAM systems in the literature with high accuracy and

performance, but the majority of them are not robust in dynamic scenarios.

The ones that deal with dynamic content in the scenes usually rely on

deep learning-based methods to detect and filter dynamic objects. However,

these methods cannot deal with unknown objects. This work presents a new

visual SLAM system robust to dynamic environments, even in the presence

of unknown moving objects. It uses Panoptic Segmentation to filter dynamic

objects from the scene during the state estimation process. The proposed

methodology is based on ORB-SLAM3, a state-of-the-art SLAM system for

static environments. The implementation was tested using real-world datasets

and compared with several systems from the literature, including DynaSLAM,

DS-SLAM and SaD-SLAM. Also, the proposed system surpasses ORB-SLAM3

results in a custom dataset composed of dynamic environments with unknown

moving objects.

Keywords

Visual SLAM; Panoptic Segmentation; Dynamic Environments.
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Resumo

Fischer Abati, Gabriel; Meggiolaro, Marco Antonio; Soares, João Car-
los Virgolino. SLAM visual em ambientes dinâmicos utilizando

Segmentação Panóptica. Rio de Janeiro, 2023. 91p. Dissertação de
Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Robôs moveis se tornaram populares nos últimos anos devido a sua

capacidade de operar de forma autônoma e performar tarefas que são perigosas,

repetitivas ou tediosas para seres humanos. O robô necessita ter um mapa

de seus arredores e uma estimativa de sua localização dentro desse mapa

para alcançar navegação autônoma. O problema de Localização e Mapeamento

Simultâneos (SLAM) está relacionado com a determinação simultânea do mapa

e da localização usando medidas de sensores. SLAM visual diz respeito a

estimar a localização e o mapa de um robô móvel usando apenas informações

visuais capturadas por câmeras. O uso de câmeras para o sensoriamento

proporciona uma vantagem significativa, pois permite resolver tarefas de

visão computacional que fornecem informações de alto nível sobre a cena,

incluindo detecção, segmentação e reconhecimento de objetos. A maioria dos

sistemas de SLAM visuais não são robustos a ambientes dinâmicos. Os sistemas

que lidam com conteúdo dinâmico normalmente contem com métodos de

aprendizado profundo para detectar e filtrar objetos dinâmicos. Existem vários

sistemas de SLAM visual na literatura com alta acurácia e desempenho,

porem a maioria desses métodos não englobam objetos desconhecidos. Este

trabalho apresenta um novo sistema de SLAM visual robusto a ambientes

dinâmicos, mesmo na presença de objetos desconhecidos. Este método utiliza

segmentação panóptica para filtrar objetos dinâmicos de uma cena durante

o processo de estimação de estado. A metodologia proposta é baseada em

ORB-SLAM3, um sistema de SLAM estado-da-arte em ambientes estáticos.

A implementação foi testada usando dados reais e comparado com diversos

sistemas da literatura, incluindo DynaSLAM, DS-SLAM e SaD-SLAM. Além

disso, o sistema proposto supera os resultados do ORB-SLAM3 em um

conjunto de dados personalizado composto por ambientes dinâmicos e objetos

desconhecidos em movimento.

Palavras-chave

SLAM Visual; Segmentação Panoptica; Ambientes dinâmicos.
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1

Introduction

Robotics and automation are topics that have been widely studied in

the last 30 years. These topics are revolutionizing how machines can interpret

and interact with the world and having huge impact in applications in the

field of medicine, aerospace, manufacturing industry, telecommunications and

others. Most industrial robots have movement constrains and can only work

in a limited area. On the other hand, mobile robots are capable to move freely

inside an environment. They can be applied to tasks that are too risky or

impossible for humans to safely perform. For instance, self-driving, house-

cleaning, food delivery, nursery, surveillance and tourism are some complex

applications that can benefit from the mobile robots’ versatility.

There are four main problems that allow robots to achieve full autonomy:

perception, localization and mapping, path planning and motion control.

Figure 1.1 shows how these problems are related to each other.

Figure 1.1: Diagram of the tasks performed by an autonomous mobile robot

The perception task is responsible for the initial raw data acquisition and

processing. In practice, dedicated sensors are equipped to a robot to produce

data about its surroundings that will be later processed to interpret it with

high level algorithms. For instance, the creation of a 3D point cloud from

RGB-D images. For indoor applications, normally, the robot does not have

any information about the environment nor GPS data available.
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Chapter 1. Introduction 19

In order to perform autonomous navigation, a robot needs two main

elements: a map and an estimation of its pose. The map is a representation

of the environment that can be created by sensor measurements or supplied

to the robot a priori, and the pose (position and orientation) of the robot

is estimated with respect to the global coordinate system. However, usually

neither of the elements are provided to the robot a priori, and both need

to be estimated using only sensor data. This is a fundamental problem in

robotics, and it is known as Simultaneous Localization and Mapping (SLAM).

By performing localization and mapping simultaneously, errors in both tasks

can be reduced. The map can be updated based on new measurements, which

can then be used to improve the accuracy of the localization estimate. Similarly,

accurate localization can be used to correct errors in the map. After the map

construction and pose estimation, the robot can autonomously navigate a

path inside the environment and reach its final destination. This is one of the

most challenging tasks in robotics due to unpredictable events, noisy sensor

measurements and movement uncertainty. Finally, the motion control analyses

the robot’s kinematics and low-level characteristics.

The choice of sensors has a high influence on the problem formulation,

as well as on its outcome. For SLAM systems, the laser range finder, inertial

measurement units and wheel encoders are commonly used sensors, according

to the literature. Nonetheless, cameras can be a good choice on account of its

low cost and abundance of information. RGB-D cameras or depth sensors are

a special kind of camera that can provide both geometric and semantic data

about the environment.

Visual SLAM systems solve the SLAM problem using only cameras.

They are receiving increasing attention in the robotics community due to the

low cost and richness of information provided by cameras. There are several

visual SLAM systems in the literature with high precision using monocular

[12][13], stereo [14] and RGB-D cameras [15]. However, these SLAM systems

are not prepared to work in scenarios with moving objects, which results

in inaccurate localization and inconsistent mapping. To address this, there

are several approaches to incorporate dynamic elements into Visual SLAM.

Recently, deep learning-based techniques have been explored for SLAM in

dynamic environments for providing high-level information about the scenes.

Some methods [16][17] use object detection, such as YOLO [18] to detect

and track labeled objects, filtering the keypoints of the dynamic ones. Others

[19][20] use semantic segmentation combined with epipolar geometry to filter

dynamic keypoints. Other methods [21][22][23] rely on instance segmentation

techniques, such as Mask R-CNN [7] or YOLACT++ [24].
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The main problem with all previous approaches is the necessity to have

a pre-determined number of classes that can be detected, and consequently,

filtered. In other words, if a non-labeled object is moving in the scene, it

would not be filtered and its features would cause a drift in the localization

and outliers in the map. The main objective of this work is to explore the

richness of information provided by RGB data, using deep learning techniques

to allow robust SLAM in dynamic environments in the presence of unknown

and unlabeled moving objects.

1.1

Related Work

1.1.1

SLAM

The challenge in SLAM is to place a mobile robot in an unknown

environment with an unknown pose and have it gradually built a map of the

environment and simultaneously determines where the robot lies within the

created map. Several methods have been proposed to solve SLAM. Bailey et al.

[25] made one of the earliest surveys about this problem. SLAM methods can be

characterized in terms of map type (topological or metric), and in terms of data

use (feature-based or raw). All methods can be traced back to a probabilistic

interpretation, due to the uncertainties inherent to sensor measurements and

unstructured environments. There are three main probabilistic formulations for

SLAM: extended Kalman filters, particle filters, and graph-based approaches

[26].

EKF-SLAM algorithms such as [27] are non-linear SLAM systems pre-

dominantly implemented as an extended Kalman Filter. EKF is a non-linear

state estimator that considers system noise as a zero mean Gaussian distri-

bution for motion and observations. Several publications highlight the EKF-

SLAM problems [28][29][30]: the model linearization does not match the true

model, the true system noise is non-Gaussian, the estimated uncertainty is too

small compared to the real error and eventual inconsistencies for large-scale

maps due to the necessity of state covariance matrix inversion.

To achieve better performance, Stentz et al. presented FastSLAM [31].

This Baysian algorithm uses a Rao-Blackwellized particle filter [32] to solve

the SLAM problem. The particle filter is an extension of the Monte Carlo

Localization algorithm. It uses a set of weighted particles, sampled by a

motion model distribution, to represent several hypotheses about the state

of the robot. Each particle is associated with a landmark location in the

DBD
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Chapter 1. Introduction 21

map [33][34]. The use of the particle filter makes it possible to make all

the landmarks independent for a given particle (this is the factorization of

the SLAM conditionally to the trajectory). Thus, the FastSLAM algorithm

guarantees a much lower execution time than EKF-SLAM. On the other hand,

this algorithm is not consistent due to the phenomenon of particle degeneration

[35], which refers to gradual loss of particle diversity and resulting in accuracy

loss.

Unlike EKF-SLAM or FastSLAM, which process the information at time

t only using the measurements at time t and the state at time t − 1, graph-

based approaches solve the SLAM problem on the whole trajectory and are

currently the standard formulation for SLAM. GraphSLAM [36] extracts from

all measurements a set of soft constrains, represented by a sparse graph.

This graph leads to a sum of nonlinear quadratic constraints. Optimizing

these constraints yields a maximum likelihood map and a corresponding set

of robot poses. Due to the graph-optimization, GraphSLAM can handle a

large number of features and incorporate landmark information in large scale

mapping processes.

1.1.2

Visual SLAM

A visual SLAM system with a graph-based approach has three main

steps: motion estimation, loop closure and graph optimization. Motion esti-

mation is a process of determining the spacial transformation from one 2D

image to another that describes the robot’s movement. Loop closure detection

is used to identify revisited places in order to estimate the accumulated errors

during the motion estimation task. Finally, these errors are then rectified by

the graph optimization algorithm.

These systems can be classified by how they reconstruct the environment.

The methods can be either sparse or dense. Sparse methods use a set of

individual points to reconstruct the scene, as the dense methods uses all pixels

available.

Another common classification of visual SLAM systems refers to how

information is extracted from input images. Visual SLAM methods can be

either direct or indirect. Direct methods use pixel intensity data to estimate

the photometric error and minimize it directly to estimate the camera pose

and the 3D scene. For this reason, they deal better with environments with

low amounts of unique features. Indirect methods, on the other hand, utilize

an intermediate representation to have a faster performance. They first extract

a sparse set of keypoints to match with other frames in order to estimate the
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Chapter 1. Introduction 22

camera pose and reconstruct the scene. They deal better with geometric noise

from the system.

VOLDOR-SLAM [37] is an example of a dense-indirect method that uses

a dense Optical Flow [38] technique as input and utilizes a depth map align-

ment framework. DSO [15] is a sparse-indirect method that fuses photometric

error minimization and joint optimization of geometric and camera motion to

acquire visual odometry. LSD-SLAM [13] is a dense-direct method for monoc-

ular cameras that uses visual tracking algorithms that can reconstruct large-

scale maps through scale-drifts detection. Moreover, KinectFusion [39] uses

Iterative Closest Point algorithm [40] to track camera pose and depth infor-

mation to create dense volumetric representations.

In visual SLAM, the sparse-indirect methods are more usual than the

others presented. Most methods use visual features to create the map and

perform camera tracking. Mono-SLAM’s [41] key concept is a probabilistic

feature-based map. This map represents the current estimates, including

their uncertainties, of the camera’s state and the features of interest. The

disadvantage of this technique is the need to process every frame in order

to map and estimate camera pose. PTAM [42], on the other hand, is a

keyframe-based approach, which replace incremental mapping with a frame

batch method, i.e, bundle adjustment, to obtain globally consistent estimates

over a frame sequence. One of the main contributions of PTAM was the division

of camera tracking and mapping processes in parallel threads to reduce the

computational cost.

