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Abstract

Franca Lila, Maurício; Cyrino Oliveira, Fernando Luiz (Advisor); Meira
de Oliveira, Erick (Co-Advisor). Essays on Hierarchical Time Series
Forecasting. Rio de Janeiro, 2023. 132p. Tese de Doutorado – Departa-
mento de Engenharia Industrial, Pontifícia Universidade Católica do Rio
de Janeiro.

This study presents a set of methodological proposals aimed at improv-
ing forecast reconciliation in the context of Hierarchical Time Series. The main
objective is to present original solutions to the theme, seeking to obtain more
accurate forecasts than those obtained by independent models for the different
levels of the hierarchy. The studies were conducted using real data, showing
the potentiality of application of the methods developed in different scenarios,
in which the time series are structured in a hierarchical fashion. This thesis
is composed of a set of essays that explore forecast reconciliation from the
perspective of a regression model, which gives foundations to optimal reconcil-
iation. The first contribution addresses the problem of forecast reconciliation
from the perspective of robust estimators. The proposal presents an original
contribution applied to data from labor force surveys in Brazil, presenting a
set of solutions that can drive efficient public policies. In this case, the recon-
ciled forecasts obtained through robust estimators provided consistent gains
in terms of accuracy when compared to methods that represent the state-of-
the-art on forecast reconciliation in hierarchical time series. The second con-
tribution deals with the problem of optimal reconciliation applied to energy
consumption time series in Brazil. We present an alternative proposal, less
sensitive to outlying forecasts at the reconciliation stage. The results obtained
in this second study show considerable improvements in standard evaluation
metrics with regard to the new forecasts. The third proposal seeks to offer
robust covariance structures for forecasting errors, which expands the set of
strategies presented in the literature. The main contribution is to incorporate
robust covariance estimates into the MinT (Minimum Trace) reconciliation
approach, which minimizes reconciliation errors, offering an estimator with
minimum variance.
Keywords

Forecasting; Hierarchical Time Series; Resistant Reconciliation; Robust
Reconciliation; Electricity Demand; Labor Force Survey.
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Resumo

Franca Lila, Maurício; Cyrino Oliveira, Fernando Luiz; Meira de Oliveira,
Erick. Ensaios sobre Previsão de Séries Temporais Hierárquicas.
Rio de Janeiro, 2023. 132p. Tese de Doutorado – Departamento de En-
genharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

O presente estudo, apresenta um conjunto de propostas metodológicas
relacionadas a reconciliação de previsões em Séries Temporais Hierárquicas.
O principal objetivo é apresentar soluções originais ao tema, buscando obter
previsões mais acuradas do que as obtidas por modelos independentes para
os diferentes níveis da hierarquia. Os estudos foram realizados considerando
dados reais, mostrando a potencialidade de aplicação dos métodos desenvolvi-
dos em diferentes cenários, onde as series temporais são estruturadas de forma
hierárquica. Esta tese é composta por um conjunto de ensaios que exploram
a reconciliação de previsão sob a ótica de um modelo de regressão, que dá
origem a reconciliação ótima. A primeira contribuição trata do problema da
reconciliação de previsões na perspectiva de estimadores robustos. A proposta
apresenta uma contribuição original aplicada a dados dos de pesquisas de força
de trabalho no Brasil, apresentando um conjunto de soluções que podem dire-
cionar políticas públicas eficientes. Neste caso, as previsões reconciliadas obti-
das através de estimadores robustos possibilitaram um maior ganho em termos
acurácia e uma performance equivalente aos métodos que representam o es-
tado da arte sobre reconciliação de previsões em séries temporais hierárquicas.
A segunda contribuição trata do problema da reconciliação ótima em séries
de consumo de energia no Brasil, apresentado uma proposta alternativa, me-
nos sensível a valores estremos. Os resultados obtidos neste segundo trabalho
apresentam melhoramentos consideráveis em métricas de avaliação padrão no
que diz respeito as novas previsões. Uma terceira proposta busca oferecer uma
estrutura alternativa de covariância dos erros de previsão, que irá ampliar o
conjunto de propostas apresentadas na literatura para o método de reconci-
liação denominado por MinT (do inglês, Minimum Trace) , que minimiza os
erros de reconciliação, oferecendo um estimador de variância mínima.

Palavras-chave
Modelos de previsão; Séries temporais hierarquicas; Reconciliação

resistente; Reconciliação robusta; Demanda energética; Força de trabalho.
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1
Introduction

In recent years, the interest for hierarchical levels in forecasting has
increased due to, among other things, their growing use in policy-making,
allocation of government funds and regional planning. Thus, Hierarchical Time
Series (HTS) has been a promising area of research.

The HTS framework, as presented in the literature (ATHANASOPOU-
LOS et al., 2009), stands for a set of time series that can be aggregated at
different levels, according to a well-defined hierarchical structure. In general,
these hierarchies can be classified into cross-sectional, temporal or a combina-
tion of both, called cross-temporal hierarchies. In cross-sectional hierarchies
(HYNDMAN et al., 2011; HYNDMAN; LEE; WANG, 2016), a variable of
interest can be structured in different partitions, such as geographical subdi-
visions, population groups of interest or different industrial sectors.Temporal
hierarchies, in turn, data are organized in partitions of the time frequency ,
for instance, annual information on energy demand is broken down into quar-
terly or monthly results (ATHANASOPOULOS et al., 2017). In the case of
cross-temporal hierarchies, there is a double constraint added to this frame-
work (KOURENTZES; ATHANASOPOULOS, 2019), for example, different
geographical regions must be aligned to aggregation restrictions over time fre-
quencies.

Hierarchical settings involving time series can be quite challenging. In
some cases, by adding an extra level in a given hierarchy, the number of
involved time series increases exponentially. Hierarchies can be unbalanced
in some fashion, adding more complexity to their arrangement.

The importance of cross-sectional and temporal hierarchical forecasts is
evident from the recent literature (WICKRAMASURIYA et al. 2019,WICK-
RAMASURIYA et al. 2020, ATHANASOPOULOS et al. 2017). However, the
literature of cross-temporal hierarchies (KOURENTZES; ATHANASOPOU-
LOS, 2019) is still incipient.

Regardless of the approach related to a hierarchical structure, an internal
consistency is expected because of the additive property of the data, i.e. ,
the upper levels correspond to the sum of those at lower levels. When using
independent forecasting methods for each time series in a given hierarchy,
the original additive property is lost/not respected, mostly due to model
specifications, which are defined and estimated independently at each node. In
such cases, the internal consistency is lost due to independent and incoherent
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Chapter 1. Introduction 17

forecasts.
The strategy of using hierarchical forecasting methods connects with the

idea of taking advantage of the hierarchical structure of the data through base
forecast reconciliation, thus generating results that are usually unbiased and
more accurate than those provided by benchmark methods (NYSTRUP et al.,
2021; PANAGIOTELIS et al., 2021). The reconciliation process returns the
additive property of the data to the independent forecasts.

The current research topic focuses mainly on the development of alter-
native reconciliation methods to obtain accurate forecasts for a wide range of
time series, which are structured in a hierarchical fashion.

The thesis is divided into a series of essays. The first contribution refers
to a published article LILA et al. (2022), reproduced in full in Chapter 3.
It explores the regression-based perspective of forecast reconciliation. The
main contribution addresses the fact that when combining base forecasts
through regression-based reconciliation strategies, some forecasts may behave
like outliers, causing distortions to the reconciliation process. This work
introduces the concept of robust estimation applied to hierarchical forecasting,
when reconciliation methods take place, by formalizing two different robust-
based approaches. This research was applied to unemployment data from
multiple labor force surveys in Brazil. In doing so, we address a significant
gap in the modelling and forecasting of unemployment, taking into account
the hierarchical structure of the data. Besides the methodological contribution
to the field of HTS, the extension to Labor Statistics plays an important are
role in the modern societies. Accurate forecasts under this framework, allows
policymakers and regulators to strike disparities in under-utilization of the
labour supply.

To demonstrate the potential and validity of the proposed approaches,
we compared their performance with those from traditional and state-of-the-
art methods. Overall, the robust reconciliation approaches show promising
forecasting results under multiple settings and through the lens of different
evaluation metrics. Furthermore, the methodology developed is flexible, in the
sense that it can be readily applied to other time series and deliver equally
reliable results.

The second contribution, benefits from the framework established in
Chapter 3. This methodological contribution refers to another published arti-
cle MEIRA et al. (2023), reproduced in full in Chapter 4. When considering
dependency on error structures during the reconciliation process, the recon-
ciled forecasts will also have minimum variance amongst all possible combina-
tions of forecasts. This strategy is adequate when there are no outliers in the
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Chapter 1. Introduction 18

reconciliation process. We introduce the concept of hierarchical forecast rec-
onciliation based resistant regression and formalize a modified resistant-based
strategy applied to electricity consumption time series in Brazil. By consider-
ing resistant statistics in the forecast reconciliation process, we provide another
valuable contribution in the research topic of HTS: the substantial reduction of
contamination in the involved reconciled forecasts due to departures on obser-
vations. The new methodology was considered in several experiments and con-
trasted with traditional and innovative benchmarks. The proposed approach
showed superior forecasting accuracy under different experimental setups. Con-
sequently, the new approach is shown to be suitable to support decision making
in the energy and related sectors.

The third contribution is an ongoing research topic that aims to improve
the idea of optimally combining forecasts subject to linear constraints, pro-
viding an extension to MinT reconciliation with robust covariance structures.
In this case, we contextualize in Chapter 5 the problem and possible research
directions.

This document is structured as follows. In Chapter 2 we present some
previous work relevant to our problem. In Chapter 3 we transcribe in full
a published paper, and introduce the robust reconciliation method applied
to Labor Statistics in Brazil, in Chapter 4 we show the idea of resistant
reconciliation applied to the Brazilian energy sector . In Chapter 5 we present
the overall idea of the third contribution. Finally, in Chapter 6 we present our
concluding remarks and future work.
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2
Literature Overview

HTS has become a promising field of study, with many forecasting
applications to the industry, government planning, trading and other topics
(KARMY; MALDONADO, 2019; ATHANASOPOULOS et al., 2020). When
forecasting time series are aggregated according to a hierarchical structure, one
should not overlook their aggregation constraints. Ideally, the forecasts from
all levels should result in coherent quantities, i.e., the sum of the forecasts
for the time series located in a particular hierarchical level should match
the series results at the immediate upper level. Without such constraints, an
intuitive strategy would require only independent forecasts for each stage of
the hierarchy, at the cost of producing incoherent forecasts. Early studies on
forecast aggregation were basically focused on three main streams: the top-
down, the bottom-up and a combination of both called middle-out. While the
top-down disagregates the information on forecasts from the top level of the
hierarchy from a weighting system, the bottom-up borrows this information
from the most granular levels of the hierarchy. The middle-out is a hierarchical
level dependent approach that applies both techniques in a given hierarchical
level. In the work of SYNTETOS et al. (2016) a rich discussion on different
approaches and their implications is provided. Some authors compared the
performance of these hierarchical forecasting methods as in (FLIEDNER,
1999; GRUNFELD; GRILICHES, 1960, BARNEA; LAKONISHOK, 1980;
FOGARTY et.al, 1991; NARASIMHAN et.al, 1995), which advocate in favor
of top-down, whilst others advocated in favor of the bottom-up strategy,
(KINNEY, 1971; ORCUTT et al. 1968; TOBIAS; ZELLNER, 2000 ; SILVA
et al. 2019). More recently, a modified top-down approach was presented in
the work of ATHANASOPOULOS et al. (2009) using data from the tourism
sector. Another top-down strategy was also recently explored in the work of
MANCUSO et al. (2020) applying Machine Learning techniques to compute
the disaggregation weights.

Finally, some authors argued that there were no substantial differences
between the two approaches in terms of superiority (FLIEDNER; MABERT,
1992; NENOVA; MAY, 2016; TORRINI et al., 2016).

The idea of optimally combine forecasts, generating coherent forecasts
from a regression-based perspective appears in the work of HYNDMAN et
al. (2011). By adopting this strategy, the authors showed that, if the error
covariance matrix is known, a generalized least squares regression solution

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 2. Literature Overview 20

would provide the optimal combination of forecasts. However, since this
covariance matrix is often challenging to estimate in practice, the authors
adopted a simplifying assumption of additivity on the forecasts errors.

The idea of optimally combining forecasts has gained considerable
methodological contributions. As the complexity of the hierarchy arises, the
computational efforts also increase. In the work of HYNDMAN et al. (2016),
the authors show how to handled efficiently and propose a solution when
there are millions of time series at the most disaggregated level. A Game-
Theoretically Optimal (GTOP) reconciliation technique was developed (ER-
VEN; CUGLIARI, 2015), mapping any given set of independent forecasts into
a new aggregate consistent forecasts that are guaranteed to be at least as good
as the independent ones.

The concept of hierarchical time series was also extended to the context
of temporal hierarchies, i.e., time series with frequency dependencies through
their time span (KOURENTZES; ATHANASOPOULOS, 2019). Based on this
concept, some authors proposed the use of different approaches to represent
the covariance structure of the time series: hierarchy variance scaling; series
variance scaling; and structural scaling (ATHANASOPOULOS et al., 2017).
When reconciliation merges with temporal aggregation, it aims to obtain im-
portant features about a time series at different time frequencies. In the work
of NYSTRUP et al. (2021), the authors emphasize the importance of the cor-
relation structure of the forecast errors in order to improve the accuracy of the
reconciled forecasts. In the work of KOURENTZES & ATHANASOPOULOS
(2019), the authors presented a solution to cross-temporal aggregations, pro-
viding a framework based on the idea of optimally combining forecasts with a
minimum variance, initially proposed in the work of WICKRAMASURIYA et
al. (2019) for cross-sectional aggregation.

In a framework dealing with the presence of missing values STRATI-
GAKOS et al. (2022) show that a class of machine learning models directly
provides both point and probabilistic coherent hierarchical forecasts according
to their findings. Recently, Machine Learning techniques were implemented to
derive the combination weights for the forecasts across the various aggregation
levels (SPILIOTIS et al., 2020). From an distributional point of view, TAIEB
et al. (2017) built a coherent probabilistic forecast framework throughout a
bottom-up manner in which the dependency between nodes at each level is
obtained by reordering quantile forecasts. In the work of JEON et al. (2019),
the authors proposed new approaches for reconciling probabilistic forecasts
ensuring coherence, when combining information from density forecasts at all
hierarchical levels. PRITULARGA et al. (2021) proposed the idea of defining

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 2. Literature Overview 21

coherency as stochastic allowing to better understanding some overlooked un-
certainties in the forecast reconciliation processes, which come from producing
base forecasts and the estimation of the reconciliation matrix.

Despite the relevant growth in the hierarchical time series forecasting
literature, to date, the only methodological contribution which considered the
use of robust estimators to produce reconciled forecasts comes from this thesis
presented in LILA et al. (2022). From a regression-based perspective, this gap
should not be overlooked, considering the possibility of outliers occurring in
several time series of a given hierarchy due to multiple reasons, ranging from
false or misleading information provided, measurement errors, incorrect data
processing, among others. In the second contribution deriving from this original
research, we propose an outlier-resistant method for hierarchical time series
and applying them to multiple time series hierarchies of electricity demand
in Brazil at different levels. The motivation behind our approach is because
forecast reconciliation based on resistant regression is less affected by outliers
or influential points. In the third contribution we propose an extension to MinT
reconciliation using two subset-based covariance estimators, which are less
sensitive to outliers. In this case, we use the Minimum Volume Ellipsoid (MVE)
and Minimum Covariance Determinant (MCD) method (ROUSSEEUW, 1985;
HUBERT et al. 2018; AELST; ROUSSEEUW, 2009), which is are highly
robust estimators of multivariate location and scatter.
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3
First contribution:Forecasting unemployment in Brazil: a ro-
bust reconciliation approach using hierarchical data

This Chapter introduces the concept of robust estimation for hierarchi-
cal forecast reconciliation methods. This study was published in the Socio-
Economic Planning Sciences journal (ISSN: 0038-0121), (LILA et al., 2022).

3.1
Introduction

Official statistics are the fundamental building blocks of our society,
providing essential insights for policy implementation and assessment. Labor
statistics, in particular, is of paramount importance to understand the effects of
policies on certain groups of interest. Understanding labor market functioning
for a given sex, age or educational group, allows policymakers and regulators to
strike disparities that still happen in modern societies (VEEN; EVERS, 1983;
BARNICHON; GARDA, 2016; BAGCHI; PAUL, 2018).

National Statistical Offices worldwide regularly produce a set of indica-
tors about their populations based on specific surveys. In Brazil, for instance,
the Monthly Labor Force Survey (PME1) produced a set of indicators on six
metropolitan areas’ workforce from 2002 to 2016. This survey was followed
by the Brazilian Continuous National Household Sample Survey (PNADC2),
designed to produce a set of quarterly indicators about the characteristics of
the Brazilian Labor market and supplementary topics, serving as a benchmark
tool for monitoring the labor force in Brazil.

Labor time series can sometimes be presented as of Hierarchical Time
Series (HTS). These stand for a set of time series that can be aggregated at
different levels, according to a well-defined hierarchical structure. For instance,
a macroeconomic variable for a given country can be stratified first into states,
then into cities and finally, into sex or age groups, if data is available. HTS
has become a promising field of study, with many forecasting applications
to the industry, government planning, trading and other topics (KARMY;
MALDONADO, 2019; ATHANASOPOULOS et al., 2020). When forecasting
time series aggregated according to a hierarchical structure, one should not
overlook their aggregation constraints. Ideally, the forecasts from all levels
should result in coherent quantities, i.e., the sum of the forecasts for the time

1PME stands for Pesquisa Mensal de Emprego.
2PNADC stands for Pesquisa Nacional por Amostra de Domicílios Contínua.

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 3. First contribution:Forecasting unemployment in Brazil: a robust
reconciliation approach using hierarchical data 23

series located in a particular hierarchical level should match the series results
on the immediate upper level. Without such constraints, an intuitive strategy
would require only independent forecasts for each stage of the hierarchy, at the
cost of producing incoherent forecasts.

Early studies on HTS were basically focused on two main strategies: the
top-down and the bottom-up (BU). The former aims to provide base forecasts
for the series at the most aggregate level of the hierarchy and then produce
forecasts for series situated in the lower levels using weighting systems. The
bottom-up approach works oppositely, i.e., by forecasting at the most granular
the hierarchy level and then adding up these forecasts to the top. The middle-
out is a hierarchical level-dependent approach. From a given stage of the
hierarchy, a model is estimated and the forecasts above are obtained through
the bottom-up approach while lower level forecasts are obtained using top-down.
A considerable number of articles focused on comparing the performance of
hierarchical forecasting methods. Some authors presented favourable results
to the top-down approach (FLIEDNER, 1999; GRUNFELD; GRILICHES,
1960; FOGARTY et al., 1991; NARASIMHAN et al., 1995), whilst others
advocated in favor of the bottom-up strategy (KINNEY, 1971; ORCUTT et
al., 1968; TOBIAS; ZELLNER, 2000; SILVA et al., 2019). Finally, some authors
argued that there were no substantial differences between the two approaches
in terms of superiority (FLIEDNER; MABERT, 1992; NENOVA; MAY, 2016;
TORRINI et al., 2016).

Recent studies demonstrated that it is possible to improve upon the orig-
inal hierarchical forecasting strategies. Using data from the tourism sector, a
new strategy based on the top-down approach was presented by ATHANA-
SOPOULOS et al. (2009). The strategy consisted of using the forecasted pro-
portions of the lower-level series to compute the disaggregation weights, rather
than using the historical proportions of the data. Another top-down strategy
was recently presented by MANCUSO et al. (2021), who advocated using of
Machine Learning techniques to compute the disaggregation weights.

A recently proposed set of approaches for hierarchical data are the so-
called optimal combination (or reconciliation) methods. In short, these are
based on a regression model that maps a set of incoherent forecasts to a coher-
ent space using reconciliation, i.e., a process that aims at generating forecasts
that are unbiased and add up correctly across the hierarchy (HYNDMAN et
al., 2011). By adopting this strategy, the authors showed that, if the error co-
variance matrix is known, a generalized least squares regression solution would
provide the optimal combination of forecasts. However, since this covariance
matrix is often challenging to estimate in practice, the authors adopted a sim-

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 3. First contribution:Forecasting unemployment in Brazil: a robust
reconciliation approach using hierarchical data 24

plifying assumption of additivity on the forecasts errors, suggesting the use of
Ordinary Least Squares (OLS). The idea of optimally combining forecasts has
gained considerable methodological contributions, with some authors recom-
mending the use of Weighted Least Squares (WLS) to ignore the covariance
terms in reconciliation (HYNDMAN et al. 2016).

The concept of hierarchical time series was also extended to the context
of temporal hierarchies, i.e., time series with frequency dependencies through
their time span. Based on this concept, some authors proposed the use of differ-
ent approaches to represent the covariance structure of the time series: hierar-
chy variance scaling; series variance scaling; and structural scaling (ATHANA-
SOPOULOS et al., 2017). Recently, Machine Learning techniques were imple-
mented to derive the combination weights for the forecasts across the various
aggregation levels (SPILIOTIS et al., 2020). A probabilistic framework was
proposed to deal with the uncertainty arising from inference-based approaches
(TAIEB et al. 2017).

Despite the relevant growth in the hierarchical time series forecasting
literature, to date, no work has considered the use of robust estimators to
produce reconciled forecasts from a regression-based perspective. This gap
should not be overlooked, considering the possibility of outliers occuring in
several time series of a given hierarchy due to multiple reasons, ranging from
false or misleading information provided, measurement errors, incorrect data
processing, among others. In this work, we fill this gap by proposing two
robust methods for hierarchical time series and applying them to multiple
time series hierarchies of unemployed people in Brazil at different frequencies
(monthly and quarterly). The motivation behind our approach is because
robust regression is less affected by outliers or influential point forecasts. In
this case, when using an M-estimator based regression, it is possible control
undesirable effects of high leverage data points.

3.1.1
How robust reconciliation is conducted

In a hierarchical forecasting framework, all series are first forecasted
using a pre-determined independent forecasting approach, giving birth to ‘base
forecasts’. Then, an optimal reconciliation (combination) approach is sought,
aiming to deliver ‘coherent’, final forecasts. This term stands for forecasts
which are both unbiased, have minimum variance amongst all combinations
and add up correctly across the hierarchy. The idea of reconciliation consists of
revising the forecasts so that, theoretically, better estimates of a given process
can be found than using only independent forecasting methods. The process
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of base forecasts generation and forecast reconciliation in HTS methods can
be represented as follows in the flowchart described in Figure 3.1.

Data

Base forecasting
method

Base forecasts Reconciliation Cross-Validation

Reconciled forecasts

Figure 3.1: Base forecasts generation and forecast reconciliation in HTS
methods.

Robust settings can be applied prior to or in conjunction with the base
forecasting approaches to account for outliers or other influential points. This
would lead to the flowchart illustrated in Figure 3.2. In this case, the primary
concern is to address measurement issues occurring in the original time series.
Several articles address the topic of attenuating the effects of outliers and
its detection in time series in the modeling stage (BARROW et al., 2020;
ROUSSEEUW et al., 2019; CROUX et al., 2010). Although this is a relevant
issue related to time series forecasting, this process is usually infeasible in
most HTS settings, mainly when the hierarchy comprises a large number of
time series. This is because a tailored forecasting approach would have to be
proposed to each time series in the hierarchy, as not all time series would require
the same treatment. Since multiple forecasting routines would be applied at
the base forecasts generation stage, estimating the error covariance matrix of
the base forecasts would become impossible in practice, thereby invalidating
the use of most forecast reconciliation approaches.

Data

Robust
forecasting
methods

Base forecasts Limited Reconciliation Cross-Validation

Reconciled forecasts

Figure 3.2: Robust base forecasts generation and forecast reconciliation.

