
Ana Carla Gomes Bibiano

On the Completeness of Composite Code
Refactorings for Beneficial Smell Removal

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2023

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Ana Carla Gomes Bibiano

On the Completeness of Composite Code
Refactorings for Beneficial Smell Removal

Thesis presented to the Programa de Pós–graduação em Informá-
tica of PUC-Rio in partial fulfillment of the requirements for the
degree of Doutor em Informática. Approved by the Examination
Committee:

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Wesley Klewerton Guêz Assunção
Co-Advisor

Universidade Tecnológica Federal do Paraná – UTFPR

Prof. José Alberto Rodrigues Pereira Sardinha
Departamento de Informática – PUC-Rio

Prof. Leonardo Gresta Paulino Murta
Universidade Federal Fluminense – UFF

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Prof. Rohit Gheyi
Universidade Federal de Campina Grande – UFCG

Rio de Janeiro, April 24th, 2023

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

All rights reserved.
Ana Carla Gomes Bibiano

Ana Carla Bibiano is a PhD candidate in Software Engine-
ering in the Informatics Department at PUC-Rio. Currently,
Ana is Back-end Developer at Ivve Tech Company in São
Paulo, Brazil. She was Substitute Professor of Informatics’
Center at Federal University of Pernambuco (UFPE) in 2021.
She received her Master Degree in Informatics at Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil in
2019. She holds a Bachelor’s degree in Computer Science from
Federal University of Alagoas (2017). Ana published 12 papers
(2017-2022) in conferences with high reputation in Software
Engineering. One of these papers was recognized as one of the
best papers of the conference. Her Master’s dissertation was
the second best dissertation of Brazil in Software Engineering
in 2020. She earned, in 2014, the Academic Excellence award
by the Brazilian National Council for Scientific and Technolo-
gical Development (CNPq) for her scientific initiation’s work.
Ana Carla has 13 years of experience as a software developer
in Brazilian software companies. She has worked as a soft-
ware developer for companies from Maceió (AL), Blumenau
(SC), and Rio de Janeiro (RJ). Ana has research collabora-
tions with international universities located in Austria, EUA,
United Kingdom, and Portugal. Ana Carla is currently a rese-
arch scholar in Software Engineering for the OPUS Research
Group at PUC-Rio. Her main research interests are (not limi-
ted to): software refactoring, maintenance, and evolution.

Bibliographic data
Gomes Bibiano, Ana Carla

On the Completeness of Composite Code Refactorings for
Beneficial Smell Removal / Ana Carla Gomes Bibiano; advisor:
Alessandro Fabricio Garcia. – 2023.

194 f: il. color. ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio
de Janeiro, Departamento de Informática, 2023.

Inclui bibliografia

1. Informática – Teses.
2. Refatoração Composta;. 3. Manutenção de Software;.
4. Anomalia de Código-Fonte;. 5. Atributo de Qualidade
Interna;. 6. Mapeamento Sistemático.. I. Fabricio Garcia,
Alessandro. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Acknowledgments

I would like to take this opportunity to express my heartfelt gratitude to
the individuals and entities who have been instrumental in the successful
completion of my doctoral thesis. Firstly, I would like to thank God, the
heavenly court, and Our Lady for being with me every step of the way, and for
providing me with the strength and perseverance to overcome all obstacles.

I am also deeply grateful to my family, especially my mother Lourinete
Bibiano, father Antonio Bibiano (in memoriam), and grandparents (in me-
moriam), who have been my pillars of support throughout this journey and
inspired me to be a strong and happy person. Their unwavering love, encou-
ragement, and sacrifices have been the driving force behind my success. I can
not forget to express my gratitude to my siblings to be my support in happy
and hard times of this journey.

All thanks to my amazing advisor Alessandro Garcia. He became my
dear friend and father over the years. We have become better people, and
I am happy person for having contributed to this personal growth. Wesley
Assunção, my dear co-advisor is a wonderful human. I learned a lot from his
humility, generosity, and comprehension, having your research collaboration
made this doctorate lighter. I have lucky to have the best research colleagues,
you provide me with all friendship, support, and guidance along this journey.
Anderson Uchôa, Willian Oizumi, Anderson Oliveira, Caio Barbosa, Daniel
Coutinho, Vinicius Soares, Kleber Santos, João Lucas Correia, Daniel Tenório,
and all OPUS research members, you’re amazing and thank you so much to
support me in all moments. Their insights, feedback, and encouragement have
been instrumental in shaping my research and helping me to achieve my goals.
Special thanks for all professors that collaborated with me along these years,
professors Baldoino Fonseca, Marcio Ribeiro, Rohit Gheyi, Leonardo Murta,
Rafael de Mello, Thelma Colanzi and Silvia Regina.

I would like to thank my fiancé Anderson Santos and his family. He is my
best friend over ten years and thank for putting up with me through the best
and worst of times. Thanks to my dear friend Jakson Leao. Special gratitude
to my medical doctors who accompanied me along this hard pandemic period,
doctors Juliana Oliveira, Maria Julia and Yuri Toledo.

I extend my heartfelt appreciation to my thesis committee members pro-
fessors Marcos Kalinowski, Alberto Sardinha, Juliana Pereira, Marcio Ribeiro,
Rohit Gheyi and Leonardo Murta. I really appreciate their valuable feedback,
constructive criticism, and expert guidance, which have been instrumental in
shaping the direction and scope of my research.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

My gratitude to the funding agencies for their financial support, which
enabled me to conduct my research and bring it to fruition. Their support has
been crucial in enabling me to realize my dreams and aspirations, especially
the Brazilian National Council for Scientific and Technological Development
(CNPq), plus the partner companies of the Software Engineering Laboratory
(LES/PUC-Rio) for the student scholarship. This study was financed in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001. Once again, I extend my heartfelt gratitude to
each and every one of you for your unwavering support, encouragement, and
guidance throughout this journey.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Abstract

Gomes Bibiano, Ana Carla; Fabricio Garcia, Alessandro (Advisor).
On the Completeness of Composite Code Refactorings for
Beneficial Smell Removal. Rio de Janeiro, 2023. 194p. Tese de
doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
Code refactoring is a code transformation that aims to enhance the

internal code structure. A single refactoring is rarely sufficient to achieve the
full removal of a poor code structure, such as a code smell. Developers then
apply composite refactorings to fully remove a code smell. A composite
refactoring (or, simply, composite) consists of two or more interrelated
single refactorings. A composite is considered “complete” when it fully
eliminates the target smell. However, studies report that developers often
fail in completely removing target code smells through composites. Even
when composite refactorings are complete they may still not be entirely
beneficial to the code structure. They may induce side effects, such as the
introduction of new smells or the propagation of existing ones. There is a
limited understanding of the completeness of composite refactorings and
their possible effects on structural quality. This thesis investigates whether
and how composite refactorings fully remove smells without inducing side
effects. We found that 64% of complete composites in several software
projects are formed of refactoring types not previously recommended in the
literature. Based on this study, we derived a catalog of recommendations
for supporting developers in applying composite refactorings. Out of twenty
one developers evaluating our catalog, 85% reported that they would use
the catalog recommendations and that their own refactoring solutions
would have induced side effects. We also qualitatively evaluated three
existing approaches to automatically recommend composite refactorings.
In our study with ten developers, most (80%) developers reported that
existing approaches frequently induce side effects. Overall, the findings and
the proposed catalog can help developers to perform complete composite
refactorings with better awareness of possible side effects.

Keywords
Software Maintenance; Code Smell; Internal Quality Attribute; Sys-

tematic Mapping; Quantitative Study.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Resumo

Gomes Bibiano, Ana Carla; Fabricio Garcia, Alessandro. Sobre a
Completude de Refatorações Compostas de Código-Fonte
para a Remoção Benéfica de Anomalias de Código. Rio
de Janeiro, 2023. 194p. Tese de Doutorado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.
A refatoração de código é uma transformação de código que visa apri-

morar a estrutura interna do código. Uma refatoração isolada raramente é
suficiente para remover completamente uma estrutura de código ruim, como
uma anomalia de código. Os desenvolvedores então aplicam refatorações
compostas para remover totalmente uma anomalia de código. Uma refatora-
ção composta consiste em duas ou mais refatorações inter-relacionadas. Um
refatoração composta é considerada “completa” quando elimina totalmente
a anomalia de código alvo. Estudos relatam que os desenvolvedores geral-
mente falham em remover completamente as anomalias de código alvo por
meio de refatorações compostas. Refatorações compostas concluídas podem
não ser totalmente benéficas para a estrutura do código. Pois, estas podem
induzir efeitos colaterais, como a introdução de anomalias de código ou a
propagação de anomalias existentes. Há uma compreensão limitada sobre
a completude das refatorações compostas e seus possíveis efeitos colaterais.
Esta tese investiga como as refatorações compostas removem totalmente
as anomalias de código sem induzir efeitos colaterais. Descobrimos que 64%
das refatorações compostas completas são formadas por tipos de refatoração
não recomendados anteriormente. Dessa forma, derivamos um catálogo de
recomendações para apoiar os desenvolvedores na aplicação de refatorações
compostas. Na avaliação do catálogo, 85% de 21 desenvolvedores relataram
que usariam as recomendações do catálogo e que suas próprias soluções
de refatoração teriam induzido efeitos colaterais. Também avaliamos quali-
tativamente três abordagens existentes para recomendar automaticamente
refatorações compostas. Nesse estudo, a maioria (80%) dos 10 desenvolve-
dores relatou que as abordagens existentes frequentemente induzem efeitos
colaterais. No geral, as descobertas e o catálogo proposto podem ajudar os
desenvolvedores a realizar refatorações compostas completas.

Palavras-chave
Refatoração Composta; Manutenção de Software; Anomalia de

Código-Fonte; Atributo de Qualidade Interna; Mapeamento Sistemático.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Table of Contents

1 Introduction 14
1.1 Motivating Example 15
1.2 Problem Statement 17
1.3 Study Goal and Research Questions 20
1.3.1 Research Questions 21
1.3.2 Methodology 23
1.4 Main Contributions 26
1.5 Thesis Outline 29

2 Composite Refactoring: Representations, Characteristics and Effects on
Software Projects 31

2.1 Introduction 32
2.2 Background 35
2.2.1 Refactoring 35
2.2.2 Composite Refactoring or Composite 36
2.3 Systematic Mapping Protocol 37
2.3.1 Goal and Research Questions 38
2.3.2 Steps and Procedures 39
2.4 Results and Discussion 43
2.4.1 The Use of Conceptual Model for Composite Refactoring Character-

ization 44
2.4.2 Representation Models of Composite Refactorings (RQ1) 44
2.4.3 Characteristics of Composite Refactorings (RQ2) 47
2.4.4 Composite Effect on Software Projects (RQ3) 53
2.4.5 Conflicting Composite Characteristics and Types of Effect 56
2.5 Related Work 59
2.6 Threats to Validity 61
2.7 Conclusion and Future Work 62

3 How Does Incomplete Composite Refactoring Affect Internal Quality
Attributes? 63

3.1 Introduction 63
3.2 Background 66
3.2.1 Composite Refactoring (or Composite) 66
3.2.2 Incomplete Composite Refactoring: A Smell Removal Perspective 67
3.2.3 Motivating Example 67
3.3 Study Settings 69
3.3.1 Goal and Research Questions 69
3.3.2 Study Steps 71
3.4 Dataset Overview 73
3.4.1 Incomplete Composite Dataset 74
3.4.2 Dataset Validation 74
3.5 Common Incomplete Composites 75
3.5.1 Procedures 76

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

3.5.2 Results 76
3.6 Effect of Incomplete Composites 78
3.6.1 Procedures 79
3.6.2 Results 80
3.7 Threats to Validity 83
3.8 Related Work 86
3.9 Conclusion 87

4 Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 88

4.1 Introduction 89
4.2 Background and Problem Statement 92
4.2.1 Composite Refactoring (or Composite) 92
4.2.2 Completeness of Composite Refactorings 93
4.2.3 Limitations of Existing Complete Composites Descriptions 94
4.2.4 A Real Example of Complete Composite 95
4.3 Study Settings 96
4.3.1 Goal, Research Questions, and Metrics 97
4.3.2 Study Steps 97
4.4 Common Complete Composites 101
4.5 (Side) Effects on Code Smells 104
4.6 Threats to Validity 110
4.7 Conclusion 111

5 Enhancing Recommendations of Composite Refactorings based in the
Practice 113

5.1 Introduction 114
5.2 Background and Problem Statement 116
5.2.1 Composite Refactoring (or Composite) 116
5.2.2 Completeness of Composite Refactorings 117
5.2.3 Fine-Grained Refactorings 118
5.2.4 Existing Limitations about Completeness 118
5.3 Motivating Example 119
5.4 Study Settings 122
5.4.1 Study Steps and Procedures 123
5.5 Results 128
5.5.1 The Most Frequent Combinations in Complete Composites (RQ1) 128
5.5.2 Side Effects of the Frequent combinations in Complete Composites

(RQ2) 130
5.5.3 Evaluation of the Proposed Catalog (RQ3) 133
5.6 Threats to Validity 136
5.7 Conclusion 138

6 Exploring the Automatic Recommendation of
Composite Refactorings 139

6.1 Introduction 139
6.2 Background 141
6.2.1 Search-Based Software Engineering (SBSE) 141
6.2.2 Search-Based Algorithms 141

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

6.2.3 Search-Based Refactoring (SBR) 143
6.2.4 Related Work 144
6.3 Study Settings 146
6.3.1 Study Goal 146
6.3.2 Research Questions 147
6.3.3 Study Steps 147
6.3.4 Survey Procedures 149
6.4 Survey Results 152
6.4.1 Code Smell Agreement 152
6.4.2 Meaningfulness 153
6.4.3 Completeness 155
6.4.4 Side Effects 157
6.4.5 General Evaluation of REComposite 158
6.5 Threats to Validity 159
6.6 Conclusion and Next Steps 161

7 Conclusion and Next Steps 162

Bibliography 167

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

List of Figures

Figure 1.1 An Example of Complete Composite and its Side-effect 16
Figure 1.2 Thesis Activities 23

Figure 2.1 Study Steps and Artifacts 39
Figure 2.2 Overview of Conceptual Framework 44
Figure 2.3 Representation Model of Composites 45
Figure 2.4 Characteristics related to Composite Application 48
Figure 2.5 Characteristics related to Composite Structure 48
Figure 2.6 Effect Types of a Composite 53

Figure 3.1 Incomplete Composite for Feature Envy Removal 69
Figure 3.2 Study Steps 71
Figure 3.3 % of Positive Changes in Internal Quality Attributes per

Incomplete Composites Group 85

Figure 4.1 An Example of Complete Composite and its Side-effect 95
Figure 4.2 Side-Effect of Common Complete Composites 107

4.2(a) Extract Methods Only 107
4.2(b)Extract Methods and Not Previously Studied Refactoring

Types 107
4.2(c) Move Methods Only 107
4.2(d) Move Methods and Not Previously Studied Refactoring

Types 107
Figure 4.3 Solution of the Motivating Example 109

Figure 5.1 Code Smells Present in the Apache Ant Project on
Commit af74d1f6b882 120

Figure 5.2 Study Steps 123
Figure 5.3 Side Effect of Common Complete Composites 130

5.3(a)Extract Method(s), Change Variable Type(s) 130
5.3(b)Move Method(s) and Change Parameter Type(s) 130
5.3(c)Extract Method(s) and Change Parameter Type(s) 130
5.3(d)Extract Method(s) and Move Method(s) 130

Figure 6.1 Example of Simulated Annealing 142
Figure 6.2 Example of NSGA-II 143
Figure 6.3 Meaningfulness of Composite Refactorings 155

6.3(a)Meaningfulness of SA Recommendations 155
6.3(b)Meaningfulness of MOSA Recommendations 155
6.3(c) Meaningfulness of NSGA-II Recommendations 155

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

List of Tables

Table 2.1 Papers Selected through the Pilot Search 41
Table 2.2 Final Search String 41
Table 2.3 Criteria Selection of our Systematic Mapping 42
Table 2.4 Metadata extracted of Each Paper 43
Table 2.5 List of Papers that mention Representation Models 47
Table 2.6 List of Papers that mention Characteristics 49
Table 2.7 List of Papers that mention Effect 54

Table 3.1 Code Metrics by Internal Quality Attributes 73
Table 3.2 Incomplete Composites for Feature Envy and God Class

Removal 73
Table 3.3 General Data Analyzed in this Study 74
Table 3.4 Five Most Common Incomplete Composites 79
Table 3.5 Groups of Incomplete Composites Across Projects 79
Table 3.6 % of Changes which Significantly improved Each Metric

for Cohesion and Coupling, per Project 84
Table 3.7 % of Changes which Significantly improved Each Metric

for Complexity and Size, per Project 84

Table 4.1 Descriptions of Complete Composites 94
Table 4.2 Refactoring Types analyzed in this Study 99
Table 4.3 Code Smell Types analyzed in this Study 100
Table 4.4 Most Common Complete Composites. 102
Table 4.5 Catalog of Recommendations with Side-Effects 108

Table 5.1 Classification of Refactoring Types 119
Table 5.2 Existing Recommendations of Complete Composites 119
Table 5.3 Classification of Refactoring Types 124
Table 5.4 Code smell types analyzed in this study 125
Table 5.5 Most Frequent Combinations in Complete Composites 129
Table 5.6 Long Envious Method per Project 133
Table 5.7 Long Signed Clone per Project 133

Table 6.1 Code Smell Types detected by OrganicRef 146
Table 6.2 Code Smell Types detected by REComposite 148
Table 6.3 Participants’ Characterization Data 150
Table 6.4 Survey Information 152
Table 6.5 Completeness Level to SA Recommendations 157
Table 6.6 Completeness Level to MOSA Recommendations 157
Table 6.7 Completeness Level to NSGA-II Recommendations 157
Table 6.8 General Evaluation of REComposite 159
Table 6.9 Evaluation of Methodology Study 160

Table 7.1 Publications directly related to this thesis 165
Table 7.2 Publications indirectly related to this thesis 166

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Tuus totus ego sum, et omnia mea tua sunt

Saint Louis-Marie Grignion de Montfort, A Treatise on the True
Devotion to the Blessed Virgin.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

1
Introduction

Code refactoring is a code transformation that aims to enhance the
internal code structure [253,263]. Code refactoring is cataloged in types [25,253,
263], and each type determines the program modifications required to produce
an expected enhancement of a certain code structure [25, 253]. Examples of
popular refactoring types include Extract Method and Move Method [46, 60].
Each single refactoring is an instance of a refactoring type.

Over the last thirty years, code refactoring has been one of the most
popular topics investigated in the Software Engineering community [168]. The
interest in refactoring research is also a reflection of its practical importance.
Developers apply refactoring aiming to improve the internal software quality
and, consequently, the comprehensibility of a program [25,199,253]. A common
way to improve the internal software quality is to fully remove poor code
structures [8, 25, 60], such as code smells [197, 198]. The removal of some code
smells is considered highly relevant by developers and practitioners [35,60,62,
73]. For instance, the smells God Class and Feature Envy are considered quite
relevant given their wide and harmful impact on the program structure [62,73].
Both smells can somehow affect two or even more classes.

However, a single refactoring rarely suffices to assist developers in fully
removing a code smell [8], mainly when the code smell involves two or
more classes. Recent studies then observed developers often apply composite
refactorings on smelly source code [7,143]. A composite refactoring, or, simply,
composite consists of two or more interrelated single refactorings [143, 171].
Previous work has recommended specific composites to remove certain types
of code smells [25, 143]. However, the empirical knowledge about whether,
which, and how composite refactorings fully remove code smells is scarce. As
a consequence, proper guidance to support developers on completely removing
smells is quite limited. In that way, developers may spend time and effort
applying composite refactorings that do not fully remove code smells.

Based on that, the (in)completeness of composite refactorings needs to
be better investigated. In our research, completeness is a characteristic of a
composite refactoring that concerns the full removal of target code smells [77].
We consider it incomplete when a composite does not fully remove the target

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 15

code smell(s) [76,171]. Ideally, the application of a composite refactoring should
be entirely beneficial to the code structure. In addition to fully remove the
target code smell(s), the refactoring modifications should not induce side effects
in the code, such as the introduction of new smells or even the propagation of
existing ones.

In spite of its importance, the literature about the completeness of
composite refactorings from both theoretical and practical perspectives is
quite scarce. From a theoretical perspective, there is a lack of an overall
conceptualization of composite refactorings. From a practical perspective,
empirical studies of (in)complete composites and their effects in software
projects are rare. Moreover, some studies propose approaches to recommend
composite refactorings [145, 222, 242, 244], but these studies did not evaluate
whether these approaches support code smell removal without inducing side
effects. Given these limitations, developers and researchers may be misguided
about how to perform the beneficial removal of code smells through composite
refactorings. In this thesis, we aim to investigate how better to formulate these
problems (Section 1.2) and tackle them (Section 1.3).

1.1
Motivating Example

This section details a real example in the Dubbo [181] project, in which
a developer applied a composite refactoring for removing the target Long
Method and Feature Envy smells. We identified the target smells from the
messages of pull request [184] related to the commit in which the composite
refactoring was applied. In this pull request, developers discussed why the
refactorings were applied. A developer mentioned: “I have moved the access
log creation...”, adding “Refactored code to separate our and group related
tasks in separate methods and have enhanced the readability by using: Method
renaming, Reducing big methods to small...”. In another words, the developers
aim to separate responsibilities because the method invoke() was too long
and implemented functionalities of the AccessLogData class. As presented in
Figure 1.1, at some point in time (commit ci) the class AccessLogFilter had
a method called invoke(), having two code smells, namely a Long Method
and a Feature Envy. In order to remove these smells, a developer applied a
composite formed of two Extract Methods (ExM1 and ExM2) and one Move
Method (MoM) in the commit ci+1 [180].

According to existing studies [25, 171], two Extract Methods can remove
the Long Method and at least one Extract Method with one Move Method
are expected to remove the Feature Envy. In the commit c(i+1), by applying

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 16

ExM: Extract Method
MoM: Move Method

Refactoring Types Code Smell (Before)
 Feature Envy

 Long Method

Code Smell (After)
 Feature Envy

invoke()

Long Method 1

AccessLogFilter

AccessLogFilter

AccessLogData

accessLogData()

 Feature Envy 2

invoke()

buildALD()

 Feature Envy 1

accessLogData()

Ci Ci+1

ExM1

ExM2
MoM

 Feature Envy 2

Feature Envy 1

 Feature Envy 2

Class Method Refactoring Applied

Figure 1.1: An Example of Complete Composite and its Side-effect

the two Extract Methods on the invoke() method, creating buildAdd() and
accessLogData() methods, the Long Method was removed and the Feature
Envy ended up being scattered across the two extracted methods. Then, the
developer applied one Move Method, moving the accessLogData() method
to the AccessLogData class, aiming to remove one of the Feature Envies.
However, the code smell was not removed from the accessLogData() method
as the method was actually more interested in data from another class.

The composite [Extract Method, Extract Method, andMove Method] could
have removed both Long Method and Feature Envy, as indicated by previous
studies [25, 143, 171]. We observed that this commit applied only changes
on code related to these refactorings. Besides, the goal of this commit is
refactoring to remove the Long Method and Feature Envy, as indicated in the
commit message“Acesslog dateformat enhancement”. However, the composite
refactoring did not solve totally the problem. Despite having removed the Long
Method (in the invoke() method), the composite did not fully remove the
Feature Envy (in the accessLogData() method). On the contrary, although
the composite is considered complete as it removes the Long Method, according
to [143, 171], it induced side effects. The composite induced the harmful
propagation of the Feature Envy smell to additional methods and an additional
class affected by the refactorings. We can see that existing recommendations
of composites can lead to side effects, such as: (i) the prevalence of a smell
in the program elements touched by a composite refactoring, or (ii) even the
introduction of code smells.

Existing descriptions of complete composite types do not indicate at

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 17

all what are their possible recurring side effects. This limitation is also not
addressed by previous empirical studies [143, 171]. Perhaps, those developers
applied this recommendation without being aware of the side effects of these
complete composites. Because the existing descriptions do not have informa-
tion about that, limiting the decisions of developers regarding these side effects.
Thus, the case discussed above illustrates why existing descriptions of com-
posite refactorings have to be extended to cover recurring complete composite
types and their side effects. This advance can also further motivate developers
to use and trust such descriptions while enabling them to make more informed
decisions through the selection and application of composite refactorings.

1.2
Problem Statement

As aforementioned, specific composite refactorings may be performed
by developers with the goal of completely removing code smell(s) [143, 171].
Despite this goal, existing studies found that some smells remain after the
application of composites, i.e., the completeness of composites to remove code
smells is not achieved [143, 171]. This means that developers should be more
cautious in avoiding to perform incomplete composites. If not avoided, the
structure of the smelly program may get even worse. Moreover, at least,
the incompleteness of a composite refactoring should be brought to the
developers’ attention. Then, developers can decide whether to complete it.
Despite its practical importance, the literature is scarce on investigating the
effect of (in)complete composites in the overall internal software quality. As
consequence, developers are misinformed about the effect of (in)complete
composites on internal structural quality.

In the practice, developers assume that once a complete composite is
performed, the improvement of the software quality is directly achieved. There
is no guarantee that a complete composite will improve the code quality,
as discussed in the previous example (Section 1.1). In fact, existing studies
reported that even a single refactoring can degrade the internal structural
quality frequently [8, 10, 168]. As a composite refactoring usually is formed of
several refactorings [172], the transformation combinations may degrade even
further the structural quality of the program. Thus, we hypothesize that even a
complete composite, which is focused in a particular smell, can introduce other
types of smells as a side effect, thereby also decreasing the software quality.

Currently, there is a lack of in-depth studies about the completeness of
refactorings. Existing studies do not only ignore the influence of composite
incompleteness, but also fail in revealing possible side effects of complete

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 18

composites. This lack of empirical knowledge hinders assisting developers with
recommendations of how to successfully apply a composite without introducing
any harm. As consequence, developers and researchers do not have information
on whether (in)complete composites can have negative or positive effects.
Those limit the support for composite recommendations for beneficial removal
of code smells, i.e, recommendations of composite refactoring that fully remove
target code smells, minimizing their side effects. This motivation leads us to
the general problem of this doctoral research, presented below and detailed in
what follows.

General Research Problem: Developers and researchers are misin-
formed or misguided about the (in)completeness of composite refactorings
and their positive or negative effects.

For an in-depth understanding of composite completeness, it is necessary
to derive a systematic conceptualization of composite refactorings. However,
the current knowledge about composite refactoring is fragmented [169, 203].
Most studies do not provide a comprehensive description of composites
grounded on systematic knowledge [111, 143, 171, 203]. Consequently, each
study represents composites through different representation models. There
are several composite representation models, e.g., a composite represented by
a refactoring list [94,98,111] or a set of refactorings [104,109,116]. This myriad
of options makes it hard to choose which representation model to adopt for dif-
ferent scenarios or specific designs of solutions, such as catalogs of refactorings
or refactoring recommenders.

Previous studies partially describe some characteristics of composites. A
comprehensive collection of composite characteristics help us to identify and
classify composites. However, the current knowledge on the characteristics of
composites is sparse and contradictory. An example of a composite character-
istic is code scope [171], which is not always explicitly and clearly defined in
previous research on composite refactoring [35,65]. Moreover, some studies as-
sume that a code scope of a composite is a single code element, e.g., a method
or a class [43, 143]. Other studies suggest that code scope consists of many
code elements [35, 50, 171]. These contradictory conceptualizations hinder the
selection of characteristics to use in empirical studies and tools for composite
refactorings.

As far as the knowledge on composite effects are concerned, the literature
is also limited and often conflicting. Most studies only superficially report
that composites can have different effects on software quality. For instance,
studies found that composites often introduce code smells [143], but other

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 19

studies conclude that composites more often remove code smells [79,171]. These
conflicting observations increase the misunderstanding of practitioners and
developers on composite effects. Furthermore, these contradictory conclusions
hinder proper recommendations of composites for code smell removal. The
existing recommendations indicate composites to remove code smells, but they
do not alert developers on the possible introduction of other code smells.
Consequently, these recommendations might lead to the degradation of internal
quality attributes.

Due to the absence of a systematic conceptualization of composites, there
are several problems for researchers and developers. These issues are: (i) it is
not clear how composites are formed; (ii) the lack of knowledge on what are
gaps concerning composites with certain representations, characteristics, and
types of effects; and (iii) the literature conflicts on definitions, characterizations
and effects of composites remain unrevealed and unresolved. To advance the
research and practice, it is necessary to create a systematic and comprehensive
body of knowledge on composite refactorings. This systematic knowledge basis
will help researchers to investigate composites properly, as also practitioners to
improve solutions for composite refactorings. Based on that, we can summarize
our first research problem as follows.

Research Problem 1: The lack of a systematic conceptualization of
composite refactorings.

Our recent studies also reported the fact that composites are frequently
incomplete to remove code smells [143, 171]. For example, the report of one
of these studies shows that composites that include multiple Extract Methods
often fail to remove Long Methods [143]. This same study makes theoretical
assumptions that composites formed of Extract Methods can improve some
internal quality attributes such as code size, regardless of a full smell removal
or not [143]. However, existing studies do not provide empirical evidence
about the positive and negative effects of incomplete composites on internal
quality attributes. Studies provide some complete composite recommendations
to remove specific smells [143, 171, 204]. Despite that, based on Bibiano et al.
[143], we have assumptions that complete composites can have side effects.
Also, complete composites are formed of several refactorings, as mentioned in
the previous discussion of our general research problem.

There is no empirical evidence about how (in)complete composites can
affect the internal structural quality. Therefore, researchers and developers
might not notice that even composites recommended by the literature are
decreasing the internal quality of a program. Based on that, we should

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 20

revisit the effectiveness of existing complete composite recommendations.
Furthermore, we must find proper ways of guiding developers on how to
perform composite refactorings that effectively result in software with superior
internal quality.

Research Problem 2: There is no empirical knowledge about the posi-
tive, negative, and side effects of composite (in)completeness.

A few studies recommend composites to remove a single code smell [143,
171,204], but their effectiveness has not been assessed. Previous pieces of work
also recommend composites to remove multiple code smells simultaneously [79,
157]. Nonetheless, these recommendations are automatically obtained without
considering the knowledge or preferences of actual developers of a subject
system [79, 80, 156, 157]. In other words, these recommendations are neither
based on observed successful practices, not supported by proper empirical
evidence. If these recommendations proposed in the literature are not effective,
we are facing a misalignment between theory and practice of composite
refactoring.

This misalignment is already evident in recent studies reporting that de-
velopers are reluctant to use existing approaches to recommend complete com-
posites [35,211]. If empirical knowledge about the effectiveness of (in)complete
composites is missing, researchers and practitioners are not able to understand
how to advance the state of the art and state of the practice. In particular, this
lack of knowledge will make it difficult to properly recommend composites to
fully remove multiple code smells according to the developers’ needs. Without
such support, developers are increasingly avoiding to perform more complex
refactorings in their projects.

Research Problem 3: Lack of recommendations to properly support
developers on applying effective complete composites.

1.3
Study Goal and Research Questions

According to the research problems presented above, the main goal
of this doctoral thesis is to provide solutions of composite refactorings for
beneficial code smell removal. For that, we have the following specific goals: (i)
systematically conceptualize composite refactorings; (ii) identify the negative,
positive, and side effects of composite (in)completeness on internal structural
quality; and (iii) recommend complete composites to support the full removal
of target code smells. We then have performed empirical studies to solve the

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 21

research problems described previously (Section 1.2) and our study goals
presented above.

1.3.1
Research Questions

As mentioned previously in Section 1.2, the knowledge on the effect
of composite (in)completeness is still scarce, limiting the use of composite
refactorings both in research and practice. We aim to cover this limitation by
answering this research question.

General Research Question: How to tackle the misinformation and
misguidance of developers and researchers about the (in)completeness of
composite refactorings and their effects?

Guided by this general research question, we have been conducting em-
pirical studies to describe composite refactorings, know the positive, negative
effects, and side effects of (in)complete composites, and recommend compos-
ites that can improve the internal structural quality. Our results will be re-
ported for developers and researchers, increasing the knowledge on composite
(in)completeness. In addition to the general research question, we have one
specific research question related to each problem described in the previous
section.

RQ1. What are the representation models, characteristics and
effects of composite refactorings? As aforementioned in Research Problem
1, an in-depth understanding of composite completeness is not feasible without
a better understanding of composite refactorings. Based on that, to address
this RQ1, we performed a systematic mapping about composites. Systematic
mapping is a broad review of primary studies in a specific topic area that aims
to identify what evidence is available on the topic [36, 167]. Our systematic
mapping is an extension of a literature review [203] that was elaborated
and described in the Master’s dissertation [220] (Chapter 3). Along the
Doctoral research, we additionally investigated representation models and
explored primary studies of the last 12 years (2010-2022). The mapping
study of the Master’s dissertation only covered studies published until 2018.
We also extended the initial mapping by revealing new characteristics of
composite refactorings such as their completeness and complexity, as well
as other types of composite effects. A conceptual framework is a design
artifact that provides a general view of a particular phenomenon [32]. We then
have a systematic conceptualization of composites organized as a conceptual
framework. Our conceptual framework is aimed at revealing representation

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 22

models, characteristics, and effects of composites. Besides that, we mapped
existing conflicts, and gaps in the literature about composites. Our conceptual
framework can motivate future studies to investigate fields not explored in-
depth on composites. More specifically, this work focus on answering the
research questions presented in what follows.

RQ2. How does the composite (in)completeness affect the in-
ternal structural quality? The systematic knowledge on composite refac-
torings is the basis to help us to understand the composite (in)completeness.
From this basis, we can deeply investigate the (in)completeness of composites.
Our RQ2 is addressed to solve Research Problem 2. Aiming at the construction
of knowledge to answer this research question, we observed studies presenting
that single refactorings can negatively affect the internal structural quality,
in particular, the degradation of internal quality attributes [10, 168] and the
frequent introduction of additional smells [8]. A previous study also suggests
that incomplete composites can affect internal quality attributes, such as code
cohesion [143]. Thus, we investigated: (i) how incomplete composites affect
internal quality attributes (positive and negative effects), and (ii) whether
complete composites can introduce code smells while the target code smell
is removed (side effects). With this investigation, we can have empirical evi-
dence on how (in)complete composites affect the internal structural quality in
practice. We can also understand whether and to what extent such composites
introduce or not worse internal quality problems. As the main contribution,
based on this obtained knowledge, we can guide developers and researchers on
which and why the (in)complete composites can degrade or not the internal
software quality.

RQ3. How to recommend complete composites that better sup-
port developers in practice? The empirical knowledge on the effect of
(in)complete composites is the starting point to guide developers and re-
searchers on composite recommendations (the answer of RQ2). The under-
standing of how complete composites are applied can improve this guidance.
By answering our RQ3, using the empirical knowledge obtained in RQ2, we
can provide a better guidance on how to recommend complete composites,
thus addressing Research Problem 3. Thus, we aim to aid developers by rec-
ommending complete composites using observations derived from the practice.
We created a catalog of complete composite recommendations. In addition, we
explored how existing automated approaches for recommendations of compos-
ite refactorings can improve in terms of completeness based on the perspective
of developers.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 23

1.3.2
Methodology

Figure 1.2 presents the activities that were performed in this doctoral
research.

 A2.
Database

Construction

 A3.
 Catalog

 Evaluation

Composites

Composites
Completeness

 Code
 Smells

Internal Quality
 Attributes

 A1.
Systematic
 Mapping

 Papers

A4.
 Recommender
 Exploration

SurveyInterviews

Figure 1.2: Thesis Activities

- A1: Systematic Mapping. This activity answers our RQ1. The goal
of this activity is to perform a systematic mapping study to define a conceptual
framework of composite refactorings according to the literature. This system-
atic mapping was an extension of a preliminary systematic mapping [220],
as previously mentioned in Section 1.3.1. We retrieved 140 primary empirical
studies from three search engines: ACM Digital Library, IEEE Xplore, and
Elsevier Scopus. These studies empirically presented approaches to compos-
ite refactorings of the last 12 years (2010-2022), differently of our previous
study [203]. Some approaches consist of either tool support or methods to de-
tect or recommend composites. Other studies, which were focused on investi-
gating single refactorings, mentioned the occurrence of composite refactorings,
but only superficially. Our systematic mapping is detailed in Chapter 2.

- A2: Dataset Construction. This activity consists in creating a
dataset of composite refactorings applied in existing software projects. From
this dataset, we can answer our RQ2, analyzing the effect of (in)complete com-
posites on the internal software quality. We created the dataset of compos-
ite refactorings. We performed two quantitative studies to create a database
of composite refactorings, complete composites, and incomplete compos-
ites [76,77]. For that, we collected data from 20 Java software projects accord-
ing to the criteria detailed in [77]. We collected refactorings using Refactoring
Miner 2.0 because this tool has a high accuracy [173]. We used the Organic
tool to collect the code smells because this tool has a high accuracy [223]. For
both studies, we created scripts to collect composites that are (in)complete

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 24

to remove four smell types, namely God Class, Complex Class, Long Method,
and Feature Envy. These smell types are the most common, and they can
involve more than one class [8, 25]. According to previous studies [143, 171],
a composite is classified as incomplete when it has at least one refactoring
type recommended to remove the target smell type, but the smell was not
removed. Similarly, our script detected a complete composite when the target
smell was removed. In our first quantitative study, we collected 353 incom-
plete composites. We investigated the effect of incomplete composites on four
internal quality attributes (cohesion, coupling, size, and complexity) using 10
code metrics based in [10]. Chapter 3 presents details about this study. In
our second study, we collected 618 complete composites. They can remove the
four smell types mentioned previously, but they can also remove the other 15
smell types detailed in [77]. We collected if these complete composites can also
introduce these smell types while removing the target code smell. We also de-
tected 18 refactorings types in complete composites that are not investigated
previously [203, 204] to know if these refactoring types are often applied in
practice. This second study is detailed in Chapter 4. Our dataset is available
on websites of our published studies [76,77].

- A3: Catalog Evaluation. Our RQ3 is partially answered through
this activity, in which we provided a catalog of composite recommendations
using the results obtained from studies of the activity A2. Our catalog presents
the five most common types of complete composites applied in the practice.
Currently, this catalog describes the following details for each recommended
complete composite: (i) the type of complete composite, (ii) the code smell to
be removed, (iii) the code smells that can be introduced, (iv) an explaining
about why these smells can be introduced, and (v) the description about how
to fully avoid and/or remove these smells altogether. Our catalog is shortly
presented in Chapter 4, and it is available on the website of our recent study
in its extended form [193]. We detailed the improvement and evaluation of the
catalog as follows.

– A3.1: Catalog Improvement. We created an website with our rec-
ommendations. On the catalog website, we summarized the four most
common recommendations. We provided four recommendations that re-
move up to three common code smell types. According to quantitative
results, the code smells that are commonly found together, they are Long
Method, Feature Envy, and Duplicated Code. We then created two new
code smell types that represent the conjunction of each pair of these
smells. We called Long Envious Method when a Long Method and Feature
Envy are detected on the same method. Long-signed Clone is the junc-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 25

tion of Long Method and Duplicated Code, and denotes when a method is
long and duplicated because one or more parameters require the applica-
tion of many repetitive statement statements. Our four recommendations
are complete composite types that frequently removed these code smell
types. We provide two complete composite types to remove Long Envious
Methods, and two complete composite types for removal of Long Signed
Clone. Our catalog presents the (i) definition of each code smell type,
(ii) abstract and concrete examples of each smell type, (iii) definition of
each complete composite type for smell removal, (iv) abstract and con-
crete example of each composite application, and (v) the side effects of
each complete composite.

– A3.2: Interview Execution. This activity regards the application of a
qualitative study to evaluate the catalog of composite recommendations
from developers’ and researchers’ perspectives. We conducted interviews
with 21 developers to evaluate the recommendations of our catalog. We
selected smelly classes from three real software projects. The catalog
evaluation was divided in four parts: (i) the developers evaluated what
code smells are in that classes; (ii) we presented what code smell types
were found in that classes according to our results and our catalog; (iii)
the developers agreed or not with our code smells’ identification; (iv) the
developers proposed a solution to remove the code smell; (v) we showed
our recommendations to remove the code smells according to our catalog;
(vi) the developers accepted or not our recommendations; and (vii) the
developers evaluated the catalog and study in general.

- A4: Recommender Exploration. The complementary response to
our RQ3 is answered in this activity. We explored an existing recommender of
composite refactorings, OrganicRef [244]. We called this extension of RECom-
posite. We investigated how this recommender can improve its recommenda-
tions to provide beneficial removal of code smells according to the perception of
developers. We needed to extend OrganicRef because it does not recommend
Extract Method. In addition, the tool does not detect common code smells,
such as Long Method. We then implemented the recommendation of Extract
Method, the identification of Long Method, and Long Envious Method [259].
We then performed a survey with 10 developers to evaluate the recommenda-
tions of composite refactorings in terms of completeness and side effects. Our
findings can guide researchers and refactoring tool builders on how to recom-
mend complete composite refactoring aiming for the beneficial removal of code
smells.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 26

1.4
Main Contributions

The main contributions of our research are described in this section.
Our studies respectively resulted in a conceptual framework of composite
refactoring, a list of findings about composite (in)completeness, a summary of
lessons we learned with the evaluation of our catalog, and with the exploration
of search-based algorithms for composite refactoring recommendations.

– Conceptualization of Composite Refactorings. We generated a
conceptual framework of composite refactorings through the 140 primary
studies analyzed in our systematic Mapping (Chapter 2), answering our
RQ1. The conceptual framework reveals that the literature represents a
composite refactoring using seven representation models, nine character-
istics, and thirty effects of composites. Studies often use multidimensional
representation models, such as graphs or matrix, to automatically gen-
erate composite refactorings. Some studies also represent a composite as
a sequence using vectors, or an arrays, for the recommendation of com-
posite refactorings. These representations can be interesting to support
step-wise, incremental composite refactorings because they help to know
the order of each refactoring to be recommended. Those results can help
future studies to decide what representation model is appropriate accord-
ing to authors’ approaches to supporting composites. The studies also
mentioned the characteristic of completeness of composite refactorings
and indicated that this characteristic can be used to properly recom-
mend composite refactorings. However, existing studies did not present
a formation definition of completeness and did not investigate in-depth
refactoring (in)completeness. On composite effects, existing studies are
often limited to empirically investigating the effect on code smells, they
have little empirical evidence on how composites affect internal qual-
ity attributes in practice. In summary, our conceptual framework can
guide researchers and refactoring tool builders on how to solve compos-
ite refactoring limitations and what is the appropriate characterization of
composites according to each approach, like identification of composite
refactorings or recommendation of composites.

– Empirical Evidences on (In)completeness of Composite Refac-
torings. After the conceptualization of composite refactorings, we con-
firmed that completeness is a characteristic of composite refactorings
mentioned by previous studies and this characteristic can guide re-
searchers and refactoring tool builders on how to recommend composite

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 27

refactorings. In the literature, there is no in-depth empirically driven re-
search about refactoring (in)completeness. We then performed two quan-
titative studies about (in)complete composites.

In the Chapter 3, we investigated how incomplete composites are com-
monly applied. These results can help to partially answer the RQ2 of this
proposal thesis. In our dataset with 353 incomplete composites, we con-
firm that composites are incomplete frequently to remove code smells.
Our results reveal that incomplete composite refactorings with at least
one Extract Method are often (71%) applied without Move Methods on
smelly classes. However, surprisingly, incomplete composites maintain
the internal quality attributes values, such as the code complexity. We
have found that most incomplete composite refactorings (58%) tended to
at least maintain the internal structural quality of smelly classes, thereby
not causing more harm to program comprehension. We then can ob-
serve that the incomplete nature of composites has possibly not harmed
even further the program comprehensibility and other related quality
attributes.

The study of Chapter 3 focused on incomplete composites. A better
understanding of complee composites is also needed. We performed a
quantitative study (Chapter 4) to investigate complete composites and
fully answer our RQ2. In our dataset with 618 complete composites from
20 software projects, we have found (i) almost half (48%) of Feature
Envies were removed when the composite Move Methods were applied.
This information is not documented by existing composite recommenda-
tions. Since the occurrence of Feature Envy is a common situation [8],
knowing about the usage of the Move Methods composite in advance
can ease refactoring tasks, and (ii) nearly 36% of complete composites
include Extract Methods to remove Long Methods have introduced Fea-
ture Envies and Intensive Couplings as side effects. Surprisingly, with
the goal of improving readability, by removing Long Methods, developers
end up degrading the software internal quality by creating unnecessary
high coupling.

– Catalog for Recommendations of Composite Refactorings. With
the knowledge obtained in our previous studies about (in)complete com-
posites applied in the practice, we extracted the common (in)complete
composites and created a catalog to recommend composite refactorings
and alert developers about their possible side effects. Chapter 5 describes
how we created and evaluated this catalog. Our catalog evaluation helps
to partially answer our RQ3. Our catalog recommends four composite

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 28

refactoring types to remove two new types of code smells, and describes
the possible side effects of our recommendations. Our recommendations
are based on common complete composites applied in software projects.
We interviewed 21 developers to evaluate out catalog. The most (85%) of
developers reported that their solutions could have the worse side effects
without our catalog recommendations. Besides, we observed a significant
number (33%) of developers were unaware of side effects when propos-
ing solutions to remove code smells. These findings reinforce the need of
recommendations to at least caution developers about the side effects of
composite refactorings.

– Empirical Evidences of (In)completeness and Side Effects of
Existing Automated Recommendations of Composite Refactor-
ings. In our catalog evaluation, we observed that developers often elab-
orate composite refactorings that could have the worse side effects, and
many times developers were unaware of them.

Extension of an Existing Recommender. We then extended an ex-
isting recommender of composite refactorings to explore the perceptions
of developers on automated recommendations of composite refactorings,
mainly in terms of completeness and side effects. From the recommender
OrganicRef [244], we generated REComposite, a recommender system of
composite refactorings. REComposite generates composite recommen-
dations using search-based techniques [30,234], using three search-based
algorithms: SA [240], MOSA [240–242], and NSGA-II [239]. The recom-
mender identifies nine common types of code smells and recommends four
refactoring types. REComposite indicates (i) the code smells that were
identified, (ii) the smelly code elements, (iii) the composite that may be
applied, and (iv) the side effects that may be minimized or removed.

Empirical Exploration of Search-based Algorithms for Auto-
mated Recommendations of Complete Composites. We per-
formed a survey with ten developers to assess REComposite, explor-
ing which search-based algorithm provides the best recommendations
in terms of meaningfulness, completeness, and side effects. Our results
reveal the most (80%) developers considered that NSGA-II recommen-
dations are complete frequently. We then observed that NSGA-II is a
search-based algorithm that better explore the search space. Thus, this
algorithm generally finds new opportunities of composite refactoring.
However, NSGA-II recommendations often can lead to side effects, ac-
cording to 70% of developers. Based on this result, we perceived that ex-
isting search-based algorithms need to be improved to recommend com-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 29

plete composites without inducing side effects. We then provided a list
of lessons learned for researchers and tool builders of recommenders of
composite refactorings based in search, lessons such as (i) search-based
algorithms need to better explore the search space aiming composite
refactorings with different levels of completeness and (ii) the minimiza-
tion of side effects may be a parameter to find composite refactoring for
the beneficial removal of code smells.

In summary, our findings reveal that developers tend not to solve
structural problems completely when they apply composite refactorings. These
composites can remove one target code smell, but potentially introduce or do
not remove other ones. This may be alert regarding the in-practice use of
existing recommendations. Our results suggest that existing recommendations
of complete composites should be either revisited or enhanced to explicitly
include possible side effects. We then present a catalog that can help developers
in practice to fully remove code smells, minimizing side effects. Our catalog
can inspire future research to improve existing refactoring tools, helping
developers to achieve code structure improvement, based on the code context
of their development activities. In addition, we provide a list of lessons learned
for researchers and tool builder of automated recommenders of composite
refactorings that uses search-based algorithms.

1.5
Thesis Outline

This thesis is structured as a set of papers either published or under
submission. Each chapter contains a paper. The remainder of this thesis is
organized as follows. Chapter 2 shows our systematic mapping on composite
refactorings. Our exploratory studies on (in)complete composite refactorings
are reported in Chapters 3 and 4. Chapter 5 reports the presentation and
evaluation of our catalog of composite recommendations. The description and
assessement of our recommender system is described in Chapter 6. Finally, we
concluded this thesis in Chapter 7.

Due to this thesis structure, then some sections become repetitive and
some concepts have evolved throughout the doctoral research. Based on that,
we recommend that this thesis be read in the following sequence to make the
reading of this more fluid. Section 2.2.1 conceptualizes refactoring, Section 2.2.2
defines composite refactoring and describes the current state-of-the-art about
composite refactoring. Section 2.3 reports the protocol of our systematic
mapping about the conceptualization of composite refactorings. The results
of our systematic mapping are detailed in Section 2.4. The related work and

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 1. Introduction 30

threats to the validity of our systematic mapping are in Sections 2.5 and 2.6,
respectively. Section 2.7 concludes our systematic mapping and indicates our
future steps.

After the conceptualization of composite refactoring, we formally de-
fined composite refactoring in Section 4.2.1, and composite completeness in
Section 5.2.2. The reader can read about our quantitative studies about
(in)complete composites. Section 3.2.2 indicates the current limitations of in-
complete composites. Section 3.3 describes the settings of the study about
incomplete composites. Section 3.4 reports the overview of our dataset. The
results about incomplete composites are detailed in Sections 3.5 and 3.6. The
threats of validity in the study of incomplete composites are in Section 3.7.
After the investigation of incomplete composites, the next sections are related
to the study of complete composites. Section 4.2.3 focuses on the limitations of
the literature on complete composites. Section 4.3.2 details the protocol of this
study. The results on the complete composites are described in Sections 4.4
and 4.5. Section 4.6 indicates the threats to the validity of this study.

