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Abstract

Goicoechea Manuel, Héctor Eduardo; de Queiroz Lima, Ro-
berta (Advisor); Buezas, Fernando Salvador (Co-Advisor). Cos-
serat rods and their application to drill-string dynamics.
Rio de Janeiro, 2023. 195p. Tese de Doutorado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

In this thesis, the theory of Cosserat rods is applied to the dynamics of
drill-strings. The main objective is to evaluate the behaviour of these strings
when they move within curved wells. To achieve this goal, a deterministic
structural model is constructed, where the drill-pipes and the bottom hole
assembly are taken as a Cosserat rod. Next, a strategy to deal with the
lateral contact in curved well configurations is developed. After that, the free
boundary problem is assessed: while drilling, the boundary changes due to
cutting, modifying the position of the soil and, consequently, changing the bit-
rock interaction forces. For this reason, a bit-rock model that can account for
the cutting dynamics is adopted, in which an extra advection equation is solved
together with the equations of motion of the Cosserat rod. Next, application
cases are provided. First, some effects included in the model are tested in
isolation, such as the lateral friction, the lateral contact, and the cutting.
After that, they are all combined. In the first analysis, an off-bottom string is
simulated, i.e. without contact at the bit. This allows testing the formulation
associated with the lateral contact. Also, the calibration of the lateral friction
parameters is made. Following that, the strategy to account for the cutting
at the bit is implemented in a low-dimensional 2-DOF model, and in a semi-
discrete model with a continuous wave equation for the torsional dynamics.
The results show that the use of continuous approaches is more appropriate
than low-dimensional models. Especially when long columns are considered,
and when there is interest in understanding not only the behaviour at the bit
but also along drill-pipes. This finding is reinforced by another application
where the cutting dynamics are combined with the Cosserat rod formulation.
Again, similar observations from a qualitative point of view are found. Overall,
the differences in the results between the lumped low-dimensional models and
the continuous Cosserat rod justify the development and application of the
Cosserat approach to drilling structures. Finally, an introductory stochastic
analysis concerning the variability of the rock is presented as an introduction
to a future line of research, where stochasticity is included.

Keywords
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Drill-string dynamics; Contact in curved boreholes; Bit-rock cutting
dynamics; Advection equation; Torsional oscillations; Stick-slip vibrations.
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Resumo

Goicoechea Manuel, Héctor Eduardo; de Queiroz Lima, Roberta;
Buezas, Fernando Salvador. Estruturas unidimensionais de
Cosserat aplicadas à dinâmica de colunas de perfuração.
Rio de Janeiro, 2023. 195p. Tese de Doutorado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

Nesta tese, a teoria das hastes de Cosserat é revisitada e aplicada à
dinâmica de coluna de perfuração. O objetivo é estudar o comportamento
dessas estruturas dentro de poços de petróleo curvos. Para atingir este objetivo,
um modelo estrutural determinístico é construído onde as tubos de perfuração
(drill-pipes) e o conjunto de fundo (bottom hole assembly) são considerados
como uma estrutura unidimensional de Cosserat. Em seguida, é desenvolvida
uma estratégia para tratar o contato lateral em poços com configuração
curvilínea. Depois disso, o problema de contorno livre é tratado mediante
uma estratégia que considera como a condição de borda evolui à medida que
a estrutura de perfuração avança. Isto é feito mediante uma formulação de
interação broca-rocha que deve considerar a dinâmica de corte. Para isso, uma
equação extra, de advecção, é resolvida junto com as equações de movimento
de Cosserat. Em seguida, alguns casos de aplicação são apresentados. Numa
primeira instancia, alguns elementos do problema são avaliados separadamente.
Seguidamente, eles são integrados e analisados de forma conjunta. Por exemplo,
primeiramente uma coluna de perfuração sem contato de fundo (off-bottom)
é simulada, ou seja, sem contato broca-rocha, para estudar o comportamento
e a implementação da estratégia para o contato lateral. Aqui também são
calibrados alguns dos parâmetros do modelo de atrito. Em seguida, a estratégia
para contabilizar o corte na rocha é implementada em um modelo 2-DOF de
baixa dimensão e em um semi-discreto onde a dinâmica de torção é modelada
como uma equação de onda. Os resultados mostram que o uso de abordagens
contínuas resulta mais apropriade que aquelas onde se utilizam modelos de
baixa dimensãom, particularmente quando são consideradas colunas longas,
e quando há interesse em analisar não apenas o comportamento da broca,
mas também o comportamento do sistema mecânico ao longo dos tubos de
perfuração. Isso é reforçado por outro exemplo onde a dinâmica de corte
é combinada com a formulação de Cosserat. Observações semelhantes do
ponto de vista qualitativo são encontradas. Resumindo os resultados obtidos,
as diferenças nas previsões dadas pelos modelos de baixa dimensão e o
de unidimensional de Cosserat justificam o desenvolvimento e aplicação da
abordagem com esta formulação em estruturas de perfuração. Finalmente, a
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modo de introduzir outro aspecto importante em colunas de perfuração e que
pode ser uma linha de pesquisa para continuar o trabalho, a variabilidades
presente em elementos como rocha, inclui-se um caso de aplicação considerando
um poço horizontal e um campo estocástico de atrito.

Palavras-chave
Dinâmica de colunas de perfuração; Contato em poços de geometria

curva; Dinâmica de corte na rocha; Equação de advecção; Oscilações
torcionais.
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Resumen

Goicoechea Manuel, Héctor Eduardo; de Queiroz Lima,
Roberta (Orientador); Buezas, Fernando Salvador (Orienta-
dor). Estructuras unidimensionales de Cosserat aplicadas
a la dinámica de columnas de perforación. Rio de Janeiro,
2023. 195p. Tesis de Doctorado – Departamento de Engenharia
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

En esta tesis, la teoria de Cosserat para elementos unidimensionales es
revisitada y aplicada a la simulación de columnas de perforación. El objetivo
es estudiar el comportamiento de estas estructuras en pozos de geometría
curva. Para alcanzar este objetivo se construye un modelo determinístico.
En este modelo, los caños de perforación (drill-pipes) y el conjunto de fondo
(bottom hole assembly) son modelados como una estructura unidimensional de
Cosserat. Seguidamente, una estrategia para tratar con el contacto lateral en
pozos curvos es desarrollada. Luego, el problema de frontera libre es estudiado:
durante la perforación, la condición de borde cambia debido al cambio del perfil
altimétrico del terreno, alterando su posición y consecuentemente las fuerzas
asociadas a la interacción broca-roca. Por esta razón, se decide utilizar un
modelo de interacción broca-roca que tiene en cuenta la dinámica del corte.
En este abordaje una ecuación extra, la ecuación de advección, es resuelta en
forma acoplada con las ecuaciones del movimiento de la estructura de Cosserat.
Algunos ejemplos de aplicación son presentados. En una primera instancia,
algunos de los elementos del problema son estudiados en forma aislada. Luego
combinados en un modelo completo. Por ejemplo, el caso de una columna sin
contacto de fondo (off-bottom) es tratado para evaluar el comportamiento y la
implementación de la estrategia mencionada para detectar el contacto lateral.
Además, se efectúa la calibración de alguno de los parámetros relacionados
con la fricción lateral. Luego, la estrategia para considerar el corte en la punta
es implementada en un modelo de 2-DOF, y en otro semi-discreto donde se
considera un modelo de ecuación de onda para la dinámica torsional. Los
resultados muestran que el uso de formulaciones continuas es más apropiado
que aquellas formulaciones donde se utilizan modelos de dimensiones reducidas,
particularmente cuando se estudia columnas largas donde el interés se centra
en entender no solo el comportamiento de la broca sino también a lo largo de
la tubería. Este resultado es reforzado por otro caso de aplicación en donde
se combina la dinámica de corte con un modelo de Cosserat. Observaciones
similares son vistas en el comportamiento cualitativo de la solución. En
resumen, las diferencias observadas en los diferentes ejemplos de aplicación
entre los modelos de dimensiones reducidas y el modelo continuo de Cosserat
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justifican el desarrollo y la aplicación de la teoría de Cosserat a estructuras de
perforación. Finalmente, dado que uno de los objetivos planteados también es
considerar la variabilidad en algunos elementos como ser las propiedades de la
roca, un caso de aplicación considerando un pozo horizontal es mostrado.

Palabras clave
Dinámica de columnas de perforación; Dinámica de corte de la roca;

Ecuación de advección; Vibraciones torsionales; Vibraciones stick-slip.
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1
Introduction

Despite the known negative effects of the usage of petrol and its associ-
ated emissions, the consumption of oil and gas has increased continuously over
the last years, with a brief exception during the COVID-19 pandemic period,
as illustrated in Fig. 1.1. More than half of the world’s total supply of energy
is provided by fuels derived from petroleum [1]. Moreover, oil-based fuels con-
tinue to be the main source of energy for transportation worldwide: oil demand
for road transportation is responsible for more than 50% of the total oil con-
sumption amongst the whole sectors, including aviation, railway, waterways
and international maritime transport [2]. In this scenario, oil consumption will
remain an important source of energy for the coming years, what justifies the
need for further development of the tools employed in the extraction process.
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Figure 1.1: Oil consumption from 1965 to 2021, according to the statistical
review of world energy [3].

The increasing demand for oil extraction has led to advancements in
the technologies employed to build oil wells. An overview of the evolution
in drilling technologies is provided in [4]. Additionally, due to directional
drilling, the shape of oil wells has also evolved over the years. In this context,
understanding the dynamics of drill-strings in complex borehole geometries is
crucial to improve their performance and to extend the life cycle of the tools
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involved. But before discussing the details of the state of the art concerning the
modelling of drill-strings, a brief description of the basic parts of the machinery
employed in the drilling process, namely, the drilling rig, is presented.

A sketch of a drilling rig is shown in Figure 1.2. For the description, the
rig is divided into two main sections: the top-drive, which contains the devices
employed to generate motion in the system, as well as to lift the drilling tools;
and the drill-string, which includes the elements that will dig into the ground
to perform the drilling operation.

Top-drive

(rotary table

and motor)

Drill-pipes

Bottom hole 

assembly

Drill-bit

Dead line 

anchor

Draw 

works

Derrick

or mast
Travelling

block

Swivel

Rotary table

Crown 

block

Drill-string

Figure 1.2: Schematic layout of a drilling rig and its components.

The drill-string is the centre of interest in this thesis. It is no more than
a slender column in the drilling assembly that has the function of conducting
the forces and torques required to drive the drill-bit, as well as to carry the
drilling fluids within the oil well. The main elements that form a drill-string
are: the drill-pipes; the bottom hole assembly (BHA); and the bit itself. The
main function of the drill-pipes, from a structural point of view, is to transmit
the power from the motor at the top to the lower elements. The BHA is
located between the drill-pipes and the drill-bit, and also transmits movement.
It consists of a set of drill-collars, which are heavy thick-walled tubes. Along
with the drill-pipes, the drill-collars provide the weight-on-bit (WOB) required
for the drilling process. Also, the BHA often contains devices employed in the
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control of the inclination and direction of the bit, such as measurement while
drilling tools and stabilisers.

As already mentioned, in recent years an evolution in the shape of oil
wells has been observed, accompanied by technological progress. At an early
stage, oil wells were devised to reach a target that was directly below their
surface location and, therefore, vertical geometries were sought. Later on, to
gain efficiency and reduce costs, directional drilling gained importance. The
first record of a directional oil well dates from the 1930s [4]. It was deliberately
drilled to produce oil from beneath shallow coastal waters. For this task, a
drilling rig located on the shore at Huntington Beach, California, was used.
Since then, up-to-date techniques have allowed directional drilling of wells
where the drill’s horizontal reach exceeds the true vertical depth. This way,
the total depth barrier of 10 km [5] was surpassed, as with the case of the
Chayvo Well Z-44 and Z-45, Russia, where a total depth of 12, 376 m and a
horizontal reach of 11, 371 m was achieved.

Given the previous context, the need for models capable of capturing
the dynamics of drill-strings under large displacements and rotations is appar-
ent. However, many related literature consider either low-dimensional lumped
models or straight beam or shaft formulations to study these complex struc-
tures. In addition, when those formulations are used, the attention is usually
given to the dynamics of the BHA and, in doing so, the dynamics of the drill-
pipes could be oversimplified or neglected. The Ph.D. thesis of [6] raised the
attention towards this matter, given the lack of models specifically designed
to simulate the drill-string as a whole, including the drill-pipes. The author
points out that the drill-pipes involve approximately 90% of the total length
and 80% of the total mass of the drill-string, they are slenderer than the BHA,
and the gap between the structure and the soil is three times bigger than that
of the BHA, what suggests that their dynamics could play an important role
in understanding the underlying phenomena behind drill-string vibrations.

To begin with, a broad survey of the drill-string vibration modelling lit-
erature is presented in [7]. The state-of-the-art of the models used to predict
axial, torsional and bending vibrations (uncoupled and coupled), boundary
condition assumptions, model formulation, and applications to vibration mit-
igation are reviewed. Also, modern techniques, such as deviated drilling, are
discussed.

Within the universe of models for drill-strings found in the literature,
lumped models are amongst the simplest approaches, and they usually require
less computational effort to obtain numerical approximations than that needed
by continuous formulations. This is why they tend to be used in applications
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such as control, where real-time integration of the equations is required.
Among the articles concerning low-dimensional lumped formulations,

reference [8] reports a study on the dynamics of actively controlled drill-
strings, making use of a lumped parameter representation which considers
coupling of torsional and bending vibrations. The stick-slip oscillations problem
is addressed. A similar strategy is employed in [9], taking into account the
fact that the drill-string length increases as the drilling operation progresses.
Reference [10] uses a 2-DOF model (one axial and one torsional) for the design
of a linear quadratic regulator to control torsional vibrations. This model
is also used in [11] to study the dynamic response of drill-strings and to
define where critical unwanted behaviour of the system occurs, focusing on
the stick-slip and bit-bounce phenomena. A lumped parameter formulation is
also used in [12] to tackle the torsional vibrations and instabilities of a drill-
string including a nonlinear velocity-dependent friction torque representing the
bit-rock interaction. Recently, this discrete approach was employed to study
the axial motion of a drill-sting in a curved borehole in [13].

The aforementioned studies present the common feature that contact
and friction at the bit are modelled following a velocity-dependent relation.
These velocity-dependent models try to mathematically capture a phenomenon
called velocity weakening, which is a behaviour characterised by a torque that
decreases when the rotation speed increases. To do this, they state a direct
relation between the velocity and the torques involved. The outcome of such
models is that, for their consistency, they imply the existence of velocity-
dependent rock properties. On top of that, some authors pointed out these
rate-dependent properties as the cause for the torsional oscillatory phenomena
and the stick-slip observed in field measurements, while others like [14], discuss
the nature of this weakening effect as being a consequence of the dynamics of
the cutting rather than the cause, a path that provides an entirely different
path towards the genesis of stick-slip vibrations. Among other publications
that consider low-dimensional models with this different strategy towards the
bit-rock interaction formulation, [14] presents a 2-DOF model to study the
cause of drill-string stick-slip vibrations considering a theoretical blunt poly-
crystalline diamond compact (PDC) cutter; [15] employs a lumped parameter
axial-torsional model combined with the Galerkin projection method developed
by [16] to avoid dealing with differential-delay equations (DDEs); [17] assesses
the linear stability and non-linear dynamics of drill-strings with non-uniformly
distributed blades by using a 2-DOF model with a delay in the equations
to take into account the cutting of the rock; [18] takes a 6-DOF approach
(where 2-DOF are associated to the torsional behaviour) to study the non-
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linear dynamics of a drill-string in a horizontal well that has a drill-pipe
length of 1000 m, and a bottom hole assembly length of 200 m; lastly, in
[19] a 2-DOF approach is used to construct a stability map, extending the
bit-rock interaction model of [14] to account for a realistic cutter layout. In
these studies, instead of taking a velocity-dependent relation that includes a
velocity-weakening effect, a velocity-independent interaction law that accounts
for the dynamics of the cutting is used. This choice is justified by studies
concerning controlled single-cutter experiments, where weakening effects were
not observed, suggesting that the weakening properties of the rock are actually
unrealistic. Additionally, to construct and calibrate the rate-dependent models,
data measurements from stick-slip cycles is required, rendering the velocity-
dependent formulations a non-predictive approach. In contrast, the advantage
of the velocity-independent formulation is that it is predictive and it does not
require well measurements to construct the model.

In addition to the previous observations, another common feature is
found among all the previously lumped low-dimensional models: most of them
assume that 1-DOF or 2-DOF are sufficient to accurately predict the torsional
dynamics of a column that is of at least some hundred meters long. The
drawback of these models is that, given the low number of DOF, they are
limited in the amount of information that can be captured. In other words,
the vibration modes that can be excited are restricted by the arbitrary selection
of the number of DOF.

Continuous models do not suffer from the same limitations as discrete
models, but computing an approximation requires more computational effort
in terms of time, memory and space occupied. Some research based on
continuous models includes [20–23], where a bar and a shaft formulation are
used to simulate the dynamics of a drill-string; [24] employs a similar bar-
shaft representation to build stability maps; [25] constructs a geometrically
non-linear drill-string model based on the Bernoulli-Euler hypotheses, capable
of simulating the axial, torsional and flexural dynamics. In [26], a distributed
axial-torsional approach is utilised. The authors show “how multiple axial
modes are excited or attenuated, depending on the bit rotation rate” and
suggest that “a lumped drill-string approximation is insufficient for the general
case”, with regard to the behaviour observed in the axial dynamics.