This paper focuses on addressing outliers and influential points at the
reconciliation stage. That way, not only we allow for the estimation of the base
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forecasts error covariance structure, but we can also address disparities and
other potentially unwanted effects that may occur in established regression-
based reconciliation methods. To the best of our knowledge, no forecasting
approach, be it statistical, AI, or hybrid-based, has considered the use of
robust estimators for hierarchical reconciliation, which represents our main
methodological contribution in this paper. Our idea of robust reconciliation is
depicted in the flowchart of Figure 3.3.

Data

Base forecasting
method

Base forecasts
Robust

Reconciliation
Cross-Validation

Reconciled forecasts

Figure 3.3: Our approach to robust forecast reconciliation.

To demonstrate the benefits of robust reconciliation, we use monthly data
of total unemployed persons in Brazil, collected from the Brazilian Monthly
Labor Force Survey (PME) and the same statistics from the quarterly results
from the Continuous Brazilian Household Survey (PNADC). The first survey
covered six metropolitan areas in Brazil and produced several key indicators
for the Brazilian economy. The second is part of the Integrated System
of Household Surveys covering the entire Brazilian territory. Nowadays, the
leading labor statistics produced by the Brazilian Statistical Office come from
this survey. Our experiments show encouraging results in favor of the proposed
robust reconciliation strategies, which ranked among the first or second best
methods in almost every case considered. In brief terms, we take advantage
of the information provided at all hierarchical levels to improve the forecasts’
quality in every case.

The rest of the paper unfolds as follows: Section 3.2 outlines the basic
ideas of HTS and details the most up-to-date framework. Section 3.3 introduces
the concept of robust reconciliation in hierarchical forecasting. Section 3.4
describes the experimental setup. The results are presented in Section 3.5.
Finally, Section 3.6 provides a set of conclusions based on our findings.

3.2
HTS: Basic strategies and state-of-the-art

In order to characterize a HTS, consider yt a vector of size m comprising
observations from all hierarchical levels at time t. It is possible to define a
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summing matrix S of dimension m× n such that,

yt = Syb
t (3-1)

where yb
t is a n-dimentional vector containing the observations in the most

disaggregated level of the hierarchy.
A similar structure can be defined for forecast reconciliation of hierarchi-

cal time series. Consider ŷt+h|t a vector of h steps ahead base forecasts, gener-
ated using independent methods, with the same arrangement as yt. Thus, for
a given matrix P of dimension n×m, we have the following equation

ỹt+h|t = SPŷt+h|t (3-2)

where ỹt+h|t are the reconciled forecasts. The SP matrices represent the
reconciliation process, which maps independent (or incoherent) forecasts into
coherent ones. Depending on how P is structured, it is possible to reproduce
several traditional hierarchical forecasting approaches. For instance, by letting
P =

[
0n×(m−n)|In

]
where 0n×(m−n) is a null matrix, one can reproduce the

bottom-up (BU) approach. In this case, the P matrix keeps only forecasts
for the most granular level, then S completes the processes by generating
reconciled forecasts at every level of the hierarchy. On the other hand, top-
down forecasts can be achieved by making P =

[
p|0n×(m−1)

]
, where p is the

set of proportions of forecasts (ATHANASOPOULOS et al. 2009). Common
approaches to obtain these proportions are described as follows:

– Average of historical proportions or Gross-Sohl method A (TDGSA)
(GROSS; SOHL, 1990):

pj = 1
T

T∑
t=1

yj,t

yt

(3-3)

for j = 1, . . . ,m, where yj,t are the bottom-level series over the period
t = 1, . . . , T and yt is the total aggregate. Under this approach, the
weights for the forecasts at the top of the hierarchy takes into account
the relative importance of each value of lower hierarchical levels of the
time series for a given time instant. The approach then averages the
weights out for the entire time series.

– Proportion of historical averages or Gross-Sohl method F
(TDGSF)(GROSS; SOHL, 1990):

pj =
T∑

t=1

yj,t

T

/ T∑
t=1

yt

T
(3-4)
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for j = 1, . . . ,m. In this case, the weighting system takes the relative
importance of the entire series from the past at lower levels with respect
to the time series at the top level.

– Forecast proportions (TDFP)(ATHANASOPOULOS et al. 2009):

pj =
K−1∏
ℓ=0

ŷ
(ℓ)
j,h

Ŝ
(ℓ+1)
j,h

(3-5)

where K stands for the number of levels of the hierarchy, ŷ(ℓ)
j,h are the h-steps

ahead forecasts of the series that corresponds to the node that is ℓ levels above
node j and Ŝ

(ℓ)
j,h is the sum of h-steps ahead forecasts below the node which is

ℓ levels above node j, where j = 1, . . . ,m.
Optimal combination (or reconciliation) approaches, in turn, can be can

be expressed according to the following regression model:

ŷt+h|t = Sβt+h|t + ϵt+h|t (3-6)
where βt+h|t = E

[
yb

t+h|It
]
, It = y1, y2, . . . , yt and V

(
ϵt+h|t|It

)
= Σh.

Later, authors advocated the use of the Weighted Least Squares (WLS)
estimator to obtain an estimate of the variance-covariance matrix, while ignor-
ing the elements outside the diagonal (HYNDMAN et al.2016). Following this
idea, new studies (WICKRAMASURIYA et al., 2019; WICKRAMASURIYA
et al., 2020; KOURENTZES; ATHANASOPOULOS, 2019) proposed alterna-
tive methods to obtain Σh, whose calculation is dependent on the forecasting
models. For instance, the Minimum Trace (MinT ) reconciliation approach, in-
troduced in WICKRAMASURIYA et al. (2019), aims to find a matrix P that
it minimizes tr(SPWhP′S′) subject to SPS = S, the unbiasedness condition.

In order to use MinT reconciliation, it is necessary to estimate Wh,
the variance-covariance matrix of the h-step-ahead base forecast errors. Given
the difficulty in estimating this matrix, several approximation approaches
were proposed, giving birth to variants of the optimal combination approach
depicted in eq. (3-6). Some of them are listed as follows:

– Ordinary least squares estimator (OLS): Wh = khI where kh > 0. This
is the simplest hypothesis and means assuming that the P matrix is in-
dependent of the data, providing an advantage in computational terms.
However, by ignoring the dependency structures between residuals, rele-
vant information is lost (ATHANASOPOULOS et al., 2009; HYNDMAN
et al., 2011).

– Weighted least squares estimator with variance scaling: Wh =
khdiag(Ŵ1) where kh > 0 and Ŵ1 is the unbiased sample covariance es-
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timator of the in-sample one-step-ahead base forecast errors, represented
as follows:

Ŵ1 = 1
T

T∑
t=1

et(1)et(1)′ (3-7)

This specification scales the base forecasts using the variance of the one
step-ahead residuals. In this situation, the elements outside the main
diagonal of the covariance matrix are set to zero (HYNDMAN et al.,
2016). This approach was considered as a benchmark method in the
results, and is represented as WLS(v).

– Weighted least squares estimator with structural scaling: Wh = khΛ
where kh > 0 , Λ = diag(S1) and 1 is a n × 1 vector of ones. This
specification assumes that the errors of the bottom-level base forecasts
have variance kh and are not correlated between the different nodes.
This estimator depends only on the number of series in each node of
the hierarchy. By adopting this weighting structure, the reconciliation is
conducted by solving a weighted least squares problem (KOURENTZES;
ATHANASOPOULOS, 2019). This approach will be represented by
WLS(s).

– Estimator by minimizing the matrix trace using the full covariance ma-
trix – MinT-Sample: Wh = khŴ1. In this case, the only assumption is
that the error covariance matrices are proportional to each other and the
full one-step ahead covariance matrix is directly estimated (WICKRA-
MASURIYA et al., 2019). This approach presents implementation prob-
lems when the covariance matrix is not is positive definite. Therefore, it
will not be used for comparison purposes in this paper.

– The shrinkage estimator – MinT-Shrink: Wh = khŴ∗
1,D where kh > 0

, and Ŵ∗
1,D = λŴ1,D + (1 − λ)Ŵ1 is an estimator of the covariance

matrix and aims to reduce the importance of elements outside the main
diagonal of Ŵ1. The shrinkage parameter λ is a function of the in-
sample correlations (KOURENTZES; ATHANASOPOULOS, 2019) and
is estimated as follows.

λ̂ =

∑
i ̸=j

V̂ (r̂ij)∑
i ̸=j

r̂2
ij

(3-8)

where r̂ij corresponds to ij-element of R̂1, the one-step-ahead sample
correlation matrix. It is worth noticing that the shrinkage estimator, de-
spite reducing the importance of covariance between series at different
levels of the hierarchy, still takes into account some measure of relation-
ship between the series.
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Regardless of the approach selected for estimating Wh, the optimal
reconciled forecasts are given by

ỹh = S(S′W−1
h S)−1S′W−1

h ŷh. (3-9)

This equation can be written in another fashion as follows.

ỹh = Sβ̂h. (3-10)

3.3
The Robust Reconciliation for HTS

As observed, all methods described in the previous section are obtained
following the same guidelines of linear regression models. However, the use of
least squares may not be appropriate when solving problems containing outliers
or influential points. In such cases, a parameter estimation method that is
less affected by data imperfections and/or contamination is desirable. In this
regard, an alternative set of tools related to robust estimation can be applied
to provide reliable outcomes. Some techniques like M-estimation are helpful
in this context (HUBER, 1964; ROUSSEEUW; YOHAI, 1984; SMUCLER;
YOHAI, 2017). Let the residuals from the reconciliation process be defined as

yh − ỹh = ϵ(βh) (3-11)
where yh are the actual (true) values of time series and ỹh are the reconciled
forecasts. Consider a function ρ having the following properties:

– Nonnegative, i.e., ρ(Z) ≥ 0;

– ρ(0) = 0;

– Symmetric, i.e., ρ(Z) = ρ(−Z);

– Monotone in |Zi|, i.e., ρ(Zi) ≥ ρ(Zi′) for |Zi| > |Zi′ |

Then, the M-estimator based on the residuals from the equation (5-14)
is given as

β̂M,h = arg min
βh

n∑
i=1

ρ(ϵi(βh)). (3-12)

In order to solve this minimization problem we need to find ψ(·) = ρ′(·),
which is the influence function. In this work, we consider the Huber influence
function (HUBER, 1964) in light of its desirable properties for computational
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convergence.

ρ(z) =

z
2, if |z| < c;

|2z|c− c2, if |z| ≥ c
(3-13)

ψ(z) =

z, if |z| < c;

c[sgn(z)], if |z| ≥ c
(3-14)

for a given constant c. We also need to define a set of weights w(z) to obtain
the optimal solution. In this case, we have the weights given by

w(z) =
ψ(z)
z

(3-15)

These weights are a function of residuals. However, the residuals depend on the
estimated coefficients, which depend on the weights. In this case, an iterative
procedure called Iteratively Reweighted Least Squares (IRLS) is required.

Some M-estimators are influenced by the scale of the residuals, so a scale-
invariant version of the M-estimator is used:

β̂M,h = arg min
βh

n∑
i=1

ρ

(
ϵi(βh)
σ

)
, (3-16)

There are two common ways of estimating σ. The first is based on the Mean
Absolute Deviation (MAD) and is represented below:

σ̂ =
MAD

0.6745 =
median{|ϵi(βh)|}

0.6745 (3-17)
The second approach, also known as Huber’s Proposal 2, comes from the
solution of:

1
n− p

n∑
i=1

ψ2

ϵi(βh)
σ̂

 = EZ [ψ2(ϵ)] (3-18)

where EZ [ψ2(ϵ)] is the expected value of ψ2 when ϵ has standard normal
distribution, n is the number of observations and p is the number of regression
parameters.

In the results, we denote the above approaches by HUBER (1) and
HUBER (2), respectively.

3.4
Experimental Setup

Two original data sets of unemployment time series are used in the exper-
iments. The first refers to the Brazilian Monthly Labor Force Survey (PME)
and the second to the Brazilian Continuous National Household Sample Survey
(PNADC). Both surveys are conducted by the Brazilian National Statistical
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Office3. These surveys considered different periods, comprised different geo-
graphical regions and collected time series of different frequencies (monthly,
in the case of PME, and quarterly, in the case of PNADC), making them in-
teresting options to assess the robustness of the methods proposed in Section
4.2.4.

3.4.1
The Brazilian Monthly Labor Force Survey

The Brazilian Monthly Labor Force Survey (PME) produced monthly
indicators of the labor market in distinct geographical regions in Brazil. The
survey covered the metropolitan areas of Recife, Salvador, Belo Horizonte,
Rio de Janeiro, São Paulo and Porto Alegre. This survey had to adapt its
questionnaire to capture the changes in the labor market. For our experiments,
we used data from March 2002 to February 2016, the last date before the
substantial changes in the way that data were collected and processed took
place. The selected data represent the number of unemployed people and are
organized in a hierarchical fashion. The top level of the hierarchy corresponds
to the aggregation of the metropolitan areas, the intermediate level refers to
each metropolitan area and the bottom level splits the areas by sex. Table 3.1
depicts the number of time series per hierarchical level.

Hierarchical level Number of time series
Overall 1
Metropolitan Areas 6
Sex 12
Total 19

Table 3.1: PME – Number of time series according to the hierarchical levels.

Given that we are interested in applying different strategies to forecast
the number of unemployed people across the hierarchy, it is reasonable to show
how this variable behaves through time. Figure 3.4 illustrates the top level time
series, i.e., the series representing the total of unemployed people across the
six metropolitan areas.

As can be noted, the total of unemployed people showed a downward
trend between early 2004 and late 2014. This number then increased consid-
erably from 2015 onwards, reaching similar levels to those observed at the end
of the subprime financial crisis. To understand the regional effects, we plot the

3Also known as the Brazilian Institute of Geography and Statistics (IBGE), the agency
responsible for the official collection of statistical, geographic, cartographic, geodetic and
environmental information in Brazil.
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time series for each metropolitan area. Seasonal patterns are readily apparent
in all series. Although these series show slightly decreasing trends, by the end
of 2014 we can spot an inflection point, showing an increase in the number of
unemployed people, as depicted in Figure 3.5.

Figure 3.4: PME – Total of unemployed people (in thousands) across six
metropolitan areas in Brazil.

Figure 3.5: PME – Number of unemployed people (in thousands) by metropoli-
tan areas.
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The most granular level of this hierarchy divides the population into two
categories. In Figure 3.6 the series for women (in red) shows a positive shift
in level during most of the analyzed period. This highlights that, besides the
geographical aspects, there are still informative differences to be explored in
coherent hierarchical forecasting.

Figure 3.6: PME – Number of unemployed people (in thousands) for each
metropolitan areas by sex (male in black and female in red).

3.4.2
The Brazilian Continuous National Household Sample Survey

The Brazilian Continuous National Household Sample Survey (PNADC)
produces a set of critical indicators for a better understanding of Brazilian
socioeconomic development. It was initially planned to produce a set of
quarterly indicators about characteristics of the Brazilian labor market and
other supplementary topics. Today, it constitutes one of the main tools for
monitoring the labor force in Brazil. The survey covers the entire Brazilian
territory and releases information for different geographical levels. In this
study, we considered the geographical hierarchy described in Table 3.2. Due to
the SARS-COV-2 outbreak, the household surveys conducted by the Brazilian
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Statistical Office from 2020 onwards presented non-response rates higher than
the minimum expected rates. Hence, to avoid spurious interpretations and
provide a fair forecasting experiment to all benchmarks and reconciliation
techniques herein involved, we considered only the pre-pandemic period from
2012 to 2019.

Hierachical level Number of time series
Brazil 1
Great Regions 5
Federative Units 27
Total 33

Table 3.2: PNADC – Number of time series according to the hierarchical levels.

Figure 3.7 illustrates the behavior of the total of unemployed people in
Brazil over the selected time span. As also observed in the case of PME, a clear
upward trend is noted from late 2014 to late 2016. This period was marked by a
political turmoil that resulted in the impeachment of President Dilma Rousseff
in Brazil and widespread dissatisfaction with the political system. The time
series also contains a well defined seasonal component, with considerably lower
levels of unemployed people observed at the end of each fiscal year, given the
year-end hiring surges which generally occur, particularly in the manufacturing
and service sectors.

Figure 3.7: PNADC – Total of unemployed people (in thousands) in Brazil.

When the data disaggregates to the Great Regions, as depicted in Figure
3.8, the behavior of all series looks very similar, with a noticeable shift in
level for each time series. The most populated regions present the highest
values of total unemployed people. It is also possible to identify the same
patterns observed at the top level of the hierarchy regarding trend and seasonal
components.
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Figure 3.8: PNADC – Number of unemployed people (in thousands) per
Brazilian Great Region.

The most granular level of the selected hierarchical structure for PNADC
corresponds to the geographical partitioning of Great Regions into Federative
Units. Figure 3.9 illustrates the time series behavior for each Federative Unit
within the five Brazilian Great Regions. The differences between series levels
are highlighted in this case. This fact may produce forecasts that behave as
outliers in regression-based reconciliation approaches, thus highlighting the
importance of alternative, robust settings. Finally, we note that all time series
contain trend and seasonal components. However, these facts are not readily
apparent for some Federative Units in this sort of data visualization, given
the considerable differences in the population numbers compared to larger and
more populated Units.
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Figure 3.9: PNADC – Number of unemployed people (in thousands) according
to each Great Region and Federative Unit.

3.4.3
Base Forecasting strategies

The reconciliation strategy relies on producing a set of base forecasts and
then combining them into coherent ones. In some cases, the choice of a strategy
depends on how data behave over time, or whether explanatory variables are
considered to improve the predictive power of a particular model. In order
to implement the strategies described previously, we consider here two widely
applied sets of forecasting models as base forecasting strategies: the ETS class
of exponential smoothing models and the Autoregressive, Integrated, Moving
Average (ARIMA) formulations. These are briefly described in the following
paragraphs.

In exponential smoothing models, the forecasts correspond to weighted
averages of past observations. These weights decay exponentially, given the
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time difference between observations. These were first presented in seminal
works (BROWN, 1959; COX, 1961; HOLT, 1957; WINTERS, 1960).

In this work, we rely on an automatic model selection routine commonly
known as ETS – an acronym for Error, Trend and Seasonality, the three
components that vary across exponential smoothing formulations. The ETS
approach was addressed and placed in the form of state space equations by
HYNDMAN et al. (2002). Each model consists of an observation equation,
which describes the data, and one or more state equations, which describe the
components of the level (ℓt), trend (bt) and seasonality (st).

In practice, an automatic algorithm, implemented in the ets() function
from the forecast (HYNDMAN et al., 2020) package in the software R (R
Core Team, 2020), selects the best state space formulation for each series from
a set of 30 possible combinations.

The Autoregressive Integrated Moving Average (ARIMA) formulations,
in turn, explain a univariate time series as a combination of autoregressive
and moving average components, which represent the existing autocorrelation
patterns within the time series (BOX; JENKINS, 1970a). In addition, the
integration order depends on the number of consecutive times that the series
needs to be differenced to achieve stationarity.

In practice, an automatic model selection used in this work is pro-
vided by the argument auto.arima (also specified as a function) from the
forecast package in R. It implements a multi-step algorithm that is a vari-
ation of the Hyndman-Khandakar algorithm (HYNDMAN; KHANDAKAR,
2008) and is currently the benchmark for automatic ARIMA selection in text-
books and recent empirical studies (HYNDMAN; ATHANASOPOULOS, 2021;
BERGMEIR et al., 2018).

3.4.4
Assessment Metrics

Assessment metrics are an important set of tools for model selection in
the context of time series. It is not uncommon to observe forecasting models
performing better for a given time window when compared to others that
usually have better predictive powers. In such contexts, using different metrics
can provide an alternative point of view to select the best set of forecasts.
Another important procedure is to consider rolling forecasting origins coupled
with time series cross-validation to provide additional support when selecting
the most accurate forecasting approach from a range of available methods. In
this work, we focus on a set of related metrics used to evaluate the predictive
power and gains in performance. The first set of metrics is the Mean Squared
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Error (MSE) and the Mean Absolute Error (MAE). These measures are scale
dependent and should be applied to models using the same data set. They are
defined as follows:

MSE = 1
h

h∑
t=1

(ŷt − yt)2 (3-19)

MAE = 1
h

h∑
t=1

|ŷt − yt| (3-20)

where h is the number of forecasting steps (forecast horizon), yt are the
actual (true) values of the time series and ŷt are the corresponding forecasts.

Given that multiple reconciliation strategies are considered to generate
forecasts for the entire hierarchies, relative measures of the above metrics are
obtained by dividing the absolute values of the metrics for the reconciled
strategies by the absolute values of the same metrics for the base forecasts, i.e.,
before reconciliation takes place. This allows us to indicate which technique
presents a gain in terms of accuracy when compared to the base forecasts, as
shown in the following equations:

RelMSEi,h =
MSErec

i,h

MSEbase
i,h

(3-21)

RelMAEi,h =
MAErec

i,h

MAEbase
i,h

(3-22)

where MSEbase
i,h (denominator) corresponds to the MSE of the base (indepen-

dent) forecast method, for the series i of the hierarchy at the forecast horizon
h, and MSErec

i,h (numerator) is the MSE obtained for the same series and
time horizon after reconciliation. The same notation and concepts apply to
the MAE.

Since the combination of techniques and levels of the hierarchy generates
a large number of results, the geometric mean within each level of the hierarchy
provides a summarized measure of improvement in terms of MSE and MAE.
These quantities can be obtained through the following equations:

AveRelMSE = #L

√∏
i∈L

RelMSEi (3-23)

AveRelMAE = #L

√∏
i∈L

RelMAEi (3-24)

where L is the corresponding level of the hierarchy.
We implemented a rolling forecasting origin evaluation using the last

24 months period for the Monthly Labor Force Survey (PME) and the
last 12 quarters for the Brazilian Continuous National Household Sample
Survey (PNADC) in order to produce the cross-validation results for different
steps ahead. In this case, the advantage of using the metrics presented
in eqs. (3-23) and (3-24) is that (1 − AveRelMSE) × 100% yields the
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percentage of improvement in MSE over the base forecasting strategy. The
same interpretation holds for the MAE. The procedure is illustrated in Figure
3.10 for the forecasting steps h = 1, 2, 3 (HYNDMAN et al., 2020). In this
work, we consider cross-validation for steps h = 1 to h = 6, in the case
of PME, and h = 1 to h = 4, in the case of PNADC. Conducting cross-
validation for accuracy evaluation has several advantages over selecting a single
period, as cross-validation exposes the reconciliation approaches to different
characteristics of our data. We want to find the reconciliation technique that
best performs for a set of forecasts h steps ahead. The suitability of cross-
validation for forecast accuracy assessment is discussed in further details in
BERGMEIR et al. (2018).

Figure 3.10: How accuracy evaluation using rolling forecasting origins is
implemented for the different reconciliation strategies – illustrations for the
first three forecasting steps.

In addition to the cross-validation forecast evaluation, we also imple-
mented the non-parametric Friedman and post-hoc Nemenyi tests (DEMŠAR,
2006). The Friedman test indicates whether at least one of the reconciliation
strategies is significantly different from the others. The post-hoc Nemenyi test
aims to identify groups of reconciliation approaches for which there is no evi-
dence of statistically significant differences.

The Friedman test works in the following fashion: first, the accuracy
measures associated with each reconciliation technique are ranked according
to their performance from the smallest to the largest throughout the forecasting
horizons. Then, sums of the ranks across horizons are obtained for each
reconciliation technique. Finally, the forecasting accuracy for a given approach
is considered to be different than other reconciliation techniques if there is a
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significant difference in the sum of the ranks of at least one approach. The
Friedman test statistic can be written as:

f(α,h,k) =
12

hk(k + 1)

h∑
j=1

r2
j − 3h(k + 1), (3-25)

where rj is the rank assigned to a reconciliation technique based on an accuracy
measure, k is the number of competing techniques and h is the number of
forecasting horizons. The test statistics has approximately a χ2

k−1 distribution.
Once we find evidence towards statistical differences among reconciliation

techniques, we perform the Nemenyi post-hoc pairwise test to find which
reconciliation techniques differ from others. The forecasting accuracies between
the two approaches are significantly different if their average ranks differ by a
critical distance. The critical distance for the post-hoc pairwise test is defined
as:

c(α,h,k) = qα

√√√√k(k + 1)
6h (3-26)

where qα can be found in (DEMŠAR, 2006). We implemented these non-
parametric statistical tests using the nemenyi() function from the tsutils
(KOURENTZES, 2019) package in the software R.