In a sequence, we suggest the read about our composite solutions.
Section 5.4 details the study steps to build and evaluate our catalog of
composite recommendations. Section 5.5 describes the results of the evaluation
of the catalog. The threats to the validity of the catalog evaluation were
detailed in Section 5.6. After that, the reader can read about the exploration of
an existing recommender to support our catalog recommendations. Sections 6.2
and 6.2.4 show an overview of the search-based approaches to recommend
composite refactorings. Sections 6.3 and 6.3.4 describe the study proceedings
about the empirical exploration of the existing recommender. We explain the
results of this study in Section 6.4. The threats to the validity of this empirical
exploration are presented in Section 6.5. Finally, Chapter 7 concludes our
thesis.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

2
Composite Refactoring: Representations, Characteristics and
Effects on Software Projects

This chapter contains a paper published in
the Information and Software Technology (IST) journal [260].

This chapter reports our systematic mapping on composites aiming to
answer the RQ1 (Section 1.3.1) of this thesis. A recent study reveals developers
often apply composite refactorings. Two or more single refactorings form a
composite refactoring. The knowledge about composites is fragmented and
limited [203]. Previous studies mention the frequent occurrence of composites
in software projects, but there is not a systematic conceptualization about
what is and how to form a composite refactoring. Firstly, for that, it is
necessary an understanding of how to conceptualize a phenomenon. We then
performed a systematic mapping from 140 out of 454 empirical primary studies.
These studies empirically suggest approaches to composite refactorings. Some
approaches can be tools or methods to detect or recommend composites.
Other studies investigate single refactorings, and they mentioned composite
refactorings superficially.

We then created a conceptual framework of composites. Our conceptual
framework includes the representation models, characteristics, and the effect
of composites, revealing how existing studies investigate composites, existent
conflicts, and gaps in the literature about composites. Thus, our conceptual
framework and our findings answer our RQ1 (Section 1.3.1). The next sec-
tions are the content of the published paper in IST [260]. This paper was an
extension of a preliminary systematic mapping [203] that was published dur-
ing the Master’s degree and also described in the Master’s dissertation [220]
(Chapter 3). Along the Doctoral research, we additionally investigated repre-
sentation models and explored primary studies of the last 12 years (2010-2022).
The mapping study of the Master’s dissertation only covered studies published
until 2018. We also extended the initial mapping by revealing new character-
istics of composite refactorings such as their completeness and complexity, as
well as other types of composite effects.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 32

2.1
Introduction

A code refactoring is a code transformation with the goal of improving
the internal software quality [25]. Every single refactoring has a type that
describes how and where each single refactoring may be applied on specific code
elements (attributes, methods, classes, etc.). An example of refactoring type is
an Extract Method. This refactoring type is applied when the developer creates
a new method and extract pieces of source code from an existing method to
the new method. Fowler’s book presents a catalog of refactoring types [25].

A recent study indicated that developers often apply composite refac-
torings (formerly batch refactoring [143]), that are two or more interrelated
single refactorings [143,171]. Each instance of a composite refactoring is here-
after called composite. As an example, a composite can be formed by an Extract
Method and aMove Method. The basic elements of composite refactorings are a
representation model, characteristics, and effects [203]. A representation model
is structural modeling, like a list or a graph. A representation is a represen-
tation model’s instance of a composite. A characteristic identifies or classifies
a composite, such as code scope or size. Composites also have effects, which
refer to how a composite impacts the software quality. An example of effect is
the removal of poor code structures, such as code smells.

Despite wide use in practice [46, 143] the knowledge about composite
refactorings is still limited and fragmented. Previous studies used different
representation models for composites, like a set [104, 109] or a graph of
single refactorings [95, 105]. Given the diverging rules of these representation
models, each representation model imposes important constraints on the
characteristics of composites. Therefore, it is necessary to understand what
are the representation models used by literature and why each study used
these composite models. This understanding helps us to know what model is
more appropriate for each refactoring approach.

The knowledge about composite characteristics is fragmented because
studies have different definitions for the same characteristic. For example,
code scope is a composite characteristic that describes where the composite
was applied to source code. Nevertheless, previous studies use varying ways
of determining the code scope of composites. Some studies considered that
composites may be applied on a single code element [43, 143], whereas other
studies consider that composites may be applied on many code elements. Thus,
a summary of different descriptions of each characteristic is necessary to align
each characteristic definition and also reveal composite characteristics that
are not investigated in practice. Also, an in-depth understanding of composite

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 33

characteristics is necessary to know how composites are applied in practice. For
instance, what is the size of composites applied frequently in practice, what
are the most common types of composites?

The knowledge on the composite effects is conflicting and superficial. An
example of conflict is the effect on code smells. A study concluded that compos-
ites can remove code smells [50], but another study indicated that composites
can introduce code smells [43]. These conflicts increase the misunderstanding
of practitioners and developers on composite effects. Therefore, a summary of
knowledge on composite effects is necessary to (i) know what are the possible
effects of composites on the software quality, (ii) what composite effects are
interesting to study in practice, and (iii) investigate the effect of composites
in practice, minimizing or removing the existing conflicts of the literature.

Based on those limitations, we performed a systematic mapping to build a
conceptual framework including the representation models, characteristics, and
effects of composites. Systematic mapping is a broad review of primary studies
in a specific topic area that aims to identify what evidence is available on the
topic [36,167]. We performed this empirical method based on strict guidelines
of systematic mappings [36,167]. We applied this method because it allows us
to (i) summarize the current knowledge from the literature, and also (ii) create
our conceptual framework of composites. A conceptual framework is a design
artifact that provides a general view of the similarities and variabilities of a
particular phenomenon (a conceptual framework is a type of feature model, and
this definition was based in [32]). Recent studies [216–218] used feature models,
like conceptual frameworks, to represent phenomena of software engineering.
Based on those studies, we observed that a conceptual framework is an
appropriate method to represent composite refactorings. This is because the
conceptual framework allows us to represent graphically the phenomenon
according to the literature, and guide researchers and practitioners about
how composites can be investigated. As results, we retrieved 140 out of 454
empirical primary studies from three search engines: ACM Digital Library,
IEEE Xplore, and Elsevier Scopus. These studies suggested approaches for
composite refactorings. Some approaches propose tools or methods to detect
or recommend composites. Other studies investigated single refactorings, and
they mentioned composite refactorings superficially. Based on the analysis of
these studies, we found the following results:

– On representation models, a composite can be modeled through seven
representations. Existing studies used multidimensional representations
(e.g., graphs or matrix) when they generated composites automati-
cally [S25,S77,S112,S158]. These representations were adopted because

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 34

their approaches suggested one or more refactorings. Therefore, mul-
tidimensional representations allow them to generate many “paths” of
refactorings and know what refactoring may be suggested. These results
can help practitioners or researchers to decide what representation model
is appropriate according to their approaches to supporting composites.
Studies usually represented a composite as a sequence using models as
a vector [S29, S43, S79], or an array [S11, S33], when the authors aimed
to recommend composites. These representations help them to know the
order of each refactoring to be recommended.

– We found out nine characteristics. Examples of composite characteristics
are time and completeness. Time regards the time window by developers
for applying a composite in a software project. We have found out that
time can be measured by minutes [PS11], days [PS10], weeks [S04].
A recent study indicated that 32% of composites took one day to be
completed, and 46% took more than one day and less than 30 days (one
month) [S02]. An overview of this characteristic is interesting to motivate
the investigation of why composites are applied into one month. Also,
studies can explore approaches to reduce the time to apply a composite.
The composite completeness is related to fully achieve a specific goal,
such as bug fixing. A recent study investigated this characteristic [S259].
However, some gaps need to be filled in the literature, for example, how
many composites need to be applied to achieve a specific goal? Thus, our
conceptual framework can help future studies mitigate existing gaps in
composite characteristics.

– On composite effect, we observed that studies suggested that compos-
ites can have thirteen effects. However, existing studies are limited to
understand these effect types empirically. For example, studies often in-
vestigated the effect on code smells, but they have little evidence on
how composites affect internal quality attributes in practice. On Ex-
ternal Quality Attributes, studies also mentioned composites can affect
positively these attributes, such as the correctness (e.g., composites can
help the bug removal or the correction of syntax errors) [PS22,PS23]. On
the other hand, a paper suggested composites can introduce bugs (Bug
Introduction) [S137]. However, these studies did not present empirical
evidence about it. Our conceptual framework revealed the possible ef-
fects of composites, and existing conflicts in the literature on composite
effects. Our results can motivate researchers to know what are the effects
of composites that need to be explored deeply. Besides that, our results
can motivate practitioners to create tools for applying composites to im-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 35

prove the software quality, such as the recommendations of composites
to help the bug fixing.

In summary, the main contributions of our study are: (i) a summary
of the body of knowledge on composites, and (ii) a conceptual framework
on the representation models, characteristics, and the effect of composites.
Our contributions can be used by future studies that aim to investigate how
composites are applied in practice and to provide insights to build automated
support tools for composite refactoring applications, such as a recommender
system of composites. The remainder of this article is structured as follows.
Section 2.2 summarizes background information aiming at supporting the
understanding of our work. Section 2.3 describes our systematic mapping
protocol based on the Goal Question Metric template [1]. Section 2.4 presents
and discusses our study results. Section 2.5 overviews related work. Section 2.6
discusses the major threats to the study validity. We conclude our paper and
present future study steps in Section 2.7. Finally, we presented as an appendix
our primary studies.

2.2
Background

This section discusses code refactoring in terms of single refactoring (Sec-
tion 2.2.1), composite refactoring (Section 2.2.2), and the use of conceptual
framework to represent the knowledge of Software Engineering contexts (Sec-
tion 2.4.1).

2.2.1
Refactoring

In the seminal book of Fowler et al. [25], refactoring is defined as “the
process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure. It is a dis-
ciplined way to clean up code that minimizes the chances of introducing bugs.
In essence, when you refactor, you are improving the design of the code af-
ter it has been written.”. Code refactoring was designed for supporting the
improvement of code structures in software projects [25]. Refactoring is done
by successive code transformations affecting one or more code elements, e.g.,
methods and classes, in which developers can enhance the code maintainabil-
ity [8, 46, 67]. Code transformations vary by type, which defines how the code
structure should be modified1 [25].

1Catalogs of refactorings are available at: <https://refactoring.guru/refactoring/
catalog> and <https://refactoring.com/catalog/>

https://refactoring.guru/refactoring/catalog
https://refactoring.guru/refactoring/catalog
https://refactoring.com/catalog/
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 36

A recurring example of refactoring type in real software projects at
the method-level is Extract Method [25]. This is a typical refactoring type
from which specific code statements are extracted from a method in order
to compose a new one [67]. This refactoring type can be summarized in four
transformations [25]: (i) extract code statements from an existing method, (ii)
create a new method; (iii) copy the extracted code statements into the new
method, and (iv) replace the extracted code statements with a call to the new
method.

An example at the class-level that is also frequent in real projects is
Extract Class. This typical refactoring type aims to split a too long and
complex class into two [25]. It consists of three modifications, namely: (i)
decide how to split the features realized by a given class, (ii) create a new
class, and (iii) move methods and attributes from the existing class to the new
one. A typical refactoring type that affects the code structure at the attribute-
level is Pull Up Attribute. This refactoring occurs when developers move an
attribute that is common to two or more children in the class hierarchy to
the parent class [25]. It consists of two steps: (i) inspect the attribute that
is a candidate to move to the superclass, and (ii) move this attribute to the
superclass.

According to Fowler [25], each single refactoring does little, but a
sequence of these refactorings can produce a significant impact on restructuring
software projects. Although this sequence of refactorings can be unrelated to
each other, in practice we have seen that they direct or indirectly end up
touching similar code elements [263]. In addition, developers tend to use a
sequence of refactorings to achieve a wider goal than only restructuring the
code, such as preparing the software to include a new feature [167]. Refactorings
of this nature are described in the next section.

2.2.2
Composite Refactoring or Composite

Composite refactoring is composed by two or more interrelated refactor-
ings [171]. The technical literature has referred to the concept of composite
refactoring in many ways: composite refactoring [171], batch refactoring [143],
refactoring sequence [43], and so forth. Unfortunately, the current knowledge
of composite refactoring is quite scattered in the literature. Moreover, the pre-
vious studies provide only a partial viewpoint on the topic, with many specu-
lations on what a composite refactoring is indeed. More critically, a summary
of studies on composite refactorings is still missing in the literature. Conse-
quently, little is known about the extent in which the current knowledge has

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 37

an empirical ground. All the aforementioned issues make it difficult to design
solutions for recommending composite refactoring and it limits the understand-
ing of developers on how to apply composites and the effect of composites in
practice.

Lin et al. [39] highlighted the importance of a correct sequence of
refactorings (composites) to architectural restructuring. Also, they point out
that architectural refactorings are a costly, risky, and challenging task. To
find proper composites, the authors proposed a search-based algorithm. This
algorithm focuses on (i) minimizing the inconsistencies between the target
and source; (ii) improving OO design quality, such as coupling and cohesion;
and (ii) maximizing the lexical similarity between the target and source. This
shows how refactoring is a multi-facet task. Murphy-Hill et al. [46] performed
an in-depth study about refactoring tool usage. They observed that 40%
of refactorings performed using a tool occur in composites. These authors
considered refactorings of the same kind that execute within 60 seconds of
each another to identify composites. However, the authors acknowledge that
this identification based on time window is not the best way to infer how
refactorings are related.

On the basis that a single refactoring rarely suffices to fully remove code
smells, Bibiano et al. [143] conducted an empirical study with 57 open and
closed software projects to understand composite refactoring application from
two perspectives: characteristics that typically constitute a composite (e.g.,
the variety of refactoring types employed), and the composite effect on code
smells. As a result, the authors identified that although most composites are
applied on more than one method, they are usually composed of the same
refactoring type. Surprisingly, it was found out that composites mostly ended
up introducing or not fully removing smells.

A recent study provided an investigation from different viewpoints on
how composite refactoring manifests in practice [171]. In this study, the authors
analyzed how different kinds of composite refactorings affect the removal,
prevalence or introduction of smells. For that, they provided two heuristics
to respectively characterize and identify composite refactorings within and
across commits. An interesting result is that many smells are introduced in a
program due to “incomplete” composite refactorings.

2.3
Systematic Mapping Protocol

A systematic mapping can bring us a systematic conceptualization of
a phenomenon based on knowledge provided by the literature. Systematic

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 38

mapping is a broad review of primary studies in a specific topic area that
aims to identify what evidence is available on the topic [36,167]. We relied on
well-known literature guidelines aimed at carefully designing our systematic
mapping protocol [31, 36, 70, 167]. Section 2.3.1 introduces the study goal
and research questions. Finally, Section 2.3.2 describes the protocol steps and
procedures.

2.3.1
Goal and Research Questions

Our study goal is: to analyze the technical literature of composite refac-
toring; for the purpose of building a conceptual framework of the representa-
tion models, characteristics, and the effect of composite refactoring according
to previous studies; from the viewpoint of Software Engineering researchers
specialized in code refactoring-related research; in the context of studies pub-
lished from last 12 years (2010 to 2021). Aimed at addressing our study goal,
we have defined three Research Questions (RQs) described as follows.

RQ1: How has composite refactoring been modeled? The literature reveals
that previous studies represent composite refactoring in many ways. Examples
of representation models are graphs, sets, and so forth. A summary of represen-
tation models used in the composite refactoring context could reveal the most
appropriate model according to the purpose. For instance, graphs could fit the
strategies to optimize the number of refactorings that constitute a compos-
ite refactoring, e.g., [43,55]. Other representation models like sequences could
fit other purposes, such as a sequence of refactorings to remove a code smell,
e.g., [132]. Through RQ1, we expected to summarize the representation models
of composite refactoring employed so far, especially to drive future research on
recommender systems.

RQ2: What characteristics constitute a composite refactoring instance?
The current knowledge of composite refactoring is unfortunately scattered in
the literature. Each previous study assumes some characteristics as represen-
tative of composite refactoring. Certain characteristics are intuitive, e.g., the
number of refactorings within a composite refactoring instance [43, 46, 143].
Others are more specific to the context of each study, e.g., the time between
the refactorings of a composite refactoring [46]. As one could expect, these
characteristics vary across studies. We highlight that many characteristics are
mere assumptions of the study authors [143]. Besides that, the literature is con-
flicting on the characteristics. For example, some studies assumed that a com-
posite refactoring may affect a single code element [43,143], and other studies
motivated that a composite refactoring can affect many code elements [35,46].

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 39

Thus, an understanding of the characteristics of composite refactoring without
a mapping of the literature is unfeasible. RQ2 is addressed to organize the cur-
rent knowledge, thereby clarifying convergences and conflicts on what really
characterizes a composite refactoring.

RQ3: Which are the effects reported in the literature of applying compos-
ite refactoring on software projects? Code refactoring was originally designed
to enhance the maintainability of software projects. Since then, studies empir-
ically investigated the refactoring effect on various software quality attributes,
including the pure maintainability enhancement. Examples of attributes are
the bug-proneness of code elements [2, 21] and the improvement of internal
quality attributes [10,168], e.g., cohesion and coupling. A recent study [143] in-
vestigated empirically the composite refactoring effect on software projects. In
this case, they focused on the introduction and removal of code smell instances.
Contrary to expectations, they found out that some composite refactoring rec-
ommendations of Fowler [25] rarely remove poor code structures [143]. There
may be other types of composite refactoring effects assumed by previous studies
that deserve empirical validation. RQ3 aims at eliciting these types of effects,
thereby driving future work.

2.3.2
Steps and Procedures

Figure 2.1 depicts the sequence of study steps and their respective
artifacts according to the existing guidelines for systematic mapping [36].
Below, we described and justified each step. Our results and artifacts are
available on [219].

Figure 2.1: Study Steps and Artifacts

Step 1: Run Pilot Search. This step aimed at designing a pilot search
that could drive us in the design of a systematic mapping. We then created
an initial search string via a pilot search based on our current knowledge of
composites. Our very first search string was: (batch refactoring* OR continuous

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 40

refactoring* OR sequence of refactoring*). At that time, we were unfamiliar
with the composite refactoring term. The “*” character indicates the inclusion
of any variant words whose prefix precedes this character. Batch refactoring*
was found in our initial exploration of the matter, in studies such as [46, 65].
Sequence of refactoring* was also quite common in our exploration and
appeared in studies such as [43, 55, 64, 254]. Continuous refactoring has also
appeared in a previous study [65]. We then performed the designed pilot search.

First Round of Pilot Search. In July 2017, we performed a first round
of pilot search [169] on two Web search engines: ACM Digital Library2 and
Google Scholar3. We took our very first search string (Step 1) as a basis. We
considered the 20 first studies listed for each engine by relevance (default cri-
teria of the engines). After performing backward snowballing procedures [31],
we additionally collected a total of eight primary studies.

Second Round of Pilot Search. Later in February 2018, we ran a second
round of pilot search [169] by (i) adding the IEEE Xplore4 engine and (ii)
discarding the continuous refactoring term. The term discarding was motivated
by a large amount of out-of-scope search results. Indeed, continuous refactoring
often targets an unceasing refactoring process rather than the combination of
code transformations. The search results consisted of 15 additional primary
studies. We performed backward snowballing procedures on these 15 studies.
Five additional studies were added to the set, totaling 20 new primary studies.
As a result, we selected 28 papers listed in Table 2.1. These papers were
considered in our final set of papers for analysis because, after reading them,
we noticed the papers were explicitly addressing composite refactoring. Most
of them were published in journals or conferences with high reputation,
including IEEE Transactions on Software Engineering (TSE) and International
Conference on Automated Software Engineering (ASE).

Step 2: Run Final Search. This step consisted of running the definitive
search for primary sources. Aimed at more refined search results, we kept
ACM Digital Library and Xplore, but replaced Google Scholar with Elsevier’s
Scopus5. Scopus has been largely used for systematic mappings in Software
Engineering by its large dataset of papers [170]. We learned a lot from reading
the metadata (title, keywords, and abstract mostly) of the 28 primary studies
collected in Step 1. Table 2.2 presents the search string we designed from
the acquired knowledge. As a result, this search string retrieved a total of 454
primary studies.

2https://dl.acm.org/
3http://scholar.google.br/
4https://ieeexplore.ieee.org/
5https://www.scopus.com/

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 41

Table 2.1: Papers Selected through the Pilot Search
Paper Title and Reference
A methodology for the automated introduction of design patterns [PS1]
A new software maintenance scenario based on refactoring techniques [PS2]
Algebraic and cost-based optimization of refactoring sequences [PS3]
An empirical study of refactoring: Challenges and benefits at Microsoft [S04]
Composite refactorings for Java projects [PS5]
Designing and developing automated refactoring transformations [PS6]
DRACO: Discovering refactorings that improve architecture using fine-grained co-change dependencies [PS7]
Evolving transformation sequences using genetic algorithms [PS8]
Experimental assessment of software metrics using automated refactoring [PS9]
FaultBuster: An automatic code smell refactoring toolset [PS10]
How we refactor, and how we know it [PS11]
Identifying refactoring sequences for improving software maintainability [PS12]
Improving refactoring speed by 10x [PS13]
Interactive and guided architectural refactoring with search-based recommendation [PS14]
Pareto optimal search based refactoring at the design level [PS15]
Recommendation system for software refactoring using innovization and interactive dynamic optimization [PS16]
Refactoring with synthesis [PS17]
Scripting parametric refactorings in Java to retrofit design patterns [PS18]
Search-based detection of high-level model changes [PS19]
Search-based refactoring based on unfolding of graph transformation systems [PS20]
Search-based refactoring detection [PS21]
Search-based refactoring using recorded code changes [PS22]
Search-based refactoring: Towards semantics preservation [PS23]
Searching for opportunities of refactoring sequences: Reducing the search space [PS24]
Template-based reconstruction of complex refactorings [PS25]
The use of development history in software refactoring using a multi-objective evolutionary algorithm [PS26]
TrueRefactor: An automated refactoring tool to improve legacy system and application comprehensibility [PS27]
WitchDoctor: IDE support for real-time auto-completion of refactorings [PS28]

Table 2.2: Final Search String
(batch refactoring* OR chain of refactoring* OR combination of refactor-
ing* OR complex refactoring* OR composite refactoring* OR list of refac-
toring* OR refactoring combination OR refactoring sequence* OR refactor-
ing set* OR sequence of refactoring* OR sequence of transformations OR
set of refactoring* OR transformation sequence*) AND (code structure*
OR software evolution OR software maintenance OR software project* OR
source code)

Step 3: Eliminate duplicates. We considered as duplicated papers,
studies that have the same title, list of authors, avenue, and year of publication.
In that way, we eliminated 71 papers, remaining 383 (84%) out of 454 papers.

Step 4: Apply Selection Criteria. This step consisted of defining and
applying selection criteria, to either keep or discard primary studies for the
analysis. After rounds of discussion among the paper authors, we defined our
set of selection criteria. Table 2.3 summarizes these criteria. We included stud-
ies that have been published for the last 12 years (2010-2021) (Section 2.3.1),
because we observed in this period there was an increase of publications related
to refactoring [168]; in either an international conference, journal; in English; in
an online repository so that we can download the full study version. We elim-
inated papers published in workshops because they are generally short papers
or position papers. Studies that neither theoretically nor empirically mention
composite refactoring were discarded. We also discarded gray literature: short
studies (3 pages or fewer), poster summaries, and “white papers”. To secure
the relevance of papers, we only included venues that are known for publish-
ing high-quality software engineering research; this strategy is also followed by
other authors (e.g., [255]). By applying the selection criteria, we included the
28 papers from Pilot Search with the 383 primary studies to double validation.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 42

After following our elimination criteria, a total of 295 studies remained.

Table 2.3: Criteria Selection of our Systematic Mapping
Criteria Selection Justification
Papers published between 2010-
2021

This period there was an increase of publications related
to refactoring.

Papers published in English To facilitate the reproducibility of our study because
papers written in English are more accessible by the
international Software Engineering Community.

Papers that are not published in
workshops

They are generally short papers or position papers.

Papers published in International
conferences, and journals

To facilitate the reproducible of our study because inter-
national conferences and journals are more accessible by
the international Software Engineering Community.

Papers published that are not from
grey literature

To ensure that our results were extracted from venues that
are known for publishing high-quality software engineering
research

Step 5: Filter based on the Metadata. We then evaluated the metadata
of each paper, i.e, the title, abstract, and keywords, evaluating if the paper
investigated composites indirectly or not. We observed that 81 papers consid-
ered only single refactoring or did not investigate code refactoring, remaining
214 papers. We also removed 18 studies that were found in the pilot search
of this list because we already had read the metadata of those papers. We
then aggregated the data of these studies in Step 6 to build the conceptual
framework. In that way, we obtained our final set of 196 primary studies for
analysis.

Step 6: Extract Data. Table 2.4 presents the metadata extracted of
each paper, the extracted data helps to validate if these studies investigate
or mention composites. Two authors extracted this metadata. Thereafter, we
divided a set of papers for each author to read, following a protocol based on
existing guidelines. We divided the papers among authors, aiming to eliminate
a misunderstanding on each paper. All authors read the papers and answered a
web form to fill the data types extracted for each selected paper. Two authors
evaluated the answers to this form and evaluated the papers that help to
address our RQs. We have that 84 papers were discarded, remaining 112.
Finally, after we retrieved 28 papers from the pilot search that were mentioned
in Step 5, our dataset consisted of 140 selected papers.

Step 7: Build Conceptual Framework. Two authors aggregated the data
according to each question of the form. For example, all answers to the
question related to the characteristics of composites were aggregated in a single
document. We then evaluated if each answer is related to what was asked. For
example, if the answer is a characteristic, effect, or representation model of a
composite according to the definition of each of these topics presented in the
form. When we had doubts about the answers, we then contacted the authors

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 43

Table 2.4: Metadata extracted of Each Paper
RQ Data Type Description

N/A

Paper Title Full paper title
Authors Full authors list
Year Year of publication
Type Paper type, e.g., conference and journal
Venue Full name of the publication venue
Abstract Full abstract as constant in the paper
Keywords Paper keywords
Methodology Methodology of previous studies

RQ1 Representation Model Representation model of composite refactorings
RQ2 Characteristics Any characteristics that constitute a composite refactoring
RQ3 Effect Any effects of composite refactoring

that answered them to understand better each answer. If necessary, we reread
the paper that inspired each answer to validate it.

We have applied some basic Grounded Theory procedures [13,63] on the
extracted data. We performed both coding and classification on excerpts ex-
tracted for each paper in order to identify the composite characteristics and
types of effect. We executed the following steps of our protocol: (i) we tabulated
sentences that mention composite characteristics or effect; (ii) three authors
validated the tabulated sentences in order to assure they mention characteris-
tics and types of effect; (iii) three authors together grouped the sentences by
semantics, thereby extracting final representation models, characteristics and
types of effect; (iv) we then created a list of representation models of compos-
ites based on the literature (RQ1); (v) we grouped composite characteristics
based on the current knowledge (RQ2); and (vi) we listed the types of effect
of composites in our feature model of composites (RQ3).

2.4
Results and Discussion

The Conceptual Framework. Figure 2.2 introduces our conceptual
framework of composite refactoring based on the literature. A composite has
at least a representation and characteristics as mandatory features, and a
composite can have an effect, thus an effect is an optional feature of our
conceptual framework. We also observed the characteristics of a composite
are related to the structure or the application of the composite, and these
characteristics are concrete features of our framework. We describe details
of the conceptual framework content in Sections 2.4.1, 2.4.2, 2.4.3, 2.4.4,
and 2.4.5.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 44

Figure 2.2: Overview of Conceptual Framework

2.4.1
The Use of Conceptual Model for Composite Refactoring Characterization

A strategy commonly used to represent the knowledge of a particular do-
main is the use of conceptual frameworks [213], such as feature models [32,221].
A feature model is a design artifact that provides a general view of the similari-
ties and variabilities between features that may compose the possible configura-
tions or characterizations of a particular domain [32]. Through the conceptual
frameworks (like feature models), software engineers can characterize all possi-
ble configurations of a software family, in which each configuration represents
a fully formalized specification of a software product [214].

Recent studies [216–218] have been using the feature model notation
not only to model the different configurations of a software product, but also
to summarize the knowledge extracted from primary or secondary empirical
studies. Oliveira et al. [216] used the feature model notation to represent a
summary of qualitative results on the activities performed by developers, either
individually or collaboratively, for the activity of identifying code smells. Each
feature then represents these activities, in which the six mandatory activities
for smell identification are presented by the top-level features. Moreover, for
each activity, the authors represented alternative activities that may exist.
These alternative activities were represented through Or and XOr relations
based on the feature model notation.

In our study, we used the feature model notation to provide a conceptual
framework of composite refactorings based on the knowledge extracted from
the literature. Similar to the aforementioned study, we used the notation of
optional and mandatory features, as well as the Or and XOr relations, to
characterize complex knowledge. In our case, different aspects of composite
refactorings.

2.4.2
Representation Models of Composite Refactorings (RQ1)

For our RQ1, we elicited the representation models of a composite.
Figure 2.3 presents the representation models of a composite. Our results

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 45

revealed that a composite can be represented by seven representation models
according to the needs of each study (first nodes from root), as described in
what follows.

Figure 2.3: Representation Model of Composites

Studies represent composites through different ways. Some studies repre-
sented a composite as a list of refactorings [S04,S38,S127]. This representation
model is very limited because it does not specify if this list may be applied
on single or multiple code element(s). For instance, by using this representa-
tion model, it is possible to represent a composite as a list of all refactorings
applied in a software project. Thus, this kind of representation requires the
specification of constraints to avoid a limited definition.

Table 2.5 presents the primary studies that mention each representation
model. The first column shows the id of the paper according to our artifacts.
The second column presents the representation model that was cited for the
primary studies. The last column indicates the reference number of each
study. We can observe that the majority of the studies consider a composite
as a sequence of refactorings [S30, S32, S69]. This kind of representation, in
which the order is important, is typically used by approaches to recommend
composites. Therefore, for these studies, it is necessary to know the order
of refactorings in a composite for a better recommendation. These studies
mentioned a composite using a Vector [S29,S43,S79], an Array [S11,S33], a
Chain [S46,S68,S126], or a Serie [S23]. However, the composite representation
through sequence can have some limitations in practice. For example, if a
composite considers all refactorings applied in a single commit only, then it is

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 46

not always possible to know the order of each refactoring within the current
commit. Thus, these representations can be used when it is possible to detect
the order of refactorings, such as multiple commits, multiple revisions, or in
real-time (exactly when each refactoring was applied, for instance, in the code
review context).

A composite can be represented as a set of refactorings [S71,S72,S141].
This representation model allows analyzing each refactoring of a composite
as a unique instance of refactoring, independently of refactoring types. For
instance, a composite can have two refactorings Extract Methods, in which each
Extract Method is considered unique (Extract Method1 and Extract Method2).
This representation model is used generally to represent a composite as a set
of refactorings that has the same type only. There are studies that use the
term Composition to indicate that a composite may have more than one
refactoring type [S89, S148]. Some studies are concerned with the order of
the refactorings in their composites, thus, they use a set ordered to represent
composites [S11,S33,S45,S59,S110,S119].

Some pieces of work used multidimensional representation models to
represent a composite. These representations can be Graph [S77,S112,S158],
Matrix [S25], and Tree [S158]. Such studies proposed these representations
because they introduced approaches to generate composites according to a
certain goal. Then, they needed to use these representations because their
approaches suggested one or more refactorings, generating many “paths” of
refactorings. Some studies represented graphs with refactorings as edges, and
nodes as code elements [S59, S112, S125]. These graphs can be directed, in
which the source nodes are the code elements before the refactoring, and the
target nodes are the code elements after the refactoring [S125]. There are
graphs in which each edge represents step by step of the refactoring [S112].
Jensen et al. [S158] represented each state of code elements as a tree, each
state represented how the code elements were after the application of each
refactoring of the composite. Another study [S148] represented a composite
using the Hierarchic Task Network, there is a graph in which each node is a
task, and some tasks are more relevant than others. In that way, the root node
represents the main refactoring of the composite, and other nodes represent
other refactorings that are less relevant for the composite.

Other study [S57] represented a composite through a Grammar, indi-
cating that refactorings of a composite may follow rules of this grammar. For
example, a rule that states some refactoring types may not be applied after the
application of other refactoring types. In that case, Extract Method cannot be
applied after the application of Inline Method on the same method, because

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 47

an inline method cannot be extracted, once this method was removed from
Inline Method.

Summary 1: Composites are usually represented as a sequence
when authors aim to recommend composites. Multidimensional
representations (e.g., graphs and matrix) are generally adopted
when authors aim to generate composites automatically.

Table 2.5: List of Papers that mention Representation Models
Paper ID Representation

Model
Reference

11, 33 Array [S11,S33]
9 Batch [S9]
46, 68, 126 Chain [S46,S68,S126]
15,55,103,123,149 Composite [S15,S55,S103,S123,S149]
89,148 Composition [S89,S148]
59 Decision Three [S59]
57 Grammar [S57]
77,112,125,149,154,158,250,261,280 Graph [PS152, S77, S112, S125, S149,

S154,S158,S250,S261,S280]
4,38,42,119,127,138,155,248 List [S04,S38,S42,S119,S127,S138,

S155,S248]
25 Matrix [S25]
90 Queue [S30]
8,10,11,15,17,30,32,33,39,45,46,49,
53,55,59,62,67,69, 74,75,76,79,86,90,93,99,
101,110,118,123,143,148,266, 273,274,275

Sequence [S8,S10,S11,S15,S17,S30,S32,
S33,S39,S45,S46,S49,S53,S55,
S59,S62,S67,S69,S74–S76,S79,
S86, S90, S93, S99, S101, S110,
S118, S123, S143, S148, S266,
S273–S275]

23 Serie [S23]
2,9,11,15,33,34,45,52,71,72,85,101,110,119,
129,141,247,259,265,276,280 Set [S02,S9,S11,S15,S33,S34,S45,

S52, S71, S72, S85, S94, S101,
S110, S119, S129, S136, S141,
S247,S259,S265,S276,S280]

158, 258 Three [S158,S258]
29,31,33,38,43,60,79,95,99,124,155,248 Vector [S29, S31, S33, S38, S43, S60,

S79,S95,S99,S124,S155,S248]

2.4.3
Characteristics of Composite Refactorings (RQ2)

Figures 2.4 and 2.5 answer our RQ2 about composite characteristics. We
classified the composite characteristics as Application Characteristics and
Structure Characteristics. These classifications are represented as abstract
features of a composite in our conceptual framework. The Application char-
acteristics define how a composite was applied. For example: Who applied it?
Which time the composite was applied? The Structure characteristics specify
the structure of a composite, i.e., how the composite is formed. For instance:
What do refactoring types form a composite? How are refactorings of a com-
posite ordered? A characteristic can have different manifestations. An example

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 48

is the characteristic related to how many commits have a composite. This char-
acteristic can have two manifestations: a single commit only or many commits.
In our conceptual framework, the characteristics are represented as mandatory
features, and their manifestations are represented as alternative features. Ta-
ble 2.6 presents the primary studies that mention each characteristic. The
first column shows the id of the paper according to our artifacts. The second
columns presents the characteristic that was cited for the primary studies. Last
column indicates the reference number of each study.

Figure 2.4: Characteristics related to Composite Application

Figure 2.5: Characteristics related to Composite Structure

The Application group is composed of three composite character-
istics: developer, time and version system, as depicted in Figure 2.4. These
characteristics regard the way, who, and how to apply composites. Thus, these
characteristics say something about the developer practices along with the
composite application. These characteristics have two or more manifestations
described by previous studies. We discussed each characteristic and its respec-
tive manifestations as follows.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 49

Table 2.6: List of Papers that mention Characteristics
Paper ID Characteristics Reference
129 branch [S129]
247, 248,259 completeness [S247,S248,S259]
37, 117, 156 complex [S37,S117,S156]
2, 111, 45, 55, 250, 261 developer [S02,S45,S55,S111,S250,S261]
11,15,19,25,29,30,31,38,43,45,53,55,59,60,
62,67,68,75,76, 79,86,93,95,118,120,123,
124,125,126,127,138,143,146,148,154,158

order [S11, S15, S19, S25, S29–S31,
S38,S43,S45,S53,S55,S59,S60,
S62,S67,S68,S75,S76,S79,S86,
S93,S95,S118,S120,S123–S127,
S138, S143, S146, S148, S154,
S158]

2,10,15,29,34,43,46,50,52,54,55,57,60,62,
66,67,75,76,79,86, 89,89,93,93,95,110,112,
118,124,126,129,137,140,141,148, 149,247,
266,274

scope [S02, S10, S15, S29, S34, S43,
S46,S50,S52,S54,S55,S57,S60,
S62,S66,S67,S75,S76,S79,S86,
S89, S93, S95, S110, S112, S118,
S124, S126, S129, S137, S140,
S141, S148, S149, S247, S266,
S274]

2,11,15,30,32,34,37,47,49,50,60,74,76,79,85,
91,101,103,111, 135,158,247,248,248,250,
266,280

size [S02, S11, S15, S30, S32, S34,
S37,S47,S49,S50,S60,S74,S76,
S79, S85, S91, S101, S103, S111,
S135, S158, S247, S248, S250,
S266,S280]

30,54,111,112,247,261 time [S30, S54, S111, S112, S247,
S261]

2,11,16,25,29,43,49,50,52,54,60,62,66,68,
75,76,79,86,93,110, 111,124,129,131,247,
250,259,273,274,275,280

variety [S02, S11, S16, S25, S29, S43,
S49, S50, S52, S54, S60, S62,
S66,S68,S75,S76,S79,S86,S93,
S110, S111, S124, S129, S131,
S136, S247, S250, S259, S273–
S275,S280]

129, 137 version system [S129,S137]

Developer regards the number of software developers that contribute with
the composite application on a software project. Various studies [PS22,PS11,
PS17] suggested that each composite is applied by only one developer. This
view is quite reasonable when considering that motivations behind refactoring
are often associated with a problem faced by a particular developer [S02].
However, a study [S04] assumed that two or more developers can work together
in order to fully apply a certain composite. This approach works as a response
to cases in which developers join forces to plan and perform a complex
composite.

The way how this characteristic manifests in practice strongly depends
on some organizational aspects. On the one hand, large software projects
have entire development teams allocated to refactor code structures, which
increases the chances of composites being composed and applied by two or more
developers in conjunction. Conversely, small projects may have only a few (or
just one) developers allocated to perform code refactoring. By investigating the
developer characteristic, researchers can better understand how the allocation
of developers to refactor the code may eventually affect the quality of the

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 50

resulting code.
On the Version System characteristic, composite can be applied into a

commit, release, or branch. Commit regards how many commits were per-
formed by developers to apply a composite. A study indicated that a composite
can be completed in one commit [S02]. However, other studies have mentioned
that a composite may take many commits to be completely applied [PS22,S04].
Studies also suggested that there are software companies that need to create
branches or releases only to apply a composite refactoring [S04]. These are
scenarios in which, the software is highly restructured, then developers need
to apply many refactorings that can affect the software behavior [S04]. There-
fore, developers need to apply these refactorings separated from other changes
to facilitate the restructuring of the system to support a future migration of
technology [S52] or a feature addition [S9].

Time regards the time window by developers for applying a composite in
a software project. Only a few studies refer to this composite characteristic, but
still, the authors have varied viewpoints. One particular study assumed that
each refactoring into a composite should be applied in up to 60 seconds after
the previous refactoring [PS11], then the time spent for applying a composite
can be minutes. Other studies [PS22,PS10,S04,PS6] suggested to not constrain
the time so that consecutive refactorings can be applied at any time.

We found out different manifestations of the time characteristic across
the studies. They suggest the time computation by measuring working sec-
onds [S112], minutes [PS11], days [PS10], weeks [S04], or months [S54]. In this
case, the manifestations of this composite characteristic also depend on specific
team or organization practices. It may be the case of developers having too
little time to complete their composites due to high demands for other main-
tenance tasks than code refactoring. Thus, the time span for the composite
application can be shorter than in teams or organizations, in which develop-
ers can spend entire weeks with code refactoring. In summary, we observed a
clear opportunity for future research in order to: (i) identify ways to compute
time in real settings, and (ii) understand the relationship between the resulting
quality of a composite and the time spent on it.

The Structure Group has four composite characteristics: code scope,
variety, size, and order. These characteristics regard internal aspects of the
composite. In other words, these characteristics reflect the internal composite
structure. Three identified characteristics had at least two manifestations
mentioned by previous studies. We provided below a detailed discussion about
each characteristic and its respective manifestations.

Code Scope regards the scope of code elements affected by refactorings

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 51

that constitute a composite. This characteristic is also called of Coverage, a
level of the coverage of a composite is indicated by the number of code el-
ements touched by the composite. Certain studies assume that a composite
is performed on a single method [PS12,PS24] or class [PS3,PS7,PS24]. Con-
versely, other studies such as [PS22,S04] considered that each composite may
affectmultiple code elements together. Certain limitations may emerge depend-
ing on the scope of code elements considered for computing a composite. For
instance, by assuming that composites are constituted by refactorings exclu-
sively applied to methods, the refactorings at attribute and class levels, such as
Pull Up Attribute and Extract Class, are overlooked. Thus, the understanding
of how composites affect the code structure of a software project is limited
to the method scope only. Even though our work focuses on refactoring at
the code level, composite refactorings may realize changes that end up be-
ing relevant to the level of Software Architecture or/and Software Design. For
supporting these major changes, composite refactorings are often applied on
packages [S75, S76, S86], interfaces [S43, S67], and components [S67]. In this
context, we observe that composite refactorings are often applied while adding
or altering design patterns [S122,S158]. The combinations of refactorings such
as Extract Interfaces and Extract Classes can help to separate concerns and
include design patterns such as Strategy and Factory Methods [S122,S158].

Complex is a characteristic because studies suggested that composites
have different levels of “complexity”. These complexity levels can change
according to the “number of refactorings”, “number of refactoring types” or
“number of affected code elements” of each composite. This complexity of
composites can help us to measure the effort to apply each composite. On the
recommendation of composites, it is possible to evaluate composites that have
high complexity and a non-effective result, they may not be recommended, for
example.

Variety regards the diversity of refactoring types applied along with a
composite. Some studies [PS11, PS16, PS26] considered the number of occur-
rences by refactoring type as a means to differentiate composites. Other studies
discuss the so-called refactoring patterns, i.e., the varied combinations of differ-
ent refactoring types in order to compose a composite [PS12,PS24,PS20,PS17].
The variety of refactoring types within a composite depends on the assumed
scope of composites. In fact, if composites strictly affect methods, all refac-
torings at attribute and class levels could be ignored in the composition. We
highlighted that the approach used by a specific study [PS11] considers only
refactorings of the same type. In this case, certain composites suggested by
previous pieces of work [PS12,PS20,PS16,PS17], which combine refactorings

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 52

at different levels to remove code smells, would be ignored. Future work could
empirically validate if the variation of types has different effects on code main-
tenance.

Size regards the extension of a composite applied to the code structure.
Previous studies used different approaches for measuring the composite size.
Many studies [PS11,PS10,PS24,PS20,PS7,PS9,PS13,PS16,PS28] rely on the
number of refactorings that constitute a composite. Other studies like [PS12,
S02] count how many code elements are modified by the refactorings that
constitute the composite. These studies do not present empirical evidence
about the common size of composites in practice. Besides, only one study has
speculated an upper limit to the composite size [PS17]. However, we understand
that the lack of consensus about which code elements are usually affected by
composites (see Code Scope) makes it hard to compute the size of composites.

Completeness is related to achieve some goal fully. For example, a
composite can be complete to remove a specific code smell, i.e, this composite
is able to remove this code smell fully. In another hand, some composites can be
incomplete to remove other code smell, i.e, this composite did not remove this
code smell. Composites can also have a “completeness” in relation to internal
or external quality attributes improvement, the removal of a bug, and others.
This characteristic can help us to reveal and evaluate what refactorings are
necessary “to complete” a composite to achieve a specific goal. Studies revealed
in the practice that composites are frequently incomplete (did not fully remove)
to remove code smells [S02, S247]. However, the literature is limited to know
what are the most common composites that are incomplete, and what code
smell types are not removed fully in practice. This knowledge is necessary to
guide developers about how to complete composites aiming at the full removal
of code smells.

Order regards how the refactorings are organized in a composite. Previ-
ous studies considered composites as two or more refactorings whose order does
matter to distinguish one composite from another [PS12,PS20,PS3,PS27]. Cer-
tain studies indicated that refactorings within a composite are ordered. These
studies referred to composites as chains [PS5], ordered lists [PS12,PS22,PS23],
and ordered sets of refactoring [PS2, PS5, PS17, PS19]. The refactoring order
can be influenced by the developer’s motivation behind the application of a
composite. For instance, applying an Extract Method before a Move Method
can be used to remove a Feature Envy smell [25]. The application of these
refactorings in the reverse order would not remove such a smell. Other studies
like [S04] considered that the refactoring order within a composite does not
matter. These studies that do not consider the order to composite computation

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 53

suggest that this approach facilitates the computation of applying composites
from software projects that use platforms of version control such as GitHub.
In fact, project version data provided by platforms like GitHub are commit-
focused and provide little or no data about what happens within a commit.
Thus, it is quite hard to precisely characterize the order of refactorings within
a commit.

Summary 2: Composites can have nine characteristics, and these
characteristics can be related to the application and the structure
of a composite, and they can have different manifestations.

2.4.4
Composite Effect on Software Projects (RQ3)

Figure 2.6 presents the answers of RQ3. We have found 13 effect types of
a composite (last nodes from root) reported by the literature. Studies reported
composites can affect Internal Quality Attributes, External Quality Attributes,
Design Pattern Introduction, and Effort Minimization. Table 2.7 presents the
primary studies that mention each effect. The first column shows the ID of
paper according to our artifacts. The second column presents the effect that
was cited for the primary studies. The last column indicates the reference
number of each study.

Figure 2.6: Effect Types of a Composite

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 54

Table 2.7: List of Papers that mention Effect
Paper ID Effect Reference
137 Bug Introduction [S137]
2,9,247,250,259,274 Code Smell Not Removal [S02,S9,S247,S250,S259,S274]
2,8,9,23,30,31,32,33,42,45,
53,54,62,66,67,75,79,86,90,93,95,
110,115,118,122, 127,129,150,247,
248,258,259,265,266, 273,276

Code Smell Removal [S02, S8,S9, S23, S30–S33,S42,
S45,S53,S54,S62,S66,S67,S75,
S79, S86, S90, S93, S95, S110,
S115, S118, S122, S127, S129,
S150, S247, S248, S258, S259,
S265,S266,S273,S276]

122,158 Design Pattern Introduction [S122,S158]
122 Design Problem Removal [S122]
8,33,49,118,138,146,248,258 Effort Minimization [S8, S33, S49, S118, S138, S146,

S248,S258]
8, 38, 248 Expected Code Similarity

Maximization
[S8,S38,S145,S248]

8,11,23,30,32,39,42,49,50,52,62,
69,75,76,96,115, 117,122,125,126,
129,135,155,156,261,273,274

External Quality Attributes
Improvement

[S8,S11,S22,S23,S30,S32,S39,
S42,S49,S50,S52,S62,S69,S75,
S76,S96,S115,S117,S122,S125,
S126, S129, S135, S155, S156,
S261,S273,S274]

9 Internal Quality Degradation [S9]
15,34 Internal Quality Improvement [S15,S34]
8 Internal Quality Attributes

Degradation
[S8]

8,10,25,29,32,37,42,43,49,52,54,
55,57,60,66,67,68,71,74,75,76,
81,91,93,99,103,146,147,156,158,
261,273,274,276

Internal Quality Attributes
Improvement

[S8, S10, S25, S29, S32, S37,
S42,S43,S49,S52,S54,S55,S57,
S60, S63, S66–S68, S71, S74–
S76, S81, S91, S93, S99, S103,
S146, S147, S156, S158, S261,
S273,S274,S276]

52 Legacy System Evolution Im-
provement

[S52]

96, 133,275 Non-Functional Requirements
Improvement

[S96,S133,S275]

72,59,123,266 Poor Code Structure Improve-
ment

[S02,S59,S123,S266]

60,68,86,93,99,118,126,151,158,266External Quality Improvement [S60, S68, S86, S93, S99, S118,
S126,S151,S158,S266]

9,10,11,25,34,37,39,53,62,66,76,
86,99,110,140 Software Metrics Improvement [S9–S11,S25,S34,S37,S39,S53,

S62, S66, S76, S86, S99, S110,
S140,S145]

32, 119, 248 Software Quality Degradation [S32,S119,S248]
8,32,33,45,45,59,131,155,265 Software Quality Improvement [S8, S32, S33, S45, S45, S59,

S131,S155,S265]

For Internal Quality Attributes, previous pieces of work mentioned com-
posites can have a positive effect such as the Internal Quality Attributes Im-
provement, Expected Code Similarity Maximization, Poor Code Structure Im-
provement, and Software Metrics Improvement. Internal Quality Improvement
regards the possible effects of composites on the internal code structures.
Some studies [S8, S10] assumed that applying composites can positively af-
fect the code elements that constitute a project, thereby improving software
metrics such as code size and code coupling, which can be indicators of a
maintainability improvement [10]. This assumption is quite expected due to
the traditional expectation that single code refactoring can affect the indica-
tors of code maintainability as well. Such improvement can be assessed by

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 55

means of code metrics [PS22, S04, PS23, PS7, PS16] or special indicators of
poor code structures, like code smells [PS12,PS3,PS16,PS26,PS27]. Certain
studies assumed composites can remove code smells, even without empirical
evidence [PS12,PS3,PS16,PS27]. In fact, an existing study observed that sin-
gle refactorings [8] can remove certain types of code smells. However, other
studies [S02,PS11] reported that most of the refactorings are applied in com-
posites. Thus, the effect that was observed for single refactorings can be dif-
ferent from the effect observed from the composite perspective. Other pieces
of work mentioned composites can have a negative effect such as the Inter-
nal Quality Attributes Degradation, and Code Smell Not Removal [S02,S247].
Internal Quality Degradation regards how composites may negatively affect
the internal code structure of software projects. Previous studies [PS12,PS9]
discussed that composites may negatively affect certain parts of the code struc-
ture, especially in terms of basic code metrics. Code smell not removal regards
the negative effect of composites on the code structure of software projects. In
fact, one study [PS12] warned that an undisciplined application of composite
refactoring might degrade the internal code structure of a project, especially
by introducing code smells.