There are also SLAM systems that utilize RGB-D sensors and have the

advantage to directly measure depth. Examples of RGB-D SLAM systems

include RGB-D mapping [43], RGBDSLAM [44] and RTAB-Map [45].

ORB-SLAM [12] is an open-source system that works with three parallel

threads: tracking, loop closure and local mapping. The tracking thread uses

ORB visual features [46] to track the camera frame by frame, as well as, to

perform camera re-localization in the event of a lost track. The loop closure

process searchers for previously visited places using a robust place recognition

algorithm for every new keyframe. The local mapping thread performs bundle

adjustment for each new keyframe added. Due to its high accuracy, robustness,

scalability and real time performance in large environments, ORB-SLAM is one

of the most referenced papers about visual SLAM in the literature.

ORB-SLAM2 [14] is a continuation of ORB-SLAM. It has the same

three-thread structure from its predecessor, but works using different camera

types, such as monocular, stereo or RGB-D. In 2021, ORB-SLAM3 [9] was

presented, with IMU integration and improving recovery from lost track
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by applying Atlas, a visual-inertial multi-mapping system. Atlas was first

introduced in [47] and received improvements in ORB-SLAM3 in order to be

able to effectively represent a set of disconnected maps and applying mapping

operations smoothly across all of them. Since all three versions of ORB-SLAM

are open-source, they are used as framework to other SLAM systems. Although

ORB-SLAM is a state-of-the-art SLAM method, it still has poor accuracy when

it is used in dynamic environments.

Most visual SLAM systems are designed with the assumption of a static

environment, which limits their applicability in real-world scenarios. When a

robot is performing SLAM in a dynamic environment, the presence of moving

objects in the scene not only compromises camera tracking but also loop

detection and mapping. Figure 1.2 shows an example of a point cloud map

generated from the output of ORB-SLAM2, representing an environment with

moving people in the scene. The movement of these objects has resulted in a

corrupted map.

Figure 1.2: Point cloud map of a dynamic scene [1] generated from the output
of ORB-SLAM2. The people populating the map with outliers, corrupting the
camera pose estimation.

1.1.3

Visual SLAM in Dynamic Environments

Traditional SLAM system struggle in dynamic environments, where

objects can move, change sizes and occlude each other. These moving objects

lead to inaccuracies in the map and pose estimates. Most researchers treat

dynamic objects as outliers, and several visual SLAM systems have been

proposed to address these outliers. These solutions can be broadly categorized

into two main groups: geometry-based and learning-based methods. Geometry-

based methods rely on classic computer vision techniques to detect and filter

dynamic content. In general, they have inferior accuracy compared to learning-
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based methods. Their main advantage is to not require prior knowledge about

the objects in the scene.

In the work from Dib et al. [48], the authors propose a dense visual

SLAM system based on the Lucas-Kanade [49] image alignment algorithm for

RGB-D sensors and RANSAC [50] optimization for outlier rejection. In the

same context, Alcantarilla et al. [51] presented a dense scene representation

that combines stereo vision, optical flow and motion likelihoods to detect

moving objects. Another example of a dense method is from Sun et al. [52].

Their system performs motion removal by analyzing consecutive images with

ego-motion, compensated frame differencing, particle filter-based tracking and

Maximum-a-posteriori estimation.

ReFusion [53] and StaticFusion [54] are direct methods for SLAM in dy-

namic environments using RGB-D cameras. ReFusion apply direct tracking

on a truncated signed distance function (TSDF) in a voxel hashing represen-

tation, along with encoded color information, to estimate the camera pose.

StaticFusion focuses on background segmentation and dynamic objects filter-

ing by segmenting every RGB and depth pair images into geometric clusters.

Since direct methods use all pixels from the camera frame, they are less ro-

bust in dynamic environments due to its high sensitivity to moving objects, in

comparison with feature-based methods.

1.1.4

Visual SLAM in Dynamic Environments using Deep learning

Previous methods rely only on classical computer vision algorithms to

detect and filter dynamic content. They estimate movement using mainly

geometric approach. Deep learning techniques, on the other hand, are able to

learn and identify complex objects in the scene such as people, tables, chairs

by their geometric and semantic information.

Detect-SLAM [55] was the first work to combine an ORB-SLAM based

system with a DNN detector such as SSD [56] only on keyframes in order to

perform faster and to improve robustness of the system in dynamic environ-

ments. The Dynamic SLAM [57] system also uses SSD object detection to filter

dynamic features and includes a semantic correction module that generates a

mask with the same size as the image to distinguish between static and dy-

namic points. The system also has a selective tracking algorithm to eliminate

dynamic objects.

Crowd-SLAM [16], based on ORB-SLAM2, uses a custom YOLOV3-

Tiny [58] object detection model to locate people in the image and remove

dynamic features inside the predicted bounding boxes. Furthermore, the
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authors developed a feature repopulation algorithm to reduce lost tracks caused

by feature depletion.

DS-SLAM [19], combines the SegNet [59] semantic segmentation network

with a moving consistency check algorithm based on optical flow to detect and

reduce the impact of dynamic objects, and generates a dense semantic octo-tree

map from the environment.

RDS-SLAM [20] is a method based on ORB-SLAM3 that includes a Seg-

Net segmentation parallel thread. This enables the tracking process to operate

continuously without waiting for new semantic information. Furthermore, the

authors introduced a keyframe selection strategy for semantic segmentation

that aims to acquire the most recent semantic information possible, regardless

of the segmentation method’s speed. To update and propagate semantic infor-

mation, they utilized the moving probability to detect and eliminate tracking

outliers through a data association algorithm. Following a similar approach,

SOF-SLAM [60] is based on the ORB-SLAM2 system, that combines SegNet

semantic segmentation with optical flow and epipolar geometry constrains to

detect dynamic features.

None of the previously cited methods can deal with unknown moving

objects. Ji et al. [10] presented a Semantic RGB-D SLAM approach that

operates in dynamic environments by extracting semantic information solely

from keyframes. Despite being able to deal with unknown objects using k-

means and depth reprojection, their accuracy is lower than other methods,

such as DynaSLAM, in environments with people. Moreover, the authors have

only tested their system with unknown moving objects in a single experiment,

without using publicly available datasets.

DynaSLAM [21] is one of the first works to employs the Mask R-CNN

[7] instance segmentation framework to identify people in the scene at a pixel-

level, which it then uses to filter dynamic features. It is one of the visual SLAM

systems with the best accuracy in the TUM benchmark dataset [61].

Yuan and Chen proposed SaD-SLAM [22], which integrates depth infor-

mation and Mask R-CNN instance segmentation to identify dynamic features

in images. The algorithm classifies each feature point as static, dynamic, or

static and movable. SaD-SLAM exhibits high accuracy, surpassing DynaSLAM

in certain scenarios. However, its main limitation is that the semantic segmen-

tation is conducted offline. DOTMask [23], introduced by Vincent et al., em-

ploys instance segmentation to obtain pixel-wise information about objects in

an image, and an Extended Kalman Filter to track them. The authors aimed

to develop a faster SLAM system at the expense of lower accuracy when com-

pared to other approaches. The main problem of instance segmentation-based
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approaches for visual pose estimation is the lack of background information,

which decreases the possibility to infer about the existence of unknown moving

objects.

1.1.5

Visual SLAM with Panoptic Segmentation

Panoptic segmentation [62] is a computer vision task that combines both

instance segmentation and semantic segmentation. In semantic segmentation,

each pixel in the image is labeled with a semantic category, without distinction

to the number of objects in the same class. In instance segmentation, only

distinct objects in the image are identified and segmented at a pixel level.

The goal of panoptic segmentation is to unify these two tasks into a single

one, where all pixels in the image are labeled with either an instance label,

indicating which object it belongs to, or a semantic label, indicating which

category it belongs to. This technique allows SLAM systems to have a

better scene understanding on which pixels belongs to background or objects,

resulting in a more precise information about moving objects.

Recently, there has been an increasing use of Panoptic Segmentation in

visual state estimation systems. PVO [63] is a monocular SLAM framework

that introduces a video panoptic segmentation module to enhance visual

odometry capabilities. This module leverages depth, camera pose, and optical

flow to improve segmentation accuracy by linking the segmentation results

of the current frame with adjacent frames. SVG-LOOP [64] presents a loop-

closure detection algorithm that uses a combination of a semantic bag-of-

words model processed with panoptic segmentation to minimize the impact

of dynamic features, and a semantic landmark vector model to encode the

geometric connections within the semantic graph.

Zhu et al. [11] proposed a method based on ORB-SLAM2 that incor-

porates panoptic segmentation and geometry information. To minimize the

impact of unknown moving objects, they propose a dynamic object classifica-

tion approach based on epipolar geometry. Despite claiming robustness against

unknown moving objects, this was not numerically evaluated in their paper.

Also, they eliminate a priori all keypoints belonging to what they consider

highly dynamic, without considering known movable objects that can be static

(vehicles, for instance).

Finally, none of the mentioned methods could deal with unknown moving

objects. The exceptions are Zhu et al. [11], that did not provide a quantitative

analysis of the claim, and Ji et al. [10], that only tested their system in a single

experiment with a proprietary custom dataset. Unknown objects are pixel
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regions that the model could not predict any label. This happens due to objects

that were not trained by the model, motion blur or illumination conditions.

Since these regions can contain large information about the frame, they must

be addressed to improve pose estimation and overall mapping results.

1.2

Contributions

This master thesis presents a visual SLAM for dynamic environments

that uses Panoptic Segmentation to detect and filter moving objects. The

contributions of the paper can be summarized as follows.

– The first open-source visual SLAM system that uses Panoptic Segmen-

tation

– A new and robust method to deal with unknown moving objects

– Tests using datasets that explicitly have unknown dynamic objects in

the scene, obtaining the best results amongst other systems in several

sequences

– The method can be used with monocular, stereo or RGB-D cameras

1.3

Outline

This thesis is divided into 6 chapters that are structured as follows.

Chapter 2 explains the computer vision algorithms and techniques relevant to

the work, Chapter 3 details the structure of a feature-based SLAM system with

graph optimization, Chapter 4 presents the proposed methodology, Chapter 5

displays the results of the proposed methodology using real world datasets

from the literature, and Chapter 6 shows the conclusions and suggestions for

future work.
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Computer Vision Techniques

2.1

Introduction

This Chapter explains the basic computer vision techniques to under-

stand how the camera sensor extract information from the environment. The

pinhole camera model and intrinsic camera parameters are described in Section

2.2. The Section 2.3 show the methods used to estimate the camera parameters,

while Sections 2.4 to 2.7 present the mathematical formulation and techniques

to analyze image content and associate multiple 2D camera frames from 3D

scenes. Moreover, Section 2.8 describes the most common tasks in digital image

analysis and the recent panoptic segmentation technique.

2.2

Camera Model formulation

The pinhole camera model, shown in Fig. 2.1, is a mathematical model

that describes the relationship between the three-dimensional (3D) world and

the two-dimensional (2D) image captured by a camera. The model assumes

that light rays from each point in the 3D world pass through a single point

in space called the camera center, and then pass through a small aperture or

pinhole, forming an inverted image on the opposite side of the camera. The

image is then captured on a flat image sensor or film plane located at a fixed

distance from the pinhole.