3.5
Results

3.5.1
Forecasting monthly unemployment in Brazil

We consider first forecasting evaluation using monthly data from the
Brazilian Labour Force Survey. The average accuracy results of the several
reconciliation strategies when ETS is used as the base forecasting method
are depicted in Table 3.3. The table shows the values of the average relative
metrics (AveRelMSE and AveRelMAE), computed across all hierarchical levels.
Numbers highlighted in bold indicate the best forecasting performance in each
forecasting horizon (number of forecast steps ahead), while numbers in italics
represent the second best method. Values larger than one indicate that the
reconciled forecasts show no improvement on the original accuracy measures.
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Reconciliation Forecast horizon
Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Average Relative MSE across all hierarchical levels

HUBER (1) 0.963 0.960 0.971 0.983 0.976 0.990
HUBER (2) 0.954 0.985 1.000 0.997 0.990 0.998
BU 1.023 1.014 1.003 1.000 1.008 1.005
OLS 0.956 0.989 1.007 1.002 0.993 1.000
WLS(v) 0.992 0.986 0.992 0.994 0.995 0.996
MinT(Shrink) 0.967 0.953 0.970 0.974 0.980 0.982
WLS(s) 0.974 0.982 0.991 0.991 0.990 0.994
TDFP 0.975 0.999 1.025 1.018 1.005 1.013
TDGSA 2.031 1.583 1.368 1.235 1.201 1.196
TDGSF 2.036 1.575 1.355 1.222 1.189 1.186

Average Relative MAE across all hierarchical levels

HUBER (1) 0.980 0.980 0.981 0.989 0.984 0.993
HUBER (2) 0.984 0.989 0.991 0.996 0.991 0.999
BU 1.008 1.010 1.003 1.004 1.007 1.005
OLS 0.985 0.991 0.996 0.999 0.993 1.000
WLS(v) 0.993 0.996 0.996 0.998 0.999 0.999
MinT(Shrink) 0.977 0.979 0.986 0.990 0.994 0.994
WLS(s) 0.987 0.993 0.994 0.996 0.995 0.998
TDFP 0.993 0.997 1.006 1.006 0.997 1.007
TDGSA 1.471 1.287 1.200 1.150 1.124 1.122
TDGSF 1.472 1.286 1.193 1.143 1.119 1.117

Table 3.3: AveRelMSE and AveRelMAE across all hierarchical levels for
different forecast horizons. ETS as base forecasting method.

The table shows promising results for the robust reconciliation based on
the HUBER (1) estimator. Considering Average Relative MSE and Average
Relative MAE, this approach ranked first or second best in every forecast
horizon considered. The improvements in terms of MSE varied from 4%
to 4.6% for the two robust reconciliation approaches considered, while the
improvements in terms of MAE ranged between 2% and 2.9%.

Considering once again ETS as base forecasting method, the Average
Relative MSE and Average Relative MAE results for each hierarchical level
are depicted in Tables 3.4 and 3.5, respectively. Figure 3.11, in turn, depicts
the average ranks of each reconciliation technique and the results of the
Friedman and post-hoc Nemenyi tests. They both show the potential of the
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robust reconciliation approach for the intermediate and the bottom levels
of the hierarchy. The results suggest that the magnitude of the different
forecasts to be reconciled produced an undesirable effect that was attenuated
by the proposed robust reconciliation techniques. In most forecast horizons
considered, the HUBER (1) and the Mint-Shrink estimators ranked among
the first and second best reconciliation strategies. When accounting for long-
term performance (forecasting lead times of h = 3 and over), the HUBER (1)
reconciliation approach consistently outperformed the others in terms of MAE
reduction. This behavior is coherent with the proposed accuracy measures,
since the HUBER (1) works in favor of variance reduction. The HUBER (2)
approach, in turn, presented the best performance for short-term forecasting
in terms of MSE.

On average, the HUBER (1) presented consistent accuracy gains across
all forecasting horizons for the intermediate and lower hierarchy levels. The
gains in terms of MSE varied from 0.29% to 3.52% when forecasting unem-
ployment for Metropolitan Areas and 1.51% to 4.89% when analysing the re-
sults at the bottom level (disaggregation by sex). The improvements on MAE
stayed within the range of 0.41% to 2.75% for Metropolitan Areas and 1.01%
to 2.57% for sex.

We note that improvements on forecast accuracy are more evident when
the base forecasts are less accurate. When bottom-up or top-down strategies
are dominant at a given forecast horizon, to the detriment of more sophisticated
reconciliation techniques, it indicates that independent base forecasts could
better capture the behavior of the time series at that level. Although in some
cases no improvement is noted for the reconciliation strategies, for instance,
at the top level of the hierarchy in Tables 3.4 and 3.5, it is important to note
that AveRelMSE and AveRelMAE compares the relative performance of only
a unique vector of forecasts produced at the top level. When the relatives for
all hierarchical levels are considered in a combined metric (Table 3.3), the
reconciliation approaches that use limited information, such as bottom-up or
top-down, tend to worsen the results. These deficiencies in forecast accuracy
are considerable at the top levels of aggregation.
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Reconciliation Forecast horizon
Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Total

HUBER (1) 1.037 1.010 1.011 1.007 1.000 1.001
HUBER (2) 1.017 1.007 1.004 1.001 1.001 0.999
BU 1.225 1.116 1.069 1.034 1.026 1.013
OLS 1.014 1.006 1.003 1.000 1.000 0.998
WLS(v) 1.114 1.056 1.035 1.013 1.010 1.001
MinT(Shrink) 1.070 1.025 1.018 0.999 0.999 0.990
WLS(s) 1.081 1.040 1.025 1.008 1.006 1.000
TDFP 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000

Metropolitan Areas

HUBER (1) 0.973 0.971 0.965 0.978 0.984 0.997
HUBER (2) 0.961 1.002 0.999 0.995 0.998 1.004
BU 1.039 1.028 0.997 0.994 1.020 1.014
OLS 0.964 1.008 1.008 1.001 1.002 1.007
WLS(v) 1.004 1.000 0.988 0.990 1.007 1.005
MinT(Shrink) 0.980 0.967 0.965 0.970 0.993 0.992
WLS(s) 0.983 0.995 0.987 0.987 1.000 1.002
TDFP 0.987 1.023 1.031 1.019 1.012 1.019
TDGSA 1.988 1.545 1.295 1.233 1.235 1.252
TDGSF 1.994 1.528 1.274 1.217 1.222 1.241

Sex

HUBER (1) 0.952 0.951 0.971 0.984 0.970 0.985
HUBER (2) 0.945 0.974 1.000 0.997 0.984 0.994
BU 1.000 1.000 1.000 1.000 1.000 1.000
OLS 0.948 0.979 1.007 1.003 0.988 0.997
WLS(v) 0.976 0.973 0.991 0.994 0.988 0.991
MinT(Shrink) 0.953 0.940 0.969 0.974 0.972 0.976
WLS(s) 0.961 0.971 0.990 0.992 0.984 0.990
TDFP 0.967 0.987 1.025 1.020 1.001 1.012
TDGSA 2.178 1.666 1.443 1.257 1.202 1.187
TDGSF 2.183 1.661 1.433 1.246 1.191 1.176

Table 3.4: AveRelMSE per hierarchical level for different forecast horizons.
ETS as base forecasting method.
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Reconciliation Forecast horizon
Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Total

HUBER (1) 1.008 1.017 1.014 1.016 1.008 1.010
HUBER (2) 1.006 1.010 1.007 1.009 1.006 1.005
BU 1.080 1.097 1.060 1.060 1.034 1.028
OLS 1.005 1.010 1.007 1.008 1.005 1.004
WLS(v) 1.043 1.056 1.035 1.037 1.024 1.020
MinT(Shrink) 1.026 1.030 1.026 1.031 1.021 1.016
WLS(s) 1.029 1.040 1.028 1.029 1.019 1.016
TDFP 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000

Metropolitan Areas

HUBER (1) 0.988 0.981 0.973 0.990 0.990 0.996
HUBER (2) 1.002 0.999 0.987 1.002 0.994 1.003
BU 1.013 1.015 0.999 1.003 1.017 1.010
OLS 1.003 1.001 0.994 1.005 0.996 1.004
WLS(v) 0.998 0.997 0.990 0.999 1.007 1.003
MinT(Shrink) 0.984 0.985 0.984 0.991 1.002 0.999
WLS(s) 0.996 0.996 0.988 0.998 1.001 1.001
TDFP 1.010 1.012 1.004 1.011 1.001 1.007
TDGSA 1.486 1.317 1.179 1.177 1.174 1.171
TDGSF 1.483 1.318 1.169 1.170 1.167 1.166

Sex

HUBER (1) 0.974 0.976 0.982 0.985 0.980 0.990
HUBER (2) 0.973 0.982 0.992 0.992 0.989 0.997
BU 1.000 1.000 1.000 1.000 1.000 1.000
OLS 0.974 0.984 0.996 0.995 0.990 0.998
WLS(v) 0.987 0.990 0.995 0.994 0.993 0.996
MinT(Shrink) 0.969 0.972 0.984 0.987 0.987 0.991
WLS(s) 0.979 0.988 0.994 0.992 0.991 0.996
TDFP 0.984 0.990 1.007 1.004 0.996 1.007
TDGSA 1.512 1.300 1.229 1.150 1.110 1.109
TDGSF 1.515 1.298 1.222 1.143 1.106 1.104

Table 3.5: AveRelMAE per hierarchical level for different forecast horizons.
ETS as base forecasting method.
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Total

Metropolitan Regions

Sex

AveRelMSE ranks AveRelMAE ranks

Figure 3.11: Average rank and Nemenyi post-hoc test after the Friedman test
for different hierarchical levels based on AveRelMSE and AveRelMAE - 5%
significance level

The vertical axis in every chart of Figure 3.11 shows the average ranks
of the reconciliation strategies according to the selected evaluation metric
(AveRelMSE on the left, AveRelMAE on the right). Each method is compared
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against the others in the columns. black cells indicate no statistical difference
between the compared approaches, i.e., they are suggested to have similar
accuracies. White cells, in turn, indicate that there is a difference between the
performances of the compared approaches. At the top level of the hierarchy,
no differences can be told concerning the performance of regression-based
reconciliation strategies and the performance of the top-down approaches. At
the intermediate level, however, the test results indicate that HUBER (1),
MinT-Shrink and WLS(s) belong to a different performance cluster compared
with the top-down strategies in terms of MSE. When comparing the MAE,
the HUBER (1) is significantly different from all top-down approaches. The
scenario is very similar for the bottom hierarchical level.

As a second experiment using monthly data from PME, we investigate the
performance of the reconciliation approaches when base forecasts are generated
via ARIMA formulations. In this case, the accuracy gains in favor of the
robust settings are noted across all hierarchical levels for short-term horizons,
as shown in Table 3.6. These results corroborate the findings of Tables 3.4 and
3.5, where the improvements in terms of MSE and MAE are noted for each
hierarchical level in the short-term.

The average relative metrics results per hierarchical level are shown
in Tables 3.7 and 3.8. The most relevant gains in this case occur at the
top level, with an approximately 9% reduction in terms of MSE and 3.4%
reduction for the MAE when forecasting up to two steps ahead. Even though
the BU method provides more accurate results for longer periods at the top
and intermediate level of the hierarchy, by construction this approach is not
able to offer reconciliation improvements at the bottom level. This fact is
due to its additive construction from the bottom, as described in Section 3.2.
According to Figure 3.12, it is possible to identify a cluster of methods of
superior performance relative to the others when comparing the AveRelMSE
at the top of the hierarchy. On the other hand, based on AveRelMAE ranks,
the critical distance is not enough to divide the reconciliation strategies into
groups of specific forecasting performance.
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Reconciliation Forecast horizon
Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Average Relative MSE across all hierarchical levels

HUBER (1) 0.950 0.946 0.991 1.027 1.063 1.102
HUBER (2) 0.948 0.981 1.039 1.125 1.205 1.272
BU 1.012 1.015 0.997 0.987 0.979 0.978
OLS 0.948 0.981 1.039 1.125 1.205 1.273
WLS(v) 0.983 0.980 0.987 0.999 1.010 1.020
MinT(Shrink) 0.954 0.987 1.030 1.087 1.134 1.178
WLS(s) 0.960 0.966 0.991 1.033 1.068 1.096
TDFP 0.960 0.960 1.014 1.091 1.167 1.225
TDGSA 1.833 1.540 1.373 1.403 1.471 1.554
TDGSF 1.832 1.529 1.361 1.392 1.462 1.546

Average Relative MAE across all hierarchical levels

HUBER (1) 0.976 0.984 1.001 1.013 1.036 1.059
HUBER (2) 0.984 1.006 1.032 1.067 1.118 1.152
BU 1.009 1.012 1.000 0.989 0.984 0.981
OLS 0.984 1.006 1.032 1.067 1.118 1.153
WLS(v) 0.991 0.995 0.995 0.996 1.007 1.011
MinT(Shrink) 0.983 1.008 1.026 1.048 1.078 1.101
WLS(s) 0.985 0.992 0.999 1.016 1.041 1.056
TDFP 0.989 0.995 1.007 1.047 1.100 1.132
TDGSA 1.406 1.304 1.221 1.224 1.277 1.297
TDGSF 1.406 1.299 1.215 1.219 1.272 1.293

Table 3.6: AveRelMSE and AveRelMAE across all hierarchical levels for
different forecast horizons. ARIMA as base forecasting method.
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Reconciliation Forecast horizon
Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Total

HUBER (1) 0.964 0.910 0.898 0.882 0.867 0.865
HUBER (2) 0.996 0.973 0.966 0.963 0.957 0.952
BU 1.140 0.949 0.863 0.816 0.769 0.741
OLS 0.996 0.973 0.966 0.963 0.957 0.953
WLS(v) 1.050 0.936 0.891 0.869 0.836 0.818
MinT(Shrink) 1.040 0.962 0.934 0.910 0.885 0.867
WLS(s) 1.028 0.934 0.900 0.884 0.858 0.843
TDFP 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000

Metropolitan Areas

HUBER (1) 0.947 0.975 1.006 1.030 1.061 1.106
HUBER (2) 0.944 1.011 1.054 1.135 1.212 1.287
BU 1.016 1.057 1.016 0.993 0.976 0.979
OLS 0.944 1.011 1.054 1.135 1.212 1.288
WLS(v) 0.985 1.015 1.003 1.003 1.007 1.020
MinT(Shrink) 0.953 1.022 1.049 1.099 1.140 1.186
WLS(s) 0.957 0.997 1.005 1.037 1.067 1.101
TDFP 0.956 0.993 1.023 1.095 1.167 1.231
TDGSA 1.701 1.493 1.343 1.427 1.510 1.614
TDGSF 1.699 1.475 1.327 1.415 1.501 1.607

Sex

HUBER (1) 0.951 0.935 0.992 1.038 1.083 1.122
HUBER (2) 0.946 0.967 1.037 1.134 1.225 1.296
BU 1.000 1.000 1.000 1.000 1.000 1.000
OLS 0.946 0.967 1.037 1.134 1.225 1.297
WLS(v) 0.976 0.967 0.988 1.009 1.027 1.039
MinT(Shrink) 0.947 0.971 1.029 1.097 1.155 1.204
WLS(s) 0.957 0.954 0.992 1.044 1.087 1.117
TDFP 0.958 0.953 1.010 1.098 1.183 1.242
TDGSA 2.002 1.622 1.426 1.431 1.500 1.582
TDGSF 2.001 1.613 1.414 1.419 1.490 1.573

Table 3.7: AveRelMSE per hierarchical level for different forecast horizons.
ARIMA as base forecasting method.
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Reconciliation Forecast horizon
Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Total

HUBER (1) 0.979 0.967 0.936 0.919 0.914 0.913
HUBER (2) 1.002 0.995 0.976 0.974 0.972 0.972
BU 1.119 0.979 0.899 0.865 0.829 0.822
OLS 1.002 0.995 0.976 0.974 0.972 0.9723
WLS(v) 1.039 0.986 0.920 0.903 0.891 0.885
MinT(Shrink) 1.024 0.989 0.950 0.938 0.931 0.927
WLS(s) 1.021 0.984 0.926 0.917 0.906 0.902
TDFP 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000

Metropolitan Areas

HUBER (1) 0.979 1.005 1.013 1.016 1.029 1.055
HUBER (2) 0.998 1.029 1.043 1.072 1.117 1.148
BU 1.009 1.041 1.019 0.989 0.979 0.972
OLS 0.998 1.029 1.043 1.072 1.116 1.147
WLS(v) 0.994 1.018 1.008 0.997 0.999 1.004
MinT(Shrink) 0.994 1.031 1.041 1.053 1.072 1.098
WLS(s) 0.989 1.011 1.008 1.018 1.034 1.050
TDFP 1.007 1.011 1.003 1.046 1.095 1.128
TDGSA 1.340 1.346 1.213 1.243 1.297 1.318
TDGSF 1.387 1.342 1.209 1.240 1.291 1.314

Sex

HUBER (1) 0.974 0.975 1.001 1.020 1.051 1.075
HUBER (2) 0.975 0.996 1.031 1.072 1.132 1.171
BU 1.000 1.000 1.000 1.000 1.000 1.000
OLS 0.975 0.996 1.031 1.072 1.131 1.172
WLS(v) 0.986 0.985 0.995 1.004 1.021 1.026
MinT(Shrink) 0.974 0.998 1.025 1.055 1.094 1.118
WLS(s) 0.980 0.983 1.001 1.023 1.056 1.073
TDFP 0.980 0.986 1.011 1.051 1.111 1.147
TDGSA 1.454 1.312 1.246 1.235 1.293 1.315
TDGSF 1.457 1.306 1.237 1.229 1.288 1.310

Table 3.8: AveRelMAE per hierarchical level for different forecast horizons.
ARIMA as base forecasting method.
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Total

Metropolitan Regions

Sex

AveRelMSE ranks AveRelMAE ranks

Figure 3.12: Average rank and Nemenyi post-hoc test after the Friedman test
for different hierarchical levels based on AveRelMSE and AveRelMAE - 5 %
significance level - ARIMA as base forecasting method
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3.5.2
Forecasting quarterly unemployment in Brazil

The second data set concerns quarterly data from the Brazilian Contin-
uous National Household Sample Survey (PNADC) on Total Unemployment.
The values of the average relative (MSE and MAE) metrics across all hier-
archical levels are shown in Table 3.9 for reconciliation techniques applied to
ETS base forecasts. The HUBER (1) approach presented the most accurate
results for long-term horizons, i.e., three and four quarters ahead, while the
MinT(Shrink) provided the best results h = 1 and h = 2, followed by HUBER
(1) when h = 2.

Reconciliation
Approach

AveRelMSE AveRelMAE
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

All hierarchical levels

HUBER (1) 0.928 0.961 0.925 0.941 0.970 0.964 0.949 0.949
HUBER (2) 1.000 1.222 1.315 1.434 0.992 1.081 1.121 1.153
BU 1.018 1.003 0.999 1.008 1.019 1.008 1.015 1.011
OLS 1.000 1.222 1.315 1.434 0.992 1.081 1.121 1.153
WLS(v) 0.945 0.971 0.967 0.945 0.963 0.991 0.983 0.954
MinT(Shrink) 0.806 0.937 1.008 1.034 0.880 0.952 0.989 0.986
WLS(s) 0.915 1.004 1.001 0.981 0.956 1.006 0.992 0.975
TDFP 0.876 1.025 1.039 1.066 0.935 1.012 1.010 1.001
TDGSA 2.951 2.246 2.036 1.925 1.830 1.581 1.527 1.404
TDGSF 2.948 2.245 2.036 1.925 1.829 1.580 1.527 1.404

Table 3.9: AveRelMSE and AveRelMAE across all hierarchical levels for
different forecast horizons. ETS as base forecasting method.

Table 3.10 shows the results for the AveRelMSE and AveRelMAE com-
puted for each level of the PNADC hierarchy – top (Brazil), intermediate (the
five Great Regions) and bottom (27 Federative Units, distributed across the
five Great Regions). Accuracy gains for the HUBER (1) estimator are observed
in all levels of the hierarchy for most forecast horizons. In this case, it is fair to
say that the HUBER (1) estimator has the most dominant performance com-
pared with the state-of-the-art approaches. The HUBER (2) estimator also
present competitive results in the top level of the hierarchy, particularly in
very short-term horizons. Finally, the results presented in Figure 3.13 indicate
that the HUBER (1) robust reconciliation technique differs significantly, from
the statistical viewpoint, from the TDGSA and TDGSF Top-down approaches
for the intermediate and bottom levels. The results for the top of the hierarchy
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suggest that all strategies differ significantly from each other, i.e., no clusters
of methods of similar performance can be identified.
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Reconciliation
Approach

AveRelMSE AveRelMAE
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Total (Brazil)

HUBER (1) 1.084 0.787 0.702 0.698 0.978 0.850 0.833 0.873
HUBER (2) 0.975 0.928 0.893 0.835 0.949 0.975 0.932 0.902
BU 1.266 0.884 0.863 0.923 1.188 0.947 1.002 1.050
OLS 0.975 0.928 0.893 0.835 0.949 0.975 0.932 0.902
WLS(v) 1.049 0.816 0.757 0.717 0.990 0.919 0.907 0.868
MinT(Shrink) 0.792 0.795 0.792 0.728 0.798 0.918 0.901 0.826
WLS(s) 1.020 0.827 0.759 0.683 0.931 0.930 0.893 0.786
TDFP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Great Regions

HUBER (1) 0.913 0.938 0.889 0.922 0.972 0.973 0.943 0.965
HUBER (2) 0.885 1.197 1.236 1.367 0.957 1.093 1.140 1.135
BU 1.075 1.044 1.025 1.069 1.092 1.068 1.099 1.067
OLS 0.885 1.197 1.236 1.367 0.957 1.093 1.140 1.135
WLS(v) 0.928 0.977 0.947 0.937 0.970 1.025 1.007 0.972
MinT(Shrink) 0.747 0.976 1.055 1.087 0.847 1.008 1.031 1.009
WLS(s) 0.884 1.010 0.966 0.930 0.943 1.048 1.018 0.955
TDFP 0.907 1.151 1.177 1.258 0.983 1.102 1.110 1.112
TDGSA 3.447 2.883 2.791 2.904 2.007 1.796 1.889 1.734
TDGSF 3.445 2.883 2.792 2.905 2.006 1.796 1.889 1.735

Federative Units

HUBER (1) 0.925 0.973 0.941 0.954 0.969 0.967 0.955 0.949
HUBER (2) 1.024 1.240 1.349 1.476 1.000 1.083 1.126 1.167
BU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
OLS 1.024 1.240 1.349 1.476 1.000 1.083 1.126 1.167
WLS(v) 0.944 0.976 0.979 0.957 0.961 0.987 0.981 0.954
MinT(Shrink) 0.818 0.936 1.009 1.038 0.889 0.943 0.984 0.988
WLS(s) 0.917 1.010 1.018 1.004 0.959 1.002 0.991 0.986
TDFP 0.866 1.004 1.017 1.036 0.924 0.997 0.993 0.981
TDGSA 2.985 2.210 1.972 1.828 1.840 1.571 1.492 1.367
TDGSF 2.981 2.209 1.971 1.828 1.839 1.570 1.491 1.367

Table 3.10: AveRelMSE and AveRelMAE per hierarchical level for different
horizons. ETS as base forecasting method.
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Brazil

Great Regions

Federative Units

AveRelMSE ranks AveRelMAE ranks

Figure 3.13: Average rank and Nemenyi post-hoc test after the Friedman test
for different hierarchical levels based on AveRelMSE and AveRelMAE – Tests
conducted at the 5% significance level.
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3.5.3
Discussions and benefits from reconciliation

The results outlined in Sections 3.5.1 and 3.5.2 endorse the strength
of our proposed reconciliation approaches. The experiments demonstrate the
value of combining univariate methods with reconciliation approaches. The
first set of methods usually provide reasonable estimates when the interest lies
in multi-step ahead forecasting time series that present a range of stylized facts,
such as unemployment data (as in our case) and selected sectoral time series,
such as energy consumption (OLIVEIRA; OLIVEIRA, 2018) and tourism de-
mand data (ATHANASOPOULOS et al., 2011). Reconciliation techniques, in
turn, benefit from the hierarchical structure of the involved time series. Indeed,
from a theoretical perspective, recent reconciliation techniques were proposed
to guarantee that reconciled forecasts are at least as good the base forecasts.
This is because the resulting revised forecasts will be unbiased and will add up
appropriately across the hierarchy (HYNDMAN et al., 2011), as opposed to
independently forecasting each time series. In addition, when the representa-
tion of the variance-covariance matrix of the reconciled forecast errors satisfies
the SPS = P condition – which is usually the case in most recent reconcili-
ation techniques –, the reconciled forecasts will also have minimum variance
amongst all possible combinations of forecasts (WICKRAMASURIYA et al.,
2020). In PANAGIOTELIS et al. (2021), the authors focus on the geometric
interpretation and representation of the reconciliation based on a projection
into coherent spaces and how it can be addressed to two desirable properties.
First, reconciliation should produce minimal adjustment on base forecasts and,
secondly, reconciliation techniques should improve forecast accuracy. The arti-
cle HOLLYMAN et al. (2021) adds to this discussion by pointing that forecasts
generated via reconciliation techniques inherit the benefits of combined fore-
casts, which have been validated in a considerable range of empirical settings
and have often been shown to outperform the best ex-ante forecasting method.