On External Quality Attributes, studies also mentioned composites can
affect positively these attributes [PS20, S27]. These effects can have a Non-
Functional Requirements Improvement, an External Quality Attributes Im-
provement, a Design Problem Removal or a Legacy System Evolution Improve-
ment. External Quality Improvement regards the effect that composites may
have on external attributes of software projects, such as evolvability. We found
out a considerable number of studies that assumed that composites can lever-
age the project evolvability, for example, composites can help a feature ad-
dition or a migration to new technology [PS12, S04, PS26]; and correctness
(e.g., composites can help the bug removal or the correction of syntax er-
rors) [PS22,PS23]. Refactorings that constitute a composite directly affect the
code structure and, therefore, it is expected an internal quality improvement
of software projects. However, studies assumed that each refactoring can also
affect external quality attributes such as correctness through refactorings that
aim to prevent code elements from becoming buggy in the future [S27, S137].
Thus, it is reasonable that some authors assumed an external effect of compos-
ites. Studies suggest composites can introduce bugs (Bug Introduction), but
these studies do not report empirical evidence about it [S27,S137].

Some studies [S122,S158] indicated that composites can help to introduce
Design Patterns because some patterns, e.g., Abstract Factory and Adapter,
need to restructure many classes involving the motion of methods, and code

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 56

extractions, to facilitate the separation of concerns and creation of hierarchies.
However, these studies are limited to explore which composites are applied
frequently to introduce Design Patterns and to recommend composites for
Design Pattern introduction.

Effort Minimization. Previous pieces of work [S115,S118] expected that
composites can minimize the effort of developers in terms of time and costs
of development. By definition of refactoring, it is expected that refactoring
can minimize the effort of development, but it depends on many factors,
for example, the complexity and number of refactorings that were applied,
the number of code elements that needed to be modified by refactorings.
Other studies [S04,S46] also indicated that composites can increase the effort
of development, forcing developers to create separated branches only for
refactoring. Interesting future research about it could be to investigate what
are the scenarios of development that composites can minimize or increase the
effort, and what composite types can be recommended to minimize the effort
of development according to each scenario. On the Legacy System Evolution
Improvement, some studies suggested that composites can help the evolution
of legacy systems, this evolution can be a migration to a new technology or an
adaption for a new system environment [S52].

Summary 3: Studies suggested that composites can affect the
internal and external software quality positively and negatively,
but they also can help to introduce Design Patterns. However,
existing studies are limited to understand these effect types
empirically because they did not investigate these effect types
in-depth.

2.4.5
Conflicting Composite Characteristics and Types of Effect

We found out some cases of conflict among studies with respect to the
characteristics and effect types of a composite. These conflicts are interesting
to reveal opportunities for future studies to improve the current knowledge
about composites. We discuss below each of these cases. The conflicts regarding
characteristics and effects are referred to, respectively, as C-n and E-n, where
n is the conflict number.

Conflict C-1: Scope of a composite: one code element or several
code elements? The current knowledge about what code elements are
affected by a composite refactoring is ultimately conflicting. Some studies
considered that the refactorings constituting a composite should be constrained

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 57

to the same code element, e.g., a method or a class [PS12, PS24, PS3, PS7].
Conversely, other studies assumed that a composite refactoring can affect
multiple classes [PS22, S04]. Each study adopted a different manifestation of
the scope characteristic because it could facilitate their study goals. However,
these studies did not explain why they did not use other manifestations. There
is a need for a proper understanding of what boundaries determine the code
elements affected by composite refactoring. Otherwise, it is hard to elaborate
or choose a heuristic to identify existing composites in a software project.

Conflict C-2: Who is responsible for applying a composite
refactoring? There is also a conflict on the current knowledge about who
is usually responsible for applying the refactorings that constitute a composite
refactoring. Some studies assumed that a composite refactoring is usually
applied by a single developer [PS22, PS11, PS17]. However, another study
assumed that a composite refactoring can be started by one developer and
complemented by other developers [S04]. We found out that each study
used different manifestations of the developer characteristic to facilitate the
investigations of their study goals. For instance, Kim et al. [S04] investigated
the refactoring practices of a single team of developers in a specific software
company. Murphy-Hill et al. [PS11] considered composites that were applied
in a specific time span using the Eclipse IDE6. This work only took into
consideration the composites applied by a single developer. Bibiano et al. [S02]
investigated composites as a set of interrelated refactorings performed by a
single developer. In summary, there is a lack of consensus about how many
developers are responsible for applying composite refactoring. This lack of
consensus makes it difficult to identify composites in existing projects.

Conflict C-3: How long is a composite applied? We also identified
a conflict regarding the time spent by developers to apply a composite refac-
toring. For convenience, one study assumed that two subsequent refactorings
that form a composite refactoring should be applied in up to 60 seconds one
from another [PS11]. One might question whether this conservative thresh-
old is reasonable. For instance, this study unlikely captured composites that
last for more than an hour, as a developer often has to intertwine refactoring
edits with his other routine activities. Conversely, other studies did not con-
strain the time spent to apply these refactorings, thereby making it possible
to compute composite refactorings that last days, weeks, and even months to
be completed [PS22, PS10, S04, PS6]. In these cases, the lack of a threshold
may lead one to the consideration of non-cohesive composites. Examples of it
are cases where two groups of interrelated refactorings, because they affected

6IDE - Integrated Development Environment

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 58

the same program element. However, the time separating the two commits is
higher than one year, once each group of refactorings took place. If there is no
time-related constraint, one would consider these two groups of refactorings as
a composite. In any case, existing studies lack empirical evidence about how
long should the application of a composite refactoring last in practice. Thus,
there is insufficient information to constrain the set of refactorings that con-
stitute a composite refactoring. Consequently, it makes it difficult to identify
“cohesive” composites applied to existing projects.

Conflict C-4: Is a composite constituted by a single or various
refactoring types? We observed some conflicts in the way previous studies
consider the variety of refactoring types that may constitute a composite
refactoring. Some papers suggested that multiple refactoring types can co-
occur into a composite refactoring [PS24, PS16, PS17]. Conversely, another
study assumed that the refactorings that constitute a composite refactoring
should have a single type [PS26]. This conflict can affect the analysis of the
effect of composites in a program. If a heuristic is used in an empirical study
to detect only composites with a single refactoring type, the conclusions will
be constrained to only these composite types. Composites of this kind might
be not effective to remove various types of structural problems in the source
code.

We also found out cases of conflict among studies with respect to the
expected effect of composites on software projects. They were labeled as E-n,
where n is the conflict number. We discuss these cases as follows.

Conflict E-1: Do composites make a software project easier to
maintain? Some studies assume that composites can effectively improve the
maintainability of software projects [PS12,S04,PS26]. They mainly expect an
internal code structure improvement through the removal of code smells [PS12].
On the other hand, one study [S02] indicates composites frequently can
either introduce or end up not removing code smells. In order to better
support developers in applying composites that are effective in making the
code easier to maintain, future work should empirically investigate these
positive and negative types of composite effects in-depth. In fact, the study
of Meananeatra [PS12] suggested that certain forms of composites can remove
code smells, thereby improving the program maintainability. However, Sousa
et al. [S247] reported that composites often have a negative effect on code smell
removal. Thus, the current knowledge is limited and conflicting.

Conflict E-2: Are composites more likely to improve internal
code structures rather than degrade these structures? We found out
studies, such as [S04, PS16, PS26], that point out composites as means for

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 59

improving the internal quality of software projects. Conversely, a particular
study [PS9] discussed that undisciplined composite application can lead to
the degradation of code structures. Similarly to Conflict E-1, we expect that
future work can address this particular issue in order to draw more assertive
conclusions about the composite effect on the internal quality of software
projects.

Conflict E-3: What is the actual composite effect at the ar-
chitectural level? Some studies [PS7,PS13,PS20] assumed that composites
likely affect negatively the current architecture of software projects. These stud-
ies suggested that composites can increase the coupling between modules of
software architecture. On the other hand, a particular paper [PS14] proposed
that composites can be applied to improve the software architecture by improv-
ing the cohesion and the coupling of the software’s components. Thus, there
is a lack of consensus on how composites affect the architecture of software
projects.

2.5
Related Work

The topic of software refactoring has been receiving attention from
academia and industry for the past two decades. Due to this wide interest,
we can find many surveys, systematic reviews, and mapping studies taking
into account the topic of refactoring from different points of view. For instance,
refactoring of sequential code to parallel computing [264], refactoring of system
variants to systematize software reuse [265], and UML model refactoring [266,
267]. In addition to different topics, there are also secondary studies focusing
different characteristics, such as industrial perspectives of refactoring [280],
refactoring tools [268], software refactoring in the context of modern code
review [269], refactoring in continuous integration [270], methods to automate
the software refactoring process [271], and search-based techniques to support
software refactoring [272,273].

We can still find more secondary studies since from 2004 investigating
the advances in the broad research topic of refactoring [274–279]. The majority
of these and the aforementioned studies has appeared in the past five years.
Taking into account the existence of many secondary studies, Lacerda et
al. [251] presented a tertiary systematic review describing challenges and
observations of refactoring and code smells. Among all these studies, next
we described those more related to our work, pointing out the main differences
and the gaps filled by our contribution.

The seminal work of Opdyke defined 23 refactoring types and presented

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 60

only three examples of composite refactoring, composed of those primitive
refactorings [263]. These composite refatorings usually deal with macro or
architectural design changes [251]. Mens and Tourwe highlighted it is useful
to determine a sequence in which refactorings have to be applied and which
refactorings are mutually independent [274]. Two secondary studies only
touched the topic of composite refactorings by mentioning the OBEY, an
Eclipse plug-in that executes composites plan on Java source code, analyzing
their impact on cohesion and coupling quality attributes [277, 279]. Another
tool is Refactoring Scheduler that identifies refactoring sequences to maximize
software quality and remove software clones [279].

Two studies mapped the literature on search-based software refactor-
ing [272,273]. They mentioned how genetic algorithms, genetic programming,
and multi-objective algorithms are used to find and optimize sequences of refac-
torings to defects or bad smells. Curiously, some secondary studies on software
refactoring simple discard from their analysis the pieces of work based on
refactoring sequences [267, 277]. On the other hand, a paper from Sharma et
al. described challenges to and solutions for refactoring adoption in industrial
settings [280]. On the topic of composite refactorings, they pointed out that
tools mostly rely on supporting primitive refactorings. These authors also in-
dicated that IDEs and their extensions need to support non-trivial composite
refactorings to encourage refactoring adoption in practice.

In summary, only few systematic mappings, literature reviews, or surveys
explicitly described the nature of composite refactorings. Furthermore, when
they mentioned composites, they only briefly provide information or rely on
very specific characteristics. Our study provides a comprehensive analysis of
composite refactorings, also describing and organizing the existing literature.
We performed an in-depth investigation of composites from the perspectives of
representation models, their characteristics, and their possible effects. We pro-
vided more than a summary of current state-of-art. Our study contributes with
a conceptual framework of composite refactoring derived from the literature
knowledge.

Our results can help practitioners and researchers on further developing
the topic by deciding what representation model is appropriate according
to their composite refactoring approaches. Certain representations are more
advantageous than others, depending on the goal of the composite refactoring
approach being formulated. For instance, certain types of representations,
albeit more complex, are more useful in situations where the order of each
refactoring in a composite is important.

Our conceptual framework reveals characteristics and manifestations of

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 61

composite refactoring. These characteristics and manifestations can be used on
the design of tools, such as recommendation systems for composite refactoring.
Examples of characteristics that may be used in the decision making of tool
designs are time and variety. For instance, tools can recommend a composite
formed by one refactoring type (e.g., repetitive renames) or many refactoring
types (e.g. extracting and moving methods). These recommendations can be
offered before each commit, pull request or at the end of the day. We also
revealed the possible effects of composites and how existing studies have
conflicting views about such effects. These conflicts can further motivate
researchers to replicate studies by examining these contractions in more depth.

2.6
Threats to Validity

We discuss threats to the study validity [70] as follows.
Construct Validity. We carefully defined our study protocol prior to

the conduction of the systematic mapping. We defined the study goal and
research questions according to the Goal Question Metric framework [1]. Thus,
we expected to minimize the chances of changing the focus of our study while
it was performed and the systematic mapping data were analyzed.

Internal Validity. All data collection procedures were performed by
a pair of authors in order to mitigate problems with missing, duplicated,
and invalid data. These procedures include running our search string in the
web search engines, for instance. Similarly, we paired two authors in order
to tabulate the data so that we could easily perform the Grounded Theory
(GT) procedures of open and axial coding [13]. By strictly following the
GT procedures, we expected to reduce problems with the identification of
representation models, composite characteristics, and types of effect from the
selected papers through systematic mapping. We did not conduct a quality
assessment of the studies found, but to ensure the relevance of our results, we
only included papers that were published at venues that are widely recognized
for publishing high-quality software engineering research.

Conclusion Validity. We carefully analyzed all tabulated data in order
to (i) aggregate the representation models, composite characteristics, and types
of effect extracted from the literature in our conceptual framework, and (ii)
validate all analyzed data in a pair. Thus, we expected to minimize biases
in the identification of characteristics and types of effect, but especially in the
characterization of conflicts among previous studies. In this particular case, we
promoted meetings to discuss which characteristics and effects are conflicting
and deserved explicit consideration.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 2. Composite Refactoring: Representations, Characteristics and Effects
on Software Projects 62

External Validity. We performed two rounds of pilot search, aiming to
improve the search string and the control dataset. We included the Scopus,
a search tool largely recommended performing systematic mapping [170], and
followed the existing guidelines for systematic mapping [36,167].

2.7
Conclusion and Future Work

We summarized the current knowledge on composites for (i) identifying
representations of composites, (ii) eliciting the characteristics that previous
studies consider as constitutive of a composite refactoring, (iii) eliciting the
types of composite effect on software projects as assumed by previous stud-
ies, and (iv) identifying eventual conflicts in the literature about composite
characteristics and types of effect. Our conceptual framework presents seven
representations, nine characteristics, and thirty effects of composites. Our re-
sults can motivate future studies to investigate in-depth about application of
composite refactorings. We aim to add constraints between the characteristics
and effects of our conceptual framework.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

3
How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes?

This chapter contains a paper published in
the Proceedings of the 28th International Conference on Program Comprehension

(ICPC) [76].

In the previous chapter (Chapter 2), we conceptualized composite refac-
toring through our systematic mapping. In our conceptual model, we indicated
characteristics and effects of composite refactorings according to the literature.
Completeness is one of the interesting characteristics of composite refactorings.
Some studies [171, 222] indicate that the notion of completeness can help one
to reveal what refactorings are needed “to complete” a composite to achieve a
specific structural goal. However, existing studies assume that composites often
completely remove code smells even without empirical evidence [28,37,43,44].
On the other hand, other studies indicate that certain composites may be in-
complete to eliminate code smells [43, 47]. These contradicting views call for
empirical studies about the (in)completeness of composite refactorings.

Aiming to mitigate this literature gap and address our RQ2 (Sec-
tion 1.3.1), we performed two empirical studies reported in this chapter and in
the next one. In this chapter, specifically, we focused on analyzing incomplete
composite refactorings. The next sections are the content of a published pa-
per [76]. Sections 3.1 and 3.2 can have repetitive content, thus these sections
can be ignored.

3.1
Introduction

Code refactoring [25] is one of the most popular techniques to improve
the internal code structure and, consequently, the comprehensibility of a
program [25, 199]. Each single refactoring is an instance of a refactoring
type. Each type determines the changes required to produce an expected
enhancement of a certain code structure [25]. Examples of popular refactoring
types include Extract Method and Move Method [46, 60]. Like other types,
they are expected to contribute to fully remove poor code structures [8, 143],
such as code smells [197,198].

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 64

However, given its fine-grained nature, a single refactoring rarely suffices
to assist developers in achieving their intents, e.g. to fully remove a poor
code structure [8,143] such as code smells [197,198]. The removal of some code
smells are considered highly relevant by developers and practitioners. This is
the case of God Class and Feature Envy [35, 60, 62, 73] smells as they have a
wide, harmful impact in the program structure; both affect two or more classes.

Notwithstanding, previous studies have reported that single refactorings
often do not remove or even introduce these code smells [4, 8]. Nevertheless,
they provide little or no insight on a wider and more complex phenomenon
called composite refactoring [12, 143, 171]. Composite refactoring occurs when
two or more interrelated single refactorings are applied on one or multiple
code elements [20, 143, 167, 171, 226]. This phenomenon happens frequently in
software projects [46, 143], and each set of interrelated single refactorings is
called a composite.

Previous studies recommend specific patterns of composites to remove
certain code smells [25,143]. For example, Fowler recommends the application
of various Move Methods together to fully remove a God Class. However,
empirical studies report that developers often fall short in fully removing those
code smells through composites. Indeed, most composites either introduce
or not fully remove code smell instances [143]. This can be related to the
fact that developers often apply composites alongside other code changes [19,
46], and frequently these composites are applied to perform development
activities that do not purely affect the code structure, e.g a feature addition.
Besides that, developers may not be applying the recommended composites
to remove the code smells. The literature suggests that developers fail in
removing code smells because some of the recommended refactorings are
missing within the composites [8, 143]. The lack of one or more refactorings
in a composite, to remove a particular smell type, constitutes an incomplete
composite refactoring (shortly called incomplete composite). It is expected that
incomplete composites can gradually improve the internal structure quality,
improving also the program comprehension.

The existing refactoring tools offer little help in assisting the completion
of incomplete composites by providing the refactorings needed to fully remove
remaining code smells [39, 44, 64, 201]. Designing tools for providing such
assistance requires proper empirical investigation. This investigation includes
characterizing the most frequent types of incomplete composites applied to real
programs. It also includes understanding how incomplete composites gradually
affect the internal quality attributes when compared to code smells. The
internal quality attributes are often used to detect problematic microstructures

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 65

of source code, which are known to harm program comprehensibility [10,168].
For example, increasing code complexity is highly related to low program
comprehensibility. However, previous studies on composites in real projects
did not investigate the effect of incomplete composites on internal quality
attributes [143,172].

Based on these limitations, this paper presents a quantitative study
aimed at addressing the aforementioned literature gap. Our goal is to under-
stand the most common incomplete composites and how incomplete composite
refactoring affects internal quality attributes. We selected five software projects
of different domains and targeted 34 popular refactoring types [46,60]. We then
collected 353 (47%) incomplete composites for Feature Envy removal or God
Class removal. We then computed the frequency of incomplete composites ac-
cording to the refactoring types constituting each composite. We evaluated
the effect of those incomplete composites on 11 code metrics that are used to
capture four internal quality attributes [10]. Hereafter we present our main
findings and an overview of possible implications:

1. Composites often affect the structure of two or more classes; most of the
incomplete composites with such a wide scope (82%) are composed of multiple
refactoring types. This observation contradicts findings from recent studies
[143,172], which analyzed a much smaller set of refactoring types than the one
considered in our study. Given the type heterogeneity and the wide scope of the
aforementioned composites, one could expect they would often have a positive
effect on multiple internal attributes, including the cohesion and coupling of
the affected classes. However, this scenario was often not the case possibly
because such heterogeneous composites are hard to apply properly.

2. Incomplete composites with at least one Extract Method often (71%)
and without Move Methods are often the reason why Feature Envies and
God Classes are not resolved. These results may indicate that the classes
affected by such incomplete refactorings are likely still hard to comprehend
as the key underlying problem (i.e., lack of separation of concerns) remains.
In fact, we observed that most of these cases did not result in coupling and
cohesion improvement. This implies that automated refactoring tools could
be extended to identify opportunities for recommending the completion of
otherwise harmful incomplete composites.

3. Most incomplete composites (58%) tend to not change the internal
quality attributes on smelly classes. In a way, one could consider this fact prob-
lematic. However, this finding reveals that despite the incomplete composites
not fully removing code smells, they maintain the structural internal quality
of the affected classes. At least, the incomplete nature of composites has possi-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 66

bly not harmed even further the program comprehensibility and other related
quality attributes. This observation suggests that certain developers may be
keen to maintain the structural quality of their programs through refactoring,
even when they do not have the explicit intent of doing so. Thus, they might
also be open to receive additional refactoring recommendations to help them
improve the program structure even further, while achieving their primary
goals. Recommender systems could be designed, then, to assist developers in
“completing” their composite refactorings, while also favoring the achievement
of their other goals.

3.2
Background

This section presents the main concepts for this study. Program refac-
toring is the process of performing changes that aim to improve the internal
code structure of a program [25]. The literature presents catalogs of refactoring
types [25], and an example of one refactoring type is Extract Method, which is
when a part of the source code is extracted from an existing method to a new
method.

3.2.1
Composite Refactoring (or Composite)

In the context of this work, a composite refactoring (or shortly, a
composite) consists of two or more interrelated single refactorings applied by
the same developer to one or more code elements. In fact, Bibiano et. al. [143]
have shown that interrelated single refactorings usually are applied by the same
developer [143]. The literature presents some heuristics to identify composites.
A recent study proposed a range-based heuristic, in order to detect each
composite formed by single refactorings that are structurally interrelated [171].
It groups single refactorings that have the following characteristics: i) at least
one code element was affected by all refactorings in the composite, and; ii)
they were applied by the same software developer, and relies on the fact that
composite refactorings often have those two characteristics [143]. This heuristic
is different from the element-based heuristic proposed by another previous
study [143]. The range-based heuristic captures the source and target classes
to which the single refactorings were applied in the composites. However,
the element-based heuristic limits its scope to the source class only. The range-
based heuristic was designed according to developers’ practices, as a previous
study [172] has shown that composites are often applied to multiple classes.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 67

3.2.2
Incomplete Composite Refactoring: A Smell Removal Perspective

Recommended Composite Refactoring for Code Smell Removal.
The literature recommends the application of certain composites to remove
specific code smell types [25, 143]. Fowler [25] recommended composites for
code smells such as Feature Envy and God Class. Also, Bibiano et al. [143] have
presented recommendations of composites for those code smells, observing that
Fowler‘s suggestions are not usually applied. They also found that developers
often combine the recommended refactoring types with other refactoring types
in composites to remove code smells. For example, to remove Feature Envy,
developers combined Extract Method, Move Method and Move Attribute.

Incomplete Composite Refactoring for Code Smell Removal.
Bibiano et al. [143] observed that composites often failed to remove code smells,
especially Feature Envy and God Class. This is expected because these code
smells are regularly in classes in which other code changes happen frequently,
such as a feature addition [73,261,262], thus, making the removal of the code
smell more challenging. We call incomplete composite refactorings (or shortly
incomplete composites), composites that contain at least one recommended
refactoring type that is used to remove a particular code smell, but failed to
remove that code smell after its application. For example, Fowler recommended
composites consisting of Extract Methods andMove Methods to remove Feature
Envy [25]. In that case, a composite is an incomplete composite if: (i) the
composite has at least one refactoring type is recommended to remove Feature
Envy [25,143] (at least one Extract Method or one Move Method), and (ii) the
composite did not remove the Feature Envy.

3.2.3
Motivating Example

This section describes an example of an incomplete composite for Fea-
ture Envy removal in a real software project. Figure 3.1 presents an incom-
plete composite that was applied in the commit 66fbd3202a [187] from the
Dubbo project. In this commit, the ServiceConfig class has an envious
method called getExportedUrl. This method calls several times methods of
the AbstractInterfaceConfig and the ReferenceConfig classes. Possibly
aiming to solve this, the developer applied a Move Attribute, moving the url
attribute to the ReferenceConfig class. Then, the developer moved the en-
vious getExportedUrl method to the AbstractInterfaceConfig class. How-
ever, the getExportedUrl method continues envious, because this method has
several calls to the ReferenceConfig class.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 68

The developer applied a composite refactoring composed of one Move
Attribute, and one Move Method. This composite was applied to a class
that has an envious method (the getExportedUrl method). However, this
composite did not remove the Feature Envy code smell completely, because
this method continues to have calls to ReferenceConfig. Previous studies
presented recommendations of composites to remove this code smell [8,25,143].

This composite from the Dubbo project is an incomplete composite
refactoring for this case of Feature Envy removal, because this composite
has at least one recommended refactoring type to remove this code smell
(the Move Method refactoring type by Fowler’s recommendation) [25], and
yet this composite did not entirely remove the code smell (see Section 3.2.2).
The developer could have “completed” this composite applying more Extract
Methods and Move Methods on the getExportedUrl method.

Through this example, we observed the existing limitations on the effect
of incomplete composites on the internal structure quality. A recent study on
the effect of composites was limited on evaluating the effect of this example
on the internal structure quality, because they only observed the effect on
the code smell removal [143]. This study would also have concluded that this
composite does not remove the code smell, however, this incomplete composite
has affected some code metrics that capture one or more internal quality
attributes, independently if the code smell was not removed. For example, the
number of lines of code in the ServiceConfig has decreased, improving the
coupling and cohesion of this class. The code metrics related to the cohesion
and coupling in the ReferenceConfig and ServiceConfig are not changed
significantly. Thus, the incomplete composite remains the internal structure
quality of the ReferenceConfig and ServiceConfig classes. This can be
considered a positive result on the effect of this incomplete composite because
regardless the non-removal of the Feature Envy, the incomplete composite does
not worsen the internal quality attributes of the classes.

This example motivates that existing studies offer a limited knowledge
on the effect of incomplete composites on internal quality attributes.The
existing refactoring tools provide little help in assisting the completion of
incomplete composites by providing those refactorings needed to fully remove
remaining code smells [39, 44, 64, 201]. Designing tools for providing such
assistance still requires further empirical investigation. This investigation
includes characterizing the most frequent types of incomplete composites
applied to real programs. More importantly, it includes understanding as to
how incomplete composites gradually affect the internal quality attributes
when compared to code smells. Although there are several works that study

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 69

code smells [174–176,178,195,196,202], which are intrinsically based on these
internal attributes, they do not address the association of such smells and
attributes with incomplete refactoring.

Figure 3.1: Incomplete Composite for Feature Envy Removal

3.3
Study Settings

This section summarizes our empirical study settings as follows. Our
companion research website provides the study artifacts for the complementary
information [224].

3.3.1
Goal and Research Questions

Our study goal is based on the GQM methodology [1] to analyze incom-
plete composite refactorings applied to software projects by their developers;
for the purpose of revealing the effect of incomplete composites on internal
quality attributes; with respect to i) the most common compositions of single
refactorings that constitute each incomplete composite instance, and ii) how
frequently incomplete composites either improve, do not affect, or worsen each
internal quality attribute; in the context of the life cycle of five Java open
source software projects with active code refactoring practices. We carefully
designed two Research Questions (RQs) aimed at achieving our study goal.

RQ1: What are the most common incomplete composites applied in
real programs? The literature reports that many types of composites can
support the removal of the same particular smell type [8, 25, 143]. However,
the literature related to the characterization of incomplete composites is

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 70

scarce (Section 3.2). Thus, one needs to investigate and characterize recurring
incomplete composites which, albeit they may often fail to remove a certain
smell type, have the potential to remove it if complemented with other single
refactorings. By doing so, we can understand how varied and frequent the
manifestation of incomplete composites is in practice. Along with this, we also
expect to reveal, even if partially, the required support for the completion of
these composites, thus enabling the complete removal of the targeted smells.
The results of this RQ may reveal common practices of composite refactoring
that are likely to: (i) hamper full smell removals, or (ii) gradually improve the
internal structural quality.

RQ2: How does incomplete composite refactoring affect internal quality
attributes? Most strategies for detecting code smells rely on the combination
of code metrics [16], which capture the current state of various internal quality
attributes. Thus, the degradation of these values may imply a degradation
in the code’s quality itself. Some early studies [4, 8] have already attempted
to understand the effect of refactorings on code smells. However, due to the
fine-grained code change caused by each single refactoring, it was expected
that single refactorings rarely suffice to fully remove code smells [4]. Certain
smell types, e.g. God Class, are too coarse-grained to be removed with a single
refactoring, e.g., Extract Method. Surprisingly, a recent study [143] shows that,
much like single refactorings, composite refactorings also rarely remove their
targeted code smells.

Therefore, recent studies [10,168] shifted from code smells to a more fine-
grained perspective: internal quality attributes. These studies concluded that,
although single refactorings rarely remove code smells, they can still have a
positive effect on the internal quality attributes. For instance, Extract Method
reduces the class’ complexity, which is considered improvements. Nevertheless,
no previous work has assessed the effect of composite refactorings on internal
quality attributes. Thus, the answers to this research question can reveal if
incomplete composites gradually improve the internal structure quality as
expected, and what incomplete composites usually affect each internal quality
attribute. These observations can generate insights for future studies and help
designers of existing refactoring tools on improving their approaches for the
removal of code smells and the improvement of internal quality attributes,
based on real development practices.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 71

3.3.2
Study Steps

Figure 3.2 illustrates our six study steps. We describe below each study
step.

Figure 3.2: Study Steps

Step 1: Software Project Selection. – We relied on previous studies [8,
10, 60, 143, 168, 171, 172] to derive three criteria for selecting software projects
for analysis. (i) The software project must be open source and implemented
using the Java programming language. Java is one of the most popular
languages worldwide 1. Open source projects were selected to support the study
replication. (ii): The software project must use Git as the main version control
system. This criterion aimed at supporting the use of state-of-the-art tools
for refactoring detection that work on Git projects only. (iii) The software
project must have been analyzed by one or more related studies regarding the
refactoring [10,172] and code smells [8,143]. Thus, we could select projects that
are known to have a considerable amount of refactorings and smell instances.

Step 2: Single Refactoring Detection. – We used the RMiner tool for
detecting single refactorings applied to each software project [8, 10, 143, 168]
and this tool is available for the study replication. A recent study indicates that
this tool presents a very high precision (98%) with a recall of (87%) [173]. We
investigated 34 of the refactoring types detectable by the tool, by prioritizing
the refactoring types related to our study scope. The complete list of the
investigated refactoring types is available on our website.

Step 3: Composite Refactoring Computation. – We collected the com-
posites using the range-based heuristic discussed in Section 3.2. This heuristic
allowed us to analyze the composite refactoring effect encompassing from the
source class to the target class associated with each single refactoring. Thus,
we could identify those cases in which a smell instance was simply moved from
one class to another rather than actually removed from the source code, and

1https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 72

how the internal quality attributes are affected among these classes. Besides,
this heuristic is more conservative when capturing single refactorings that were
applied on code elements that have interrelated code structures [171]. Thus,
the composites detected by the range-based heuristic are more likely to encom-
pass composites applied to remove a code smell that involved multiple classes.
Therefore, this decision partially reduces the threat that composites may not
have been applied with the intent of removing code smells.

Step 4: Code Smell Detection. – We selected two code smell types:
Feature Envy and God Class (as described in Table 3.2). These types were
selected because the recommended composite refactorings for their removal are
already known [25,143]. They are also code smells that involve multiple classes,
and can be related to various internal quality attributes such as cohesion and
coupling. Thus, the incomplete composites applied on classes that have these
smells (smelly classes) may have an effect on these internal quality attributes.
Besides that, the range-based heuristic motivated us to investigate the effect of
incomplete composites on code smells that also usually involve multiple classes.
Moreover, previous studies also investigate the effect of refactoring on these
types of code smells [8, 143]. In terms of the tool used to detect these code
smells, we selected the Organic tool [174–176], which uses strategies based
on software metrics to collect the smells. This tool was selected due to its
detection strategies, that use the code metrics we analyzed for evaluating the
effect of incomplete composites. In addition, these detection strategies were
already evaluated by previous studies [8, 17, 48].

Step 5: Internal Quality Attribute Computation. – Table 3.1 presents
the 11 code metrics [10,168] that were investigated in this study. The columns
present, respectively, the internal quality attributes related to each metric, the
code metrics are collected, and their descriptions. These code metrics were
selected due to them having been already evaluated for another study [10]
for analyzing the effects of single refactorings on internal quality attributes.
Thus, these code metrics can reveal the effect of incomplete composites on these
internal quality attributes for the classes in which these incomplete composites
were applied, because these code metrics are of class-level scope. We chose to
perform the analysis in a class-level scope due to a recent study about the effect
of composites on code smells presenting that composites are often applied at
class level [143]. We then aimed to analyze the effect of composites on internal
quality attributes for each class in which a composite was applied. We used an
automated tool called SciTools Understand2 to collect these code metrics, as
this tool also is used by other studies about refactoring and internal quality

2https://scitools.com/

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 73

attributes [8, 10].

Table 3.1: Code Metrics by Internal Quality Attributes
Internal Quality Attribute Code Metric Description

Cohesion LCOM2
Number of pairs of methods that do not share
attributes, minus the number of pairs of methods
that share attributes

Coupling CBO The number of classes to which a class is coupled
MAxNEST Maximum nesting level of control constructs

CC Measure of the complexity of a module’s decision
structureComplexity

WMC The sum of Cyclomatic Complexity
of all methods declared in the given class

LOC The number of lines of code in the class
excluding whitespaces and comments

CLOC Number of lines in the class containing code comments
STMTC Number of statements in the class’s code
NIV Number of instance variables in the class

Size

NIM Number of instance methods in the class

Step 6: Incomplete Composite Computation. – We investigated the
incomplete composites for the Feature Envy removal and God Class removal.
For this study, a composite was considered incomplete according to the
following criteria: (i) composites that have at least one refactoring type that
is recommended to remove a Feature Envy or a God Class [25, 143], and
(ii) composites that did not remove a Feature Envy and a God Class. We
have filtered the incomplete composites through composites that have at least
one Extract Method or one Move Method (refactoring types recommended to
remove these code smells). These composites are the candidates of incomplete
composite. Candidate is a composite that has at least one Extract Method or
Move Method. We then elaborated Table 3.2 that presents the recommended
composites for Feature Envy and God Class removal according to the literature,
the code smell type, their description, and the incomplete composites for each
recommended composites.

Table 3.2: Incomplete Composites for Feature Envy and God Class Removal
Recommended
Composite Code Smell Description Incomplete

Composite
Extract Method{n}
Move Method{n}Extract Methods and

Move Methods [143] [25] Feature Envy A method more interested
in other class(es) Extract Method{n}, Move Method{n}

Move Methods [25] God Class A class that implements too
many software features Move Methods{n}

3.4
Dataset Overview

This section presents an overview of our dataset of incomplete compos-
ites.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 74

Table 3.3: General Data Analyzed in this Study
Software Project Commits Classes Cand.

Inc.
Comp.

Inc.
Comp.

couchbase-java-client 1,023 656 34 10
dubbo 3,961 1,971 202 94
fresco 2,207 994 115 47
jgit 7,513 1566 264 156
okhttp 4,319 167 132 46
Total 19,023 5,354 747 353

3.4.1
Incomplete Composite Dataset

Our dataset provides 23,797 single refactorings, and 2,903 composite
refactorings collected from five software projects. Table 3.3 summarizes our
data on these software projects. The columns show the software project’s
name, followed by the number of commits, classes, candidates of incomplete
composite and incomplete composites for each software project. Notably, these
projects present diversity about domains, the number of commits, and the
number of classes. It is relevant since it allows for an investigation of the
incomplete composite practices applied to software projects with different sizes
and domains. We then found 747 candidates of incomplete composites, of
which 353 (47%) are incomplete composites. Our data shows that 276 (78.19%)
incomplete composites were applied to classes that have at least one Feature
Envy, while 81 (22.95%) incomplete composites were used on God Classes.
Note that, an incomplete composite can have been applied to a class that is a
God Class and also it has Feature Envies.

3.4.2
Dataset Validation

We performed two manual validations with developers for our dataset,
which helped us check if our identification of incomplete composites was
correct, and understand the context of these incomplete composites.

First validation. We performed a manual validation with nine devel-
opers not associated with the implementation of the incomplete composites.
Their development experience varied from two to five years. Due to the time
limitations of the developers, they evaluated only 30 composites. These com-
posites were randomly selected, where we presented 26 composites that could
be incomplete composites for Feature Envy removal and 4 composites that
could be incomplete composites for God Class removal.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 75

We asked developers if: (i) the composites were incomplete composites;
and; (ii) what were the development activities done while the composite was
applied. This final question allowed us to mitigate composites not applied for
code smell removal. To answer those questions, developers evaluated classes
and commits before and after of each composite was applied.

They pointed that 13 (50%) out of 26 incomplete composites were for
Feature Envy removal, 7 (27%) out of 26 composites were not incomplete
composites for Feature Envy removal, developers did not find the classes of
six composites (23%) of them. For God Class removal, all composites were
confirmed incomplete composites. Therefore, 17 (56%) out of 30 incomplete
composites were confirmed by the manual process.

On the intents of developers during the application of the composites, we
concluded through commit messages [167] and code changes, that developers
applied changes in which: 7 (41%) out of 17 were applied with the intent of
refactoring only; 3 (18%) composites had the intents of a feature addition and
refactoring; 6 (35%) were applied for a feature addition only, and; 1 (6.5%) was
applied for a bug fix only. We observed that 10 (59%) out of 17 incomplete
composites were applied in commits in which developers explicitly mentioned
the intent of refactoring. This suggests that these composites may have been
applied to remove a code smell, and they were incomplete to remove them.
These results also allowed us to measure that a significant percentage of the
composites in our data set might truly be incomplete composites.

Second validation. In the second step of the validation, we aimed to
ask developers related to the implementation and application of the incomplete
composites. At first, we submitted three pull requests to validate if the
composites are incomplete composites for the Feature Envy removal [188–190].
They were submitted one month after that the incomplete composites were
applied. It would be easier for developers to remember which and why the
incomplete composites were applied. Currently, one pull request was accepted,
while the two other pull requests are open. The accepted pull request improved
the code structure by removing an instance of Feature Envy from the Dubbo
project. The developer answered that our composite recommendation caused
the code to become clearer, the developer told: “Hi, thanks. I think this patch
makes the code cleaner."

3.5
Common Incomplete Composites

This section answers our RQ1 on most common incomplete composites
across software projects.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 76

3.5.1
Procedures

We collected the frequency of each incomplete composite for Feature Envy
and for God Class removal. We counted the incomplete composites according
to their compositions, though we did not consider the order of the single
refactorings in each composite, since a recent study observed that incomplete
composites often are applied in the single commit [143] and, in the context of
a single commit, it is not possible to know the order of the single refactorings.
We then created a ranking for the frequency of each composition of incomplete
composites for each project, regardless of the order of single refactorings in
composites.

3.5.2
Results

Most of the incomplete composites were common to all analyzed projects.
Thus, we created a ranking of the incomplete composites for all software
projects. Table 3.4 presents a ranking of the 5 most common incomplete
composites across projects. The first column indicates the position of the
incomplete composite in the frequency-based ranking. The second column then
presents the single refactorings that compose each incomplete composite. The
last column presents the frequency of each incomplete composite.

Our results show that incomplete composites with only Extract Methods
were the most common for all software projects. We observed that developers
applied 30 (8.50%) out of 353 incomplete composites with only two Extract
Methods, while 23 (6.51%) out of 353 incomplete composites had three or more
Extract Methods. Thus, 53 (15.01%) out of 353 incomplete composites had only
method extraction. Based on that, we grouped the incomplete composites
based on frequent compositions, and by compositions that can be strongly
related to a common proposal. For instance, incomplete composites containing
only Extract Methods are in one group because developers certainly aim to
extract methods only, it can be to remove a code smell or improve the
cohesion between methods, while incomplete composites containing at least
one Extract Method and one Move Method were grouped in another group
because developers aim to improve the coupling and cohesion on multiple
classes, Extract Methods and unusual refactoring types were grouped because
it can indicate that developers can be interested to apply other code changes
that are not strictly related to the code structure improvements. In total, we
found seven groups of common compositions of incomplete composites.

Grouping of Incomplete Composites. Table 3.5 presents the groups

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 77

of incomplete composites across the software projects. The first group, G1,
is composed by composites that contain at least one Extract Method and
one single Rename refactoring: Rename Parameter, Rename Variable, Rename
Attribute, Rename Method or Rename Class. G2, the second group, is composed
by composites that contained Extract Methods and unusual refactoring types.
G3 is composed by composites that contained only Extract Methods, as
previously discussed. G4 has composites that contained all refactoring types
except for Extract Methods and Move Methods. G5 is composed by incomplete
composites that have at last one Extract Method and one Move Method. G6

consists of incomplete composites that have at least one Move Method, but
do not have Extract Methods. Finally, G7 has incomplete composites that are
composed by only Move Methods.

Considering the incomplete composites in all groups, our first finding
is that 291 (82.44%) out of 353 incomplete composites have more than
one refactoring type. This result is different from an existing study about
composites since this previous study has reported that incomplete composites
are often composed of a single refactoring type [143], and another study
only investigated refactoring types of the method-scope [172]. Our results are
different because they analyzed a much smaller set of refactoring types than
the one considered in our study. Given the type heterogeneity and the wide
scope of the aforementioned composites, one could expect they would often
have a positive effect on multiple internal attributes, including the cohesion
and coupling of the affected classes

Finding 1: Incomplete composites often have more than one refactoring
type. It implies that existing refactoring recommendation systems may
support more refactoring types that are not commonly investigated by
previous studies.

Analysis of the Groups of Incomplete Composites. We observed
that the composites in G1, Extract Methods and Renames, were the ones
applied most often by developers in composites, not in isolation as reported
by previous studies [8,60]. Also, this group was often applied to smelly classes
with at least one Feature Envy or a God Class, but these code smells were
not removed by these refactorings. This is an interesting result because it
presented that, on smelly classes, developers often extract methods and apply
several renames in composites, potentially to improve code comprehension in
these classes to some extent, but not fully remove code smells. In groups G1

and G3, it is expected that developers were to improve the cohesion of the
class, since developers are separating the code in different methods, regardless
of the removal of Feature Envy or God Class.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 78

Surprisingly, incomplete composites composed by at least one Extract
Method are often (71%) applied without Move Methods (groups G1, G2, and
G3). One such reason for this would be that developers may be reluctant to
move methods if they do not know which class(es) in the program should
receive the moved method(s). This result suggests that the lack of Move
Methods in incomplete composites that have Extract Methods can be related to
code smells that were not removed. It can also suggest that if Extract Methods
were applied with Move Methods in composites, they would be able to remove
code smells. Developers may be reluctant to move methods if they do not
know (or need to spend time) which class(es) in the program should receive
the moved methods.

Finding 2: Incomplete composites with at least one Extract Method
are often (71%) applied without Move Methods on smelly classes. This
implies that automated refactoring tools could be extended to identify
opportunities for recommending the completion of incomplete composites
with extractions, mainly.

In G5, we observed that Extract Methods andMove Methods are not often
applied together in incomplete composites. It can suggest that composites with
these two refactoring types could have successfully removed Feature Envies and
God Classes. We noticed that developers did not apply the necessary amount
of Extract Methods and Move Methods for the removal of the code smells.
However, it is expected that developers improve cohesion and coupling through
these incomplete composites, since they are separating methods and moving
them to other classes.

Even though Move Method is a common refactoring type [60], G7 was
not often applied in incomplete composites, representing less than 2% of the
incomplete composites. Developers have mostly applied Move Methods with
other refactoring types. Thus the existing recommendations composed of using
only Move Methods to remove God Classes are not applied in practice. With
this result, we suggested that future studies might recommend composites
that have more than one refactoring type for the removal of this smell. On the
context of internal quality attributes, it is expected for these Move Methods
to improve the cohesion and coupling, since they are moving methods and
decreasing the dependency between the classes.

3.6
Effect of Incomplete Composites

This section answers our RQ2 on the effect of incomplete composites on
internal quality attributes.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 79

Table 3.4: Five Most Common Incomplete Composites
Rank Incomplete Composite Frequency

1 {Extract Method, Extract Method} 30 (8.50%)
2 {Extract Method, Extract Method, Extract Method} 12 (3.40%)
3 {Extract Variable, Extract Method} 8 (2.27%)
4 {Rename Variable, Extract Method} 8 (2.27%)
5 {Rename Parameter, Extract Method} 5 (1.42%)

Total 63 (17.86%)

Table 3.5: Groups of Incomplete Composites Across Projects
Id Groups Frequency
G1 Extract Method and Rename 145 (41.07%)
G2 Extract Method and Unusual Refactoring Types 53 (15.01%)
G3 Extract Method 53 (15.01%)
G4 Other types 52 (14.73%)
G5 Extract Method and Move Method 26 (7.37%)
G6 Move Method and Other types 18 (5.10%)
G7 Move Method 6 (1.70%)
Total 353 (100.00%)

3.6.1
Procedures

We classified the effect of incomplete composites on the internal quality
attributes as (i) positive, (ii) neutral, and (iii) negative. This classification also
appears in previous studies [10, 168, 191, 192] as a comprehensive mechanism
to capture the overall refactoring effect on internal quality attributes. This
classification relies on three premises. First, each code metric (associated with
a particular attribute) can either increase, be unaffected, or decrease after the
refactoring application. Second, certain code metrics improve when their values
decrease (e.g., CBO), while others improve when their values increase (e.g.
TCC). Third, an internal quality attribute improves when the code metrics
that capture this attribute improve as well; the attribute worsens when the
corresponding metrics worsen. Similarly, we consider that: (i) an incomplete
composite has a positive effect when at least one code metric that captures
an internal quality attribute has improved; (ii) a neutral effect when none of
the code metrics that capture the attribute have changed, and; (iii) a negative
effect occurs in the other remaining cases.

Then, we aimed to combine the incomplete composite data with the
collected code metrics to detect the former’s impact on the latter. For that
purpose, we designed and executed a set of three steps, tailored for accuracy
in that detection, described as follows:

1. Collecting metric thresholds from significant time periods

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 80

in the projects’ development. To determine a baseline for comparing the
classes’ code metrics to, in order to ascertain if they may contain a problematic
structure due to the values of the measured metrics, we collected metric
thresholds from significant time periods in the project. We started with yearly
thresholds, but further analysis proved that the changes between consecutive
years were too significant, so we narrowed it down to 6-month periods.

These "significant changes" were defined as changes that modified over
25% of a metric’s value in two or more internal quality attributes, for higher
or lower, except for Size (due to the tendency of Size changing frequently with
code changes [46,177]). These thresholds were defined based on quartiles, with
a metric with values within the 25% smallest values (Q1) being considered good,
a metric between the 25% smallest and 25% largest values (Q2 and Q3) being
considered average, and a metric within the 25% largest values (Q4) being
considered problematic, except for the CLOC metric, of which definitions are
inverted, due to its nature of higher values meaning an improvement [10].

2. Defining the frequency of significant changes to code met-
rics. We then attempted to determine their impact, by analyzing how incom-
plete composites affected the refactored classes, using the following criteria:
(i) each analysis looked at the metrics in two states: the commit immediately
before the composite and the last commit in the composite; (ii) a significant
change was defined in the same way as in 1., i.e., a change was considered signif-
icant if it caused a variance of over 25%. Thus, to understand the composites’
impact, looked at how each composite changed the classes they affected, by
analyzing each of the affected class’s metrics before and after such composites.

3. Defining the state of the classes’ metrics related to their
changes. To analyze the quality of the code in the classes affected by the
composites (before and after their application), we compared their metrics
to the thresholds defined in step 1, thus defining the class as problematic,
average or good in terms of their metrics’ values. With this, and with the
information from step 1, it is possible to determine if the composites caused
an improvement, did not affect a class or worsened its state.

3.6.2
Results

Tables 3.6 and 3.7 display a summarized comparison of the before-after
states of the classes in the project, by presenting, for each internal quality
attribute (Cohesion, Coupling, Complexity, Size), the % of individual metrics
changed for the better (i.e., had their values reduced, except for CLOC), that
changed for the worse, or that did not change for each composite.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 81

By analyzing each composite individually, we determined that out of 416
composites that only modified a class’s contents (i.e., did not delete nor rename
the original class), 58% (239) changed no metric to a value within a threshold
different than the one they were before the composite; 22% (92) only increased
the metrics’ values to a higher threshold, 13% (55) only decreased the metrics’
values to a lower threshold, and 7% (30) both increased and decreased the
metrics’ values to higher and lower thresholds, respectively. However, out of
those that did change one or more metrics’ values to different thresholds, over
half only changed a single metric’s value enough to change its threshold.

Thus, these analysis’ results can be summarized as follows: in a general
sense, the majority (58%) of changes tended to keep the metric within the
same threshold as it was before the composite. Most changes that did impact
the metrics caused an increase in their values, which, in most cases, causes
a negative impact in the resulting source code. Third, most changes that did
impact the metrics mostly impacted only a single metric at a time. Fourth, the
majority of times a positive change happened in the code, it was because of an
increase in the amount of CLOC (Comment Lines of Code). This means that,
while the quality might have improved, the actual smells were either not fixed
or even subtly ameliorated by the composites; Thus, this can be summarized
in the following finding, which corroborates with a similar one found by a
previous work [8] for single refactorings:

Finding 3: Most incomplete composites tend to not change the state
of the code structure, with respect to its internal attributes – i.e. well-
maintained code often remains well-maintained, while smelly code often
remains smelly. This may motivate refactoring tools to improve their rec-
ommendations to maintain the internal structural quality of the program
in composites that do not successfully remove code smells.

Nonetheless, by taking a closer look at the absolute values of the metrics
changed by each incomplete composite, we discovered that over half of their
changes (52%) worsened at least one of the internal quality attributes’ metrics.
The majority of this worsening, however, was related to size metrics. Out of the
other changes, 27% did not change metrics’ values at all, and 21% improved
their values.