The more complex case of directional arbitrary configurations of bore-
holes is a recent subject of interest. A review article dealing with directional
wells and other special trajectory drilling technologies can be found in [27],
where two evaluation methods, theoretical and through measurement, are com-
pared systematically. Typical vibration measurement tools are discussed. The
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control technologies to improve the rate of penetration, control the borehole
trajectory, find the source of seismic while drilling and reduce the friction with
the drill-string, are also treated.

Among the research dealing with arbitrary boreholes, reference [28]
addresses a horizontal configuration considering axial displacements only.
References [29, 30] deal with a three-region borehole geometry (vertical, curved
and inclined, although a vertical shaft model is assumed). The Coulomb friction
is added as a distributed source term to analyse the effect of the borehole
inclination on the torsional vibrations along the drill-string. [31] analyses the
dynamics of a drill-string with elastic wall contact in an arbitrary geometry 3-D
well with a beam theory. The contact interaction between the drill-string and
the wall is introduced through a set of elastic stops and then, the nonlinear
dynamics is analysed with finite elements of six degrees of freedom (three
translations and three rotations). The behaviour of a drill-string is analysed
in [32] by presenting an example of a flexible shaft that rotates inside of a
rigid tube which is assumed to be an arbitrary space curve. In this case, the
shaft is considered a nonlinear elastic Cosserat rod. By hypothesis, the position
vectors of the non-straight tube and the rod are taken as equals. No friction
is considered, nor stretching or shear effects. The boundary value problem for
the quasi-static rotation is reduced to nonlinear ordinary differential equations
which are solved using the shooting method. The rotation behaviour, the
resultant forces and torques in the rod, as well as the contact reaction of
the inner surface of the tube, are determined and the differences between
the static and dynamic solutions are shown. Lastly, [6] uses a Cosserat rod
approach based on the modified Cosserat rod element (MCRE) of [33], but the
model is not exploited by analysing curved borehole configurations.

Due to the diversity of treatments mentioned so far, it is unclear how
well all these models, some lumped, some continuous, perform at representing
drill-strings in a more general case, for example, where curved boreholes are
considered or when the dynamics couple with other phenomena such as helical
buckling. In addition, many of the models are not comprehensive. They may
disregard the dynamics in some of the directions, consider continuous contact
with the soil, or assume that the shape of the drill-string coincides exactly with
that of the borehole, among other simplifications. On top of that, it has been
discussed so far that low-dimensional models could be insufficient to capture
all the aspects of the dynamics of drill-string in certain scenarios.

To overcome the aforementioned limitations, the thesis of [6] aimed at
developing a comprehensive model to study the dynamics of a drill-string
with various complexities, by using a Cosserat rod approach. The thesis
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was developed in collaboration with researchers from the Centre for Applied
Dynamics Research at the University of Aberdeen. In the study, attention was
paid to the modelling of the drill-pipes section. The implementation of the
Cosserat rod in [6] is based on the Modified Cosserat Rod Element (MCRE)
approach described by [33, 34]. Nevertheless, it is indicated in [35], another
researcher from the same group at Aberdeen, that the approach presented
in [6, 33, 34], based on the MCRE, is unsuitable for modelling systems
that involve large displacements. It is important to point out that that this
observation is only valid for the particular implementation of the Cosserat rod
through MCRE, which is not a general conclusion applicable to the theory of
Cosserat rods itself nor to other different implementations. For this reason,
[35] introduces a model based on the 3D elasticity theory. After that, to the
knowledge of the author of this thesis, the authors of [6, 35] and their group
have not continued the line of research considering a Cosserat formulation,
leaving the same niche that motivated [6] and the present thesis yet to be
explored.

In the present thesis, it will be shown that the complexity of borehole
configurations and of the drill-string dynamics can be handled by a rod theory
such as the Cosserat rod approach. The Cosserat theory of rods analyses the
dynamics of a deformable directed curve that has an associated moving frame
attached at each point of that curve. The frame, composed of a set of three
directors, is used to define section orientation. This 1-D theory of rods was
originally formulated by the Cosserat brothers [36]. A detailed and systematical
description of the formulation can be found in classical texts such as [37, 38],
and it is revisited in this thesis in a complete and accessible way. It will also be
shown that the theory can appropriately handle the dynamics of a drill-string
under large displacements in a 3-D well geometry.

In brief, there are many complexities related to the geometry, dynamics,
contact, the regimes in which drill-strings operate, and there exist many ways
to construct physical models for drill-strings. The research herein conducted
is aimed at justifying that the Cosserat rod approach, altogether with suit-
able contact and friction models, can successfully deal with axial, lateral and
torsional dynamics in the most general condition, which is under large dis-
placements and rotations, and where different phenomena may couple. Also,
it will be shown that through the use of a continuous Cosserat rod formula-
tion, aspects of the dynamics that are not detected in lumped low-dimensional
models can be captured. These aspects can completely change the general be-
haviour of the predictions obtained. Thus, they justify the development of such
continuous approaches, like the one presented herein based on the Cosserat rod
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formulation.

1.1
Aims

The main objective of the thesis is to study the dynamics involved in the
drilling process of oil wells in curved well geometries, that is, not only restricted
to the cases of vertical, inclined or horizontal configurations. To achieve this
goal, the following main items are considered:

– The development of a deterministic computational model for the dynam-
ics of a drill-string based on the theory of Cosserat rods;

– The development of a formulation that accounts for contact and friction
along the length of the string;

– The use of a bit-rock interaction formulation that can also account for
the free boundary problem. That is, for the moving boundary condition
due to the change in the profile of the soil.

– The improvement and adaptation of a contact and friction relation at
the bit that depends on the dynamics of the cutting. For this task, an
alternative formulation based on the advection equation is used. This
way, the introduction of delays in the differential equations is avoided;

– The development of strategies to validate and compare the results
presented in this thesis with those obtained with other models found
in the literature, where possible.

1.2
Outline and contributions

A quick literature review on the subject of drill-string modelling is
provided in Chapter 1. The aims of the thesis along with its outline and the
main contributions of each chapter are stated.

Chapter 2 includes a definition of the Cosserat rod formulation that will
be used for the main model of this thesis. The required kinematic hypotheses,
the equations of motion and the constitutive relations are stated. Moreover,
the chapter includes contributions in the field of the constitutive relations,
where a methodology to derive the equations from known 3-D constitutives is
presented. This methodology has been developed in the context of piezoelectric
materials in [39], a congress publication made by the author of the present
thesis, and it was adapted for the present use.

A brief analysis of the sources of non-linearities in the context of Cosserat
rods is given in Chapter 3, along with a simple application example.
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Chapter 4 studies the dynamics of an off-bottom drill-string, that is,
without contact at the bit, with a Cosserat rod model. The contents of this
chapter have been published in [40]. The drill-string moves within a curved
well. The main contributions include the implementation of the Cosserat model
to account for the dynamics in an arbitrary borehole; the inclusion of an
algorithm to detect when and where contact and friction occur, as well as
the magnitudes of the forces involved; the calibration of the a priori unknown
friction parameters with the results of [30]; the verification of the present results
with those of [30], being the latter validated against field measurements. On
top of that, some interesting results are included in Appendix B, where a
set of benchmarks for the current implementation of the Cosserat model are
presented. These benchmarks and other examples yielded excellent agreement
with known solutions.

Chapter 5 extends the cutting model of [14] to account for other operation
regimes. On top of that, it also extends the use of an advection approach to
avoid introducing delays in the differential equation, a step that is necessary
to calculate the depth-of-cut used in the bit-rock interaction relations. For the
structural model, a continuous shaft representation, formulated as a classical
wave equation, is employed. The major contributions of this chapter are: the
use of a new bit-rock interaction relation that does not restrict backward
rotation of the bit nor bit-bounce, and that is dependent on the dynamics of
the cutting blade, such as the depth-of-cut; the use of an advection equation
to avoid dealing with a system of delay-differential equations in the simulation
of the cutting process; the extension of the advection approach treated in the
previous works of [15, 68] to allow rotation in both directions; the combination
of the previous items with a distributed approach for the torsional dynamics,
with a formulation based on the known wave equation; the inclusion of the
2-DOF model as a limiting case of the continuous model; and the findings of
this study that support the hypothesis that lumped low-dimensional models
could be unable to capture all the aspects of the dynamics of a drill-string.

In Chapter 6 the work of the previous chapter is continued. This time, a
Cosserat rod model with internal damping is used. For this task, a Kelvin-
Voigt material is considered. The results are compared with those of the
previous chapter. The objective is to evaluate the differences in the response,
both in the time and the frequency domain, with other lumped or semi-
continuous models. The major contributions of this chapter are associated
with the combination of the use of a Cosserat rod model; the addition of
internal damping through the use of a Kelvin-Voigt constitutive; the inclusion
of the 2-DOF model of the previous chapter as a limiting case of the new
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Cosserat model, following a similar strategy to that of the previous chapter;
a comparison between the three models, the 2-DOF, the semi-continuous and
the Cosserat approach, where possible, for one of the scenarios included in the
previous chapter, showing that a low dimensional model cannot capture all the
aspects of the dynamics reproduced by this continuous approach. The results
obtained reassure the findings of the previous chapter, showing that a lumped
low-dimensional representation is actually insufficient to address the study of
the dynamics of a drill-string.

Chapter 7 briefly introduces another important aspect that has not been
yet dealt with in this thesis: the consideration of the uncertainties present in
some of the parameters involved. Particularly, those associated with the soil,
which is an intrinsically non-homogeneous and variable material. Therefore,
an application example related to this topic is presented. The problem of drill-
string dynamics is tackled from a stochastic perspective by revisiting [28]. A
Cosserat rod model is used, focusing on the axial and flexural dynamics of the
system, and taking the friction as a stochastic field.

Finally, in Chapter 8 general conclusions for the studies that were
conducted in this thesis are stated, along with ideas for improvement and
future research.
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2
The theory of Cosserat Rods

In many scientific disciplines including civil, mechanical engineering,
physics, biology and computer animation, very slender structures are common.
They can be present as structural elements in the form of columns, beams,
shafts and cables [21, 41–48]; in computer games where rods, hair or nets need
to be simulated [49]; in medical applications, such as DNA strand modelling
[50] and in medical tools colonoscopes [51], just to name a few of their many
applications. The modelling of such structures can be performed by employing
different theories, each with its own advantages and limitations.

Historically, dimensionally reduced theories were available before a three-
dimensional framework was fully developed. For example, the Bernoulli-Euler
beam theory dates from the 18th century. Since then, other refined approaches,
like the Timoshenko-Ehrenfest and Levinson beam theories [52], have emerged
to extend the limits of the validity of the classical beam theory and improve
their results.

It was not until the late 1940s that great modern mechaniscian such
as Noll, Truesdell and Coleman presented an ordered and rigorous formal
structure of the theoretical work developed by physicists of the 19th century like
Piola, Cauchy, Kirchoff, among others, providing rational context to continuum
mechanics, which is understood as the rigorous mathematical framework to
treat problems involving large deformation of 3D bodies.

Whereas the theory of continuum mechanics provides a formal way of
treating the dynamics of 3D bodies, in many cases, the associated computa-
tional cost may justify the use of a simpler dimensionally reduced approach.
This is the case of very slender structures, like the drill-strings which are the
object of study of this thesis.

In this chapter, the equations associated with the Cosserat theory for
rods will be stated. The Cosserat rod theory is based on a one-dimensional
representation of a 3D body by means of a special mathematical structure
composed of a characteristic curve and a field of directors used to define the
orientation of the cross-sections. The derivation procedure is based, in part, on
the texts of [37] and [38]. The theory that will be developed can deal with large
displacements and rotations of the rod’s characteristic curve and cross-sections,
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with the condition that strain measures remain small.

Treated in this chapter

Particular treatment for each problem

Boundary
 conditions

Initial 
conditions+

Equations 
of motion

Kinematic 
hypotheses

Constitutive 
relations

(analysis of a 
rod segment)

+ +

+

Solution⇒

Figure 2.1: Flowchart for the derivation of the Cosserat rod theory.

A scheme representing the derivation procedure to obtain the equations
of the theory of Cosserat rods is shown in Fig. 2.1, involving three steps that are
treated in detail in the subsequent sections. First, the kinematic hypotheses are
stated in Section 2.1. The position field is described in terms of the kinematic
hypotheses and an expression for the velocity and acceleration field is deduced.
Second, in Section 2.2, a rod segment is analysed and the equations of motions
are obtained. Third, in Section 2.3, the constitutive relations are defined to
give meaning to the internal efforts that appear in the equations of motion,
by linking them with the kinematic hypotheses. All these, together with some
boundary and initial conditions, fully define any mechanical problem to be
treated by means of the Cosserat rod approach.

Some of the contributions of this chapter include: 1) the combination of
the Cosserat rod approach with a quaternion representation for the rotations;
2) the use of the proposal of [53] to avoid enforcing the quaternion unit-
constraint, and thus avoiding a differential-algebraic set of equations; 3) the
description of a procedure to derive the constitutive relations used in this thesis
from a known 3-D constitutive.
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2.1
The kinematic hypotheses

The kinematic hypotheses, or kinematic assumptions, are the set of
conditions that describe the allowed movement of a body in space. They are
introduced to simplify the problem, by reducing the number of variables that
need to be evaluated, or by reducing the problem’s dimension. In the present
context, they will be utilised to study the dynamics of a general slender 3-D
body by means of a 1-D formulation, known as the theory of Cosserat rods.

A Cosserat rod is a mathematical representation of a slender body where
a special mathematical structure is used. This structure is composed of a curve,
L , and a set of local axes that change along L , namely di. These two elements
are used to define the current position of any point of a body in space.

z

Material Space Observed Space

o
2

o
1

o
3

zo
3(s)

R
3 (s

o)

1(s)
R
1 (s

o)

2(s)
R
2 (s

o)

o
3

o
1

o
2

o (s) R(so)

2

1

3

Figure 2.2: Description of the body configuration in the material and observed
space.

Alike the theory of continuum mechanics, two vector spaces are used to
describe the motion. This is illustrated in Fig 2.2. One of them is called the
“material space” or “reference space”, where the reference configuration lives.
The other is the “observed space”, where the current (deformed) body exists.
In the reference space, the reference configuration is also described by means
of a characteristic curve C and a set of local axis do

i that change along C .
Moreover, the set of points that lie in the perpendicular plane to the tangent
of C define a cross-section, such as the one pained in grey in the figure.

The Cosserat theory of rods is based on the hypotheses that cross-sections
remain plane during the deformation, and that cross-sections behave as rigid
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bodies. However, in this thesis, the hypothesis that cross-sections behave as
rigid bodies will not be adopted everywhere. For example, it will be relaxed
when dealing with constitutive relations to avoid some incongruities that would
otherwise appear. More information about this topic will be given in Chapter
2.3, and can also be found in [39].

By construction, a set of local axes fixed to the plane of the cross-section
will be considered, allowing to capture section orientation in space. These local
axes also receive the name of directors. In this way, the position of any 3-D
body is fully defined by stating the position of the points that belong to the
curve C , and the orientation of the cross-sections.

Let B be the reference configuration of a body in the material space,
and let eo

i define a base for such space. The points the body occupies in the
reference space are called material points, xo.

In continuum mechanics, a motion of B is a smooth function χ that
assigns a point in the observed space to each material point at a given time.
That is, the current configuration is described by a mapping x = χ(xo, t) from
the reference space to the observed space.

Let B be the reference configuration of a body in the material space,
and let eo

i define a base for such space. Also, consider a straight reference
configuration such that do

i = eo
i . The points the body occupies in the reference

space are called material points, and they can be mathematically expressed as

xo = ro(so) + zo = ζo
1eo

1 + ζo
2eo

2 + soeo
3, with zo = ζo

1eo
1 + ζo

2eo
2. (2-1)

This expression shows that the reference configuration is described in terms of
the position of the points that belong to the parametric curve C (so), given by
ro, and a vector field zo that lies in the cross-section associated at each so of
C .

Considering the kinematics of Cosserat rods, the mapping representing
the current configuration is

x = r(s) + z(s), (2-2)
where r(s) defines the position of the curve L and z is a vector field that
portrays the distribution of points around in the cross-section at s of L . The
parameter s represents the current arc length of the rod.

The position can also be described in terms of material components as

xR = rR(so) + QR(so)GRR(ζo
1 , ζ

o
2 , s

o)zo, (2-3)
with
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GRR(ζo
1 , ζ

o
2 , s

o) =


1 + γ1(ζo

1 , ζ
o
2 , s

o) 0 0
0 1 + γ2(ζo

1 , ζ
o
2 , s

o) 0
0 0 1

 , (2-4)

where rR is the current position of the material point so of L , QR is a rotation
matrix associated with the directors of the moving frame, thus also to section
orientation, and zo is a field that describes the set of points that lie within
the cross-sections at so. Note that, consistently with the notation introduced,
x and xR represent the same fields, although different parametrisations are
adopted.