Our results corroborate the above line of reasoning, as not only the
proposed approaches, but also several established reconciliation techniques
delivered reliable estimates for the time series in the two data sets considered.
Furthermore, our proposed methods also highlight the benefits of properly
addressing the outliers in the reconciliation stage, further enhancing the quality
of the revised forecasts.

As a brief note, we acknowledge that modelling and forecasting indepen-
dently each time series may make more sense if the interest lies in a single or
a limited set of time series belonging to the same hierarchical level. However,
when the interest lies in the comprehensive set of time series under a defined
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hierarchical structure, as in our case, finding the best of suite approach for
each time series will almost surely result in forecasts that do not add up across
the hierarchy, losing interpretation of the overall results. Hence, hierarchical
forecasting methods that generate coherent forecasts, as those herein proposed,
should be considered to allow appropriate decision-making at the different lev-
els (PETROPOULOS et al., 2022).

3.6
Conclusions and future studies

Providing data to support decisions involving multiple hierarchical levels
typically requires consolidating estimates. In this sense, our empirical evalua-
tion shows encouraging results in favor of the proposed robust reconciliation
approaches. Even though these estimators are not uniformly dominant for all
scenarios, they rank among the first or second best approaches in almost every
case, being competitive with state-of-the-art techniques in hierarchical fore-
casting reconciliation. We find considerable gains in accuracy according to the
assessment metrics for different hierarchical levels. Overall, the HUBER (1)
is the most consistent strategy, delivering competitive results in both short
and long-run horizons and outperforming most methods in terms of MSE and
MAE.

Our results provide relevant insights to a wide range of stakeholders, such
as: (i) policymakers and public administrators at the ground zero of decision-
making; (ii) academics and practitioners interested in sharpening/improving
the quality of their forecasting models by taking into consideration the hi-
erarchical structure of the data; and (iii) business managers concerned with
unemployment levels in the region(s) in which their operations are located.

A natural development of this work is to evaluate the unemployment
expressed as a percentage of the total labor force, which translates into the
unemployment rate, at the constraint of forecasting coherently for a given
hierarchy. Our research focused on the numerator of the indicator since the
hierarchical framework works for totals. However, the same approach can be
extended to non-linear quantities that can be expressed as a function of totals.

Another point worth noting is that, in this paper, we focused on a partic-
ular class of M-estimators when proposing the robust reconciliation strategies.
However, other influence functions can be implemented with different tuning
parameters. In addition, other classes of robust estimators such as S-estimators
and MM estimators can also be explored.

We should also highlight that we used only base forecasts from a
single model strategy to compute the reconciled forecasts. A straightforward
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alternative would be to consider combination techniques to improve the final
forecasts. Moreover, further investigation can be done to assess whether the
benefits from the forecast combination in this framework come from the base
forecasts or the combined reconciled ones.

Finally, even though we focused in this paper in data sets of total
unemployment across several regions in Brazil, we note that the methods herein
presented are flexible in the sense that they are not scale dependent and can
be applied to other sets of hierarchical time series and provide competitive
results.
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4
Second contribution: A novel reconciliation approach for hier-
archical electricity consumption forecasting based on resistant
regression

This Chapter proposes a hierarchical forecast reconciliation approach
aimed at delivering accurate forecasts of energy demand across all divisions
in a power system. It relies on the use of resistant-based estimators to aid
in the process of forecast reconciliation. This study was published at Energy
(ISSN 0360-5442), (MEIRA et al., 2023).

4.1
Introduction

Power demand forecasting has become a critical task in several applica-
tion systems. Reliable energy consumption forecasts, for instance, are not only
required for the optimal control and scheduling of power systems, but they
also form the basis of the electrical energy trade and spot price calculation in
financial markets (OLIVEIRA; OLIVEIRA, 2018).

The reliance and accuracy of future electricity demand and supply fore-
casting have received special attention in emerging countries with vulnerable
supply systems (VELASQUEZ et al., 2022). In Brazil, for instance, the Na-
tional Interlinked System (SIN) has shown to be vulnerable to electricity short-
ages and has demanded significant overhaul in order to address its challenges
(TORRINI et al., 2016). This has become clearer in the last years, when the
country barely escaped forced electricity supply shortages due to severe and
prolonged droughts.

If on the one hand the limited diversification of the Brazilian electric
matrix, for which hydropower generation corresponds to almost two-thirds of
the national installed capacity, leaves the Brazilian power system sensitive
to weather conditions (OLIVEIRA et al., 2015), on the other hand, the
country’s energy consumption has risen rapidly in recent decades, lifting its
world ranking to the sixth largest energy consumer in 2021 (ENERDATA,
2022). Furthermore, energy consumption levels in Brazil are expected to rise
even further in the next decades. For instance, the Brazilian Energy Research
Company (EPE) is in charge of publishing two official reports, at the request
of the Brazilian Ministry of Mines and Energy: The 10-year Energy Expansion
Plan and the National Energy Planning 2050. Both documents are adamant
in their position, claiming that the demand for electric energy will continue
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to grow in the coming years. For instance, according to PDE 2031, Brazil
foresees an increase in electricity consumption by around 3.5% per year, from
562.6 TWh at the end of 2021 to 791.9 TWh in 2031 (EPE, 2022a).

The official electricity demand forecasts provided by EPE relate to
very long-term horizons, i.e., they provide estimates of future electric energy
consumption for lead times of ten or more years. Forecasts for such horizons can
aid in setting long-term energy planning goals but are of limited importance in
most operations planning applications. Short to mid-term demand forecasts of
energy consumption, i.e., forecasts for horizons ranging from the first few hours
to several months in advance, in turn, are crucial for several reasons. First,
short-term forecasts not only form the basis of the electrical energy trade and
spot price calculation (CASTELLI et al., 2015), but they are also required
for the control and scheduling of power systems (TAYLOR; MCSHARRY,
2007). Mid-term electricity load forecasting, in turn, is particularly important
in the scenario of smart grid development (TANG et al., 2022). KABOLI et
al. (2017) add that forecasting within this time frame is especially interesting
for companies operating in deregulated environments, as accurate forecasts
provide valuable information about the market need of energy, the need for
unit maintenance, the fuel supplies, and the balance of imports and exports of
energy.

Another point worth noting is that there is no official forecasting data
available for consumption at the sector (Industrial, Residential, Commercial
and Others) or sub-sector levels (data for the different geographic regions
within sectors). Estimates of consumption across such disaggregated levels are
also of paramount importance, as the lack of sufficient energy load in parts of
the power system may cause the whole system to collapse.

This paper aims to fill the above-discussed gaps by estimating and sub-
sequently forecasting Brazilian monthly electric energy demand at both total
and disaggregated levels. To that end, a novel forecast reconciliation approach
is proposed combining resistant regression techniques and hierarchical time se-
ries methods. By considering resistant statistics in the forecast reconciliation
process, we address a significant gap in the modelling and forecasting of hier-
archical time series: the substantial reduction of contamination in the involved
series due to outlying observations.

4.1.1
Brief overview on forecast reconciliation

Forecast Reconciliation stands for a process by which independently
generated forecasts of a collection of linearly related time series are reconciled
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via the introduction of accounting aggregations that naturally apply to the
data (HOLLYMAN et al., 2021). For instance, since national and sub-national
data of energy consumption in a power system are linearly related, as there
is a natural hierarchy among these series (sub-national data aggregate into
the total consumption), reconciliation methods can take advantage of the
underlying hierarchical structure to slightly adjust, i.e., combine using proper
weighting matrices, the original forecasts, so that the reconciled forecasts are
usually more accurate than the original ones.

Hierarchical forecast reconciliation has gained considerable attention in
the time series forecasting literature, particularly after the work of HYNDMAN
et al. (2011), who put forth the idea of optimally combining forecasts using
a regression-based perspective. In short, the authors demonstrated that if the
error covariance matrix is known, a generalized least squares regression solution
provides the optimal combination of forecasts. However, since this covariance
matrix is often challenging to estimate in practice, the authors adopted a
simplifying assumption of additivity on the forecast errors. HYNDMAN et al.
(2016), in turn, showed how to efficiently handle very complex hierarchical
structures, particularly when there are millions of time series at the most
disaggregated level. The authors also proposed the use of the Weighted Least
Squares (WLS) estimator to obtain an estimate of the variance-covariance
matrix of the reconciled forecast errors.

A probabilistic hierarchical forecast framework was built, in which the de-
pendency between the nodes at each hierarchical level is obtained by reordering
quantile forecasts (TAIEB et al., 2017). JEON et al. (2019), in turn, proposed
new approaches for reconciling probabilistic forecasts by combining informa-
tion from density forecasts at all hierarchical levels. WICKRAMASURIYA
et al. (2019) introduced the Minimum Trace (MinT ) reconciliation approach,
putting forth an alternative to estimate the variance-covariance matrix of the
reconciled forecast errors. More recently, PRITULARGA et al. (2021) proposed
the idea of defining coherency, i.e., the property that ensures that forecasts add
up properly throughout the hierarchy, as stochastic. According to the authors,
this allows practitioners to better understand overlooked uncertainties in the
forecast reconciliation process.

Recently was introduced the idea of using robust estimators during
forecast reconciliation to dampen the influence of outliers that may occur in
selected forecasts of the hierarchy (LILA et al., 2022). However, whilst robust
reconciliation methods may provide accurate reconciled forecasts on several
occasions, they are only capable of partially addressing the influence of outliers.
When the involved forecasts contain multiple outliers and these occur in both
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extremes of the distribution, robust regressions may find it hard to withstand
the proportion of contamination and still provide reliable outcomes.

4.1.2
Proposal and relevance to energy issues

Our work constitutes a pioneer effort in considering the use of resistant
estimators to the context of hierarchical forecast reconciliation. Drawing from
the fields of statistics, optimization, and time series, we propose a resistant-
based reconciliation approach that is theoretically constructed to not be
influenced by outliers and other influential points. The contributions of this
research can be summarized as follows:

1. Evaluate several robust and resistant parameter estimation methods
and understand how these methods can be effectively adapted to be used in
the context of hierarchical forecast reconciliation;

2. Propose a methodology for adapting the Least Absolute Deviation
(LAD) resistant-based estimator to the context of hierarchical forecast recon-
ciliation, allowing outliers and influential points that may be present in the
base forecasts to have minimal or even null effects on reconciliation weights.
This is particularly important in the context of energy demand time series,
as the different stylized facts that may be present in these time series, such
as nonlinearities, stochastic components (trend, seasonality, residuals), het-
eroscedasticity, presence of structural breaks, among others, may interfere in
the production of reconciled forecasts;

3. Consider an application of the developed approach to reconcile base
forecasts from a particular set of hierarchical time series, i.e., the time series
that represent the monthly electric energy demand across all divisions of the
Brazilian power system;

4. Conduct several forecasting experiments comparing the forecast perfor-
mance of the proposed resistant reconciliation approach with that from several
traditional and state-of-the-art hierarchical forecasting methods. In addition,
consider a broad range of settings such as different forecast lead times, cross-
validation with rolling forecast origins, among others, as well as multiple fore-
cast evaluation metrics to attest the robustness of the proposed approach in
delivering accurate forecasts across multiple levels of the hierarchy; and

5. Make the proposed methodology flexible so that it can be readily
applied to other sets of hierarchical time series and deliver equally reliable
results.

In terms of its relevance, we emphasize that the proposed approach not
only addresses a significant gap in the modelling and forecasting of hierarchical
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time series, i.e., the reduction of contamination due to outlying observations,
but it also delivers accurate energy consumption forecasts across distinct
aggregation levels in a power system. Given the ongoing complexity of power
systems throughout the years, accurate estimates of energy demand in distinct
regions and classes of a power system are of paramount importance, as the
lack of sufficient energy load in parts of the power system may cause the whole
system to collapse.

The rest of the paper unfolds as follows: Section 4.2 outlines the basic
strategies in Hierarchical Time Series (HTS) forecasting and details the most
up-to-date framework. It also introduces the concept of resistant reconciliation
in hierarchical forecasting. Section 4.3 describes the experimental setup. Sec-
tion 4.4 summarizes the results and assesses their implications. Finally, Section
4.5 concludes and suggests directions for future research.

4.2
HTS: from benchmarks to the state-of-the-art

4.2.1
Basic concepts

Some sets of time series can be presented in the form of Hierarchical
Time Series (HTS). This term stands for a collection of time series that
follow a defined hierarchical aggregation structure. HTS can be found in
several industries, and their analysis usually give valuable insights in terms of
operations and management. For instance, total electric energy consumption in
a given country can be disaggregated into Classes (or Sectors of Consumption)
and these can be further divided into Geographic Regions.

In order to characterize HTS, consider a three-level, balanced hierarchy
with m = 10 time series and information at time t. This hierarchy can be
illustrated in the following fashion:

yt

yi,t

yi1,t yi2,t

yj,t

yj1,t yj2,t

yk,t

yk1,t yk2,t

Figure 4.1: Hierarchical structure for a three levels hierarchy.

In a hierarchical structure, internal consistency is expected. In this case,
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by the additive property of the data, we have the following construction:

yt = yi,t + yj,t + yk,t (4-1)

and
yt =

2∑
l=1

yil,t +
2∑

l=1
yjl,t +

2∑
l=1

ykl,t (4-2)

A set of hierarchical time series can be represented in matrix notation.
Let yt be a vector of size m, as defined earlier, comprising observations from
all hierarchical levels at time t. It is possible to define an appropriate matrix
S of dimension m× n such that,

yt = Syb
t (4-3)

where yb
t is a n-vector containing the observations at the most disaggregated

level of the hierarchy, as illustrated in equation 4-4.

yt

yi,t

yj,t

yk,t

yi1,t

yi2,t

yj1,t

yj2,t

yk1,t

yk2,t


︸ ︷︷ ︸

yt

=



1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

S



yi1,t

yi2,t

yj1,t

yj2,t

yk1,t

yk2,t


︸ ︷︷ ︸

yb
t

(4-4)

4.2.2
Forecasting HTS - traditional methods

In a hierarchical forecasting framework, all time series are first forecasted
using independent methods, giving birth to “base forecasts”. Then, a reconcil-
iation approach is sought for, aiming at delivering “coherent”, final forecasts.
By coherent, one means forecasts that are unbiased, have minimum variance
amongst all combinations and add up properly across the hierarchy. In other
words, the values of the forecasts should add in a manner that is consistent
with the underlying aggregation structure. Turning once again to the exam-
ple on power systems, the forecasts across all classes of consumption should
add to the country level. The reconciliation process can be represented in the
flowchart depicted in Figure 4.2.
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Data

Base forecasting method Base forecasts Reconciliation Reconciled forecasts

Figure 4.2: Forecast reconciliation flowchart.

To aid in the visualisation of the coming explanations, we will refer to
the three-level hierarchical structure considered for the Brazilian power system.
This structure first divides total (national) electricity consumption (top-level of
the hierarchy) by Classes (intermediate level) and then by Geographic Regions
(bottom-level). There are four Classes of Consumption in the Brazilian power
system: Commercial, Industrial, Residential and Others (mainly rural, public
service and public lighting). Geographic Regions, in turn, are divided into five
groups: North, Northeast, Midwest, Southeast and South.

In mathematical terms, the process of forecast reconciliation can be
represented as follows. First, consider ŷt+h|t a vector of h steps ahead base
forecasts, generated using independent methods, with the same arrangement
as yt. Thus, for a given matrix P of dimension n × m, we have the following
equation

ỹt+h|t = SPŷt+h|t (4-5)
where ỹt+h|t are the reconciled forecasts. The SP matrices represent the
reconciliation process, which maps independent (or incoherent) forecasts into
coherent ones. Depending on how P is structured, it is possible to reproduce
several traditional hierarchical forecasting approaches. For instance, by letting
P =

[
0n×(m−n)|In

]
, where 0n×(m−n) is a null matrix, one can reproduce the

Bottom-Up (BU) approach. In this case, the P matrix keeps only forecasts
for the most granular level, then S completes the processes by generating
reconciled forecasts at every other level of the hierarchy. Under this approach,
and turning to the example of power system divisions, information from
Brazilian geographic regions within classes of consumption (the most granular
level) will provide the forecasts for the entire hierarchy of energy consumption.
It is worth noting that bottom-up forecasts, although unbiased by construction,
usually capture more volatility than other reconciliation approaches.

Top-Down forecasts, in turn, can be achieved by making P =[
p|0n×(m−1)

]
, where p is the set of proportions, or weights, applied to forecasts

at the top level. Common approaches to obtain these proportions are the Top-
Down Gross-Sohl methods A and (TDGSA and TDGSF), described in GROSS
& SOHL (1990). Under TDGSA, the weights applied to forecasts at the top of
the hierarchy take into account the average of the relative importance of each
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value of lower hierarchical levels of the time series. The TDGSF approach, in
turn, considers a weighting system that takes the relative importance of the
entire series from the past at lower levels with respect to the time series at the
top level. In practice, both approaches consider the overall Brazilian energy
consumption profile to produce forecasts for the classes of consumption (in-
termediate level) and for the Brazilian Regions within classes (bottom-level).
These approaches basically assume that the seasonal behavior of the time se-
ries at the intermediate and bottom-levels is induced by the most aggregated
information (the national energy consumption).

4.2.3
Optimal reconciliation

The idea of optimally reconciling/combining forecasts, generating coher-
ent estimates from a regression-based perspective, first appeared in the work of
HYNDMAN et AL. (2011). Following the same matrix notation from the pre-
vious sections, optimal reconciliation approaches can be expressed according
to the following regression model:

ŷt+h|t = Sβt+h|t + ϵt+h|t (4-6)
where βt+h|t = E

[
yb

t+h|It
]
, It = y1, y2, . . . , yt and V

(
ϵt+h|t|It

)
= Σh. In this

case, forecasts from all hierarchical levels of the power system, i.e., from the
overall consumption to regions within classes, are optimally combined into
new unbiased forecasts that add up properly according to the underlying
hierarchical structure.

Later, HYNDMAN et al. (2016) proposed the use of the Weighted Least
Squares (WLS) estimator to obtain an estimate of the variance-covariance ma-
trix of the h-step-ahead final (reconciled) forecast errors (Σh), while ignoring
the elements outside the diagonal. Recent studies proposed alternative meth-
ods to obtain this matrix. WICKRAMASURIYA et al. (2019) introduced the
Minimum Trace (MinT) reconciliation approach, which aims to find a ma-
trix P that minimizes tr(SPWhP′S′) subject to SPS = S, the unbiasedness
condition. WICKRAMASURIYA et al. (2020), in turn, reconsidered the least
squares minimization problem with non-negativity constraints to ensure that
the coherent forecasts are strictly non-negative.

In order to use MinT reconciliation, it is necessary to estimate Wh, the
variance-covariance matrix of the h-step-ahead base forecast errors. Several
approaches were proposed, giving birth to variants of the optimal combination
approach depicted in eq. (4-6). In this work we considered two approaches as
benchmarks: the simplest version, based on Ordinary Least Squares (OLS) and
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the shrinkage estimator (MinT-S).
The OLS approach takes Wh = khI, for a given constant kh > 0. This is

the simplest hypothesis and means assuming that the P matrix is independent
of the data, providing an advantage in computational terms. However, by
ignoring the dependency structures between residuals, relevant information
is lost (HYNDMAN et al., 2011). For instance, in the Brazilian power system,
forecasts for the regions within classes of consumption, which usually contain
more volatility than forecasts for the intermediate and top-levels, will have
the same importance, in terms of reconciliation weights, as the ones provided
at the most aggregated levels, which tend to be smoother/less volatile by
construction.

The shrinkage estimator (MinT-S) takes Wh = khλŴ1,D + (1 − λ)Ŵ1

where kh > 0, Ŵ1 is the unbiased sample covariance estimator of the in-sample
one-step-ahead base forecast errors and Ŵ1,D = diag(Ŵ1). In this case, the
estimator of the covariance matrix aims to reduce the importance of elements
outside the main diagonal of Ŵ1. The shrinkage parameter λ is a function of
the in-sample correlations and is estimated as follows.

λ̂ =

∑
i ̸=j

V̂ (r̂ij)∑
i ̸=j

r̂2
ij

(4-7)

where r̂ij corresponds to ij-element of R̂1, the one-step-ahead in-sample
correlation matrix. It is worth noting that the shrinkage estimator, despite
reducing the importance of covariance between series at different levels of the
hierarchy, still takes into account some measure of relationship between the
series.

Regardless of the approach selected for estimating Wh, the optimal
reconciled forecasts are given by

ỹh = S(S′W−1
h S)−1S′W−1

h ŷh. (4-8)

This equation can be written in another fashion as follows.

ỹh = Sβ̃h. (4-9)

4.2.4
Robust Reconciliation for HTS

As observed, the optimal reconciliation approaches described in the pre-
vious section are obtained following the same guidelines as in linear regression
techniques. However, the use of Least Squares may not appropriate when deal-
ing with time series forecasts presenting outlying observations and/or influen-
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tial points. An influential point is a point that has a large impact on any part of
a regression analysis, such as the predicted responses, the estimated slope coef-
ficients, or the hypothesis test results. Outliers, in turn, are data points whose
responses do not follow the general trend of the rest of the data. Regardless
of the case, a reconciliation method that is less affected by forecast imperfec-
tions is desirable. The work of LILA et al. (2022) can be viewed as a seminal
effort in this regard. In brief, the authors considered the use of M-Estimators
in the context of hierarchical forecast reconciliation and proposed two different
robust-based approaches applied to unemployment data from multiple labor
force surveys.