Figure 2.1: Pinhole Camera Model [2].
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The model can be represented mathematically using homogeneous co-

ordinates. The camera matrix, also known as the projection matrix, maps

3D points in space to their corresponding 2D image points. It can be com-

puted using the intrinsic camera parameters, which include the focal length,

the principal point, and the skew coefficient, as well as the extrinsic camera

parameters, which describe the position and orientation of the camera in the

world coordinate system. The image point coordinates can by computed as
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(2-1)

where [X, Y, Z]T are the coordinates of the point in space, [u, v, 1]T are the

coordinates of the mapped point in the image plane, f is the camera’s focal

length, and cx and cy are the optical center coordinates.

RGB-D or depth cameras, are sensors that capture both color (RGB) and

depth information of a scene. They work by projecting a pattern of infrared

light onto the scene and then using the time-of-flight or structured light method

to calculate the distance between the camera and each point in the scene. This

produces a 3D point cloud representation of the scene, where each point has

X,Y and Z coordinates

X =
u − cx

fx

z (2-2)

Y =
v − cy

fy

z (2-3)

Z = depth(v, u) (2-4)

where Z is the depth measured by the camera for each pixel position. In general

the camera lens produces a circular image, and the magnification and angle of

view are the same in all directions, i.e., the focal length is assumed to be the

same in both x and y directions fx = fy = f . Figure 2.2 shows an example of

RGB-D camera output with the RGB image and its associated depth map.

This work uses the pinhole camera model for the camera measurements in

the SLAM formulation. This model provides SLAM systems with a simplified

and accurate representation of how a camera captures image data. Also, the

pinhole model is relatively simple to calibrate, since it only requires knowledge

of a few intrinsic camera parameters.
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(a) RGB Image (b) Depth Map

Figure 2.2: RGB-D Camera Output

2.3

Camera Calibration

Camera calibration involves estimating the intrinsic and extrinsic param-

eters of a camera to obtain accurate measurements from images. The intrinsic

parameters include the focal length, principal point, and distortion coefficients

as explained in Sec. 2.2, while the extrinsic parameters define the position

and orientation of the camera relative to the world coordinate system. There

are different methods for camera calibration, including the calibration plate

method, which uses a planar target with known geometry and known positions

in 3D space, and the Zhang method [65], which uses multiple images of a pla-

nar target (checkerboard) with different orientations. The checkerboard have

a known pattern that is used to detect feature points across all images. Then,

the parameters are estimated using the correspondence between the 2D image

points and their corresponding 3D points on the calibration pattern. Once the

intrinsic and extrinsic parameters are estimated, they can be used to correct

distortions in the image, perform accurate measurements, and reconstruct 3D

scenes from multiple images. Fig 2.3 shows an example of checkerboard image

with known size used to estimate camera parameters.

Figure 2.3: Zhang camera calibration method
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2.4

Visual Features

Feature detection refers to the process of identifying keypoints or regions

in an image that can be used for further analysis or processing. These features

are typically defined as local regions of an image that have distinct visual

characteristics, such as edges, corners, or blobs. There are various algorithms

and techniques for feature detection in computer vision, including Harris

corner detection [66], SIFT [67], SURF [68], FAST [69] and ORB [46]. Feature

detection algorithms are typically used in conjunction with feature descriptors

and matching techniques to enable computer vision systems to recognize and

track objects in real-world scenarios.

The Harris corner algorithm computes a corner response function at every

pixel location in an image and detects corners based on their response values.

Corners are regions where there are significant variations in image intensity in

multiple directions. SIFT (Scale-invariant feature transform) detects feature

points that are invariant to scale, rotation, and affine transformations. It uses

a difference-of-Gaussian (DoG) filter to detect potential interest points and

then applies a series of operations to generate descriptors that are used for

matching. SURF (Speeded-up robust feature) is a faster alternative to SIFT

and detects feature points using a similar approach, but with the use of box

filters and an approximation of the Laplacian of Gaussian (LoG) filter. FAST

(Features from Accelerated Segment Test) is designed for real-time applications

and detects feature points based on the presence of contiguous pixel values that

exceed a threshold in a circular pattern.

ORB is a fast and efficient algorithm that uses a combination of the FAST

keypoint detector and the BRIEF (Binary Robust Independent Elementary

Features) descriptor. The keypoint detector identifies points in an image that

are distinct and repeatable, while the descriptor is used to represent these

points in a compact and efficient manner. One of the main advantages of

ORB is its ability to detect and describe features with high repeatability, even

under significant variations in scale, orientation, and lighting conditions. It is

also robust to occlusion and clutter in the scene. Fig 2.4 shows ORB feature

detection performed by ORB-SLAM3.
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Figure 2.4: Feature detection performed by ORB-SLAM3

2.5

Feature Matching

After the keypoint detection, it is necessary to determine which features

correspond to certain locations in different images. A feature descriptor is de-

signed to capture local information about an image, such as color, texture,

and shape, that can be used to distinguish one object from another. Feature

descriptors are typically computed from regions of interest, such as corners

or interest points. Once the regions of interest have been identified, feature

descriptors are computed by applying mathematical operations, such as con-

volution or gradient calculations, to the pixel values within the region.

ORB uses the BRIEF descriptor to generate a binary code that represents

the intensity comparison between pairs of pixels in a small patch around a

feature point. The patch is typically a square with a fixed size and centered

on the feature point. The pixel pairs used for the comparison are randomly

selected from within the patch. In order to generate the binary code, each pair

of pixels is compared, and the result of the comparison is recorded as a binary

value of 0 or 1. The comparison is based on whether the intensity of the first

pixel is greater than that of the second pixel. The resulting binary string is

used to represent the feature point and can be compared with other feature

points using a simple Hamming distance metric.

Once features and their descriptors are extracted from two or more

images, the next step is to establish some preliminary feature matches between

these images. The goal of feature matching is to find a set of corresponding
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features that can be used to align and merge the images. One popular algorithm

for feature matching is the k-nearest neighbors (KNN) algorithm.

In the KNN algorithm, each feature in one image is compared with all the

features in the other image to find the K closest matches. The distance between

the feature vectors is computed using a distance metric, such as Euclidean

distance or Hamming distance. The K closest matches are then selected based

on their distances.

Once the K nearest matches have been found, a threshold is applied

to reject matches that are not sufficiently close. This threshold is usually set

based on the ratio of the distance to the first and second nearest neighbors. If

this ratio is above a certain threshold, the match is rejected as ambiguous. Fig

2.5 show an example of two consecutive camera frames with their respective

keypoints and their association.

Figure 2.5: Feature Matching

2.6

Epipolar Geometry

Epipolar geometry is the relationship between two views of a scene

captured by two cameras. It describes how the geometry of the cameras, the

3D structure of the scene, and the 2D projection of the scene into the cameras

are related. Specifically, epipolar geometry is concerned with the relationship

between corresponding points in the two views, known as epipolar points. An

epipolar line is the line connecting the epipole (the intersection of the line

connecting the camera centers with the image plane) to an epipolar point.
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Figure 2.6: Epipolar geometry [2] schematic.

The fundamental matrix is a mathematical representation of the epipolar

geometry. There are several methods to calculate the fundamental matrix from

a set of corresponding points. One common method is the 8-point algorithm.

This algorithm first normalizes the corresponding points to reduce the effects

of scaling and distortion. Then it requires at least 8 corresponding points in the

two views and finds the fundamental matrix by solving a set of linear equations.

However, the resulting matrix may not satisfy the constraints of the epipolar

geometry, so additional steps are necessary to enforce these constraints.

2.7

RANSAC

A more advanced method is RANSAC [50]. The basic idea behind

RANSAC is to randomly sample a subset of data points from the dataset

and fit a model to this subset. The model is then tested on the remaining data

points, and the number of inliers (data points that fit the model) is counted.

The inliers are obtained using Least-Median of Squares method [70]. If the

number of inliers exceeds a certain threshold, the subset is considered a good

fit and the model is re-estimated using all the inliers. This process is repeated

multiple times, and the best model (with the highest number of inliers) is

selected as the final model.

RANSAC is particularly useful for estimating the fundamental matrix

because it is robust to outliers in the corresponding point pairs. Outliers can

occur due to noise or errors in the feature detection and matching process. By

randomly selecting subsets of corresponding point pairs and iteratively refining

the fundamental matrix, RANSAC can effectively filter out the outliers and

provide a robust estimate of the fundamental matrix.
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In order to increase the probability of finding a true set of inliers through

random sampling, a sufficient number of trials (S) must be conducted. Let

p denote the probability of any given correspondence being valid and let P

represent the total probability of success after S trials. The likelihood of all k

random samples being inliers in one trial is given by p raised to the power of

k. Therefore, the likelihood of all S trials failing is given by the complement of

the probability that at least one trial succeeds, which is 1-P.

1 − P = (1 − pk)S (2-5)

The required minimum number of trials is

S =
log(1 − P )

log(1 − pk)
(2-6)

Stewart [70] provides examples of the number of trials required to achieve

a 99% success probability in the fundamental matrix problem. The table 2.1

shows that the required number of trials increases rapidly with the number

of sample points used. This fact motivates practitioners to use the smallest

possible number of sample points, k, for each trial when using RANSAC in

practice.

Table 2.1: Number of trials S to attain a 99% success probability

k p S

3 0.5 35

6 0.6 97

6 0.5 293

2.7.1

Fundamental Matrix with RANSAC

Here, we demonstrate how to calculate the fundamental matrix with

an example from two consecutive images. First, we apply the ORB feature

extractor in both images to obtain the keypoints and descriptors. Then, the

fundamental matrix is used to estimate the mapping of points in one image to

lines in another. It can be defined as (x′)T = Fx or

[

u′ v′ 1
]
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To solve this system of homogeneous linear equations, a Singular Value

Decomposition (SVD) can be applied to extract the solution F by taking the
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row of V corresponding to the smallest singular value. One equation is required

to constrain the solution for each unknown variable. Following the 8-point

algorithm, eight keypoint pairs are randomly sampled to solve the system. The

estimated F has full rank, while the fundamental matrix is a rank 2 matrix,

requiring to reduce its rank. One way to achieve this is by decomposing F using

singular value decomposition into matrices.

F = UΣV ′ (2-8)

The fundamental matrix can be improved by normalizing the keypoints

coordinates before computation. The normalization consists in a linear trans-

formation to make the keypoints follow a standard Gaussian distribution.

Pointnorm = (Tscale) ∗ (Toffset) ∗ Point (2-9)
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(2-10)

Where cu and cv are the mean coordinates and s is the reciprocal of

the standard deviation. The normalized fundamental matrix can be calculated

with Ta = TscaleToffset from a set of 2D keypoints and Tb = TscaleToffset from

another set of points.

Forig = T T
b FnormTa (2-11)

Algorithm 1 summarizes all steps to calculate the fundamental matrix

using RANSAC. Furthermore, Fig. 2.7 show the resulting epipolar lines from

two consecutive images and its fundamental matrix. Since the time interval

between the two images is very small, the epipolar lines are similar.

(a) Image Inliners from Image at time t-1 (b) Image Inliners from Image at time t

Figure 2.7: Epipolar lines generate by RANSAC algorithm
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Algorithm 1: Fundamental Matrix with RANSAC

Data: Keypoints Kpt, from current frame

Data: Keypoints Kpt−1, from last frame

Data: Nit number of iterations

1 Kp∗

t , Kp∗

t−1 , M = FeatureMatching(Kpt,Kpt−1);

2 Ta , Tb = normalization(Kp∗

t , Kp∗

t−1);

3 bestInliners = 0;

4 bestModel = NULL;

5 for i=1:Nit do

6 Kp∗

t , Kp∗

t−1 = Sample_8_pairs(Kp∗

t , Kp∗

t−1);

7 F = SVD(Kp∗

t , Kp∗

t−1);

8 Fn=norm(F , Ta , Tb);

9 nInliers=0;

10 for j=1:M do

11 if |xT
2j Fn x1j| < ϵ then

12 nInliers = nInliers + 1;

13 end

14 end

15 if nInliers > bestInliers then

16 bestInliers = nInliers;

17 bestModel = Fn;

18 end

19 end

F =











3.74 ∗ 10−7 2.55 ∗ 10−4 −1.55 ∗ 10−1

−2.53 ∗ 10−4 3.07 ∗ 10−6 2.51 ∗ 10−1

1.49 ∗ 10−1 −2.54 ∗ 10−1 1











(2-12)

2.8

Deep Learning

Classical programming, also known as rule-based programming, involves

writing a set of instructions (rules) that a computer follows to solve a problem.