In the previous expression, a tensor GRR was added to account for
possible in-plane deformations. This is not part of the classical treatment of
the theory of Cosserat rods and it will be used only to derive the constitutive
relations in Chapter 2.3. Nevertheless, in the classical approach to the theory
of Cosserat rods, it is assumed that cross-sections behave as rigid bodies. Then,
GRR = 1, where 1 is an identity matrix, leading to

xR = rR + QRzo. (2-5)

2.1.1
The deformation tensor

In a classical book for continuum mechanics, such as [54], the deformation
gradient is defined as

F = ∂x
∂xo

= ∂χi

∂xo
j

. (2-6)

In the present context, given the choice of (2-1) for the current configuration,
it is true that this tensor can be obtained in terms of the parametrisation
variables S = (ζ1, ζ2, s

o) as

F = ∂x
∂xo

= ∂xi

∂So
j

. (2-7)

2.1.2
The velocity field

An expression for the velocity field is obtained by calculating the time
derivative of (2-5)

ẋR = ṙR + Q̇Rzo, (2-8)
and, given the rigid behaviour of the sections, with the aid of z = QRzo, it is
true that
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ẋR = ṙR + Q̇R(QR)T z. (2-9)
The product Q̇R(QR)T is a skew-symmetric matrix. Therefore it admits

a representation in terms of an axial vector ω(s) that belongs to the observed
space, or equivalently ωR(so) if the reference arc-length is used for the
parametrisation. Thus, the angular velocity in the observed space reads

ẋR = ṙR + ωR × zR or ẋ = ṙ + ω × z (2-10)

2.1.3
The angular velocity in terms of quaternion components

It can be demonstrated that only a minimum of three independent
quantities are needed to specify the orientation of a rigid body. Unfortunately,
any three-parameter representation in the special orthogonal group SO(3),
such as an Euler angle rotation sequence, has at least one singularity [55].
Moreover, it is mentioned in [56] that “the Euler angles are difficult to use in
numerical computation because of the large number of trigonometric functions
involved, and the four-parameter representations are much better adapted for
use on computers”. For these reasons, there are occasions where it is desired
to use a set of variables that contain more than just the minimum number of
quantities to describe a rotation. In this work, to overcome these limitations,
section orientation and angular velocities will be stated in terms of quaternion
components. This mathematical tool was originally developed by Hamilton in
an attempt to extend complex numbers to higher spatial dimensions [57].

Let uq, vq be pure imaginary unit quaternions, and let q be another
unit quaternion with components q = {qa, qb, qc, qd} that satisfy the following
definitions:

uq = uxe1 + uye2 + uze3, (2-11)

vq = vxe1 + vye2 + vze3, (2-12)

i =
0 −1
1 0

 , j =
 0 −i
−i 0

 ,k =
i 0
0 −i

 , (2-13)

q = cos
(
θ

2

)
+ uq sin

(
θ

2

)

= qa + qb i + qc j + qd k.

(2-14)

The transformation Lq(vq) rotates vq in a counter-clockwise angle θ over
the axis defined by uq, in accordance with
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Lq(vq) = qvqq. (2-15)
Moreover, this can be written in matrix form as

Lq(vq) = Qvq, (2-16)
with

Lq(v) =


d1x d2x d3x

d1y d2y d3y

d1z d2z d3z



vqx

vqy

vqz

 . (2-17)

Then, if the reference configuration is chosen so that the directors do
i

coincide with ei, the following relations hold.

Lq(vq) =


q2

a + q2
b − q2

c − q2
d 2(qbqc − qaqd) 2(qaqc + qbqd)

2(qaqd + qbqc) q2
a − q2

b + q2
c − q2

d 2(qcqd − qaqb)
2(qbqd − qaqc) 2(qaqb + qcqd) q2

a − q2
b − q2

c + q2
d



vqx

vqy

vqz


(2-18)

q2
a + q2

b + q2
c + q2

d = 1. (2-19)
A definition of the directors in the current configuration is given in

terms of quaternion components in (2-18). Those components need to fulfil the
relation (2-19), which imposes a constraint that guarantees that the quaternion
is unitary.

As already stated, an expression to determine the angular velocity ω

is required to fully determine its relation with the quaternion representation
adopted for the rotations. This can be done by proposing an equation of the
form of the Frenet-Serret formulas, as

∂di

∂t
= ω × di. (2-20)

In (2-20), ω is a Darboux vector that describes a change in the orientation
of the directors. An explicit form of vector ω is obtained below

di × ∂di

∂t
= di × (ω × di)

= ω(di · di) − di(di · ω)

= ω − ωidi

(2-21)

3∑
i=1

di × ∂di

∂t
= 3ω −

3∑
i=1

ωidi

= 2ω

. (2-22)
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ω = 1
2

3∑
i=1

di × ∂di

∂t
(2-23)

if expressed in terms of the arc-length s, and analogously, in terms of so it
reads

ωR = 1
2

3∑
i=1

dR
i × ∂dR

i

∂t
. (2-24)

Then, the vector components of (2-23), expressed in the observed space,
can be written in its material form as

ωRR =
(
QR

)T
ωR. (2-25)

The equation (2-25) together with (2-19) can be used to formulate the
Cosserat rod problem, but it would require considering a differential-algebraic
set of equations. Instead, an alternative approach is given in [53], where a
formulation that does not need the enforcement of the unity constraint is used.
The authors of [53] propose to use the equation

q̇ = 1
2Ωq + cqm (2-26)

with

Ω =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (2-27)

to update the quaternions from a minimum set of angular velocities, which
in the present context also means keeping track of section orientation. In the
previous expressions, cqm is a correction factor so that ||q|| ≠ 0. In fact, this
is taken herein as qm = maxx(q), recalling that q = q(s, t). In this context,
maxx is the spatial maximum at a given fixed time t.

2.1.4
The acceleration field

Now, an expression for the acceleration is sought. To find such equation,
the time derivative of (2-10) is calculated. Keeping in mind that

z = QRzo, ż = ω × z, (2-28)
then, the expression in the observed space reads

ẍ = r̈ + ω̇ × z + ω × ż
= r̈ + ω̇ × z + ω ×

(
ω × z

)
,

(2-29)

or
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ẍR = r̈R + ω̇R × zR + ωR ×
(

ωR × zR

)
, (2-30)

using s or so as the parametrisation parameter, respectively.

2.2
The equations of motion

With the aim of finding the equations of motion associated with a
Cosserat rod, first, an expression for the kinetic energy is obtained. After that,
the previous expression is used as a means to calculate the linear and angular
momenta.

2.2.1
The kinetic energy

An expression for the kinetic energy of a portion of a rod is sought. The
time derivative of this energy gives an expression for the inertial terms in the
linear and angular momenta.

Let ρ, ρR be the density of the body in its current configuration and in
the reference configuration, respectively. Then, their relationship is given by
the equation of conservation of mass. Calling J = det(F ), and with the help
of dV = JdV R, the conservation reads

ˆ
ρ(x) dV =

ˆ
ρR(xo) dV R, with ρR = ρJ. (2-31)

In the current context, due to the particular choice of the reference
configuration that was adopted, dV R = dζ1dζ2dso. Also, xo = ζ1eo

1+ζ2eo
2+soeo

3.
These two expressions allow to solve the volume integrals in the reference space.

Next, the kinetic energy K is written in terms of the kinetic energy
density K as follows

K =
ˆ

K dV =
ˆ 1

2ρ ẋ · ẋ dV. (2-32)

The results from (2-10) are used in the previous equation. Let ṙ = ṙ(s),
ṙR = ṙR(so), ω̇ = ω̇(s), ω̇R = ω̇R(so), then

K(s) =
ˆ 1

2ρ
(

ṙ · ṙ + 2ṙ ·
(
ω × z

)
+

(
ω × z

)
·

(
ω × z

))
dV, (2-33)

or in terms of the reference parameter so,

KR(so) =
ˆ 1

2

(
ṙR·ṙR+2ṙR·

(
ωR×zR

)
+

(
ωR×zR

)
·
(
ωR×zR

))
ρRdV R. (2-34)
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The vectors in the previous integrals still belong to the observed space.
Therefore, they maintain their original orientation, what makes the integration
more difficult. To overcome this, a pullback of the form

(QR)T (·)R = (·)RR (2-35)
can be considered. Also, a specific notation is used for the pullback of zR,
which reads (QR)T zR = zo, leading to a vector that is aligned to the plane
of integration eo

1, eo
2, what simplifies the integrals. With these changes, the

kinetic energy reads

KR(so) =
ˆ 1

2

(
QRṙRR · QRṙRR + 2QRṙRR ·

(
QRωRR × QRzo

)
+(

QRωRR × QRzo
)

·
(
QRωRR × QRzo

))
ρRdV R

(2-36)

which simplifies to

KR(so) =
ˆ 1

2

(
ṙRR · ṙRR + 2ṙRR ·

(
ωRR × zo

)
+(

ωRR × zo
)

·
(
ωRR × zo

))
ρRdV R

(2-37)

Now, remembering that the assumption that sections behave as rigid
bodies is commonly employed in the derivation of the Cosserat rod theory, the
kinetic energy K in terms of the kinetic density per unit length κ reads

KR(so) =
ˆ
κR(so)dso, (2-38)

with

κR(so) = 1
2ρ

RAoṙRR · ṙRR + ṙRR ·
ˆ
ρR

(
− zo × ωRR

)
dζ1dζ2+

1
2

ˆ
ρR

(
ωRR × zo

)
·

(
ωRR × zo

)
dζ1dζ2.

(2-39)

In a more compact form, the previous expression can be written as

κR(so) = 1
2ρ

RAo(ṙRR)2 + ṙRR · ΘRR
1 ωRR + 1

2ωRR · ΘRR
2 ωRR, (2-40)

all expressed in terms of pullback quantities, with

ΘRR
1 =

ˆ
ρR

(
− zo ×

)
dζ1dζ2 (2-41)

which contains the first moment of mass of the cross-section, and

ΘRR
2 =

ˆ
ρR

(
zo · zo

)
I − ρo

(
zo ⊗ zo

)
dζ1dζ2 (2-42)

which is a tensor that contains the second moments of mass of the cross-section.
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The formulation can be further simplified if C passes through the centre
of mass at each cross-section and if principal axes of inertia are used. This way
ΘRR

1 vanishes and ΘRR
2 becomes diagonal.

Equivalently, through the transformation (2-35), it is possible to rewrite
the kinetic energy density per unit length in terms of observed quantities as

κR(so) = 1
2ρ

RAo(ṙR)2 + ṙR · ΘR
1 ωR + 1

2ωR · ΘR
2 ωR, (2-43)

where the relations to transform the previous expressions from the reference
space to the observed space, or vice-versa, are given by

ΘR
1 = QRΘRR

1 (QR)T and ΘR
2 = QRΘRR

2 (QR)T . (2-44)

2.2.2
Analysis of a rod segment

To state the equations of motion, namely the linear momentum balance
and the angular momentum balance, a rod segment is studied in accordance
with Fig. 2.3. As illustrated, applied and distributed forces and torques are
considered.

(s1)

(s)

(s)

(s)(s1)

n(s)

m(s)

1

2

3

(s1)

Figure 2.3: Equilibrium of a rod segment. Vectors n, m represent applied forces
and torques; fn, fm are distributed forces and torques, respectively.

Hereunder, the following nomenclature will be used: (·) = (·)(s) is any

function of s, (·)R = (·)R(so) is any function of so, (·)′ = ∂(·)
∂so

a derivative
in the reference parameter; ρ is the current mass density, ρo the reference
mass density; E is the elastic Young modulus, G the shear modulus; A, Iii are
the cross-sectional area and associated moments of inertia. Finally, n, m are
applied loads and moments; fn, fm are distributed forces and torques.
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As already stated, the expression for the kinetic energy is given by

K(so) =
ˆ
κ(so)dso, (2-38, revisited)

κ(so) = 1
2ρ

RAR(ṙR)2 + ṙR · ΘR
1 ωR + 1

2ωR · ΘR
2 ωR. (2-40, revisited)

2.2.3
The linear momentum balance

Let κ1 = ∂κ(s)
∂ṙ and κR

1 = ∂κ(so)
∂ṙR . Then, the linear momentum reads

p =
ˆ s

s1

κ1ds, (2-45)

or considering the reference arc length so

pR =
ˆ so

so
1

κR
1 dso, (2-46)

with

κR
1 = ρRAR ṙR + ΘR

1 ωR. (2-47)
The moving coordinate system dR

i is chosen so that it passes through the
centre of mass at each section. Thus, ΘR

1 vanishes.
Let fn = fn(s) and fR

n = λfn(s(so)) be distributed forces through the
length of the rod, where λ = ds

dso
, and J ≈ 1 is the determinant of the

deformation tensor. Considering that λ ≈ J ≈ 1, due to the small strain
assumption, then

dp
dt =

ˆ s

s1

fn ds+ n
∣∣∣∣s
s1

or dpR

dt =
ˆ so

so
1

fR
n dso + nR

∣∣∣∣so

so
1

. (2-48)

Employing (2-47), the previous expression reads

d
dt

ˆ so

so
1

ρRAR ṙR dso =
ˆ so

so
1

fR
n dso + nR

∣∣∣∣so

so
1

(2-49)

or

d
dt

ˆ sR

s1R

ρRAR ṙR dso =
ˆ so

so
1

fR
n dso +

ˆ so

so
1

d
dso

(
nR

)
dso (2-50)

which, by application of the fundamental lemma of the calculus of variations,
leads to the strong form of the linear momentum balance equation:

d
dso

(
nR

)
+ fR

n = d
dt

(
ρRARṙR

)
. (2-51)
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2.2.4
The angular momentum balance

To obtain the second equation of motion, let

κ2 = ∂κ(s)
∂ω

= (Θ1)T ṙ + Θ2ω, (2-52)
or

κR
2 = ∂κ(so)

∂ω

R

= (ΘR
1 )T ṙR + ΘR

2 ωR, (2-53)

where (·)T denotes a matrix transpose.
The angular momentum, as shown in [38], is given by

l =
ˆ s

s1

(
r(s) − r(s1)

)
× κ1 + κ2 ds, (2-54)

or

lR =
ˆ so

so
1

(
rR(s) − rR(so

1)
)

× κR
1 + κR

2 dso. (2-55)

As aforementioned, if C passes through the centre of mass of each cross-
section, and if principal axes of inertia are used, then

κR
1 = ρRAR ṙR, and κR

2 = ΘR
2 ωR. (2-56)

The equation of motion associated with the angular momentum balance
is given, in material coordinates, by

dlR

dt =
(

rR(so)−rR(so
1)

)
×nR

∣∣∣∣so

so
1

+mR

∣∣∣∣so

so
1

+
ˆ so

so
1

(
rR(so)−rR(so

1)
)

×fR
n +fR

m

dso

(2-57)

dlR

dt =
ˆ so

so
1

d
dso

((
rR(so) − rR(so

1)
))

× nR
)

dso +
ˆ so

so
1

d
dso

(mR)dso

+
ˆ so

so
1

(
rR(so) − rR(so

1)
)

× fR
n + fR

m

dso

(2-58)
which, by application of the fundamental lemma of the calculus of variations,
gives

d
dt

(
rR(so) − rR(so

1)
)

× κR
1 + κR

2

 =(
rR(so) − rR(so

1)
)

×
( d

dso

(
nR

)
+ fR

n

)
+ d

dso

(
rR

)
× nR + d

dso

(
mR

)
+ fR

m

(2-59)
which, rearranging terms, reads as
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d
dt

κR
2

 =
(

rR(so) − rR(so
1)

)
×

( d
dso

(
nR

)
+ fR

n − κR
1

)
+ d

dso

(
rR

)
× nR + d

dso

(
mR

)
+ fR

m.

(2-60)

In the previous expression, the first term of the right side includes
the linear momentum balance. Therefore, it vanishes. Finally, the angular
momentum balance reads

d
dso

(
rR

)
× nR + d

dso

(
mR

)
+ fR

m = d
dt

(
κR

2

)
. (2-61)

If principal axes of inertia are considered, and if C passes through the
centre of mass of each cross-section, κR

2 simplifies to

κR
2 = QRΘRR

2

(
QR

)T
ωR, with ΘRR

2 =


IRR

11 0 0
0 IRR

22 0
0 0 IRR

33

 , (2-62)

where the vector ωR represents the angular velocity vector of the cross-sections.
A comprehensive definition of the Cosserat model requires the selection of

a constitutive relation for the material in use. This way, the kinematic variables
and their derivatives, which define the strain, are linked to the generalised
forces that appear in the equations of motion. In the context of this thesis, the
next section is devoted to this matter.

2.3
The constitutive relations

In what follows, a mechanism to state the constitutive relations for a
Cosserat rod is provided. In most beam and rod theories, it is common to
assume rigid cross-sections. Also, it is frequent to make some hypotheses with
regard to the stresses, which eventually are incompatible with the previous
rigid assumption, leading to inconsistencies from the point of view of the 3D
theory of continuum mechanics.