However, by looking at the intensity of these changes, it is possible to
see that 70% did not significantly increase or decrease the quality of the code
(>25% change in the measurements), while a small, but still significant, set of
incomplete composites significantly increased the internal quality attributes’
measurements (22%), which in most cases, indicates a decrease in the code

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 82

quality, and a very small amount of incomplete composites actually signifi-
cantly decreased these metrics (8%). This means that, even if some of the
composites tended to modify the values of the internal quality attributes’ met-
rics, they did so in small increments. This confirms the result discussed in the
Section 3.5.2, which shows that incomplete composites have often not improved
the program comprehension significantly. We also observed that the majority
of those that do make significant changes tend to worsen these attributes. But,
as a major finding, we concluded that:

Finding 4: The majority of incomplete composite refactorings tend to not
make significant changes to the class-level internal quality attributes of the
code. This indicates that developers often apply composites to minimally
maintain the level of structural quality while achieving their other primary
goals. Existing refactoring recommenders could make developers aware
on how to apply (complete) composites while also facilitating their goal
achievements.

This finding contradicts previous works (e.g. [4]) that did not find a
relation between refactorings and the values of different metrics. This could be
caused by the fact that they only analyzed single refactorings or due to their
analysis focusing on a single metric at a time instead of looking at the internal
quality attributes.

We then analyzed the effects of incomplete composites in terms of the
groups presented in Section 3.5. For that purpose, we chose the 4 most common
groups that contain refactorings recommended by the literature to remove
Feature Envy and God Class. Therefore, groups G1, G3, G5 and G7 were
chosen as they only contain Extract Methods, Move Methods and Renames
(renaming is not necessarily recommended to remove these code smells, but
is recommended when a method is extracted). This was done in an attempt
to mitigate the threat of analyzing composites that were not intentionally
applied to remove those smells. In the composites pertaining to those groups,
developers only applied refactoring types that are recommended to remove
them, thus, reducing the likelihood of the composite not being applied for that
purpose.

Therefore, Figure 3.3 presents the effects of these groups on the four
internal quality attributes. We can observe that, once again, size-related
metrics are the ones that change the most with incomplete composites,
followed by complexity metrics. It is also notable that: (i) composites in G7

(only Move Methods) often fail to improve code metrics; (ii) no composite
in G3 (only Extract Methods) changed coupling-related metrics and; (iii)

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 83

G5 (Extract and Move Method) had the most overall improvement in their
composites. This is in accordance to the discussion presented in Section 3.5.2,
in which it was speculated that several extractions and renames (the group
G1) in composites should have reduced the code complexity, improving the
program comprehension. Besides that, the positive results of the G3 group then
confirmed that when developers apply Extract Methods and Move Methods in
composites, they often improve the most internal quality attributes, and thus
the program comprehension, regardless of the presence of smelly classes.

Finally, by correlating these findings to the fact that these incomplete
composites are composed by single refactorings that were also frequently
applied alongside other code changes, keeping the non-size related metrics
within acceptable parameters can be considered a good effort in preventing
code quality decay, since feature additions and other non-refactoring related
changes might have happened in the code (due to the majority of the worsened
metrics being size-related). Thus, by keeping the code quality from decreasing
due to those other changes, some of these incomplete composites could have
acted as preventive measures, not allowing code quality to degrade because of
these new additions. This can be summarized as the following finding:

Finding 5: Incomplete composites rarely increase or decrease code quality,
but, when performed alongside other code changes, they can prevent
the quality decay that could happen because of these additions. This
implies that even throughout the application of incomplete composites,
the developers are putting effort into attempting to increase the code
structures’ quality.

This strengthens the conclusion that, even though incomplete composites
aim to improve the internal structure quality of certain code elements, they
do not bring about significant changes to the smelly class’ state, by mostly
keeping it in the same state as it was before the composite – though they do
mostly prevent quality decay from other non-refactoring changes, much like
what was described in Section 3.2.3. However, a non-insignificant percentage
of incomplete composites actually worsens the affected class’s problems, which
could be solved by the completion of the used composite.

3.7
Threats to Validity

Construct and Internal Validity: We reused criteria for selecting
software projects from previous studies [8, 10, 60, 143, 172]. We aimed at
preventing a biased project selection that could favor our study results. We

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 84

Table 3.6: % of Changes which Significantly improved Each Metric for Cohesion
and Coupling, per Project
Project # Composites Cohesion: metric Coupling: metric

Positive Neutral Negative Positive Neutral Negative
couchbase-java-core 10 10% 90% 0% 0% 100% 0%
dubbo 122 5% 90% 5% 4% 94% 2%
fresco 50 10% 88% 2% 2% 98% 0%
jgit 178 6% 92% 2% 4% 93% 3%
okhttp 56 7% 90% 3% 4% 94% 2%

Table 3.7: % of Changes which Significantly improved Each Metric for Com-
plexity and Size, per Project
Project # Composites Complexity: metric Size: metric

Positive Neutral Negative Positive Neutral Negative
couchbase-java-core 10 2% 96% 2% 4% 96% 0%
dubbo 122 6% 90% 4% 4% 92% 4%
fresco 50 5% 91% 4% 2% 97% 1%
jgit 178 3% 93% 4% 6% 92% 2%
okhttp 56 2% 94% 4% 1% 96% 3%

used RMiner [173] to perform single refactoring detection, since it has a high
accuracy. Similarly to previous studies [8, 10, 143], we performed code metric
computation via the SciTools Understand tool that computes class-level code
metrics that capture the four internal quality attributes analyzed in this study
(Table 3.1). Inspired by the literature [8,48], we used the Organic tool to detect
code smell instances. The smell detection strategies used by this tool have a
high accuracy: 72% precision and 81% recall in average [4]. We validated the
associated smell instances of Feature Envy and God Class (Section 3.4.2). By
doing that, we confirmed the tool’s accuracy.

We reused an heuristic from the literature [171] for detecting composite
refactorings. By reusing this heuristic, we could prevent manual biases while
supporting large-scale composite computation. We could also analyze the effect
on internal quality attributes in a wide scope ranging from the source class
to the target class of each refactoring. We carefully designed an heuristic
for characterizing those incomplete composites [171, 178]. The definition of
incomplete composite is considerably subjective, once it depended on our body
of knowledge on what composites target a particular smell type. Although there
is such subjectivity, we strongly relied on Fowler’s refactoring catalog [25] and
empirical evidence derived from recent studies, e.g. [8,143]. One author wrote
scripts for computing incomplete composites, and two authors double-checked
these scripts, thereby reducing the manual bias and errors.

A previous study presented that developers do not necessarily consider
a code smell like a problem in the source code [179]. Thus, we can assume
that developers often do not have the explicit intent to remove code smell
when applying composites to be a threat to this work’s soundness. To mitigate

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 85

Figure 3.3: % of Positive Changes in Internal Quality Attributes per Incomplete
Composites Group

it, then, we submitted pull requests and performed a manual validation
aimed to determine the developers’ intent to apply composites. The manual
validation of the composites and incomplete composites (Section 3.4.2) was
performed by developers that are familiar with refactoring. This was important
for demonstrating the accuracy of our heuristics and the meaningfulness
of our set of incomplete composites, from the perspective of experienced
developers [195, 196]. The validated sample of composites is quite small, but
we distributed this sample between nine developers for a careful analysis.

Conclusion and External Validity: We reused a three-fold classifi-
cation of the refactoring effect on internal quality attributes from previous
studies [10, 168] (Section 3.6.1). We assumed that this classification could be
successfully adapted to the context of incomplete composites. One could crit-
icize our approach that classifies an incomplete composite as positive when it
improves at least one associated code metric is too loose. However, a recent
study [10] showed no considerable difference between this approach and stricter
ones, such as considering the improvement of most metrics as a positive effect.
Besides that, a study [10] used this approach to investigate the effect of sin-
gle refactoring on internal quality attributes. We then reused this approach to
compare the results of single refactoring with the results of composites.

We applied traditional techniques of descriptive analysis on the quanti-
tative data [8,10,143,168,172]. We computed percentages of the most common
refactoring combinations that constitute incomplete composites (RQ1) as well
as the effect classification of incomplete composites (RQ2). These techniques

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 86

allowed us a detailed comprehension of the incomplete composites’ effects in
different scenarios. For classifying these effects, we relied on quartiles, as dis-
cussed in Section 3.6.1, similarly to related studies [10,168].

Regarding RQ1, we were unable to compute the order of the refactorings
within a composite. There is empirical evidence that most composites are
fully applied in a single commit, so we cannot assure the precedence of one
refactoring over another refactoring. This limitation has also affected previous
studies [143,171] but they still did not prevent interesting insights of the effects
of refactoring on internal quality attributes from being derived. With respect
to RQ2, previous studies [8, 10] show that single refactorings are very often
applied alongside other types of code change. The same reasoning applies by
extension to composite refactorings.

The scope of our study is quite limited for allowing a wide generalization
of our findings and their implications. Although we aimed at a certain diversity
in terms of project size and commit history (Table 3.3). Our preference for
open source Java projects may support the study’s replication, but they may
not cover all refactoring practices worldwide. Nevertheless, these projects have
been successfully analyzed by related studies [8, 10,143,168,172].

3.8
Related Work

Previous studies have investigated the effect of single refactorings on the
software program [8,10,168]. Cedrim et al. [8] presented that single refactorings
often introduced or did not fully remove poor code structures such as code
smells. This study presented that single refactorings often did not remove
certain code smell types such as Feature Envy, which occurs when a method
is more interested in attributes and methods of other class(es) rather than
its class [25]. Other studies have investigated the effect of single refactorings
on code metrics [4, 10, 168]. These studies presented that single refactorings
usually improved code metrics that captured one or more internal quality
attributes, e.g. cohesion and coupling. However, these studies were limited
to an understanding of the effects of the code refactorings because they
investigated single refactorings only, and developers often applied composite
refactorings.

The effect of Incomplete Composite Refactoring on Internal
Quality Attributes. A recent study suggested that incomplete composites
can improve internal quality attributes, regardless of code smell removal [143].
For example, incomplete composites that have Extract Methods only. These
composites do not remove Feature Envies, but they can increase the code size

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 3. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes? 87

through the number of lines of code in methods, improving code metrics related
to the coupling and cohesion. However, existing studies only present assump-
tions on the effect of incomplete composites on internal quality attributes,
providing limited knowledge about how incomplete composites can affect the
internal code structure. Our study is the first study that investigated empiri-
cally the effect of incomplete composites on internal quality attributes.

3.9
Conclusion

This paper presents a quantitative study, in which we investigated the
incomplete composites in-depth in five software projects of different domains.
Our findings reveal that developers often (58%) apply composites to minimally
maintain the level of structural quality while achieving their other primary
goals. It implies that automated refactoring tools could be extended to identify
opportunities for recommending the completion of otherwise harmful incom-
plete composites. As future works, we aim (i) to investigate the incomplete
composites for the removal of more code smells, (ii) to classify manually more
incomplete composites that are applied only with the development activity of
refactoring and incomplete composites that are applied for other development
activities, and (iii) to evaluate if composites with the recommended refactoring
types have removed the code smells.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

4
Look Ahead! Revealing Complete Composite Refactorings
and their Smelliness Effects

This chapter contains a paper published in in
the Proceedings of the 37th International Conference on Software Maintenance and

Evolution (ICSME) [77].

In Chapter 3, we investigated the practical application of incomplete
composite refactorings on five software projects of different domains and code
sizes. We investigated the incompleteness of composites for two code smells,
God Class and Feature Envy, because the recommended composite refactorings
for their removal are already documented somewhere [25,171]. The selection of
these smell types was made as they involve multiple classes and can be related
to the occurrence of other code smells [200].

Our results revealed that developers often (58%) apply incomplete com-
posites. We observed that most (83%) of incomplete composites are formed
by more than one refactoring type. This observation indicates that develop-
ers spend time and effort formulating different combinations of refactoring
types in composites, but the resulting composites fail in fully removing of code
smells. Based on these results, we need to (i) evaluate what refactoring types in
composites frequently remove code smells, and (ii) assess whether pre-existing
documented recommendations of composites have removed the code smells in
the practice [143, 171]. In other words, we need to understand how complete
composites are applied by developers in their routine. A better empirical un-
derstanding of complete composites can guide us in recommending effective
composite refactorings.

In this chapter, we then empirically investigated the nature of complete
composites as a means to address our RQ2 (Section 1.3.1). For this study,
we expanded our dataset of composite refactorings, increasing the number of
software projects and code smells because recent studies found that complete
composites are rarely (about 10%) applied [143, 171]. In addition, aiming to
extract refactoring recommendations from the practical application of complete
composites, we investigated the possible side effects of complete composites
in real projects. The exploration of their side effects can provide us the
knowledge on how to recommend composite refactorings for beneficial removal

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 89

of code smells, i.e., composite refactorings that fully remove target code smells,
minimizing or removing side effects. The next sections are the content of the
published paper [77]. Section 4.2 can have repetitive content; thus, this section
can be ignored.

4.1
Introduction

Software companies apply refactoring as a strategy to remove poor code
structures such as code smells, ease maintenance, and keep design quality [25,
35]. A refactoring or single refactoring is a code transformation that aims to
improve the internal quality of a piece of software [25]. Fowler presents a catalog
of refactoring types [25]. Previous studies have revealed that single refactorings
are not sufficient to improve structural problems [8, 10, 168, 225]. Developers
need to apply multiple refactorings to tackle a structural problem, in instances
such as the removal of a code smell [143]. Therefore, in practice, large-scale
refactorings are applied [225]. A common practice in this context is the
application of composite refactorings [46,143,171]. A composite refactoring (or,
simply, composite) is a set of two or more interrelated refactorings [143,171].

Existing studies identified several composites types, which are refactoring
combinations that constitute a composite [76, 143, 171, 203]. These composite
types help practitioners understand which composite configurations are com-
monly applied in practice. Those studies also revealed that composites affect
software quality by introducing or removing code smells [143, 171, 203, 204].
However, they do not study their side effects. A side effect is when a composite
removes a target code smell, but introduces other smells. Previous studies also
presented descriptions recommending certain composite types to completely
remove a certain target code smell [143, 171]. In our study, we called these
composites as “complete” composites. For example, Extract Method and Move
Method form a composite type recommended to completely remove the Feature
Envy smell [25,171]. However, these descriptions are limited and insufficiently
explored. Their limitations are detailed as follows:

1. These descriptions are formed by a small subset of Fowler’s refactoring
types (14 out of 72 types) [25, 143, 171]. Also, they may only partially reflect
how complete composites are applied in practice. This limits how common
complete composite types used by developers are described. Thus, developers
might not be aware of the existence of some complete composite types when
relying on existing descriptions.

2. Previous studies presented composite recommendations targeting a
single smell, but in practice, a piece of code, i.e., a method or class, can have

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 90

multiple code smells [143, 171]. The developer, then, focuses on removing a
single code smell, but is not alerted about the existence of other code smells.
For example, a study presents a recommendation to remove a Long Method,
but this long method can also have a Feature Envy [143]. When the developer
applies this recommendation, they may not be aware of the existence of that
Feature Envy and/or know what to do with that code smell.

3. Existing descriptions of complete composites do not present side ef-
fects, their possible causes, and recommendations to remove or minimize these
side effects [143,171]. Previous studies also present multiple recommendations
to remove the same code smell type, without detailing when each recommenda-
tion can be applied. This limits developers’ knowledge about which complete
composites should be applied in a given situation.

Revealing the limitations of these existing descriptions of complete
composites is the starting point to reason on how they may be improved and
for them to be used to aid practitioners and tool builders [39, 44, 64, 201].
Exploring and revisiting these descriptions is relevant since their limitations
can interfere negatively on the developers’ decisions to apply composites when
they aim to remove code smells.

To address these limitations, our study aims at investigating what are
the most common types of complete composites. We used an extended subset
composed of 26 refactoring types presented by Fowler [25] together with eight
other types widely observed in practice. Then, we are able to analyze if the
existing descriptions of complete composites are aligned with the most common
types. We also explored the (side) effects of complete composites on a wider
set of code smells. We investigated 618 complete composites from 20 open
source projects, and the effect of four widely popular code smell types [8,60,73],
namely Long Method, Feature Envy, God Class, and Complex Class. Differently
from previous studies [143, 171], we performed an in-depth analysis on the
effects of complete composites, focused on understanding their side effects.
Our results are summarized as follows.

1. We observed that 64% of complete composites have refactoring types
not covered by previous studies [143, 171]. For example, developers applied
composites with Extract Method(s), Change Return Type, and Move Method(s)
on envious methods. These refactoring types aid the removal of the Feature
Envy. However, existing descriptions recommend only Extract Method(s) and
Move Method(s) to remove this code smell. In other words, the current body
of knowledge on composite refactoring is incomplete. In this sense, developers
relying on existing studies may be misguided or unsuccessful when trying to
remove a code smell. Instead of providing recommendations that ease the

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 91

practice of applying composites to improve software quality, existing studies
might be leading developers into making wrong decisions.

2. Almost half (48%) of Feature Envy smell instances were removed when
the compositeMove Methods were applied. This information is not documented
by existing descriptions. Since the occurrence of Feature Envy is a common
situation [8], knowing about the usage of the Move Methods composite in
advance can ease refactoring tasks.

3. About 36% of complete composites formed by Extract Methods to
remove Long Methods have introduced Feature Envies and Intensive Couplings
as side effects. Surprisingly, with the goal of improving readability, by removing
Long Methods, developers degrade the software internal quality by creating
unnecessary high coupling. This goes in the opposite direction to the purpose
of refactoring, which generally is to improve overall software quality [25].

Our findings reveal that developers tend not to solve structural problems
completely when they apply large-scale refactorings, such as composites. These
composites can remove one target code smell, but potentially introduce or
do not remove other ones. This may be an alert regarding the in practice
use of existing descriptions. In summary, our results provide the following
contributions.

1. A dataset with 618 complete composites, and their common types
and (side) effects. This dataset can be used by other studies and improved,
motivating future studies to investigate other topics on complete composites.

2. Our results suggest that existing descriptions of complete composites
should be either revisited or enhanced to explicitly include possible side effects.
They can (i) include Change Return Types in composite recommendations to
remove Feature Envy, since developers need to change the return type of these
methods due to the separation of the concerns; (ii) alert developers about
alternatives to remove Feature Envy, mainly in methods that are fully envious;
and (iii) guide developers to avoid mistakes that can introduce code smells.

3. We present a catalog of complete composites based on existing de-
scriptions and on our results, showing detailed specifications about side effects,
recommendations to remove or minimize them, and some scenarios in which
recommendations can be applied. Besides that, we discuss a real example in
which developers accepted a recommendation from our catalog and removed
the side-effects of a real problem. Our catalog also can be useful to improve
existing tooling support for refactorings [39,222]. These tools can inform about
the side effects and allow the developer to choose if (i) the complete composite
may be applied, or (ii) the side effects may be minimized or removed, or (iii) if
the complete composite may be ignored. These decisions should take into con-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 92

sideration why and how developers are aiming to improve the code structure,
i.e. the context of the problem and their goals.

4.2
Background and Problem Statement

In this section, we presented definitions and the existing limitations on
complete composites.

4.2.1
Composite Refactoring (or Composite)

As is already known, in practice, a code smell is rarely removed by
applying single refactorings [8]. Mainly, because some code smell types need
the application of more than one single refactoring to remove them. Therefore,
developers need to apply large-scale refactorings in practice [225]. A common
practice to apply large-scale refactorings is applying composite refactorings [46,
143,171].

A composite is a set of interrelated refactorings, defined as
c = {r1, r2, ...rn}, where each r is a single refactoring and i is an iden-
tifier for each refactoring applied. A composite c can be formed of many
instances of the same refactoring type, or a combination of different types
[12,143,171,172,203,226].

Due to the complexity of identifying whether a refactoring is part of
a composite, a recent study proposed a range-based heuristic [171]. This
heuristic detects the structurally interrelated refactorings that together form
a composite. For that, the heuristic limits a composite to refactorings that
share at least a code element with a structural relation, and are applied by
the same developer. The reliability of this heuristic was demonstrated in [171].
The range-based heuristic was designed taking into account the practices of
developers, as a previous study has shown that composites are often applied
to multiple classes [172]. This heuristic captures refactorings that were applied
on a common set of code elements (classes and/or methods), indicating that
the developer could have the intent to improve the internal software quality of
this set of code elements from a composite. Thus, this improvement can be a
code smell removal. In summary, the range-based heuristic indicates pieces of
code where the developer made a set of refactorings, potentially for removing a
code smell or improving the source code structure. This heuristic has been used
in studies that investigate the effect of composites on multiple classes [76,171].

A composite can be classified by types, which are refactoring combi-
nations that constitute a composite. For example, composites constituted by

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 93

Extract Methods and Move Methods are of the type [Extract Method, Move
Method] [143,203]. Knowing the composite types helps practitioners to under-
stand which ones are most commonly applied in practice [143, 171]. Previous
studies also revealed that composites have an effect on software quality. For
example, a composite can affect a code smell in different ways, such as in-
troducing, removing, or not affecting a code smell [143, 171, 203]. Thus, the
effect of a composite can be a removal, introduction, or unaffected. Unfortu-
nately, the existing studies investigated the effect of composites in a general
way. They did not detail that a composite can have side effects. In our study,
we consider a side effect when a composite removes a specific code smell, but
also introduces other code smells.

4.2.2
Completeness of Composite Refactorings

Some studies have explored the completeness of composites to remove
code smells [76, 143, 171, 203]. The completeness of a composite is a charac-
teristic that can be seen from different viewpoints, e.g., an entire code smell
removal [143,171] or an improvement to a internal quality attribute [76]. In this
work, we rely on the definition that a composite is complete when it completely
removes one code smell instance. Although the topic of composite refactoring
has been receiving great attention in recent studies [19,143,171,172], existing
pieces of work do not investigate the property of completeness in-depth. There
is a gap in the existing literature on composite refactorings and the current
practice of completely removing code smells. We detailed these limitations
next.

Descriptions of complete composites are found in the literature [25, 143,
171]. Table 4.1 presents such descriptions of complete composites recommended
to remove code smells [25, 143, 171, 204]. These studies propose more than
one recommendation to remove the same smell type. This happens because
studies [143, 171, 204] presented alternative complete composites applied in
practice, explaining why there are multiple recommendations for the same
smell. Despite the existence of these descriptions, they fail in describing the
specifics of each complete composite, as described in the next subsection.

In this study, the definition of completeness focuses on code smell
removal, independently from developers’ intents. We do not relate refactoring
completeness with its motivation, as refactorings often emerge (>70% of the
cases) along with other small modifications and they cannot be captured from
issue descriptions, commit messages, or developers’ discussions [167]. We are
aware that developers do not fully remove smells due to many factors, but

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 94

Table 4.1: Descriptions of Complete Composites
Complete Composites Code Smell
Inline Methods [143]
Pull Up Methods [143]
Pull Up Attributes, Pull Up Methods [143]
Inline Method, Move Method [143]
Inline Method, Move Attribute [143]
Extract Methods, Move Methods [25] [171]
Inline Methods, Extract Methods [171]
Extract Methods, Move Attributes [171]

Feature Envy (FeE)

Extract Methods [25,143] Long Method (LoM)
Move Methods [25,143] Complex Class (CoC)
Pull Up Methods, Move Methods, Pull Up Methods [171]
Inline Methods, Extract Methods [171]
Move Methods [171]
Inline Methods [171]
Extract Methods [171]
Pull Up Methods [171]
Pull Up Attributes, Pull Up Methods [171]
Pull Up Attributes, Pull Up Methods, Move Methods, Pull Up Methods [171]

God Class (GoC)

our study advances in an important direction: characterizing which side effects
exist and their possible implications. Developers are concerned with improving
software quality [167, 205], and many of these concerns are related to smell
removal, even if indirectly [73,206–209]. For example, developers can reorganize
a method that is hard to read with a composite refactoring even without being
concerned with its size, so indirectly they remove a “Long Method” smell.

4.2.3
Limitations of Existing Complete Composites Descriptions

Previous pieces of work present descriptions of complete composites [25,
143,171]. These descriptions are not summarized and detailed. We then created
Table 4.1 to summarize the existing descriptions of complete composites for
developers. However, the existing descriptions do not represent an extensive
list of complete composites, as they are formed by a small subset (14 out of
72) of refactoring types defined by Fowler. This is a limitation, as developers
can apply other refactoring types in practice frequently, not covered in these
descriptions.

Another limitation is that existing studies do not investigate whether dur-
ing the application of complete composites focusing on a specific code smell,
other code smell types are affected or new smells are introduced, resulting in
side effects [143, 171]. For example, composites that are complete to remove
a Long Method can introduce Feature Envy (see Section 4.2.4). As we can
see, these studies present many recommendations to remove the same code
smell type, but they did not detail when each recommendation may be ap-
plied. Thus, an in-depth study on the (side) effect of complete composites on
other code smells is of paramount importance, since the application of these
documented complete composites could lead to the introduction of other code

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 95

ExM: Extract Method
MoM: Move Method

Refactoring Types Code Smell (Before)
 Feature Envy

 Long Method

Code Smell (After)
 Feature Envy

invoke()

Long Method 1

AccessLogFilter

AccessLogFilter

AccessLogData

accessLogData()

 Feature Envy 2

invoke()

buildALD()

 Feature Envy 1

accessLogData()

Ci Ci+1

ExM1

ExM2
MoM

 Feature Envy 2

Feature Envy 1

 Feature Envy 2

Class Method Refactoring Applied

Figure 4.1: An Example of Complete Composite and its Side-effect

smells, impacting negatively the quality of software. These descriptions also
need to alert developers about the possible causes of these side effects and
recommendations to remove or minimize them, and when each recommenda-
tion may be applied. As a consequence of these limitations, developers may
be trusting that existing descriptions recommend complete composites that
effectively remove problems in their code. However, they are unconsciously
increasing deterioration on critical parts of the code.

4.2.4
A Real Example of Complete Composite

This section details a real example in the Dubbo [181] project, in
which a developer applied a composite refactoring for removing some smells.
As presented in Figure 4.1, at some point in time (commit ci) the class
AccessLogFilter had a method called invoke(), having two code smells,
namely a Long Method and a Feature Envy. In order to remove these smells,
a developer applied a composite formed by two Extract Methods (ExM1 and
ExM2) and one Move Method (MoM) in the commit ci+1 [180].

According to existing descriptions [25,171], two Extract Methods can re-
move the Long Method and at least one Extract Method with one Move Method
are expected to remove the Feature Envy. In the commit c(i+1), by applying
the two Extract Methods on the invoke() method, creating buildAdd() and
accessLogData() methods, the Long Method was removed and the Feature
Envy ended up being scattered across the two extracted methods. Then, the
developer applied one Move Method, moving the accessLogData() method to

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 96

the AccessLogData class, aiming to remove one of the Feature Envies. How-
ever, the code smell was not removed from the accessLogData() method as
the method was actually more interested in data from another class.

In conclusion, the composite [Extract Method, Extract Method, and Move
Method] could have removed both Long Method and Feature Envy, as indicated
by previous studies [25, 143, 171]. We observed that this commit applied only
changes on code related to these refactorings. Besides, the goal of this commit
is refactoring to remove the Long Method and Feature Envy. The commit
message is “Acesslog dateformat enhancement”. This commit is related to a
pull request [184] in which developers discussed what refactorings were applied.
A developer mentioned “I have moved the access log creation...”, adding
“Refactored code to separate our and group related tasks in separate methods
and have enhanced the readability by using: Method renaming, Reducing big
methods to small...”.

Despite having removed the Long Method (in the invoke() method), the
composite did not fully remove the Feature Envy (in the accessLogData()
method). On the contrary, although the composite is considered complete as
it removes the Long Method, according to [143, 171], it induced side effects.
The composite induced the harmful propagation of the Feature Envy smell to
additional methods and an additional class affected by the refactorings. We
can see that existing recommendations of composites can lead to side effects,
such as: (i) the prevalence of a smell in the program elements touched by a
composite refactoring, or (ii) even the introduction of code smells.

Existing descriptions of complete composite types do not indicate at
all what are their possible recurring side effects. This limitation is also not
addressed by previous empirical studies [143, 171]. Perhaps, these developers
applied this recommendation without being aware of the side effects of these
complete composites. Because the existing descriptions do not have informa-
tion about that, limiting the decisions of developers regarding these side effects.
Thus, the case discussed above illustrates why existing descriptions of com-
posite refactorings have to be extended to cover recurring complete composite
types and their side effects. This advance can also further motivate developers
to use and trust such descriptions while enabling them to make more informed
decisions through the selection and application of composite refactorings.

4.3
Study Settings

This section presents our research goal, research questions, and the six
steps of our study. More details about the results and artifacts of this study

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 97

are available on our website [193].

4.3.1
Goal, Research Questions, and Metrics

The goal of our study is to analyze composite refactorings applied
in practice based on two aspects: (i) the most common types of complete
composites, and (ii) their side effect on code smells in the context of 20 software
projects. To achieve the goal of our study, we carefully designed two Research
Questions (RQs), as follows.
RQ1:What are the most common types of complete composites? This RQ aims
at investigating what are the types of complete composite most frequently
applied by developers. We analyzed 34 refactoring types, of which 26 are
present in Fowler’s refactoring catalog and 8 refactoring types that are often
applied in practice [173]. This number is considerably higher than previous
studies that investigated only 14 refactoring types [143,171]. The investigation
of complete composite types is relevant to identify if the existing descriptions
of complete composites are aligned to development practice. Moreover, we can
reveal other types of complete composites that are not documented in existing
catalogs.
RQ2: What are the side effects of complete composites? This RQ aims at ex-
ploring if complete composites introduce other code smells (the side effects, as
detailed in Section 4.2.2) while removing one target code smell. We then col-
lected complete composites for 4 common code smells: Feature Envy, Long
Method, God Class, and Complex Class [8]. Also, we investigated possible
causes of these side effects and how to remove or minimize them based on
refactorings applied in practice. In that way, we aimed to create a detailed
catalog of complete composites and their side effects. This catalog can im-
prove the existing descriptions of complete composites and guide developers
and refactoring tools about how to apply complete composites, avoiding or
minimizing side effects.

4.3.2
Study Steps

Step 1: Software Project Selection. – We adopted three criteria similar to
previous studies to select software projects [8, 10, 60, 143,168,171,172]: (i) the
software project must be open source and implemented using Java due to
the support to the study replication and tools limitations; (ii) the software
project must use Git as the main version control system, aiming at supporting
the use of state-of-the-art tools for refactoring detection that only work on

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 98

Git projects; and (iii) the software project must have been analyzed at least
one related study regarding refactoring [10, 168, 172] or code smells [8, 143].
Thus, we selected projects that are known to have a considerable amount of
refactorings and smell instances.
Step 2: Single Refactoring and Composite Refactoring Detection. – We used
the RefactoringMiner 2.0 (or RefMiner 2.0) tool for detecting single refactor-
ings applied in practice, similar to related studies [8, 10, 143, 168]. RefMiner
is a tool acknowledged for reaching high precision and recall when detecting
refactoring and supports several refactoring types [173]. The tool identifies
52 refactoring types. We focused on the 34 ones that are in the scope of our
study. These 34 refactoring types are applied in the code scope of attributes,
methods, classes, and the code smells analyzed in this study can happen in
that code scope. Also, RefMiner 2.0 captures refactoring types that were not
explored by existing approaches [143, 171]. These additional single refactor-
ings help us to capture the composites that have other refactoring types that
were not revealed by these studies. Table 4.2 presents the 34 refactoring types
investigated in our work. We investigated 16 Fowler’s refactoring types that
were used by previous studies [143, 171], third column F-PS (Fowler and Pre-
vious Studies); ten Fowler’s refactoring types that were not used by previous
studies [143, 171], fourth column F-NPS (Fowler and not Previous Studies);
and eight refactoring types that are not by Fowler and that were not used by
previous studies [143,171], fifth column NF-NPS (not Fowler and not Previous
Studies). These refactoring types not covered by Fowler were defined by [194]
and are detected by RefactoringMiner. Note that, the refactorings NPS (fourth
and fifth column) are fine granularity (there are transformations on variables
or attributes). However, we investigated these refactorings because they can
be often applied with refactorings of larger granularity (transformations on
methods or classes). Therefore, these refactorings can be common in practice
when developers apply refactorings on large scale as composite refactorings.
However, the literature is limited about the knowledge concerning how these
refactorings have helped the refactoring process in practice. For the detection
of composite refactorings, we used the range-based heuristic [171] detailed in
Section 4.2.
Step 3: Code Smell Detection. – Our study investigated the removal of four
common code smell types: Feature Envy, Long Method,God Class, and Complex
Class. These smell types have well-known recommendations of composite
to remove them [25, 143]. Besides that, the range-based heuristic captures
composites applied on multiple classes, then, it motivated us to investigate
the effect of complete composites on code smells that involve multiple classes.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 99

We also investigated how the complete composites affect 19 code smell types
(Table 4.3) when removing these four smell types. These 19 code smell types
are frequently detected in real projects [8, 60] and they are found in methods
and classes. We used the Organic tool to detect code smells [48]. Also, this tool
was used by studies that proposed descriptions of complete composites. This
tool uses strategies based on software metrics to collect code smells. These
detection strategies were already evaluated by previous studies [8, 17,48].

Table 4.2: Refactoring Types analyzed in this Study
Refactoring Type ID F-PS F-NPS NF-NPS
Move Attribute MoA X
Pull Up Attribute PUP X
Push Down Attribute PDA X
Rename Attribute ReA X
Replace Attribute RpA X
Extract Attribute ExA X
Merge Attribute MeA X
Split Attribute SpA X
Extract Variable ExV X
Inline Variable InV X
Parameterize Variable PaV X
Rename Variable ReV X
Replace Variable with Attribute RVA X
Rename Parameter ReP X
Replace Variable (with Attribute) RpV X
Merge Variable MeV X
Change Return Type CRT X
Change Parameter Type CPT X
Change Variable Type CVT X
Merge Parameter MeP X
Split Variable SpV X
Split Parameter SpP X
Extract Method ExM X
Inline Method InM X
Rename Method ReM X
Move Method MoM X
Pull Up Method PUM X
Push Down Method PDM X
Extract Class ExC X
Extract Subclass ExS X
Extract Superclass EtS X
Move Class MoC X
Rename Class ReC X
Extract Interface ExI X

Total 16 10 8

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 100

Table 4.3: Code Smell Types analyzed in this Study
Code Smell Type ID Definition

Method scope
Brain Method BrM Method overloaded with software features
Dispersed Coupling DsC Method that calls too many methods
Divergent Change DiC Method that changes often with other

ones
Feature Envy FeE Method “envying” other classes’ features
Intensive Coupling InC Method that depends much on other ones
Long Method LoM Too long and complex method
Long Parameter List LPL Too many parameters in a method
Message Chain MeC Too long chain of method calls
Shotgun Surgery ShS Method whose changes affect other ones

Class scope
Brain Class BrC Class overloaded with software features
Class Data should be Private CDP Class that overexposes its attributes
Complex Class CoC Too complex software features in a class
Data Class DaC Only data management features in a class
God Class GoC Too many software features in a class
Large Class LgC Too large class
Lazy Class LaC Too short and simple class
Refused Bequest ReB Child class rarely uses parent class fea-

tures
Spaghetti Code SpC Too much code deviation and nesting
Speculative Generality SpG Useless abstract class

Step 4: Complete Composite Computation. – We focused on the complete
composites for removing four code smells that have previous recommendations
for their removal. We then elaborated Table 4.1 that presents the recommended
composites for the removal of these code smells according to studies found
in the literature [25, 143, 171]. More details about the detection of complete
composites in the projects can be found in [193].
Step 5: (Side) Effect Analyses. – We collected the code smells introduced,
removed, and unaffected by the complete composites. Then, three authors
manually analyzed the effect of complete composites (presented in Sections 4.4
and 4.5). We focused on these complete composite types to find possible side
effects in complete composites that are commonly applied in practice. We
aimed to find the relation between the introduction of code smells and the
complete composites that removed the target code smell. We analyzed pieces of
code that were touched by composites, other code changes, the motivations of
the commits, and pull request discussions in the commits in which the complete
composites were applied. It facilitates the understanding if other code changes
could have introduced the code smell and if developers know these code smells.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 101

Step 6: Composite Validation by Experts. – We randomly select a sample of 84
(13.5%) out of 618 composites, composed of 414 refactorings, to be manually
validated by eight experts. The expert’s experience has a median of 6 years. In
our validated sample, before applying the composite refactorings, the source
code manifested 87 code smells. After the composite refactorings, the source
code manifested 115 code smells. Among the composites of this sample, 38 are
complete composites in our dataset according to our scripts.

In the manual validation, each expert received a set of composite refac-
torings analyzing the code before and code after each single refactorings, code
smells before, code smells after each composite. They answered the follow-
ing questions: (i) “Is it a complete composite for the removal of some code
smell(s)?” and (ii) “What was the intent of the developer in this commit?”.
These questions allowed us to know about the completeness of the composites,
and whether the purpose of commits was to execute refactorings.

The experts confirmed 27 (71%) out of 38 complete composites as
complete (true positive), also they considered four composites that are not
complete in our dataset as complete (false negative). They confirmed that
the other 42 composites are not complete composites (true negative), and 11
composites are false positive for complete composites in our dataset. In that
way, we have 31 complete composites according to developers (27 true positives
and 4 false negatives). These results show that our script to collect complete
composites has high accuracy (71%) and experts had a high agreement with
our definition of complete composites. We observed that false negatives are
composites that removed code smells that we are not investigating in this
study, such as Duplicated Code.

Regarding the purpose of developers during commits where these 31 com-
plete composites were identified, 19 (61%) out of 31 complete composites were
applied to support refactoring. In addition, 7 (22.5%) out of 31 complete com-
posites were applied to support refactoring and other development activities
(e.g., feature addition, bug fixing). Finally, 5 (16%) out of 31 complete compos-
ites were applied to support other development activities. These results show
that (83.5%) complete composites were applied to support refactoring, where
developers had the intent to improve the internal code structure through the
removal of code smells.

4.4
Common Complete Composites

In this section, we present the most common complete composites for
four types of code smells (Feature Envy, Long Method, Complex Class, and God

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 102

Table 4.4: Most Common Complete Composites.
ID Group F-PS (%) NPS (%) CC (%)
G1 [ExM] 122 19.74% 101 16.34% 223 36.08%
G2 [Refs. of Fine

Granularity NPS]
0 0.00% 146 23.62% 146 23.62%

G3 Other Groups 28 4.53% 51 8.25% 79 12.78%
G4 [ExC, MoM] 17 2.75% 20 3.24% 37 5.99%
G5 [MoC] 2 0.00% 29 4.69% 31 5.02%
G6 [ExM, InM] 14 2.27% 16 2.59% 30 4.85%
G7 [MoM] 9 1.46% 16 2.59% 25 4.05%
G8 [PUM, PUA] 17 2.75% 6 0.97% 23 3.72%
G9 [ExM, MoM] 7 1.13% 7 1.13% 14 2.27%
G10 [MoC, MoM] 3 0.49% 7 1.13% 10 1.62%

Total 219 35.44% 399 64.56% 618 100.00%
* CC: Complete Composites.
** Refs. of Fine Granularity NPS: Refactorings of fine granularity not
previously studied.

Class), as justified in Step 4 (Section 4.3.2). For that, we collected types of
complete composites, according to the definition of composite types presented
in Section 4.2. Then, they were grouped according to the presence of at least
one of Fowler’s previously studied refactorings [143,171], named refactorings F-
PS, along with refactorings not previously studied, named refactorings NPS.
Based on that, we investigated the frequency of complete composite types
that are formed by only F-PS refactorings versus those that are formed by
both F-PS refactorings and other NPS refactorings. For example, a subgroup
containing complete composite types formed by Extract Methods only and
another with complete composite types formed by a mix of Extract Methods
and refactorings NPS (e.g. Change Return Type). We collected these for all
groups, and ranked the most common complete composites.

Table 4.4 presents the most common complete composites. The columns
present, respectively, an identification (ID) for each group, for easier reference
along with the analysis, the name for each group (defined by F-PS refactor-
ings [143, 171]), the number of composites containing only F-PS refactorings,
the number of composites that contain at least one refactoring NPS, and the
last column presents the total number of composites for each group. Group
G2 contains only refactorings NPS. We called this group Refactorings of Fine
Granularity that are not previously studied. The existence of this group and
its ranking reveals that developers often apply minor scale refactorings to-
gether. We considered G3 as a generic group of complete composites that do
not belong to any other group, i.e., composite types that were observed only
once.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 103

Some of the common complete composites found are not described in
existing descriptions (see Table 4.1). For example, Extract Classes and Move
Methods (Group G4) are common complete composites applied by developers
but existing descriptions observed in the literature do not include them. This
leads us to the first finding of our study.

Finding 1: Some complete composites commonly found in practice are
not documented by existing descriptions. Such existing descriptions should
include these complete composites because they would better inform
developers performing refactorings.

Group G1 is composed of composites with at least two or more Extract
Methods. This group is recommended to remove Long Methods (see Table 4.1).
We can observe that the complete composites of this group are the most
common, representing 36% of the composites identified in our study. This
is in consonance with previous studies, where they conclude that in fact
Extract Methods are widely applied [143, 171]. However, in our study, we
identified a different scenario. Interestingly, developers often composed these
Extract Methods with other refactoring types that were not investigated by
previous studies. Among the 223 composites of G1, 101 were not investigated
by those previous studies (column NPS). A similar observation can be applied
to the G7 group. Previous studies have not considered these composites in
which Move Methods are applied with other refactoring types. However, as we
could observe, a combination of them is in fact used to remove code smells.
Finding 2 was derived from these observations. The implication of this finding
is that existing descriptions must be revisited to further describe possible
combinations of refactoring types. This would allow developers to better reason
on how to apply composites when aiming to remove certain types of smells.

Finding 2: Common complete composites investigated in the literature
are additionally composed with other refactoring types for better support-
ing smell removal.

In the previous paragraphs, we focused on the most common composites
found in the literature. In addition, we also performed an overall analysis
of composites not investigated in previous studies. This allows us to observe
that 399 (fourth column of Table 4.4) out of 618 complete composites have
refactoring types not considered as part of complete composites. This broader
analysis leads to the third finding below:

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 104

Finding 3: Among all complete composites, 64% include refactoring types
that were not previously investigated. Existing descriptions of complete
composites may be extended to recommend composites with these refac-
toring types.

Regarding the group G3, we have not identified any pattern. This was
expected because this group has only composites with only two or fewer
instances of different types. In other words, they are not representative
to conclude their effect on code smell removal. We know that descriptions
should be constantly updated through empirical studies analyzing the use of
composites in practice. Our study has that focus, aimed at investigating what
developers commonly do in their projects. We observed that what is common in
practice is not aligned with existing descriptions [25,143,171] (Findings 1 and
2). The descriptions assist developers on how to apply complete composites.
Our study shows that some developers do not strictly follow the composites
described in existing descriptions, while they are also misinformed side effects
of those recommended composites. Note that informing complementary or
missing, even if simple, refactoring types such as a Change Return Type can
either assist tool developers to either detect those types or warn developers to
not miss those refactorings.

4.5
(Side) Effects on Code Smells

In this study, we focused on analyzing the (side) effects of two types
of complete composites that are previously [143, 171] and frequently recom-
mended to remove the code smells analyzed in this study. In addition, we ana-
lyzed the (side) of complete composites formed by these refactoring types and
refactorings not previously studied, aiming to find differences between these
different combinations. We performed manual analyses (detailed in Section 4.3)
to understand if the (side) effects were caused by the complete composites,
find possible causes for them, and recommendations to remove or minimize
these side effects. We discussed the main results of this quantitative analysis
and manual analyses in this section. Additionally, more details about that are
available on our website [193].

Figure 4.2(a) presents the effect of complete composites formed by only
Extract Methods. This group of composites is recommended to remove Long
Methods. Figure 4.2(b) presents the effect of complete composites formed
by Extract Methods and refactorings not previously studied. In our manual
analyses, we observed that they are related to the introduction of the same

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 105

code smells types. The sum of side effects of Figures 4.2(a) and 4.2(b) are:
64 (7 + 57 = 10%) out of 631 (72 + 559) that introduced Feature Envies
(FeE), 34 out of 126 (26%) introduced Intensive Coupling (InC), and 217 out
of 328 (66%) introduced Long Parameter Lists (LPL). One possible cause for
the cases in which the Long Methods (LoM) were not affected – 100 out of 256
(39%), is that the developer could not be applying the necessary number of
Extract Method refactorings. Thus, the methods that were originally extracted
continued being too long. In the case of the propagation of Feature Envies, a
possible cause is that the code that was extracted already had that code smell.
Therefore, when that code was extracted, that smell was moved alongside
the method. A possible solution for this problem would be to apply more
Extract Method (s), Move Method(s)), targeting the removal of the smelly
code. The extraction of many methods that implement the same concern also
increased the coupling between methods, introducing the Intensive Coupling
smell. Extract Methods and refactorings, such as Merge Parameter and Replace
variable, can have a certain contribution to remove Long Methods (16 out of
222 = 7%). This can be justified because these refactorings contributed to the
decrease of statements in the affected method(s), decreasing the number of
lines in a long method.

We have found real examples of composites leading to the unintentional
addition of side effects. One example of such side effect is in a set of commits
from ElasticSearch [185] and Presto [186]. Developers applied Extract Methods
in the methods affected by Long Method according to the existing recommen-
dations [25, 143]. However, the refactorings applied led to the creation of new
methods – with a high amount of parameters in their signature – thus intro-
ducing Long Parameter List. This smell could be prevented by the application
of the Merge Parameter refactoring, which would combine interrelated param-
eters into an appropriate object. Other code smells were also affected by this
group, as we can see in Figures 4.2(a) and 4.2(b). However, we were not able
to find a direct relation between this group and other code smell types. We
believe that those code smells may have been affected by other code changes.

Finding 4: About 36% of complete composites formed by Extract Meth-
ods have introduced Feature Envies and Intensive Couplings when they
remove Long Methods. Unfortunately, developers degrade the software in-
ternal quality by creating unnecessary high coupling.

Figure 4.2(c) presents the effect of the group of complete composites
including Move Methods only. This group is recommended for the removal
of God Class or Complex Class smells. We observed that this group is mainly

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 106

associated with the removal of 23 out of 48 (48%) Feature Envies. We manually
observed that these removals happen because those composites often moved
methods that are fully envious to more appropriate classes. These types of
composites also can introduce Feature Envies – 8 out of 48 (17%). Developers
moved the envious methods to inappropriate classes, consequently creating
new cases of Feature Envy. On other code smell types, we did not find a direct
relation between the application of these composites and their effect. Those
code smells could have been affected by other code changes.

Finding 5: Almost half (48%) of Feature Envy smells were removed
when the composite Move Methods were applied. This information is
not documented by existing descriptions. This recommendation is not
documented by existing descriptions [143,171]. These descriptions can alert
developers and practitioners how to remove Feature Envies in methods that
are fully envious.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 107

CoC DsC FeE InC LoM LPL MeC SpC
Code Smell Type

0

5

10

15

20

25

30

35
Nu

m
be

r o
f C

od
e

Sm
el

ls

7 6

29

10

20

7

1

8

4 3

7 8 7

13

3 2

6
4

36

6
8 8 7

3

Removed
Added
Not Affected

4.2(a): Extract Methods Only

CoC DiC FeE InC LoM LPL MeC ShS SpC
Code Smell Type

0

50

100

150

200

250

300

Nu
m

be
r o

f C
od

e
Sm

el
ls

8
27

209

28

114

24
48

11 41
23

57

26 16

204

93

7 410

41

293

48

92
73

177

9 3

Removed
Added
Not Affected

4.2(b): Extract Methods and Not Previously Studied Refactoring Types

FeE LoM LPL MeC
Code Smell Type

0

10

20

30

40

50

Nu
m

be
r o

f C
od

e
Sm

el
ls

23

13

3 1

8

0

38

52

17

5 5
10

Removed
Added
Not Affected

4.2(c): Move Methods Only

DiC FeE InC LoM LPL MeC ShS
Code Smell Type

0

50

100

150

200

250

Nu
m

be
r o

f C
od

e
Sm

el
ls

26

199

29

98

37 42

1018

49
23 14

229

122

7

36

257

46

73 65

161

10

Removed
Added
Not Affected

4.2(d): Move Methods and Not Previously Studied Refactoring Types

Figure 4.2: Side-Effect of Common Complete Composites

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter4.
Look

Ahead!Revealing
Com

plete
Com

posite
Refactorings

and
their

Sm
elliness

Effects
108

Table 4.5: Catalog of Recommendations with Side-Effects
Complete18 Existing

Smells
Target
Smell Reference Removed

Smell Side-effect Possible Cause of Side-effect Recommendation

ExM(s), MoM(s) LoM, FeE FeE [4]. [14] FeE, LoM Introduction
of
FeE(s)

1. The envious code was ex-
tracted and moved for the ex-
tracted methods, creating new
envious methods.
2. The methods were moved to
inappropriate* classes, thus the
method is an envious method to
those classes.

Apply Extract Methods, if nec-
essary, to separate concerns. Pa-
rameterize Variables or Merge Pa-
rameters from extracted meth-
ods if the variables are used be-
tween the concerns. Move the en-
vious methods to the appropri-
ate** classes

ExM LoM, FeE LoM [4] [13] LoM Introduction
of
FeE(s)

1. The envious code was ex-
tracted and moved for the ex-
tracted methods, creating new
envious methods.

Apply Extract Methods, if nec-
essary, to separate concerns. Pa-
rameterize Variables or Merge Pa-
rameters from extracted meth-
ods if the variables are used be-
tween the concerns. Move the en-
vious methods to the appropri-
ate** classes

ExM(s) LoM LoM [4] [13] LoM Introduction
of
LoM

1. The developer could not be
applying the necessary number
of Extract Method refactorings,
the methods that were extracted,
they continued being too long.