The approach can be summarized as follows: let ρ be a function having
the following properties: nonnegative, i.e., ρ(z) ≥ 0; ρ(0) = 0; symmetric,
ρ(z) = ρ(−z) and monotone in |Zi|, ρ(zi) ≥ ρ(zi′) for |zi| > |zi′|. Then, the
robust M-estimator based on Equation (5-13) is given as:

β̃M,h = arg min
β̃h

n∑
i=1

ρ(ηi(β̃h)). (4-10)

The solution to this minimization problem requires finding ψ(·) = ρ′(·),
the influence function. In light of its desirable properties for computational
convergence, LILA et al. (2022) considered the Huber influence function
(HUBER, 1964), as follows:

ρ(z) =

z
2, if |z| < c;

|2z|c− c2, if |z| ≥ c
(4-11)

for a given constant c. Since some robust estimators are influenced by the scale
of the residuals, a scale-invariant version of the M-estimator was used in LILA
et al. (2022):

β̃M,h = arg min
β̃h

m∑
i=1

ρ

(
ηi(β̃h)
σ

)
, (4-12)

There are two common ways of estimating σ. The first is based on the
Mean Absolute Deviation (MAD) and is represented below:

σ̂ =
MAD

0.6745 =
median{|ηi(β̃h)|}

0.6745 (4-13)
The second approach, also known as Huber’s Proposal 2, comes from the

solution of:

1
m− n

m∑
i=1

ψ2

ηi(β̃h)
σ̂

 = EZ [ψ2(η)] (4-14)

where EZ [ψ2(η)] is the expected value of ψ2 when η has standard normal
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distribution, m is the number of observations, which are the forecasts for all
levels of the hierarchy and n is the number of reconciled forecasts at the most
granular level of the hierarchy when convergence is met. LILA et al. (2022)
denoted the above approaches by HUBER (1) and HUBER (2), respectively.

4.2.5
Resistant Reconciliation for HTS

Whilst robust reconciliation may provide accurate reconciled forecasts on
several occasions, robust regression methods are only capable of dampening the
influence of outliers. In other words, these approaches do not drop outliers, but
instead reduce their effects during regression.

When the involved forecasts contain multiple outliers and these occur
in both extremes of the distribution, robust regressions may find it hard to
withstand the proportion of contamination (due to outlying observations) and
still provide reliable outcomes. On such occasions, the use of estimates that are
not influenced by any outliers, regardless of the nature of the data, is desired.
The use of resistant statistics provides a promising solution in this regard as
these metrics are, by definition, measures of the data that are not influenced
by outliers. In the context of hierarchical forecast reconciliation, some resistant
techniques like the Least Absolute Deviations (LAD) can be used and provide
reliable outcomes. Let the residuals from the reconciliation process be defined
as:

yh − ỹh = ϵ(β̃h) (4-15)
where yh are the actual (true) values of time series and ỹh are the reconciled
forecasts. Considering a L1 norm, the LAD-estimator based on the residuals
from the equation (4-15) is given as

β̃LAD,h = arg min
β̃h

m∑
i=1

|ϵi(β̃h)|. (4-16)

One of the problems that we find when reconciling forecasts is that we
do not observe the reconciled residuals at the estimation stage. In this case,
the distance between the reconciled forecasts and the independent ones can be
used:

ŷh − ỹh = η(β̃h) (4-17)
Hence, the LAD-estimator based on the quantities from the equation

(4-17) is given as

β̃LAD,h = arg min
βh

m∑
i=1

|ηi(β̃h)|. (4-18)
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The solution of this minimization problem invokes a variant of the BAR-
RODALE & ROBERTS (1974) simplex algorithm described in KOENKER
& D’OREY (1987). The promising aspects concerning LAD estimators is
that they not only offer desired robust properties in linear regression models
(WANG, 2013), but they also tend to present reliable results when heavy-tailed
errors are present. On a short note, we clarify that, in practice, resistant-based
methods are not completely immune to unusual observations. However, the
cases in which such influences occur are rare in practice as they require the
presence of clusters of extreme cases of outliers and a relatively small data
set. Even in such cases, the influence of an unusual observation on a resistant
metric, such as the median, is bounded/limited.

4.2.6
Scientific Hypothesis and Deductive Reasoning

To summarize the rationale behind the selection of the proposed,
resistant-based approach for forecast reconciliation, we present in Figure 4.3
the main steps of our deductive reasoning process. Our scientific hypothesis
was built after investigation of the electric energy demand time series that
comprise the Brazilian power system, presented in detail in the next section.
We observed that the independent forecasts of some time series contained
outliers and influential points that caused disturbances in the reconciliation
processes of several forecast reconciliation methods, including not only tradi-
tional benchmarks but also state-of-the-art methodologies. To circumvent this
problem, and at the same time provide accurate forecast results to most of
the time series involved in the Brazilian power system hierarchy, we proposed
a resistant-based reconciliation approach that is theoretically constructed to
not be influenced by any source of data contamination. As previously outlined,
resistant estimators, such as the Least Absolute Deviation (LAD) described
in Section 4.2.5, present desired robust properties in linear regression models
and usually provide reliable results when heavy-tailed errors are present.

Figure 4.3: Deductive reasoning for the proposal of resistant reconciliation as
the hierarchical reconciliation method for electricity demand forecasts across
the Brazilian power system.
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4.3
Forecasting energy consumption across the Brazilian power system

The experiments consider hierarchical monthly data of electric energy
consumption across the Brazilian National Interlinked System (SIN), a set
of 25 time series that follow a three-level hierarchical structure. The data
are officially compiled in megawatt-hours (MWh) by the Brazilian Energy
Research Company (EPE, 2022b) and spans from January 2004 to November
2021, the last official date available at the time of collection.

We consider a hierarchical setting that first divides total electricity con-
sumption (level 0 of the hierarchy, or top-level) by Classes (also referred to
as Sectors of Consumption, level 1) and then by Geographic Regions (2nd and
last/bottom-level). There are four classes of Consumption in the Brazilian
power system: Commercial, Industrial, Residential and Others (mainly rural,
public service and public lighting). Geographic Regions, in turn, are divided
into five groups: North (NO), Northeast (NE), Midwest (MW), Southeast (SE)
and South (SO). Figure 4.4 illustrates the hierarchical structure considered to
represent the Brazilian power system whilst Figure 4.5 provides a comprehen-
sive view of the geographic regions distributed over the Brazilian territory.

Total

COM

NO NE MW SE SO

IND

NO NE MW SE SO

RES

NO NE MW SE SO

OTH

NO NE MW SE SO

Figure 4.4: Hierarchical structure of a three-level hierarchy representing the
Brazilian power system.
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Figure 4.5: Brazilian geographic regions.

Figure 4.6 illustrates how total energy consumption in Brazil has varied
throughout the years. Some stylized facts are readily apparent, such as a clear
upward trend and a multiplicative seasonal component. Energy demand across
the different classes of consumption, in turn, is illustrated in Figure 4.7. Except
for the industrial demand, the behavior in every other class of consumption is
similar to that observed in the most aggregated level of the hierarchy, with time
series presenting an increasing trend and a well-defined seasonal component.

Figure 4.6: Brazil – Total electric energy consumption in the Brazilian National
Interlinked System (SIN).
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Figure 4.7: Total electric energy consumption in the SIN by classes of con-
sumption.

Finally, Figure 4.8 illustrates the behavior of the time series at the
most granular level of the hierarchy, i.e., geographic regions within classes
of consumption. In most cases, the trend and seasonality components are also
observed, sharing similar behaviors with the more aggregated levels of the
hierarchy. One can also observe a substantial difference in the levels of the
time series referring to the southeastern Region, whose historical records are
considerably higher than those observed in other geographic regions.

Figure 4.8: Total electric energy consumption in the SIN, by classes of con-
sumption and regions within classes.
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4.3.1
Base forecasting methods

As previously outlined, reconciliation strategies consist of reconciling,
i.e., combining, a set of base forecasts into coherent ones by finding a solution
which minimizes the aggregate reconciliation error. This involves finding an
orthogonal or oblique projection of the (incoherent) base forecasts onto a
coherent subspace, then aggregating the information according to a hierarchical
structure, such that the upper-level forecasts are obtained in an additive
fashion from the most granular ones. However, the selection of the base
forecasting method also plays an important role, as reconciliation methods
are only able to improve the quality of the base forecasts up to a certain level.

The choice of a base forecasting strategy depends on how data behave
over time, or on whether explanatory variables are useful to improve the predic-
tive power of a particular model (OLIVEIRA et al., 2017).Given their compet-
itive performance when forecasting energy demand and supply time series on
several occasions, such as electricity demand (OLIVEIRA; OLIVEIRA, 2018),
electricity supply (MEIRA et al., 2021) and natural gas consumption (MEIRA
et al., 2022), and to allow straightforward comparisons with previously pub-
lished papers in hierarchical forecasting reconciliation, we considered in this
work two well-known forecasting approaches to generate the base forecasts: Ex-
ponential Smoothing models and Seasonal Autoregressive Integrated Moving
Average (SARIMA) formulations.

To conserve space, we provide below a brief explanation on how the
ETS and SARIMA family of models work. The interested reader is referred to
Appendix A for detailed descriptions on these models work and how they
can be properly specified in R (related packages, functions, and choice of
arguments).

The ETS stands for a finite set state space based exponential smoothing
formulations, which can be obtained by considering variations in the combi-
nation of the error, trend, and seasonal components of a time series . Expo-
nential smoothing, in turn, consists of procedures that attribute exponentially
decreasing weights for past data, i.e., recent observations are given relatively
more weight in forecasting than older ones. Exponential smoothing formu-
lations were first presented in the seminal works of HOLT (1957), BROWN
(1959) and WINTERS (1960).

The SARIMA formulations, in turn, are an integral part of the so-called
BOX & JENKINS (BOX; JENKINS, 1970b) family of models for estimating
and forecasting univariate time series data. Devised as alternative approaches
to exponential smoothing methods, SARIMA models are similar to the latter in
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the sense that they are adaptive, can model trends and seasonal patterns, and
can be automated. Conversely, they are based on autocorrelations (patterns in
time) rather than a structural view of level, trend and seasonality (as in ETS
formulations). In practical terms, it can be argued that SARIMA formulations
tend to succeed better than exponential smoothing methods for longer, more
stable data sets and not as well for noisier, more volatile data (LITTERMAN
et al., 1986).

4.3.2
Assessment metrics

To gauge the overall accuracy of the reconciled forecasts, we summarized
the results according to a set of metrics specified in Table 4.1.

Metric Formula Unit of measurement

Mean Absolute Error (MAE) 1
h

h∑
t=1

|yt − ŷt| Same as the original
series

Root Mean
Squared Error (RMSE)

√√√√ h∑
t=1

(yt−ŷt)2

h
Same as the original
series

Mean Absolute
Percentage Error (MAPE)

100
h

h∑
t=1

|yt−ŷt|
|yt| Percentage points

(%)

Table 4.1: Evaluation metrics. Notes: yt e ŷt are the real (actual) and forecasted
values of the underlying series, respectively; h is the forecasting horizon
(number of forecasting steps ahead).

Given that multiple reconciliation strategies are considered to generate
forecasts for the whole hierarchy, relative measures from reconciled forecasts
are obtained with respect to independent ones, as shown in the following
equations:

RelMAEi,h =
MAErec

i,h

MAEbase
i,h

(4-19)

RelRMSEi,h =
RMSErec

i,h

RMSEbase
i,h

(4-20)

RelRMSEi,h =
MAPErec

i,h

MAPEbase
i,h

(4-21)

where the denominator corresponds to the metric associated to the indepen-
dent forecasts, also called base forecasts, for the series i of the hierarchy at
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the forecast horizon h, and the numerator is the metric obtained for the same
time series and time horizon after the reconciliation process.

The geometric mean within each level of the hierarchy (or for the entire
hierarchy) provides a summarized measure of improvement in terms of MAE,
RMSE and MAPE. These quantities can be obtained through the following
equations:

AveRelMAE = #L

√∏
i∈L

RelMAEi (4-22)

AveRelRMSE = #L

√∏
i∈L

RelRMSEi (4-23)

AveRelMAPE = #L

√∏
i∈L

RelMAPEi (4-24)

where L is the corresponding level of the hierarchy.

4.3.3
The Experimental Setup

4.3.3.1
First set of experiments

Our first set of experiments explores the forecasting accuracy of the
reconciliation approaches in two fixed monthly forecasting horizons. These
correspond to the last three and four months of official data available in the
test set, i.e., from September 2021 to November 2021 (h = 1 − 3) and from
August 2021 to November 2021 (h = 1 − 4). Figure 4.9 illustrates how results
based on the assessment metrics are obtained for this first exercise, using the
last three and four months.

Figure 4.9: Defining the train and test sets in the first set of forecasting
experiments.

Forecasting accuracy is first examined across all hierarchical levels – in
this case, we consider the grand mean, i.e., the average of the geometric means
obtained using Equations 4-22 to 4-24 – and then for each level of hierarchy,
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so as to better understand where the reconciliation processes provide the most
gains/benefits to the base forecasts.

To allow for straightforward reproduction of the results, as well as
to facilitate the understanding of the main steps required to generate the
reconciled forecasts, we provide the database and the R code used to generate
the results from the first set of experiments. The content is available in the
supplementary material and can also be accessed online via GitHub. The
interested reader is referred to MEIRA et al. (2023).

4.3.3.2
Second set of experiments

The second set of experiments considers rolling forecast origins through-
out the last semester of observations. In brief, we consider different forecasting
exercises in which the origin of the forecast horizon slides over the last six
months of observations. For instance, considering a forecast horizon of three
steps ahead, the experiments are conducted by first considering the end of the
train set in April 2021 and the test set comprising the month of July 2021;
then, the train set increases by one observation (up to May 2021) and the
test set now comprises the month of August 2021. The procedure ends when
the test set considers the month of November 2021, i.e., the last official data
available. Then, the average of the forecast evaluation metrics obtained in each
forecasting experiment is computed. In this work, we consider four different
forecast horizons that vary throughout the last semester of observations: 1-
step-ahead, i.e., h = 1 (origins varying from May 2021 to November 2021);
2-steps-ahead, i.e., h = 2 (origins varying from May 2021 to October 2021);
3-steps-ahead, i.e., h = 3 (origins varying from May 2021 to September 2021);
and 4-steps-ahead, i.e., h = 4 (origins varying from May 2021 to August 2021).

The cross-validation experiments are designed to provide robustness to
the findings obtained in the first set of experiments and is illustrated in
Figure 4.10 for the four different forecast horizons considered (h = 1, 2, 3, 4).
Conducting cross-validation for accuracy evaluation has several advantages
over selecting a single period, as cross-validation exposes the reconciliation
approaches to different characteristics of the data. The suitability of cross-
validation for forecast accuracy assessment is discussed in further details in
BERGMEIR et al. (2018).
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Figure 4.10: Rolling forecast origin of fixed length/horizon (fixed number of
steps ahead).

4.4
Results and discussion

4.4.1
Results for the first set of experiments

4.4.1.1
Average relative metrics

Table 4.2 shows the values of the average relative metrics (AveRelMAE,
AveRelRMSE and AveRelMAPE), computed across all hierarchical levels, for
several reconciliation methods when reconciling ETS base forecasts in two
different monthly time horizons, i.e., h = 1 − 3 (months from September 2021
to November 2021) and h = 1 − 4 (months from August 2021 to November
2021). Numbers highlighted in bold indicate the methods that provide the best
forecasting performance in each forecasting horizon, while numbers in italics
represent the methods that rank as the second best reconciliation strategies.
When the relative metrics present values larger than one, they indicate that the
reconciliation strategy leads to worse (less accurate) forecasts than the original,
base forecasts. The results suggest the potential of the LAD resistant regression
technique for forecast reconciliation. The best outcomes in terms of all three
assessment metrics are observed for the LAD estimator when forecasting up
to three steps-ahead (h = 1 − 3), when improvements of 6.8% in both MAE
and MAPE and 5.8% on RMSE are observed. The LAD also performed best
when reconciling forecasts up to four steps ahead, providing improvements of
4.3% in terms of MAE and MAPE, and 4% on RMSE. It is worth noting
that LAD estimators provided the best reconciliation results in all scenarios,
outperforming the BU and MinT-S, which are important benchmarks from the
HTS literature.
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Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 3 h = 1 − 4

AveRelMAE AveRelRMSE AveRelMAPE AveRelMAE AveRelRMSE AveRelMAPE

Robust
HUBER (1) 1.029 1.022 1.029 0.992 0.994 0.990
HUBER (2) 1.067 1.055 1.066 1.048 1.041 1.046

Resistant
LAD 0.932 0.942 0.932 0.957 0.960 0.957

Benchmarks
BU 0.991 0.990 0.991 1.002 1.001 1.002
OLS 1.067 1.055 1.066 1.048 1.041 1.046
MinT-S 0.992 0.987 0.992 0.987 0.987 0.987
TDGSF 3.269 3.046 3.261 3.701 3.452 3.699
TDGSA 3.395 3.159 3.385 3.866 3.628 3.860

Table 4.2: AveRelMAE,AveRelRMSE and AveRelMAPE across all hierarchical
levels for different forecast horizons. ETS as base forecasting method.

Table 4.3 presents the results for the same evaluation metrics and
forecast horizons when the forecast reconciliation strategies are applied to
base SARIMA forecasts. The results are, to a greater extent, in line with those
from Table 4.2. In the shorter-term, i.e., h = 1 − 3, LAD reconciled forecasts
presented the largest gains in accuracy, varying from 3.3% to 4.5% according
to the evaluation metric. When analysing the outcomes for h = 1−4, the LAD
estimator ranked second-best, following the MinT-S reconciliation.

Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 3 h = 1 − 4

AveRelMAE AveRelRMSE AveRelMAPE AveRelMAE AveRelRMSE AveRelMAPE

Robust
HUBER (1) 1.030 1.035 1.032 1.020 1.020 1.020
HUBER (2) 1.052 1.060 1.057 1.038 1.052 1.048

Resistant
LAD 0.967 0.955 0.955 0.999 0.998 0.997

Benchmarks
BU 1.014 1.001 1.001 1.021 1.010 1.011
OLS 1.052 1.060 1.057 1.038 1.052 1.048
MinT-S 0.987 0.974 0.974 0.986 0.984 0.984
TDGSF 2.924 3.040 3.026 2.773 2.879 2.874
TDGSA 3.148 3.257 3.242 2.892 3.019 3.010

Table 4.3: AveRelMAE,AveRelRMSE and AveRelMAPE across all hierarchical
levels for different forecast horizons. ARIMA as base forecasting method.

To further understand the gains originating from the use of LAD rec-
onciliation, Table 4.4 illustrates the values of the forecast evaluation metrics
obtained for each level of the hierarchy when the reconciliation strategies were
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applied to ETS base forecasts. As can be noted, the best improvements come
from the bottom of the hierarchy, which contains the largest number of fore-
casts to be reconciled. The LAD estimator performed best according to every
evaluation metric and for both forecast horizons at the bottom level, a note-
worthy result. In the shorter-term, i.e., when reconciling forecasts up to three
steps ahead (h = 1 − 3), the average improvement provided by the LAD esti-
mator in terms of MAE and MAPE were 8%, and 6.8% in terms of RMSE. The
LAD estimator also provided the second-best performance at the top (most
aggregate) level of the hierarchy. In this case, the BU approach provided the
most competitive results under ETS as base forecasting method. However, it
is important to note that the number of forecasts benefited from LAD recon-
ciliation were higher than any other proposed methodology.

The results presented in Table 4.5, in turn, show the improvements
brought by reconciliation strategies at every level of the hierarchy when
these strategies are applied to SARIMA base forecasts. In this case, the
LAD estimator provided the most competitive results at the bottom and
intermediate levels when reconciling SARIMA forecasts up to three months
ahead, followed by the MinT-S reconciliation.
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Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 3 h = 1 − 4

AveRelMAE AveRelRMSE AveRelMAPE AveRelMAE AveRelRMSE AveRelMAPE

Total
Robust
HUBER (1) 0.875 0.908 0.875 0.934 0.851 0.936
HUBER (2) 0.950 0.967 0.950 0.932 0.951 0.933

Resistant
LAD 0.859 0.883 0.859 0.935 0.845 0.937

Benchmarks
BU 0.844 0.831 0.844 0.958 0.830 0.961
OLS 0.950 0.967 0.950 0.932 0.951 0.933
MinT-S 0.860 0.850 0.860 0.972 0.820 0.976
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000

Classes of Consumption
Robust
HUBER (1) 1.029 1.019 1.028 1.007 1.009 1.007
HUBER (2) 1.062 1.044 1.060 1.018 1.006 1.016

Resistant
LAD 1.014 1.008 1.013 1.009 1.013 1.008

Benchmarks
BU 0.986 0.981 0.987 1.025 1.055 1.025
OLS 1.062 1.044 1.060 1.018 1.006 1.016
MinT-S 0.989 0.985 0.989 1.009 1.028 1.009
TDGSF 3.411 3.140 3.392 3.612 3.274 3.624
TDGSA 3.972 3.635 3.950 4.060 3.604 4.063

Regions
Robust
HUBER (1) 1.037 1.029 1.037 0.992 0.999 0.990
HUBER (2) 1.075 1.062 1.074 1.060 1.053 1.058

Resistant
LAD 0.920 0.932 0.920 0.948 0.956 0.949

Benchmarks
BU 1.000 1.000 1.000 1.000 1.000 1.000
OLS 1.075 1.062 1.074 1.060 1.053 1.058
MinT-S 1.000 0.995 1.000 0.984 0.989 0.984
TDGSF 3.439 3.201 3.433 3.971 3.711 3.965
TDGSA 3.497 3.253 3.488 4.097 3.875 4,087

Table 4.4: AveRelMAE,AveRelRMSE and AveRelMAPE for each hierarchical
level and different forecast horizons. ETS as base forecasting method.
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Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 3 h = 1 − 4

AveRelMAE AveRelRMSE AveRelMAPE AveRelMAE AveRelRMSE AveRelMAPE

Total
Robust
HUBER (1) 1.098 1.055 1.098 1.180 1.174 1.179
HUBER (2) 1.061 1.027 1.060 1.076 1.059 1.075

Resistant
LAD 1.104 1.050 1.103 1.185 1.175 1.184

Benchmarks
BU 1.259 1.191 1.258 1.321 1.325 1.321
OLS 1.061 1.027 1.060 1.076 1.059 1.075
MinT-S 1.258 1.180 1.256 1.302 1.301 1.301
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000

Classes of Consumption
Robust
HUBER (1) 0.918 0.920 0.917 0.989 0.980 0.989
HUBER (2) 0.977 0.948 0.975 1.001 0.985 0.999

Resistant
LAD 0.905 0.910 0.905 0.991 0.981 0.991

Benchmarks
BU 0.947 1.046 0.952 0.994 1.059 0.998
OLS 0.977 0.948 0.975 1.001 0.985 0.999
MinT-S 0.846 0.958 0.850 0.935 0.990 0.938
TDGSF 2.707 2.621 2.686 2.489 2.553 2.514
TDGSA 3.414 3.227 3.388 2.859 2.746 2.873

Regions
Robust
HUBER (1) 1.057 1.053 1.053 1.018 1.022 1.014
HUBER (2) 1.077 1.075 1.074 1.062 1.048 1.057

Resistant
LAD 0.958 0.975 0.958 0.990 0.995 0.990

Benchmarks
BU 1.000 1.000 1.000 1.000 1.000 1.000
OLS 1.077 1.075 1.074 1.062 1.048 1.057
MinT-S 0.989 0.984 0.988 0.980 0.972 0.980
TDGSF 3.289 3.154 3.276 3.125 2.967 3.112
TDGSA 3.423 3.317 3.408 3.225 3.081 3.210

Table 4.5: AveRelMAE,AveRelRMSE and AveRelMAPE for each hierarchical
level and different forecast horizons. SARIMA as base forecasting method.