One of the personal interests of the author of this thesis is to connect 1-D
theories that come from an engineering background with the concepts of 3-D
continuum mechanics. From this point of view, the consistent derivation of the
constitutive relation for a Cosserat rod from a known 3D relation satisfies that
personal concern. On top of that, it provides a means to state the constitutive
relations for materials that, up to the author’s knowledge, have not been used
in models with the framework of the theory of Cosserat rods. More specifically,
the procedure detailed in this chapter was developed in [39] to obtain the
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constitutive relations for piezoelectric materials, with the aim of exploring
their use as a tool to dampen structures. Up to the author’s knowledge, those
results concerning piezoelectrics are novel, although they will not be included
in this thesis given that these materials will not be used in the models herein
described. Nevertheless, the procedure is included for the sake of completeness
with regard to the elements that are required to state a problem with the
theory of Cosserat rods.

The constitutive relations of a linear orthotropic elastic material are
obtained, with an isotropic material being a particular case. After that, the
constitutive relations of a Kelvin-Voigt material are stated, given that they
will be used in some of the models of this thesis. The equations for the latter
are taken from [58].

2.3.1
Notation

Two different vector spaces will be used to describe the motion of a
body. For this reason, a notation to help clarify whether an expression is
associated with one or another space will be defined first. Also, some concepts
from continuum mechanics will be used without giving much detail of their
derivation or proofs, which is why the author suggests reading the book [54]
as complementary material to this chapter, in case further insight is needed.

As it is usual in the continuum mechanics framework, two different vector
spaces are introduced: the material (lagrangian) space where the reference
configuration is defined, and the observed (eulerian) space where the current
configuration lives. This was illustrated in Fig. 2.2. The mathematical objects
(scalars, fields, tensors) that will help build the desired formulation can belong
to any of the spaces, or combine elements of both. Therefore, to differentiate
one from another, the following nomenclature is used:

– (·)R explicitly indicates a mixed object that combines elements from both
the observed and material spaces. For example, the traction associated
with the first Piola tensor is of this kind: it relates the direction and
magnitude of the current traction in relation to a reference area vector.

– (·)RR explicitly indicates a pullback to the material space of an object
that is originally defined in the observed space. It represents a pure
material object.

– (·)o is used for a material object (that is not a pullback).
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2.3.2
The constitutive relations for a linear elastic material

The derivation process and the steps involved in the derivation of the
constitutive laws from a known 3D constitutive are presented in Fig. 2.4. This
process can be applied to the theory of Cosserat rods as well as to any other
beam theory by considering an appropriate set of kinematic hypotheses.

Step 1 Step 2 Step 3 Step 4 Step 5

Find the 
displacement 

gradient 
measure of

deformation
 tensor 

Find the 
Green-St 

Venant tensor 

Obtain the 
in-plane 

deformation 
functions

(extra step)

Find the 
Piola tensors 
and traction 

vector 

Step 6

Integrate 
stress over 

the 
cross-section

Find the right 
Cauchy-Green

tensor  

γR1 , γ
R
2

R, RR

Constitutives 
for the 

Cosserat rod

Figure 2.4: Description of the required steps to find a constitutive relation for
1-D rod type theories.

2.3.2.1
Revisiting the kinematic hypotheses

In Section 2.1, the kinematic assumptions for the Cosserat rod were
discussed. A general expression describing the motion of the body was given
by

xR = rR(so) + QR(so)GRR(ζo
1 , ζ

o
2 , s

o)zo, (2-3, revisited)
with

GRR(ζo
1 , ζ

o
2 , s

o) =


1 + γ1(ζo

1 , ζ
o
2 , s

o) 0 0
0 1 + γ2(ζo

1 , ζ
o
2 , s

o) 0
0 0 1

 . (2-4, revisited)

In the previous equation, a tensor GRR was added to account for in-
plane deformation. On the one hand, it is common to assume that cross-
sections do not deform in beam-like theories, and the typical formulation of
the theory of Cosserat rods is no exception in this matter. On the other hand,
beam formulations also assume that any normal stress perpendicular to the
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main direction (the longitudinal axis) is exactly zero. The first assumption is
compatible with perfectly compressible materials only, i.e. a Poisson coefficient
ν = 0, otherwise one cannot enforce both zero strains and stresses in the non-
longitudinal directions. Although typically not much importance is given to
this lack of coherence, there are some contexts where it plays an important role.
For example, when non-isotropic materials are used, the elasticity constants
need to be modified to obtain meaningful physical results, as shown in [39, 59].
For this reason, the introduction of GRR is essential to obtaining consistent
constitutive equations. It will be shown that the resulting mathematical
expressions are alike to those of inconsistent formulations considering rigid
cross-sections, with an ad-hoc correction where modified elastic coefficients
are utilised instead of the original ones.

In continuum mechanics, different measures of stresses can be stated.
The most important ones are the Cauchy stress, the First and Second Piola
stress tensors, T, TR and TRR, respectively. The Cauchy stress relates the
current tractions with an area in the current (observed) configuration, the First
Piola stress links current tractions with an undeformed reference area, and the
Second Piola stress relates a pullback traction in the reference space with a
reference area. Recalling that the deformation gradient F and its determinant
J , are given by

F = ∇x, (F)ij = ∂xi

∂xo
j

J = det(F), (2-63)

and the transformation rules that rely on the previous tensors, read

TR = FTRR, T = J−1FT TR. (2-64)
A typical constitutive for a linear elastic material is defined in terms

of the Second Piola tensor and the Green-St.Venant strain tensor, where the
linear part of C = FT F, the right Cauchy-Green tensor, is used to obtain the
Green-St.Venant strain tensor, calculated as E = 1

2(C − I), where I is the
identity matrix.

2.3.2.2
The 3-D Constitutive for a linear elastic orthotropic material

The constitutive law for a linear elastic material can be expressed as

TRR = C : E, (2-65)
where C is an elastic fourth-order tensor. Considering the symmetries of C, this
expression can be expressed in matrix form using the compact Voigt notation.
Taking C̃ijkl → Cpq, that is, the sub-indices ij and kl are transformed into pq
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following Table 2.1.

Regular notation (·)ij or (·)kl Voigt notation (·)p or (·)q

(·)11 (·)1

(·)22 (·)2

(·)33 (·)3

(·)23 or (·)31 (·)4

(·)13 or (·)31 (·)5

(·)12 or (·)21 (·)6

Table 2.1: Index notation convention to represent Cijkl, Ekl into the reduced
Voigt notation form Cpq, Eq.

The general form of (2-64) for an orthotropic material reads



(TRR)11

(TRR)22

(TRR)33

(TRR)23

(TRR)13

(TRR)12


=



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





(E)11

(E)22

(E)33

2(E)23

2(E)13

2(E)12


(2-66)

where (TRR)ij are the components of the second Piola stress tensor, (ERR)ij the
components of the Green-St. Venant strain tensor, both in regular notation,
and Cpq are the components of the elastic tensor in Voigt notation. In the
previous, due to the symmetry of an orthotropic material, C12 = C21 and
C13 = C31.

2.3.2.3
Step 1: The displacement gradient measure of deformation tensor

Following [60], the introduction of a tensor D, named the displacement
gradient measure of deformation, provides a useful way to express the defor-
mation gradient and to state the hypothesis of small strains by a comparison
in the material space between the position gradient before and after the defor-
mation.

The displacement gradient measure of deformation is defined as

D = (QR)T ∂xR

∂xo
− ∂xo

∂xo
= (QR)T F − I. (2-67)

For the given kinematic assumptions, the tensor D is expressed in term
of column vectors Di as D = [D1,D2,D3], with
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D1 =
(
γ1ζ

o
1 , ζ

o
2 , s

o) + ζo
1
∂

∂ζo
1

(
γ1ζ

o
1 , ζ

o
2 , s

o)
))

dR
1 − ∂xo

∂ζo
1
, (2-68)

D2 =
(
γ2(ζo

1 , ζ
o
2 , s

o) + ζo
2
∂

∂ζo
1

(
γ2(ζo

1 , ζ
o
2 , s

o)
))

dR
2 − ∂xo

∂ζo
2
, (2-69)

D3 =
(
QR

)T
(
∂rR

∂so
+ ∂QR

∂so
GRRzo + QR∂GRR

∂so
zo

)
− ∂xo

∂sR
. (2-70)

The rate of change of the directors that form the local moving frame with
respect to the arc length can be described mathematically by an analogous ex-
pression to the one employed in the Frenet-Serret description from differential
geometry, as shown in [40, 61], where

∂dR
i

∂so
= uR × dR

i ,
∂QR

∂so
= uR × QR. (2-71)

Now, utilising the properties that any skew-symmetric tensor can be
expressed as some cross-product (u×)ij = ϵikjuk and that a skew-symmetric
matrix satisfies (u×)T = −(u×), it can be shown that (QR)T (uR

×)QR is also
skew-symmetric and it admits a representation of the form

(QR)T (uR
×)QR = (uRR

× ). (2-72)
To prove this, the cross-product property (Ma)×(Mb) = det(M) M−T (a×b)
is used. Considering the case where M is orthogonal, then

(MT a) × b = (MT a) × (MT Mb) = MT (a × Mb) = MT a×Mb. (2-73)

Taking M = QR, a = uR, and b an arbritrary vector, by comparison of (2-73)
and (2-72), it holds that

uRR = (QR)T uR, uRR
× = (QR)T uR

×QR, (2-74)
where uRR is a pullback of uR to the material space

Next, strain measures can be defined by introducing vR, vo, uR and uo

as

vR = drR

dso
, vo = dro

dso
= eo

3 = do
3, (2-75)

and

uR = 1
2

3∑
i=1

dR
i × d

dso

(
dR

i

)
, uo = 1

2

3∑
i=1

do
i × d

dso

(
do

i

)
= 0, (2-76)

recalling that the reference configuration is straight, thus do
i does not vary.

In this expression, an analogous procedure to the one leading to (2-23) was
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used. Additionally, all these can be transformed from the observed space to
the material space according to (·)RR = (QR)T (·)R.

Now, considering zR = GRRz0, vector D3 is expressed as

D3 = QRT
(
∂rR

∂so
+ ∂QR

∂so
GRRzo + QR∂GRR

∂so
zo

)
− ∂xo

∂so

= QRT
(

vR + uR
×QRGRR zo + QR∂GRR

∂so
zo

)
− do

3

= QRT vR − do
3 + QRT u×QRGRRzo + ∂GRR

∂so
zo

= vRR − do
3 + (uRR

× )GRR zo + ∂GRR

∂so
zo,

(2-77)

where the term

uRR × (GRRzo) =


−uRR

3 ζo
2(1 + γ2)

uRR
3 ζo

1(1 + γ1)
−uRR

2 ζo
1(1 + γ1) + uRR

1 ζo
2(1 + γ2)

 . (2-78)

is nonlinear, as GRR will eventually depend on uRR and vRR. With the aim of
obtaining a linear constitutive, the small strain assumption GRR ≈ I is used.
Hence,

uRR × (GRRzo) ≈ uRR × zo =


−uRR

3 ζo
2

uRR
3 ζo

1

−uRR
2 ζo

1 + uRR
1 ζo

2 ,

 , (2-79)

and substituting (2-79) into (2-77) leads to

D =


γ1 + ζo

1
∂γ1

∂ζo
1

0 vRR
1 + ζ1

∂γ1

∂ζo
1

− uRR
3 ζo

2

0 γ2 + ζo
2
∂γ2

∂ζo
2

vRR
2 + ζo

2
∂γ2

∂ζo
2

+ uRR
3 ζ1

0 0 vRR
3 − 1 − uRR

2 ζo
1 + uRR

1 ζo
2

 . (2-80)

Finally, it is possible to find an expression for the deformation gradient
F in terms of the rotation matrix QR and D. Using (2-67) it holds that

F = QR
(

D + I
)
. (2-81)
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2.3.2.4
Step 2: The right Cauchy-Green tensor

The right Cauchy-Green tensor is defined as C = FT F, and by using
(2-81), it can be stated in terms of the displacement gradient measure of
deformation as

C = FT F =
(
DT + I

)
QT Q

(
D + I

)
= D + DT + DT D + I . (2-82)

A small strain hypothesis implies that ||D||F → 0, where ||D||F =√
D : D =

√
tr(DT D) is the Frobenius norm. For a linear theory, only the

terms that are of order O(||D||F) are kept. It should be noted that the
third term DT D introduces a quadratic term of order O(||D||2F) and will be
considered negligible. Therefore, C is approximated as

C = FT F ≈ D + DT + I . (2-83)

2.3.2.5
Step 3: The Green-St. Venant strain tensor

The Green-St.Venant tensor is used the constitutive relation of (2-65) to
relate the tensions with the strains. It can be expressed as

E = 1
2

(
C − I

)
= 1

2

(
D + DT

)
=


D11 0 1

2D31

0 D22
1
2D32

1
2D31

1
2D32 D33

 . (2-84)

2.3.2.6
Step 4: Finding the in-plane deformation functions

So far an expression has been obtained for the Green-St. Venant tensor,
where the components depend on derivatives of the kinematic assumptions
as well as on the in-plane cross-section deformation functions γ1 and γ2. An
expression for these functions in terms of the kinematic assumptions is sought.
To do this, first, the usual beam hypothesis that the second Piola tensor
satisfies TRR

11 = 0 and TRR
22 = 0 are considered.

The hypothesis that the non-longitudinal normal stresses vanish is ex-
pressed as

TRR
11 = C11(E)11 + C12(E)22 + C13(E)33 = 0, (2-85)

TRR
22 = C21E11 + C22E22 + C23E33 = 0, (2-86)
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allowing to state E11 and E22 as functions of E33

E11 = (C12C23 − C13C22)
∆ E33, (2-87)

E22 = (C13C21 − C11C23)
∆ E33, (2-88)

∆ = C11C22 − C12C21. (2-89)
Combining the latter with the expressions for the Green-St. Venant tensor

leads to

γ1 + ζo
1
∂γ1

∂ζo
1

= (C12C23 − C13C22)
∆ E33, (2-90)

γ2 + ζo
2
∂γ2

∂ζo
2

= (C13C21 − C11C23)
∆ E33, (2-91)

with
E33 = vRR

3 − 1 − uRR
2 ζo

1 + uRR
1 ζo

2 , (2-92)
where by inspection, the following expressions satisfy (2-90) and (2-91):

γ1 = (C12C23 − C13C22)
∆

(
E33 + uRR

2 ζo
1

2

)
, (2-93)

γ2 = (C13C21 − C11C23)
∆

(
E33 − uRR

1 ζo
2

2

)
. (2-94)

2.3.2.7
Step 5: Integrating the traction associated with the second Piola stress
tensor

Now that the in-plane deformation functions are known, the second Piola
tensor reads

TRR =


0 0 2 C55E13

0 0 2 C44E23

2 C55E13 2 C44E23 C31E11 + C32E22 + C33E33

 , (2-95)

and the traction associated is

tRR = TRR ηR =


2 C55E13

2 C44E23

C31E11 + C32E22 + C33E33

 =


C55D31

C44D32

C̃33D33

 , (2-96)

with the following modified coefficient

C̃33 = A33 − A32A23

A22
, Aij = Cij − Ci1C1j

C11
. (2-97)
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Integrating within the cross-section, with the normal unit vector being ηR =
(0, 0, 1)T , the constitutive relations for the internal forces in a Cosserat medium
are obtained. The resultant associated with the second Piola tensor is

nRR =
ˆ

Ao

tRRdAo =



ˆ
Ao

C55
(
vRR

1 + ζ1
∂γ1

∂ζo
1

− uRR
3 ζo

2

)
dAo

ˆ
Ao

C44
(
vRR

2 + ζo
2
∂γ2

∂ζo
2

+ uRR
3 ζ1

)
dAo

ˆ
Ao

C̃33
(
vRR

3 − 1 − uRR
2 ζo

1 + uRR
1 ζo

2

)
dAo


. (2-98)

In addition, with the hypothesis that the curve L passes through the neutral
axis, that the directors are associated with principal directions, and that the
material is homogeneous, this further simplifies to

nRR = Kn(vRR − do
3), with Kn =


C55A

o 0 0
0 C44A

o 0
0 0 C̃33A

o

 . (2-99)

The resultant associated with the first Piola tensor is

nR =
ˆ

Ao

tR dAo = QR

ˆ
Ao

tRR dζ1dζ2 = QR nRR. (2-100)

In an analogous manner, the torque produced by the traction can be
integrated to obtain an expression for the pullback of the traction

mRR =
ˆ

Ao

zo × tRRdAo, (2-101)

mRR =



ˆ
Ao

ζo
2 C̃33

(
vRR

3 − 1 − uRR
2 ζo

1 + uRR
1 ζo

2

)
dAo

ˆ
Ao

−ζo
1 C̃33

(
vRR

3 − 1 − uRR
2 ζo

1 + uRR
1 ζo

2

)
dAo

ˆ
Ao

ζo
1C55

(
vRR

1 + ζ1
∂γ1

∂ζo
1

− uRR
3 ζo

2

)
− ζo

2C44
(
vRR

2 + ζo
2
∂γ2

∂ζo
2

+ uRR
3 ζ1

)
dAo


(2-102)

Again, if the curve passes through the neutral axis, the directors are
associated to principal directions, and the material is homogeneous, this further
simplifies to

mRR = Km(uRR), with Km =


J11 0 0
0 J22 0
0 0 J33

 , (2-103)

where J11 and J22 are calculated with the corrected coefficient C̃33.
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It can be proved that the traction associated with the first Piola stress
is

mR =
ˆ

Ao

(QRGRRzo) × (TRηR)dAo. (2-104)

Again, a linear constitutive is obtained by considering the approximation
GRR = I. Using the property of (2-73), it is obtained that

mR =
ˆ

Ao

(QRGRRzo)×(TRηR)dAo =
ˆ

Ao

QR
(
zo ×(TRRηR)

)
dAo = QRmRR.