Extract more methods from long
methods or apply refactorings
NPS (such as Merge Parameter,
Replace Variable, Change Return
Type) to contribute to the de-
creasing of statements in the long
method(s).

ExM(s) LoM LoM [4] [13] LoM Introduction
of
LPL

1. The variables of the source
method were transformed in an
excessive number of parameters of
the target methods.

Apply Merge Parameter on two
or more parameters of the target
method.

MoM(s) FeE FeE This study FeE – – This composite may be applied
when the method was fully***
envious, then the developer can
move the method fully to the ap-
propriate** class

* Inappropriate classes means classes that were not according to the responsibility of the method.
** Appropriate classes mean classes that were according to the responsibility of the method.
*** Method fully envious is a method in which most of the calls in this method are calls for other classes.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 109

ExM: Extract Method

MoM: Move Method

Refactoring Types Code Smell

 Feature Envy

AccessLogFilter AccessLogData

accessLogData()

 Feature Envy 1

invoke()

buildALD()

 Feature Envy 1

Ci+1 Ci+j

MoM: Move Method

Refactoring Types Code Smell
Feature Envy

AccessLogFilter AccessLogData

accessLogData()

 Feature Envy 2

invoke()

buildALD()

ExM1
PaV1

Ci+z

FeE: Feature Envy AccessLogData

buildALD()

acessLogData()

setPort(context)

invoke()

AccessLogFilter

setHost(context)

MoM

Refactoring Types

ExM2
PaV2

ExM: Extract Method

PaV: Parameterize Variable

Class Method Refactoring Applied

Figure 4.3: Solution of the Motivating Example

Figure 4.2(d) presents the effect of composites formed by Move Methods
and refactorings not previously investigated [143, 171]. This type of complete
composite can be related to the introduction of Long Parameter List (LPL)
– 229 out of 331 (70%). In that case, we observed that developers applied
the Add Parameters on methods that were moved, introducing a long list of
parameters on these methods. We expected that these complete composites
could have removed Message Chains (42 (13%) out of 325 Message Chains).
However, in our manual analysis, we did not find how these refactorings could
have helped to remove this code smell directly or indirectly. On other code
smell types, we did not find causes to justify them as side effects of these
complete composites.

Our findings reveal that developers tend to not solve the structural
problem completely when they apply large-scale refactorings. They remove
the target smell but introduce other code smells. This can happen because
it is challenging to solve large structural problems, and developers need to
decide how to combine refactorings to remove more than one code smell.
This is an alert to the literature that investigates more solutions (composite
refactorings) to solve large structural problems. From our results, we created
a more detailed catalog of complete composites (Table 4.5). The catalog
indicates the complete composite, the target smell, the existing smells before
the application of composite, the side-effects, their possible causes of complete
composites, and recommendations to minimize or remove these side-effects.
This catalog can be used as a suggestion to improve the existing descriptions
of complete composites, removing more than one code smell. It can help
researchers, developers, and practitioners to identify scenarios in which each
complete composite can be applied and how to minimize its side effects. Our
catalog also can be useful for existing tooling support for refactorings [39,222].

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 110

These tools can recommend complete composites. In addition, the tools can
inform about the side effects and allow the developer to choose (i) the complete
composite which may be applied, or (ii) the side effects to be minimized or
removed, or (iii) if the complete composite may be ignored. These decisions
may be according to the goal and context of developers if they are aiming to
improve the code structure.

Figure 4.3 presents the solution of the motivating example (Section 4.2.4)
according to our catalog. We aim to demonstrate from this real example the
potential of our catalog and to have a certain acceptance of some developers.
We submitted two pull requests following our catalog to remove the Feature
Envies to verify if developers would accept the solutions of the catalog. In the
first pull request (in the commit ci+2) [182, 183], we applied a Move Method,
moving the buildALD method to the AccessLogData class because we observed
that this method called seven times methods of the AccessLogData class.
Thus, this method was highly dependent on that class. This pull request was
accepted. Developers did not answer why that refactoring was not applied
previously, but we can hypothesize that developers did not observe that
the method was envious. In the second pull request, (in the commit ci+3)*,
we aimed to remove the Feature Envy of the accessLogData method in
the AccessLogData class. In that case, this method calls four times the method
of the RPContext class, and those calls involved many responsibilities related to
set Port and to set Host. We then applied two Extract Methods to separate these
responsibilities and applied two Parameterize Variable, adding a parameter of
the RPContext class to avoid many calls of the methods of that class. The
pull request was still open. We aim to observe if developers have an interest
in the minimization of the side-effect when they applied complete composites.
We submitted eight pull requests to validate our catalog, three pull requests
were accepted, four are open, and one was rejected.

4.6
Threats to Validity

On detection of single refactorings, we used RefMiner 2.0 [194] because
it has high accuracy, and its commonly used in the literature [8, 48]. Also,
RefMiner 2.0 already ignores merging commits and treats refactoring mask-
ing [194]. On squash commits, we observed that the time between commits is
short (2 weeks on average), indicating developers often refactor similar parts
(composites). On code smell detection, we applied the Organic tool. This tool
has detection strategies with high accuracy: 72% precision and 81% recall on
average [4]. Aimed at detecting composite refactorings, we used a heuristic

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 111

proposed by Sousa et al. [171]. This heuristic allows us to capture composites
that involve multiple classes and to understand the effect of these composites
on these classes. One author wrote scripts for computing complete composites,
and two authors double-checked these scripts, thereby reducing the manual
bias and errors.

We extended the subset of Fowler’s refactoring types investigated by
previous studies [143, 171]. This allows us to mitigate the threat to capture a
limited number of refactorings as previous studies [143, 171]. On the RQ2, we
have a threat that code smells can be introduced or not affected due to other
code changes. Aiming to mitigate this threat, we performed a manual validation
with 8 developers with 84 composites of our dataset. These developers analyzed
which composites removed the code smell (as described in Section 4.3). In our
manual validation, we also observed how many complete composites can help
to add or propagate existing smells. We observed 10 complete composites that
helped to propagate existing smells, and 22 complete composites that have
introduced smells. Another threat is that the side effects observed have been
removed in later commits. We submitted eight pull requests for the current
version of some projects (as mentioned in Section 4.5). We observed the side
effects introduced by complete completes are still present in software projects.
In our work, the notion of “code smell removed completely” was based on rigid
thresholds of code smell detection tools [48]. Aimed to mitigate this threat,
in the manual validation, we evaluated whether developers agree with the
thresholds of code smell detection tools, considering that the code smells were
removed completely (as described in Section 4.3).

Our focus was on performing a detailed analysis, instead of a higher
smell type coverage, on selected smells that are shown to be the most related
to developers’ concerns [8,73]. We cannot claim generalization, but we analyzed
projects with different sizes, domains, and all key findings were uniform [193].
Our understanding is not sensible or realistic at this point (when there is no
study about the topic) to favor or even observe generalizability (in detriment
to a first in-depth analysis per system) of a problem that is quite subjective
(code smelliness) and project dependent. We claim the topic requires firstly a
reliable characterization of the phenomenon in a specific set of projects, the
focus of our study.

4.7
Conclusion

We investigated (i) what are the most common complete composites, and
(ii) the (side) effects of complete composites on code smells. We collected 618

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 4. Look Ahead! Revealing Complete Composite Refactorings and their
Smelliness Effects 112

complete composites from 20 software projects. Our results indicated that
64% complete composites include refactoring types not covered by previous
studies [143, 171]. Almost half (48%) of Feature Envy smells were removed
when Move Methods were applied. These results suggest existing descriptions
of complete composites should be either revisited or enhanced to explicitly
include side effects. We present a catalog of complete composites with details
about side effects. It can be useful to improve existing tooling support for
refactorings. In future works, we aim to investigate the side effect of more
composite types and interview more developers on our catalog.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

5
Enhancing Recommendations of Composite Refactorings
based in the Practice

In Chapter 4, we explored (i) what are the most common complete com-
posites, and (ii) the (side) effects of complete composites on code smells. Our
results indicated that 64% of complete composites include refactoring types
not covered by previous studies [143,171]. Almost half (48%) of Feature Envy
smells were removed when Move Methods were applied. We then extracted five
recommendations of complete composites with details about their possible side
effects. However, these recommendations have main three limitations.

Firstly, the five recommendations are not well-detailed, concerning which
refactoring types should be applied given certain circumstances. For instance,
one of the recommendations indicate the application of Extract Methods to-
gether with other fine-grained refactorings, such as Change Parameter Type
or Change Return type, to remove a Long Method. However, the recommen-
dation does not detail which and when each fine-grained refactoring should
be applied. For instance, the developer can apply Change Parameter Type or
Change Return type with Extract Method to decrease a method size. However,
when should a Change Parameter be applied? Should it be applied when the
method has many parameters? Secondly, we did not suggest for developers
complete composites that can remove code smells without inducing side ef-
fects. Finally, the third limitation is that we did not evaluate the developers’
perceptions of our five recommendations.

Aiming at mitigating these limitations, we elaborated a study presented
in this chapter to improve our composite recommendations addressing our RQ3

(Section 1.3.1). In this chapter, we amplified our dataset in terms of the number
of software projects and composite refactorings. We aimed at exploring what
fine-grained refactorings are frequently applied and when they contribute to
complete composites. Then, we can enhance our composite recommendations
to better guide developers on applying each complete composite and alerting
them on potential side effects. In this study, we also asked developers to
evaluate our composite recommendations after the catalog improvements. The
content of this chapter is going to be submitted to a international conference.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 114

5.1
Introduction

Producing software projects with high design quality is the goal of every
company [245, 246]. However, due to extensive maintenance and evolution in
those projects, the internal software quality usually degrades [207, 247, 248].
Internal quality problems can be indicated by the presence of code smells [25].
A code smell is a poor code structure in a software project [25]. Developers
must identify and remove code smells as soon as possible [25,249]. A well-known
and widely used practice to deal with code smells is code refactoring [198].
Code refactoring intends to improve the code structure of the software [25].
Developers apply code refactoring aiming at fully removing code smells,
even when refactorings are applied with non-refactoring changes, e.g., feature
addition [60].

Despite its benefits, refactoring is a non-trivial activity, because develop-
ers need to apply at least two steps for refactoring. In the first step, smelly code
have to be found [250]. In the second step, developers often have to combine
refactorings [46, 143] through composite refactorings. A composite refactoring
(composite, for short), consists of two or more interrelated single refactor-
ings [76, 171]. The application of composites is a complex and error-prone
task, as the smelly code must often be modified in multiple parts by different
refactoring types combined [171]. To make matters worse, studies have indi-
cated that composites are generally applied manually [35, 46] and eventually
combined with other code changes [46, 171]. Yet, studies indicate that only
10% of composites could remove code smells entirely [143, 171]. In the other
words, developers spend time and effort applying composite refactorings, but
rarely composites fully remove code smells. We refer here to a composite that
fully remove smells as a complete composite refactoring [77].

Researchers have investigated approaches to contribute to refactoring ap-
plications for many years [251]. Recent studies indicated limitations regarding
existing knowledge about refactoring, and cataloged composites that can fully
remove code smells [77,171,227]. Catalogs are useful to guide developers (e.g.,
to effectively remove smells) and tool builders (e.g., to build tools that rec-
ommend effective refactorings). Also, catalogs can help developers to avoid
re-refactoring the code later, decreasing the development effort. In fact, the
lack of a comprehensive catalog may be one of the reasons why developers of-
ten need to re-refactor in the practice [10]. Thus, it is important that a catalog
describes complete composites that are successful in practice. The knowledge
empirically extracted from existing software projects can demonstrate to de-
velopers that it is possible to perform successful composites in their routine.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 115

However, the existing catalogs are not aligned with the current software de-
velopment practices and have certain limitations [77,171,227].

The first limitation of existing catalogs is that their recommendations are
not well-detailed. They overlook the combination of some of the refactorings
types that can be effective to remove a certain smell type. For instance,
Bibiano et al. [77] recommend Extract Methods and fine-grained refactorings
to remove the Long Method smell. However, they did not detail which fine-
grained refactorings can be applied and how these refactorings can help to
remove a Long Method. The second limitation concerns the side effects of the
recommendations. Bibiano et al. also reported that complete composites may
lead to side effects, such as the introduction or propagation of code smells.
Despite indicating side effects, the authors have not performed an in-depth
empirical analysis of side effects for complete composites. Another example can
be found in the catalog of Brito et al. [227], where there is a recommendation
for using Pull Up Methods to create a single and more general method in the
superclass, leveraging code reuse. However, Brito et al. do not alert developers
about the side effects of those Pull Up Methods.

The goal of our study is to enhance recommendations of composite refac-
toring based on the practice and properly support developers when applying
refactorings. We aim to extend existing catalogs of complete composite refac-
torings that overcome the limitations mentioned above, and assess our en-
hanced recommendations with developers. To achieve this, we conducted a
mixed-method (i.e., repository mining + interviews) and large-scale study on
42 open and closed-source Java projects. From the projects, we mined 31,066
composites (composed of 250,172 single refactorings) from which we identi-
fied 1,397 complete composites that are used to remove 19 different types of
code smells. Then, our enhanced catalog was shown and used by 21 developers
during interviews.

We identified the most frequent combinations within complete composites
applied in the practice, and the side effects of those complete composites. These
results were the basis to create our catalog of composite recommendations. Our
results show that (but not limited to):

1. Developers frequently combine Change Variable Type or Change Pa-
rameter Type with other refactoring types, when extracting methods, to fully
remove Long Methods, Feature Envies, and Duplicated Code. Interestingly, in
our sample, we observed that 45% of these employed composites introduced
Brain Methods as a side effect because many variables were modified. Based
on that, we empirically identified that complete composites formed of Extract
Methods and Change Parameter Types that can fully solve 49% of those same

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 116

smells without introducing Brain Methods.
2. Extract Methods and Move Methods are commonly recommended to

remove Feature Envy. However, we observed that 42% of those complete
composites tend to introduce Intensive Couplings, which is not reported
in existing recommendations. Thus, we identified two recommendations to
alleviate the introduction of Intensive Couplings, while explicitly describing
this side effect in our enhanced catalog.

3. All 21 developers (100%) agreed with our recommendations to remove
the smells proposed in this study. We observed that seven (33%) developers
were unaware of side effects while proposing their solutions to remove code
smells. After the proposal of their solutions, 18 (85%) developers reported
that their refactoring solutions could lead to worse side effects without our
recommendations. These results confirm that there is a need in practice
for recommendations to alert developers about the side effects of composite
refactorings.

Our study contributes to the practice by providing a catalog with
concrete recommendations to guide developers to apply complete composites.
Also, our catalog describes potential side effects, allowing developers to make
more informed decisions on how to refactor their code. Finally, our findings
can be a source of information for tool builders and researchers to create
tools that adhere to the actual practice. Existing state-of-the-art refactoring
recommenders [39,204] neglect fine-grained refactorings, which were frequently
present in complete composite recommendations.

5.2
Background and Problem Statement

This section describes the main concepts, and existing limitations regard-
ing complete composite refactorings.

5.2.1
Composite Refactoring (or Composite)

A single refactoring rarely removes a code smell [8]. Developers need
to apply composite refactorings to eliminate the incidence of several code
smell types [225]. A composite refactoring is a set of interrelated refactorings,
defined as c = {r1, r2, ...rn}, where each r is a single refactoring and
i is an identifier for each refactoring applied [171]. A composite c can be
formed of the same refactoring type, or a combination of different refactoring
types [12, 143,171,172,203,226].

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 117

Due to the complexity of identifying whether a refactoring is part of a
composite, recent studies proposed heuristics to detect composites [143, 171].
Several studies [76, 77, 172, 204] have used the range-based heuristic [171] for
composite detection. The heuristic considers a composite as those refactorings
applied by the same developer and affecting the same code elements (i.e., the
refactoring range). In that way, as the same developer refactor the same code
elements, we can consider that this developer has a common goal to refactor
that set of code elements. The reliability of this heuristic was demonstrated
in [76,77,171].

Different studies indicate that developers often apply composites man-
ually [143, 171, 225]. Besides, we found evidence that composites frequently
result in undesirable side effects [143, 171]. Therefore, having in-depth knowl-
edge about composites is needed to support developers when applying refac-
toring. However, we observe that (i) there is a lack of knowledge on the best
alternatives of composites for effectively removing code smells, and (ii) there
is a misguidance of automated support for developers applying composites.
Aiming at fulfilling these gaps, we investigated the completeness of composite
refactorings, as described in the next subsection.

5.2.2
Completeness of Composite Refactorings

Recent studies recommend composites to remove a particular type of
code smell [77]. When a composite is recommended to remove one or more
code smell types, each code smell is considered a “target” of this composite [77].
For example, a recent study recommends applying Extract Method(s) combined
with Move Method(s) to remove Feature Envy [171]. Thus, the Feature Envy
type is the target smell in such cases. When the target smell is fully removed, we
can consider that the composite refactoring was complete on the removal of the
smell, otherwise the composite was incomplete. Completeness of a composite
refactoring (i.e., composite completeness) is a characteristic given to those
composites able to achieve the full removal of code smells [77], as defined as
follows:

Completeness of composite refactoring: Considering ri as a single
refactoring, and c is a composite refactoring. For each ri ∈ c, ri touches in a
code element e, such as a method or/and class. We then have ∀e that has a
target code smell s, and TOTALBEF ORE(s) is the number of all target code
smells before the application of a composite refactoring c, TOTALAF T ER(s)

is the number of all target code smells after the application of c. A compos-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 118

ite refactoring is complete when TOTALAF T ER(s) < TOTALBEF ORE(s).
Otherwise, an incomplete composite refactoring is when none code smell
target was removed, thus TOTALAF T ER(s) >= TOTALBEF ORE(s).

An in-depth empirical investigation of the completeness of composites
is necessary. Developers often spend time and effort applying composite
refactorings to combat code smell incidences. However, there is no empirical
knowledge evidencing the successfulness of these composites. In other words,
whether they have fully eliminated code smells.

5.2.3
Fine-Grained Refactorings

A recent study mentioned that 64% of complete composites include
refactorings of fine granularity [77]. A refactoring of fine granularity, or fine-
grained refactoring (FGR), is a minor code transformation on variables or
attributes. This transformation can be a change of variable type, a merge
between two or more variables. A refactoring of large granularity, or coarse-
grained refactoring (CGR), is a code transformation that involve method(s)
or class(es). Common examples of CGR are Extract Method, Move Method,
and Extract Class. In this study, we considered the term “coarse-grained” to
better align with the term “fine-grained”. Table 5.1 shows the refactoring types
classified in FGR and CGR. We used this classification of refactoring types
because although there are many fine-grained types of refactorings, they are
often ignored by studies of composite refactorings, except [77].

5.2.4
Existing Limitations about Completeness

Table 5.2 summarizes existing recommendations, presenting the complete
composite that may be applied, the existing smells before the application of
composite, the target smell that may be removed, the expected effect after
the application of composite, and the side effects of complete composites.
However, these recommendations are quite limited. The first limitation is
that the existing recommendations are not well-detailed, mainly about which
refactoring types may be applied and when each recommendation may be
applied. Bibiano et al. [77] suggests that Extract Methods and FGRs may
remove a Long Method. However, they do not detail which FGRs may be
applied and how these refactorings in conjunction with an Extract Method
help to remove a Long Method.

The second limitation concerns the insufficient description about the side
effects of existing recommendations. For instance, Brito et al. [227] recommend

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 119

Table 5.1: Classification of Refactoring Types
Fine-Grained
Ref. (FGR)

Coarse-Grained
Ref. (LGR)

Move Attribute Rename Variable Inline Method
Pull Up Attribute Rename Parameter Rename Method
Push Down Attribute Replace Variable Move Method
Rename Attribute Merge Variable Pull Up Method
Replace Attribute Change Return Type Push Down Method
Extract Attribute Change Parameter

Type
Extract Class

Merge Attribute Change Variable Type Extract Subclass
Split Attribute Merge Parameter Extract Superclass
Extract Variable Split Variable Move Class
Inline Variable Replace Variable With

Attribute
Rename Class

Parameterize Variable Extract Interface
Split Parameter Extract Method

Total: 22 Total: 12

Pull Up Methods to create a single and more general method in the superclass,
achieving code reuse. However, they do not alert developers about the side
effects of Pull Up Methods in practice. An example of a side effect is that
when methods with Feature Envy or Long Method are refactored, have these
smells are propagated to the superclass after the Pull Up Methods. Therefore,
we need address these limitations to guiding developers on how and when to
apply each recommendation.

Table 5.2: Existing Recommendations of Complete Composites
Complete Composites Target Smell Effect Side effect
Extract Methods, Move
Method(s) and Fine-Grained
Refactorings [77]

Feature Envy Removal of Feature
Envy, Long Method

Introduction of Feature
Envy(s)

Extract Method and Fine-
Grained Refactorings [77]

Long Method Removal of Long
Method

Introduction of Feature
Envy and Long Param-
eter List

Move Method(s) [77] Feature Envy Removal of Feature
Envy

-

Move Method(s) [227] - Improvement of cohe-
sion and coupling

-

Extract Methods, Move
Method [227]

Duplicated
Code

Promotion of reuse and
removing duplication

-

5.3
Motivating Example

In this section, we present a real example of composite refactoring. This
example can help on better understanding the concepts related to composite
refactoring, completeness and side effects. In addition, we can show how
existing limitations of the literature can affect the practice. For the motivating

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 120

example, we rely on a code fragment of the Apache Ant project, in which
we identified the incidence of four different code smell types in the same
method called copyWithFilterSets, shortly copyWFS. The method copyWFS
is responsible for copying a resource based on several filters. This method
has four code smells: Long Method, FeatureEnvy, Duplicated Code, and Long
Parameter List. The developer applied a composite refactoring aiming to
remove two code smells (Long Method and Duplicated Code); thus, they are
the target code smells. This method was refactored through the commit
b7d1e9bde44c [228], represented in Figure 5.1. The left side of the figure shows
the method before the composite refactoring, showing the four code smells in
the method (highlighted in red). The right side illustrates the method after
the composite refactoring.

The smells Long Method and Duplicated Code are expressed by the
several lines of duplicated code addressing the parameter filterChains in the
method copyWFS. The method copyWFS had some code fragments duplicated,
which are related to processing the parameter filterChains, with the method
copyWithFilterChainsOrTranscoding (or copyWFCT) from the same class.
The excessive duplication resulted in an unnecessarily complex and too-long
method. The incidence of Feature Envy is due to the recurring calls to external
methods from the class ChainHeaderHelper. Finally, the method signature is
composed of eight parameters, indicating the incidence of a Long Parameter
List.

class ResourceUtils{

copyWFS(...,Vector filterChains)

 …
}

class ResourceUtils{

copyWFS(...,Vector<FilterChain>
filterChains)

filterWith(...)

…
}

Long Method
Duplicated Code
Feature Envy
Long Parameter List

Extract
Method

Change
Parameter

Type

Figure 5.1: Code Smells Present in the Apache Ant Project on Commit
af74d1f6b882

In the refered commit, the developer opted for applying a composite refac-
toring formed of Extract Method and Change Parameter Type. These refactor-
ing modifications are represented in green in the right side of the Figure 5.1.
With the Extract Method, the developer created a method called filterWith.
The Change Parameter Type was applied over the parameter filterChains

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 121

from the method copyWFS. In this case, the developer changed the original data
type of FilterChains to Vector<FilterChains>. Consequently, these refac-
torings fixed the incidence of both Long Method and Duplicated Code in the
class. The change of the parameter type led to the removal of some duplicated
lines. Besides, both methods copyWFS and copyWFCT are using the extracted
method now. However, the composite applied did not fully solve the incidence
of Feature Envy once this smell was moved to the extracted method. Besides,
one may see the method copyWFS remains with a Long Parameter List.

From this example, we can observe that the developer applied a composite
in a method with multiple instances of code smells. According to the definition
of completeness presented in Section 5.2.2, the composite was complete because
the composite removed the two target smells. However, other two code smells
remained in the code (Feature Envy and Long Parameter List). Unfortunately,
developers did not became aware on the propagation of Feature Envy and
the permanence of the Long Parameter List. Circumstances such as this are
often found in the practice. The existing literature did not provide sufficient
knowledge for developers about the occurrence of multiple code smells on
the same code element. The literature needs to guide developers on spotting
the existence of multiple code smells and performing the complete removal
of multiple code smells. Existing solutions should at least alert developers
on the propagation or permanence of code smells after the application of a
composite refactoring. Without that, developers rely only on their intuition
and experience for analyzing and deciding which refactoring strategies they
should follow. Consequently, developers may have more difficulty identifying
the best options for composite refactorings considering their impact on the
code structure, including its side effects.

The technical literature proposes some recommendations to guide devel-
opers to remove certain smell types [77, 227]. For example, Bibiano et al. [77]
and Chavez et al. [10] recommend combining Extract Method andMove Method
for removing Feature Envy and Long Method. However, these studies not take
into account side effects when applying these refactorings in a complex scenario
that includes other smell types. For example, the application of Extract Method
may be effective to mitigate or remove the Long Method. However, the creation
of a new method may propagate other smells, such as the FeatureEnvy and the
Long Parameter List, and the new method can inherit bad coding practices,
such as the excessive number of parameters and external method calls, from
the source method. This issue may especially occurs when the developer is un-
aware of the incidence of other smell types in the source code analyzed. We can
see that the recommendations should to be aligned with the practice. This lack

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 122

of alignment is because existing recommendations focus on the removal of one
code smell, but in real software projects there are multiple instances of code
smells on the same code element. Thus, it is necessary to investigate concrete
cases in which code smells are introduced, as in the example discussed above,
aiming at the improvement of recommendations for composite refactorings.

5.4
Study Settings

Our mixed-method study aims at enhancing and assessing recommen-
dations of complete composite refactorings. To accomplish such goal, we first
propose a catalog of composite recommendations (see Section 5.5.3) that fully
remove code smells in light of the existing literature [77, 227] and the repos-
itory mining of open and closed-source projects. Aiming at conceiving this
catalog, we merged the previous empirical-driven recommendations [77, 227]
and the current knowledge that we extracted from complete composites ap-
plied in 42 real software projects. With respect to the latter, we mined the
more frequent complete composites applied in those projects, and improved
the existing recommendations (Section 5.2.4). Next, we evaluated our catalog
of recommendations according to the developers’ perceptions. We describe our
research questions (RQs) and the steps of our study in what follows.

RQ1: What are the most frequent refactorings in complete composites
in practice? – RQ1 aims at identifying and analyzing the most frequent
refactoring combinations in complete composites. We consider two aspects:
(i) the frequency in which each combination appears as a whole; and (ii)
the fine-grained refactoring types that most appears in frequent complete
composites (as motivated in Section 5.2.4). Additionally, we conducted an
analysis to understand the actual contribution of each refactoring type (e.g.,
Extract Method and Move Method) to the introduction or removal of code
smells. From these observations, we can enhance existing recommendations
and suggestions.

RQ2:What are the side effects of the most frequent complete composites?
– Complementary to the previous research question, RQ2 aims at identifying
the side effects of the most frequent complete composites in terms of intro-
duction, removal, and prevalence of code smells. Additionally, we analyze the
propagation of code smells, i.e., when an existing code smell is moved to other
parts of the source code. By answering RQ2, we can understand the side effects
of the most frequent complete composites. This understanding is of paramount
importance, otherwise, we may misguide developers on refactoring.

RQ3: To what extent are the recommendations of complete composite

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 123

refactorings perceived as useful for developers in practice? – RQ3 aims at pro-
viding and documenting a catalog of recommendations of complete composites
to guide the developers in their preventive maintenance activities. To this end,
we combine the empirical recommendations provided by prior studies [77,227]
and new ones extracted from the knowledge obtained in the previous RQs. For
that, we interviewed developers to know how and when they would use those
recommendations.

5.4.1
Study Steps and Procedures

Figure 5.2 illustrates our study steps and dataset. Study steps are mainly
related to the data collection and analyses. The replication package is
available in [229].

GitHub

42
projects

Software
Projects
Selection

Single
Refactoring
Detection

 250,172
 refs

Composite
Refactoring

Computation
Code smell
Detection

Complete
Composite

Computation

 31,066
composites

19 code
smell
 types

1,397
 complete

composites

Complete
Composites

Analysis

Catalog of
Composite

Recommendations

Side Effects
Analysis

Dataset
Validation

Interview with
Developers

Figure 5.2: Study Steps

Step 1: Software Project Selection. We selected 42 software projects
according to the following criteria: (i) the software projects must be imple-
mented using Java due to the availability of robust tools for software analysis;
(ii) the software projects must use Git as the main version control system
because state-of-the-art tools for refactoring detection work on Git projects
only; and (iii) the software projects must have been investigated by at least
one related study regarding refactoring [77, 171, 172, 227]. This last criterion
was considered because related studies have already confirmed those software
projects have occurrences of composite refactorings and code smells. Thus, our
dataset can be enriched with by existing validated datasets from these studies.

Step 2: Single Refactoring Detection. For detecting single refactor-
ings applied on software projects, we used the RefMiner 2.0 tool [256] due to
its high precision and recall levels (98% and 87%, respectively). The tool also
supports a total of 52 refactoring types [173]. In this study, we considered 34
refactoring types that are applied in the code scope of attributes, methods,
and classes, similarly to [77]. We selected these 34 refactoring types because

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 124

Table 5.3: Classification of Refactoring Types
Fine-Grained
Ref. (FGR)

Coarse-Grained
Ref. (LGR)

Move Attribute Rename Variable Inline Method
Pull Up Attribute Rename Parameter Rename Method
Push Down Attribute Replace Variable Move Method
Rename Attribute Merge Variable Pull Up Method
Replace Attribute Change Return Type Push Down Method
Extract Attribute Change Parameter

Type
Extract Class

Merge Attribute Change Variable Type Extract Subclass
Split Attribute Merge Parameter Extract Superclass
Extract Variable Split Variable Move Class
Inline Variable Replace Variable With

Attribute
Rename Class

Parameterize Variable Extract Interface
Split Parameter Extract Method

Total: 22 Total: 12

a recent study [77] that investigated about complete composites used these
types. This study [77] showed that fine-grained refactorings are often applied
in complete composites. Thus, we also explored the application of fine-grained
refactorings in complete composites. Table 5.3 summarizes the classification of
the 34 refactoring types in fine-grained refactorings and coarse-grained refac-
toring, as defined in Section 5.2.3.

Step 3: Composite Refactoring Computation. For the detection
of composite refactorings, we created a Java script to implement the range-
based heuristic [171]. As mentioned in Section 5.2.1, this heuristic captures
refactorings that were applied on a common set of code elements (classes
and/or methods). Thus, this heuristic fits well our study goal, as it considers
multiple code elements. Besides, the reliability of this heuristic was demon-
strated in [76, 77, 171]. More details about the range-based heuristic are avail-
able in [171]. Our script was developed in Java. Two researchers tested and
validated our script.

Step 4: Code Smell Detection. Similarly to Bibiano et al. [77] and
studies that proposed recommendations of composites [143, 171], we used the
Organic tool [48] for detecting code smells in our study. Organic is able to
detect 19 code smell types. The Organic tool uses detection strategies based on
code metrics to identify each type of code smell. These detection strategies have
already been validated by prior studies [8, 17, 48]. Besides, this tool identifies
types of code smells that involve multiple classes. The investigation of the effect
on code smells that are related to multiple classes is interesting. Other code

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 125

Table 5.4: Code smell types analyzed in this study
Code Smell
Type

ID Definition

Method level
Brain Method BrM Method overloaded with software features
Dispersed Cou-
pling

DsC Method that calls too many methods

Divergent
Change

DiC Method that changes often with other ones

Feature Envy FeE Method “envying” other classes’ features
Intensive Cou-
pling

InC Method that depends much on other ones

Long Method LoM Too long and complex method
Long Parame-
ter List

LPL Too many parameters in a method

Message Chain MeC Too long chain of method calls
Shotgun
Surgery

ShS Method whose changes affect other ones

Class level
Brain Class BrC Class overloaded with software features
Class Data
should be
Private

CDSBP Class that overexposes its attributes

Complex Class CoC Too complex software features in a class
Data Class DaC Only data management features in a class
God Class GoC Too many software features in a class
Large Class LgC Too large class
Lazy Class LaC Too short and simple class
Refused Be-
quest

ReB Child class rarely uses parent class features

Spaghetti Code SpC Too much code deviation and nesting
Speculative
Generality

SpG Useless abstract class

smells can be propagated between these classes while the existing code smells
are removed. Therefore, in this study, we considered code smell types that
involve one or more classes. Table 5.4 lists the 19 code smell types analyzed
in our study. These code smells are very common and can be removed with
refactoring types investigated in this study.

Step 5: Complete Composite Computation. We focused on the
complete composites for removing the 19 code smell types (Table 5.4). We
then elaborated Table 5.2 which presents the recommended composites for the
removal of some code smells according to prior studies [143,171,227]. However,
these recommendations are limited to the full removal of four code smell types
only. Thus, we aim to extend these recommendations to other code smell types

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 126

investigated in our study. Additionally, we created a definition for completeness
(Section 5.2.2) based on the previous work [77]. We then elaborated a script to
collect complete composites according to our definition. This script was tested
and validated as detailed in Section 5.6.

Step 6: Complete Composite Analysis. Aiming to answer our
RQ1, we need to identify frequent combinations for composing complete
composites. This identification helps to collect combinations of refactoring
types in composites that commonly obtained success to fully remove code
smells. For the detection of frequent combinations, we created scripts to group
complete composites in types. We follow the definition of composite types
presented in [77]. We collected the frequent combinations between groups.
An example of that is when we have a group g1 of composite types formed
of g1=[Extract Method(s), Move Method(s), Change Return Type(s)], and
another group g2 = [Extract Method(s), Change Return Type(s)]. We can
observe that the combination c1=[Extract Method(s), Change Return Type(s)]
is common between these groups g1 and g2. In other words, the combination of
Extract Method(s), Change Return Type(s) are commonly applied when certain
code smell types are fully removed. We then collected what are the frequent
combinations and what code smell types are often removed when they are
applied. We then extracted recommendations for our catalog based on these
recurring combinations of complete composites. A summary of this catalog is
presented in Section 5.5.3.

Step 7: Side Effects Analysis. We collected the side effects, i.e., code
smells introduced, removed, and unaffected by the most frequent complete
composites identified in the previous step. Then, three authors manually
analyzed the effect of complete composites. Additionally, we aimed to find the
relation between the introduction of code smells and the complete composites
that removed the target code smell. For each composite, we analyzed the
code snippets touched, other code changes, the commit messages, and pull
request discussions in which the complete composites were applied. This in-
depth analysis allowed us understanding whether other code changes could
have introduced the code smell and if developers are aware of these code smells.
The findings of this step helped us to complement our catalog with the side
effects of complete composites.

Step 8: Dataset Validation.We randomly selected a sample composed
of 36 complete composites from our dataset for validation. Six developers
validated if the composites are complete for code smells that were detected.
We provided a table for the developers with composites data: refactoring types
that form each composite, the project name that was applied the composite,

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 127

the commits in which the composite was applied, the code element names that
were touched for each composite, and code smells of these code elements before
and after the application of composite refactorings. Each developer had one
week to evaluate six complete composites according to their availability. After
this period, 28 composite refactorings were evaluated: two developers evaluated
six composites, and four developers evaluated four composites. According to
the developers, 24 composites were complete for at least one code smell that
was detected.

Step 9: Interviews with Developers. Firstly, we performed a pilot
version with two developers, aiming to improve our interview script. After
the improvements on our script, we interviewed 21 developers from different:
four from Brazil, two from Austria, one from Canada, one from the USA, and
one from the Netherlands. These developers have a median of nine years of
development experience. We detail the interview procedures in what follows.

Activity 1: Characterization and training session. First, we asked
the participants to fill out a Characterization Form to collect data about
their development experience time, development roles, and familiarity with
refactoring. Next, the participants watched a training video (15 minutes) about
the main concepts about refactoring, code smells, composite refactoring, and
their possible side effects. We decided to provide a training video to level up
their knowledge about the main concepts regarding our study. Thus, we tried
to reduce the bias by focusing on main concepts and presenting theoretical and
practical examples.

Activity 2: Smell identification task. We asked participants to perform
a code smell identification task. To this end, we presented a source code that
contains one or more code smell types. This source code was extracted from
a project of our dataset. Next, we explain the domain of the source code,
since the participants are not contributors to the source code under analysis
(5 minutes). We emphasize that we did not say what code smell types are
present in the source code. We instructed participants to think-aloud about
their code smell identification task, and also asked participants to share their
screens for observation purposes. Finally, we asked participants to mention
the code smells that were identified and justified why the code is smelly (10
minutes).

Activity 3: Presentation of the code smells from the catalog. We pre-
sented to participants the smell definition of our catalog. For each smell, we
presented an abstract example allowing then to better understand when the
smell happens. We also detailed the reasons and what code elements in our
example have the smell (5 minutes). We asked participants if they agree with

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 128

the definition of the proposed code smells and if the code elements that they
analyzed in Activity 2 contain these smells.

Activity 4: Presentation of the refactoring recommendations from the
catalog. Before presenting our refactoring recommendations, we asked partici-
pants to talk about solutions they would apply to remove code smell(s) iden-
tified in Activity 2 (ten minutes). After that, we presented the refactoring
recommendations of our catalog. For each recommendation, we explained the
definition, mechanics, and examples of composite refactorings that can be ap-
plied to remove these code smells. The developers could choose between their
solution or the solution of our catalog. We asked participants if their solution
is more complex than our solution and if their solution has some side effects.
Finally, we presented the possible side effects of our refactoring recommenda-
tions and asked the participants to explain if they thought about these side
effects when they selected our refactoring recommendations.

Activity 5: Apply the follow-up questionnaire. We apply a question-
naire to check if our code smells are representative. For instance, we asked
participants if they have ever observed smelly code similar to the code that
was presented. We also asked if participants would use our recommendations
in their software projects. Finally, we asked about the positive, negative, and
suggestions of the interview.

5.5
Results

We present and discuss our results in this section, showing what are the
most frequent combinations in complete composite refactorings, and their side
effects. We then report and discuss the developers’ perception of our catalog.

5.5.1
The Most Frequent Combinations in Complete Composites (RQ1)

We collected the most frequent combinations applied in composite refac-
torings (Section 5.4.1). Table 5.5 presents these most frequent combinations
of refactoring types. We found that three refactoring types of coarse granular-
ity (LGR), i.e., Extract Method, Move Method and Move Class, are commonly
applied with fine-grained refactorings, it also shows that 132 (28%) out of 462
complete composites have at least one Extract Method combined with Change
Variable Type(s).

These combinations of refactoring types helped to remove code smells,
such as Long Methods or Feature Envies. We observed that the Change Variable
Types and Change Parameter Types might help to simplify or remove some

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 129

Table 5.5: Most Frequent Combinations in Complete Composites
#CC with at least one Extract Method = 462

Combination #CC(%)
[Change Variable Type, Extract Method] 132 (28,57%)
[Change Return Type, Extract Method] 107 (23,16%)
[Change Parameter Type, Extract Method] 102 (22,08%)
[Extract Variable, Extract Method] 96 (20,78%)
[Change Return Type, Change Variable Type, Extract Method] 69 (14,93%)

#CC with at least one Move Method = 183
[Change Parameter Type, Move Method] 65 (35,52%)
[Extract Class, Move Method] 64 (34,97%)
[Change Variable Type, Move Method] 53 (28,96%)
[Change Attribute Type, Move Method] 52 (28,42%)
[Change Return Type, Move Method] 47 (25,68%)

#CC with at least one Move Class = 317
[Change Variable Type, Move Class] 91 (28,70%)
[Change Attribute Type, Move Class] 81 (25,55%)
[Change Paramter Type, Move Class] 77(24,30%)
[Change Return Type, Move Class] 63 (19,87%)
[Change Parameter Type, Change Return Type, Move Class] 42 (13,25%)

#CC with at least one Extract Method and Move Method = 62
[Extract Method, Move Method] 62 (100%)
[Change Variable Type, Extract Method, Move Method] 29 (46,77%)
[Change Parameter Type, Extract Method, Move Method] 24 (38,71%)
[Change Return Type, Extract Method, Move Method] 24 (38,71%)
[Extract Variable, Rename, Extract Method, Move Method] 21 (33,87%)

code statements, decreasing lines of code and minimizing the excessive method
calls to external classes.

In summary, our results revealed that developers frequently changed the
type of the method return (23%) or parameter(s) (22%) when extracting
methods. Besides, we observed that it is not common to form a composite
with Change Parameter Type and Change Return Type together with the same
instance of Extract Method. Despite these refactoring types being simple, they
can be related to major code changes. In other words, when developers applied
a Change Parameter Type(s) and Extract Method(s) or changed the return of
a method, they need to update all methods that were calling the original
methods. Developers changed the parameter(s) in each call of the method and
also adapted the source code to perform the method extraction.

We noted that developers often apply a single type of FGR combined
with a single type of LGR. Besides, one may see that the more frequent fine-
grained refactorings in complete composites address the changing of data types,
including attributes, parameters, variables, and returning data. For instance,
Table 5.5 shows that the developers frequently extract methods combined
with changing variable types. We may interpret this decision as a cautious
strategy for avoiding the incidence of side effects and then reducing rework
on maintenance. Previous work revealed that performing multiple structural
modifications at the same time frequently leads to introducing new instances
of code smell in the source code [143].

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 130

Finding 1: Developers tend to apply a single type of coarse-grained
refactoring with a single type of fine-grained refactoring. The fine-grained
ones often address changing data types.

5.5.2
Side Effects of the Frequent combinations in Complete Composites (RQ2)

Added Removed Not Affected

B
rC

B
rM

C
D
S
B
P

C
oC

D
aC D
iC

F
eE

G
oC In
C

La
C

Lo
M

LP
L

M
eC

R
eB

S
hS

S
pC

S
pG

0%

25%

50%

75%

100%

5.3(a): Extract Method(s), Change Variable
Type(s)

B
rM

C
oC

D
aC D
iC

F
eE

G
oC In
E

In
C

La
C

Lo
M

LP
L

M
eC

R
eB

S
hS

S
pC

S
pG

5.3(b): Move Method(s) and Change Pa-
rameter Type(s)

B
rC

B
rM

C
D
S
B
P

C
oC

D
aC D
iC

F
eE

G
oC In
C

La
C

Lo
M

LP
L

M
eC

R
eB

S
hS

S
pC

S
pG

5.3(c): Extract Method(s) and Change Pa-
rameter Type(s)

B
rC

B
rM

C
oC

D
aC D
iC

F
eE

G
oC In
C

La
C

Lo
M

LP
L

M
eC

S
hS

S
pC

S
pG

5.3(d): Extract Method(s) and Move
Method(s)

Figure 5.3: Side Effect of Common Complete Composites

Differently, our results reveal the combination Extract Methods and
Change Variable Type introduced about 38% of Long Parameter Lists. This
contrasting result indicates the need to reach a deep understanding of the side
effects caused by each combination in complete composites. In contrast, we
understand that previous work generalized the side effects for all combinations
that have at least one fine-grained refactoring [77]. However, each recurring
combination has a particular side effect.

As detailed in the previous section, developers apply many code modi-
fications to support a simple combination includes large and fine-grain refac-
torings, generally, such a combination is applied with non-refactoring code
changes. This fact, can explain the introduction (50%) of Brain Methods, and
the prevalence (45%) of Long Methods), despite the developer’s goal of de-
creasing the size and complexity of methods when he/she extracts code. Brain

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 131

Methods have been introduced due to other code modifications related to the
change of variable type, thereby increasing code complexity. The method size
is not decreased as expected and the Long Methods are not affected. This
discussion reveals another finding of our study.

Finding 2: The complexity of methods tends to increase when Extract
Methods and Change Variable Types are applied together.

This previous finding caught our attention because it can indicate that
Long Methods might implement two or more features from external classes,
i.e., these methods can also be Feature Envies, as suggested by Bibiano et
al. [143]. However, there is no empirical evidence about the frequency of
methods that are Long Methods and Feature Envy in conjunction. Thus, we
randomly selected 13 software projects, and randomly selected nearly 5,000
commits of each software project to investigate the frequency of methods that
have these two code smells at the same commit. Table 5.6 shows the amount
of Long Envious Methods. We defined a Long Envious Method as a method
that has excessive lines of code because implements one or more features
from external classes. The first column of the table indicates the number of
long envious methods per project. The second column of the Table indicates
the number of long methods per project. Both percentages in relation to the
quantity of smelly methods of each project (the third column). The percentage
of smelly methods is in relation the total number of smelly methods.

As we can see in Table 5.6, Long Envious Methods is the most frequent
code smell type in methods, confirming our initial supposition. This problem
seems to occur frequently because the developers are unlikely aware about the
joint occurrence of these smells on those methods. Moreover, they might focus
on the removal of a single smell only because of the complexity of removing
two or more smells with the same composite refactoring.

Extract Methods and Move Methods are frequently recommended to
remove Feature Envies [77,171]. Figure 5.3(d) shows that this combination can
indeed fully remove 66% of Feature Envies. We also observed that about 26% of
Feature Envies are not affected when developers extract and move methods. In
that case, the developer needs to be alerted. Composite refactorings formed of
extractions and motions of methods can be related to the introduction of Long
Parameter Lists (38%) and Intensive Coupling (42%). Bibiano et al. suggested
that this combination can introduce long lists of parameters, but they did not
report the proportion of this side effect. Our results revealed that this side
effect is not so frequent in the practice, but it can happen. Long Parameter
Lists can be introduced because many variables are transformed in parameters

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 132

when methods are extracted, as suggested by the prior work [77]. Existing
recommendations do not alert developers about the introduction of Intensive
Coupling. A possible cause of this side effect is the addition of many calls of
methods from other classes when the developer moves a method, increasing
the coupling of the class. This leads us to the following finding.

Finding 3: The application of Move Methods tends to increase the
coupling of classes, regardless of the full removal of Feature Envies.

Surprisingly, Move Methods and Change Parameter Types can be related
to the introduction (83%) of Intensive Couplings, as showed in Figure 5.3(b).
Generally, when a method is moved, the developer tends to introduce more
calls of the methods from other classes. As a consequence, some parameters
are also modified because the method uses attributes of other classes. It can
explain why Intensive Couplings are frequently introduced.

Figure 5.3(c) shows the side effects of complete composites constituted of
Extract Method(s) and Change Parameter Type(s). In general, we observed that
this combination can be recommended to fully remove (49%) Long Methods,
mainly when these methods have duplicated code. Similarly to the motivating
example (Section 5.3), we noted that developers changed the parameters to
types that helped to remove statements code, and alongside Extract Methods,
the Long Methods and Duplicated Code were removed.

However, our supposition about Duplicated Code is limited because
Organic tool did not detect Duplicated Methods. To better investigate this
possible relation between Long Methods and Duplicated Methods, we used PMD
CPD 1. We created Java scripts to mine duplicated methods through CPD
output for this analysis, we consider a duplicated method if it has equals or
more than 30 duplicated statements, as considered by CPD rules. We used the
sample of commits that was investigated in Long Envious Method analysis. We
then analyzed the frequency of duplicated methods that are long methods at
the same commit. We called these methods of Long Signed Clone.

Table 5.5.2 presents the amount of Long Signed Clones per project,
similarly to the Table 5.6. Differently from Long Envious Methods, the Long
Signed Clones are not frequent in relation to smelly methods. However, in
some projects the number of Long Signed Clones is interesting, for example,
Hystrix, Geoserver and Jitwatch are projects that have many duplicated and
long methods at the same commit. We consider that Long Signed Clone is
interesting because we manually observed that the methods are long and
duplicated because one or more parameter cause the repetitive and excessive

1<https://pmd.github.io/latest/pmd_userdocs_cpd.html>

https://pmd.github.io/latest/pmd_userdocs_cpd.html
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 133

lines of code, and frequently, developers applied Extract Method and Change
Parameter Types to fully remove Long Signed Clones. We then can collect a
recommendation from this empirical knowledge.