These rules are based on a programmer’s understanding of the problem and

are often hand-coded. Classical programming requires a deep understanding of

the problem domain, and the rules must be updated manually if the problem

changes or if new data becomes available.

Machine learning, on the other hand, is an approach to problem-solving

that involves training a computer to learn patterns from data and make

predictions based on that data. Machine learning techniques are designed to
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automatically improve their accuracy over time as they are fed with more data.

Another key difference between classical programming and machine

learning is their performance in dealing with complex and dynamic problems.

Classical programming may struggle when faced with highly complex problems

or those that involve a large amount of data. Machine learning, on the other

hand, can handle such problems with ease, as it can automatically identify

patterns that would be difficult or impossible for a human to detect. Fig. 2.8

shows a comparison between classical programming and machine learning.

Classical
Programming

Machine Learning

Rules

Data

Data

Answers

Answers

Rules

Figure 2.8: Comparison between classical programming and machine learning

Deep learning is a subfield of machine learning that uses deep neural

networks to learn and extract features from data. One of the key advantages

of deep learning is its ability to learn representations directly from unstructured

data, such as images, audio and text. This has led to significant improvements

in accuracy and robustness in many computer vision tasks. Deep Learning

differs from Machine Learning primarily due to its ability to use a significantly

larger number of intermediate layers in its architecture. This is made possible

by the availability of large amounts of data and the advances in GPU

technology.

2.8.1

Datasets

Datasets are crucial for deep learning, as they provide the required

data needed to train deep neural networks. In supervised learning, deep

neural networks learn to recognize patterns in the input data by minimizing

the difference between the predicted output and the ground truth label.

The quality and quantity of training data have a significant impact on the

performance of deep learning models. Large, diverse datasets such as the

COCO Dataset [71] provide deep learning models with a broad range of

examples to learn from, helping them to generalize better to new inputs and

perform image analysis tasks.
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Besides training data, the COCO dataset enables the comparison be-

tween different models on a common set of benchmarks. COCO contains over

330,000 images annotations for 80 different classes. Most of these classes may

appear in an indoor environment, such as TV monitors, tables and cabinets.

Trained models can be a valuable asset for SLAM systems, as they can aid in

detecting objects within the environment and tracking their movements. By

measuring the dynamics of each object, a more comprehensive understand-

ing of the scene can be obtained, ultimately enhancing the performance and

accuracy of a SLAM system.

2.8.2

Image analysis tasks

In computer vision, deep learning has been used for a wide range of ap-

plications, including image classification, object detection, semantic segmen-

tation, and instance segmentation, as shown in Fig. 2.9. Image classification is

the task of assigning a label or category to an image based on its content. The

next sections will further discuss the object detection as well as the semantic,

instance and panoptic segmentation tasks.

(a) Image Classification (b) Object Detection

(c) Semantic Segmentation (d) Instance Segmentation

Figure 2.9: Deep learning tasks [3]
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2.8.3

Object detection

Object detection is a computer vision task that involves detecting and

localizing objects within an image or video, and draw 2D bounding boxes

around them to indicate their location, along with their confidence score. There

are several popular deep learning approaches for object detection, including

Faster R-CNN, SSD, and YOLO.

Faster R-CNN [4] is a region-based convolutional neural network. This

approach involves two stages: region proposal and object detection. In the

region proposal stage, a set of candidate regions are generated using a region

proposal network. In the object detection stage, each candidate region is

classified and refined using a detection network. Fig. 2.10 shows the Faster

R-CNN model.

Figure 2.10: Faster R-CNN Model, image from [4]

While accurate, traditional object detection algorithms have complex

pipelines and are not suitable for real-time applications. In contrast, “one-

shot detectors” are more efficient as they do not rely on region proposals to

locate objects within an image.

SSD, proposed by Liu et al. [56], is a deep learning approach that

performs object detection in a single shot. It involves predicting both the class

and location of objects directly from the input image. SSD is designed to be

faster and more accurate than traditional two-stage methods like Faster R-

CNN. SSD were used in SLAM systems by Sunderhauf et al. [72] and Xiao et

al.[73].
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Another single shot technique is YOLO, from Liu et al. [5]. YOLO is

designed for real-time object detection. It involves dividing the input image

into a grid and predicting the class and location of objects within each grid

cell. Fig 2.11 shows the YOLO architecture. The image input is partitioned

into a grid, where each cell predicts a group of class probabilities and a specific

number of bounding boxes. These bounding boxes comprise five predictions,

which are the x and y coordinates of the box’s center relative to the cell’s

border, its width, height, and confidence. The boxes with class probabilities

that surpass a certain threshold are then chosen. This approach allows for

efficient object detection without the need for region proposals.

Figure 2.11: YOLO Model, image from [5]

YOLO is constantly in development and already has eight versions. Every

new released version improved YOLO in its accuracy and time performance,

making it fit to run in a SLAM system such as Crowd-SLAM [16].

2.8.4

Semantic Segmentation

Semantic segmentation assign a semantic label to every pixel in an im-

age. The goal is to partition an image into meaningful segments and classify

each segment according to its semantic meaning. Deep learning semantic seg-

mentation models can learn high-level representations of images by extracting

features at different levels of abstraction. These features can be used to predict

the class labels of each pixel in an image.
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U-Net [6] is a pioneer work in semantic segmentation. It produces dense

output maps that preserve the spatial resolution of the input image. This

architecture, shown in Fig 2.12, is a type of encoder-decoder network, which

can transform an input sequence of data into an abstract latent representation,

and then decode the representation vector to generate an output sequence of

data.

Figure 2.12: U-Net encoder-decoder network, image from [6]

For instance, DS-SLAM [19] and Ji et al. [10] are SLAM systems

that utilize SegNet [59], an encoder-decoder semantic segmentation network

similar to U-Net, to identify moving objects in the scene. However, semantic

segmentation has some limitations. It may not perform as well on complex or

cluttered scenes with multiple overlapping objects.

2.8.5

Instance Segmentation

Instance segmentation involves not only detecting objects in an image,

but also identifying each instance of an object and differentiating it from

other instances and other objects in the same image. In other words, instance

segmentation aims to locate and segment each object instance in an image,

providing a precise pixel-level segmentation mask for each object.

Instance segmentation is a more challenging task than semantic segmen-

tation, which involves only classifying each pixel in an image into a prede-

fined set of classes. Instance segmentation requires both object detection and
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pixel-level segmentation, which makes it more computationally demanding and

requires more data and specialized algorithms.

Mask R-CNN [7], is an extension of the faster R-CNN object detection

model. Mask R-CNN model, shown in Fig 2.13, adds a parallel branch to the

faster R-CNN model that generates a binary mask for each object instance, in

addition to predicting the class and bounding box coordinates of each object.

Figure 2.13: Mask R-CNN model architecture [7]

2.8.6

Panoptic Segmentation

Panoptic segmentation aims to provide a comprehensive understanding

of visual scenes by simultaneously detecting and segmenting all objects in the

scene, including both “Stuff” (e.g. sky, sand, sea) and “Thing” (e.g. people,

kites) classes, as shown in Fig 2.14. Unlike traditional semantic segmentation,

which only labels pixels with class labels, panoptic segmentation assigns unique

IDs to each individual instance of an object, allowing for more fine-grained

analysis of the scene. Panoptic segmentation is a challenging task due to the

large number of object classes and the high variability in object appearance

and shape.

The paper from Kirillov et al. [62], was the first work to talk about

panoptic segmentation as a unified view of image segmentation. The authors

proposed a panoptic quality (PQ) metric to measure the accuracy of things

and stuff objects in datasets. PQ calculates the intersection over union (IoU),

which will be explained with more details in Chapter 4, between predicted

segments and ground-truth for each trained class and average over all trained

classes. PQ is defined as
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PQ =

∑

(p,q)∈T P IoU(p, q)

|TP | + 0.5|FP | + 0.5|FN | (2-13)

Figure 2.14: Panoptic Segmentation output

Where TP means true positives, FP means false positives and FN means

false negatives. The PQ metric does not evaluate predictions for unknown

pixels, i.e, pixels that the model could not predict a class label to. The

PQ metric is important to evaluate panoptic segmentation models from the

literature with respect to the COCO dataset, and selecting the most suitable

model for the employment in the proposed methodology.

Most of the proposed panoptic segmentation use RGB images or LiDAR

measurements as inputs. In the rest of this subsection, it will be discussed

existing RGB image-based methods.

Several techniques for panoptic segmentation utilize instance segmenta-

tion as a separate step before combining or aggregating the results to obtain the

final panoptic segmentation output. In these approaches, the shared backbone

of the network is used to extract features, which are then employed in other

parts of the network, as shown in Fig. 2.15a. Alternatively, some frameworks

have employed explicit connections between instance and semantic networks to

achieve similar results, portrayed in Fig. 2.15b. Furthermore, some approaches

combine the two modules as a single model, shown in Fig. 2.15c, to avoid

merging the outputs from individual heads.

JSIS-Net [74] utilizes a ResNet-50 backbone to extract features in a

CNN-based model. This is followed by the implementation of two branches for

instance and semantic segmentation. The authors merge these two branches

through a heuristic method to produce the final output of panoptic segmenta-

tion.
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In their work, Li et al. [8] introduce the attention-guided unifed network

(AUNet). The attention mechanism is used to focus on specific parts of the

input data that are more relevant to a particular task. It allows the network

to selectively weigh the importance of different features. AUNet employs three

parallel branches: RPN, background and foreground segmentation. The pro-

posed attention modules are added to each branch and the results merged to

provide the panoptic output. Moreover, this paper used Feature Pyramid Net-

work (FPN) [75] as a backbone to perform multiscale feature representations.

(a) Sharing Backbone (b) Explicit Connections between Heads

(c) Singel Shot

Figure 2.15: Network arquiteture types for panoptic segmentation models

FPN is a common backbone used in several panoptic segmentation

models. The basic idea behind FPN, shown in Fig 2.16, is to construct a

pyramid of feature maps with increasing spatial resolutions and decreasing

semantic information. This is achieved by adding a top-down pathway to CNN

backbone, such as ResNet, and merging it with the bottom-up pathway to

create a feature pyramid.

Figure 2.16: Feature pyramid network [8]

UPSNet [76] is another method that utilize FPN as backbone. The au-

thors designed an instance segmentation head based on Mask-RCNN and pro-

posed a deformable convolution based on semantic convolution for pixel-wise
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classification. The same authors from [62] proposed PanopticFPN [77], a single

model with two subtasks based on FPN, which demonstrated greater precision

in relation to the concatenation from instance and semantic segmentation. Li

et al. [78] introduced the things and stuff consistency network with explicit

connections (TASCNet), which generates a binary mask for each pixel pre-

dicting things versus stuff. Additionally, an extra loss is integrated to ensure

coherence between the predictions of things and stuff.

Occlusion Aware Network (OANet) [79] also proposes a single network

for two subtasks. To fuse the instance with semantic subtasks, the authors

developed a spatial ranking module based on a CNN architecture to address

the issue of occlusion between the predicted instances.

SOGNet [80] utilizes a Scene Overlap Graph (SOG) to represent the

interactions between instances and a spatial-semantic hierarchy to capture the

scale and context information. This work uses FPN followed by an overlap-

aware graph construction and propagation module that captures instance

interactions.