(2-105)

2.4
Linear isotropic elastic materials

The equations for a linear elastic material are given by (2-98) and (2-102),
or (2-99) and (2-103), with the modified coefficient C̃33 given by (2-97) and
the transformation rules

nR = QRnRR, mR = QRmRR. (2-106)
It should be observed that for an isotropic material, the modified param-

eter is given by C̃33 = µ
(3λ+ 2µ)
λ+ µ

= Ey and C44 = C55 = Gy, where λ, µ are
the Lamé constants; Ey and Gy are the Young moduli, leading to

nRR = Kn(vRR − vo), (2-107)

mRR = Km(uRR − uo), (2-108)
with

Kn =


K11 0 0
0 K22 0
0 0 K33

 =


GA 0 0
0 GA 0
0 0 EA

 , (2-109)

Km =


J11 0 0
0 J22 0
0 0 J33

 =


E I11 0 0

0 E I22 0
0 0 G (I11 + I22)

 . (2-110)

2.5
Linear Kelvin-Voigt material

Hereunder, the constitutive relations for a linear Kelvin-Voigt material
are enumerated. These expressions can be used to account for structural
damping. The formulation is taken from [58]. The relationship between internal
forces and the dependent variables, in material form, reads as
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nRR = Kn(vRR − vo) + Knt(v̇RR), (2-111)

mRR = Km(uRR − uo) + Kmt(u̇RR), (2-112)
and in spacial form, following (·)R = QR(·)RR, as

nR = Kn(vR − Qvo) + Knt(Qv̇RR), (2-113)

mR = Km(uR − Quo) + Kmt(Qu̇RR). (2-114)
In [58], these matrices are written in terms of the parameters τS, τB,

which are retardation time constants that relate the shear viscosity and the
bulk viscosity to the shear and bulk moduli. Also, another parameter τE is
used. It can be demonstrated that, by taking τS = τB = τE = cd, where cd is
another constant, the previous matrices can be written as

Knt = cdKn, (2-115)
and

Kmt = cdKm. (2-116)
Note that if cd = 0, the model has no viscous damping and it coincides

with the formulation of (2-107) and (2-108).

2.6
Summary of the equations

Considering principal axes of inertia, and C passing through the centre
of mass of each cross-section, the equations of motion are given by

d
dso

(
nR

)
+ fR

n = d
dt

(
ρRARṙR

)
, (2-51, revisited)

d
dso

(
rR

)
× nR + d

dso

(
mR

)
+ fR

m = d
dt

(
κR

2

)
, (2-61, revisited)

q̇ = 1
2Ωq + cqm, (2-26, revisited)

with

Ω =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 , (2-27, revisited)

and
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κR
2 = QRΘRR

2

(
QR

)T
ωR, with ΘRR

2 =


IRR

11 0 0
0 IRR

22 0
0 0 IRR

33

 , (2-62, revisited)

The vector ωR that appears in κR
2 in (2-61) represents the angular

velocity vector of the cross-sections, and it is not independent from section-
orientation. In fact, their relation is given by the extra equation (2-26). The
addition of this extra PDE avoids dealing with a DAE problem, where one has
to enforce the unitary quaternion constraint.

An expression for the weak form of the previous expression is given in
Appendix D.

With all these, the strain measures required for the constitutive relations
can be derived from the generalised coordinates. In fact,

vR = drR

dso
, vo = dro

dso
= eo

3 = do
3, (2-75, revisited)

and

uR = 1
2

3∑
i=1

dR
i × d

dso

(
dR

i

)
, uo = 1

2

3∑
i=1

do
i × d

dso

(
do

i

)
= 0, (2-76, revisited)

recalling that a straight reference configuration is being considered and that
di is calculated in terms of the quaternion components defined by (2-26),
where the generalised coordinate is the angular velocity field. The constitutive
relations are given by

nRR = Kn(vRR − vo) + Knt(v̇RR), (2-111, revisited)

mRR = Km(uRR − uo) + Kmt(u̇RR). (2-112, revisited)
Finally, the transformation rule from the material to the spatial config-

uration is given by

(·)R = QR(·)RR, (2-117)
and the constitutive relations take the spatial form

nR = Kn(vR − Qvo) + Knt(Qv̇RR), (2-113, revisited)

mR = Km(uR − Quo) + Kmt(Qu̇RR). (2-114, revisited)
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3
The sources of non-linearity in Cosserat rods

The aim of this chapter is to hold a brief discussion on what the sources
of non-linearity in the theory of Cosserat rods are.

A linear differential equation is a differential equation that is defined
by a linear polynomial of the unknown functions and its derivatives. A more
formal definition involves demonstrating that it is composed of operators O,
that satisfy O(af1 + bf2) = aO(f1) + bO(f2), as described in Reference [62].
Therefore, a non-linear differential equation is one that does not satisfy the
previous condition, i.e. it is not a linear polynomial of the unknown functions
and its derivatives.

In continuum mechanics, as well as in reduced order theories such as the
theory of Cosserat rods, there are two main sources of non-linearities that may
intervene in the governing equations:

– the geometric non-linearity, due to the statement of the equations of
motion in a configuration that is not close to the reference,

– the material non-linearity.

For the sake of completeness, it is important to mention that a particular
problem may include other sources of non-linearities depending on the nature
of the external forces being considered, as well as the boundary conditions
(e.g., in the case of intermittent contact).

3.1
Geometric non-linearity in Continuum Mechanics

The inclusion of this chapter aims at clarifying what are the terms that
introduce the geometric non-linearity in the context of the Cosserat rods
which, like in continuum mechanics, comes from the transformation rules
between the Second Piola tensor, the First Piola tensor, and the Cauchy tensor.
Also, this chapter is aimed at pinpointing which hypotheses lead to a linear
Cosserat theory. It will be shown that two considerations are needed: first, a
simplification in the geometrical aspects of the deformations to avoid geometric
non-linearities; second, the statement of an intrinsically linear constitutive
relation.
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The geometric aspect of the non-linearity will be discussed first. The
material form of the equation of motion is stated in (2-61) and (2-62). The
expression requires a constitutive relation to establish a link between the First
Piola tensor and the position field x.

The analysis is made considering hyper-elastic materials where the
constitutive relation is given as a linear expression for the Second Piola
tensor. For example, in the case of a linear isotropic elastic material, TRR =
2µE + λtr(E)I, where E is a linearised version of the Green-St.Venant strain
tensor in the vicinity of a natural (stress-free) configuration, and {µ, λ} are
the Lamé constants. Then, given that TRR is linear, the source of geometric
non-linearity can be pinpointed to how this tensor transforms into the First
Piola stress tensor, which is required by the equation of motion in its material
form.

Considering the transformation relation between the second and first
Piola tensors, TR = FTRR, if TRR were a linear expression on the variables
of the problem, the source of non-linearity would undoubtedly be F, which
depends on the current geometric configuration of the body. In order to avoid
geometric non-linearities, for any linear expression of TRR, it is sought that
TR = FTRR remains linear, and the only possible way to attain such condition
is to consider F ≈ I. Now, let x = X + u, where u is a displacement from the
reference configuration X, and consequently, F = I + H, where H = Grad(u).
In order to satisfy the previous condition, it is required that H → 0, which
means that the gradient of the displacement field needs to be small.

Actually, the previous is one of the main hypotheses employed in linear
elasticity theory, and its consequence is that TRR ≈ TR ≈ T, which means
that the Second Piola tensor, the First Piola tensor, and the Cauchy tensor, all
coincide. Also, it is equivalent to saying that the gradient of the displacements
is supposed small (small strain). Note that no particular hypothesis is required
with regard to the displacement field itself, which means that a body can
undergo large displacements and yet present small strains.

3.2
Geometric non-linearity in the Cosserat theory of rods

Alike continuum mechanics, geometric non-linearity is related to the fact
that Newton’s laws of motion can be applied, as a general rule, to the current
configuration only. To such purpose, the transformation rules for tractions,
which are associated with the First and Second Piola tensors and the Cauchy
tensor, play an important role. It will be shown that strain and rotations
should remain small for the theory to be linear. In other words, it is only
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in rare cases that the current and the reference configuration are very close,
allowing for Newton’s laws to be applied in the reference configuration without
introducing much error. And only in such cases, the resulting formulation is
linear.

1-D theories describe the configuration x of the body by considering
the position of a centreline r, and the orientation of the cross-sections.
For the latter, some parametrisation of the rotations needs to be used in
defining orientation, such as Euler angles or quaternions. Given that no such
parametrisation is linear in the parameters employed, this foreshadows the need
for small rotations if linearity is sought. In fact, the geometrical non-linearity
appears in, at least, two aspects of the statement of the formulation of Cosserat
rods: how tractions transform, and the equations of motion themselves.

To begin with, how tractions transform, the constitutive relations (2-113)
and (2-114) are originally stated in material form. As known from continuum
mechanics, the transformation law for tractions is given by tR = FtRR.

In Chapter 2.3, it was shown that there exists a representation of the
form

F = QR(D + I), (2-81, revisited)
where QR is a rotation matrix, D is the so-called measure of deformation
tensor, and I the identity. This description shows that the geometric non-
linearity introduced in the transformation from tRR to tR is associated to the
non-linear nature of the rotation matrix QR, and the non-linearity introduced
by the measure of deformation tensor D, which is a measure of strain.

The theory of Cosserat rods is based on the hypothesis that sections
behave as rigid bodies and that strains are small, while finite rotations
are allowed. By hypothesis, compatible with the previous statements, D is
neglected so that F = QR. The consequence is that the transformation rules
in the theory of Cosserat rods read, given by (2-117), read

nR = QRnRR, (3-1)

mR = QRmRR. (3-2)
Now, analysing the equations of motion, the balance of linear momentum

states that

d
dso

(
nR

)
+ fR

n = d
dt

(
ρRARṙR

)
, (2-51, revisited)

which is linear if tR is also linear. Due to (3-1) and (3-2), it is clear that,
in order to retain linearity, small rotations need be considered. On the other
hand, the equation corresponding to the angular momentum balance states
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d
dso

(
rR

)
× nR + d

dso

(
mR

)
+ fR

m = d
dt

(
κR

2

)
, (2-61, revisited)

which is non-linear in nature due to the term

d
dso

(
rR

)
× nR. (3-3)

The internal efforts nR also depend on the solution through vR = d
dso

(
rR

)
, the

tangent to the curve, which it is also used to obtain a measure of the strains in
the constitutive relations. Thus, the cross product containing vR introduces a
non-linearity in the equation. Given that nR is defined by a constitutive relation
that is linear, linearity requires vR to be a known field based on the small
strain assumption, this is, it cannot depend on the solution. As an illustrative
example, the case of a straight beam is considered in what follows, following
Fig. 3.1. In this case, the beam has its main length in the direction of a versor
e3. Thus, assuming vR = e3 for the cross-product would lead to a linear set of
equations that is compatible with the small strain assumptions.

Cro

e1≡ d1

e3≡ d3

e2≡ d2

zo

o

o

o

Figure 3.1: Example of a horizontal beam that experiences a dynamic with
configurations close to its reference configuration.

3.3
The importance of the non-linear terms

The importance of the non-linear terms is shown with a simple example
of a bending beam. For such purpose, the static problem of a horizontal
cantilever beam under the influence of a vertical force at the tip is analysed.
The displacements at the end of the beam are compared.

The problem is solved by means of five different models:

– CR1: A linear Cosserat rod model. For such purpose, the hypothesis that
rotations are small (and in the plane of the paper), and that vR = e3 are
considered. The hypothesis that rotations are small means that a Taylor
expansion close to the horizontal configuration was used.
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Figure 3.2: Sketch of the problem under analysis, with the geometric and
material properties used.

– CR2: A simplified non-linear Cosserat rod model where the hypothesis
that rotations are large, and vR = e3 are considered. This means that
the term (3-3) does not introduce any extra non-linearity.

– CR3: A non-linear Cosserat rod model where no simplificative hypothesis
have been used: rotations are large, and vR in the term (3-3) is also a
source of non-linearity.

– E1: The model is based on geometrically non-linear 3D elasticity theory.

– E2: The model is based on linear 3D elasticity theory.

For E1, the equation of motion is of the form of Div(TR) + fR = ρRẍR,
where TR is the first Piola stress tensor, f is a body force. Also, an isotropic
elastic material is considered, with a constitutive relation of the form of
TRR = 2µE+λtr(E)1, where TRR is the second Piola stress tensor, related to
the first one through TR = FTRR, E is the Green - St. Venant strain tensor, µ
and λ are the Lamé parameters. For E2, a linearised version of the formulation
of E1 is used (see [54] for more details on how to obtain a linear elasticity
theory).

The vertical displacement at the tip of the beam is compared for the
different models, and the results are shown in Fig. 3.3.
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Figure 3.3: Displacement at the tip of the beam, in the y-direction vs. applied
force. CR1 is a linearised Cosserat Rod model; CR2 considers non-linear
rotation but the non-linear term in the angular momentum balance is simplified
to remain linear; CR3 is a fully non-linear Cosserat rod model (with no
simplifications); E1 is a geometrical non-linear elasticity model; finally E2 is a
linear elasticity model.

It is observed that the results from a linear CR model, and a non-linear
CR model differ greatly when large displacements are involved. Moreover, the
result for the CR rod coincide with the more complex geometrically non-linear
3D elasticity model, which is considered as the reference for this benchmark.

For the purpose of the comparisons, it is important to highlight that the
objective was to provide some observations about the results provided by each
models, where the same constitutive and material were used. In this context,
all models should give the same results in their range of validity. However, it
was not verified that the stresses fall within the acceptable range for a regular
steel beam. If that aspect were considered, the domain of the graph might need
to be reduced.
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4
Simulating an off-bottom drill-string in a curved well

In this chapter, it will be shown that the modelling of a drill-string moving
within a borehole of arbitrary shape can be tackled with the Cosserat rod
formulation. The equations of motion described in Chapter 2 can account
for large displacements of the rod within the 3-D oil well. In particular,
the dynamics of a drill-string within the curved borehole for an off-bottom
configuration, i.e. without contact at the bit, will be studied.

The main contributions that the author identifies in the study presented
in this chapter are: 1) the implementation of the Cosserat model to account for
the dynamics in an arbitrary borehole; 2) the inclusion of an algorithm to detect
when and where contact and friction occur, as well as the magnitudes of the
forces involved; 3) the calibration of the a priori unknown friction parameters,
with the results of [29]; 4) the verification of the present results with those of
[29], being the latter validated against field measurements.

Some other important aspects of this study include the set of verification
tests that were carried out for the current implementation of the Cosserat
model, that are included in the Appendix B.1. The benchmarks and other
examples calculated with the current implementation of the Cosserat rod
yielded excellent agreement with other known solutions in the appendix.

The contents of the study considering the off-bottom case have been
published in [40, 63, 64].

4.1
Description of the problem

Directional arbitrary configurations of boreholes have become a subject of
recent interest. However, many related literature still use continuous straight
beam theories or lumped models to tackle the dynamics of drill-strings. In
this context, auxiliary assumptions are employed so that the modelling of the
contact within the arbitrary borehole geometry can be simplified or omitted.
Additionally, some of those models are not comprehensive, as they do not take
into account all possible axial, torsional and flexural motions of the string,
among other aspects.
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The works [6] and [32] are some of the few studies that tackle drill-
string dynamics with Cosserat rod formulations, and they show that there is
an opportunity to continue exploring the usability of Cosserat rod models in
the context of drill-string dynamics.

The first of these, [6], is a doctoral thesis aimed at using a Cosserat
approach to study drill-string dynamics. The implementation of the rod is
based on the Modified Cosserat Rod Element (MCRE) formulation described
by [33, 34]. Nevertheless, it is indicated in [35] that the approach of [6, 33, 34]
based on the MCRE, which is no more than one of the possible ways to
implement a Cosserat formulation, is unsuitable for modelling systems that
involve large deformations, which is why [35] abandons their Cosserat model
implementation to employ another one based on the 3D elasticity theory. After
that, to the knowledge of the author of this thesis, the authors of [6, 35]
and their group have not continue the line of research considering a Cosserat
formulation.

The second work, [32], analyses the behaviour of a drill-string for an
application example consisting of a rotating flexible shaft moving within a
rigid tube. The tube is assumed to be an arbitrary space curve and the shaft
is formulated as a non-linear elastic Cosserat rod. However, the theory is
simplified so that the position vectors of the centreline of the non-straight
tube and the rod coincide. This way, the problem of intermittent contact with
the walls is substituted by a model where contact is present all the time. On
top of that, no friction, stretching or shear effects are considered. In the end,
the authors of [32] solve a projected version of the Cosserat equations in the
direction of the tangent to the borehole, leading to a simpler model than that
of a Cosserat rod.