Table 5.6: Long Envious Method per Project
Project LEM LM Smelly Methods
activiti 1665 (67.96%) 785 (32.04%) 2450 (1.99%)

bytebuddy 1512 (51.78%) 1408 (48.22%) 2920 (2.37%)
checkstyle 733 (22.57%) 2514 (77.43%) 3247 (2.64%)
geoserver 6390 (56.45%) 4930 (43,55%) 11320 (9.20%)
hystrix 40034 (78.65%) 10868 (21.35%) 50902 (41.35%)

javadriver 2589 (66.08%) 1329 (33.92%) 3918 (3.18%)
jitwatch 8974 (38.52%) 14326 (61.48%) 23300 (18.93%)

materialdialogs 834 (33.27%) 1673 (66.73%) 2507 (2.04%)
materialdrawer 1427 (50.95%) 1374 (49.05%) 2801 (2.28%)

mockito 1577 (52.31%) 1438 (47.69%) 3015 (2.45%)
quasar 5066 (64.31%) 2811 (35.69%) 7877 (6.40%)

restassured 194 (45.54%) 232 (54.46%) 426 (0.35%)
xabberandroid 4305 (51.15%) 4112 (48.85%) 8417 (6.84%)

Total 75300 (61.17%) 47800 (38.83%) 123100 (100.00%)

Table 5.7: Long Signed Clone per Project
Project LSC DuM LeM Smelly Methods
activiti 888 (2.23%) 37285 (93.83%) 1562 (3.93%) 39735 (5.27%)
asynchttpclient 0 (0.00%) 577 (92.77%) 45 (7.23%) 622 (0.08%)
bytebuddy 569 (1.23%) 43422 (93.70%) 2351 (5.07%) 46342 (6.15%)
checkstyle 0 (0.00%) 2932 (47.45%) 3247 (52.55%) 6179 (0.82%)
geoserver 1795 (2.71%) 54937 (82.92%) 9525 (14.38%) 66257 (8.79%)
hystrix 22365 (8.45%) 213825 (80.77%) 28537 (10.78%) 264727 (35.11%)
javadriver 709 (1.46%) 44613 (91.93%) 3209 (6.61%) 48531 (6.44%)
jitwatch 1423 (2.36%) 37040 (61.39%) 21877 (36.26%) 60340 (8.00%)
materialdialogs 52 (0.44%) 9240 (78.66%) 2455 (20.90%) 11747 (1.56%)
materialdrawer 1097 (2.96%) 34296 (92.45%) 1704 (4.59%) 37097 (4.92%)
mockito 12 (0.06%) 17277 (85.14%) 3003 (14.80%) 20292 (2.69%)
quasar 1241 (1.87%) 58349 (88.11%) 6636 (10.02%) 66226 (8.78%)
restassured 2 (0.01%) 27764 (98.49%) 424 (1.50%) 28190 (3.74%)
retrolambda 0 (0.00%) 2590 (96.46%) 95 (3.54%) 2685 (0.36%)
xabberandroid 1383 (2.51%) 46654 (84.72%) 7034 (12.77%) 55071 (7.30%)
Total 31536 (4.18%) 630801 (83.66%) 91704 (12.16%) 754041 (100.00%)

5.5.3
Evaluation of the Proposed Catalog (RQ3)

Based on the common combinations in complete composite refactor-
ings found (Section 5.5.1), we created a catalog of composite recommenda-
tions [230]. Previous composite recommendations focused on the removal of a
single code smell, but our catalog is different. We provided four recommenda-
tions that remove up to three code smell types, grouped in two new smell types.
Although our quantitative analyses (Section 5.5.2), Long Envious Method is
a common smell, and Long Signed Clone is a smell that we observed a com-
posite pattern for the fully removal of this smell, the application of Change
Parameter Type and Extract Method. In that way, we created composite recom-
mendations for the removal of these two smells in our catalog. These composite
recommendations were obtained through our quantitative data.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 134

From our quantitative results, we observed that Extract Methods and
Move Methods are commonly applied for the removal of Long Envious Methods.
Our catalog suggests two mechanics: First the extraction and then the moving
(first mechanics), or the extraction and motion at the same time (second
mechanics). Regardless of the similar refactoring result, we proposed these
mechanics because developers can move two or more methods that were
extracted to different classes using the first mechanics. We believe that it is
more complicated using the second mechanics. For the removal of Long-signed
Clone, we observed that Extract Method(s) is one alternative to remove this
smell. Another frequent alternative is the application of Extract Method(s) and
Change Parameter Type(s). We interviewed 21 developers to characterize the
developer acceptance of our catalog (RQ3), as described in Section 5.4. Five
developers analyzed methods with Long Envious Method, and four developers
evaluated methods with Long-signed Clone.

Code Smell Analysis: As explained in Section 5.4.1, the developers
analyzed the source code, without being aware of the smell types affecting
the code. After the analysis, we mentioned the code smell types. We observed
that 12 (57%) out of 21 developers detected all code smell types before we
reveal them. For Long Envious Method, four out of five developers said that the
methods had Long Method and Feature Envy. In the case of Long-signed Clone,
two out of four developers mentioned that the method has both smells types.
The other two developers only mentioned that the method has Duplicated
Code.

We presented them the definition of the code smells. Then, we ask if
they agree with that definition. All developers agreed with our definition. For
both new smells, we noted that our definition is aligned with the developers’
perceptions. One developer suggested improving the definition of Long-signed
Clone, given he/she thought the code duplication was related to a long list of
parameters. The developer justified that the confusion was because the source
code had Duplicated Code and Long Parameter List, and the code was dupli-
cated because other methods had the same long list of parameters. However,
when we presented the corresponding definition and example, the developer
understood that the incidence of Long-signed Clone was not necessarily due to
a long list of parameters.

Continuing with the interview, we ask them whether the source code
actually had the detected code smell type. Twelve (57%) developers detected
the two code smell types, while nine (43%) developer identified only one code
smell type. This developer argued that “This method is a Feature Envy but, in
my opinion, it is not long as the method size fits to my screen". The developer

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 135

that detected the two code smell types mentioned that he/she had difficulty
knowing if the method has envy since it has five calls to external classes. The
developer was not sure if five calls is an adequate threshold for Long Envious
Method. From this answer, we can note thresholds to detect these new smell
types may be different from existing detection strategies because they are
composed by at least two code structural problems.

Refactoring Recommendation: All developers agreed to our refactor-
ing recommendations. For the Long-signed Clone removal, developers perceived
that only extractions are not sufficient to remove this code smell, causing side
effects such as the propagation of the duplicated code. Eight (80%) out of
10 developers opted for Extract Methods and Change Parameter Types to re-
move Long-signed Clones. About the Long Envious Method, four (36%) out of
11 developers agreed to apply the first mechanics. These developers reported
that the first mechanics is more interesting for junior developers. This may
be explained because junior developers have little familiarity with the source
code and they have difficulty knowing what code elements may be modified by
composite refactorings. According to the developers, it is more indicated that
junior developers apply each code transformation at the time to analyze what
code elements can be affected. This mechanics also helps to test the source
code after the application of each refactoring and verifies if that refactoring
did not change the software behavior. Other developers reported that applying
one or more code transformations at the same time is the most common for
senior developers, mainly because they have high familiarity with the source
code. According to the developers’ answers, a high code familiarity increases
the awareness of the side effects when applying composite refactorings. Based
on that, we have our next finding.

Finding 4: Applying each refactoring by time is better for junior devel-
opers because it facilitates to the analysis of side effects.

Side Effects: Seven (33%) out of 21 developers did not indicate to
be aware of the side effects. Surprisingly after we mentioned the side effects,
these developers reported that their own solutions could have worse side effects
than our solution, 18 (85%) out of 21 developers agreed that their solutions
could have worse side effects. From these answers, we can observe that some
developers, that do not worry about side effects, can apply refactorings that
degrade software quality. In addition, we confirm that developers need a guide
to alert them about the side effects of composites because in some cases, their
solutions are not the best solution to fully remove code smells.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 136

Finding 5: Developers that do not report side effects tend to apply
composite refactorings that can cause side effects.

Refactoring Complexity vs Completeness. We ask the developers
whether their solutions are more complex than our recommendations. Some
developers choose certain combinations because the refactoring complexity
could be lowered, regardless of their side effects. An example is our motivating
example (Section 5.3). For the complete removal of the four code smells
in the methods copyWFS and copyTFS, the developer would need to apply
Extract Method, Extract Class and Move Method. The Extract Method and
Extract Class would remove Duplicated Code and Long Parameter List. As
consequence, the size of methods would be decreased. Move Method would
move envious code to the appropriate classes. Thus, the four code smells would
be fully removed.

However, the code author and our subjects opted to apply Extract
Method and Change Parameter Type, propagating Feature Envies. The sub-
jects justified that these refactorings modify a few code elements and have
less complexity. Developers also mentioned that the application of Extract
Class solved the code smells, but it is necessary to modify many code ele-
ments, and these modifications could introduce other code smells. Another
example is in the commit c18fc2b [231] of the Netty project. The devel-
opers applied Move Attribute and Move Method refactorings on the class
AbstractScheduledEventExecutor, removing Feature Envies. However, the
class AbstractScheduledEventExecutor is a God Class, and these refactor-
ings made this smell become even worse. We then conclude our catalog can
help developers in these situations by alerting about side effects of complete
composite refactorings.

Finding 6: Some developers prefer to apply composite refactorings that
are less complex, even when composites can cause side effects, which are
left for later removal with other composites.

5.6
Threats to Validity

Construct Validity: Relying purely on automated detection tools may
be risky for identifying code smells and refactorings [257]. However, performing
manual validation in large-scale samples is unfeasible. To mitigate this threat,
we carefully selected the tools employed: RefMiner 2.0 and Organic. Both
tools are highly accurate for, respectively, refactoring detection and code

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 137

smell identification (see Section 5.4.1). RefMiner is also beneficial because
it was designed to ignore squash commits [194]. One common symptom of
squash commits is the large time gap between the changes performed, what
is incompatible with the definition of composite refactorings. As a result, the
time interval between commits analyzed in our study is short, i.e., two weeks on
average. Some of our results may be biased due to the detection of RefMiner.
For instance, when classes are renamed, RefMiner identifies Change Parameter
type for each parameter in which its type was renamed. To mitigate this threat,
we performed manual validations to detect when the refactorings were indeed
applied, independently of the possible bias of RefMiner.

The heuristics followed for detecting complete composites may bias the
results. To mitigate this threat, we employed the heuristics proposed by Sousa
et al. [171] for detecting composite refactorings, combined with the definition
of complete composites proposed in [76,77].

Internal Validity: The complete composites used in our studies were
detected by scripts written by the authors of this paper. We implemented
unit tests to validate all scripts. Besides, two authors double-checked the
scripts and results of the unit tests, mitigating the risk of validation bias.
We conducted pilots involving two developers, we then manually analyzed
the data from these pilots to mitigate the threat related to possible issues in
the interviews. Besides, the authors followed standard guidelines to manually
analyze the developers’ answers. The interviews were recorded and transcribed,
which reached sufficient quality, without the need for contacting interviewees
to solve misunderstandings.

Conclusion Validity: Our definition of “completeness” for classifying
composite refactorings is based on fixed thresholds established by code smell
detection tools [48]. Therefore, this definition may lead to misclassification.
Besides the already reported quality of Organic, we also relied on asking
developers about their agreement with the thresholds employed for supporting
the code smell detection (see Section 5.4). To identify the most frequent
combinations in complete composites (RQ1), we should have in mind that some
sequences of refactorings would not be performed to intentionally remove code
smells. To mitigate this threat, specialists manually assessed which refactoring
instances actually contributed to partially or completely eliminating the code
smells detected.

To mitigate threats addressing the automated identification of side effects
(RQ2), two authors manually analyzed the severity and intensity of samples of
smells propagated and introduced by complete composite refactorings. To eval-
uate the proposed catalog, we interviewed developers from different software

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 5. Enhancing Recommendations of Composite Refactorings based in
the Practice 138

projects addressing different domains. Besides, we designed the interview to
evaluate the catalog from different perspectives, including clarification, adapt-
ability, and usability.

External Validity: Considering the nature of this study, we do not
intend to claim the generalization of our findings. However, we made efforts
to employ heterogeneous samples of projects and participants. We analyzed
projects having different sizes and addressing different domains. Besides, we
found consistent results for different subsets. The catalog was evaluated by
developers playing different roles at companies in several countries with distinct
cultures.

5.7
Conclusion

Given the limitations of existing catalogs of refactorings, we presented an
enhanced catalog of complete composite refactorings. We conducted a large-
scale study on 42 software projects, collecting 1,397 complete composites that
were the base to create our catalog. We assessed our catalog with 21 developers
to have a practical view of our enhanced recommendations. The main findings
of our study include (i) the identification of the most frequent combinations
in complete composites applied in the practice, and (ii) the side effects of
complete composites. Regarding the catalog assessment, all interviewees agreed
with the recommendations to remove smells. In addition, most of them stated
that, without knowing our recommendations, their refactoring solutions could
induce severe side effects.

Our main contribution is a set of the recommendations derived from the
practice, which includes four complete composites to remove code smells. These
recommendations can guide developers to perform composite refactorings to
improve code internal quality, while alerting them about the possible side
effects. As future work, we intend to extend our recommendations, explaining
possible motivations in which each composite can be applied to fully solve two
or more code smells.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

6
Exploring the Automatic Recommendation of
Composite Refactorings

In our catalog derived from the practice (Chapter 5), we proposed new
types of code smells, such as Long Envious Methods, that represent 61%
of smelly methods, four composite recommendations to remove these types
of smells, and their possible side effects. Twenty one developers evaluated
our catalog. As the main result, most developers (85%) reported that their
solutions could have worse side effects without our catalog recommendations.
We then confirmed that an automated refactoring support is also necessary
apply beneficial composite refactorings, as developers may struggle on tailoring
our catalog recommendations to the context of their source code. Inspired
by that, we explore existing automated approaches for recommendations of
composite refactorings, as mentioned in our RQ3 (Section 1.3.1). As described
in Chapter 1, we considered a complete composite beneficial when it fully
removes the target smell without inducing side effects.

Automated recommenders of single refactorings based on search-based
algorithms have recently presented promising results [79, 146], as refactoring
can be seen as an optimization task. Based on that, in this Chapter, we explore
the use of search-based algorithms to recommend composite refactorings. For
that, we extended an automated tool to recommend composite refactorings
and alert developers about possible side effects. Then, we performed a survey
with 10 developers to explore how existing search-based approaches for recom-
mendations of composites can be improved for the beneficial removal of code
smells, addressing then our RQ3 (Section 1.3.1). The content of this chapter is
going to be submitted to an international conference.

6.1
Introduction

Along the studies of our previous chapters, we perceived that developers
often apply incomplete composite refactorings manually (Chapters 3, 4, and 5),
and they often are not aware of the side effects of composite refactorings
(Chapters 4 and 5). In these studies, we observed that a refactoring support,
such as a catalog, helps developers to reason about how to fully remove

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 140

multiple code smells with a composite refactoring and their possible side
effects. In addition, developers reported difficulties to adapt our catalog
recommendations to the context of their source code. In that way, we confirmed
that many times developers need an automated refactoring support to provide
beneficial removals of code smells. In light of that, we then explored how
existing automated approaches for recommendations of composites can be
improved for the beneficial removal of code smells.

In the literature, some studies propose automated approaches for refac-
toring recommendations [146,222,242]. These approaches use search-based al-
gorithms to generate suggestions for composite refactorings. These studies re-
ported promising results on the use of search-based algorithms for the recom-
mendations of refactorings [146, 222, 242], given that refactoring can be seen
as an optimization task [30, 233]. Search-based algorithms generate solutions
to solve an optimization problem [30]. The solutions are optimized based on
objective functions, which are also known as fitness functions. In case of rec-
ommendations for composite refactorings, the problem is the recommendation
of composite for the beneficial removal of code smells. The desired solutions
are composite refactorings that fully remove code smells without side effects.
Fitness functions here can be defined as the full elimination of target code
smells. However, there is a lack of empirical evaluations concerning whether
existing search-based algorithms can leverage the completeness of composite
refactorings for the beneficial removal of target code smells, mainly from the
perspective of developers.

For mitigating this limitation, we performed an exploratory study in-
vestigating existing approaches of search-based algorithms for recommenda-
tions of composite refactorings. For that, we extended OrganicRef, a recent
recommender of composite refactorings [244]. OrganicRef uses search-based
algorithms to recommend composite refactorings. We called this extension of
REComposite. Originally, OrganicRef has limitations, such as not recommend-
ing common refactoring types, e.g., Extract Method. In addition, the tool does
not detect popular code smells, e.g., Long Method. Aiming to address these
limitations, we extended the recommender generating a new version called
REComposite. We implemented the recommendation of Extract Method in RE-
Composite. It is because this refactoring type can be recommended together
with the Move Method, previously implemented in the tool. Those refactor-
ing types can be recommended to remove smells such as Feature Envy, Long
Method, and Long Envious Method, as suggested in our catalog (Chapter 5).
We then developed the detection of Long Method and Long Envious Method in
REComposite, Feature Envy was originally detected. After that, we performed

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 141

a survey with 10 developers to explore the recommendations of REComposite
in terms of completeness and side effects, generating knowledge on how exist-
ing approaches, namely search-based algorithms, can be improved to provide
complete composite refactorings.

In the next sections, we detailed the concepts related to SBSE, the fitness
functions, and our results. This chapter is structured as follows. Section 6.2
describes the main concepts of this study. Our study settings are detailed in
Section 6.3. We explained the survey procedures in Section 6.3.4. Section 6.4
presents the results of our survey with developers. The threats to validity and
conclusion of this study are presented in Sections 6.5 and 6.6, respectively.

6.2
Background

6.2.1
Search-Based Software Engineering (SBSE)

Several problems in Software Engineering can be measured by a set of
software metrics, such as measuring the coverage of tests to select which tests
may be applied. Based on that, authors have used Search-based techniques to
solve Software Engineering problems - i.e., Search-Based Software Engineering
(SBSE) [234]. Search-based techniques generate several solutions to solve a
problem and use fitness functions to select the optimal solution.

For the generation of solutions, techniques of SBSE use metaheuristic
algorithms such as genetic algorithms (GAs) and simulated annealing [234].
For the evaluation of solutions, a fitness function is defined to assess the quality
of the generated solutions based on the goal that may be achieved [234].
An example in the context of tests is to prioritize tests [281, 282]. In that
case, a SBSE algorithm generates several tests and a fitness function verifies
which tests have the high prioritization, thus they are the optimal tests. A
fitness function can be mono-objective or multi-objective. A function is mono-
objective when it has a single objective to assess solutions and find tests
with high prioritization. A multi-objective function has two or more objectives
to evaluate solutions, for example, finding tests with high prioritization and
minimizing the number of tests [281].

6.2.2
Search-Based Algorithms

This section explains about the search-based algorithms that are inves-
tigated in this study. These algorithms are commonly used in recent Search-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 142

Based Software Engineering studies [145, 222, 242, 244]. The first algorithm is
the Simulated Annealing (SA) [240]. MOSA stands for Multi-Objective Simu-
lated Annealing, which is a multi-objective version of the Simulated Annealing
algorithm [240–242]. NSGA-II stands for Non-dominated Sorting Genetic Al-
gorithm II, another multi-objecive search-based algorithm used by OrganicRef
for refactoring recommendations [239].

Simulated Annealing is a general local search algorithm that seeks
to minimize a single objective. The underlying idea of the method is to allow
non-improving moves because they can help escape from local minima [240].
Both SA and MOSA work similarly, from an initial random population. From
a initial random candidate, they calculate what is the next optimal candidate
based on their objective(s); unique objective for SA e multi-objective for
MOSA. This iteration continues into the best candidate is found on the local
search.

Figure 6.1 illustrates a generic example of the Simulated Annealing
algorithm. In this case, each blue cycle represents a solution in a search space
(x, y), where s1 is the initial solution that was randomly chosen, and sf is the
final solution according to the fitness function. In each iteration, the algorithm
selects the closest solution from the current solution and checks whether this
solution has a lesser or equal value than the final solution. If the solution has
a lesser value, the iteration continues. Otherwise, the final solution has been
found.

Y

X

s1

sf

Figure 6.1: Example of Simulated Annealing

Non-dominated Sorting Genetic Algorithm II is global search
algorithm. The first version of this algorithm (NSGA) finds the optimal

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 143

solution verifying candidate by candidate, the worst case of optimization
algorithms [30]. The NSGA-II authors modified the algorithm to consider
the crowding-distance, that is a local search in which the population has
their objective function values ascending in order of magnitude [239]. Each
iteration, local search reduce the crowding-distance are until finding the
solution. Figure 6.2 depicts a generic example of the NSGA-II algorithm. In
this case, each blue cycle represents a solution in a search space (x, y), and
the green cycle represents the final solution based on the fitness function.
The algorithm locates the crowding-distance area by observing which solution
values are increasing. In each iteration, the crowding-distance is decreased to
find the final solution.

Y

X

Crowding distance

sf

Figure 6.2: Example of NSGA-II

6.2.3
Search-Based Refactoring (SBR)

A common and challenging problem to solve in SE is selecting the
optimal refactoring to improve code quality [30, 284, 285]. A previous study
presented the idea of formulating the refactoring task as a search problem
in the space of alternative solutions, generating a set of refactorings [233].
Harman and Tratt were the first authors to apply SBSE for refactoring, using
the term Search-Based Refactoring (SBR) [30]. Harman and Tratt initially used
mono-objective functions for search-based refactoring techniques [30]. However,
adopting mono-objective functions is problematic when solving refactoring
problems because generating optimal refactoring sequences requires multiple
metrics. From then on, many researchers have investigated SBSE algorithms to

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 144

solve the refactoring problem. The literature has investigated multi-objective
functions to suggest optimal refactorings with objectives such as increasing
cohesion [79,145,222] and minimizing the number of modified files [43].

Selecting a single refactoring is challenging for SBSE, finding composite
refactorings is even more challenging. Therefore, the SBR problem has in-
creased because researchers need to determine the best combination of refac-
torings to improve code quality. In other words, finding the optimal composite
refactoring is currently challenging. Multi-objective functions for selecting op-
timal composite refactorings can be based on minimizing the number of refac-
torings or maximizing the number of code smells removed. However, composite
refactorings are complex and can have side effects on source code. Thus search-
ing for optimal composite refactoring using multi-objective functions remains
challenging. In the next section, we present some existing studies that propose
multi-objective functions to suggest optimal composite refactorings.

6.2.4
Related Work

Several studies proposed search-based techniques to recommend refac-
toring solutions. Alizadeh et al. [222] propose an intelligent refactoring bot
as a GitHub app that can be easily integrated into any project repository on
GitHub. This intelligent refactoring bot was called RefBot. The bot analyzes
the files changed during that pull request(s) to identify refactoring oppor-
tunities using a set of quality attributes then it will find optimal composite
refactorings to fix the quality issues if any. RefBot recommends the optimal
composite refactorings through an automatically generated pull request. The
developer can review the recommendations, and their impacts in a detailed
report and select the code changes that he wants to keep or ignore [222]. Af-
ter this review, the developer can close and approve the merge of the bot’s
pull request [222]. They used NSGA-II to generate refactoring solutions. In
their fitness function, they used six QMOOD quality attributes to measure
the impact of a composite refactoring on the software project [222]. These six
attributes are “Reusability”, “Flexibility”, “Understandability”, “Functional-
ity”, “Extendibility”, and “Effectiveness”. They compared their approach with
other multi-objective approaches proposed by Ouni et al. [146].

Alizadeh et al. [222] surveyed 25 developers, asking for their opinion
about the meaningfulness of the composite refactorings recommended by their
technique and by the automated refactoring competitive technique. They
evaluated the beta version of RefBot in one of their industrial partners during
three business days (with six developers involved). During this period, they

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 145

checked the ability of RefBot to select relevant refactorings for the recent pull
requests introduced by the programmers during their daily activities.

On the survey with 25 developers, their results [222] indicated the per-
centage of meaningful recommendations is much better for RefBot compared
to Ouni et al. [146] (94% for RefBot and 66% for Ouni). The percentage of
refactorings that participants believe must be applied is significantly higher
for Refbot as well (77% for RefBot 15% for Ouni). In the industrial expe-
rience with six developers. The six subjects confirmed that they feel more
comfortable in applying composite refactorings due to the high level of control
proposed by the bot to review the generated pull request, which gives them
more confidence and trust in the tool [222]. This work shows that NSGA-II
is an interesting algorithm to recommend composite refactorings, in terms of
meaningful recommendations [222]. However, this study is limited because they
do not evaluate the completeness and side effects of their recommendations of
composite refactorings. This lack of evaluation can misguide developers, be-
cause the programmers can accept the pull requests recommended by RefBot,
but these recommendations can not sufficient to fully remove code smells, and
worse than it, the recommendations can bring side effects for the software
projects.

The other related work proposes OrganicRef [244]. A recommender that
uses three multi-objective approaches to generate optimal composite refactor-
ings [244], aiming at the removal of code smells. These search-based algorithms
are SA, MOSA [240–242], and NSGA-II [239], which were explained in Sec-
tion 6.2.2. These algorithms have shown good results for refactoring recommen-
dations, according to previous studies (e.g., [242] and [222]). OrganicRef builds
an initial population based on the combination of aforementioned heuristics in
a given context [244]. This approach differs from other approaches that usually
build a random initial population. The advantage of the OrganicRef approach
is that the optimization already starts with “good” solutions. Therefore, the
optimization effort may be lower.

In OrganicRef, each candidate of an optimal composite refactoring is
represented by a vector of refactorings [244]. Each vector position contains the
refactorings applied to a context’s element. Each element may contain zero to
many recommended refactorings. The authors opted for this non-conventional
representation because it allows OrganicRef to focus the optimization effort
in the selected context [244]. This tool generates composites from three
refactoring types: Extract Class, Move Method, and Move Field. OrganicRef
detects seven types of code smells, three types from method scope and four
types from class scope, as detailed in Table 6.1

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 146

Table 6.1: Code Smell Types detected by OrganicRef
Code Smell Type ID Definition

Method scope
Complex Method CoM Method overloaded with software features
Dispersed Coupling DsC Method that calls too many methods
Feature Envy FeE Method “envying” other classes’ features

Class scope
Complex Class CoC Too complex software features in a class
God Class GoC Too many software features in a class
Large Class LgC Too large class
Lazy Class LaC Too short and simple class

In OrganicRef study [244], they performed a qualitative evaluation with
four developers to assess optimal composite refactorings recommended by the
MOSA and NSGA-II strategies. They reported that SA was ignored in this
evaluation because the algorithm did take time to generate results. Thus,
they did not collect SA recommendations in time to the evaluation. In their
results, developers observed that MOSA recommendations have a significant
meaningfulness. Participants observed the recommendations of Extract Class
tend to suggest the extraction of fields and methods related to the same
feature. In the case of NSGA-II, they reported that composite refactorings
constituted of Extract Class and Move Methods tend to remove God Classes.
However, there is no empirical evidence whether these recommendations
fully removed code smells and avoid side effects. In addition, they do not
evaluate SA recommendations to explore the perception of developers on
composite refactorings generated by SA algorithm. Besides, OrganicRef does
not have the implementation of known refactorings such as Extract Method,
and did not detect known code smells like Long Method. In summary, this
previous study did not evaluate the completeness and side effects of composite
recommendations according to developers’ perceptions.

6.3
Study Settings

6.3.1
Study Goal

We aimed to (i) explore search-based algorithms for the recommendation
of composite refactorings through the extension of an existing recommender,
(ii) collect the developers’ perceptions about the completeness and side effects
of automated recommendations of composite refactorings, and (iii) provide a
list of lessons learned for researchers and tool builders of automated recom-

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 147

menders of composite refactorings that use search-based algorithms.

6.3.2
Research Questions

RQ1. To what extent are the REComposite solutions complete
for developers?

Completeness is a relevant goal for a refactoring recommender because
it is expected the optimal composite refactorings fully remove target code
smells. However, the literature is limited to investigating to what extent
existing approaches are complete to eliminate code smells, and analyze trade-
offs between (in)completeness and side effects. In this research question, we
aimed to address this gap. We performed a survey with developers to explore
whether the REComposite solutions completely remove code smells according
to developers’ perceptions. We then asked it for developers that implemented
the source code and for developers that not implemented the source code.

RQ2. What are the side effects of REComposite solutions ac-
cording to developers’ perceptions?

Existing recommenders of composite refactorings did not show possible
effects for developers. We then adapted REComposite. Our adaptation shows
the side effects of its recommendations. However, it is possible that the tool
does not show all side effects. Moreover, each search-based algorithm can
induce different side effects for the recommendations of composite refactorings.
Addressing these limitations, we asked to developers about possible side effects
of REComposite solutions that were not showed by the recommender.

6.3.3
Study Steps

We executed the steps described below to explore the recommendations
of REComposite tool. The replication package of this study is available on [283]

Step 1: Long Method Identification – We implemented the Long
Method detection according to the detection strategies from the Organic 2.0
tool [48]. We used these strategies because it shows high precision according
to prior studies [8, 77, 169].

Step 2: Long Envious Method Identification - Long Envious
Method is a method that is long and excessively uses data from external classes.
To identify this code smell, we adopted two strategies. The first strategy
utilized the detection used by the Organic tool [48] for Long Method and
Feature Envy. Thus, if a method that has both code smells it is considered to be
a Long Envious Method. However, other code metrics can have been ignored to

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 148

Table 6.2: Code Smell Types detected by REComposite
Code Smell Type ID Definition

Method scope
Complex Method CoM Method overloaded with software features
Dispersed Coupling DsC Method that calls too many methods
Feature Envy FeE Method “envying” other classes’ features
Long Method LoM Method with excessive lines of code
Long Envious Method LeM Long method that implements one or

more features from external classes
Class scope

Complex Class CoC Too complex software features in a class
God Class GoC Too many software features in a class
Large Class LgC Too large class
Lazy Class LaC Too short and simple class

identify this new code smell due to Organic limitations. In that way, our second
strategy is based on code metrics related to the code coupling of the method.
A recent study [259] demonstrates that Long Envious Methods tend to have a
coupling twice as large than isolated Long Methods. For example, whether
a Long Method has a code coupling metric with value 5, a Long Envious
Method has a value equals or greater than 10. Therefore, we used the code
coupling to identify Long Envious Methods. Table 6.1 shows the code smells
that are identified by REComposite. As we can see in the Table mentioned
above, REComposite can detect Long Method and Long Envious Method, as
implemented in this study.

Step 3: Extract Method Implementation - We implemented
Extract Method using two approaches. The Method Complexity Approach
identifies statements that can be extracted based on code metrics related to
complexity, such as Cyclomatic Complexity. The Envious Method Approach
identifies statements that can have Feature Envy, these statements are related
to an external class that is used many times. These statements include
parameters, local variables, and attributes of the original class. For this
approach, we evaluated if the analyzed method has Feature Envy. If yes, we
collected what class is envied, and computed what statements are related to
this envied class. We then suggested an Extract Method to separate this envious
code to another method. In that way, REComposite suggests Extract Methods
differently to OrganicRef tool.

Step 4: Assessment of Composite Recommendations - We
surveyed 10 developers to evaluate the recommendations of REComposite.
Firstly, each developer completed a Characterization Web Form. Secondly,
the participant watched a training video explaining the main concepts of

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 149

this study. This training is necessary to align the knowledge of participants.
Thirdly, we presented a webpage 1 with two optimal composite refactorings
of the same project, each composite was generated by a different search-based
algorithm. We asked each participant about the meaningfulness, completeness,
and potential side effects of each recommended composite refactoring. They
also rated the usability of the REComposite and offered suggestions for
improvement. Each survey was recorded to facilitate the analysis of the answers
of the subjects. Further details on the sample and procedures of our survey
can be found in the next section.

6.3.4
Survey Procedures

In this section, we detailed the procedures of our survey. We then
described how was (i) the selection of our sample of recommendations, (ii)
the presentation of the sample of composite refactorings for developers, and
(iii) analyze of the recommendations of composite refactorings.

Selection of the Sample – We selected a sample of 20 composite
refactorings that were recommended for methods that have Long Envious
Methods to assess what refactoring types are suggested to remove them. The
composites are formed of, at the maximum, three refactorings to avoid the
tiredness of developers during the analysis. We prioritized methods of classes
that are relevant to the system, ignoring classes of tests and exceptions.
In addition, we selected classes that have smells like Large Class, Complex
Class, God Class and Dispersed Coupling, mainly to observe if the suggested
composite help to fully or partially remove these smells of class level.

In some cases, the search-based algorithms only recommended a single
refactoring to these relevant classes. In those cases, we keep them to analyze
the completeness of these isolated refactorings in comparison to composite
refactorings. As observed in the Chapters 4 and 5, the refactoring types
recommended to fully remove Long Envious Methods are Extract Method and
Move Method. We then aimed to verify if these refactoring types are suggested
by search-based algorithms. Each developer evaluated the same class per
project, independently of the search-based algorithm. For example, participant
P1 evaluated the class DefaultValue from the software project bytebuddy, and
assessed a composite generated by NSGA-II to remove code smells of this class,
and another composite generated by SA to also remove code smells of the same
class.

1REComposite Webpage Survey, <https://anacarlagb.github.io/recomposite-web/>

 https://anacarlagb.github.io/recomposite-web/
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 150

Table 6.3: Participants’ Characterization Data

Characterization Years of
programming experience

Number of
developed projects

Median 8 7
Average 7 7,8
Max 12 16
Min 2 5

Characterization of Developers – Table 6.3 presents the charac-
terization of the survey’s participants. As we can see, the developers have a
considerable level of development experience in terms of programming years
and the number of developed projects. Along the survey, they mentioned that
have familiarity with definitions of refactoring and code smell. Table 6.3.4
shows (i) the participant identifiers, (ii) algorithms that were assessed for each
developer participant, (iii) the software project that was analyzed, and (iv)
the project source, i.e, the source of a project concerning the developer. We
considered an external project when the participant does not implement the
project that will be analyzed. An original project is when the participant im-
plements the project that will be analyzed. It is relevant to have perceptions
of developers that implement or not the analyzed software projects because we
can observe if the recommendations are clear for different populations, such
as developers that are new to the team and do not have familiarity with the
software project. Note that ten participants analyzed composite refactorings
generated by NSGA-II, five participants analyzed composites generated by SA,
and other five developers assessed composites created by MOSA. As SA and
MOSA are based on a similar approach (Section 6.2.2) and we have a limited
number of participants, we then divided SA e MOSA between the other ten
developers.

Visualization of the Recommendations of Composite Refactor-
ings - Aiming a friendly visualization of composite recommendations for our
survey, we built a web page2 with the recommendations of REComposite. Pre-
viously, the output of OrganicRef was a JSON file only. From the web page,
the developer can see the detected code smells, the recommended composite
refactoring to remove the code smells, and the possible side effects of the rec-
ommended composite refactoring. As the previous output of OrganicRef was a
JSON file, we then needed to manually select the fields that are shown on the
web page. We selected the (i) fields related to the target code smells, (ii) the
names of code elements that need to be refactored, (iii) the refactoring types
that form the recommended composite refactoring, (iv) and the side effect of

2<https://anacarlagb.github.io/recomposite-web>

https://anacarlagb.github.io/recomposite-web
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 151

the composite. In that way, developers can easily identify the code smells in
their code and understand the recommended composite refactoring. They can
also assess the potential side effects of the refactoring and how it can impact
the code. Currently, this web page was developed to facilitate our survey, but
in the future, this web page can be integrated to REComposite source code to
facilitate the visualization of its recommendations.

Analyze of the Recommendations of Composite Refactorings –
The first step for the analysis of the recommendations of composite refactorings
is to understand the source code that will be analyzed. In this step, the
researcher that conducted the survey explain for the developer about the
(i) software project domain, in case of external projects, (ii) functionality
of the smelly code elements, (iii) code smells that were found in the code
elements. After this explanation, the participant navigate on the source code
to analyze it. In the case of original software projects, the developer accesses
the code in his/her own machine. Otherwise, the subject accesses remotely the
source code by one extension of the Visual Studio Code (VSC).3 For that, the
developer then needs to install on his/her machine the Visual Studio Code
and an extension called Live Share4 on the VSC tool. This extension enables
participants to remotely access another Visual Studio Code with the software
project to be analyzed. The installation of these tools is simple, and some
developers may already be familiar with them.

The second step is the validation of the target code smells. The developer
evaluates each instance of code smell and analyzes whether s/he agrees
to the detection of the code smell, justifying his/her decision. Third step
is the assessment of Meaningfulness. In this study, we defined refactoring
as meaningful if it is appropriate for the given context and the nature of
the code transformation is consistent with the code context. For example,
recommending the Extract Method refactoring for a method too short (with few
statements) would not make sense and, therefore, this refactoring would not be
considered meaningful. The evaluation of meaningfulness is relevant because
by taking into account the context of the code and the specific refactoring
operation being performed, the approach can identify which refactorings were
the most appropriate and effective at improving the quality of the code while
minimizing the risk of introducing new issues or breaking existing functionality.

The fourth step, the developer analyzes whether the composite refac-
toring is complete to remove the target code smells. Aiming to mitigate the
threat of the subjectivity on the concept of the completeness, we asked to the

3<https://code.visualstudio.com/>
4<https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.

vsliveshare>

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 152

Table 6.4: Survey Information
Part. ID Algorithm 1 Algorithm 2 Project Project Source
P1 NSGA-II SA bytebuddy external project
P2 NSGA-II SA bytebuddy external project
P3 NSGA-II SA infproject original project
P4 NSGA-II MOSA powergym original project
P5 NSGA-II MOSA hystrix external project
P6 SA NSGA-II jitwatch external project
P7 SA NSGA-II jitwatch external project
P8 NSGA-II MOSA hystrix external project
P9 MOSA NSGA-II anonymous-project original project
P10 MOSA NSGA-II hortaz original project

participant what code scope was considered on the evaluation of completeness.
The participant then can consider that composite refactoring is (in)complete
to the method and the class scope. The final step is addressed to evaluate the
side effects of each recommendation. The subject analyzes whether the side
effects that were presented in REComposite can happen in the practice. In
addition, the participant verifies whether other side effects can be caused by
the recommended composite refactoring.

6.4
Survey Results

This section shows the results of our survey, summarizing the developers’
perceptions about the code smell identification, meaningfulness, completeness,
and side effects of REComposite. We extracted a list of learned lessons through
these results to automated recommenders based on search-based algorithms.

6.4.1
Code Smell Agreement

In the first activities of the survey, the developer analyzes the detection
of code smells. The developers verified each code smell instance of the analyzed
class and argued if she/he agreed with the code smell instance. The subjects
can agree totally or partially, or disagree, with the detected code smells.
We considered a total agreement if the developer agrees with all smells,
and partially if the subject did not agree with all smells. The case of total
disagreement represents the situation where the participant did not agree with
all code smells. Regarding the NSGA-II sample, seven out of ten developers
partially agreed with code smell detection, while three developers totally agreed
with it. In the MOSA sample, three out of five developers fully agreed with code
smell detection. When it comes to the SA approach, two out of five participants

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 153

answered partially agree, while three participants fully agreed with the code
smell detection.

The most common reason for the partially agree responses in all the
algorithms was that the developers did not fully agree with the code smell
detection of some Feature Envies. These usually represented cases in which the
"smelly" methods had only few statements. They mentioned that the methods
did not have excessive calls to external classes, as answered by participant P6
“I only disagree with one of them, the feature envy of the saveUnsavedEditors

method. In this method, there is only one call to an object of another class”. On
the MOSA sample, we have an interesting case of partially agree. This case was
related to the detection of Long Envious Method in utility methods, such as
equals() or hash(). The subject P2 justified that “many of the code smells in
utility methods (equals, hash) don’t seem to be smells”. The participant justified
that the nature of these utility methods naturally requires the use of external
classes and, as a consequence, end up having many code statements. Thus,
this subject does not consider there is a presence of Long Envious Method in
those cases.

Based on those results, we observed a need for improving the detection
of Feature Envy, mainly when a method is too short. It is because some
developers do not consider that a method is Feature Envy when this method
has few statements. For those developers, a method with few statements can
not be Feature Envy because envious methods need to have many calls for
external classes, e.g., five or more calls to external classes. In addition, we
need to collect the context of methods to better classify the code smell,
for example, it is important to identify when the methods are utilities, like
toString or equals. In addition, on God Classes and Complex Classes, the
original developers agree with code smell detection, but some classes need to
be complex and with many responsibilities because they are the main classes
of the software projects. However, they mentioned the improvement of these
classes is possible. We learned the following lesson through those results.

Lesson 1: Recommenders of composite refactorings may take into account
user preferences for detection strategies of code smells. The use of inter-
active search-based approaches can be motivated, in which the developer
can participate in the optimization process.

6.4.2
Meaningfulness

We proposed a Likert Scale [252] to developers classify the meaningful-
ness of each recommended composite refactoring removing the code smells. We

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 154

considered five levels in the scale, with level 1 representing low meaningfulness
and level 5 representing high meaningfulness. Each developer analyzed refac-
toring by refactoring for each composite and classified the meaningfulness for
the entire composite.

We observed that NSGA-II tends to recommend composite refactoring
with high meaningfulness, as presented by Figure 6.3(c). Six out of ten
developers classified composite refactorings generated by NSGA-II with high
meaningfulness (levels 4 and 5). The algorithm frequently recommends Extract
Methods on methods that have code smells like Feature Envy or Long Envious
Method. NSGA-II algorithm also suggests Extract Classes in classes that have
code smells, such as God Class or Complex Class. The approach indicated the
extraction of attributes and methods that are semantically related.

For example, on the class HystrixCommandMetrics from the hystrix
project, the algorithm recommended the extraction of fields and methods that
are related to the counting functionality. However, this algorithm had a low
meaningfulness when proposed Move Methods on methods that are related
to hierarchical and abstract classes. In the particular case of bytebuddy, the
algorithm suggested Move Method to an abstract super class, which is not
possible because it can cause syntax and semantic errors. The developer P1
mentioned other subclasses would need to implement this method that was
moved; thus, thisMove Method is not necessary because other subclasses would
not use this method. In the other words, NSGA-II algorithm needs to improved
for the recommendation ofMove Methods, specially when the classes are related
to hierarchy and abstractions.

Figures 6.3(a) and 6.3(b) show the results for SA and MOSA, respec-
tively. MOSA had results better than SA: four developers classified the mean-
ingfulness of MOSA with levels 3 and 4. SA recommends Extract Methods on
smell-free methods and unnecessaryMove Methods on short methods (with few
statements), according to developers. MOSA indicated the motion of methods
to inappropriate classes, i.e, classes that are not semantically related to the
method. We then perceived that Simulated Annealing approaches have difficult
to suggest composite refactorings for smelly code. Thus, we have the following
lesson learned for builders of recommenders of composite refactorings, mainly
for recommenders that use Simulated Annealing approaches.

Lesson 2: Automated recommenders may allow the developer indicate
the target code smells for the search-based algorithms to find composite
refactorings to remove these smells.

Based on that, we confirmed that NSGA-II is the best algorithm to
recommend refactoring, as indicated by [222, 244]. A possible explanation for

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 155

those results is that NSGA-II better explores the search space, resulting in
a higher diversity of solutions in terms of its objective functions [244]. We
then observed that to use search-based algorithms to the problem related to
the recommendation of composite refactorings, the problem is not basically to
find the optimal composite refactoring, but also to offer new opportunities for
composite refactorings.

Lesson 3: Search-based algorithms that better explore the search space are
motivated by the problem of recommendations for composite refactorings
because they can provide new opportunities for composite refactorings.

Meaningfulness level

D
ev

el
op

er
s

0,0

0,5

1,0

1,5

2,0

1 3 4 5

6.3(a): Meaningfulness of SA Recommenda-
tions

Meaningfulness level

D
ev

el
op

er
s

0,0

0,5

1,0

1,5

2,0

1 3 4

6.3(b): Meaningfulness of MOSA Recom-
mendations

Meaningfulness level

D
ev

el
op

er
s

0

1

2

3

1 2 3 4 5

6.3(c): Meaningfulness of NSGA-II Recommen-
dations

Figure 6.3: Meaningfulness of Composite Refactorings

6.4.3
Completeness

The participants observed whether each composite refactoring can re-
move the code smells for at the method and class levels. Tables 6.5, 6.6, and 6.7
summarize the completeness for each recommendation from SA, MOSA, and
NSGA-II algorithms, respectively. The developers could classify the composite
as “Complete to this method or class and other involved classes”, “Complete
composite only to this method”, “Complete composite only to this class”, “In-
complete composite to this method”, “Incomplete composite to this class”,

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 156

“Incomplete composite to this method and this class”, and “other situation”.
In the Tables, consider the following abbreviations to the refactoring types:
ExM for Extract Method, MoM for Move Method, and ExC for Extract Class.

Regarding the SA and NSGA-II samples, developers observed that com-
posites fully remove the smell in the method level, but the smell remains in
the class. In those situations, the composite was complete to the method but
incomplete to the class. Four out of five developers to the SA recommendations
and four out of 10 participants to the NSGA-II recommendations mentioned
that composites are complete to the method but incomplete to the class. We
observed in those cases the methods are Long Envious Methods. In those situa-
tions, the participants justified the recommended Extract Methods removed the
Long Method. However, the envious code was propagated to the new method.
This problem also happens when developers manually apply refactorings, as
indicated by Chapters 3 and 4. We observed that automated recommenders
based on search-based algorithms currently focus to find composite refactorings
for the “local” removal of target code smell, such as removals in the method.
These recommenders need to be adapted for the removal of different levels of
completeness, e.g., the completeness of a method and a class. We can then
extract a lesson learned from this result.

Lesson 4: Search-based algorithms need to better explore the search space
aiming composite refactorings that provide different levels of completeness.

On the MOSA sample, we did not discover a pattern regarding the
refactoring completeness: only two composites were complete to the method,
but they were incomplete to the class. In general, eight out of the 10 developers
considered that NSGA-II recommendations were complete to the method or
class. This is an interesting result because it can guarantee that NSGA-II
recommendations can be accepted by developers.

We observed that REComposite always suggests the same refactoring
type in a composite by class, e.g., one composite with only Extract Methods
to the class org.Main. Aiming to understand it, we contacted the OganicRef
authors (the tool that was the base of REComposite). They explained that
the initial solutions are generated for each refactoring type, and from these
solutions, the optimization process starts. For instance, for the Extract Method
type, the REComposite generates a sequence of Extract Methods only for each
class. However, it can generate incomplete composites because some composites
need to have more than one refactoring type to remove some code smell types.
For instance, in the case of composites only formed of Extract Methods applied
on Long Envious Methods, it is also necessary to complete them with Move

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 157

Methods, as recommended in our catalog (Chapter 5). A possible solution for
this problem is to enhance the generating of the initial solutions by increasing
the diversity of refactoring types that constitute composite refactorings.

Lesson 5: Recommenders may generate initial composites constituted of
all refactoring types for each class. After that, the fitness functions will
analyze each combination of these refactoring types to find the optimal
composite for each class.

Table 6.5: Completeness Level to SA Recommendations
SBSE Refactorings Completeness level
SA ExM, ExC, MoM Incomplete to this method and incomplete to this class
SA ExM, ExC, MoM Complete to this method and incomplete to this class
SA ExM, ExM Complete to this method and incomplete to this class
SA ExM Complete to this method and incomplete to this class
SA ExM Complete to this method and incomplete to this class

Table 6.6: Completeness Level to MOSA Recommendations
SBSE Refactorings Completeness level
MOSA ExM Complete only to this class
MOSA MoM, MoM Complete to this method or class and other involved classes
MOSA MoM, MoM Incomplete to this method
MOSA MoM, MoM Complete to this method and incomplete to this class
MOSA ExC Incomplete to this class

Table 6.7: Completeness Level to NSGA-II Recommendations
SBSE Refactorings Completeness level
NSGA-II ExM, MoM, MoM Incomplete to this method and incomplete to this class
NSGA-II ExM, MoM, MoM Complete to this method and incomplete to this class
NSGA-II ExM, ExM, ExC Complete to this method and incomplete to this class
NSGA-II ExM, ExM Complete only to this class
NSGA-II ExC Complete composite only to this class
NSGA-II ExM, ExM Complete to this method and incomplete to this class
NSGA-II ExM, ExM Complete only to this class, incomplete to this method
NSGA-II ExC Complete to this method or class and other involved classes
NSGA-II ExM, ExM Complete to this method and incomplete to this class
NSGA-II MoM, MoM, MoM Incomplete to this method and incomplete to this class

6.4.4
Side Effects

For each composite refactoring, we presented the possible side effects that
can happen whether the composite is applied. These side effects were based on
our catalog (Chapter 5). Developers evaluated what side effects can happen
and if other side effects could occur. We asked them: “Do you believe that the
composite refactoring you chose would have a side effect (not limited to side
effects that were presented)? If so, which one?”. Four developers that evaluated
SA recommendations answered “No”. In those cases, these developers ignored

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 158

that the propagation of code smells like Feature Envies could be a side effect of
composites that were analyzed, since the same developers previously said that
composites were incomplete to the class. On the MOSA sample, two developers
mentioned recommendations can have side effects as bug introductions after
the Move Methods application, as reported by P9, “It would break the system
design, since it would be moving a get method to an exception class that do not
fit the responsibility of the method.”

Surprisingly, on NSGA-II recommendations, seven developers reported
that the composites can have side effects. Most of them stated that Feature
Envies can be propagated by the source class or other involved classes.
Developers also mentioned the application of several Extract Methods can
increase the complexity of classes, increasing the Complex Class. In a particular
case, P10 observed that God Classes can be introduced after the several
motions of methods. Cedrim et al [7] alerted about the introduction of Complex
Classes and God Classes after the application of several Extract Methods or
Move Methods. In light of that, we need to introduce these warnings on the
REComposite and enhance the recommendations based on the context of each
class, avoiding the bug introduction. In addition, we observed that search-based
algorithms need to be adapted to support recommendations with a minimal
number of side effects.

Lesson 6: The minimization of side effects may be a parameter in the
fitness functions that find composite refactoring for the beneficial removal
of code smells.

6.4.5
General Evaluation of REComposite

Finally, we asked developers for suggestions to improve our recommender
and our study methodology. The questions are: “Does our recommender need
more information details? How can we improve it?”, and “What were the
positive and negative points of this study? What could be improved in the
study?”. Table 6.8 shows the answers to the first question, and Table 6.9 reports
the answers the second question.

On the general evaluation of REComposite, developers reported the tool
is innovative and easy to use. Some suggestions were made for improvement,
such as (i) detailing the recommended refactorings, (ii) explaining why these
refactorings were recommended, (iii) what code elements can be affected by the
refactorings, (iv) considering changes in hierarchies and abstraction context,
and (v) taking account that API and services classes could have a higher
threshold for some smells.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 159

Table 6.8: General Evaluation of REComposite
Part. ID Does our recommender need more details? What can we improve it?
P1 “Inform more data about parameters of recommendations and properly handle changes in

hierarchies and abstraction”
P2 “Yes. Perhaps a more detailed description of why a method was moved to a certain class and

not to another.”
P3 “Yes. In the last one, the recommended refactoring indicated to recreate the class. The code

smells were right but the refactoring recommendations need improvements, in special in the
target method.”

P4 “The tool could have some information indicating why that code should be refactored”
P5 “Adding the description of the suggested type of recommendation would improve under-

standing and also judge whether the recommendation is valid or not. Would also improve
the frontend and the presentation of what the recommendation wants to change, and what
it wants to change in a more objective way. Presenting the full path to leave identification
for the user is not always objective.”