The paper from Lazarow et al. [81] proposes OCFusion, an instance

occlusion module, to improve the panoptic segmentation task. The module

is based on Mask-RCNN to generate occlusion maps. These maps modify the

RoIAlign operation to better handle with occluded instances.

Wang et al. [82] proposed a method called pixel consensus voting (PCV).

The objective of PCV is to elevate pixels to a first-class task, where each pixel

is expected to give evidence for the existence and position of the objects it

potentially affiliates to.

DETR [83] is a new approach to object detection that uses transformer,

which is an encoder-decoder neural network architecture commonly used in

natural language processing tasks. In this approach, the input image is first

divided into a set of non-overlapping image patches, and a transformer network

is applied to each patch to extract features. The resulting set of patch features

is then processed by a series of transformer layers to generate a set of object

detections, including their class labels, bounding boxes, and confidence scores.

The authors added a FPN-style CNN to generate binary masks for each

bounding box detected and merge using pixel-wise argmax to perform panoptic

segmentation tasks. DETR was later used as reference for MaskFormer [84],

which introducted six additioanl transformers encoder layers after the CNN

backbone from DETR and resulted in direct binary masks prediction with

better accuracy.

In the work from Hou et al. [85]. The authors propose a single-shot

panoptic network using a dense object detector and segmenting each instance
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using an efficient segmentation network. The method refines the masks by

propagating information across nearby instances using a graph-based approach

to produce the panoptic output.

Panoptic-Deeplab [86] uses a different approach than the previous meth-

ods. It adopts a CNN architecture with a dual-decoder based on the author’s

previous work called DeepLabV3+ [87], and dual spatial pyramid pooling

(ASPP) modules for semantic and instance segmentation. In the same con-

text, the authors from [88], [89] and [90] developed methods based on the

transformer’s encoder-decoder architecture with custom self-attention layers

to achieve more accurate and consistent segmentation results.

Table 2.2 summarize all previously discussed panoptic segmentation

methods in a chronological order. PanopticFPN was selected to be incorporated

into the proposed SLAM system because of its open-source nature, straight

forward documentation and strong accuracy using the PQ metric in the COCO

test-dev dataset.

Table 2.2: Panoptic Segmentation Models

Model Year Open-Source COCO test-dev PQ FPN backbone

UPSNet 2019 Yes 42.5 Yes

TascNet 2019 No 40.7 Yes

JSIS-Net 2019 No 27.2 No

PanopticFPN 2019 Yes 46.8 Yes

OANet 2019 No 41.3 Yes

AUNet 2019 No 46.5 Yes

SOGNet 2019 No 47.8 Yes

Dense-Det 2020 Yes 37.1 Yes

PCV 2020 Yes 37.1 Yes

DETR 2020 Yes 45.1 Yes

Panoptic-DeepLab 2020 No 41.4 No

Axial-Deeplab 2020 Yes 43.9 No

MaskFormer 2021 Yes 52.7 No

Max-Deeplab 2021 Yes 51.3 No

CMT-Deeplab 2022 No 55.7 No

This chapter described the basic concepts from classical computer vision

techniques and deep learning approaches. In the next chapter, it is presented

the basic ideas of a visual SLAM system.
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Feature-based Visual SLAM

3.1

Introduction

The objective of this chapter is to introduce the fundamental concepts

of feature-based visual SLAM in static scenarios, utilizing a graph-based

probabilistic formulation. ORB-SLAM3 will be used as a baseline, since it

is adopted as common framework by many SLAM systems, and it is used as a

major example to explain the SLAM subsystems and how they interact with

each other. Section 3.2 is presenting the probabilistic formulation of the SLAM

problem using a graph-based approach. The SLAM frond-end, which includes

camera tracking, map points and loop closure, is discussed in detail in Section

3.3, while Section 3.4 provides an overview of graph optimization frameworks.

The output of a feature-based SLAM system is presented in Section 3.5.

3.2

Graph-based formulation

The Graph-SLAM approach is a common choice for SLAM due to its

high accuracy and efficiency. It involves two main steps: front-end and back-

end. The front-end is responsible for constructing the graph and comprises

two main tasks: pose estimation and loop closure. Pose estimation involves

locally estimating the robot’s pose, while loop closure is responsible for long-

term data association. The back-end is responsible for graph optimization,

which estimates an optimal trajectory of the robot and a precise map of the

environment. The general system is shown in Fig 3.1.

Figure 3.1: Graph-SLAM system

The problem is modeled as a graph with nodes representing the robot’s

poses and edges representing measurement constraints between these poses.

The aim is to optimize the error constraints caused by odometry drift. Two
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types of edges exist in visual SLAM: those created using visual odometry and

those created for loop closure.

The graph is initially constructed with nodes representing robot poses

and edges representing constraints between poses based on measurements

obtained by visual odometry. Fig 3.2 shows a representation of the graph.

Figure 3.2: Pose-Graph representation

The initial graph structure is illustrated in Fig. 3.3a. The edges between

poses are denoted by e01 to e89, representing visual odometry estimations.

Additionally, there is a loop closure edge represented by e90, which is detected

by a place recognition algorithm that evaluates if the robot has revisited a

previously explored location and establishes a connection between the current

and the old poses. Following loop closure, the graph is optimized to correct

the visual odometry drifts, as demonstrated in the diagram OF Fig. 3.3b.

(a) Pose-graph withloop closure (b) Pose-graph after optimization

Figure 3.3: Example of a pose-graph being optmized after loop closure

The mathematical formulation of the graph-based SLAM approach is

based on Maximum-a-posteriori estimation (MAP). MAP estimation is a sta-
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tistical approach used to estimate an unknown parameter or set of parameters

in a probabilistic model. In this method, a prior probability distribution is

combined with the likelihood function to estimate the posterior probability

distribution of the parameters. MAP estimation aims to find the state that

maximize the posterior probability distribution given measurements

X∗ = argmax
X

p(X|Z) = argmax
X

p(Z|X) p(Z) (3-1)

Where the X∗ is the state, X is the posterior probability distribution, Z

correspond to measurements for a given state and p(X) is the prior probability.

Assuming independent measurements, Eq. 3-1 is modified to

X∗ = argmax
X

p(X)
m
∏

k=1

p(zk|X) = argmax
X

p(X)
m
∏

k=1

p(zk|Xk) (3-2)

The MAP approach is particularly useful when dealing with problems

that involve uncertainty or noisy data. Assuming that the measurement noise

is a zero-mean Gaussian distribution, then

p(zk|Xk) ∝ exp(−0.5||kk(Xk) − zk||2Ωk
) (3-3)

where Ωk is the information matrix associated with measurements.

Finally, the MAP estimation can be written as

X∗ = argmin
X

− log(p(X)
m
∏

k=1

p(zk|Xk)) = argmin
X

m
∑

k=0

||kk(Xk) − zk||2Ωk
(3-4)

In the context of SLAM, MAP estimation is often used to estimate

the robot’s trajectory and the map of the environment. The measurements

collected by the robot are used to construct a probabilistic model, and the prior

information about the robot’s motion and the environment is incorporated to

estimate the posterior distribution of the robot’s pose and the map.

3.3

SLAM Front-End

The pose-graph front-end is responsible for constructing the graph of

robot poses and landmark positions. The graph is a data structure that rep-

resents the history of robot motion and observations. The graph construction

process involves two main tasks: camera tracking and loop closure detection.
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3.3.1

Map Points

The sparse map is a set of 3D points in space that is estimated from

2D image feature correspondences in multiple camera frames. These 3D points

are called map points, and each map point stores: (a) Its position in world

coordinate system; (b) The viewing directions, i.e., the rays connecting a point

with the optical center of the keyframes that observe it; (c) The ORB descriptor

vector that describes the appearance of the map point based on its surrounding

image patches in the keyframes where it was observed; (d) Various flags that

indicate the status of the map point, such as whether it is currently visible,

whether it has been recently updated or deleted, and whether it is being used

for loop closure detection; (e) Information about the scale of the map point

relative to the camera’s focal length and image resolution, which can be used

to estimate the depth of the point in the scene. Map point coordinates (X, Y,

Z) are calculated using equations 2-2, 2-3 and 2-4 respectively. Their purposed

is to track the motion of the camera between frames, to verify the consistency

of the estimated camera poses, as well as to detect and correct loop closures.

3.3.2

Camera Tracking

The tracking system is responsible for finding feature matches between

consecutive frames to estimate the motion of the camera relative to a global

reference frame, while building a map representation of the environment.

Motion blur, occlusions, and changes in lighting are challenges that the camera

system must surpass.

ORB-SLAM3’s camera tracking subsystem can be described as follows.

First, ORB feature detector is used to extract keypoints and its descriptors.

Then, the initial pose estimation is predicted using a constant velocity model

and a guided search of the map points from the last frame. The camera

motion between consecutive frames is estimated using matched featured from

the feature matching algorithm. In case of lost track, the current frame is

convert into a bag-of-words and stored as global relocalization candidate in

order to find the camera pose. Once the camera pose is estimated and a set

of matched features are obtained, ORB-SLAM3 optimizes the camera pose

with all the map point correspondences found in the image frame using the

local map tracking algorithm. After that, the current frame passes through a

decision processes to be spawned as a keyframe or not. Keyframes are selected

based on their motion with respect to the previous keyframe, as well as the

number of features and the map coverage. After that, ORB-SLAM3 performs
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a local bundle adjustment to optimize the camera poses and the 3D points of

the selected keyframes. Finally, the system detects loop closures and performs

global bundle adjustment to optimize camera poses and map points of all the

keyframes.

3.3.3

Loop Closure

Loop closure detection is the process of identifying when the robot revisits

a previously visited location. This is done by comparing the current sensor

readings to the previously recorded data and checking if they match well

enough. If a loop closure is detected, a new edge is added to the graph that

links the current pose to the previously visited pose. This edge helps to correct

any drift that may have occurred due to errors in pose estimation. Also, this

helps to manage the size of the graph by discarding nodes and edges that are

no longer useful. This is necessary to avoid memory overload and to ensure

that the graph can be efficiently optimized.

The bag-of-words approach is a technique used in place recognition sys-

tems for representing images through visual words selected from a vocabulary.

Local descriptors such as SIFT [67] or ORB [46] are used to obtain these words.

This approach enables fast comparisons between images across large datasets,

instead of slow direct comparisons between individual features. By quantiz-

ing features into a vocabulary, it increases computational efficiency. A number

of place recognition systems, including FAB-MAP [91], FAB-MAP2 [92], and

DBoW2 [93], employ the bag-of-words technique.

The loop closure algorithm from ORB-SLAM3 has seven main steps.

First, the algorithm checks for significant motion before searching for a loop

candidate. Then, it searches for a viable loop candidate by calculating bag-of-

words-based matching scores between the current keyframe and its connected

frames. If a loop candidate is found, the algorithm performs a temporal

consistency test to ensure consistency between the current keyframe and its

loop candidate. If the consistency test is passed, the algorithm finds ORB

matches between the current keyframe and its loop candidate and performs

RANSAC iterations to find a similarity transformation. The transformation is

then optimized using a pose-graph optimization tool. Finally, the algorithm

projects map-points of the loop candidate onto the current keyframe using the

optimized transformation and checks if the number of matches is greater than

a threshold. If any of these steps fail, the current keyframe is added to the

central keyframe database, aborting the loop closure routine.
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3.4

SLAM Back-End

While the front-end is responsible for constructing the graph, the back-

end is responsible for graph optimization. The optimization involves minimiz-

ing the error of MAP estimation in Eq. 3-4 between the measurements and

the expected values represented by the graph. The objective function to be

minimized is defined as the sum of the squared error of the residuals of the

measurements. This nonlinear optimization problem is typically solved using

iterative techniques such as Gauss-Newton or Levenberg-Marquardt. Fig 3.4

shows an example of a 2D graph without optimization and the resulting map

using Gauss-Newton optimization.