The contact between the drill-string and the borehole wall can be a
tricky issue. On the one hand, some studies, like [31], consider contact only at
discretisation nodes. Others deal with contact in simpler rectilinear inclined
borehole geometries, where the wall can be mathematically described as a
cylinder [65]. In the latter case, if a penalisation method is used to determine
where contact occurs and the magnitude of the force, the formulation is reduced
to verifying whether the current position satisfies some inequality containing
the equation of the cylinder.

On the other hand, another approach is given by the so-called soft-string
models, like [29, 32], which are also common in the oil industry. Their name
stands for the fact that the entire drill-string is assumed to have zero bending
stiffness, therefore the shape of drill-string matches that of the well-bore in
inclination, azimuth, and curvature. In other words, contact is considered
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along the whole length of the structure, all the time. This is also the case
of the work that was previously discussed, [32]. Contact is closely related to
friction in the dynamics of a confined structure. Being the latter the cause of
stick-slip phenomena, the friction model is of great importance. Depending on
the actual working regime, drill-strings are subjected to stick-slip vibrations
which are characterised by a stick phase where the rotary speed at the bit can
be less than half the target speed, followed by a slip phase where the rotary
speed can double or triple the target speed. This phenomenon has a strong
negative impact on the lifespan of the assembly as it induces alternating stress
variations. Many friction models consider a distributed torque proportional
to the inclination of the oil-well [29, 66]. As stated in [67], soft-string models
mathematically assume continuous contact of the drill-string with the casing
or the well-bore. This assumption may not be accurate due to the significantly
different outer diameters between the connection (tool joint) and the pipe
body. Also, these models are incapable of predicting the actual location of
contact along the drill-string, as well as any buckling, given that they neglect
the bending stiffness.

The previous commentaries on the works [6, 32] show that by overcoming
the disadvantages of the implementation discussed in [6, 33, 34] by [35], and by
considering a different approach to modelling the contact, there is yet a huge
potentiality for the Cosserat rod models. Especially with the aim of analysing
whether intermittent contact, buckling, and other effects play an important
role in the dynamics of the string. For this reason, in the present chapter, a
study of the dynamics of an off-bottom drill-string that moves within a curved
borehole is presented. The model is based on the Cosserat rod formulation
described in Chapter 2.

The main contributions of this chapter are: that the known singularities
mentioned in [35] regarding [6, 33, 34] are overcome by the choice of a
quaternion representation for the rotation, instead of the description used in
the MCRE model. Moreover, a strategy to account for the distributed contact
and friction along the drill-string is developed. For this task, a parametric
description of the borehole shape, which can be any arbitrary curve, is
considered. This means that no ad-hoc hypotheses are used in the predictions of
the contact and friction phenomena, as it happens with the so-called soft-string
models. But the problem becomes more complex as a differential-algebraic
(DAE) set of equations needs to be solved. Additionally, a four-parameter
friction law that considers the Stribeck effect, i.e. a continuity solution for the
transition between static and dynamic friction, is chosen.

An approximate solution is obtained by implementing the DAEs, along
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with the particular boundary and initial conditions, in the software COMSOL
Multiphysics [68]. Results in the time and frequency domains match very well
the outcomes of [29], despite the obvious differences of the model. It should
be mentioned that the case analysed is that of an “off-bottom start-up” and
thus, the axial motion is not the main oscillation. Furthermore, the results of
[29] have been validated with field measurements.

The present chapter is organised as follows. First, the proposed drill-
string model based on the Cosserat theory of rods is presented. For this task,
the set of parameters used in the simulations is enumerated along with the
top-drive conditions for which a proportional-integral (PI) controller is used.
After that, the contact model formulation for arbitrary borehole geometries is
developed. Next, a friction model is stated. The friction model is calibrated
with the data in [29]. Following that, an application case considering an off-
bottom drill-string moving within a curved well is simulated. The results are
compared against those of [29]. Some of the novelties of the result include the
variation of the forces and torques predicted by the Cosserat model, which
differs from that of [29]. Finally, final commentaries on the study are provided.

4.2
The drill-string model

As already stated, the formulation for the string is based on the Cosserat
rod model of Chapter 2. The following components are considered within the
model: a lumped mass and inertia located at the top-end of the drill-pipes;
a concentrated mass and inertia attached to the lower end of the BHA, to
simulate the drill-bit (Fig. 4.1). The BHA is also considered as a Cosserat rod
with different geometrical properties than those of the drill-string. The set of
parameters employed in the simulations, such as the material and geometrical
properties, are given in Table 4.1. A linear elastic isotropic material model is
used, which means that there is no internal damping being considered.

4.2.1
Rotary speed control

An optimal drilling operation implies that the drill-string angular speed
at the bit, ω, matches the target speed Ω. With this aim, the same approach
proposed in the works of [20, 69] is followed.

A control strategy is implemented via a proportional-integral controller
(PI-Controller) at the top drive. The response of the PI controller in terms of
torque at the top of the drill-string is introduced as a boundary condition at
the upper end.
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Figure 4.1: Sketch of the proposed drill-string model.

Variable Symbol Value Units
Mesh size - 200 elements

Mass density ρo 7.85 · 103 kg m−3

Standard Gravity g 9.81 m s−2

Elastic modulus E 2.10 · 1011 N m−2

Shear modulus G 69 · 109 N m−2

DS + BHA length L 2500 m
DS & BHA outer radius rext 7.3264 · 10−2 m

DS & BHA radius rint 6.1512 · 10−2 m
TD rotary inertia Jtop 2.9 · 103 kg m2

Bit rotary inertia Jbit none kg m2

Bit rotary mass Jbit none kg m2

Borehole-wall clearance cgap 0.01 m

Table 4.1: Basic geometrical and material parameters for the drill-string, based
on the values presented in [20].
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Ttop = kp(Ω − ω) + ki((Ω · t− ϕ)) (4-1)

Variable Symbol Value Units
Target Speed Ω 100 rpm

Proportional constant kp 200 N m s rad−1

Integral constant 1 ki 100 N m rad−1

Table 4.2: Adopted parameters for the PI controller based on the values
presented in [20].

4.2.2
The contact model for an arbitrary borehole geometry

The simplest case to implement contact with the borehole wall is that
of a straight vertical geometry. In such configuration, the borehole can be
represented by a cylinder of equation x2 +y2 = c2

gap, where cgap is the clearance
between the outer radius of the drill-string and the borehole wall. Then,
detecting whether contact occurs is straightforward: if the coordinates of the
position vector are introduced into the previous equation, r2

x+r2
y ≥ c2

gap implies
contact with the wall.

When dealing with geometries other than straight, finding a mathemat-
ical expression for the borehole wall is not so simple. To model an arbitrary
geometry, the authors propose to define the borehole shape by considering a
centreline curve and clearance.

As per Fig. 4.2, let J be the borehole centreline curve defined para-
metrically by rp(p); let A be a point at the drill-string; P be a point at the
borehole centreline; rP = rp(p = P ) be the position vector of J at P ; tP

be the tangent vector to the borehole centreline at p = P ; rr be a relative
position vector from P to A. Note that, so far, the cross-section associated to
parameter p = P does not necessarily contain A.

The tangent at the point P and the relative position between P and A

are

tP = drp

dp

∣∣∣∣∣∣
p=P

(4-2)

rr = r − rP . (4-3)
Given that the sections of the borehole are normal to the tangent vector

tc, the contact problem in an arbitrary borehole geometry involves finding the
right value for p so that the section at rp(p) contains A. Based on geometrical
considerations, rr, A and P , should all lie within the same plane as shown in
Fig. 4.2. Thus, the following algebraic equation, to be solved together with the
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Figure 4.2: The contact model. (a) Sketch of the relative position vector for
an arbitrary cross-section. (b) Sketch of the relative position vector for the
sought contact condition. In both cases, rp(P ) is the relative position of the
cross-section mass centre at P ; tP is both a tangent vector to the borehole
centreline and a normal vector to the cross-section; and rr is a relative position
vector from P to A where A is a contact point between the borehole wall and
the drill-string.

equations of motion for the Cosserat rods, is used the position of the borehole
at which contact happens:

rr · tp = 0. (4-4)
Finally, the contact model is introduced as a distributed force fs that

depends on the scalar soil penetration function fsp and some elastic constant ks.
The essence of the mathematical formulation is based on the penalty method
to solve the Signorini problem [70, 71]. The equations read

fsp =


0 if |rr| − cgap ≤ 0

|rr| − cgap if |rr| − cgap > 0

(4-5)

fs = −ks fsp r̂r. (4-6)
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4.2.3
The friction model

There exist many different mathematical formulations to characterise
friction with the Stribeck effect that is presented as good alternatives to
modelling Coulomb friction. For instance, in [69] a friction model that accounts
for the Stribeck effect, i.e the transition between static and dynamic friction,
is used. Unfortunately, the parameters involved have been calibrated to model
bit-rock interaction at the bit, an effect that will not be present in the
case under analysis where there is no contact between the bit and the rock.
Moreover, a definition of the six parameters required in the aforementioned
friction model is not straightforward. For this reason, a formulation based upon
four parameters [72], each with a simple physical interpretation, is adopted.
The formulation reads

kfr(vc) =
µd vc

√
(v2

c + ϵc/n2
c) + 2(αc/nc) vc

v2
c + 1/n2

c

(4-7)

αc =
√
µs(µs − µd). (4-8)

In this mathematical description, the friction coefficient kfr is a function
of the velocity modulus (vc = ||vc||) based upon four parameters: the static and
dynamic friction coefficients, µs and µd respectively; a regularisation factor nc

that modifies the stiffness of the regularization; and ϵc, a fixed small parameter
(e.g. ϵc = 10−4).

A schematic representation of the previous equation is given in Fig. 4.3
with the parameters µs = 0.30, µd = 0.15, ϵc = 10−4, nc = 5.

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

Figure 4.3: Schematic representation of the variation of the coefficient of
friction kfr with the velocity vc

In the drill-string model, contact is assumed to occur at a single point
where the drill-string and the borehole wall touch. The magnitude of the
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friction force ffr along the drill-string is proportional to the magnitude of
the normal force fs. Therefore, it is also proportional to the friction coefficient
kfr which depends, in turn, on the velocity magnitude vc, at the point where
the structure-soil interaction occurs. As for the direction, the frictional force
acts in opposition to the velocity vector. Consequently, ffr takes the form

ffr = −kfr(vc) ks fsp v̂c, (4-9)
and

vc = ṙ + ω × rextr̂r, (4-10)
with vc being the velocity vector and v̂c a unitary vector.

For this particular approach, the velocity vector is mathematically de-
fined by Eq. (4-10), where rext represents the external radius of the cross-
section.

The frictional torque mfr is obtained by considering the moment pro-
voked by the frictional force with respect to the origin of the unit vector r̂r.

mfr = rextr̂r × ffr. (4-11)
If ṙ in (4-10) is neglected, the frictional torque can be simplified into

the expression further stated. Note that this condition could belong to the
case of an off-bottom drilling start-up where the borehole is hanging and not
advancing in depth, if lateral motion is not taken into account.

mfr = −kfr(ω) ks rext fsp ω̂. (4-12)

4.2.4
The distributed forces in the equations of motion

With the previous definitions, the distributed forces in the equations of
Chapter 2 take the form

fR
n = −ρ0Agk̂ + ffr, fR

m = mfr. (4-13)
The initial conditions (t = 0) are those corresponding to a configuration

at rest. The boundary conditions correspond to a structure that is fully hanging
from the top, and free at the lower end.

4.3
Comparison and calibration of the friction model

To find a suitable value for the regularised friction parameter kfr, a
friction model based on [29, 66] will be compared against a modified version of
the frictional torque described by Eq. (4-12). The authors of [29, 66] analyse
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the dynamics of a drill-string at an off-bottom start-up condition. With this
purpose, they employ a straight vertical beam model to simulate the curved
borehole geometry. This is achieved by introducing a frictional torque law that
is proportional to the dogleg severity (DLS), i.e. the amount of change in
inclination, in degrees, per 30 meters. It is important to note that [29] presents
a model that has been successfully validated with field data. Therefore, the
magnitudes of the resulting frictional forces should match those found in the
field.

The present study is based on the original geometry depicted in Fig.
4.4, where three parts are distinguished: one vertical segment, one curved, and
one inclined. The dynamics of a drill-string which is at rest at the beginning
of the simulations, with no contact at the bit, are analysed. The maximum
static frictional force based on [29] is shown in Fig. 4.5. For the simulation, a
dynamic to static ratio µd/µs = 0.5 is adopted. The parameters nc = 5 and
ec = 10−4 are used. The transition from a static to a dynamic friction torque
is regularised following an expression analogous to Eq. (4-7). The properties
of the drill-string shown in Table 4.1 are used.

so = 0

so = 1500

so = 2100

so = 2500

= 3◦/30

= 60◦

Figure 4.4: Geometry of well A presented in [29]. The well is composed of one
vertical segment (1500 m), one curved (600 m) and another inclined (400 m).
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Figure 4.5: Applied distributed torque for the model proposed in [29] vs drill-
string length. The Maximum torque under static friction is shown by the
dashed line.

4.3.1
Qualitative analysis

A qualitative analysis concerning the shape of a diagram showing the
variation of the frictional force along the drill-string is carried out. The solution
is compared with that presented in [29]. As aforementioned, the frictional force
is proportional to the penetration, thus to verify the similarities among models,
their shape is compared.

For this task, the spatial discretisation is made in COMSOL [68], where
a mesh composed of 200 Hermite finite elements of order 3 is employed. It is
shown in Fig. 4.6 that such density is sufficient to attain convergence, as the
solution does not vary significantly. Next, in Fig. 4.7, the friction law described
in [29] is compared against the proposed friction model. The curves for different
values of the soil elastic constant ks are depicted. Also, these curves have been
scaled so that the magnitude at the bit is unitary.
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Figure 4.6: Soil penetration vs drill-string length for the Cosserat rod (CR)
model. The elastic constant ks = 107 N/m2 is used.

It is noted that the presented curves are both constant in the straight
inclined part of the drill-string, and only differ in shape on the curved region.
For this reason, the friction value at the bit (so = 2500 m) will be used
to adjust the proposed friction model. The profile was, with the Cosserat
approach, obtained directly from the dynamics, without the need to add any
extra hypothesis. In the transition between these two constant parts, different
behaviour is observed. While with [29] the graph shows a smooth increasing
variation, with the new friction model it shows an increased magnitude on the
region where the structure enters into the curved borehole and begins to bend;
a small region where the friction goes to a minimum, closer to the end of this
transition area, after which it increments against to reach the constant value
over assumed in the straight inclined part of the borehole.
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Figure 4.7: Comparison between a Cosserat rod (CR) model with the proposed
alternate friction model and a CR model with friction following the proposal
of Aasnes et al. in [29]. The relative soil penetration vs drill-string length is
shown for the CR model for: ks = 104 in solid black line; ks = 105 in dashed
black line; for the model of Aarsnes et al., [29], in red line. A mesh of N = 200
elements is employed.

4.3.2
Friction model calibration

In order to calibrate the required friction parameters that define kfr(vc),
the model provided in [29] is employed as a reference, recalling that it has
been validated with field measurements. Therefore, it is safe to assume that
the friction torques that were calculated in the reference match those that
occur in real working conditions. Then, the parameters for the friction model
proposed in Section 4.2.3 are calibrated with the value of the static friction
kfrS at so = 2500 m, following an expression derived from (4-12). However, for
the calibration kfrS = µS. This means that, only for calibration purposes, the
regularisation in (4-7) and (4-8) is not employed. In this case,

µS = ||mfrS||
ks fsp rext

∣∣∣∣∣∣
so=2500 m

(4-14)

As already stated, in this equation µS is the static friction coefficient,
||mfrS|| is the magnitude of the static friction torque, ks is a soil rigidity
constant, rext the external radius of the associated cross-section, and fsp is
the penetration given by the penalty function introduced in (4-5). In [29], a
dynamic-to-static friction ratio of 0.5 is also considered.

The values of the soil constant ks should be chosen based on field
measurements. In this case, due to the lack of field data, different values
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of ks are assessed. Then, their corresponding static friction coefficient µS is
calculated so that the magnitude of the resulting static friction torque ||mfrS||
matches that employed in [29]. Fig 4.8 shows the magnitudes of fsp for the
values of ks that were tested. It was found that for 104N/m2 ≤ ks ≤ 107N/m2,
the static friction coefficient is µS = 0.30.
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Figure 4.8: Soil penetration vs drill-string length for the Cosserat (CR) model
with the proposed alternate friction model. Solutions for different values of the
elastic constant ks are superimposed. A mesh of N = 200 elements is employed.
For each case, the penetration values at the bit are shown by a dashed line.

4.4
Simulations concerning a curved borehole

A comparison between the present Cosserat rod (CR) model with contact
and friction, and a reference (R) model following the soft-string approach
presented in [29] is performed. The problem of an off-bottom startup (at rest
at t = 0 s) in the curved borehole geometry described in Figure 4.4 is analysed.
The set of material and geometric properties from Table 4.3 is employed in all
simulations. In the R model, the transition between the static and dynamic
friction obtained by following [29] is regularised by employing an expression
in the form of (4-7), where two of the variables involved are the static and
dynamic friction torques calculated via the ad-hoc hypothesis. In the CR
model, the additional set of parameters ks = 106N/m2, µS = 0.30 are used
(see Section 4.3.2).