P6 “Highlight which code snippets might be causing smells like feature envy and dispersed
coupling.”

P7 “Improve the accuracy and context of side effects.”
P8 “The tool is quite complete, informing everything that was necessary for the refactoring of

code smells. The recommender in my view is great.”
P9 “It would be ideal to show the code on a single page, or at least the lines where the smell is

happening. ”
P10 “ I believe that the recommender could use the domain of the classe/software into consider-

ation, for instance, this is an API code, the services classes could have a higher threshold for
some smells, like feature envy.”

On the evaluation of the methodology of our study, developers observed
our methodology steps are clear and well structured. As the main positive
points, they mentioned that they liked to participate in the study because they
did not need to install many tools and the source code was easily shared. As the
main negative points, some developers reported a lack of familiarity with the
code/project being analyzed; in that case, they were participants that did not
implement the analyzed code. Also, they mentioned that we need to better our
explanation of the idea of linearity between the refactorings, showing why the
refactorings constitute a composite. That is because some refactorings were
several Extract Methods on the same class. The participants observed each
extraction as an isolated refactoring, but these extractions form a composite
on the same class. From this case, we then improved our explanation to clear
the idea of linearity and the relation between the extractions.

Overall, the survey results suggest that the REComposite recommen-
dations are useful and of good quality for software developers interested in
composite refactorings. The web page offers a comprehensive and user-friendly
interface for developers to improve the quality of their code using the recom-
mendations provided by REComposite. Although, some improvements are still
needed as indicated in Table 6.8.

6.5
Threats to Validity

Internal validity – On the threat of the search-based algorithms’
validation, we reused the OrganicRef tool that was validated previously [244].

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 160

In that way, we mitigated the threat about the validation of implementation
of SA, MOSA and NSGA-II. On REComposite implementation, we also
created unit tests to validate the implementation of these algorithms and
the detection of Long Envious Method and the suggestion of Extract Method.
We implemented the detection of Long Envious Method because our previous
study (Chapter 4) demonstrates that it is a common smell in the practice,
and developers have difficult to detect it manually and fully remove it. We
suggested Extract Method because it is a common refactoring type manually
applied [60,76] and this refactoring type in conjunction with other refactoring
types can fully remove code smells, like Long Envious Methods.

Construct validity – We executed a survey with developers to explore
search-based algorithms, as performed by related studies [146, 222]. The sub-
jects watched a short training video to align the knowledge about the main
concepts of the study. We did not explore other existing approaches because
we had technical problems to use related recommenders [49, 222]. To mitigate
this threat, we compared different search-based algorithms of OrganicRef: SA,
MOSA and NSGA-II. Aiming the best understanding of source code and com-
posite recommendations, some developers evaluated classes implemented by
them, and other developers assessed classes that are well documented and we

Table 6.9: Evaluation of Methodology Study
Part. ID What were the positive and negative points of this study? What can we improve

in the study?
P1 “The interface helps; the shared code accessible by browser too.”
P2 “The negative point is the lack of familiarity with the code/project being analyzed. Maybe

better express the idea of linearity between the refactorings, showing that they constitute a
composite.”

P3 “I believe the study will help developers refactor classes faster and with justification for what
code smells are on the classes. The study helps developers in refactoring methods with code
smells.”

P4 “I believe that the study did not have any negative points.”
P5 “The 3 steps are well structured, visualizing code smells, checking suggested refactorings and

then analyzing the impact of side effects was a positive distinction compared to existing tools.
I believe that the formatting of the listing and sample items could be better polished. I don’t
see any downsides other than the above. I believe that the positive point of the study is the
differential of actions that the platform brings. Recommendation along with side effects is a
great idea.”

P6 “Positives: Having access to the analyzed source code without having to clone any repositories.
The tool is available on the web. It is not necessary much knowledge/training in smells to
participate in the study. I can’t see any downsides. One suggestion for the study would be
to give examples of code smells before the meeting. Positive points: The study is easy to
understand, does not require a lot of training or the installation of many tools.”

P7 “Having a tool that optimizes the time of the refactoring process should already be a reality
for any developer; this can be a good choice. The study is necessary to enable its use. No
negative point.”

P8 “The positive point of the study was that the details of code smells, refactoring recommen-
dations are objective and accurate, which is very important. In this step, I did not identify
negative aspects, with the exception of the complexMethod present in GetInstance(), where
I did not agree with the presence of the smell.”

P9 “Positives: (1) Straight forward informations presented and clear steps to follow. (2) Using
the sharing tool. ”

P10 “Show to the developer where there are possible points of improvement in the code. A negative
aspect is that it could lead to changes that may not comply to certain common practices.
Take into account the domain of the software while doing the analysis.”

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 6. Exploring the Automatic Recommendation of
Composite Refactorings 161

explained about the domain of these classes. The survey duration was about
one hour per participant, avoiding the developers’ tiredness. We used Likert
scale in some questions of the survey to mitigate the subjectivity, each survey
was recorded in video and audio to improve the understanding about each
developer answer.

External validity – Aiming an acceptable representation of our results,
we involved participants from different levels of development experience, and
software projects from several domains and development environments with
closed and open-source code. Our survey has only ten participants, but we
mitigated this threat; each developer evaluated two composites, and in that
way, we have 20 composite refactorings assessed.

6.6
Conclusion and Next Steps

In the study, we explored search-based algorithms for recommendations of
composite refactorings through the extension REComposite. We implemented
the recommendation of Extract Method refactoring type, and the detection
of Long Method and Long Envious Method smells. REComposite uses three
search-based algorithms for the recommendation of optimal composite refac-
torings. These algorithms are SA, MOSA, and NSGA-II. We applied a survey
with 10 developers to explore the recommendations of REComposite about
three points: meaningfulness, completeness, and side effects of recommended
composite refactorings.

Overall, NSGA-II provides a more comprehensive approach for remov-
ing code smells from software projects, but its recommendations often can
introduce side effects, according to developers. Our results revealed some sug-
gestions to existing approaches that use search-based algorithms, such as (i)
search-based algorithms need to better explore the search space aiming com-
posite refactorings that provide different levels of completeness and (ii) the
minimization of side effects may be a parameter in the fitness functions that
find composite refactoring for the beneficial removal of code smells. As a gen-
eral improvement for the automated refactoring recommenders, developers re-
ported that tools need to offer more detailed explanations of the recommended
refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

7
Conclusion and Next Steps

This chapter describes a summary of our research results from our five
empirical studies: a systematic mapping, a quantitative study on incomplete
composites, an exploratory study about complete composites, the qualitative
evaluation of our catalog, and the empirical exploration of an automated rec-
ommender of composite refactorings. These studies respectively resulted in a
conceptual framework of composite refactoring, a list of findings about com-
posite (in)completeness, a summary of lessons we learned with the evaluation
of our catalog, and with the exploration of search-based algorithms for com-
posite refactoring recommendations. The main contributions of our research
and our next steps are described below.

1. Systematic Mapping Results: Our systematic mapping provides
a conceptual framework of composite refactorings. The conceptual framework
reveals seven representation models, nine characteristics, and thirty effects of
composites. We found out that studies often use multidimensional representa-
tion models to (i) generate many “paths” of refactorings, and (ii) know what
refactoring(s) may be suggested. Some studies also represent a composite as
a sequence using vectors, or an arrays, for the recommendation of composite
refactorings. These representations can be interesting to support step-wise, in-
cremental composite refactorings because they help to know the order of each
refactoring to be recommended. These results can help future studies to decide
what representation model is appropriate according to the authors’ approaches
to supporting composites. Some studies also mentioned the characteristic of
completeness of composite refactorings and indicated that this characteristic
can be used to properly recommend composite refactorings. However, existing
studies did not present a formation definition of completeness and not per-
formed an in-depth empirical study about refactoring (in)completeness. On
composite effects, existing studies are often limited to empirically investigate
the effect on code smells, they have little evidence on how composites affect
internal quality attributes in practice. In summary, our conceptual framework
can guide researchers and refactoring tool builders on how to solve composite
refactoring limitations and what is the appropriate characterization of compos-
ites according to each approach, like identification of composite refactorings or

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 7. Conclusion and Next Steps 163

recommendation of composites.
2. Incomplete Composite Results: The results of the Chapter 3 help

us to partially answer the RQ2 of this proposal thesis. In our dataset with 353
incomplete composites, we confirm that composites are frequently incomplete
to remove code smells. For instance, our results reveal that incomplete com-
posite refactorings with at least one Extract Method are often (71%) applied
without Move Methods on smelly classes. However, surprisingly, incomplete
composites maintain the internal structural quality. We have found that most
incomplete composite refactorings (58%) tended to at least maintain the in-
ternal structural quality of smelly classes, thereby not causing more harm to
program comprehension. We then can observe that the incomplete nature of
composites has possibly not harmed even further the program comprehensibil-
ity and other related quality attributes. This observation suggests that certain
developers may be keen to maintain the structural quality of their programs
through refactoring, even when they do not have the explicit intention of doing
so.

3. Complete Composite Results: We performed a quantitative study
to fully answer our RQ2 (Section 1.3.1). In our dataset with 618 complete
composites from 20 software projects, we have found (i) almost half (48%) of
Feature Envies were removed when the composite Move Methods were applied.
This information is not documented by existing composite recommendations.
Since the occurrence of Feature Envy is a common situation [8], knowing about
the usage of the Move Methods composite in advance can ease refactoring
tasks, and (ii) about 36% of complete composites formed by Extract Methods to
remove Long Methods have introduced Feature Envies and Intensive Couplings
as side effects. Surprisingly, with the goal of improving code readability, by
removing Long Methods, developers degrade the software internal quality by
creating unnecessary high coupling.

4. Catalog Results: We proposed a catalog of composite recommenda-
tions to answer our RQ3 (Section 1.3.1). Our catalog recommends four compos-
ite refactoring types to remove two new types of code smells, and the possible
side effects of our recommendations. Our recommendations are based on com-
mon complete composites applied in the practice. We interviewed 21 developers
to evaluate out catalog. The most (85%) of developers reported that their solu-
tions could have the worse side effects without our catalog recommendations.
Besides, we observed a significant (33%) number of developers were unaware
of side effects when proposing solutions to remove code smells. These find-
ings validate the practical necessity of recommendations to caution developers
about the side effects of composite refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 7. Conclusion and Next Steps 164

5. Exploration of Search-Based Algorithms Results: We per-
formed an exploration of existing search-based algorithms to recommend com-
posite refactorings. This empirical exploration is addressed to also answer our
RQ3 (Section 1.3.1). We extended an existing recommender of composite refac-
toring that uses search-based algorithms, OrganicRef [244]. We called this ex-
tension of REComposite. Moreover, REComposite generate composite recom-
mendations using three search-based algorithms: SA, MOSA, and NSGA-II.
The recommender identifies nine common types of code smells and recom-
mends four refactoring types. REComposite indicates (i) the code smells that
were identified, (ii) the smelly code elements, (iii) the composite that may be
applied, and (iv) the side effects that may be minimized or removed. We per-
formed a survey with ten developers to assess REComposite, exploring which
search-based algorithm provides the best recommendations in terms of mean-
ingfulness, completeness, and side effects. Our results reveal the most (80%) de-
velopers considered that NSGA-II recommendations are complete frequently;
60% of programmers mentioned that NSGA-II solutions have high meaning-
fulness, creating composite refactorings to be applied on smelly code elements
without changing the software behavior. We then observed that NSGA-II is
a search-based algorithm that better explore the search space. Thus, this al-
gorithm generally finds new opportunities of composite refactoring. However,
NSGA-II recommendations often can lead to side effects, according to 70%
of developers. Based on this result, we perceived that existing search-based
algorithms need to be improved to recommend complete composites without
inducing side effects. We then provided a list of lessons learned for researchers
and tool builders of recommenders of composite refactorings based in search,
lessons such as (i) search-based algorithms need to better explore the search
space aiming composite refactorings with different levels of completeness and
(ii) the minimization of side effects may be a parameter to find composite
refactoring for the beneficial removal of code smells.

As the main contributions, our findings reveal that developers tend not to
solve structural problems completely when they apply large-scale refactorings,
such as composites. These composites can remove one target code smell,
but potentially introduce or do not remove other ones. This may be an
alert regarding the use of existing recommendations. Our results suggest that
existing recommendations of complete composites should be either revisited
or enhanced to explicitly include possible side effects. In addition, we then
present a catalog that can help developers in practice to fully remove code
smells, minimizing side effects. Our results can inspire future research to
improve existing refactoring tools, helping developers to achieve code structure

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 7. Conclusion and Next Steps 165

improvement, based on the code context of their development activities.
Finally, we published severally key results along this doctoral research, an

average of one paper published in a respectable international vehicle by year.
These publications provide some indication of our research topic and findings.
Table 7.1 shows a list of the papers published with the content directly related
to this thesis research. Each paper was presented in a different chapter of this
thesis. Table 7.2 presents the studies published that are indirectly related to
this thesis. Along this doctoral research, we participated of collaborations that
also investigated refactoring, o specifically composite refactoring. All of the
papers were published in high quality conferences and journals (mostly Qualis
A1-A4).

Table 7.1: Publications directly related to this thesis
Publication Year Qualis

Bibiano, A. C., Soares, V., Coutinho, D., Fernandes, E., Correia, J. L.,
Santos, K., Oliveira, A., Garcia, A., Gheyi, R., Fonseca, B., Ribeiro, M.,
Barbosa, C., Oliveira, D., (2020, July).
“How does incomplete composite refactoring affect
internal quality attributes?”. In Proceedings of
the 28th International Conference on Program Comprehension (ICPC),
pp. 149-159.

2020 A2

Bibiano, A. C., Assunçao, W. K., Coutinho, D., Santos, K., Soares, V.,
Gheyi, R., Garcia, A., Fonseca, B.,
Ribeiro, M., Oliveira, D., Barbosa, C., Marques, J.L., & Oliveira, A.
(2021, September). “Look ahead! revealing
complete composite refactorings and their smelliness effects”.
In Proceedings of the 37th International Conference on Software Maintenance and
Evolution (ICSME), pp. 298-308. IEEE.

2021 A2

Bibiano, A. C., “Completeness of composite refactorings for smell removal”.
In Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Doctoral Symposium (ICSE-DS), pp. 264-268.

2022 A1

Bibiano, A. C., Uchôa, A., Assunção, W. K., Tenório, D., Colanzi, T. E.,
Vergilio, S. R., & Garcia, A. (2023). “Composite refactoring:
Representations, characteristics
and effects on software projects”. Information and
Software Technology Journal (IST), 156, 107134.

2023 A1

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Chapter 7. Conclusion and Next Steps 166

Table 7.2: Publications indirectly related to this thesis
Publication Year Qualis

Bibiano, A. C., Fernandes, E., Oliveira, D., Garcia, A.,
Kalinowski, M., Fonseca, B., Oliveira,
R., Oliveira, A.,& Cedrim, D. (2019, September).
“A quantitative study on characteristics and effect of batch refactoring
on code smells”. In Proceedings of the 15th ACM/IEEE International
Symposium on Empirical Software Engineering
and Measurement (MSR), pp. 1-11.

2019 A2

Paixão, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J.,
& Arvonio, E. (2020, June). “Behind the intents: An in-depth empirical study on
software refactoring in modern code review”. In Proceedings of the
17th Mining Software Repositories (MSR), pp. 125-136.

2020 A1

Sousa, L., Cedrim, D., Garcia, A., Oizumi, W., Bibiano, A. C., Oliveira, D.,
Miryung, K., Oliveira, A. (2020, June). “Characterizing and
identifying composite refactorings: Concepts, heuristics and patterns”.
In Proceedings of the 17th Mining Software Repositories (MSR), ACM/IEEE.

2020 A1

Bibiano, A. C., & Garcia, A. (2020, October). “On the characterization,
detection and impact of batch refactoring in practice”.
In Proceedings of the 34th Brazilian Symposium on Software Engineering, on the
Software Engineering Doctoral and Master Theses
Competition (CTD-ES).

2020 A3

Oizumi, W., Bibiano, A. C., Cedrim, D., Oliveira, A., Sousa, L., Garcia, A.,
& Oliveira, D. (2020, October). “Recommending composite refactorings
for smell removal: Heuristics and evaluation”.
In Proceedings of the 34th Brazilian
Symposium on Software Engineering (SBSE), pp. 72-81.

2020 A3

Oliveira, A., Neves, V., Plastino, A., Bibiano, A.C., Garcia, A. Murta, L.
“Do code refactorings influence the merge effort?”.
In Proceedings of the 45th International
Conference on Software Engineering (ICSE), ACM/IEEE.

2023 A1

Oliveira, D., Assunção W. K. G., Garcia, A., Bibiano, A.C., Ribeiro, M.,
Gheyi, R., Fonseca, B., “The untold story of
code refactoring customizations in practice”,
In Proceedings of the 45th International
Conference on Software Engineering (ICSE), ACM/IEEE.

2023 A1

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography

1 BASILI, V.; ROMBACH, H.. The TAME project: Towards
improvement-oriented software environments. IEEE Transactions on
Software Engineering (TSE), 14(6):758–773, 1988.

2 BAVOTA, G.; DE CARLUCCIO, B.; DE LUCIA, A.; DI PENTA, M.; OLIVETO,
R. ; STROLLO, O.. When does a refactoring induce bugs? An empirical
study. In: PROCEEDINGS OF THE 12TH WORKING CONFERENCE ON
SOURCE CODE ANALYSIS AND MANIPULATION (SCAM), p. 104–113, 2012.

4 BAVOTA, G.; LUCIA, A. D.; PENTA, M. D.; OLIVETO, R. ; PALOMBA, F..
An experimental investigation on the innate relationship between
quality and refactoring. Journal of Systems and Software (JSS), 107:1–14,
2015.

7 CEDRIM, D.. Understanding and Improving Batch Refactoring in
Software Systems. PhD thesis, Informatics Department (DI), Pontifical Catholic
University of Rio de Janeiro (PUC-Rio), Brazil, 2018.

8 CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.;
DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Understanding
the impact of refactoring on smells: A longitudinal study of 23 soft-
ware projects. In: PROCEEDINGS OF THE 11TH JOINT MEETING OF THE
EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND THE ACM SIG-
SOFT SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE (ESEC/FSE),
p. 465–475, 2017.

10 CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D. ; GARCIA, A..
How does refactoring affect internal quality attributes? A multi-
project study. In: PROCEEDINGS OF THE 31ST BRAZILIAN SYMPOSIUM
ON SOFTWARE ENGINEERING (SBES), p. 74–83, 2017.

12 Ó CINNÉIDE, M.; NIXON, P.. Composite refactorings for java pro-
grams. In: PROCEEDINGS OF THE WORKSHOP ON FORMAL TECHNIQUES
FOR JAVA PROGRAMS, CO-LOCATED WITH THE 14TH EUROPEAN CON-
FERENCE ON OBJECT-ORIENTED PROGRAMMING (ECOOP), p. 1–6, 2000.

13 CRESWELL, J.. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications, 4th edition, 2014.

16 FERNANDES, E.; OLIVEIRA, J.; VALE, G.; PAIVA, T. ; FIGUEIREDO, E..
A review-based comparative study of bad smell detection tools. In:
PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON EVALU-
ATION AND ASSESSMENT IN SOFTWARE ENGINEERING (EASE), p. 18:1–
18:12, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 168

17 FERNANDES, E.; VALE, G.; SOUSA, L.; FIGUEIREDO, E.; GARCIA, A.
; LEE, J.. No code anomaly is an island: Anomaly agglomeration
as sign of product line instabilities. In: PROCEEDINGS OF THE 16TH
INTERNATIONAL CONFERENCE ON SOFTWARE REUSE (ICSR), p. 48–64,
2017.

19 FERNANDES, E.. Stuck in the middle: Removing obstacles to new
program features through batch refactoring. In: PROCEEDINGS OF
THE 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
(ICSE): DOCTORAL SYMPOSIUM (DS), p. 1–4, 2019.

20 FERNANDES, E.; UCHOA, A.; BIBIANO, A. C. ; GARCIA, A.. On the
alternatives for composing batch refactoring. In: PROCEEDINGS OF
THE 3RD INTERNATIONAL WORKSHOP ON REFACTORING (IWOR), CO-
LOCATEDWITH THE 41ST INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING (ICSE), p. 1–4, 2019.

21 FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; UCHÔA, A.; BIBIANO,
A. C.; GARCIA, A.; CORREIA, J. L.; SANTOS, F.; NUNES, G.; BARBOSA,
C. ; OTHERS. The buggy side of code refactoring: Understanding
the relationship between refactorings and bugs. In: PROCEEDINGS OF
THE 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
(ICSE): POSTER TRACK, p. 406–407, 2018.

25 FOWLER, M.. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1st edition, 1999.

28 GRIFFITH, I.; WAHL, S. ; IZURIETA, C.. Truerefactor: An automated
refactoring tool to improve legacy system and application compre-
hensibility. In: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFER-
ENCE ON COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING
(CAINE), p. 1–6, 2011.

30 HARMAN, M.; TRATT, L.. Pareto optimal search based refactoring
at the design level. In: PROCEEDINGS OF THE 9TH GENETIC AND
EVOLUTIONARY COMPUTATION CONFERENCE (GECCO), p. 1106–1113,
2007.

31 JALALI, S.; WOHLIN, C.. Systematic literature studies: Database
searches vs. backward snowballing. In: PROCEEDINGS OF THE 6TH
INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING
AND MEASUREMENT (ESEM), p. 29–38, 2012.

32 KANG, K.; COHEN, S.; HESS, J.; NOVAK, W. ; PETERSON, A.. Feature-
oriented domain analysis (FODA) feasibility study. Technical report,
CMU-SEI-90-TR-21 and ESD-90-TR-222, Software Engineering Insttitute (SEI),
Carnegie Mellon University (CMU), 1990.

35 KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empirical study of
refactoring: Challenges and benefits at Microsoft. IEEE Transactions on
Software Engineering (TSE), 40(7):633–649, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 169

36 KITCHENHAM, B.; CHARTERS, S.. Guidelines for performing sys-
tematic literature reviews in software engineering. Technical report,
EBSE 2007-001, Version 2.3, Keele University and University of Durham, 2007.

37 KUHLEMANN, M.; LIANG, L. ; SAAKE, G.. Algebraic and cost-based
optimization of refactoring sequences. In: PROCEEDINGS OF THE 2ND
INTERNATIONAL WORKSHOP ON MODEL-DRIVEN PRODUCT LINE ENGI-
NEERING (MDPLE), CO-LOCATED WITH THE 6TH EUROPEAN CONFER-
ENCE ON MODELLING FOUNDATIONS AND APPLICATIONS (ECMFA), p.
37–48, 2010.

39 LIN, Y.; PENG, X.; CAI, Y.; DIG, D.; ZHENG, D. ; ZHAO, W.. Interactive
and guided architectural refactoring with search-based recommen-
dation. In: PROCEEDINGS OF THE 24TH INTERNATIONAL SYMPOSIUM
ON FOUNDATIONS OF SOFTWARE ENGINEERING (FSE), p. 535–546, 2016.

43 MEANANEATRA, P.. Identifying refactoring sequences for improv-
ing software maintainability. In: PROCEEDINGS OF THE 27TH INTERNA-
TIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE),
p. 406–409, 2012.

44 MKAOUER, M. W.; KESSENTINI, M.; BECHIKH, S.; DEB, K. ; Ó CIN-
NÉIDE, M.. Recommendation system for software refactoring using
innovization and interactive dynamic optimization. In: PROCEEDINGS
OF THE 29TH INTERNATIONAL CONFERENCE ON AUTOMATED SOFT-
WARE ENGINEERING (ASE), p. 331–336, 2014.

46 MURPHY-HILL, E.; PARNIN, C. ; BLACK, A.. How we refactor, and
how we know it. IEEE Transactions on Software Engineering (TSE), 38(1):5–
18, 2012.

47 Ó CINNÉIDE, M.; TRATT, L.; HARMAN, M.; COUNSELL, S. ;
HEMATI MOGHADAM, I.. Experimental assessment of software metrics
using automated refactoring. In: PROCEEDINGS OF THE 5TH INTER-
NATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND
MEASUREMENT (ESEM), p. 49–58, 2012.

48 OIZUMI, W.; GARCIA, A.; SOUSA, L.; CAFEO, B. ; ZHAO, Y.. Code
anomalies flock together: Exploring code anomaly agglomerations
for locating design problems. In: PROCEEDINGS OF THE 38TH INTER-
NATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 440–451,
2016.

49 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H. ; HAMDI, M. S.. Search-
based refactoring: Towards semantics preservation. In: PROCEEDINGS
OF THE 28TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAIN-
TENANCE (ICSM), p. 347–356, 2012.

50 OUNI, A.; KESSENTINI, M. ; SAHRAOUI, H.. Search-based refactoring
using recorded code changes. In: PROCEEDINGS OF THE 17TH EURO-
PEAN CONFERENCE ON SOFTWAREMAINTENANCE AND REENGINEERING
(CSMR), p. 221–230, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 170

55 PIVETA, E.; ARAÚJO, J.; PIMENTA, M.; MOREIRA, A.; GUERREIRO, P.
; PRICE, R. T.. Searching for opportunities of refactoring sequences:
Reducing the search space. In: PROCEEDINGS OF THE 32ND INTERNA-
TIONAL CONFERENCE ON COMPUTER SOFTWARE AND APPLICATIONS
(COMPSAC), p. 319–326, 2008.

60 SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why we refactor? Con-
fessions of GitHub contributors. In: PROCEEDINGS OF THE 24TH INTER-
NATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING
(FSE), p. 858–870, 2016.

62 SOUSA, L.; OLIVEIRA, A.; OIZUMI, W.; BARBOSA, S.; GARCIA, A.; LEE,
J.; KALINOWSKI, M.; DE MELLO, R.; FONSECA, B.; OLIVEIRA, R.; LUCENA,
C. ; PAES, R.. Identifying design problems in the source code: A
grounded theory. In: PROCEEDINGS OF THE 40TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 921–931, 2018.

63 STOL, K.-J.; RALPH, P. ; FITZGERALD, B.. Grounded theory in soft-
ware engineering research: A critical review and guidelines. In: PRO-
CEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING (ICSE), p. 120–131, 2016.

64 SZŐKE, G.; NAGY, C.; FÜLÖP, L.; FERENC, R. ; GYIMÓTHY, T.. Fault-
Buster: An automatic code smell refactoring toolset. In: PROCEED-
INGS OF THE 15TH WORKING CONFERENCE ON SOURCE CODE ANALYSIS
AND MANIPULATION (SCAM), p. 253–258, 2015.

65 SZOKE, G.; NAGY, C.; FERENC, R. ; GYIMÓTHY, T.. Designing and
developing automated refactoring transformations: An experience
report. In: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE
ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER), p.
693–697, 2016.

67 TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of extract
method refactoring opportunities for the decomposition of methods.
Journal of Systems and Software (JSS), 84(10):1757–1782, 2011.

70 WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M.; REGNELL, B.
; WESSLÉN, A.. Experimentation in Software Engineering. Springer
Science & Business Media, 1st edition, 2012.

73 YAMASHITA, A.; MOONEN, L.. Do developers care about code
smells? An exploratory survey. In: PROCEEDINGS OF THE 20TH WORK-
ING CONFERENCE ON REVERSE ENGINEERING (WCRE), p. 242–251, 2013.

76 BIBIANO, A. C.; SOARES, V.; COUTINHO, D.; FERNANDES, E.; COR-
REIA, J.; SANTOS, K.; OLIVEIRA, A.; GARCIA, A.; GHEYI, R.; FONSECA, B.;
RIBEIRO, M.; BARBOSA, C. ; OLIVEIRA, F.. How does incomplete com-
posite refactoring affect internal quality attributes? In: 28TH INTER-
NATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC), 2020.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 171

77 BIBIANO, A. C.; ASSUNÇAO, W.; COUTINHO, D.; SANTOS, K.; SOARES,
V.; GHEYI, R.; GARCIA, A.; FONSECA, B.; RIBEIRO, M.; OLIVEIRA, D. ;
OTHERS. Look ahead! revealing complete composite refactorings
and their smelliness effects. In: 37TH INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2021.

79 MEANANEATRA, P.; RONGVIRIYAPANISH, S. ; APIWATTANAPONG, T..
Refactoring opportunity identification methodology for removing
long method smells and improving code analyzability. IEICE Trans-
actions on Information and Systems, 101(7):1766–1779, 2018.

80 RANI, A.; CHHABRA, J. K.. Prioritization of smelly classes: A
two phase approach (reducing refactoring efforts). In: 2017 3RD
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE &
COMMUNICATION TECHNOLOGY (CICT), p. 1–6. IEEE, 2017.

94 KESSENTINI, M.; MAHAOUACHI, R. ; GHEDIRA, K.. What you like in
design use to correct bad-smells. Software Quality Journal, 21(4):551–571,
2013.

95 JENSEN, A. C.; CHENG, B. H.. On the use of genetic programming
for automated refactoring and the introduction of design patterns.
In: PROCEEDINGS OF THE 12TH ANNUAL CONFERENCE ON GENETIC AND
EVOLUTIONARY COMPUTATION, p. 1341–1348, 2010.

98 KESSENTINI, M.; WANG, H.. Detecting refactorings among multiple
web service releases: A heuristic-based approach. In: 2017 IEEE
INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS), p. 365–372.
IEEE, 2017.

S8 RAZANI, Z.; KEYVANPOUR, M.. Sbsr solution evaluation: Methods
and challenges classification. In: 2019 5TH CONFERENCE ON KNOWL-
EDGE BASED ENGINEERING AND INNOVATION (KBEI), p. 181–188. IEEE.

S9 FERNANDES, E.. Stuck in the middle: Removing obstacles to new
program features through batch refactoring. In: 2019 IEEE/ACM 41ST
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPAN-
ION PROCEEDINGS (ICSE-COMPANION), p. 206–209. IEEE, 2019.

104 COUNSELL, S.; LIU, X.; SWIFT, S.; BUCKLEY, J.; ENGLISH, M.;
HEROLD, S.; ELDH, S. ; ERMEDAHL, A.. An exploration of the’introduce
explaining variable’refactoring. In: SCIENTIFIC WORKSHOP PROCEED-
INGS OF THE XP2015, p. 1–5, 2015.

105 ZARRAS, A. V.; VARTZIOTIS, T. ; VASSILIADIS, P.. Navigating
through the archipelago of refactorings. In: PROCEEDINGS OF THE
2015 10TH JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEER-
ING, p. 922–925, 2015.

109 MARTICORENA, R.; LÓPEZ, C.; PÉREZ, J. ; CRESPO, Y.. Assisting
refactoring tool development through refactoring characterization.
In: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON SOFT-
WARE AND DATA TECHNOLOGIES, volumen 2, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 172

111 MOESUS, N.; SCHOLZE, M.; SCHLESINGER, S. ; HERBER, P.. Auto-
mated selection of software refactorings that improve performance.
In: ICSOFT, p. 67–78, 2018.

116 GAITANI, M. A. G.; ZAFEIRIS, V. E.; DIAMANTIDIS, N. ; GIAKOUMAKIS,
E. A.. Automated refactoring to the null object design pattern.
Information and Software Technology, 59:33–52, 2015.

132 TARWANI, S.; CHUG, A.. Sequencing of refactoring techniques by
greedy algorithm for maximizing maintainability. In: 2016 INTER-
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICA-
TIONS AND INFORMATICS (ICACCI), p. 1397–1403. IEEE, 2016.

143 BIBIANO, A. C.; FERNANDES, E.; OLIVEIRA, D.; GARCIA, A.; KALI-
NOWSKI, M.; FONSECA, B.; OLIVEIRA, R.; OLIVEIRA, A. ; CEDRIM, D.. A
quantitative study on characteristics and effect of batch refactoring
on code smells. In: PROCEEDINGS OF THE 13TH INTERNATIONAL SYM-
POSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT
(ESEM), p. 1–11. IEEE, 2019.

145 OUNI, A.; KESSENTINI, M.; Ó CINNÉIDE, M.; SAHRAOUI, H.; DEB, K.
; INOUE, K.. More: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells.
Journal of Software: Evolution and Process, 29(5):e1843, 2017.

146 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H.; INOUE, K. ; DEB, K.. Multi-
criteria code refactoring using search-based software engineering:
An industrial case study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25(3):1–53, 2016.

156 MOHAN, M.; GREER, D.. Using a many-objective approach to
investigate automated refactoring. Information and Software Technology,
112:83–101, 2019.

157 BOTELHO, G.; BEZERRA, L.; BRITTO, A. ; SILVA, L.. A many-
objective estimation distributed algorithm applied to search based
software refactoring. In: 2018 IEEE CONGRESS ON EVOLUTIONARY
COMPUTATION (CEC), p. 1–8. IEEE, 2018.

167 PETERSEN, K.; VAKKALANKA, S. ; KUZNIARZ, L.. Guidelines for
conducting systematic mapping studies in software engineering: An
update. Information and Software Technology, 64:1 – 18, 2015.

167 PAIXÃO, M.; UCHÔA, A.; BIBIANO, A. C.; OLIVEIRA, D.; GARCIA, A.;
KRINKE, J. ; ARVONIO, E.. Behind the intents: An in-depth empirical
study on software refactoring in modern code review. In: 17TH MINING
SOFTWARE REPOSITORIES (MSR), 2020.

168 ABID, C.; ALIZADEH, V.; KESSENTINI, M.; FERREIRA, T. D. N. ; DIG,
D.. 30 years of software refactoring research: A systematic literature
review. Transaction of Software Engineering (TSE), 2020.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 173

168 ALOMAR, E.; MKAOUER, M.; OUNI, A. ; KESSENTINI, M.. On the im-
pact of refactoring on the relationship between quality attributes and
design metrics. In: 13TH INTERNATIONAL SYMPOSIUM ON EMPIRICAL
SOFTWARE ENGINEERING AND MEASUREMENT (ESEM), p. 1–11, 2019.

169 BIBIANO, A. C.. Understanding characteristics and structural
effects of batch refactoring in practice. 2019.

170 VILLAMIZAR, H.; KALINOWSKI, M.; VIANA, M. ; FERNÁNDEZ, D. M..
A systematic mapping study on security in agile requirements engi-
neering. In: 2018 44TH EUROMICRO CONFERENCE ON SOFTWARE ENGI-
NEERING AND ADVANCED APPLICATIONS (SEAA), p. 454–461, 2018.

171 SOUSA, L.; CEDRIM, D.; GARCIA, A.; OIZUMI, W.; BIBIANO, A. C.;
TENORIO, D.; KIM, M. ; OLIVEIRA, A.. Characterizing and identifying
composite refactorings: Concepts, heuristics and patterns. In: 17TH
MSR (2020), 2020.

172 BRITO, A.; HORA, A. ; VALENTE, M. T.. Refactoring graphs: As-
sessing refactoring over time. In: PROCEEDINGS OF THE 26TH IN-
TERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND
REENGINEERING (SANER), p. 504–507, 2019.

173 TSANTALIS, N.; MANSOURI, M.; ESHKEVARI, L.; MAZINANIAN, D. ;
DIG, D.. Accurate and efficient refactoring detection in commit
history. In: PROCEEDINGS OF THE 40TH INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING (ICSE), p. 483–494, 2018.

174 VIDAL, S. A.; OIZUMI, W. N.; GARCIA, A.; DIAZ-PACE, J. A. ; MARCOS,
C.. Ranking architecturally critical agglomerations of code smells.
Sci. Comput. Program. (2019), 182:64–85, 2019.

175 OIZUMI, W. N.; DA SILVA SOUSA, L.; OLIVEIRA, A.; GARCIA, A.;
AGBACHI, O. I. A. B.; OLIVEIRA, R. F. ; LUCENA, C.. On the identification
of design problems in stinky code: experiences and tool support. J.
Braz. Comp. Soc. (2018), 24(1):13:1–13:30, 2018.

176 OIZUMI, W. N.; GARCIA, A. F.; DA SILVA SOUSA, L.; CAFEO, B. B. P.
; ZHAO, Y.. Code anomalies flock together: exploring code anomaly
agglomerations for locating design problems. In: Dillon, L. K.; Visser, W.
; Williams, L., editors, 38TH ICSE (2016), p. 440–451. ACM, 2016.

177 PALOMBA, F.; ZAIDMAN, A.; OLIVETO, R. ; DE LUCIA, A.. An ex-
ploratory study on the relationship between changes and refactoring.
In: 25TH ICPC (2017), p. 176–185. IEEE, 2017.

178 GUIMARÃES, E. T.; GARCIA, A. F. ; CAI, Y.. Architecture-sensitive
heuristics for prioritizing critical code anomalies. In: France, R. B.;
Ghosh, S. ; Leavens, G. T., editors, 14TH INTERNATIONAL CONFERENCE ON
MODULARITY (2015), p. 68–80. ACM, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 174

179 SANTOS, J. A. M.; ROCHA-JUNIOR, J. B.; PRATES, L. C. L.; DO NASCI-
MENTO, R. S.; FREITAS, M. F. ; DE MENDONÇA, M. G.. A systematic
review on the code smell effect. JSS (2018), 144:450–477, 2018.

180 DUBBO. Acesslog dateformat enhancemnet, 2019. Available at:
<https://github.com/apache/dubbo/commit/5146f6d6>.

181 DUBBO. Dubbo github project, 2019. Available at: <https://github.
com/apache/dubbo>.

182 SANTOS, K.. Refactoring (move method) to accesslogdata class,
2020. Available at: <https://github.com/apache/dubbo/pull/6151>.

183 SANTOS, K.. Refactoring to remove envious methods (ex-
tract methods), 2021. Available at: <https://github.com/apache/dubbo/pull/
7647>.

184 DUBBO. Acesslog dateformat enhancemnet, 2019. Available at:
<https://github.com/apache/dubbo/pull/3274>.

185 ELASTICSEARCH. Support date math for origin decay function
parsing, 2013. Available at: <https://github.com/elastic/elasticsearch/commit/
2d523ac>.

186 PRESTODB. Parse hive column values as needed instead of all
up front, 2013. Available at: <https://github.com/prestodb/presto/commit/
b4bbb4b>.

187 DUBBO. Rewrite uts, 2019. Available at: <https://github.com/apache/
dubbo/commit/66fbd320>.

188 DUBBO. Refactoring to remove duplicate methods and feature
envy., 2019. Available at: <https://github.com/apache/dubbo/pull/5506>.

189 DUBBO. Refactoring to remove feature envy, 2019. Available at:
<https://github.com/apache/dubbo/pull/5559>.

190 DUBBO. refactoring to remove feature envy, 2019. Available at:
<https://github.com/apache/dubbo/pull/5529>.

191 ALSHAYEB, M.. Empirical investigation of refactoring effect on
software quality. 51(9):1319–1326, 2009.

192 DU BOIS, B.; DEMEYER, S. ; VERELST, J.. Refactoring: Improving
coupling and cohesion of existing code. In: 11TH WCRE (2004), p. 144–
151, 2004.

193 BIBIANO, A. C.. Complete composite website, 2021. Available at:
<https://anacarlagb.github.io/icsme2021-complete-composite/>.

194 TSANTALIS, N.; KETKAR, A. ; DIG, D.. Refactoringminer 2.0. IEEE
Transactions on Software Engineering (TSE), 2020.

https://github.com/apache/dubbo/commit/5146f6d6
https://github.com/apache/dubbo
https://github.com/apache/dubbo
https://github.com/apache/dubbo/pull/6151
https://github.com/apache/dubbo/pull/7647
https://github.com/apache/dubbo/pull/7647
https://github.com/apache/dubbo/pull/3274
https://github.com/elastic/elasticsearch/commit/2d523ac
https://github.com/elastic/elasticsearch/commit/2d523ac
https://github.com/prestodb/presto/commit/b4bbb4b
https://github.com/prestodb/presto/commit/b4bbb4b
https://github.com/apache/dubbo/commit/66fbd320
https://github.com/apache/dubbo/commit/66fbd320
https://github.com/apache/dubbo/pull/5506
https://github.com/apache/dubbo/pull/5559
https://github.com/apache/dubbo/pull/5529
https://anacarlagb.github.io/icsme2021-complete-composite/
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 175

195 OLIVEIRA, R. F.; DE MELLO, R. M.; FERNANDES, E.; GARCIA, A. ;
LUCENA, C.. Collaborative or individual identification of code smells?
on the effectiveness of novice and professional developers. Information
and Software Technology (IST), 120, 2020.

196 DE MELLO, R. M.; UCHÔA, A. G.; OLIVEIRA, R. F.; OIZUMI, W. N.;
SOUZA, J.; MENDES, K.; OLIVEIRA, D.; FONSECA, B. ; GARCIA, A.. Do
research and practice of code smell identification walk together? A
social representations analysis. In: 13TH INTERNATIONAL SYMPOSIUM
ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT (ESEM),
p. 1–6. IEEE, 2019.

197 FONTANA, F.; MANGIACAVALLI, M.; POCHIERO, D. ; ZANONI, M..
On experimenting refactoring tools to remove code smells. In:
PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AGILE
SOFTWARE DEVELOPMENT (XP), SCIENTIFIC WORKSHOPS, p. 1–7, 2015.

198 YOSHIDA, N.; SAIKA, T.; CHOI, E.; OUNI, A. ; INOUE, K.. Revisit-
ing the relationship between code smells and refactoring. In: PRO-
CEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON PROGRAM
COMPREHENSION (ICPC), p. 1–4, 2016.

199 MENS, T.; TOURWÉ, T.. A survey of software refactoring. IEEE
Transactions on Software Engineering (TSE), 30(2):126–139, 2004.

200 MARTINS, J.; BEZERRA, C.; UCHÔA, A. ; GARCIA, A.. How do code
smell co-occurrences removal impact internal quality attributes? a
developers’ perspective. In: 35TH SBES, p. 54–63, 2021.

201 TSANTALIS, N.; CHAIKALIS, T. ; CHATZIGEORGIOU, A.. Ten years
of JDeodorant: Lessons learned from the hunt for smells. In: P25TH
SANER (2018), p. 4–14, 2018.

202 OLIVEIRA, R. F.; DA SILVA SOUSA, L.; DE MELLO, R. M.; VALENTIM,
N. M. C.; LOPES, A.; CONTE, T.; GARCIA, A. F.; DE OLIVEIRA, E. C. C.
; DE LUCENA, C. J. P.. Collaborative identification of code smells:
A multi-case study. In: 39TH ICSE-SEIP (2017), p. 33–42. IEEE Computer
Society, 2017.

203 BIBIANO, A. C.; GARCIA, A.. On the characterization, detection
and impact of batch refactoring in practice. In: 34TH BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERINGSOFTWARE ENGINEERING -
DOCTORAL AND MASTER THESES COMPETITION (SBES-CTD), p. 165–
179, Porto Alegre, RS, Brasil, 2020. SBC.

204 OIZUMI, W.; BIBIANO, A. C.; CEDRIM, D.; OLIVEIRA, A.; SOUSA, L.;
GARCIA, A. ; OLIVEIRA, D.. Recommending composite refactorings
for smell removal: Heuristics and evaluation. In: 34TH BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 72–81, 2020.

205 SOARES, V.; OLIVEIRA, A.; PEREIRA, J. A.; BIBANO, A. C.; GARCIA,
A.; FARAH, P. R.; VERGILIO, S. R.; SCHOTS, M.; SILVA, C.; COUTINHO,

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 176

D. ; OTHERS. On the relation between complexity, explicitness,
effectiveness of refactorings and non-functional concerns. In: 34TH
BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 788–797,
2020.

206 TAHIR, A.; DIETRICH, J.; COUNSELL, S.; LICORISH, S. ; YAMASHITA,
A.. A large scale study on how developers discuss code smells and
anti-pattern in stack exchange sites. Information and Software Technology,
125:106333, sep 2020.

207 UCHÔA, A.; BARBOSA, C.; OIZUMI, W.; BLENILIO, P.; LIMA, R.; GAR-
CIA, A. ; BEZERRA, C.. How does modern code review impact software
design degradation? an in-depth empirical study. In: 2020 IEEE IN-
TERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVO-
LUTION (ICSME), p. 511–522. IEEE, 2020.

208 BARBOSA, C.; UCHÔA, A.; COUTINHO, D.; FALCÃO, F.; BRITO, H.;
AMARAL, G.; SOARES, V.; GARCIA, A.; FONSECA, B.; RIBEIRO, M. ; OTHERS.
Revealing the social aspects of design decay: A retrospective study
of pull requests. In: 34TH BRAZILIAN SYMPOSIUM ON SOFTWARE
ENGINEERING (SBES), p. 364–373, 2020.

209 UCHÔA, A.; BARBOSA, C.; COUTINHO, D.; OIZUMI, W.; ASSUNÇAO,
W. K.; VERGILIO, S. R.; PEREIRA, J. A.; OLIVEIRA, A. ; GARCIA, A.. Predict-
ing design impactful changes in modern code review: A large-scale
empirical study. 2021.

211 OLIVEIRA, J.; GHEYI, R.; MONGIOVI, M.; SOARES, G.; RIBEIRO, M.
; GARCIA, A.. Revisiting the refactoring mechanics. Information and
Software Technology, 110:136–138, 2019.

213 STÖRRLE, H.. How are conceptual models used in industrial
software development? a descriptive survey. In: PROCEEDINGS OF THE
21ST INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT
IN SOFTWARE ENGINEERING, p. 160–169, 2017.

214 WHITE, J.; DOUGHERTY, B.; SCHMIDT, D. C. ; BENAVIDES CUEVAS,
D. F.. Automated reasoning for multi-step feature model configura-
tion problems. In: SPLC 2009: 13TH INTERNATIONAL SOFTWARE PROD-
UCT LINE CONFERENCE (2009), P 11-20. ACM, 2009.

216 OLIVEIRA, R.; ESTÁCIO, B.; GARCIA, A.; MARCZAK, S.; PRIKLADNICKI,
R.; KALINOWSKI, M. ; LUCENA, C.. Identifying code smells with collab-
orative practices: A controlled experiment. In: PROCEEDINGS OF THE
BRAZILIAN SYMPOSIUM ON SOFTWARE COMPONENTS, ARCHITECTURES
AND REUSE (SBCARS), p. 61–70. IEEE, 2016.

217 NETO, A. A.; KALINOWSKI, M.; GARCIA, A.; WINKLER, D. ; BIFFL, S.. A
preliminary comparison of using variability modeling approaches to
represent experiment families. In: PROCEEDINGS OF THE EVALUATION
AND ASSESSMENT ON SOFTWARE ENGINEERING, p. 333–338, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 177

218 TRUJILLO, S.; BATORY, D. ; DIAZ, O.. Feature refactoring a multi-
representation program into a product line. In: PROCEEDINGS OF THE
5TH INTERNATIONAL CONFERENCE ON GENERATIVE PROGRAMMING
AND COMPONENT ENGINEERING, p. 191–200, 2006.

219 BIBIANO, A. C.; UCHÔA, A.; ASSUNÇAO, W. K.; OLIVEIRA, D.;
E. COLANZI, T.; VERGILIO, S. R. ; GARCIA, A.. Composite refactor-
ing: Representation models, characteristics and effect on software
projects, url: https://shorturl.at/gstzd. 2022.

220 BIBIANO, A. C. G.. Understanding Characteristics and Structural
Effects of Batch Refactorings in Practice. PhD thesis, Master’s disserta-
tion, PUC-Rio, 2019.

221 BENAVIDES, D.; SEGURA, S. ; RUIZ-CORTÉS, A.. Automated analysis
of feature models 20 years later: A literature review. Information
systems, 35(6):615–636, 2010.

222 ALIZADEH, V.; OUALI, M. A.; KESSENTINI, M. ; CHATER, M.. Refbot:
Intelligent software refactoring bot. In: INTERNATIONAL CONFERENCE
ON AUTOMATED SOFTWARE ENGINEERING (ASE), p. 823–834, 2019.

223 VIDAL, S. A.; OIZUMI, W. N.; GARCIA, A.; DIAZ-PACE, J. A. ; MARCOS,
C.. Ranking architecturally critical agglomerations of code smells.
Sci. Comput. Program. (2019), 182:64–85, 2019.

224 BIBIANO, A. C.. Incomplete composite website, 2020. Available at:
<https://researcher-icpc-104.github.io/icpc2020_incomplete_composite>.

225 SZŐKE, G.; ANTAL, G.; NAGY, C.; FERENC, R. ; GYIMÓTHY, T..
Empirical study on refactoring large-scale industrial systems and its
effects on maintainability. Journal of Systems and Software (JSS), 129:107–
126, 2017.

226 TENORIO, D.; BIBIANO, A. C. ; GARCIA, A.. On the customization
of batch refactoring. In: 3RD INTERNATIONAL WORKSHOP ON REFAC-
TORING, CO-ALOCATED INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING (IWOR-ICSE), p. 13–16. IEEE Press, 2019.

227 BRITO, A.; HORA, A. ; VALENTE, M. T.. Towards a catalog of
composite refactorings. Journal of Software: Evolution and Process, 2022.

228 ANT. Apache ant, 2017. Available at: <https://github.com/apache/ant/
commit/b7d1e9bde44c>.

229 BIBIANO, A. C.. Complete composite website, 2022. Available at:
<https://compositerefactoring.github.io/site/>.

230 BIBIANO, A. C.. Catalog of complete composites, 2022. Available at:
<https://compositerefactoring.github.io/catalog>.

231 NETTY. Allow controlling time flow for embeddedeventloop,
2022. Available at: <https://github.com/netty/netty/commit/c18fc2b>.

https://researcher-icpc-104.github.io/icpc2020_incomplete_composite
https://github.com/apache/ant/commit/b7d1e9bde44c
https://github.com/apache/ant/commit/b7d1e9bde44c
https://compositerefactoring.github.io/site/
https://compositerefactoring.github.io/catalog
https://github.com/netty/netty/commit/c18fc2b
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 178

233 O’KEEFFE, M.; CINNÉIDE, M. O.. A stochastic approach to auto-
mated design improvement. In: ACM INTERNATIONAL CONFERENCE
PROCEEDING SERIES, volumen 42, p. 59–62. Citeseer, 2003.