(a) Graph without optimization (b) Graph optimized

Figure 3.4: Example of a graph optimization

Various graph optimization frameworks for SLAM have been proposed in

the literature. For instance,
√

SAM (square root SAM), which was developed

by Dellaert et al. [94], and iSAM, proposed by Kaess et al. [95]. However, the

most widely used framework is g2o [96]. This open-source C++ framework has

been employed as a back-end in many monocular, stereo, and RGB-D SLAM

implementations, including ORB-SLAM [12], ORB-SLAM2 [14], ORB-SLAM3

[9], and RGBDSLAM [44]. The g2o framework allows the use of different

solvers, such as Cholesky, Preconditioned Conjugate Gradient, and Levenberg-

Marquardt, to achieve optimal results.

3.5

Sparse Map

Sparse maps provide a compact representation of the environment that

can be used to generate the constraints between poses, while minimizing the

amount of redundant information in the graph. This reduces the computational
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complexity of the optimization process and makes it easier to obtain accurate

estimates of the robot’s trajectory and the map of the environment.

The visual representation in Figure 3.5 illustrates a feature-based map

created by the ORB-SLAM3 algorithm [9]. The camera poses are depicted in

blue, while the red and black points are registered map points, and the green

lines indicate the edges of the graph. While sparse maps generated by ORB-

SLAM3 cannot be directly utilized for navigation, certain methods, such as the

approach proposed by Chen et al. [97], can transform the map into a navigable

representation.

Figure 3.5: Sparse map obtained with ORB-SLAM3 [9].

Chapter 3 showed the theoretical formulation of a visual SLAM system.

Chapter 4 uses the concepts presented in chapter 2 and 3 to describe the

proposed methodology.

DBD
PUC-Rio - Certificação Digital Nº 2112345/CA



4

Methodology

4.1

Introduction

This chapter present Panoptic-SLAM, a visual SLAM for dynamic envi-

ronments that uses panoptic segmentation to detect and filter moving objects.

To the best of our knowledge, this is the first visual SLAM system based on

panoptic segmentation that can perform robust localization in dynamic envi-

ronments in the presence of unknown and unlabeled moving objects.

4.2

Overview

Figure 4.1 shows a diagram of the proposed approach. The SLAM

system is based on ORB-SLAM3 [9], and it is composed of four threads

that run in parallel: panoptic segmentation, tracking, local mapping and loop

closing. First, the image frames are process in both tracking and panoptic

segmentation threads. ORB features are extracted in the tracking thread, and

the image is segmented into objects, background and unknown information in

the panoptic segmentation thread. The known objects are sent to a short-term

data association algorithm to determine if they are new or were present in the

last frame. The features associated with the background are matched with the

ones of the last frame and used to compute a fundamental matrix. Using this

fundamental matrix, the keypoints associated to known and unknown objects

are classified as dynamic or static. Only static features are used for mapping

and loop closing.

Panoptic
Segmentation

RGB Image

Panoptic Segmentation
Output

Extract ORB

Things masks

Stuff mask

Unknown

Short-term Data
Association

Moving
Keypoint

Classification

Dynamic
Keypoint Filter

A priori
Keypoint Filter

Fundamental
Matrix

Computation

TRACKING

FPN

Track Local
Map

New Keyframe
Decision Keyframe

Local Mapping

Loop Closing

Bundle
Adjustment

and Map
Update

Figure 4.1: Panoptic-SLAM System Framework
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4.3

Panoptic Segmentation

As mentioned in Chapter 2, in panoptic segmentation, pixels are clas-

sified either as “Things” or “Stuff”. Things are countable objects with well-

defined boundaries and are potentially movable, such as people, animals, or

vehicles. Stuff, on the other hand, refers to uncountable amorphous regions

of the image, mostly “unmovable” such as sky, floor, or walls. The instance

segmentation identifies individual objects in the “Things” category, while the

semantic segmentation labels all pixels in the image with their corresponding

category. With high accuracy and efficiency, this segmentation method sur-

passes previous box-based or box-free models.

Also, some parts of the image are unknown, i.e. regions that the panoptic

model could not predict any label. The unknown masks can happen due

to motion blur or unlabeled objects in the scene. There can also be wrong

detections, i.e., objects with wrong classification. This can happen either if

an object in the scene is labeled, but there is another class with similar

characteristics (e.g. tv and monitor), or if an unlabeled object is similar to

a labeled class.

This master thesis uses PanopticFPN [77] for inference, trained with the

COCO dataset [71], which can segment up to 80 different labels. Fig.4.2a shows

an example of an input rgb image, Fig. 4.2b shows the associated panoptic

masks and Fig. 4.2c unknown pixel regions in black.

(a) RGB image (b) Panoptic image (c) Unknown pixels image

Figure 4.2: Panoptic image outputs

4.4

Dynamic Keypoint Filtering

The proposed method for dynamic keypoint detection and filtering is

divided into four processes: a priori keypoint filtering, fundamental matrix

computation, short-term data association, and moving keypoint classification

of Things and Unknown.
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First, the panoptic model generates all masks predictions. People key-

points are filtered a priori, as humans can be considered as highly dynamic,

and just in rare situations they remain completely still for a long period. Fig-

ure 4.3 shows a comparison between people keypoint filter and ORB-SLAM3.

The keypoints belonging to the “Stuff” mask are used for computing the fun-

damental matrix with RANSAC [50]. In order to calculate the fundamental

matrix, corresponding features must be identified in both views. Without an

accurate feature matching, the fundamental matrix cannot be accurately cal-

culated, which can result in errors in subsequent tasks. The feature matching

algorithm matches the ORB descriptors of the keypoints in both the reference

and the query images using a nearest neighbor approach. Specifically, for each

keypoint in the reference image, the algorithm searches for the closest keypoint

in the query image based on the similarity of their ORB descriptors.

(a) ORB-SLAM3 (b) Panoptic-SLAM

Figure 4.3: People keypoint filter

The fundamental matrix is used to map feature points from the previous

frame to their corresponding search domain in the current frame, namely

the epipolar line. Assuming that the matched points in the current and last

frames are p1 and p2, respectively, their homogeneous coordinate form can be

represented as P1 and P2.

P1j = [u1, v1, 1] (4-1)

P2j = [u2, v2, 1] (4-2)

where “u” and “v” represent the pixel coordinates in the image frame, and

“j” symbolizes the keypoint category (“Thing” or “Unknown”). Using these

values, we can compute the epipolar line, denoted as L
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L











X

Y
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= FP1j (4-3)

Given that X, Y, Z represent line vectors and F represents the funda-

mental matrix, the distance between a matched point and its corresponding

epipolar line can be determined as

Dj =
P2T

j FP1j
√

||X||2 + ||Y ||2
(4-4)

The idea is to have the fundamental matrix calculated with static “Stuff”

keypoints and use it with “Things” and “Unknown” feature matches in order

to determine whether the distance from a matched point to its corresponding

epipolar line is less than a certain threshold. If the distance is lower than

the threshold, the matched keypoint is considered to be static. For the case

of insufficient “Stuff” keypoints in the scene, the system will use the last

calculated fundamental matrix.

4.5

Short-term Data Association

The moving keypoint classification of “Things” uses a short-term data

association algorithm to address the issue of multiple objects with the same

label in a frame. The short-term data association evaluates, using the intersec-

tion over union (IoU) metric, shown in Eq. 4-5, if a new “Thing” mask detected

in the current frame correspond to a “Thing” mask of the last frame. Every in-

stance mask is predicted with its respective bounding box. For every new pair

of frames at time k and k-1, the algorithm checks if any two bounding boxes

from the same label overlap. Once an overlap is detected, the algorithm will

extract the object contours Ck and Ck−1 to compute the IoU and determine if

both contours have an association.

IoU =
|Ck ∩ Ck−1|
|Ck ∪ Ck−1| (4-5)

This process is detailed in Algorithm 2. For every new pair of consecutive

images, the system checks whether a tracked “Thing” object has a new

association and if objects have been added or removed from the scene.
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Algorithm 2: Short-term Data Association

Data: Frame Fk, Panoptic object list P Fk of current frame objects

CurrentFrameObjs

Data: Frame Fk−1, Panoptic object list P Fk−1 of last frame objects

lastFrameObjs

1 for det in P Fk do

2 associationfound = false; for lfo in P Fk−1 do

3 if P Fk−1 not NULL then

4 if det.label == lfo.label then

5 iou =

GetIOU(det.bounding_box,det.mask,lfo.bounding_box,lfo.mask);

6 IOU_Matrix(det)(lfo) = iou;

7 if IOU_Matrix(det)(lfo) > IOU_Threshold then

8 associationfound = true;

9 lastObjID = lfo.tracking_id;

10 break;

11 end

12 end

13 end

14 end

15 if associationfound then

16 det.tracking_id = LastObjID;

17 end

18 else

19 Create new tracking_id;

20 det.tracking_id = new tracking_id;

21 end

22 end

To filter the keypoints of objects and determine which ones are in motion,

it is essential to differentiate between multiple objects that share the same

label. If an object in the current frame is not matched with any object in the

previous frame, it is considered a new one and the features associated with its

mask are filtered.

Figures 4.4a and 4.4b show the short-term data association algorithm

tracking a person during the instant T0 and T1, respectively. Both masks are

extracted from the area of the respective bounding boxes. In Fig. 4.4c both

masks are overlapped, the IoU metric is calculated, and the tracking ID is
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defined for that particular object. This process is repeated for every object

pair with the same label.

(a) tracking person in time

T0

(b) tracking person in time

T1

(c) Overlapped of the two

masks

Figure 4.4: Example of the short-term data association algorithm tracking a
person

4.6

Dynamic Unkonwn and Thing KeyPoints Classification

After the data association, the current and last frame keypoints belonging

to “Things” from the same label and same tracking ID are matched. Dthing is

calculated using the matched features and the “Stuff” fundamental matrix to

determine which points are dynamic and, consequently, filtered.

Features belonging to unknown pixels are located by adding all known

masks into a single image and analyzing the black areas in it, as shown

in Fig. 4.5a. The process is similar to the moving keypoint classification of

“Things”. After matched keypoints from current and last frame are found in the

unknown mask, these points are checked using the “Stuff” fundamental matrix

to calculate the epipolar distance Dunk and to determine if they are static or

dynamic. The unmatched points are filtered. In Fig. 4.5b is shown a man

moving an “Unknown” object (floating balloon) and the keypoints belonging

to this object been filtered.

(a) Unknwon mask (b) Keypoint filtering

Figure 4.5: Example of an unknown moving object being filtered in a sequence
of the Bonn Dynamic Dataset
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In Algorithm 3 contains all steps from the Panoptic-SLAM framework.

Every set of keypoints filtered by each filtering processed is stored in a list to

be removed from the SLAM system.