On the one hand, [29] presents an alternative to simulate the dynamics
of drill-strings in curved bore-hole geometries where a fictitious straight beam
is employed (soft-string model), and the geometry of the curve is taken into
account by means of an ad-hoc hypothesis. In this case, the friction force and
torque are considered proportional to the dog-leg severity (DLS). The beam is
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Table 4.3: Basic geometrical and material parameters for the drill-string, based
on the values presented in [20].

Variable Symbol Value Units
Mesh size - 150 elements

Drill-string mass density ρ0 8.01 · 103 kg m−3

Drill-string length L 3.00 · 103 m
Drill-string outer radius rext 6.35 · 10−2 m
Drill-string inner radius rint 5.43 · 10−2 m

Standard Gravity g 9.81 m s−2

Young’s modulus E 2.07 · 1011 N m−2

Poisson modulus ν 0.30 -
Shear modulus G 7.96 · 1010 N m−2

Top-drive mass Mtop 5.08 · 1004 kg
TD rotary inertia Jtop 5.00 · 1002 kg m2

BHA/Bit mass Mbit 5.00 · 1003 kg
BHA/Bit rotary inertia Jbit 3.94 · 1002 kg m2

Borehole-wall clearance cgap 0.01 m

analysed via the classical angle of twist equations (1-D wave equation) for a
straight beam, and the results are validated against field measurements.

On the other hand, the present CR model accounts for 3-D displacements
in space (translations and rotations), with a contact detection technique that is
suitable to simulate arbitrary bore-hole geometries. In this case, the inclusion
of the friction effects is apparent: the magnitude is stated proportional to the
contact force, which is intrinsic to the dynamics of a drill-string constrained
to stay within the bore-hole (see section 4.2.2 and 4.2.3). The results for the
simulations are shown in Figs. 4.9, 4.10 , 4.11 and 4.12.

Fig. 4.9 shows the response in terms of angular speed w3 (the component
of ω in the longitudinal direction) vs. time is depicted. Even though, in essence,
the friction formulation in the CR model differs from that of the R model
(see Fig. 4.7), an excellent agreement is observed between the results for
the stationary regime in both the time response (Fig. 4.9) and the frequency
spectrum (Fig. 4.10). Appreciable differences are only found in the transient
response. This shows that, while the approach proposed by [29] leads to a
much simpler model, it is adequate for the resolution of this problem in the
stationary regime.
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Figure 4.9: Comparison between the Cosserat rod (CR) model using the
proposed friction law and the CR model using the friction as proposed in
[29]. Angular speed ω3 vs time a soil constant ks = 106N/m2, friction constant
µS = 0.30, mesh with 200 elements. (a) Duration of the simulation t = 100 s;
(b) Zoom for t = 0 s to t = 20 s; (c) Zoom for t = 80 s to t = 100 s.
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Figure 4.10: Frequency spectrum comparison between the Cosserat rod (CR)
model (black line) and the model in [29](red line). A mesh of N = 200 elements
is employed.

Next, Fig. 4.11 shows the current configuration at different times. The
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centreline of the rod is shown in black, and the section orientation is repre-
sented by the orientation of vector d1, which is fixed to the cross-section at
each point of the rod. Then, a change in the direction of d1 provides a visual
representation of the twist along the drill-string length.

Fig. 4.12 depicts all the possible sets of internal forces and moments that
act within the rod at time t = 77.5 s. The internal forces in the curved zone
exhibit irregularities due to the intermittent contact and friction, which is to
be expected. It should be noted that the CR model could prove advantageous
as an exhaustive tool for the study of the dynamics of the drill-string dynamics,
given that bending and shear are not neglected. It is worth mentioning that the
analysed example (off-bottom) does not exhibit axial situations which could
certainly couple with bending and torsion. In such case, the soft-string model
would be insufficient to exhibit the complex oscillations, as well as to account
for the buckling effect that may arise due to the WOB loads.
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Figure 4.11: Drill-string configurations at different times (CR Model). The
centreline of the rod is shown (black line), as well as section orientation through
the field of the director d1(sR) (red vectors), which is fixed to the cross-section
at all times. (a) For t = 1 s; (a) For t = 50 s; (a) For t = 77.5 s.
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Figure 4.12: Internal forces and moments (CR Model) acting on the rod at
t = 77.5 s. (a) Bending moment m1 in Nm; (b) bending moment m2 in Nm;
(c) torsion m3 in Nm; (d) shear force n1 in N; (e) shear force n2 in N; and (f)
tensile force n3 in N.
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4.5
Final comments concerning this chapter

In this chapter, the Cosserat rod equations were implemented through
their weak form (Appendix D) in COMSOL, a FEM software. First, a contact
model for drill-string dynamics in arbitrary borehole geometries was presented.
The borehole was successfully introduced in a parametric form, and the contact
forces were calculated considering the soil to be fully elastic. Next, the normal
force obtained from the previous contact model was used to define a friction
model. The latter was calibrated with the wall friction value proposed in
[29]. No ad-hoc hypotheses were used in the definition of the friction force,
except for contact to occur at only one point at each cross-section. Later,
the soft-string model from [29] for curved borehole geometries was compared
against the model herein presented. A close agreement was observed for the
results obtained in the time and frequency domains for the angular velocities
in both models, verifying the applicability of such simplifying hypothesis in
the case of study. Therefore, it has been shown that the present Cosserat
model can successfully deal with drill-strings constrained in arbitrary bore-
hole geometries. Also, given that the bending and shear are not neglected, it
has the advantage of capturing the whole range of the dynamics.

It should be noted that other effects, such as bit-rock interaction during
the drilling operation could be easily as a boundary condition at the bit, e.g. by
following the approach in [69] or [14], what will be explored in the subsequent
chapters. The CR model could prove an advantageous and exhaustive tool for
drill-string dynamics, e.g. in a strain (i.e. stress) state analysis as well as service
life prediction, given that bending and shear are not neglected. It is worth
mentioning that the analysed example (off-bottom) does not exhibit axial
situations which can certainly couple with bending and torsion. In such case,
the soft-string model would be insufficient to exhibit the complex oscillations,
as well as to account for the buckling effect that may arise due to the WOB
loads.

Finally, the model was also verified against non-linear problems available
in the literature, the results are shown in the Appendix B.1. These other
verifications show that the simulations match known results of other problems
involving large deformations.

DBD
PUC-Rio - Certificação Digital Nº 1913178/CA



5
Modelling the dynamics of the cutting

In this chapter, a model to study drill-strings that accounts for the
dynamics of the cutting is developed. For now, the Cosserat rod model is
abandoned. Instead, a simpler continuous wave equation is considered for the
torsional dynamics of the straight shaft, and 1-DOF is used for the axial
behaviour.

The major novelties of the study presented in this chapter are: 1) the use
of a new bit-rock interaction relation that does not restrict backward rotation
of the bit nor bit-bounce, and that is dependent on the dynamics of the cutting
blade, such as the depth-of-cut; 2) the use of an advection equation to avoid
dealing with a system of delay-differential equations in the simulation of the
cutting process; 3) the extension of the advection approach treated in the
works of [14, 73] to allow rotation in both directions; 4) the combination of
the previous items with a distributed approach for the torsional dynamics,
with a formulation based on the known wave equation; 5) the inclusion of the
2-DOF model as a limiting case of the continuous model. For this purpose,
a strategy considering an extra parameter α is used. All these aspects lead
to a coupled non-linear formulation that can exhibit self-sustained vibrations
associated with the regenerative cutting process.

The new model is compared, from a numerical point of view, with an
established 2-DOF approach. For this task, five scenarios considering a 1200
m column with different friction parameters and top drive conditions are
simulated.

Dissimilar predictions are observed in the simulations with the different
approaches, showing a more complex response for the continuum model where
higher frequencies are excited as well.

The results indicate that the more sophisticated model could capture
other aspects of the dynamics that are neglected in the 2-DOF approach. Nev-
ertheless, the approach herein presented has more value for mathematical com-
parison purposes, given that the model still retains a 1-DOF axial formulation
which is yet unrealistic. Hence, the main use is to provide an interpretation
on how to deal with the dynamcis of the cutting and to make a first analy-
sis as to how good are low-dimiensional models at representing drill-strings.
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The analysis is then continued in Chapter 6 where a fully continuous model is
adopted.

The contents of this chapter are already published in [74].

5.1
Description of the problem

Deciphering whether a continuous or a discrete approach should be used
to capture the dynamics of drill-strings is not evident. In fact, this has been the
motivation for this thesis and Chapter 4, where a Cosserat rod model was used
to study an off-bottom application case. Both discrete and continuous models
can be found in the literature in studies involving experimental set-ups and in
research papers that deal with real-scale columns. But only when dealing with
experimental test rigs, like [35, 75, 76], it is apparent that a discrete approach
can be employed: easily identifiable lumped elements within the mechanical
system are present in such cases, and a few degrees of freedom (DOF) suffice
to construct an accurate physical model. Unfortunately, this is not equally
evident when real-scale drilling systems are studied.

Examples of low dimensional models were discussed in Chapter 1, and
include [10, 11, 14–19], among others. The common linking factor of these
works is that they assume that 1-DOF or 2-DOFs are sufficient to accurately
model the torsional dynamics of a column that is at least some hundred meters
long. The drawback of these models is that, given the low number of DOFs,
they are limited in the amount of information that can be captured. In other
words, the vibration modes that can be excited are restricted by the arbitrary
selection of the number of DOFs.

Continuous models, such as [20–26, 40, 77, 78], do not suffer from the
earlier limitations of discrete models, but they require more computational
effort, in terms of time and memory occupied, to calculate an approximation
to the solution.

Due to the diversity of treatments mentioned so far, it is unclear how well
all these models perform at representing drill-strings. In this context, the aim
of the present research is, first, to construct a continuous model for a 1200 m
drill-string that includes the dynamics of the evolution of the oil-well and the
soil that is being removed. This objective is aligned with the study performed in
[14], where both the dynamics of drill-columns and the free-boundary problem
considering the evolution of the soil are tackled. Second, to compare and assess
the suitability of both approaches, continuous and discrete. The results of the
simulations considering the continuous model are compared with those of the
2-DOF model based on the propositions of [14].
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The use of the 2-DOF model of [14], with a 1-DOF torsional pendulum
representation of a 1200 m drill-string, implies that a quasi-static assumption is
used for the dynamics of the column. With this representation, it is not possible
to simulate the travelling waves within the structure, nor to capture any
resonance other than that with the fundamental frequency. As a consequence,
it is presumed that the 2-DOF model may be unable to accurately capture the
rich dynamics that arise in drill-strings, in which case a more sophisticated
continuous approach should provide better results. In fact, this presumption
is also sustained by the field data measurements published in [79], and the
simulations in [80], where it is said that frequencies other than the fundamental
one are excited in some stick-slip scenarios.

In the simulations, particular interest is paid to the torsional dynamics
of the structure. The simulations are studied in the time domain, and in the
frequency domain by performing a Fast Fourier Transform (FFT) of the signal
of interest, the angular speed at the bit. In addition, the responses containing
the axial speed and the axial position of the bit are also shown and the
differences are pointed out.

The present chapter is organised as follows. First, the structural model
for the drill-string is presented. Second, a bit-rock interaction model is built
based on the definition of an instantaneous depth-of-cut. Third, a methodology
to obtain the depth-of-cut that relies in solving the advection equation is in-
troduced. Next, a particular non-oscillatory solution, herein called the nominal
case, is studied. After that, the results of five simulation scenarios are analysed
to compare the two models. Finally, some conclusions are drawn.

5.2
The drill-string models

Two different models to study the dynamics of a drill-string will be used.
A sketch of the two proposals is shown in Fig. 5.1. Each approach is comprised
of two aspects: the structural model that is described in this section, and
the bit-rock interaction model detailed in Section 5.3. Model M1 follows the
established structural 2-DOF approach employed in [14]: it considers 1-DOF
for the axial dynamics and 1-DOF for the torsional dynamics, with a lumped
mass M , lumped inertia I, spring constant C. Model M2 condenses all the
aforementioned novelties of this chapter. It employs a continuous approach
for the torsional dynamics, while the formulation for the axial one remains
the same 1-DOF strategy. As depicted in Fig. 5.1, two different cross sections
are considered, with J1 and J2 representing the geometric moment of inertia of
the drill-pipes and the bottom hole assembly (BHA), respectively. At the lower
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end, a lumped inertia I2 is also considered. G1 and G2 are the shear elastic
moduli, ρ1 and ρ2 the densities of the material. Θ(t) is the rotation imposed
at the top of the drill.
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Figure 5.1: Representation of the models employed. In this figure, special
attention is given to the structural aspects of the formulation. Model M1
considers 1-DOF for the axial dynamics and 1-DOF for the torsional dynamics.
Model M2 employs the same formulation for the axial dynamics, but a
continuous approach for the torsional one. To the right side of the figure,
a sketch of a cutter blade is shown. This is used in the definition of the bit-
rock interaction model, in section 5.3, where a zoomed version of this part of
the sketch is shown, along with a detailed description. The force W and the
torque T are related to the traction vectors ff,i and fc,i via integration over the
contact areas.

5.2.1
Model M1 and M2: the axial dynamics

In both scenarios, M1 and M2, the axial dynamics are described by

M
d2U

dt2 = W −W0, (5-1)
where M is a lumped mass, U the position of the bit, W0 a constant
representing the difference between the submerged weight and the hook load
and W is the modulus of the reaction force W due to the bit-rock interaction
associated to the cutting process (see Section 5.3 for more details).
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5.2.2
Model M1: The torsional dynamics

The equation employed to simulate the column in the lumped model (also
used in [14]) is given by

I
d2Φ
dt2 + C(Φ − Θ) = T, (5-2)

where Φ is the angular displacement of the bit, C is a torsional spring constant
that represents the set of drill-pipes, and I is the inertia of the BHA. T is the
modulus of the torque-on-bit T, which is yet to be defined (see Section 5.3 for
more details).

5.2.3
Model M2: The torsional dynamics

A continuous uni-dimensional description of the torsional problem is used
in model M2. The behaviour of the elastic medium is described by the following
wave equation [81, 82] :

GjJj
∂2Φj

∂x2
j

= αρjJj
∂2Φj

∂t2
,with j = {1, 2}, (5-3)

with domains x1 ∈ [0, L1], and x2 ∈ [L1, L1 + L2], and α = 1. The problem is
completed by the following boundary conditions:

Φ1(x1 = 0, t) = −Θ(t),

Φ1(x1 = L1, t) = Φ2(x2 = L1, t),

G1J1
∂Φ1

∂x1
(x1 = L1, t) = G2J2

∂Φ2

∂x2
(x2 = L1, t),

G2J2
∂Φ2

∂x2
(x2 = L1 + L2, t) = T − I2

∂2Φ2

∂t2
(x2 = L1 + L2, t),

(5-4)

where Φj = Φj(xj, t) defines the angular displacement of the column, Θ(t) is
an imposed rotation at the top, T is the modulus the torque-on-bit T, which
is yet to be defined (see Section 5.3), and I2 stands for a lumped inertia at the
lower end.

5.3
The bit-rock interaction model

In the previous section, two dynamic models for simulating drill-strings
have been presented, but the contact forces and torques associated with the
interaction of the bit with the rock remain to be determined. For this reason,
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first, the bit-rock interaction model used in [14] is briefly described and the
hypotheses employed are discussed. The authors of the present work find that
some improvements over the assumptions employed in the reference can be
made. Therefore, second, a new bit-rock interaction model is introduced. The
model further explores the ideas employed in [14].

The reference [14] defines a bit-rock interaction relation where two main
effects are considered in the cutting process: the forces acting at the cutter
blade, and the forces acting at the wear-flat of a blunt polycrystalline diamond
compact (PDC) bit. These forces are calculated in terms of four characteristic
rock parameters. The bit-rock relations are based on the interpretation of the
data in [83], which provide results regarding the performance of a PDC bit
obtained from a laboratory drilling test at simulated down-hole conditions.
These relations were used in a 2-DOF model with the intention of simulating
the dynamics of a drill-string.

Let ωb stand for the bit angular speed, vb its axial speed and di for
the instantaneous depth-of-cut of the cutter “i” (a measure of how much soil is
being removed). The proposal developed in 2007 by Richard et al. [14] accounts
for the following cutting conditions:

– If di > 0, ωb > 0 and vb > 0, the driller is operating within the
“normal cutting” regime, and both the cutter blade and the wearflat are
in contact with the rock. The magnitude of the contact forces reaches
their maximum value;

– If di > 0, ωb > 0 and vb < 0, the bit is moving up and the wearflat has
lost contact with the bit, thus the only interaction occurs at the cutting
blade;

– If di > 0, ωb > 0 and vb = 0, the system experiences axial stick. This
means that, axially, the bit stops. During this period, the contact force
at the wearflat takes a value between its maximum and zero;

– If di > 0, ωb = 0 the bit is in an absolute stick phase, remaining totally
immobile. During this phase the axial speed is exactly v = 0;

– di = 0, ωb > 0 the bit is in “sliding mode”. It is not penetrating the soil
at all, and there are no forces acting on the cutter blade;

– di < 0, corresponds to the “off-bottom” case where all forces acting on
the cutter vanish. This state corresponds to the bit-bouncing condition.