4.4.1.2
Error comparison analysis

The results depicted in the previous section concerned the values of
the average relative metrics observed for each reconciliation method in the
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first set of experiments. As outlined, these metrics provide a straightforward
illustration of the benefits (or hindrances) brought forth by each reconciliation
method when comparing the accuracy of their reconciled forecasts with the
accuracy of the base forecast method. Hence, the lower the values of the
relative metrics, the more accurate the reconciliation strategy is suggested to
be. Numbers higher than one indicate that the reconciliation approach worsens
the accuracy of the base forecast after reconciliation.

Despite providing a quick and effective way of comparing the performance
between the selected reconciliation approaches, average relative metrics do
not provide an estimate of how much energy can ‘saved’ by opting for a
more accurate forecast reconciliation approach in lieu of its competitors. To
address this need, we computed the absolute values of the Root Mean Squared
Errors (RMSEs) of each forecast reconciliation approach separately, for each
series in the involved hierarchy. Then, we put forth a visual comparison of
the RMSEs for each series at the bottom (most disaggregated) level of the
hierarchy, thus providing a comparative overview on the accuracy of each
method (benchmarks, state-of-the-art and proposed approach) independently.

The RMSEs for the first experiment conducted, i.e., reconciling ETS base
forecasts generated for the period between September 2021 to November 2021,
are depicted in Figure 4.11. For each time series at the bottom hierarchical
level, a boxplot containing the RMSEs of the seven competing methods (all
reconciliation methods considered except the LAD proposed approach) is
presented, as well as the average RMSE across all these seven methods (blue
dots). Then, the RMSE of the reconciled forecasts originated from the proposed
LAD reconciliation approach is presented in red.
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Figure 4.11: Root Mean Squared Errors (RMSEs) of the reconciliation strate-
gies for the time series at the bottom level of the hierarchy (case 1, ETS as
base forecasting method and forecasts up to three months ahead).

The results from Figure 4.11 demonstrate the benefits brought forth by
the proposed approach in terms of providing more accurate forecasts than
its competitors for most of the cases considered. Overall, the proposed LAD
reconciliation approach provided lower RMSEs than the average RMSE of the
competing methods in 17 of the 20 time series considered at the bottom level
of the hierarchy. When the LAD was not the best method, it usually ranked
among the best, outperforming the median of the competing approaches in 18
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cases. In terms of absolute gains, the accumulated energy that could be ‘saved’
across all regions and classes of Brazilian National Interlinked System (SIN)
by opting for the proposed LAD approach for forecast reconciliation revolves
around 940,000 MWh. This amount is the sum of the differences between the
average RMSEs of the competing reconciliation methods and the RMSEs from
the proposed LAD approach across all the 20 time series at the bottom level
of the hierarchy.

In terms of the suitability of the proposed (LAD) reconciliation approach
to different demand profiles, we note that the method provided very competing
(if not the best) results in most cases. The only two instances in which the pro-
posed approach performed worse than the average of the competing methods
were in the southeastern region for the commercial and residential classes. It
should be noted, however, that in these two cases the LAD performed better
than the median of the competing methods. This suggests that the proposed
LAD approach was still competitive in these cases, but there was one specific
reconciliation method that provided considerably lower RMSEs than all other
methods. The best methods in these two cases were Top-Down approaches:
Top-Down Gross-Sohl A for the commercial class in the southeast and Top-
Down Gross-Sohl F for the residential class in the southeast. These methods
have been proved in the forecasting literature to deliver biased forecasts across
the hierarchy (HYNDMAN et al., 2011; WICKRAMASURIYA; ATHANA-
SOPOULOS; HYNDMAN, 2019). Therefore, Top-Down methods may some-
times provide accurate results for specific time series across the hierarchy, but
this usually occurs by chance, and is not usually followed by other accurate
forecast values in adjacent time series. Overall, our results indicate that the
LAD reconciliation stands out as a balanced, accurate and robust choice for
hierarchical forecasting reconciliation in every class and region of the Brazilian
power system.

It is also interesting to note that the amount of energy that can be saved
in the system increased with the number of necessary forecasting steps ahead.
We conducted the same RMSE comparison analysis for the second case of
the first set of experiments, i.e., reconciling ETS base forecasts generated for
the horizon comprising the months from August 2021 to November 2021 (4
steps ahead). The overall gains, once again in terms of the differences between
the RMSEs of the average of the competing reconciliation methods and the
RMSEs from the proposed LAD approach across all 20 bottom level time series,
were more than 976,000 MWh. In this case, the LAD reconciliation approach
provided lower RMSEs than the average RMSEs of the competing methods in
18 of the 20 time series considered.
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4.4.2
Results for the second set of experiments

To investigate the robustness of each reconciliation strategy when differ-
ent forecast horizons are considered, we also conducted several cross-validation
experiments using rolling forecast origins over the last six months of obser-
vations. Four different forecast horizons were considered: h = 1, 2, 3, 4. The
results for the mean/average of the average relative metrics (AveRelMAE,
AveRelRMSE and AveRelMAPE), computed across all hierarchical levels,
when reconciling ETS base forecasts at different forecast origins, are presented
in Table 4.6. They show consistent improvements on accuracy measures for
LAD reconciliation for the forecast windows of lengths h = 1, h = 3 and
h = 4, suggesting a consistent performance of resistant reconciliation over
different forecast origins. The HUBER (1) robust reconciliation approach pro-
posed in LILA et al. (2022) also presented competitive results, particularly in
very short forecast horizons (one or two months ahead).

Table 4.7 depicts the results for the mean/average of the average relative
metrics, computed across all hierarchical levels, when reconciling SARIMA
base forecasts, at different forecast origins. In this case, the best results were
observed for the HUBER (1), LAD and MinT-S reconciliation techniques,
which ranked best or second-best in the majority of the cases considered.

Reconciliation AveRelMAE AveRelRMSE AveRelMAPE
Approach h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Robust
HUBER (1) 0.976 1.007 1.033 1.071 0.987 1.008 1.018 1.056 0.976 1.006 1.032 1.069
HUBER (2) 0.994 1.015 1.083 1.171 1.012 1.025 1.065 1.14 0.995 1.014 1.081 1.168

Resistant
LAD 0.993 1.009 0.969 0.950 0.998 1.018 0.979 0.949 0.992 1.009 0.969 0.950

Benchmarks
BU 0.999 0.996 0.995 0.98 0.995 0.997 0.992 0.974 0.999 0.996 0.995 0.981
OLS 0.994 1.015 1.083 1.171 1.012 1.025 1.065 1.14 0.995 1.014 1.081 1.168
MinT-S 0.994 0.989 0.985 0.975 0.991 0.992 0.982 0.973 0.994 0.989 0.985 0.974
TDGSF 4.334 3.361 3.442 3.291 3.898 3.246 3.293 2.998 4.323 3.349 3.407 3.262
TDGSA 4.155 3.226 3.292 3.214 3.741 3.108 3.128 2.902 4.149 3.219 3.262 3.189

Table 4.6: AveRelMAE, AveRelRMSE and AveRelMAPE metrics computed
across all hierarchical levels when rolling forecast origins are considered via
cross-validation. ETS as base forecasting method.
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Reconciliation AveRelMAE AveRelRMSE AveRelMAPE
Approach h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Robust
HUBER (1) 1.004 1.021 0.939 0.949 1.005 1.009 0.948 0.951 1.002 1.019 0.936 0.946
HUBER (2) 1.057 1.05 0.977 0.993 1.051 1.036 0.989 0.982 1.056 1.049 0.974 0.990

Resistant
LAD 1.013 0.981 0.998 0.983 1.017 0.996 1.018 1.003 1.011 0.981 0.998 0.983

Benchmarks
BU 0.990 1.006 1.042 1.027 1.009 1.014 1.056 1.045 0.991 1.007 1.043 1.028
OLS 1.057 1.05 0.977 0.993 1.051 1.036 0.989 0.982 1.056 1.049 0.974 0.990
MinT-S 0.982 0.991 1.005 0.994 0.992 0.997 1.015 1.000 0.982 0.992 1.006 0.995
TDGSF 3.904 3.065 2.758 2.398 3.499 2.872 2.649 2.299 3.885 3.046 2.736 2.381
TDGSA 3.742 2.938 2.63 2.258 3.36 2.777 2.546 2.154 3.726 2.925 2.611 2.242

Table 4.7: Average of the AveRelMAE,AveRelRMSE and AveRelMAPE met-
rics computed across all hierarchical levels when rolling forecast origins are
considered via cross-validation. SARIMA as base forecasting method.

As also conducted in the first set of experiments, we explored the
contribution of each reconciliation technique at each level of the hierarchy
in the rolling forecast origin experiments. The results for the case of ETS
base forecasts are presented in Table 4.8. In this case, the LAD reconciliation
provided improvements in terms of all assessment metrics and for all levels of
the hierarchy. The most significant contribution occured at the bottom level.
The method not only improved base forecasts, by overcoming the BU strategy,
but also overcame the MinT-S according to the number of times the LAD
strategy ranked best.

Finally, the results presented in Table 4.9 illustrates the average gains
provided by reconciliation strategies applied to SARIMA base forecasts at
different levels of the hierarchy and when considering the cross-validation
of different forecast origins. The most relevant gains for the LAD estimator
in this case occur at the intermediate level, in terms of RMSE. However, it
should also be highlighted that the LAD strategy also ranked second-best in
several occasions, suggesting a consistent performance in all forecast horizons
considered when compared to other competing strategies (benchmarks and
state-of-the-art reconciliation techniques).
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Reconciliation AveRelMAE AveRelRMSE AveRelMAPE
Approach h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Total
Robust
HUBER (1) 0.947 0.911 0.905 0.805 0.939 0.899 0.84 0.736 0.944 0.911 0.910 0.805
HUBER (2) 0.996 0.944 0.928 0.88 0.984 0.961 0.942 0.911 0.995 0.943 0.929 0.879

Resistant
LAD 0.943 0.904 0.927 0.788 0.934 0.882 0.841 0.714 0.940 0.905 0.933 0.787

Benchmarks
BU 0.933 0.903 0.979 0.718 0.928 0.849 0.825 0.624 0.930 0.906 0.987 0.719
OLS 0.996 0.944 0.928 0.88 0.984 0.961 0.942 0.911 0.995 0.943 0.929 0.879
MinT-S 0.969 0.921 0.933 0.724 0.958 0.866 0.786 0.623 0.966 0.924 0.941 0.725
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Classes of Consumption

Robust
HUBER (1) 0.972 1.024 1.004 0.971 0.984 1.036 0.984 0.969 0.972 1.024 1.003 0.970
HUBER (2) 0.970 1.042 1.070 0.993 0.979 1.052 0.997 1.001 0.971 1.041 1.068 0.990

Resistant
LAD 0.976 1.017 0.992 0.954 0.983 1.029 0.987 0.960 0.976 1.017 0.992 0.954

Benchmarks
BU 1.011 0.999 0.973 0.959 0.990 1.021 0.997 0.952 1.012 1.000 0.974 0.961
OLS 0.970 1.042 1.070 0.993 0.979 1.052 0.997 1.001 0.971 1.041 1.068 0.990
MinT-S 0.997 0.988 0.962 0.982 0.985 1.011 0.977 0.963 0.997 0.988 0.963 0.983
TDGSF 4.923 3.447 3.593 3.705 3.862 3.251 3.159 3.154 4.960 3.457 3.566 3.672
TDGSA 4.505 3.119 3.192 3.157 3.647 3.038 2.865 2.703 4.556 3.139 3.177 3.127

Regions

Robust
HUBER (1) 0.978 1.008 1.045 1.108 0.990 1.008 1.035 1.094 0.978 1.008 1.044 1.105
HUBER (2) 0.998 1.014 1.094 1.227 1.020 1.023 1.086 1.183 1.000 1.013 1.092 1.225

Resistant
LAD 0.999 1.012 0.967 0.958 1.005 1.023 0.985 0.961 0.998 1.013 0.966 0.958

Benchmarks
BU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
OLS 0.998 1.014 1.094 1.227 1.020 1.023 1.086 1.183 1.000 1.013 1.092 1.225
MinT-S 0.995 0.993 0.992 0.988 0.994 0.995 0.994 0.998 0.995 0.992 0.992 0.987
TDGSF 4.547 3.552 3.630 3.412 4.180 3.442 3.524 3.135 4.526 3.535 3.589 3.379
TDGSA 4.390 3.444 3.516 3.420 4.016 3.304 3.370 3.105 4.372 3.430 3.479 3.392

Table 4.8: AveRelMAE,AveRelRMSE and AveRelMAPE across all hierarchical
levels for different forecast horizons via Cross-Validation in a rolling forecasting
origin. ETS as base forecasting method.
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Reconciliation AveRelMAE AveRelRMSE AveRelMAPE
Approach h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Total
Robust
HUBER (1) 0.981 1.179 1.540 1.046 0.978 1.050 1.459 1.075 0.979 1.187 1.547 1.046
HUBER (2) 0.998 1.076 1.198 1.025 0.988 1.017 1.174 1.030 0.998 1.078 1.198 1.024

Resistant
LAD 0.978 1.185 1.571 1.021 0.973 1.049 1.480 1.054 0.975 1.193 1.577 1.022

Benchmarks
BU 0.970 1.267 1.860 1.123 0.960 1.110 1.865 1.282 0.970 1.275 1.868 1.121
OLS 0.998 1.076 1.198 1.025 0.988 1.017 1.174 1.030 0.998 1.078 1.198 1.024
MinT-S 0.973 1.274 1.757 1.112 0.964 1.114 1.805 1.225 0.972 1.282 1.765 1.111
TDGSF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TDGSA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Classes of Consumption

Robust
HUBER (1) 0.961 0.978 0.984 1.036 0.984 0.988 0.992 1.014 0.959 0.977 0.982 1.035
HUBER (2) 1.012 0.997 1.042 1.048 0.992 1.002 1.011 1.030 1.012 0.997 1.041 1.045

Resistant
LAD 0.955 0.966 0.984 1.009 0.978 0.977 0.984 0.987 0.953 0.965 0.983 1.008

Benchmarks
BU 0.948 0.979 1.109 1.148 1.070 1.062 1.207 1.237 0.949 0.982 1.112 1.152
OLS 1.012 0.997 1.042 1.048 0.992 1.002 1.011 1.030 1.012 0.997 1.041 1.045
MinT-S 0.958 0.948 1.019 1.055 1.028 1.016 1.113 1.133 0.958 0.951 1.022 1.059
TDGSF 3.944 2.873 2.685 2.144 3.566 2.722 2.555 2.068 3.969 2.889 2.678 2.128
TDGSA 3.694 2.587 2.351 1.838 3.377 2.576 2.391 1.716 3.723 2.612 2.359 1.822

Regions

Robust
HUBER (1) 1.014 1.023 0.908 0.928 1.011 1.011 0.920 0.933 1.012 1.020 0.904 0.924
HUBER (2) 1.069 1.059 0.954 0.981 1.066 1.043 0.977 0.970 1.068 1.058 0.951 0.977

Resistant
LAD 1.027 0.975 0.978 0.976 1.027 0.998 1.005 1.004 1.025 0.974 0.978 0.976

Benchmarks
BU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
OLS 1.069 1.059 0.954 0.981 1.066 1.043 0.977 0.97 1.068 1.058 0.951 0.977
MinT-S 0.988 0.988 0.975 0.977 0.986 0.988 0.969 0.966 0.988 0.988 0.975 0.977
TDGSF 4.171 3.283 2.918 2.562 3.711 3.060 2.801 2.448 4.140 3.255 2.890 2.543
TDGSA 4.008 3.181 2.823 2.450 3.567 2.967 2.702 2.343 3.979 3.157 2.796 2.433

Table 4.9: AveRelMAE,AveRelRMSE and AveRelMAPE across all hierarchical
levels for different forecast horizons via Cross-Validation in a rolling forecasting
origin. SARIMA as base forecasting method.

4.4.3
Discussions

Forecasts of electricity consumption at distinct levels of a power system
have become increasingly important to several stakeholders, ranging from
power system operators, transmission companies in self-dispatching markets
and investors operating in exchanges and over-the-counter markets using
energy derivatives. This work proposed a novel reconciliation technique aimed
at improving the accuracy of forecasts at all hierarchical levels within a power
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system. The methodology is designed to be resistant to outliers occurring in
both extremes of the distribution from any time series involved in the hierarchy.
The experiments conducted demonstrate the reliability and robustness of the
proposed reconciliation approach, specifically when compared to benchmarks
and state-of-the-art techniques. In short, for forecasts lead times of three
or four (months) steps ahead, the proposed LAD reconciliation approach
provided lower Root Mean Squared Errors (RMSEs) than the average RMSE
of the competing methods in at least (for the three months ahead forecast
experiments) 17 of the 20 time series considered at the bottom level of
the hierarchy. Accurate forecasts at such level are paramount to achieving
several Brazilian electricity sector goals, such as securing electricity supply,
affordability of tariffs and universalization of access to public electricity
services. When the LAD was not the best method, it usually ranked among
the best, outperforming the median of the competing approaches in 18 cases,
regardless of whether the forecast horizon comprised three or four months
ahead. In terms of absolute gains, the accumulated energy that could be ‘saved’
across all regions and classes of Brazilian National Interlinked System (SIN)
by opting for the proposed LAD approach for forecast reconciliation revolved
around 940,000 MWh for three steps ahead forecasts and 976,000 MWh for
four steps ahead. These amounts are the sum of the differences between the
average RMSEs of the competing reconciliation methods and the RMSEs from
the proposed LAD approach across all 20 time series at the bottom level of
the hierarchy.

In terms of limitations, the only two cases in which the LAD approach
performed worse than the average of the competing methods were in the
southeastern region for the commercial and residential classes. It should be
noted, however, that in these two cases the LAD performed better than the
median of the competing methods. This suggests that the proposed LAD
approach was still competitive in these cases, but there was one specific
reconciliation method that provided considerably lower RMSEs than all other
methods. The best methods in these two cases were Top-Down approaches.
These methods have been proved in the forecasting literature to deliver biased
forecasts across the hierarchy (HYNDMAN et al., 2011; WICKRAMASURIYA
et al., 2019). Therefore, Top-Down methods may sometimes provide accurate
results for specific time series across the hierarchy, but this usually occurs by
chance, and is not usually followed by other accurate forecast values in adjacent
time series. Overall, we can infer from the results that the LAD reconciliation
stands out as a balanced, accurate and robust choice for hierarchical forecasting
reconciliation in every class and region of the Brazilian power system. We also
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emphasize that it is possible to apply the proposed LAD approach to any set
of time series organized in a hierarchical fashion.

The performance gains are remarkable as accurate electricity demand
forecasts at distinct levels of a power system are decisive for assertive prof-
it/cost management and investment decisions, as well as for the definition of
sectoral policies in a local or national scale. The issue is even more crucial
in the short/mid-run, where flexibilities such as storage facilities construction
and diversification of energy sources are limited.

On a final note, we highlight that forecasting independently each time
series may make more sense if the interest lies in a single or in a limited set
of time series belonging to the same hierarchical level. However, when the
interest lies in the comprehensive set of time series organized according to
a defined hierarchical structure, as in the case of power systems, restricting
the attention to a single forecasting approach for each time series and not
taking into consideration the cross-sectional associations between these series
will almost surely result in forecasts that do not add up across the hierarchy,
losing interpretation of the overall results.

4.5
Conclusions, implications, and future works

Drawing from the fields of statistics, optimization and time series, this
paper introduced a resistant-based reconciliation approach to improve the
accuracy of the forecasts from multiple time series organized according to a
defined hierarchical structure. The new approach was applied to the problem of
forecasting electric energy demand at multiple levels of the Brazilian National
Interlinked System (SIN), the largest and one of the most complex power
systems in Latin America.

The results from multiple sets of experiments indicate that it is possible
to improve the accuracy of electricity consumption forecasts by considering
the cross-sectional associations between the time series comprised by the
hierarchical structure of the power system. Furthermore, the proposed resistant
reconciliation technique consistently provided more accurate forecasts than
competing reconciliation methods that represent the state-of-the-art in terms
of hierarchical forecasting reconciliation. The average gains brought forth by
the proposed methodology, in terms of accumulated energy that can be ‘saved’
across all regions and classes of the Brazilian power system given more accurate
forecasts, were greater than 900,000 MWh for forecast horizons of three and
four months ahead. The results were particularly promising for forecasts of
time series situated at the intermediate and bottom levels of the power
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system, i.e., the time series representing classes of consumption and geographic
regions within the classes. Accurate forecasts at such levels are paramount to
achieving several Brazilian electricity sector goals, such as securing electricity
supply, affordability of tariffs and universalization of access to public electricity
services.

To recapitulate our scientific hypothesis, presented in the deductive rea-
soning section, the results from the multiple experiments conducted provided
consistent numerical evidence that the proposed reconciliation approach was
able to circumvent any source of data contamination in the independent (base)
forecasts. The approach was able to proper reconcile the base forecasts and
generate coherent and accurate final forecasts for all the 25 time series that
represent the electric energy consumption across all divisions of the Brazilian
power system.

As policy implications, we argue that the proposed methodology can be
considered in future updates of the forecasting tools used or recommended
by official institutions, such as the Brazilian Electricity Regulatory Agency
(ANEEL), the Brazilian Energy Research Company (EPE) and the Electric
System National Operator (ONS). The proposed approach could also be
particularly useful in the supply side of electricity in Brazil. For instance,
resistant reconciliation techniques could be applied to increase the accuracy of
stream flow forecasts, given that several rivers that are suitable for hydropower
generation in Brazil form hierarchical structures, which are usually addressed
as energy equivalent reservoirs.

Future research agenda includes considering an extension to non-negative
reconciled forecasts. When performing reconciliation, we address coherency,
i.e, ensuring the additive properties of the time series across all hierarchical
levels, as the central issue. However, when an optimal solution is found, there
is no way to ensure that the reconciled forecasts are always non-negative, an
important, and often overlooked issue when forecasting electricity demand.
The use of alternative forecasting techniques to generate the base forecasts is
also a natural extension of this work. To allow straightforward comparison with
recent papers in the field of hierarchical forecasting, we restricted our attention
to two widely used family of forecasting models: exponential smoothing and
SARIMA formulations. Future studies might benefit, for instance, from more
sophisticated approaches, such as Artificial Neural Networks (ANNs), Support
Vector Regressions (SVRs), Recurrent and Vector Singular Spectrum Analysis
(RSSA/VSSA), among others, to generate the base forecasts. Finally, one
may also consider the use of alternative hierarchies to represent the Brazilian
power system, such as the one which uses the Subsystems from the National
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Interlinked System (SIN) instead of geographic regions.
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5
Third contribution: An extension to Minimal Trace Reconcil-
iation using robust covariance estimators

5.1
Introduction

Hierarchical time series forecasting is the process of generating coherent
forecasts, by reconciling incoherent ones, forecasted individually, but incorpo-
rating the relationships within the hierarchy of the original data (HYNDMAN
et al., 2011). The goal of forecast reconciliation is to produce a more accu-
rate and coherent aggregation by leveraging the information from the different
sources and levels of aggregation in the hierarchy. In essence, it involves adjust-
ing the forecasts to ensure that they add up to the forecast at the highest level
of aggregation, while also minimizing any inconsistencies or errors between
the forecasts at the lower levels. Reconciliation methods have been shown to
improve forecast accuracy (HYNDMAN et al., 2011; HYNDMAN et al., 2016;
WICKRAMASURIYA et al., 2019), specially the regression based approaches,
which apply linear transformations to forecasts for all levels of the hierarchy,
generating coherent ones at the lower level.

From a theoretical point of view, the recent reconciliation techniques
were proposed to guarantee that reconciled forecasts are at least as good the
base forecasts. An enhanced version can be constructed when a covariance
structure is well estimated and can be incorporated into the process. In this
case, the reconciled forecasts will also have minimum variance amongst all
possible combinations of forecasts, as in the case of the Minimum Trace (MinT)
reconciliation (WICKRAMASURIYA et al., 2019). In MinT reconciliation, the
individual forecasts are adjusted using a linear combination of their errors,
which are weighted according to their covariance. The weights are chosen to
minimize the trace of the covariance matrix of the forecast errors, subject to
constraints that ensure that the reconciled forecasts are consistent with the
forecasts at the upper aggregation levels.