Algorithm 3: Panoptic-SLAM algorithm

Data: Current RGB Image Imgk

Data: Current Image Keypoints KPk

1 KP_Filtered = list();

2 Panoptic_objsk = PanopticNet(Imgk);

3 KP_Filtered_apriori = Apriori_Filtering(Panoptic_objsk);

4 matched_KP = Feature_Machting(KPk,KPk−1);

5 Thing_KPk , Stuff_KPk , Unknown_KPk =

Panoptic_KP_Classification(Panoptic_objsk , matched_KP);

6 F = Fundamental_Matrix(Stuff_KPk, Stuff_KPk−1);

7 Thing_KPk =

Short-term_DataAssociation(Thing_KPk,Thing_KPk−1);

8 Thing_Dynamic_KP = Dynamic_Keypoint_Filtering(Thing_KPk ,

F);

9 Unknown_Dynamic_KP =

Dynamic_Keypoint_Filtering(Unknown_KPk , F);

10 // Append all dynamic keypoints

11 KP_Filtered.append(KP_Filtered_apriori);

12 KP_Filtered.append(Thing_Dynamic_KP);

13 KP_Filtered.append(Unknown_Dynamic_KP);

4.7

Implementation Details

The SLAM system is implemented in C++. Most of the tools for infer-

encing deep learning models are written in Python and the compatibility with

C++ are still in development. As a workaround, the panoptic segmentation

model is implemented in Python using Pytorch and Detectron2 frameworks

[98] and sends its results to SLAM system via Python-C-API. This API works

as an interface for both languages to share functions and information online.

4.8

Loop closure

The loop closure algorithm benefits from the proposed dynamic keypoint

filter. Since the filter removes outliers keypoints, that results in a reliable loop

closure detection.
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4.9

Final output

The final output from Panoptic-SLAM is a sparse map representation

and the optimized camera trajectory. In Fig. 4.6 show an example of final

output, where the red dot are map points, the blue squares are the camera

poses and the green lines represent pose associations.

Figure 4.6: Panoptic-SLAM final output

In the following chapter, the results from Panoptic-SLAM and other

state-of-the-art methods in real-world datasets are displayed and compared.
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5

Results

5.1

Introduction

This chapter presents the results of the proposed methodology using

datasets and experiments. Panoptic-SLAM was compared with state-of-the-

art methods from the literature in challenging dynamic environments. Section

5.2 describes the evaluation metric used to compare the methods. Section

5.3 displays the parameter selection to run the simulation with the datasets.

Section 5.4 and 5.5 explains the content of each evaluation dataset, along with

the numerical results. Section 5.7 and 5.8 shows how the overall results are

affected by each system configurations and run time analysis, respectively.

Finally, Section 5.9 demonstrated the proposed methodology in a custom

dataset.

5.2

Evaluation metric

The global consistency of the estimated trajectory is analyzed using

the Absolute Trajectory Error (ATE). This metric compares the absolute

distances between the translational components of ground truth and estimated

trajectories. The Horn method [99] is necessary to align both trajectories,

since they can be specified in arbitrary coordinate frames. The Horn method

determines the rigid-body transformation S. Let us define in Eq. 5-1 the

absolute trajectory error matrix at time i as

Ei = Q−1
i SPi (5-1)

where Pi is the spatial pose of the estimated trajectory at time i and Qi is the

ground truth trajectory at time i in an arbitrary world coordinate system. In

Eq. 5-2, the ATE metric is defined as the root-mean-square error of the error

matrices:

ATErmse =



1

n

n
∑

n=1

||trans(Ei)||2


1

2

(5-2)
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5.3

Choice of parameters

Table 5.1 show the parameters used in Panoptic-SLAM. All sequences

from TUM, BONN and custom datasets were performed using the presented

parameters. For comparison, ORB-SLAM3 used the same number of keypoints

as Panoptic-SLAM.

Table 5.1: Parameters used in the simulations and experiments

Description Value

Number of Keypoints 2000

Thing obj. movement threshold 0.01

Unknown obj. movement threshold 0.01

IoU threshold 0.15

5.4

TUM Dataset

The TUM [61] dataset is used to evaluate the robustness of the system

in dynamic environments. It includes both RGB and depth image sequences

captured by a Microsoft Kinect camera, along with the corresponding ground-

truth trajectories. The data was recorded at a resolution of 640 x 480 and a fre-

quency of 30 Hz. Four sequences were chosen for the evaluation: fr3_w_static,

fr3_w_xyz, fr3_w_rpy and fr3_w_halfsphere. These sequences depict two

persons walking in a room, moving behind a desk, passing in front of the

camera, and sitting on chairs.

The main difference between each sequence is the camera motion. In the

xyz sequence, shown in 5.1, the camera is moved along the three axis while

maintaining a fixed orientation. In the rpy sequence the camera is rotated

around roll, pitch, and yaw axis, maintaining a fixed position, shown in Fig 5.2.

In the halfsphere sequence, shown in Fig. 5.3, the camera follows a trajectory

along a half-sphere. In the static sequence, the camera remains still as shown

in Fig 5.4.
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Figure 5.1: Images from the TUM fr3_w_xyz sequence

Figure 5.2: Images from the TUM fr3_w_rpy sequence

Figure 5.3: Images from the TUM fr3_w_halfsphere sequence

Figure 5.4: Images from the TUM fr3_sitting_static sequence

Figures 5.5 and 5.6 and 5.7 show the comparison between the ground-

truth and the estimated trajectories of the proposed methodology and ORB-

SLAM3, respectively, in the fr3_w_rpy and fr3_w_halfsphere and fr3_w_xyz

sequences. The scenes are very challenging, with fast and complex camera

motions, especially in the halfsphere sequence. The proposed system was able

to perform an accurate estimation in all sequences. ORB-SLAM3, on the order
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hand, resulted in a wrong camera pose estimation in all sequences due to the

dynamic contents in the scenes.
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Figure 5.5: Comparison between the ground-truth and the trajectory estimated
by Panoptic-SLAM and ORB-SLAM3 in fr3_w_rpy sequence
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Figure 5.6: Comparison between the ground-truth and the trajectory estimated
by Panoptic-SLAM and ORB-SLAM3 in fr3_w_halfsphere sequences
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Figure 5.7: Comparison between the ground-truth and the trajectory estimated
by Panoptic-SLAM and ORB-SLAM3 in fr3_w_xyz sequence
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Table 5.2 shows the ATE comparison between our system and several

methods from the literature. The best and second-best results are highlighted

in bold and underlined, respectively. Based on the comparison results, our

system achieved a similar accuracy of DynaSLAM. This is likely due to the

fact that DynaSLAM filters people in advance, whereas the TUM fr3 walking

dataset primarily has people moving. Ji et al. [10] has an inferior accuracy than

ours, despite also being robust to unknown labels in the environments. Our

method also outperforms Zhu et al. [11], that also uses panoptic segmentation.

Overall, Panoptic-SLAM achieved the best results in the most challenging

sequences.

Table 5.2: Comparison of the RMSE of ATE [m] of the proposed method
against ORB-SLAM3, ReFusion, DynaSLAM, DS-SLAM, SaD-SLAM, DOT-
Mask, Ji et al. [10], and Zhu et al. [11] using the TUM dataset

Sequence fr3_w_static fr3_w_xyz fr3_w_rpy fr3_w_half

Ours 0.009 0.014 0.032 0.025

ORB-SLAM3 0.038 0.819 0.957 0.315

ReFusion 0.017 0.099 — 0.104

DynaSLAM 0.006 0.015 0.035 0.025

DS-SLAM 0.008 0.024 0.444 0.030

SaD-SLAM 0.017 0.017 0.032 0.026

DOTMask 0.008 0.021 0.053 0.040

Ji et al. [10] 0.011 0.020 0.037 0.029

Zhu et al. [11] 0.013 0.018 0.039 0.030

5.5

Bonn Dataset

The Bonn Dynamic Dataset [100] is used to evaluate the robustness

against moving objects, people and non-labeled moving objects. It also uses

the same evaluation metrics from the TUM dataset. Six sequences, filmed

inside an indoor environment, were chosen from the dataset for evaluation:

balloon, ballon2, non-obstructing box (non-obst box) 1 and 2, placing non-

obstructing box (placing_no_box) 1 and 2. The balloon sequences show a

person walking and interacting with a floating balloon, as shown in Fig 5.8. In

the non-obst box sequence, a person moves a cardboard box from one place

to another, as shown in Fig. 5.9. In the placing_no_box sequences, shown in

Fig 5.10, a person appears and places a card box on the floor. The card box
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was not previously in the scene. It is important to state that both balloon and

cardboard box classes are not present in the COCO dataset and, consequently,

cannot be explicitly detected by our segmentation model.

Figure 5.8: Images from the BONN ballon sequence

Figure 5.9: Images from the BONN non-obstructing box sequence

Figure 5.10: Images from the BONN placing_no_box sequence

Figures 5.11 and 5.12 show the comparison between the ground-truth

and estimated trajectories of ORB-SLAM3 and our system, respectively, in

both non-obst box sequences. In these two sequences, a person moves a static

box that was previously filmed by the camera from one place to another. ORB-

SLAM3 completely deviates from the ground-truth, while Panoptic-SLAM

was could correctly estimate the camera pose. Figures 5.13 and 5.14 show

the results in both balloons sequences. The man and the floating balloon

appear and disappear multiple times in the sequence. Panoptic-SLAM is able

to perform a correct estimation, opposed to ORB-SLAM3. Finally, in Figs.

5.15 and 5.16 is presented the results from the placing_no_box sequences. A
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man appears and places a box on the floor. Again, Panoptic-SLAM was able

to perform correct estimation and ORB-SLAM3 was not successful.
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Figure 5.11: Comparison between the ground-truth and the trajectory esti-
mated by ORB-SLAM3 and our system in the non-obstructing box sequence
of the Bonn dynamic dataset
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Figure 5.12: Comparison between the ground-truth and the trajectory esti-
mated by ORB-SLAM3 and Panoptic-SLAM in the non-obstructing box 2
sequence of the Bonn dynamic dataset
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(b) ORB-SLAM 3

Figure 5.13: Comparison between the ground-truth and the trajectory esti-
mated by ORB-SLAM3 and Panoptic-SLAM in the balloon 1 sequence of the
Bonn dynamic dataset
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Figure 5.14: Comparison between the ground-truth and the trajectory esti-
mated by ORB-SLAM3 and Panoptic-SLAM in the balloon 2 sequence of the
Bonn dynamic dataset
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Figure 5.15: Comparison between the ground-truth and the trajectory esti-
mated by ORB-SLAM3 and Panoptic-SLAM in the Placing non obstruction
box (placing_no_box) sequence of the Bonn dynamic dataset
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Figure 5.16: Comparison between the ground-truth and the trajectory esti-
mated by ORB-SLAM3 and Panoptic-SLAM in the placing non obstruction
box 2(placing_no_box2) sequence of the Bonn dynamic dataset
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Table 5.3 shows the RMSE of the ATE comparison between our system

and ORB-SLAM3, DynaSLAM [21] and ReFusion [53]. The results of ReFusion

and DynaSLAM were obtained in [53]. Our system outperformed ORB-

SLAM3 in every sequence. Our system also outperformed the other systems

in every sequence, except for the last one, where it achieved similar results

to DynaSLAM, with a difference of 1 mm. Despite the fact that DynaSLAM

achieved similar results to ours in the TUM dataset, the same does not occur

in the Bonn dataset due to the presence of unknown moving objects. This

is evident in the non-obst box and placing-no-box results, where the error of

DynaSLAM is ten times larger than ours in orders of magnitude.