234 HARMAN, M.; JONNES, B.. Search-based software engineering. In:
INFORMATION AND SOFTWARE TECHNOLOGY, volumen 43, p. 833–839,
2001.

239 DEB, K.; PRATAP, A.; AGARWAL, S. ; MEYARIVAN, T.. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

240 ULUNGU, E. L.; TEGHEM, J.; FORTEMPS, P. ; TUYTTENS, D.. Mosa
method: a tool for solving multiobjective combinatorial optimization
problems. Journal of multicriteria decision analysis, 8(4):221, 1999.

241 FRAIRE HUACUJA, H. J.; SOTO, C.; DORRONSORO, B.; SANTILLÁN,
C. G.; VALDEZ, N. R. ; BALDERAS-JARAMILLO, F.. Amosa with analyti-
cal tuning parameters and fuzzy logic controller for heterogeneous
computing scheduling problem. Intuitionistic and Type-2 Fuzzy Logic En-
hancements in Neural and Optimization Algorithms: Theory and Applications, p.
195–208, 2020.

242 KESSENTINI, M.; DEA, T. J. ; OUNI, A.. A context-based refactoring
recommendation approach using simulated annealing: two industrial
case studies. In: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY
COMPUTATION CONFERENCE, p. 1303–1310, 2017.

244 OIZUMI, W.. Identification and Refactoring of Design Problems
in Software Systems. PhD thesis, Informatics Department (DI), Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil, 2022.

245 GALIN, D.. Software quality: concepts and practice. John Wiley &
Sons, 2018.

246 LAPORTE, C. Y.; APRIL, A.. Software quality assurance. John Wiley
& Sons, 2018.

247 BAABAD, A.; ZULZALIL, H. B.; HASSAN, S. ; BAHAROM, S. B.. Soft-
ware architecture degradation in open source software: A systematic
literature review. IEEE Access, 8:173681–173709, 2020.

248 OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; CARVALHO, L.; GARCIA, A.;
COLANZI, T. ; OLIVEIRA, R.. On the density and diversity of degrada-
tion symptoms in refactored classes: A multi-case study. In: IEEE 30TH
INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING
(ISSRE), p. 346–357, 2019.

249 OLIVEIRA, D.; ASSUNÇÃO, W. K. G.; GARCIA, A.; FONSECA, B. ;
RIBEIRO, M.. Developers’ perception matters: machine learning to
detect developer-sensitive smells. Empirical Software Engineering, 27(7).

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 179

250 FERNANDES, E.; CHÁVEZ, A.; GARCIA, A.; FERREIRA, I.; CEDRIM,
D.; SOUSA, L. ; OIZUMI, W.. Refactoring effect on internal quality
attributes: What haven’t they told you yet? Information and Software
Technology, 126:106347, 2020.

251 LACERDA, G.; PETRILLO, F.; PIMENTA, M. ; GUÉHÉNEUC, Y. G.. Code
smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software (JSS), 167:110610, 2020.

252 YAMASHITA, T.; MILLAR, R. J.. Likert Scale, p. 2938–2941. Springer
International Publishing, Cham, 2021.

253 OPDYKE, W. F.. Refactoring: An aid in designing application
frameworks and evolving object-oriented systems. In: PROC. OF
1990 SYMPOSIUM ON OBJECT-ORIENTED PROGRAMMING EMPHASIZING
PRACTICAL APPLICATIONS (SOOPPA), 1990.

254 QAYUM, F.; HECKEL, R.. Search-based refactoring using unfolding
of graph transformation systems. Electronic Communications of the EASST,
38, 2011.

255 GALSTER, M.; WEYNS, D.; TOFAN, D.; MICHALIK, B. ; AVGERIOU, P..
Variability in software systems—a systematic literature review. IEEE
Transactions on Software Engineering, 40(3):282–306, 2013.

256 TSANTALIS, N.; KETKAR, A. ; DIG, D.. Refactoringminer 2.0. IEEE
Transactions on Software Engineering, 2020.

257 DE MELLO, R.; OLIVEIRA, R.; UCHÔA, A.; OIZUMI, W.; GARCIA, A.;
FONSECA, B. ; DE MELLO, F.. Recommendations for developers iden-
tifying code smells. IEEE Software, 2022.

259 VASCONCELOS, A.. Explorando métricas de código para a de-
tecção de long envious method. Trabalho de Conclusão de Curso, Computing
Institute (IC), Federal University of Alagoas, Brazil, 2023.

260 BIBIANO, A. C.; UCHÔA, A.; ASSUNÇÃO, W. K.; TENÓRIO, D.;
COLANZI, T. E.; VERGILIO, S. R. ; GARCIA, A.. Composite refactoring:
Representations, characteristics and effects on software projects. In-
formation and Software Technology, 156:107134, 2023.

261 TUFANO, M.; PALOMBA, F.; BAVOTA, G.; OLIVETO, R.; DI PENTA, M.;
DE LUCIA, A. ; POSHYVANYK, D.. When and why your code starts to
smell bad (and whether the smells go away). TSE (2017), 43(11):1063–
1088, 2017.

262 PALOMBA, F.; BAVOTA, G.; DI PENTA, M.; FASANO, F.; OLIVETO, R.
; DE LUCIA, A.. A large-scale empirical study on the lifecycle of code
smell co-occurrences. IST (2018), 99:1–10, 2018.

263 OPDYKE, W. F.. Refactoring Object-Oriented Frameworks. PhD
thesis, USA, 1992.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 180

264 ZHAO, S.; BIAN, Y. ; ZHANG, S.. A review on refactoring sequen-
tial program to parallel code in multicore era. In: INTERNATIONAL
CONFERENCE ON INTELLIGENT COMPUTING AND INTERNET OF THINGS.
IEEE, jan 2015.

265 LAGUNA, M. A.; CRESPO, Y.. A systematic mapping study on
software product line evolution: From legacy system reengineering
to product line refactoring. Science of Computer Programming, 78(8):1010–
1034, aug 2013.

266 MISBHAUDDIN, M.; ALSHAYEB, M.. UML model refactoring: a
systematic literature review. Empirical Software Engineering, 20(1):206–
251, oct 2015.

267 SIDHU, B. K.; SINGH, K. ; SHARMA, N.. Refactoring UML models of
object-oriented software: A systematic review. International Journal of
Software Engineering and Knowledge Engineering, 28(09):1287–1319, sep 2018.

268 TAVARES, C. S.; FERREIRA, F. ; FIGUEIREDO, E.. A systematic
mapping of literature on software refactoring tools. In: XIV BRAZILIAN
SYMPOSIUM ON INFORMATION SYSTEMS (SBSI). ACM, 2018.

269 COELHO, F.; MASSONI, T. ; ALVES, E. L.. Refactoring-aware code re-
view: A systematic mapping study. In: IEEE/ACM 3RD INTERNATIONAL
WORKSHOP ON REFACTORING (IWoR). IEEE, may 2019.

270 VASSALLO, C.; PALOMBA, F. ; GALL, H. C.. Continuous refactoring
in CI: A preliminary study on the perceived advantages and barriers.
In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE
AND EVOLUTION (ICSME). IEEE, sep 2018.

271 BAQAIS, A. A. B.; ALSHAYEB, M.. Automatic software refactoring:
a systematic literature review. Software Quality Journal, 28(2):459–502,
dec 2019.

272 MARIANI, T.; VERGILIO, S. R.. A systematic review on search-based
refactoring. Information and Software Technology, 83:14–34, mar 2017.

273 MOHAN, M.; GREER, D.. A survey of search-based refactoring
for software maintenance. Journal of Software Engineering Research and
Development, 6(1), feb 2018.

274 MENS, T.; TOURWE, T.. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, feb 2004.

275 ABEBE, M.; ; AND, C.-J. Y.. Classification and summarization of
software refactoring researches: A literature review approach. In:
ADVANCED SCIENCE AND TECHNOLOGY LETTERS. Science & Engineering
Research Support soCiety, apr 2014.

276 DALLAL, J. A.. Identifying refactoring opportunities in object-
oriented code: A systematic literature review. Information and Software
Technology, 58:231–249, feb 2015.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 181

277 SINGH, S.; KAUR, S.. A systematic literature review: Refactoring
for disclosing code smells in object oriented software. Ain Shams
Engineering Journal, 9(4):2129–2151, dec 2018.

278 DALLAL, J. A.; ABDIN, A.. Empirical evaluation of the impact of
object-oriented code refactoring on quality attributes: A systematic
literature review. IEEE Transactions on Software Engineering, 44(1):44–69,
jan 2018.

279 KAUR, S.; SINGH, P.. How does object-oriented code refactoring
influence software quality? research landscape and challenges. Journal
of Systems and Software, 157:110394, nov 2019.

280 SHARMA, T.; SURYANARAYANA, G. ; SAMARTHYAM, G.. Challenges
to and solutions for refactoring adoption: An industrial perspective.
IEEE Software, 32(6):44–51, nov 2015.

281 LI, Z.; HARMAN, M. ; HIERONS, R. M.. Search algorithms for re-
gression test case prioritization. IEEE Transactions on software engineering,
33(4):225–237, 2007.

282 MANSOUR, N.; BAHSOON, R. ; BARADHI, G.. Empirical comparison
of regression test selection algorithms. Journal of Systems and Software,
57(1):79–90, 2001.

283 BIBIANO, A. C.. Replication package of survey on recomposite,
2023. Available at: <https://doi.org/10.5281/zenodo.7883634>.

284 BORBA, P.; SAMPAIO, A. ; CORNÉLIO, M.. A refinement algebra
for object-oriented programming. In: ECOOP 2003–OBJECT-ORIENTED
PROGRAMMING: 17TH EUROPEAN CONFERENCE, DARMSTADT, GER-
MANY, JULY 21-25, 2003. PROCEEDINGS 17, p. 457–482. Springer, 2003.

285 GHEYI, R.; BORBA, P.. Refactoring alloy specifications. Electronic
Notes in Theoretical Computer Science, 95:227–243, 2004.

PS1 Ó CINNÉIDE, M.; NIXON, P.. A methodology for the automated
introduction of design patterns. In: PROCEEDINGS OF THE 7TH IN-
TERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM), p.
463–472, 1999.

PS10 SZŐKE, G.; NAGY, C.; FÜLÖP, L.; FERENC, R. ; GYIMÓTHY, T..
Faultbuster: An automatic code smell refactoring toolset. In: 15TH
SCAM, p. 253–258, 2015.

PS11 MURPHY-HILL, E.; PARNIN, C. ; BLACK, A.. How we refactor, and
how we know it. IEEE Trans. Softw. Eng., 38(1):5–18, 2012.

PS12 MEANANEATRA, P.. Identifying refactoring sequences for im-
proving software maintainability. In: 27TH ASE, p. 406–409, 2012.

PS13 KIM, J.; BATORY, D.; DIG, D. ; AZANZA, M.. Improving refactoring
speed by 10x. In: PROCEEDINGS OF THE 38TH INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING (ICSE), p. 1145–1156, 2016.

https://doi.org/10.5281/zenodo.7883634
DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 182

PS14 LIN, Y.; PENG, X.; CAI, Y.; DIG, D.; ZHENG, D. ; ZHAO, W.. Interac-
tive and guided architectural refactoring with search-based recom-
mendation. In: PROCEEDINGS OF THE 24TH INTERNATIONAL SYMPO-
SIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING (FSE), p. 535–546,
2016.

PS15 HARMAN, M.; TRATT, L.. Pareto optimal search based refac-
toring at the design level. In: PROCEEDINGS OF THE 9TH GENETIC
AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO), p. 1106–
1113, 2007.

PS152 QAYUM, F.; HECKEL, R.. Search-based refactoring using unfold-
ing of graph transformation systems. Electronic Communications of the
EASST, 38, 2011.

PS16 MKAOUER, M. W.; KESSENTINI, M.; BECHIKH, S.; DEB, K. ; Ó CIN-
NÉIDE, M.. Recommendation system for software refactoring using
innovization and interactive dynamic optimization. In: PROCEEDINGS
OF THE 29TH INTERNATIONAL CONFERENCE ON AUTOMATED SOFT-
WARE ENGINEERING (ASE), p. 331–336, 2014.

PS17 RAYCHEV, V.; SCHÄFER, M.; SRIDHARAN, M. ; VECHEV, M.. Refac-
toring with synthesis. ACM SIGPLAN Notices, 48(10):339–354, 2013.

PS18 KIM, J.; BATORY, D. ; DIG, D.. Scripting parametric refactorings
in Java to retrofit design patterns. In: PROCEEDINGS OF THE 31ST IN-
TERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVO-
LUTION (ICSME), p. 211–220, 2015.

PS19 BEN FADHEL, A.; KESSENTINI, M.; LANGER, P. ; WIMMER, M..
Search-based detection of high-level model changes. In: PROCEED-
INGS OF THE 28TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE (ICSM), p. 212–221, 2012.

PS2 VILLAVICENCIO, G.. A new software maintenance scenario based
on refactoring techniques. In: PROCEEDINGS OF THE 16TH EURO-
PEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEER-
ING (CSMR), p. 341–346, 2012.

PS20 QAYUM, F.; HECKEL, R.; CORRADINI, A.; MARGARIA, T.; PADBERG,
J. ; TAENTZER, G.. Search-based refactoring based on unfolding
of graph transformation systems. In: PROCEEDINGS OF THE 5TH
INTERNATIONAL CONFERENCE ON GRAPH TRANSFORMATION (ICGT):
DOCTORAL SYMPOSIUM (DS), p. 1–14, 2010.

PS21 MAHOUACHI, R.; KESSENTINI, M. ; Ó CINNÉIDE, M.. Search-based
refactoring detection. In: PROCEEDINGS OF THE 15TH GENETIC AND
EVOLUTIONARY COMPUTATION CONFERENCE (GECCO), p. 205–206, 2013.

PS22 OUNI, A.; KESSENTINI, M. ; SAHRAOUI, H.. Search-based refac-
toring using recorded code changes. In: PROCEEDINGS OF THE 17TH
EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING (CSMR), p. 221–230, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 183

PS23 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H. ; HAMDI, M. S.. Search-
based refactoring: Towards semantics preservation. In: PROCEEDINGS
OF THE 28TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAIN-
TENANCE (ICSM), p. 347–356, 2012.

PS24 PIVETA, E.; ARAÚJO, J.; PIMENTA, M.; MOREIRA, A.; GUERREIRO,
P. ; PRICE, R. T.. Searching for opportunities of refactoring sequences:
Reducing the search space. In: PROCEEDINGS OF THE 32ND INTERNA-
TIONAL CONFERENCE ON COMPUTER SOFTWARE AND APPLICATIONS
(COMPSAC), p. 319–326, 2008.

PS25 PRETE, K.; RACHATASUMRIT, N.; SUDAN, N. ; KIM, M.. Template-
based reconstruction of complex refactorings. In: PROCEEDINGS OF
THE 26TH INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE
(ICSM), p. 1–10, 2010.

PS26 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H. ; HAMDI, M. S.. The
use of development history in software refactoring using a multi-
objective evolutionary algorithm. In: PROCEEDINGS OF THE 15TH
GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO),
p. 1461–1468, 2013.

PS27 GRIFFITH, I.; WAHL, S. ; IZURIETA, C.. Truerefactor: An auto-
mated refactoring tool to improve legacy system and application
comprehensibility. In: PROCEEDINGS OF THE 24TH INTERNATIONAL
CONFERENCE ON COMPUTER APPLICATIONS IN INDUSTRY AND ENGI-
NEERING (CAINE), p. 1–6, 2011.

PS28 FOSTER, S.; GRISWOLD, W. ; LERNER, S.. WitchDoctor: IDE sup-
port for real-time auto-completion of refactorings. In: PROCEEDINGS
OF THE 34TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING (ICSE), p. 222–232, 2012.

PS3 KUHLEMANN, M.; LIANG, L. ; SAAKE, G.. Algebraic and cost-based
optimization of refactoring sequences. In: 2ND MDPLE CO-LOCATED
WITH 6TH ECMFA, 2010.

PS5 Ó CINNÉIDE, M.; NIXON, P.. Composite refactorings for java pro-
grams. In: PROCEEDINGS OF THE WORKSHOP ON FORMAL TECHNIQUES
FOR JAVA PROGRAMS, CO-LOCATED WITH THE 14TH EUROPEAN CON-
FERENCE ON OBJECT-ORIENTED PROGRAMMING (ECOOP), p. 1–6, 2000.

PS6 SZOKE, G.; NAGY, C.; FERENC, R. ; GYIMÓTHY, T.. Designing and
developing automated refactoring transformations: An experience
report. In: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE
ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER), p.
693–697, 2016.

PS7 DE OLIVEIRA, M. C.. DRACO: Discovering refactorings that
improve architecture using fine-grained co-change dependencies. In:
PROCEEDINGS OF THE 11TH JOINT MEETING ON FOUNDATIONS OF
SOFTWARE ENGINEERING (FSE), p. 1018–1021, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 184

PS8 FATIREGUN, D.; HARMAN, M. ; HIERONS, R.. Evolving transfor-
mation sequences using genetic algorithms. In: PROCEEDINGS OF THE
4TH INTERNATIONAL WORKSHOP ON SOURCE CODE ANALYSIS AND MA-
NIPULATION (SCAM), p. 65–74, 2004.

PS9 Ó CINNÉIDE, M.; TRATT, L.; HARMAN, M.; COUNSELL, S. ;
HEMATI MOGHADAM, I.. Experimental assessment of software metrics
using automated refactoring. In: PROCEEDINGS OF THE 5TH INTER-
NATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND
MEASUREMENT (ESEM), p. 49–58, 2012.

S02 BIBIANO, A. C.; FERNANDES, E.; OLIVEIRA, D.; GARCIA, A.; KALI-
NOWSKI, M.; FONSECA, B.; OLIVEIRA, R.; OLIVEIRA, A. ; CEDRIM, D.. A
quantitative study on characteristics and effect of batch refactoring
on code smells. In: PROCEEDINGS OF THE 13TH INTERNATIONAL SYM-
POSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT
(ESEM), p. 1–11. IEEE, 2019.

S04 KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empirical study
of refactoring challenges and benefits at Microsoft. IEEE Trans. Softw.
Eng., 40(7):633–649, 2014.

S04 MOESUS, N.; SCHOLZE, M.; SCHLESINGER, S. ; HERBER, P.. Auto-
mated selection of software refactorings that improve performance.
In: ICSOFT, p. 67–78, 2018.

S10 MOHAN, M.; GREER, D.. Using a many-objective approach to
investigate automated refactoring. Information and Software Technology,
112:83–101, 2019.

S101 HEROLD, S.; MAIR, M.. Recommending refactorings to re-
establish architectural consistency. In: EUROPEAN CONFERENCE ON
SOFTWARE ARCHITECTURE, p. 390–397. Springer, 2014.

S103 YANG, L.; KAMIYA, T.; SAKAMOTO, K.; WASHIZAKI, H. ; FUKAZAWA,
Y.. Refactoringscript: A script and its processor for composite
refactoring. In: SEKE, p. 711–716, 2014.

S11 BOTELHO, G.; BEZERRA, L.; BRITTO, A. ; SILVA, L.. A many-
objective estimation distributed algorithm applied to search based
software refactoring. In: 2018 IEEE CONGRESS ON EVOLUTIONARY
COMPUTATION (CEC), p. 1–8. IEEE, 2018.

S110 NEGARA, S.; CHEN, N.; VAKILIAN, M.; JOHNSON, R. E. ; DIG, D.. A
comparative study of manual and automated refactorings. In: EURO-
PEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, p. 552–576.
Springer, 2013.

S111 VAKILIAN, M.; CHEN, N.; MOGHADDAM, R. Z.; NEGARA, S. ; JOHN-
SON, R. E.. A compositional paradigm of automating refactorings.
In: EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, p.
527–551. Springer, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 185

S112 SOETENS, Q. D.; PEREZ, J. ; DEMEYER, S.. An initial investiga-
tion into change-based reconstruction of floss-refactorings. In: PRO-
CEEDINGS OF THE 29TH INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE, p. 384–387. IEEE, 2013.

S115 ZIBRAN, M. F.; ROY, C. K.. Conflict-aware optimal scheduling of
prioritised code clone refactoring. IET software, 7(3):167–186, 2013.

S117 DORA, S. K.; KANHAR, D.. Identifying refactoring opportunity
in an application: A metric based approach. In: PROCEEDINGS OF
INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, p. 107–
112. Springer, 2013.

S118 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H. ; BOUKADOUM, M.. Main-
tainability defects detection and correction: a multi-objective ap-
proach. Automated Software Engineering, 20(1):47–79, 2013.

S119 GHANNEM, A.; EL BOUSSAIDI, G. ; KESSENTINI, M.. Model refac-
toring using interactive genetic algorithm. In: PROCEEDINGS OF THE
5TH INTERNATIONAL SYMPOSIUM ON SEARCH BASED SOFTWARE ENGI-
NEERING, p. 96–110. Springer, 2013.

S120 COHEN, J.; AJOULI, A.. Practical use of static composition of
refactoring operations. In: PROCEEDINGS OF THE 28TH ANNUAL ACM
SYMPOSIUM ON APPLIED COMPUTING, p. 1700–1705, 2013.

S122 PÉREZ, J.. Refactoring planning for design smell correction:
Summary, opportunities and lessons learned. In: 2013 IEEE INTERNA-
TIONAL CONFERENCE ON SOFTWARE MAINTENANCE, p. 572–577. IEEE,
2013.

S123 SAADEH, E.; KOURIE, D. G.. Refactoring with ordered collections
of fine-grain transformations. International Journal of Software Engineering
and Knowledge Engineering, 23(03):309–339, 2013.

S124 MAHOUACHI, R.; KESSENTINI, M. ; CINNÉIDE, M. Ó.. Search-
based refactoring detection using software metrics variation. In:
PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON SEARCH
BASED SOFTWARE ENGINEERING, p. 126–140. Springer, 2013.

S125 WONGPIANG, R.; MUENCHAISRI, P.. Selecting sequence of refac-
toring techniques usage for code changing using greedy algorithm.
In: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ELEC-
TRONICS INFORMATION AND EMERGENCY COMMUNICATION, p. 160–164.
IEEE, 2013.

S126 AJOULI, A.; COHEN, J. ; ROYER, J.-C.. Transformations between
composite and visitor implementations in java. In: PROCEEDINGS OF
THE 39TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND
ADVANCED APPLICATIONS, p. 25–32. IEEE, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 186

S127 KESSENTINI, M.; MAHAOUACHI, R. ; GHEDIRA, K.. What you like in
design use to correct bad-smells. Software Quality Journal, 21(4):551–571,
2013.

S129 KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. A field study of
refactoring challenges and benefits. In: PROCEEDINGS OF THE ACM
SIGSOFT 20TH INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS OF
SOFTWARE ENGINEERING, p. 1–11, 2012.

S131 CHRISTOPOULOU, A.; GIAKOUMAKIS, E. A.; ZAFEIRIS, V. E. ;
SOUKARA, V.. Automated refactoring to the strategy design pattern.
Information and Software Technology, 54(11):1202–1214, 2012.

S133 GE, X.; DUBOSE, Q. L. ; MURPHY-HILL, E.. Reconciling manual and
automatic refactoring. In: 2012 34TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE), p. 211–221. IEEE, 2012.

S135 HILLS, M.; KLINT, P. ; VINJU, J. J.. Scripting a refactoring with
rascal and eclipse. In: PROCEEDINGS OF THE FIFTH WORKSHOP ON
REFACTORING TOOLS, p. 40–49, 2012.

S136 CZIBULA, G.; CZIBULA, I. G.. Unsupervised restructuring of
object-oriented software systems using self-organizing feature maps.
International Journal of Innovative Computing, Information and Control, 8(3
(A)):1689–1705, 2012.

S137 BAVOTA, G.; DE CARLUCCIO, B.; DE LUCIA, A.; DI PENTA, M.;
OLIVETO, R. ; STROLLO, O.. When does a refactoring induce bugs?
an empirical study. In: PROCEEDINGS OF THE 12TH INTERNATIONAL
WORKING CONFERENCE ON SOURCE CODE ANALYSIS AND MANIPULA-
TION, p. 104–113. IEEE, 2012.

S138 ZIBRAN, M. F.; ROY, C. K.. A constraint programming approach
to conflict-aware optimal scheduling of prioritized code clone refac-
toring. In: 2011 IEEE 11TH INTERNATIONAL WORKING CONFERENCE ON
SOURCE CODE ANALYSIS AND MANIPULATION, p. 105–114. IEEE, 2011.

S140 MURGIA, A.; TONELLI, R.; COUNSELL, S.; CONCAS, G. ; MARCHESI,
M.. An empirical study of refactoring in the context of fanin and
fanout coupling. In: 2011 18TH WORKING CONFERENCE ON REVERSE
ENGINEERING, p. 372–376. IEEE, 2011.

S141 MARTICORENA, R.; LÓPEZ, C.; PÉREZ, J. ; CRESPO, Y.. Assisting
refactoring tool development through refactoring characterization.
In: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON SOFT-
WARE AND DATA TECHNOLOGIES, volumen 2, 2011.

S143 LEE, S.; BAE, G.; CHAE, H. S.; BAE, D.-H. ; KWON, Y. R.. Automated
scheduling for clone-based refactoring using a competent ga. Software:
Practice and Experience, 41(5):521–550, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 187

S145 BIEGEL, B.; SOETENS, Q. D.; HORNIG, W.; DIEHL, S. ; DEMEYER, S..
Comparison of similarity metrics for refactoring detection. In: PRO-
CEEDINGS OF THE 8TH WORKING CONFERENCE ON MINING SOFTWARE
REPOSITORIES, p. 53–62, 2011.

S146 ZIBRAN, M. F.; ROY, C. K.. Conflict-aware optimal scheduling of
code clone refactoring: A constraint programming approach. In: 2011
IEEE 19TH INTERNATIONAL CONFERENCE ON PROGRAM COMPREHEN-
SION, p. 266–269. IEEE, 2011.

S147 SANDALSKI, M.; STOYANOVA-DOYCHEVA, A.; POPCHEV, I. ; STOY-
ANOV, S.. Development of a refactoring learning environment. Cyber-
netics and Information Technologies (CIT), 11(2), 2011.

S148 HUANG, J.; CARMINATI, F.; BETEV, L.; ZHU, J. ; LUZZI, C.. Extrac-
tor: An extensible framework for identifying aspect-oriented refac-
toring opportunities. In: INTERNATIONAL CONFERENCE ON SYSTEM
SCIENCE, ENGINEERING DESIGN AND MANUFACTURING INFORMATIZA-
TION, volumen 2, p. 222–226. IEEE, 2011.

S149 HUANG, J.; CARMINATI, F.; BETEV, L.; LUZZI, C.; LU, Y. ; ZHOU,
D.. Identifying composite refactorings with a scripting language. In:
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMU-
NICATION SOFTWARE AND NETWORKS, p. 267–271. IEEE, 2011.

S15 NADER-PALACIO, D.; RODRÍGUEZ-CÁRDENAS, D. ; GOMEZ, J.. As-
sessing single-objective performance convergence and time com-
plexity for refactoring detection. In: PROCEEDINGS OF THE GE-
NETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION,
p. 1606–1613, 2018.

S150 MEANANEATRA, P.; RONGVIRIYAPANISH, S. ; APIWATTANAPONG,
T.. Identifying refactoring through formal model based on data
flow graph. In: PROCEEDINGS OF THE 5TH MALAYSIAN CONFERENCE
IN SOFTWARE ENGINEERING, p. 113–118. IEEE, 2011.

S151 TSANTALIS, N.; CHATZIGEORGIOU, A.. Ranking refactoring sug-
gestions based on historical volatility. In: PROCEEDINGS OF THE 15TH
EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING, p. 25–34. IEEE, 2011.

S154 QAYUM, F.. Automated assistance for search-based refactoring
using unfolding of graph transformation systems. In: PROCEEDINGS OF
THE 5TH INTERNATIONAL CONFERENCE ON GRAPH TRANSFORMATION,
p. 407–409. Springer, 2010.

S155 CZIBULA, G.; CZIBULA, I. G.. Clustering based adaptive refactor-
ing. Wseas Transactions on Computers, 2010.

S156 COUNSELL, S.; LOIZOU, G. ; NAJJAR, R.. Evaluation of the ‘replace
constructors with creation methods’ refactoring in java systems. IET
software, 4(5):318–333, 2010.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 188

S158 JENSEN, A. C.; CHENG, B. H.. On the use of genetic programming
for automated refactoring and the introduction of design patterns.
In: PROCEEDINGS OF THE 12TH ANNUAL CONFERENCE ON GENETIC AND
EVOLUTIONARY COMPUTATION, p. 1341–1348, 2010.

S16 CHEN, Z.; KWON, Y.-W. ; SONG, M.. Clone refactoring inspection by
summarizing clone refactorings and detecting inconsistent changes
during software evolution. Journal of Software: Evolution and Process,
30(10):e1951, 2018.

S17 OMORI, T.; MARUYAMA, K.. Comparative study between two
approaches using edit operations and code differences to detect past
refactorings. IEICE Transactions on Information and Systems, 101(3):644–658,
2018.

S19 OO, T.; LIU, H. ; NYIRONGO, B.. Dynamic ranking of refactoring
menu items for integrated development environment. IEEE Access,
6:76025–76035, 2018.

S22 KOZSIK, T.; TÓTH, M. ; BOZÓ, I.. Free the conqueror! refactor-
ing divide-and-conquer functions. Future Generation Computer Systems,
79:687–699, 2018.

S23 PANTIUCHINA, J.; LANZA, M. ; BAVOTA, G.. Improving code: The
(mis) perception of quality metrics. In: 2018 IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME),
p. 80–91. IEEE, 2018.

S247 SOUSA, L.; CEDRIM, D.; GARCIA, A.; OIZUMI, W.; BIBIANO, A. C.;
OLIVEIRA, D.; KIM, M. ; OLIVEIRA, A.. Characterizing and identify-
ing composite refactorings: Concepts, heuristics and patterns. In:
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON MINING
SOFTWARE REPOSITORIES, p. 186–197, 2020.

S248 ALIZADEH, V.; KESSENTINI, M.; MKAOUER, M. W.; OCINNEIDE, M.;
OUNI, A. ; CAI, Y.. An interactive and dynamic search-based approach
to software refactoring recommendations. IEEE Transactions on Software
Engineering, 46(9):932–961, 2018.

S25 NYAMAWE, A. S.; LIU, H.; NIU, Z.; WANG, W. ; NIU, N.. Recommend-
ing refactoring solutions based on traceability and code metrics. IEEE
Access, 6:49460–49475, 2018.

S250 BRITO, A.; HORA, A. ; VALENTE, M. T.. Refactoring graphs: As-
sessing refactoring over time. In: 2020 IEEE 27TH INTERNATIONAL CON-
FERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING
(SANER), p. 367–377. IEEE, 2020.

S258 TARWANI, S.; CHUG, A.. Application of ao* algorithm in recog-
nizing the optimum refactoring sequence for examining the effect on
maintainability: An empirical study. In: 2021 11TH INTERNATIONAL
CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING
(CONFLUENCE), p. 188–195. IEEE, 2021.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 189

S259 BIBIANO, A. C.; ASSUNÇAO, W. K.; COUTINHO, D.; SANTOS, K.;
SOARES, V.; GHEYI, R.; GARCIA, A.; FONSECA, B.; RIBEIRO, M.; OLIVEIRA,
D. ; OTHERS. Look ahead! revealing complete composite refactorings
and their smelliness effects. In: 2021 IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), p. 298–308.
IEEE, 2021.

S261 BRITO, A.; HORA, A. ; VALENTE, M. T.. Characterizing refactoring
graphs in java and javascript projects. Empirical Software Engineering,
26(6):1–43, 2021.

S265 FREIRE, S.; PASSOS, A.; MENDONÇA, M.; SANT’ANNA, C. ; SPÍNOLA,
R. O.. On the influence of uml class diagrams refactoring on code
debt: A family of replicated empirical studies. In: 2020 46TH EUROMI-
CRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLI-
CATIONS (SEAA), p. 346–353. IEEE, 2020.

S266 HOU, D.; YIN, Y.; SU, Q. ; LIU, L.. Software refactoring scheme
based on nsga-ii algorithm. In: 2020 7TH INTERNATIONAL CONFERENCE
ON DEPENDABLE SYSTEMS AND THEIR APPLICATIONS (DSA), p. 447–452.
IEEE, 2020.

S27 MEANANEATRA, P.; RONGVIRIYAPANISH, S. ; APIWATTANAPONG, T..
Refactoring opportunity identification methodology for removing
long method smells and improving code analyzability. IEICE Trans-
actions on Information and Systems, 101(7):1766–1779, 2018.

S273 ADLER, F.; FRASER, G.; GRÜNDINGER, E.; KÖRBER, N.; LABRENZ,
S.; LERCHENBERGER, J.; LUKASCZYK, S. ; SCHWEIKL, S.. Improving
readability of scratch programs with search-based refactoring. In: 2021
IEEE 21ST INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE
ANALYSIS AND MANIPULATION (SCAM), p. 120–130. IEEE, 2021.

S274 SGHAIER, O. B.; SAHRAOUI, H. ; FAMELIS, M.. Metamodel refac-
toring using constraint solving: a quality-based perspective. In: 2021
ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEER-
ING LANGUAGES AND SYSTEMS COMPANION (MODELS-C), p. 797–806.
IEEE, 2021.

S275 CORTELLESSA, V.; DI POMPEO, D.; STOICO, V. ; TUCCI, M.. On
the impact of performance antipatterns in multi-objective soft-
ware model refactoring optimization. In: 2021 47TH EUROMICRO CON-
FERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS
(SEAA), p. 224–233. IEEE, 2021.

S276 COUNSELL, S.; DESTEFANIS, G.; SWIFT, S.; ARZOKY, M. ; TAIBI,
D.. On the link between refactoring activity and class cohesion
through the prism of two cohesion-based metrics. In: 2020 IEEE 20TH
INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY
AND SECURITY (QRS), p. 91–98. IEEE, 2020.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 190

S280 FARAH, P. R.; MARIANI, T.; DA ROZA, E. A.; SILVA, R. C. ; VERGILIO,
S. R.. Unsupervised learning for refactoring pattern detection. In: 2021
IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), p. 2377–2384.
IEEE, 2021.

S29 MAHOUACHI, R.. Search-based cost-effective software remodular-
ization. Journal of Computer Science and Technology, 33(6):1320–1336, 2018.

S30 HAN, A.-R.; CHA, S.. Two-phase assessment approach to improve
the efficiency of refactoring identification. IEEE Transactions on Software
Engineering, 44(10):1001–1023, 2017.

S31 KESSENTINI, M.; DEA, T. J. ; OUNI, A.. A context-based refactoring
recommendation approach using simulated annealing: two industrial
case studies. In: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY
COMPUTATION CONFERENCE, p. 1303–1310, 2017.

S32 KEBIR, S.; BORNE, I. ; MESLATI, D.. A genetic algorithm-based
approach for automated refactoring of component-based software.
Information and Software Technology, 88:17–36, 2017.

S33 MKAOUER, M. W.; KESSENTINI, M.; CINNÉIDE, M. Ó.; HAYASHI, S. ;
DEB, K.. A robust multi-objective approach to balance severity and
importance of refactoring opportunities. Empirical Software Engineering,
22(2):894–927, 2017.

S34 CINNÉIDE, M. O.; MOGHADAM, I. H.; HARMAN, M.; COUNSELL, S.
; TRATT, L.. An experimental search-based approach to cohesion
metric evaluation. Empirical Software Engineering, 22(1):292–329, 2017.

S37 ZAFEIRIS, V. E.; POULIAS, S. H.; DIAMANTIDIS, N. ; GIAKOUMAKIS,
E. A.. Automated refactoring of super-class method invocations to
the template method design pattern. Information and Software Technology,
82:19–35, 2017.

S38 KESSENTINI, M.; WANG, H.. Detecting refactorings among multi-
ple web service releases: A heuristic-based approach. In: 2017 IEEE IN-
TERNATIONAL CONFERENCE ON WEB SERVICES (ICWS), p. 365–372. IEEE,
2017.

S39 CHUG, A.; TARWANI, S.. Determination of optimum refactoring
sequence using a* algorithm after prioritization of classes. In: 2017
INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMU-
NICATIONS AND INFORMATICS (ICACCI), p. 1624–1630. IEEE, 2017.

S42 CHARALAMPIDOU, S.; AMPATZOGLOU, A.; CHATZIGEORGIOU, A.;
GKORTZIS, A. ; AVGERIOU, P.. Identifying extract method refactoring
opportunities based on functional relevance. IEEE Transactions on
Software Engineering, 43(10):954–974, 2016.

S43 OUNI, A.; KESSENTINI, M.; Ó CINNÉIDE, M.; SAHRAOUI, H.; DEB, K.
; INOUE, K.. More: A multi-objective refactoring recommendation

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 191

approach to introducing design patterns and fixing code smells.
Journal of Software: Evolution and Process, 29(5):e1843, 2017.

S45 MORALES, R.; SOH, Z.; KHOMH, F.; ANTONIOL, G. ; CHICANO, F.. On
the use of developers’ context for automatic refactoring of software
anti-patterns. Journal of systems and software, 128:236–251, 2017.

S46 RANI, A.; CHHABRA, J. K.. Prioritization of smelly classes: A
two phase approach (reducing refactoring efforts). In: 2017 3RD
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE &
COMMUNICATION TECHNOLOGY (CICT), p. 1–6. IEEE, 2017.

S47 GE, X.; SARKAR, S.; WITSCHEY, J. ; MURPHY-HILL, E.. Refactoring-
aware code review. In: 2017 IEEE SYMPOSIUM ON VISUAL LANGUAGES
AND HUMAN-CENTRIC COMPUTING (VL/HCC), p. 71–79. IEEE, 2017.

S49 KESSENTINI, M.; MANSOOR, U.; WIMMER, M.; OUNI, A. ; DEB, K..
Search-based detection of model level changes. Empirical Software
Engineering, 22(2):670–715, 2017.

S50 CHEN, Z.; MOHANAVILASAM, M.; KWON, Y.-W. ; SONG, M.. Tool
support for managing clone refactorings to facilitate code review in
evolving software. In: 2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE
AND APPLICATIONS CONFERENCE (COMPSAC), volumen 1, p. 288–297.
IEEE, 2017.

S52 RISSETTI, G.; CHARÃO, A. S. ; PIVETA, E. K.. A set of refactorings
for the evolution of fortran programs. International Journal of High
Performance Systems Architecture, 6(2):98–109, 2016.

S53 KHRISHE, Y.; ALSHAYEB, M.. An empirical study on the effect
of the order of applying software refactoring. In: 2016 7TH INTER-
NATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY (CSIT), p. 1–4. IEEE, 2016.

S54 KÁDÁR, I.; HEGEDŰS, P.; FERENC, R. ; GYIMÓTHY, T.. Assessment of
the code refactoring dataset regarding the maintainability of meth-
ods. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE
AND ITS APPLICATIONS, p. 610–624. Springer, 2016.

S55 TAKAHASHI, Y.; NITTA, N.. Composite refactoring for decoupling
multiple classes. In: 2016 IEEE 23RD INTERNATIONAL CONFERENCE
ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER),
volumen 1, p. 594–598. IEEE, 2016.

S57 SCHUSTER, C.; DISNEY, T. ; FLANAGAN, C.. Macrofication: Refac-
toring by reverse macro expansion. In: EUROPEAN SYMPOSIUM ON
PROGRAMMING, p. 644–671. Springer, 2016.

S59 CARACCIOLO, A.; AGA, B.; LUNGU, M. ; NIERSTRASZ, O.. Marea:
A semi-automatic decision support system for breaking dependency
cycles. In: 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON SOFTWARE

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 192

ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), volumen 1, p. 482–
492. IEEE, 2016.

S60 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H.; INOUE, K. ; DEB, K.. Multi-
criteria code refactoring using search-based software engineering:
An industrial case study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25(3):1–53, 2016.

S62 TARWANI, S.; CHUG, A.. Sequencing of refactoring techniques by
greedy algorithm for maximizing maintainability. In: 2016 INTER-
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICA-
TIONS AND INFORMATICS (ICACCI), p. 1397–1403. IEEE, 2016.

S63 MOHAN, M.; GREER, D. ; MCMULLAN, P.. Technical debt reduction
using search based automated refactoring. Journal of Systems and
Software, 120:183–194, 2016.

S66 FONTANA, F. A.; ZANONI, M. ; ZANONI, F.. A duplicated code refac-
toring advisor. In: INTERNATIONAL CONFERENCE ON AGILE SOFTWARE
DEVELOPMENT, p. 3–14. Springer, 2015.

S67 KEBIR, S.; BORNE, I. ; MESLATI, D.. A genetic algorithm for auto-
mated refactoring of component-based software. In: PROCEEDINGS OF
THE 9TH EAI INTERNATIONAL CONFERENCE ON BIO-INSPIRED INFORMA-
TION AND COMMUNICATIONS TECHNOLOGIES (FORMERLY BIONETICS),
p. 221–228, 2016.

S68 VEREBI, I.. A model-based approach to software refactoring. In:
31ST INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND
EVOLUTION (ICSME), p. 606–609. IEEE, 2015.

S69 HAN, A.-R.; BAE, D.-H. ; CHA, S.. An efficient approach to iden-
tify multiple and independent move method refactoring candidates.
Information and Software Technology, 59:53–66, 2015.

S71 COUNSELL, S.; LIU, X.; SWIFT, S.; BUCKLEY, J.; ENGLISH, M.;
HEROLD, S.; ELDH, S. ; ERMEDAHL, A.. An exploration of the’introduce
explaining variable’refactoring. In: SCIENTIFIC WORKSHOP PROCEED-
INGS OF THE XP2015, p. 1–5, 2015.

S72 GAITANI, M. A. G.; ZAFEIRIS, V. E.; DIAMANTIDIS, N. ; GIAKOUMAKIS,
E. A.. Automated refactoring to the null object design pattern.
Information and Software Technology, 59:33–52, 2015.

S74 LIU, H.; LIU, Q.; LIU, Y. ; WANG, Z.. Identifying renaming opportu-
nities by expanding conducted rename refactorings. IEEE Transactions
on Software Engineering, 41(9):887–900, 2015.

S75 OUNI, A.; KESSENTINI, M.; SAHRAOUI, H.; INOUE, K. ; HAMDI, M. S..
Improving multi-objective code-smells correction using development
history. Journal of Systems and Software, 105:18–39, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 193

S76 MKAOUER, W.; KESSENTINI, M.; SHAOUT, A.; KOLIGHEU, P.;
BECHIKH, S.; DEB, K. ; OUNI, A.. Many-objective software remodu-
larization using nsga-iii. ACM Transactions on Software Engineering and
Methodology (TOSEM), 24(3):1–45, 2015.

S77 ZARRAS, A. V.; VARTZIOTIS, T. ; VASSILIADIS, P.. Navigating
through the archipelago of refactorings. In: PROCEEDINGS OF THE 2015
10TH JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING,
p. 922–925, 2015.

S79 OUNI, A.; KESSENTINI, M.; BECHIKH, S. ; SAHRAOUI, H.. Prioritizing
code-smells correction tasks using chemical reaction optimization.
Software Quality Journal, 23(2):323–361, 2015.

S81 SANTOS, H.; PIMENTEL, J. F.; DA SILVA, V. T. ; MURTA, L.. Software
rejuvenation via a multi-agent approach. Journal of Systems and Software,
104:41–59, 2015.

S85 NAIYA, N.; COUNSELL, S. ; HALL, T.. The relationship between
depth of inheritance and refactoring: An empirical study of eclipse
releases. In: 2015 41ST EUROMICRO CONFERENCE ON SOFTWARE ENGI-
NEERING AND ADVANCED APPLICATIONS, p. 88–91. IEEE, 2015.

S86 MKAOUER, M. W.; KESSENTINI, M.; BECHIKH, S. ; CINNÉIDE, M. Ó.. A
robust multi-objective approach for software refactoring under un-
certainty. In: PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM
ON SEARCH BASED SOFTWARE ENGINEERING, p. 168–183. Springer, 2014.

S89 COUNSELL, S.; SWIFT, S.; MURGIA, A.; TONELLI, R.; MARCHESI, M.
; CONCAS, G.. Are some refactorings attached to fault-prone classes
and others to fault-free classes? In: INTERNATIONAL CONFERENCE ON
AGILE SOFTWARE DEVELOPMENT, p. 136–147. Springer, 2014.

S90 GLIGORIC, M.; SCHULTE, W.; PRASAD, C.; VAN VELZEN, D.;
NARASAMDYA, I. ; LIVSHITS, B.. Automated migration of build scripts
using dynamic analysis and search-based refactoring. ACM SIGPLAN
Notices, 49(10):599–616, 2014.

S91 BAVOTA, G.; DE LUCIA, A.; MARCUS, A. ; OLIVETO, R.. Automating
extract class refactoring: an improved method and its evaluation.
Empirical Software Engineering, 19(6):1617–1664, 2014.

S93 WONGPIANG, R.; MUENCHAISRI, P.. Comparing heuristic search
methods for selecting sequence of refactoring techniques usage for
code changing. In: INTERNATIONAL MULTICONFERENCE OF ENGINEERS
AND COMPUTER SCIENTISTIS (IMECS2014), volumen 1, 2014.

S94 CHISALITA-CRETU, C.. Evolutionary approach for the strategy-
based refactoring selection. In: PROCEEDINGS OF THE WORLD
CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, volumen 1, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

Bibliography 194

S95 MKAOUER, M. W.; KESSENTINI, M.; BECHIKH, S.; DEB, K. ; Ó CIN-
NÉIDE, M.. High dimensional search-based software engineering: find-
ing tradeoffs among 15 objectives for automating software refactor-
ing using nsga-iii. In: PROCEEDINGS OF THE 2014 ANNUAL CONFERENCE
ON GENETIC AND EVOLUTIONARY COMPUTATION, p. 1263–1270, 2014.

S96 UNTERHOLZNER, M.. Improving refactoring tools in smalltalk
using static type inference. Science of Computer Programming, 96:70–83,
2014.

S99 AMAL, B.; KESSENTINI, M.; BECHIKH, S.; DEA, J. ; SAID, L. B.. On
the use of machine learning and search-based software engineering
for ill-defined fitness function: a case study on software refactoring.
In: PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON SEARCH
BASED SOFTWARE ENGINEERING, p. 31–45. Springer, 2014.

aaaa

aaaa

DBD
PUC-Rio - Certificação Digital Nº 1912726/CA

	On the Completeness of Composite Code Refactorings for Beneficial Smell Removal
	Resumo
	Table of Contents
	Introduction
	Motivating Example
	Problem Statement
	Study Goal and Research Questions
	Research Questions
	Methodology

	Main Contributions
	Thesis Outline

	Composite Refactoring: Representations, Characteristics and Effects on Software Projects
	Introduction
	Background
	Refactoring
	Composite Refactoring or Composite

	Systematic Mapping Protocol
	Goal and Research Questions
	Steps and Procedures

	Results and Discussion
	The Use of Conceptual Model for Composite Refactoring Characterization
	Representation Models of Composite Refactorings (RQ1)
	Characteristics of Composite Refactorings (RQ2)
	Composite Effect on Software Projects (RQ3)
	Conflicting Composite Characteristics and Types of Effect

	Related Work
	Threats to Validity
	Conclusion and Future Work

	How Does Incomplete Composite Refactoring Affect Internal Quality Attributes?
	Introduction
	Background
	Composite Refactoring (or Composite)
	Incomplete Composite Refactoring: A Smell Removal Perspective
	Motivating Example

	Study Settings
	Goal and Research Questions
	Study Steps

	Dataset Overview
	Incomplete Composite Dataset
	Dataset Validation

	Common Incomplete Composites
	Procedures
	Results

	Effect of Incomplete Composites
	Procedures
	Results

	Threats to Validity
	Related Work
	Conclusion

	Look Ahead! Revealing Complete Composite Refactorings and their Smelliness Effects
	Introduction
	Background and Problem Statement
	Composite Refactoring (or Composite)
	Completeness of Composite Refactorings
	Limitations of Existing Complete Composites Descriptions
	A Real Example of Complete Composite

	Study Settings
	Goal, Research Questions, and Metrics
	Study Steps

	Common Complete Composites
	(Side) Effects on Code Smells
	Threats to Validity
	Conclusion

	Enhancing Recommendations of Composite Refactorings based in the Practice
	Introduction
	Background and Problem Statement
	Composite Refactoring (or Composite)
	Completeness of Composite Refactorings
	Fine-Grained Refactorings
	Existing Limitations about Completeness

	Motivating Example
	Study Settings
	Study Steps and Procedures

	Results
	The Most Frequent Combinations in Complete Composites (RQ1)
	Side Effects of the Frequent combinations in Complete Composites (RQ2)
	Evaluation of the Proposed Catalog (RQ3)

	Threats to Validity
	Conclusion

	Exploring the Automatic Recommendation of Composite Refactorings
	Introduction
	Background
	Search-Based Software Engineering (SBSE)
	Search-Based Algorithms
	Search-Based Refactoring (SBR)
	Related Work

	Study Settings
	Study Goal
	Research Questions
	Study Steps
	Survey Procedures

	Survey Results
	Code Smell Agreement
	Meaningfulness
	Completeness
	Side Effects
	General Evaluation of REComposite

	Threats to Validity
	Conclusion and Next Steps

	Conclusion and Next Steps
	Bibliography