In practice, covariance structures are estimated from the in-sample one
step ahead residuals. These covariance estimators are very sensitive to outlying
residuals, which can produce undesirable effects on the weights of the linear
transformations.

The idea of estimating robust covariance structures is the main focus of
this Chapter. Instead of using the original covariance estimator, we propose
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two robust covariance estimators. In this case, we use the Minimum Volume
Ellipsoid (MVE) and the Minimum Covariance Determinant (MCD) methods
(ROUSSEEUW, 1985), which are a highly robust estimators of multivariate
location and scatter. While the MVE seeks to find the g-subset of the data
points that produces an ellipsoid of minimum volume, the MCD searches for
the sample covariance matrix which has the lowest possible determinant. These
methods can provide an original contribution to MinT reconciliation. The
advantage of robust covariance estimation methods is that they can improve
the reliability and accuracy of statistical models by reducing the influence
of outliers and/or other departures from some expected elliptical distribution
of the data. These methods can also be computationally intensive and may
require more data than traditional methods to obtain reliable estimates.

5.1.1
How reconciliation is conducted

The idea of reconciliation consists of adjusting the forecasts so that,
theoretically, better estimates of a given process can be found than using only
independent forecasting methods. The process of base forecasts generation and
forecast reconciliation in HTS methods can be represented in the flowchart
described in Figure 5.1. It is important to emphasize that given the number of
nodes and hierarchical levels, the amount of time series to forecast can increase
exponentially. In this case, it is reasonable to adopt automated routines for
model selection.

Data

Automated forecasting Base forecasts Reconciliation Assessment

Reconciled forecasts

Figure 5.1: Forecast reconciliation process in HTS settings.

In several applications, time series data may contain outliers or other
anomalies that can distort the underlying patterns and relationships in the
data. Outliers can be caused by a variety of factors, such as measurement errors
or unexpected events. These observations can significantly affect the accuracy
and reliability of time series models leading to poor biased forecasts. In these
cases, automated robust techniques play an important role when producing
base forecasts which will be further reconciled. This would lead to the flowchart
illustrated in Figure 5.2. In this case, the primary concern is to address
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measurement issues occurring in the original time series. Several articles
address the topic of attenuating the effects of outliers and its detection in
time series during the modeling stage (BARROW et al., 2020; ROUSSEEUW
et al., 2019; CROUX et al., 2010).

Data

Automated
robust

forecasting
Base forecasts Reconciliation Assessment

Reconciled forecasts

Figure 5.2: Robust base forecasts generation and forecast reconciliation.

The present Chapter focuses on reconciliation techniques that rely on
the underlying covariance structure of the hierarchical time series to optimally
combine base forecasts into reconciled ones. Overall, covariance-based recon-
ciliation techniques offer a powerful tool for improving the accuracy and reli-
ability of forecasts by taking into account the complex dependencies between
different base forecasts. When modeling these relationships through their co-
variance structure, these techniques can produce reconciled forecasts that are
both more accurate and more robust than any of the individual base forecasts
produce independently. We propose a robust covariance estimation method to
be implemented prior to reconciliation. In this case, the reconciliation processes
can be described in the flowchart presented in Figure 5.3.

Data

Automated
forecasting Base forecasts

Robust
covariance
estimation

Reconciliation Assessment

Reconciled forecasts

Figure 5.3: Base forecasts generation and robust covariance estimation prior
to forecast reconciliation.

In addition, this study can also be viewed as an extension to the work
of LILA et al. (2022) and MEIRA et al. (2023), providing doubly robust
settings to the reconciliation process. In the context of reconciliation, doubly
robust strategies can be particularly useful because they allow for more

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 5. Third contribution: An extension to Minimal Trace Reconciliation
using robust covariance estimators 97

accurate and reliable reconciled forecasts. In this case, we considered the use of
automated robust techniques to produce base forecasts and robust estimators
for hierarchical reconciliation, which represents another contribution to the
state-of-the-art techniques. Our idea of doubly robust reconciliation is depicted
in the flowchart of Figure 5.4.

Data

Automated
robust

forecasting
Base forecasts

Robust
reconciliation

Assessment

Reconciled forecasts

Figure 5.4: Robust base forecasts generation and robust forecast reconciliation.

To demonstrate the potential and validity of the proposed strategies,
we set forth an application using hierarchical data on monthly electric en-
ergy consumption in Brazil, using a similar hierarchy as presented in MEIRA
et al. (2023), exchanging levels. In addition, we also consider thew data on
tourism from the original contribution of WICKRAMASURIYA et al. (2019)
aggregated in a different fashion as presented in HYNDMAN & ATHANA-
SOPOULOS (2018) in order to validate our approach. The results from this
contribution will be tested against some of state-of-the-art methods which can
be seen from the perspective of a regression model in order to validate the
empirical findings.

5.2
Hierarchical Time Series and forecast reconciliation

Hierarchical Time Series (HTS) stand for a set of time series that can be
aggregated at different levels, according to a well-defined hierarchical structure.
It is possible to classify hierarchies into two basic structures: balanced and
unbalanced. Balanced hierarchies have a regular structure and the same
number of items or subgroups at each level. Unbalanced hierarchies, on the
other hand, lack a regular structure, and there may be different levels of
variability or uncertainty within the hierarchy. Consider a hierarchical time
series with the following unbalanced structure at a given instant t.
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yt

yA,t

yAA,t yAB,t yAC,t

yB,t

yBA,t yBB,t

Figure 5.5: Unbalanced hierarchy at time t

The structure presented in Figure 5.5 can be represented in matrix
notation. Let yt be a vector of size m, comprising observations from all
hierarchical levels at time t. It is possible to define an appropriate matrix
S of dimension m× n such that,

yt = Syb
t (5-1)

where yb
t is a n-vector containing the observations at the most disaggregated

level of the hierarchy.

yt

yA,t

yB,t

yAA,t

yAB,t

yAC,t

yBA,t

yBB,t


︸ ︷︷ ︸

yt

=



1 1 1 1 1
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

S



yAA,t

yAB,t

yAC,t

yBA,t

yBB,t


︸ ︷︷ ︸

yb
t

(5-2)

In mathematical terms, the process of forecast reconciliation can be
represented as follows. First, consider ŷt+h|t a vector of h steps ahead base
forecasts, generated using independent methods, with the same arrangement
as yt. Thus, for a given matrix P of dimension n × m, we have the following
equation

ỹt+h|t = SPŷt+h|t (5-3)
where ỹt+h|t are the reconciled forecasts. The SP matrices represent the
reconciliation process, which maps independent (or incoherent) forecasts into
coherent ones.

5.2.1
The optimal combination and its variants

In the work of HYNDMAN et al. (2011) introduced the idea of optimally
combining forecasts from a regression-based perspective. The optimal reconcil-
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iation approach can be expressed according to the following regression model:

ŷt+h|t = Sβt+h|t + ϵt+h|t (5-4)
where βt+h|t = E

[
yb

t+h|It
]
, It = y1, y2, . . . , yt and V

(
ϵt+h|t|It

)
= Σh.

In HYNDMAN et al. (2016), the authors proposed the use of the
Weighted Least Squares (WLS) estimator ignoring the elements outside the
diagonal. Recent studies proposed alternative methods to obtain this matrix.
In the work of WICKRAMASURIYA et al. (2019), it was introduced the Min-
imum Trace (MinT) reconciliation approach, which aims to find a matrix P
that minimizes tr(SPWhP′S′) subject to SPS = S, the unbiasedness condi-
tion. Later, WICKRAMASURIYA et al. (2020), in turn, reconsidered the least
squares minimization problem with non-negativity constraints to ensure that
the coherent forecasts are strictly non-negative.

In order to use MinT reconciliation, it is necessary to estimate Wh, the
variance-covariance matrix of the h-step-ahead base forecast errors. Several
approaches were proposed, giving birth to variants of the optimal combina-
tion approach depicted in eq. (5-4). Regardless of the approach selected for
estimating Wh, the optimal reconciled forecasts are given by

ỹh = S(S′W−1
h S)−1S′W−1

h ŷh. (5-5)

In this case we have P = (S′W−1
h S)−1S′W−1

h , to produce the reconciled
forecasts. In this work we considered the following approaches for benchmarks
to be compared with the new proposal as listed in LILA et al. (2022).

– The OLS approach takes Wh = khI, for a given constant kh > 0.
This is the simplest hypothesis since that the matrix P = S(S′S)−1S′

is independent of the data.

– The WLS(v) which stands for Weighted Least Squares estimator with
variance scaling : Wh = khdiag(Ŵ1) where kh > 0 and Ŵ1 is the
unbiased sample covariance estimator of the in-sample one-step-ahead
base forecast errors, represented as follows:

Ŵ1 = 1
T

T∑
t=1

et(1)et(1)′ (5-6)

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 5. Third contribution: An extension to Minimal Trace Reconciliation
using robust covariance estimators 100

W =



σ̂2
tot 0 0 0 0 0 0 0
0 σ̂2

A 0 0 0 0 0 0
0 0 σ̂2

B 0 0 0 0 0
0 0 0 σ̂2

AA 0 0 0 0
0 0 0 0 σ̂2

AB 0 0 0
0 0 0 0 0 σ̂2

AC 0 0
0 0 0 0 0 0 σ̂2

BA 0
0 0 0 0 0 0 0 σ̂2

BB



(5-7)

– The WLS (s) Weighted Least Squares estimator with structural scaling:
Wh = khΛ where kh > 0 , Λ = diag(S1) and 1 is a n× 1 vector of ones.
This strategy uses the number of time series that organize the hierarchy
in order to provide a hypothetical covariance structure illustrated in the
following matrix.

W =



5 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(5-8)

– The MinT-Sample takes Wh = khŴ1 which considers the entire unbi-
ased sample covariance estimator of the in-sample one-step-ahead base
forecast errors. In this case, the matrix incorporates information of the
whole hierarchy in the the reconciliation process.

W =



σ̂2
tot σ̂tot,A σ̂tot,B σ̂tot,AA σ̂tot,AB σ̂tot,AC σ̂tot,BA σ̂tot,BB

σ̂tot,A σ̂2
A σ̂A,B σ̂A,AA σ̂A,AB σ̂A,AC σ̂A,BA σ̂A,BB

σ̂tot,B σ̂A,B σ̂2
B σ̂B,AA σ̂B,AB σ̂B,AC σ̂B,BA σ̂B,BB

σ̂tot,AA σ̂A,AA σ̂B,AA σ̂2
AA σ̂AA,AB σ̂AA,AC σ̂AA,BA σ̂AA,BB

σ̂tot,AB σ̂A,AB σ̂B,AB σ̂AA,AB σ̂2
AB σ̂AB,AC σ̂AB,BA σ̂AB,BB

σ̂tot,AC σ̂A,AC σ̂B,AC σ̂AA,AC σ̂AB,AC σ̂2
AC σ̂AC,BA σ̂AC,BB

σ̂tot,BA σ̂A,BA σ̂B,BA σ̂AA,BA σ̂AA,BA σ̂AC,BA σ̂2
BA σ̂BA,BB

σ̂tot,AA σ̂A,BB σ̂B,BB σ̂AA,BB σ̂AA,BB σ̂AC,BB σ̂BA,BB σ̂2
BB



(5-9)

– The shrinkage estimator, so called MinT-Shrink (WICKRAMASURIYA
et al, 2019), takes Wh = khλŴ1,D +(1−λ)Ŵ1 where kh > 0, Ŵ1 is the
unbiased sample covariance estimator of the in-sample one-step-ahead
base forecast errors and Ŵ1,D = diag(Ŵ1). In this case, the estimator of
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the covariance matrix aims to reduce the importance of elements outside
the main diagonal of Ŵ1. The shrinkage parameter λ is a function of the
in-sample correlations and is estimated as follows.

λ̂ =

∑
i ̸=j

V̂ (r̂ij)∑
i ̸=j

r̂2
ij

(5-10)

where r̂ij corresponds to ij-element of R̂1, the one-step-ahead in-sample
correlation matrix.

The Minimum Volume Ellipsoid (MVE) estimator is based on the small-
est volume ellipsoid that covers g of the T observations (in-sample one-step-
ahead base forecast errors).This is one of the oldest robust covariance estima-
tors that is affine equivariant and has a positive breakdown value (AELST;
ROUSSEEUW, 2009). From its definition, for a fixed g with [T −m− 1]/2 ≤
g ≤ T , the MVE estimator of location µ̂ and scatter Wh = Σ̂ is the solution
of

(µ̂, Σ̂) = arg min
µ,Σ

|Σ̂| (5-11)

over all real µ and symmetric positive definite Σ that satisfy

#{i; di =
√

(ei(1) − µ̂)′Σ̂−1(ei(1) − µ̂) ≤ c2} ≥ g, i = 1, . . . , T (5-12)

where c is a constant, usually set as c =
√
χ2

m,α, for α = g/T . In this work , we
made the assumption that there exists a small number of outliers by setting
α = 0.95.

The Minimum Covariance Determinant (MCD) estimator is one of the
first affine equivariant and highly robust estimators of multivariate location
and scatter (ROUSSEEUW, 1985; HUBERT et al., 2018). In other words,
MCD is a method for estimating the mean and the covariance matrix whilst
trying to minimize the influence of outliers. The idea is to estimate these
parameters from a subset of the data that has been chosen to not contain the
data imperfections. The basic idea, is to create all possible subsets of the data,
of a specified size g and Estimate the mean and covariance matrix for each
subset. Then, keep the estimates for the subset whose covariance matrix has
the smallest determinant. Since its inception, many algorithms have provided
efficient solutions in order to efficiently estimate the covariance structure
without and exhaustive enumeration of all possible determinants values, which
can be prohibitive depending on the data (ROUSSEEUW; DRIESSEN, 1999).

DBD
PUC-Rio - Certificação Digital Nº 1913470/CA



Chapter 5. Third contribution: An extension to Minimal Trace Reconciliation
using robust covariance estimators 102

5.2.2
Robust and resistant reconciliation

From the perspective of a regression model, the reconciliation process
can be written in another fashion as follows.

ỹh = Sβ̃h. (5-13)

Let the residuals from the reconciliation process be defined as:

yh − ỹh = ϵ(β̃h) (5-14)
where yh are the actual (true) values of time series and ỹh are the reconciled
forecasts. One of the problems that we find when reconciling forecasts is that
we do not observe the reconciled residuals at the estimation stage. In this case,
the distance between the reconciled forecasts and the independent ones can be
used:

ŷh − ỹh = η(β̃h) (5-15)
The work of LILA et al. (2022) considered the use of M-Estimators

for β̃h in the context of hierarchical forecast reconciliation and proposed a
robust-based approach applied to unemployment data from multiple labor force
surveys. The approach can be summarized as follows: let ρ be a function having
the following properties: nonnegative, i.e., ρ(z) ≥ 0; ρ(0) = 0; symmetric,
ρ(z) = ρ(−z) and monotone in |Zi|, ρ(zi) ≥ ρ(zi′) for |zi| > |zi′|. Then, the
robust M-estimator based on Equation (5-13) is given as:

β̃M,h = arg min
β̃h

n∑
i=1

ρ(ηi(β̃h)). (5-16)

In light of its desirable properties for computational convergence, LILA et al.,
(2022) considered the (HUBER, 1964) function, as follows:

ρ(z) =

z
2, if |z| < c;

|2z|c− c2, if |z| ≥ c
(5-17)

for a given constant c. Since some robust estimators are influenced by the scale
of the residuals, a scale-invariant version of the M-estimator was used:

β̃M,h = arg min
β̃h

m∑
i=1

ρ

(
ηi(β̃h)
σ

)
, (5-18)

In this study, we considered a version based on the Mean Absolute
Deviation (MAD), represented below:

σ̂ =
MAD

0.6745 =
median{|ηi(β̃h)|}

0.6745 (5-19)
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Whilst robust reconciliation may provide accurate reconciled forecasts on
several occasions, robust regression methods are only capable of dampening the
influence of outliers. In other words, these approaches do not drop outliers, but
instead reduce their effects during regression. In the context of hierarchical
forecast reconciliation, some resistant techniques like the Least Absolute
Deviations (LAD) can be used and provide reliable outcomes. In the work
of MEIRA et al. (2023) the LAD-estimator based on the quantities from the
equation (5-15) is given as

β̃LAD,h = arg min
βh

m∑
i=1

|ηi(β̃h)|. (5-20)

The solution of this minimization problem invokes a variant of the BAR-
RODALE & ROBERTS (1974) simplex algorithm described in KOENKER &
D’OREY (1987).

5.3
Base forecasting methods

The reconciliation strategy consists of reconciling, i.e., combining, a set
of base forecasts into coherent ones by finding a solution which minimises the
aggregate reconciliation error. This involves finding an orthogonal or oblique
projection of the (incoherent) base forecasts onto a coherent subspace, then
aggregating the information according a hierarchical structure, such that the
upper level forecasts are obtained in an additive fashion from the most granular
ones.

The choice of a base forecasting strategy depends on how data be-
have over time, or whether explanatory variables exist to improve the predic-
tive power of a particular model. To allow straightforward comparisons with
previously published papers in hierarchical forecasting reconciliation, in this
work, we considered three forecasting approaches to generate the base fore-
casts: exponential smoothing models, robust exponential smoothing models
and Seasonal Autoregressive Integrated Moving Average (SARIMA) formula-
tions. These strategies are detailed in the next three sections.

5.3.1
Exponential Smoothing via ETS formulations

Exponential smoothing models belong to a class of forecasting meth-
ods whose forecasts correspond to weighted averages of past observations
(OLIVEIRA, 2020). The weights decay exponentially, given the time difference
between observations. Exponential smoothing formulations were first presented
in seminal works (HOLT, 1957; BROWN, 1959; WINTERS, 1960). The selec-
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tion of the best-fit exponential smoothing for a given time series is usually con-
ducted by the identification of its error, trend and seasonal patterns (PEGELS,
1969; TAYLOR, 2003). In this work, we consider an automatic model selection
routine commonly known as ETS – an acronym for Error, Trend and Season-
ality, three components that are allowed to vary across exponential smoothing
formulations. The ETS approach was addressed and placed in the form of
state space by HYNDMAN et al. (2002). Each model consists of an obser-
vation equation, which describes the data, and one or more state equations,
which describe the components of level ℓt, trend bt and seasonality st, where t
is equivalent to time instants. It provides a flexible framework for model selec-
tion selection. According to the taxonomy proposed by PEGELS (1969) and
extended by GARDNER & MCKENZIE (1985), the possibilities for the trend
and seasonal components in the ETS framework are depicted in Table 5.1.
In addition, the error term can also vary between additive or multiplicative.
That way, a total of 30 different formulations can be achieved as presented in
(HYNDMAN; ATHANASOPOULOS, 2021).

Seasonal Component
Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) (N,N) (N,A) (N,M)

A (Additive) (A,N) (A,A) (A,M)

Ad (Additive damped) (Ad,N) (Ad,A) (Ad,M)

M (Multiplicative) (M,N) (M,A) (M,M)

Md (Multiplicative damped) (Md,N) (Md,A) (Md,M)

Table 5.1: Exponential smoothing methods

In practice, an automated algorithm, implemented in the ets() function
of the forecast (HYNDMAN et al., 2020) package in the software R is used
for the identification of the best-fit ETS formulation for each time series in the
hierarchy.

5.3.2
Robust ETS

The Robust ETS models use a combination of robust estimation tech-
niques and model structures to improve the accuracy and robustness of the
forecasts. The main idea is to use a robustified likelihood estimator, which
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reduces the influence of extreme values in the estimation process. The robust
ETS provides an alternative set of tools for estimating the ETS formulations
as presented in 5.1. The strategy adopted in this work is based on CREVITS
& CROUX (2017), which provides an outlier robust estimation procedure for
estimating the vector of parameters θ of smoothing parameters. First, the pro-
cedure replaces the outlying observations in the following fashion in the case
of additive error models.

ŷ∗
t = ψ

[
yt − ŷ∗

t|t−1

σ̂t

]
σ̂t + ŷ∗

t|t−1 (5-21)

where ψ is the Huber influence function (HUBER, 1964), given as

ψ(z) =

z, if |z| < c;

c[sgn(z)], if |z| ≥ c
(5-22)

The parameter σ2
t can be estimated recursively as presented in GELPER

et al. (2010), for a determined constant λσ. As stated previously, assuming an
additive error model the estimate of σ2

t is obtained as follows.

σ̂2
t = λσρ

[
yt − ŷ∗

t|t−1

σ̂t−1

]
σ̂t−1 + (1 − λσ)σ̂2

t|t−1 (5-23)

where

ρ(z) =


ck

{
1 − (1 − ( z

k
)2)3

}
, if |z| < k;

ck, if |z| ≥ k

is the Tukey’s Biweight function, adjusted for ck and k as presented in
CREVITS & CROUX (2017). In the case of a multiplicative error model,
outliers are replaced as follows.

ŷ∗
t =

1 + ψ

yt − ŷ∗
t|t−1

ŷ∗
t|t−1σ̂t

 σ̂t

 ŷ∗
t|t−1 (5-24)

In this case, the estimation of σ2
t is given recursively by

σ̂2
t = λσρ

yt − ŷ∗
t|t−1

ŷ∗
t|t−1σ̂t−1

 σ̂t−1 + (1 − λσ)σ̂2
t|t−1 (5-25)

Assuming that errors are normally distributed, it is possible to estimate
the vector of parameters θ by maximizing a robust version of the likelihood
function. In this case the estimator θ̂ is obtained as follows.

θ̂ = arg max
θ

−
T

2 log
s2

T (θ)
T

T∑
i=1

ρ

yt − ŷ∗
t|t−1(θ)

s2
T (θ)

 (5-26)
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where s2
T (θ) = 1.4826median

t
|yt − ŷ∗

t|t−1(θ)|.
In the case of a multiplicative error model, the estimator θ̂ is obtained

in the following fashion.

θ̂ = arg max
θ

−
T

2 log
s2

T (θ)
T

T∑
i=1

ρ

 yt − ŷ∗
t|t−1(θ)

ŷ∗
t|t−1(θ)s2

T (θ)

−
T∑

i=1
log|ŷ∗

t|t−1(θ)| (5-27)

where s2
T (θ) = 1.4826median

t

∣∣∣∣∣∣
yt − ŷ∗

t|t−1(θ)
ŷ∗

t|t−1(θ)s2
T (θ)

∣∣∣∣∣∣.
In practice, CREVITS & CROUX (2016) converted the function ets in

the forecast package of HYNDMAN et al. (2008) to a robust version, an
automated algorithm, implemented in the robets() function of the robets
package in the software R.

5.3.3
SARIMA formulations

The Seasonal Autoregressive Integrated Moving Average (SARIMA)
formulations are an integral part of the so-called BOX & JENKINS (BOX;
JENKINS, 1970b) family of models for estimating and forecasting univariate
time series data. Devised as alternative approaches to traditional exponential
smoothing methods, SARIMA models are similar to the latter in the sense
that they are adaptive, can model trends and seasonal patterns, and can
be automated. Conversely, they are based on autocorrelations (patterns in
time) rather than a structural view of level, trend and seasonality (as in ETS
formulations).

The Autoregressive Integrated Moving Average (ARIMA) models explain
a univariate time series as a combination of autoregressive and moving av-
erage components that explore the existing autocorrelation within the time
series. In addition, the integration order depends on the number of consec-
utive times that the series has been differenced so as to obtain a stationary
process. The class of seasonal ARIMA models, so called SARIMA of order
(p, d, q) × (P,D,Q)s, is composed by a non-seasonal part (p, d, q) and a sea-
sonal (P,D,Q)s one. These models can be written in a compact fashion, as
follows:

ϕ(B)Φ(B)∇d∇D
s yt = θ(B)Θ(B)at (5-28)

where:
yt is the variable of interest over time;
at is the error term;
ϕ(B) is the autoregressive operator of order p ;
Φ(B) is the autoregressive seasonal operator of orderP ;
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∇d is the non-seasonal difference operator;
∇D

s is the seasonal difference operator;
θ(B) is the moving average operator of order q; and
Θ(B) is the seasonal moving average operator of order Q.