Table 5.3: Comparison of the RMSE of ATE [m] of the proposed method
against ORB-SLAM3, DynaSLAM, and ReFusion using the Bonn Dynamic
dataset

Sequence Ours ORB-SLAM3 DynaSLAM ReFusion

non-obst box 0.027 0.347 0.232 0.071

non-obst box2 0.033 0.043 0.039 0.179

balloon 0.029 0.092 0.030 0.175

balloon2 0.027 0.215 0.029 0.254

placing_no_box 0.044 0.842 0.575 0.106

placing_no_box2 0.022 0.023 0.021 0.141

5.6

Final output comparison

Besides the ATE results, we can also notice qualitative improvements of

our system by analyzing the SLAM final output. In Fig. 5.17, it is compared

the final outputs of Panoptic-SLAM and ORB-SLAM3 in the non-obst box

sequence after the person left the scene. ORB-SLAM3 had a big drift due

to the dynamic content, while the Panoptic-SLAM maintained the camera

pose correctly. Moreover, the sparse map also suffers from ORB-SLAM3 drift,

resulting in a wrong output map. Similar results in relation to drift and sparse

map creation can be seen in Fig. 5.18.
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(a) ORB-SLAM 3 (b) Panoptic-SLAM

Figure 5.17: Comparison between the estimated camera trajectory by ORB-
SLAM3 and Panoptic-SLAM in the non-obstructing box sequence of the Bonn
dynamic dataset

(a) ORB-SLAM 3 (b) Panoptic-SLAM

Figure 5.18: Comparison between the estimated camera trajectory by ORB-
SLAM3 and Panoptic-SLAM in the placing non obstruction box sequence of
the Bonn dynamic dataset

5.7

Evaluation of different System configuration

To show the importance of each step of our methodology, experiments

were made using three different configurations of the system: using only the

people filter, the people filter together with the known moving object filter,

and the people filter together with the unknown moving object filter. Two

challenging sequences of the Bonn dataset that contain unknown moving ob-

jects were chosen for the evaluation: non-obst box and placing-non-box. Table
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III shows the RMSE of the ATE of the different configurations, compared to

the combined system. Due to the presence of both known and unknown mov-

ing objects in these scenes, every configuration fails except for the combined

system.

Table 5.4: Evaluation of the ATE on the Bonn dynamic dataset using Panoptic-
SLAM with different configurations [m]

Sequence non-obst box placing_no_box
People filter 0.481 0.707

Moving object filter 0.029 0.765
Unknown object filter 0.302 0.721

Panoptic-SLAM 0.027 0.044

5.8

Run-time Analysis

All tests were performed on a notebook with Intel i7 CPU with 16 GB

of RAM and NVIDIA RTX3060 GPU with 8 GB of VRAM running Ubuntu

20.04 LTS Linux. Table 5.5 shows the mean tracking time of the system in

four sequences of the TUM dataset. The average of the panoptic segmentation

inference time was 0.2 second for every sequence.

Table 5.5: Mean tracking time [s]

Sequence Mean tracking time [s]

fr3_w_static 0.344

fr3_w_xyz 0.344

fr3_w_rpy 0.319

fr3_w_half 0.323

5.9

Experiments

Besides the Bonn and TUM datasets, Panoptic-SLAM was also tested in

two custom datasets. Both datasets were filmed at the Robotics Lab (LabRob)

at PUC-Rio, using an Intel RealSense D435i RGB-D camera [101] attached to

a tripod, shown in Fig. 5.19.
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Figure 5.19: Intel RealSense D435i camera

The idea is to create a dynamic sequence where people move around the

environment and interact with multiple objects, including unlabeled objects

(e.g., a guitar). Due to the absence of a motion capture system, the camera

was maintained static. In Fig. 5.20 shows the results of ORB-SLAM3 in two

frames from the first sequence. In Fig. 5.20a, a man is moving and holding

a guitar while a woman is walking and carrying a suitcase. In Fig. 5.20b the

man continues his behavior, while the woman had the suitcase placed on the

ground and was moving with the luggage. From the images, we notice that

ORB-SLAM3 used the features from static and dynamic contents in the scene

to estimate the camera pose.

(a) ORB-SLAM3 custom dataset re-

sult 1

(b) ORB-SLAM3 custom dataset re-

sult 2

Figure 5.20: Results from ORB-SLAM3 in first experiment dataset sequence

In Fig. 5.21 is shown the results from Panoptic-SLAM in the same
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sequence. Figures 5.21a and 5.21c represent the same event as previously

described, and Figs. 5.21b and 5.21d are the associated panoptic masks. From

the segmentation masks, we notice that the guitar is not recognized by the

panoptic model and even was erroneously labeled as a pair of scissors. However,

despite the lack of the information about the object or wrong inference label,

Panoptic-SLAM was capable of detecting it as a moving object and filter its

keypoints. The suitcase that the woman is carrying shows another interesting

behavior from our system. When it was moving with the woman, the keypoints

were filtered due to the dynamic content. Once it became static, the keypoints

were no more filtered and used for the pose estimation.

(a) Panoptic-SLAM custom dataset result 1 (b) Panoptic-SLAM masks result 1

(c) Panoptic-SLAM custom dataset result 2 (d) Panoptic-SLAM masks result 2

Figure 5.21: Results from Panoptic-SLAM in custom dataset

Finally, we can compare the camera pose estimation from Panoptic-

SLAM and ORB-SLAM3 in Fig. 5.22. Panoptic-SLAM could correctly estimate

the camera pose with a few ouliers, while ORB-SLAM3 resulted in a more

scattered estimation with larger errors and more outliers with respect to

Panoptic-SLAM. Even though the results from Panoptic-SLAM were more

accurate than ORB-SLAM3, both system could estimate the camera pose near
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the origin for this dataset.

(a) Panoptic-SLAM (b) ORB-SLAM3

Figure 5.22: Camera pose estimation from Panoptic-SLAM and ORB-SLAM3
in the first experiment

The second experiment consists of multiple people walking in random

directions carrying a suitcase and a guitar as unlabeled objects. This dataset,

shown in Fig. 5.23, simulates a highly dynamic environment with people

appearing/disappearing from the scene, occlusions and object interactions.

Figure 5.23: Second experiment dataset sequence

This experiment aims to show the ability of the proposed method to deal

with unknown moving objects. The sequence starts with the guitar static on the

table. Figure 5.24a shows the panoptic inference where the guitar does not have

a mask, indicating an unknown object. Figure 5.24b shows the same image with

the associate keypoints. Since the guitar is not moving, the Panoptic-SLAM

system is using the keypoints to estimate the camera pose. In another frame,

the guitar is being carried by a woman. The guitar is detected as a moving

object and the keypoints are filtered even though this object is unknown by the

panoptic model, as shown in Fig. 5.24c. In comparison, Fig. 5.24d presents the

result from ORB-SLAM3 where both the woman and the guitar have detected

keypoints.

DBD
PUC-Rio - Certificação Digital Nº 2112345/CA



Chapter 5. Results 77

(a) Frame with static guitar-

Panoptic-SLAM panoptic masks

(b) Frame with static guitar-

Panoptic-SLAM keypoints

(c) Frame with moving guitar-

Panoptic-SLAM keypoints

(d) Frame with moving guitar-

ORB-SLAM3 keypoints

Figure 5.24: Unknown moving object filter in second experiment

Figure 5.25 displays the camera pose estimation from Panoptic-SLAM

and ORB-SLAM3 in the second experiment. The Tab. 5.6 presents the statis-

tics (average and standard deviation values) from the same experiment. The

bold values indicate the best results. The resulting data shows that the

Panoptic-SLAM correctly estimated the camera pose as static with small errors

for this challenging dataset. ORB-SLAM3, on the other hand, drifted meters

away from the origin due to the dynamic content.

(a) Panoptic-SLAM (b) ORB-SLAM3

Figure 5.25: Camera pose estimation from Panoptic-SLAM and ORB-SLAM3
in the second experiment
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Table 5.6: Evaluation of pose camera statistics [mm]

Statistic Panoptic-SLAM ORB-SLAM3
X mean 6.236 -2000.421
Y mean 0.4181 45.356
Z mean 2.274 1659.054
X std 76.842 981.023
Y std 16.271 73.520
Z std 19.338 826.440

The moving filters from Panoptic-SLAM are not flawless. There are some

situations when the moving keypoints are not filtered. For instance, when an

object appears as unknown at first, but becomes a known object in the next

frame, only to become unknown again in the following frame. In order to deal

with such situations, a buffer can be implemented to detect the consistency of

the objects in the frame.
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Conclusion and Future work

6.1

Conclusion

This master thesis presented a visual SLAM system built on ORB-

SLAM3 that operates online and is robust in dynamic environments, even in

the presence of unknown and unlabeled moving objects. Panoptic-SLAM is a

pioneer work in SLAM with panoptic segmentation and the first one to be open-

source. The proposed methodology included the ORB-SLAM3 framework, a

PanopticFPN panoptic segmentation model and dynamic keypoint filtering

based on panoptic content with epipolar constrains. Since our system uses only

an RGB image as input for keypoint filtering, Panoptic-SLAM can be used for

monocular, stereo and RGB-D SLAM systems. We show the effectiveness of

our method by comparing it with several systems from the literature that are

considered to have state-of-the-art results in dynamic environments, including

DynaSLAM, DS-SLAM and SaD-SLAM on challenging dynamic sequences

from TUM and BONN evaluation datasets. The results indicate that our

system not only achieves the same levels of accuracy than DynaSLAM in

highly dynamic scenes, but also surpasses it by a high margin in scenarios

with unknown moving objects. Furthermore, Panoptic-SLAM obtained better

results in all evaluated TUM sequences in relation to Zhu et al. [11], a system

that also utilize panoptic segmentation for dynamic keypoint filtering and is

robust against unknown objects. Last, Panoptic-SLAM was compared to ORB-

SLAM3 in two sequences from a custom dataset. Both sequences contain highly

dynamic scenes with an unknown moving object. From the experiments, our

system significantly outperformed ORB-SLAM3.

6.2

Future Works

This thesis has many paths for improvement. First, we will test the

method with other panoptic segmentation architectures, especially the ones

based on transformers, to improve the inference performance and accuracy.

Moreover, we plan to convert the panoptic segmentation model to be executed

by a C++ application. The idea is to implement the whole system using

only C++, dismissing the Python-C-API and improving in execution time.

Furthermore, the methods proposed are not prepared to handle objects that
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are deformable or rigid objects that can change their shape, such as doors or

closets.

Another future work is to test the proposed methodology in more

challenging sequences, such as crowded environments with multiple unknown

objects. Also, we plan to deal with moving objects that occupy a large portion

of the image in order to avoid lost track. In addition, we aim to include in the

method a semantic map building system that can adapt over time, exploring

even further capabilities of the panoptic segmentation.

Finally, investigating the application of modern technologies such as

event cameras would be a compelling research direction. It is worthwhile to

examine their benefits in dynamic environments and explore the potential of

integrating them with the suggested algorithms.

6.3

Publications

The work from this thesis generated the following paper submitted to the

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2023):

– Abati G.F., Soares J.C.V., Meggiolaro M.A., “Panoptic-SLAM: Visual

SLAM in Dynamic Environments using Panoptic Segmentation”, in 2023

IEEE/RSJ International Conference on Intelligent Robots and Systems

2023

The following paper related to SLAM in changing environments was

submitted and is currently under review:

– Soares J.C.V., Medeiros V.S., Abati G.F., Becker M., Caurin G., Gattass

M., Meggiolaro M., “Visual Localization and Mapping in Dynamic and

Changing Environments”

Other publications related to mobile robotics were also published in

international conferences:

– G. F. Abati, J. C. V. Soares, M. Gattass, and M. A. Meggiolaro, People

Following System for Holonomic Robots Using an RGB-D Sensor. 26th

ABCM International Congress of Mechanical Engineering (COBEM), 22-

26 de novembro de 2021.

– J. C. V. Soares, G. F. Abati, G. H. D. Lima and M. A. Meggiolaro,

Au- tonomous Navigation System for a Wall-painting Robot based

on Map Corners. 2020 Latin American Robotics Symposium (LARS),
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2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on

Robotics in Education (WRE), 2020, pp. 1-6

– J. C. V. Soares, G. F. Abati, G. H. D. Lima, C. L. M. de Souza and M. A.

Meggiolaro, Project and Development of a Mecanum-wheeled Robot for

Autonomous Navigation Tasks. Proceedings of the XVIII International

Symposium on Dynamic Problems of Mechanics, 2019.
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