SARIMA models can be implemented in R by means of the arima()
function from forecast in R. In our case, we opt to select the best SARIMA
model for each time series in the hierarchy via the auto.arima() function
from the same package, which implements a variation of the Hyndman-
Khandakar algorithm (HYNDMAN; KHANDAKAR, 2008). The algorithm
combines unit root tests, minimization of the lowest Akaike Information
Criteria with corrections (AICc) (SUGIURA, 1978) and Maximum Likelihood
Estimation (MLE) to obtain best-fit SARIMA model.

5.3.4
Assessment metrics

To obtain the overall accuracy of the reconciled forecasts, we investigated
the improvements on three different assessment metric as follows.

– The Root Mean Squared Error (RMSE).√√√√√ h∑
t=1

(yt − ŷt)2

h
(5-29)

– The Mean Absolute Error (MAE).

1
h

h∑
t=1

|yt − ŷt| (5-30)

– The Mean Absolute Percentage Error (MAPE).

100
h

h∑
t=1

|yt − ŷt|
|yt|

(5-31)

where ŷt are the real (actual) and forecasted values of the underlying
series, respectively; h is the forecasting horizon (number of forecasting
steps ahead).

Given that multiple reconciliation strategies are considered to generate
forecasts for the whole hierarchy, relative measures from reconciled forecasts
are obtained with respect to independent ones. The geometric mean of these
relative measures within each level of the hierarchy (or for the entire hierarchy)
provides a summarized measure of improvement in terms of MAE, RMSE and
MAPE. These quantities can be obtained through the following equations:
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AveRelMAE = #L

√√√√∏
i∈L

MAErec
i,h

MAEbase
i,h

(5-32)

AveRelRMSE = #L

√√√√∏
i∈L

RMSErec
i,h

RMSEbase
i,h

(5-33)

AveRelMAPE = #L

√√√√∏
i∈L

MAPErec
i,h

MAPEbase
i,h

(5-34)

where the denominator corresponds to the metric associated to the indepen-
dent forecasts, also called base forecasts, for the series i of the hierarchy at
the forecast horizon h, and the numerator is the metric obtained for the same
series and time horizon after the reconciliation process. For equations (5-34)-
(5-34), L is the corresponding level of the hierarchy.
In order to gauge the percentage of improvement on RMSE, we use (1 −
AveRelRMSE) × 100 as shown in WICKRAMASURIYA et al. (2019). The
same applies to MAE and MAPE.

5.4
The Experimental Setup

5.4.1
First set of experiments

The first set of experiments considers hierarchical monthly data of electric
energy consumption across the Brazilian National Interlinked System (SIN).
The data comprise a three-level balanced hierarchy. The data is organized by
five geographic regions that provide administrative divisions of the Brazilian
territory and four classes of consumption. These data are officially com
piled in megawatt-hours (MWh) by the Brazilian Energy Research Company
(EPE, 2022a) and spans from January 2004 to November 2021, the last
official date available at the time of collection. Geographic regions are divided
into: North (NO), Northeast (NE), Midwest (MW), Southeast (SE) and
South (SO). Classes of consumption within regions in the Brazilian power
system are:Commercial, Industrial, Residential and Others (mainly rural,
public service and public lighting). Figure 5.6 illustrates the hierarchical
structure considered to represent the Brazilian power system in this study.
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Total

NO

COM IND RES OTH

NE

COM IND RES OTH

MW

COM IND RES OTH

SE

COM IND RES OTH

SO

COM IND RES OTH

Figure 5.6: Hierarchical structure for a three-level hierarchy of regions and
classes of consumption within regions.
The charts from Figure 5.8 present similar trends to the chart from Figure 5.7,
suggesting that regional data present similar behaviors to national electricity
consumption. In addition, it is possible to identify some indicative of a
multiplicative seasonal component as the volatility of the last months increases
compared to the initial points of the series.

Figure 5.7: Total electric energy consumption in the SIN.
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Figure 5.8: Total electric energy consumption in the SIN by geographical
regions.

Figure 5.9 illustrates the behavior of the time series at the most granular
level of the hierarchy, i.e., classes of consumption within geographic regions .
In most cases, the trend and seasonality components are also observed, sharing
similar behaviors with the more aggregated levels of the hierarchy. One can
also observe a substantial difference in the behavior of the time series referring
to the Industrial sector, whose historical records are considerably different than
those observed in other geographic regions.
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Figure 5.9: Total electric energy consumption in the SIN by classes of con-
sumption within geographical regions.

These experiments explore the forecasting accuracy of the reconciliation
approaches in two fixed medium-term forecasting horizons. These correspond
to the last six months (experiment 1.a) and the last twelve months (experiment
1.b) of official data available in the test set, i.e., from June 2021 to November
2021 (h = 1 − 6) and from December 2020 to November 2021 (h = 1 − 12) as
shown in Figure 5.10.
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Figure 5.10: Defining the train and test sets in the first set of forecasting
experiments.

5.4.1.1
Results from the first set of experiments

In order to provide a better understanding and guidance to the results,
numbers highlighted in bold indicate the methods that provide the best
forecasting performance in each forecasting horizon, while numbers in italics
represent the methods that rank as second best reconciliation strategies.

When analysing the results presented in Table 5.2, considering ETS for-
mulation to produce base forecasts, it is possible to identify the contribution
from the MCD covariance estimator in the forecast horizon h = 1 − 6. In this
horizon, the MCD estimator offered an improvement on assessment metrics
varying from 6.67% to 7.85%. Although it ranked as the second best strat-
egy for reconciliation, it outperformed both MinT-Shrink and Mint-Sample,
whose reconciliation process relies on a well estimated covariance structure.
The results for the longer forecasting horizon show that reconciling using a
conditional median, given the hierarchical structure, provides improvements
on the assessment metrics varying from 3.17% to 3.59%, suggesting that ro-
bust settings can produce substantial gains on accuracy.
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Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 6 h = 1 − 12

RMSE MAE MAPE RMSE MAE MAPE

HUBER 0.65 0.43 0.27 -0.66 -0.81 -0.7
LAD -0.48 -0.49 -0.39 3.17 3.32 3.59
OLS 11.67 12.6 11.56 -10.98 -11.77 -11.42
WLS(v) 1.1 1.31 1.32 1.42 2.05 2.11
MinT-Shrink 1.95 2.04 1.97 2.21 2.53 2.49
MinT-Sample 5.18 6.24 6.2 -1.15 -1.45 -1.54
WLS(s) 4.23 4.24 3.89 -2.07 -2.46 -2.29
MCD 6.67 7.74 7.85 -0.11 -0.24 -0.38
MVE -77.46 -88.55 -101.11 -112.73 -131.27 -129.53

Table 5.2: Improvement, in percentage points (%), on RMSE, MAE and
MAPE across all hierarchical levels for different forecast horizons. ETS as
base forecasting method.

The results presented in Table 5.3 show the benefits of considering robust
covariance estimates in the process of reconciling forecasts and SARIMA
formulations. Although for the shorter forecasting horizon the results were
not promising, when forecasting longer periods, the improvement on the
accuracy measures were twice as good when compared with other reconciliation
strategies. The observed improvement on MAPE reached 8.26% while the
improvements on RMSE and MAE were 7.77% and 8.11%, respectively.
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Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 6 h = 1 − 12

RMSE MAE MAPE RMSE MAE MAPE

HUBER 0.77 -2.97 -2.68 -3.3 -2.87 -2.45
LAD 0.01 -0.89 -0.7 -0.32 0.11 0.43
OLS -1.42 -4.11 -3.72 -15.8 -14.31 -13.73
WLS(v) 2.45 1.62 1.63 1.37 0.92 1.01
MinT-Shrink -0.14 -0.35 -0.34 3.84 3.74 3.72
MinT-Sample -7.53 -6.48 -6.47 3.56 3.95 4.05
WLS(s) 0.51 -2.4 -2.18 -3.9 -3.65 -3.27
MCD -9.21 -7.94 -7.97 7.77 8.11 8.26
MVE -89.72 -95.47 -94.63 -78.98 -92.47 -93.62

Table 5.3: Improvement, in percentage points (%), on RMSE, MAE and MAPE
across all hierarchical levels for different forecast horizons. SARIMA as base
forecasting method.

Finally, the results presented in Table 5.4 show the important contribu-
tion from robust settings in both endings. When forecasting using the Robust
ETS to produce base forecasts and the MCD for covariance estimation, the
results can be considered the best for all scenarios. The MCD was dominant
for two assessment metrics in both forecasting horizons.

Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 6 h = 1 − 12

RMSE MAE MAPE RMSE MAE MAPE

HUBER -9.58 -9.11 -8.85 -6.66 -5.71 -5.43
LAD -5.47 -5.37 -5.32 -6.85 -6.43 -6.53
OLS -10.67 -12.68 -12.24 -8.47 -8.21 -8.05
WLS(v) -1.41 -2.58 -2.55 1.74 2.36 2.46
MinT-Shrink 1.08 -0.36 -0.27 2.06 2.77 2.82
MinT-Sample 6.92 5.39 5.6 -1.38 -0.06 -0.04
WLS(s) -7.23 -7.52 -7.22 -1.07 0.13 0.41
MCD 5.3 5.7 5.8 2.49 3.73 3.84
MVE -59.85 -67.87 -67.59 -59.76 -69.86 -69.28

Table 5.4: Improvement, in percentage points (%), on RMSE, MAE and MAPE
across all hierarchical levels for different forecast horizons. Robust ETS as base
forecasting method.
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5.4.2
Second set of experiments

To understand the effects of the proposed methodological approach to
other hierarchical time series, we consider the compiled aggregated data set
from HYNDMAN & ATHANASOPOULOS (2018) that was also used to val-
idate the MinT approach with a more extended hierarchy. The data set con-
tains information on total quarterly visitor nights (in millions) that Australians
spend away from home, from 1998-2016 for twenty regions of Australia within
six states. The states are: New South Wales (NSW), Queensland (QLD),
South Australia (SAU), Victoria (VIC), Western Australia (WAU), and Other
(OTH). The states are aggregation of zones that are organized in an unbal-
anced fashion as show in Figure 5.11. The zones within states are: Metro (ME),
North Coast (NC), South Coast (SC), South Inner (SI), North Inner (NI), Cen-
tral (CE), Coastal (CO), Inner (IN), West Coast (WC), East Coast (EC) and
Non-Metro (NM).

Total

NSW

ME NC SC SI NI

QLD

ME CE NC

SAU

ME CO IN

VIC

ME WC EC IN

WAU

ME CO IN

OTH

ME NM

Figure 5.11: Hierarchical structure for a three-level unbalanced hierarchy of
states and zones within states.

Figure 5.12 illustrates the behavior of the Australian tourism data for
the whole data set. I is possible to identify a strong seasonal component over
the entire period and a slightly increasing trend starting from 2008.
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Figure 5.12: Australian domestic visitor nights.

Figure 5.13 shows how different the time series are across states. Al-
though there is a clear seasonal component as shown in the most aggregated
hierarchical level, there is a shift in the level and some states show a more
upward trend.
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Figure 5.13: Australian domestic visitor nights by States.

The series illustrated in Figure 5.14 show within states differences due to
zones. The seasonal components and the level changes are the most significant
changes depicted in this group of time series.
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Figure 5.14: Australian domestic visitor nights by Zones within States.

This second set of experiments explores the forecasting accuracy of the
reconciliation approaches in two fixed forecasting horizons. These correspond
to the last eight quarters (experiment 2.a) and the last twelve quarters
(experiment 2.b) available in the test set, i.e., from the first quarter of 2015 to
the last quarter of 2016 (h = 1 − 8) and from the first quarter of 2014 to the
last quarter of 2016 (h = 1 − 12), as shown in Figure 5.15.
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Figure 5.15: Defining the train and test sets in the second set of forecasting
experiments.

5.4.2.1
Results from the second set of experiments

The results presented in Table 5.5 show that the applicability of the pro-
posed approaches can be extended to other hierarchical data sets. Considering
ETS as the base forecasting method, the MCD estimator ranked as the sec-
ond best strategy for the shorter horizon, offering improvements on assessment
metrics varying from 6.67% to 7.85%. When considering the forecasting hori-
zon h = 1 − 12, the MCD estimator indicates the best overall performance.
In this scenario the improvement on the assessment metrics have a similar
magnitude, varying from 4.14% in terms of RMSE and 4.65% for MAPE.

Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 8 h = 1 − 12

RMSE MAE MAPE RMSE MAE MAPE

HUBER 0.65 0.43 0.27 2.84 3.31 3.21
LAD -0.48 -0.49 -0.39 2.17 2.61 2.58
OLS 11.67 12.6 11.56 2.91 3.3 3.22
WLS(v) 1.1 1.31 1.32 0.63 0.78 0.76
MinT-Shrink 1.95 2.04 1.97 0.91 1.12 1.09
MinT-Sample 5.18 6.24 6.2 1.95 1.87 1.82
WLS(s) 4.23 4.24 3.89 1.59 1.72 1.64
MCD 6.67 7.74 7.85 4.14 4.65 4.39
MVE -77.46 -88.55 -101.11 -155.28 -173.62 -181.83

Table 5.5: Improvement, in percentage points (%), on RMSE, MAE and
MAPE across all hierarchical levels for different forecast horizons. ETS as
base forecasting method.

When considering SARIMA formulations, the MCD estimator also per-
formed better that the regression-based approaches that depend on covariance
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structures, outperforming both Mint-Shrink and Mint-Sample. The MCD pro-
vided significant gains in all assessment metrics for both forecasting horizons.

Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 8 h = 1 − 12

RMSE MAE MAPE RMSE MAE MAPE

HUBER 9.56 9.53 9.08 6.68 7.45 7.41
LAD 2.68 2.08 1.41 5.24 6.53 6.8
OLS 14.58 14.26 13.03 9.24 9.43 8.65
WLS(v) 0.9 1.44 1.67 1.46 1.7 1.75
MinT-Shrink 1.16 1.67 1.78 3.88 4.19 3.82
MinT-Sample 6.14 4.67 2.72 4.63 4.55 2.97
WLS(s) 5.48 6.73 6.8 3.4 3.54 3.32
MCD 8.58 11.11 7.36 8.05 8.2 6.88
MVE -14.2 -16.79 -23.49 -24.81 -27.81 -33.51

Table 5.6: Improvement, in percentage points (%), on RMSE, MAE and MAPE
across all hierarchical levels for different forecast horizons. SARIMA as base
forecasting method.

Finally, Table 5.7 presents the results from Robust ETS formulations
as base forecasts for the reconciliation process. In this case it is possible to
infer the benefits of doubly robust settings. The robust reconciliation approach
was capable of improving the final forecasts showing improvements of 6.27%
in terms of MAE, 5.46% and 5.9% for RMSE and MAPE respectively. For
the second forecasting horizon (experiment 2.b) horizon h = 1 − 12 the
doubly robust settings offered the second best performance according to the
assessment metrics.
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Reconciliation Forecast horizon Forecast horizon
approach h = 1 − 8 h = 1 − 12

RMSE MAE MAPE RMSE MAE MAPE

HUBER 5.46 6.27 5.9 1.76 2.38 2.08
LAD -1.99 -1.63 -2.16 -2.68 -3.3 -4.37
OLS 4.91 5.68 5.06 2.4 2.64 2.51
WLS(v) -0.06 -0.29 -0.3 0.28 0.6 0.49
MinT-Shrink -2.43 -2.37 -2.34 -0.6 -0.32 -0.51
MinT-Sample -26.31 -28.81 -29.31 -12.07 -12.69 -14.11
WLS(s) 2.14 1.57 1.3 1.54 1.95 1.9
MCD -22.68 -24.85 -25.29 -10.86 -11.1 -12.78
MVE -48.95 -53.45 -59.86 -28.43 -32.08 -36.19

Table 5.7: Improvement(%) on RMSE, MAE and MAPE across all hierarchical
levels for different forecast horizons. Robust ETS as base forecasting method.

5.5
Conclusions

The main contribution of this work addresses to how reconciliation
processes based on regression models can benefit from robust covariance
structures. The MCD covariance estimator provided more stable results for
all hierarchical levels.

The choice between MCD and Minimum Volume Ellipsoid MVE methods
for robust covariance estimation depends on specific characteristics of the data.
The MCD approach for covariance estimator is generally considered to be
more suitable than MVE in situations when the underlying data distribution
is multivariate normal.

There are different approaches to estimate robust covariances in the
most up-to-date literature, which extends the application of these methods
in the context of forecast reconciliation for HTS such as M-estimators, the
Stahel-Donoho estimator, S-estimators and MM-estimators, subject to the
unbiaseness condition.

The presented results indicated that the MCD approach performed well
in both balanced and unbalanced hierarchies, providing reliable estimates for
both settings.

Although, the robust methods have shown considerable gains on accuracy
measures, it is important to investigate in which occasions these methods
performed better, from hierarchical levels to forecasting horizons.
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The framework provided in WICKRAMASURIYA et al. (2019) can still
be considered as the cornerstone for different strategies of reconciling fore-
casts. The combination of these methods with more sophisticated forecasting
approaches may produce even better gains on accuracy measures .

A natural extension to this work addresses the production of prediction
intervals with robust settings, using both parametric and non-parametric
approaches.
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6
Achievements, conclusions and next steps

This thesis is driven by the increased interest in producing dependable
forecasts for hierarchical data in recent years, primarily due to their growing
use in policy-making, government funding allocation, and regional planning.
As a result, HTS has emerged as a promising research area, with a focus on
developing new studies to meet these demands.

Despite the considerable progress made in hierarchical time series fore-
casting, previous research had not explored the use of robust estimators to
generate reconciled forecasts from a regression-based perspective. This is a
significant oversight, given the potential for outliers to occur in multiple time
series within a hierarchy due to a variety of reasons, including inaccurate or
misleading information, measurement errors, and incorrect data processing.

This thesis addresses this gap in Chapter 3, by proposing two robust
methods for hierarchical time series and applying them to numerous unem-
ployment time series hierarchies in Brazil, at both monthly and quarterly fre-
quencies. Our approach is motivated by the fact that robust regression is less
sensitive to outliers and influential point forecasts. By using an M-estimator
based regression, we can mitigate the undesirable effects of high leverage data
points. Our empirical evaluation demonstrates promising results in support of
the proposed robust reconciliation methods. While these estimators may not be
uniformly dominant across all scenarios, they rank among the top-performing
approaches in almost every case, competing with state-of-the-art techniques in
hierarchical forecasting reconciliation. We observe significant improvements in
accuracy, as measured by assessment metrics for various hierarchical levels.

In cases where there are no outliers, reconciled forecasts that take into
account error structure dependencies will have the smallest variance compared
to other possible forecast combinations. However, this strategy may not be
effective when there are outlying observations in the reconciliation process.
To address this issue, we introduce the concept of hierarchical forecast rec-
onciliation based on resistant regression in Chapter 4 and develop a modified
resistant-based strategy for electricity consumption time series in Brazil. By in-
corporating resistant statistics into the forecast reconciliation process, we make
another valuable contribution to the field of HTS forecasting. Specifically, our
method substantially reduces the impact of outliers on the reconciled forecasts.
We conducted several experiments comparing our approach to traditional and
innovative benchmarks and found that it provided superior forecasting accu-
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racy in various scenarios. Consequently, our approach is well-suited to support
decision-making in the energy and related sectors.

Reconciliation strategies that combine base forecasts using regression
models may compromise the weighting system if the covariance structures
are not well estimated, leading to distortions in the reconciliation process. To
address this issue, we proposed in Chapter 5 the use of robust estimation of
the covariance structure for hierarchical forecast reconciliation. The proposed
approach has been demonstrated to be suitable for supporting decision-making
in both public and private sectors. Additionally, the developed methodology
is flexible and can be applied to other sets of hierarchical time series without
restrictions.

As observed throughout the Chapters, the findings of this research have
made original contributions to the area of HTS as the publication of two
original researchs articles, the first in the Socio-Economic Planning Sciences
journal (ISSN: 0038-0121) – LILA, M. F.; MEIRA, E.; OLIVEIRA, F. L. C.
F (2022), transcribed in full in Chapter 3 – and a second article published at
Energy (ISSN 0360-5442) - MEIRA, E. LILA,; M. F.; OLIVEIRA, F. L. C. F
(2023), transcribed in full in Chapter 4.

Besides, the original articles, in order to be in compass with the academic
community in the field HTS forecasting, the methodological core of this thesis
was submitted for presentation in one of the most prestigious conferences
on forecasting, the International Symposium on Forecasting (ISF) on three
occasions. All contributions were accepted for oral presentation receiving
feedbacks from valuable researchers in this specific area of HTS.

The first presentation was in the year of 2020 at the ISF 2020: 40th Inter-
national Symposium on Forecasting, when the idea of robust reconciliation was
first presented, as a application to unemployment time series. The second pre-
sentation occurred at ISF 2021 : 41st International Symposium on Forecasting,
when a follow-up on robust reconciliation was presented. The audience pro-
vided excellent insights that culminated with the publication of the article at
Socio-Economic Planning Sciences. At the ISF 2022: 42nd International Sym-
posium on Forecasting, the idea of resistant reconciliation was first introduced
and discussed. During the section on hierarchical forecasting, a fruitful discus-
sion with participants was promoted. The insights derived from the discussions
provided directions to a third contribution, which applies a modification in the
covariance structure imposed by the MinT reconciliation.

The research was also presented for the Brazilian audience at the 53th
Brazilian Symposium on Operations Research (SBPO 2021), whose work was
entitled "Avaliação de técnicas de reconciliação em séries hierárquicas de
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consumo de energia". This work combined hierarchical time series and Bagging
(a semi-supervised machine learning algorithm in the context of energy demand
in Brazil. In addition, another paper was presented at SBPO 2022, entitled
"Previsão de consumo hierárquico brasileiro de energia elétrica por métodos de
reconciliação robusta", when the potential of robust forecast reconciliation in
the context of energy demand in Brazil was explored.

We concentrated our efforts on forecast reconciliation for point forecasts,
which may prove useful on several occasions. However, the evaluation of these
point forecasts was made using specific assessment metrics to understand
the predictive power of our proposals. These numbers do not give us any
information about the uncertainty of the forecast. In this sense, prediction
intervals, provides a information of how confident we are in our forecasts
and can be useful when we need to make decisions based on the degree of
uncertainty involved. A natural extension to the main core of this thesis is to
offer prediction intervals for robust-based reconciled forecasts.

Another point worth noting is that the essays presented in this research,
focused on cross-sectional hierarchies. As described in the Introduction, fore-
cast reconciliation in a cross-sectional fashion yields coherent forecasts for a
given hierarchical structure. The combination of robust reconciliation settings
with temporal and cross-temporal aggregations may produce another set of
original scientific contributions, derived from this work.

As mentioned in Chapter 4, we focussed our attention on two widely
used family of forecasting models to generate the base forecasts, which are
further reconciled using specific methods: exponential smoothing and SARIMA
formulations. In Chapter 5 we extended the set of methods to generate base
forecasts to robust exponential smoothing, providing doubly robust settings.
Future studies might benefit, for instance, from more sophisticated approaches,
such as Artificial Neural Networks, Support Vector Regressions, Recurrent
and Vector Singular Spectrum Analysis, among others, to generate the base
forecasts.

We also intend to extend the original research of WICKRAMASURYIA
et al. 2019 to other robust covariance estimators such as M-estimators, the
Stahel-Donoho estimator, S-estimators and MM-estimators, subject to the
unbiaseness condition.
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