In that model, the forces that intervene are defined in terms of four
characteristic constant parameters: the rock contact strength σ, which is the
saturated contact pressure on the wearflat; the intrinsic specific energy ϵ, which
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is, according to [14, 84], a measure of the amount of energy spent to cut a
unit volume of rock during one minute of operation, although it is actually
measured in units of work (thus it is not formally an energy which is why
some name, like rock cutting strength, would be more suitable); the cutter
inclination coefficient ζ; and the coefficient of friction µ.

The authors of [14] mention that, for the sake of simplicity, it is assumed
that “the frictional component of the torque is sufficient to hinder any
backward rotation of the bit”, which means that ωb < 0 cannot occur. This
assumption implies that the magnitude of the torque (acting at the wearflat)
does not have an upper limit, thus it can take up to an infinite value in order
to avoid the bit from rotating backwards, what looks unrealistic. In this work,
such behvaiour is expected as a result from the dynamics itself rather than an
outcome of an imposed assumption.

5.3.1
The proposed interaction model

In what follows a new bit-rock interaction model that can deal with
backward rotation is introduced, taking the research conducted in [14] as a
reference, but abandoning the hypothesis restricting backward rotation of the
bit (ωb < 0). To such purpose, consider a blunt cutter, such as the one depicted
in Fig. 5.2. The contact of the blunt cutter i occurs at: the contact area between
the rock and the cutting blade Ac,i = aidi, where ai is the with of the cutter
blade which coincides with the bit radius and di is the instantaneous depth-
of-cut; and the contact area between the wearflat and the rock Af,i = aili,
where li is the wearflat length. The latter is associated with the fact that the
cutter is worn, whereas a sharp cutter would not present a wearflat contact
area. In the new model, the traction vectors fc,i and ff,i acting at the contact
regions (cutter and wearflat, respectively) are obtained from the following
characteristic variables:

– The rock contact strength function σ = σ(ωb, vb), defined in terms of
two contact strength parameters σ1 and σ2, and the small regularisation
constants c1 and c2;

– The rock intrinsic specific energy function ϵ = ϵ(ωb), that depends on
the intrinsic specific energy parameter ϵ1 and a regularisation constant
c3;

– the cutter inclination coefficient ζ;

– the coefficient of friction µ.
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of the blade

Soil height after
a pass of the blade

advancing 
direction

local axes at each cutter

Figure 5.2: A single cutter i is depicted. The traction vectors ff,i and fc,i,
acting on the wearflat and the cutting blade, respectively, are drawn. These
vectors are defined in terms of the functions σ(ωb, vb), that defines the contact
pressure at the wearflat, and ϵ(ωb), an intrinsic specific energy of the rock. The
parameter ζ defines the inclination of the cutting force, µ is the coefficient of
friction, li is the wearflat length, and di is the instantaneous depth of cut.

With the definition that ωb and vb are the torsional and axial speed of the bit,
the expression for the functional form of σ(ωb, vb) and ϵ(ωb) is given by:

σ(ωb, vb) =


0 vb ≤ 0
σ∗(ωb)
c1

vb 0 < vb < c1

σ∗(ωb) vb ≥ c1

(5-5)

with

σ∗(ωb) =


σ2 ωb ≤ 0

σ2 + σ1 − σ2

c2
ωb 0 < ωb < c2

σ1 ωb ≥ c2

(5-6)

and

ϵ(ωb) =


0 ωb ≤ 0
ϵ1

c3
ωb 0 ≤ ωb ≤ c3

ϵ1 ωb ≥ c3.

(5-7)

A sketch showing the shape of σ(ωb, vb) and ϵ(ωb) is depicted in Fig. 5.3.
The graphs depict a model for the behaviour of the characteristic resistance
capacity of the rock when cutting is taking place (for ωb > 0 and vb > 0), as
well as its resistance capacity while contact without cutting occurs (for ωb ≤ 0
and vb ≤ 0, and a regularised transition between these two regimes. In what
comes next, the previous definitions are used to obtain the resulting forces and
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(a) (b) (c)

σ(ωb, vb)

σ∗(ωb)

vb

σ∗(ωb)

ωb ωb

ε(ωb)

Figure 5.3: (a) The functional form of σ(σ∗(ωb), vb) is plotted for a fixed value of
σ∗. (b) The form of σ∗(ωb) is depicted. σ1 and σ2 are two parameters associated
with the rock contact strength. (c) The form of ϵ(ωb). ϵ1 is a parameter called
the rock intrinsic specific energy. c1, c2 and c3 are some small regularisation
constants.

torques that act on the bit. The width of each cutter ai is considered equal to
the radius of the bit, a. In total nb cutters are employed. First, the resultant
acting on the cutter i is obtained in (5-8) and (5-9):

Fc,i =
´

Ac,i
fc,i dAc,i

=
´

Ac,i

(
ϵ(ωb)ζn + ϵ(ωb)s

)
dAc,i

, (5-8)

Ff,i =
´

Ac,i
ff,i dAf,i

=
´

Af,i

(
σ(ωb, vb)n + σ(ωb, vb)µs

)
dAf,i

, (5-9)

where n and s are unit vectors that define a local orthogonal basis at each
cutter, indicated in Fig. 5.2, and i = {1, ... , nb}. With the hypothesis that
the traction vectors are constant over the contact region, the previous integrals
lead to

Fc,i = ϵ(ωb)ζ aidi n + ϵ(ωb)aidi s, (5-10)

Ff,i = σ(ωb, vb)aili n + σ(ωb, vb)µaili s. (5-11)

a

ri

Figure 5.4: Distribution of the cutting blades in a symmetrical arrangement
(example with n = 6 blades). a is the radius of the bit, which here coincides
with the depth of each cutter so that ai = a, ri is a vector that goes from
the centre of the bit to the point of application of the resultant forces at each
blade.
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If a regular distribution of blades is considered (as in Fig. 5.4), and if
all the blades have the same associated parameters ai = a, di = d, li = l, for
i = {1, ... , nb}, the total force on the bit is

W = Wc + Wf , (5-12)
with

Wc =
∑

i

Fc,i =

ϵ(ωb)ζadnbn, if (d ≥ 0)

0, otherwise
(5-13)

Wf =
∑

i

Ff,i =

σ(ωb, vb)alnbn, if (d ≥ 0)

0, otherwise
(5-14)

where all the components in the direction of s cancel due to the symmetry.
If d < 0, the bit is not in contact with the soil, therefore the previous forces
vanish.

Now, let ri be a vector field that goes from the centre of the bit to the
points of application of the distributed contact forces. The torques are obtained
in an analogous way via integration:

Tc,i =
ˆ

Ac,i

ri × fc,i dAc,i,with i = {1 , ..., nb}, (5-15)

Tf,i =
ˆ

Af,i

ri × ff,i dAf,i,with i = {1 , ..., nb}. (5-16)

Assuming that the traction vectors do not vary over the contact area,
and taking into account the symmetry of the distribution of blades, the non-
cancelling terms of the torques are originated from the forces in the direction
of s taking the values

T = Tc + Tf , (5-17)

Tc =


1
2
a

ζ
Wc, if (d ≥ 0)

0, otherwise
(5-18)

Tf =


1
2aµγWf , if (d ≥ 0)

0, otherwise
(5-19)

with γ being a form coefficient. If d < 0, the bit is not in contact with the soil,
therefore the previous torques vanish too.

Finally, with all these definitions the bit-rock interaction model is almost
complete. The forces and torques have been defined in terms of the instanta-
neous depth of cut di a way to calculate its value is yet missing. This void will
be filled in the following section.
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5.3.2
The cutting process

In [14, 80] the formulation accounts for the removal of material as the
drilling advances: the profile of the soil changes with each pass of the bit,
removing soil as the drill rotates. Due to the contact between the drill-string
and the borehole, the forces and torques depend on the soil profile, and its
shape changes as the drilling rig operates. Thus, a free boundary problem
needs to be solved.

5.3.2.1
The delay approach

The authors of the references [14, 80] tackle the free boundary problem
by introducing a delay to account for the variation of the position of the
soil with respect to time. The idea behind the delay formulation is simple,
although its implementation requires some effort. With the delay approach,
at the resolution of each time-step, the history of two functions needs to be
accessed: that of the angular and the axial position at the bit.

With the sole purpose of explaining the methodology, the delay approach
will be explained considering only one cutting blade a the bit. However, the
procedure can be generalised in a similar manner to more cutters, although
the formulation may require some tweaking.

Let the current time be referred as t̂. At that time, the angular position
of the bit is at an angle ϕb(t̂). Also, the bit was at the same angular position
in previous turns, at times tj = t̂− τj such that

ϕb(t̂− τj) = ϕb(t̂) − j2π. (5-20)
Then, if the angular position is accesible up to the curent time, by solving

finding the roots of equations of the form of 5-20 it is possible to obtain
the times at which the bit was cutting at the same potion. However, this
procedure implies finding the roots of a non-linear equation for a number
delays τj with j = 1 ... N , so that by evaluating the axial position at
these previous delayed times, one can calculate the depth-of-cut from the
differences ∆j = ub(t̂) − ub(tj). In fact, the depth-of-cut can be calculated
as d = min(∆j) > 0.

The previous procedure shows that working with delay-differential equa-
tions introduces an extra difficulty: the method is intrusive. The solver has
to be specially designed or modified to include the previous calculations. On
top of that, the number of delays to be considered is not known beforehand,
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therefore the simulation needs to be repeated to verify the accuracy of the
depth-of-cut obtained, as discussed in [85].

5.3.2.2
The advection approach

In this work, the extra considerations and difficulties of including delays
in the formulation are avoided. The free boundary problem is tackled by
introducing an extra advection equation [73], where the main variable Ls(η, t)
is used to keep track of the soil elevation profile. This methodology allows
to tackle both the case with equiangular distributions of blades and non-
equiangular distributions (see the extension presented in [85] for more details).
The advection equation is solved along with switching boundary conditions.

A periodic boundary condition is used to describe a translation of the
solution in the material domain. The dynamics given by the advection equation
can be interpreted as looking at the soil from the point of view of an observer
that is fixed at the bit. Then, as the observer is fixed at the bit, and the bit
is considered at a fixed position of η = 0 and η = 2π, the observer would
watch the soil profile pass below him, or in other words, a translation of the
soil profile with the velocity ωb, which is exactly the behaviour the advection
equation described.

The fact that the two endpoints of the domain, η = 0 and η = 2π,
represent the position of the bit is also exploited. It can be used to introduce
a discontinuity between the left side and the right side. For instance, the side
to the left can be used to keep track of the soil elevation after the pass of the
blade, and the right side to keep track of the soil elevation before the pass of
the blade. This way, a non-negative difference between the two is the sought
depth-of-cut.

As already detailed, if no cutting is taking place, then the boundary
conditions are of a periodic type, and the values at η = 0 and η = 2π match.
However, if cutting is taking place, a geometric boundary condition is used to
impose the new soil elevation so that the cutting depth matches the current
position of the bit.

The advection equation is stated as

∂Ls

∂t
+ ωb(t)

∂Ls

∂η
= 0, with η ∈

[
0, 2π
nb

]
, (5-21)

where nb is the number of blades. The boundary conditions are:
if ωb ≥ 0,
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Ls(η = 0, t) =


U(t), Ls(η = 2π

nb

, t) < U(t)

Ls(η = 2π
nb

, t), Ls(η = 2π
nb

, t) ≥ U(t)
(5-22)

and if ω < 0,
Ls(η = 2π

nb

, t) = Ls(η = 0, t), (5-23)

These equations reflect that cutting can only occur if the bit is rotating in the
positive direction. In the previous equation, U(t) is the position of the bit.

Finally, at all times the instantaneous depth of cut is given by

di = max
{
Ls

(
η = 2π

nb

, t
)

− Ls

(
η = 0, t

)
, 0

}
, (5-24)

which completes the missing piece to calculate the bit-rock interaction forces
and torques. A geometrical interpretation for the equation (5-21) and boundary
conditions (5-22) and (5-23) is given in the Appendix C.1.

The advection formulation has the advantage of not being intrusive, thus
a regular solver can be used for the numerical integration; it allows the addition
of an arbitrary number of blades with just a minor number of adaptations in
the boundary conditions and the domain (the boundary conditions should be
set as a cascade in a closed loop); it can be used to model a non-equiangular
distribution of blades without adding much complexity.

Now, with the bit-rock interaction relations complete, it is possible to
provide more details about the sources of the non-linearities within the model,
which result from the interaction between the axial and torsional equation
of motion with the advection equation. This interaction is a consequence of
the contact model employed. On the one hand, the contact forces that appear
in the boundary conditions of the axial-torsional model are functions of the
current angular and axial speed as well as the current depth-of-penetration di.
On the other hand, di is obtained by solving the advection equation (5-21),
which is explicitly coupled with the angular speed of the bit in its definition:
the angular speed acts as the parameter that defines the transport speed of the
soil profile. In addition, the advection boundary conditions are discontinuous.
They depend on the angular speed too, and the axial position of the bit.

5.4
The nominal solution: a special non-oscillatory case

In the case that a constant angular speed is imposed at the top so that
Θ(t) = Ω0t, the formulation employed in models M1 and M2 admits a solution
that is non-oscillatory (second time derivatives vanish). In what follows, among
other properties, the set of initial conditions and boundary conditions that lead
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to this non-oscillaroty behaviour are found. This solution will be referred to as
“the nominal case”.

The following constant parameters associated with the nominal solution
will be calculated:

– V0 a constant axial speed
– T0 a torque associated to the bit-rock interaction and T0 its module
– d0 a constant instantaneous depth of cut

5.4.1
The nominal case for model M1

The nominal case for model M1 is characterised by the values

Φ0(t) = Ω0t− T0

C
, (5-25)

V0 =
(
W0 − σ1alnb

) Ω0

2πϵ1aζ
, (5-26)

d0 = V0 tn0 = V02π
nbΩ0

, (5-27)

T0 = 1
2

(
ϵ1 d+ µγσ1 l

)
a2nbn, (5-28)

following the derivation procedure in [14].

5.4.2
The nominal case for model M2

Considering that a non-oscillating behaviour is sought, the second-order
time derivatives should vanish. In this case, a solution to (5-3), the equation
that governs the torsional dynamics of model M2, with the boundary conditions
in (5-4), is given by

Φj(xj, t) = Ajxj +Bj(t) , with j = {1, 2}, (5-29)
and

A1 = − T0

GJ1
,

A2 = − T0

GJ2
,

B1 = Ω0 t,

B2 = J1L1T0 − J2L2T0 +GJ2J1Ω0 t

GJ2J1
,

(5-30)

where x1 ∈ [0, L1], and x2 ∈ [L1, L1 + L2].
It is observed that the angular speed, i.e. the time derivative of (5-29), is

constant in the steady-state scenario and coincides with Ω0. This means that
the time taken for the bit to complete a turn is given by
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t0 = 2π
Ω0
, (5-31)

and the time taken to cover the angle between two successive blades that are
evenly separated by a constant angle is

tn0 = 2π
nb Ω0

. (5-32)

Suppose that the driller is operating in the normal cutting regime (d > 0,
ωb > 0, vb > 0, with σ = σ1 and ϵ = ϵ1). Then, there exists an axial speed V0

that, due to the hypothesis of the nominal solution, is constant. The depth of
cut at each blade is given by

d0 = V0 tn0 = V02π
nbΩ0

. (5-33)

This expression can be obtained by imagining the depth-of-cut as a solution
to a problem with constant delay t0 (see [14] for more details).

The penetration rate and the torque are calculated from the bit-rock
interaction laws. Considering the axial equation (5-1) and vanishing second
time derivatives, the following vector equations are obtained:

W = W0,with W = Wc + Wf . (5-34)
Next, recalling that the current drilling conditions are those of the normal
drilling case, it holds that σ(ω, v) = σ1 and ϵ(ω) = ϵ1. Therefore, by combining
these expressions with (5-34), it is true that

d0 =
(
W0 − σ1alnb

) 1
ϵ1aζnb

. (5-35)

The axial speed V0 is calculated by joining the previous expression with
(5-33)

V0 = d0

tn0
=

(
W0 − σ1alnb

) Ω0

2πϵ1aζ
, (5-36)

and the value for the torque-on-bit T0 for the nominal case is given by

T0 = 1
2

(
ϵ1 d0 + µγσ1 l

)
a2nbn. (5-37)

Finally, the nominal solution for the advection equation (so that d0 is a
constant) is

Ls(η, t = 0) = −d0 nb

2π η. (5-38)

5.5
Simulations

To begin with, two verification tests (V1 and V2) are carried out. These
tests are essential to providing support to the soundness of model M2. After
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that, three different simulations scenarios (C1 to C3) are presented. All the
simulations are run using COMSOL Multyphysics [68], a simulation software
that uses the finite element method (FEM). The simulation workflow is shown
in Fig. 5.5. The equations associated with the torsional shaft are entered using
the mathematics module of the software, in their weak form. The axial equation
is also entered using its mathematics module. The advection formulation
is already available in the software’s transport module. The latter utilises
a Do Carmo and Galeão crosswind diffusion stabilisation so that spurious
oscillations are reduced. This way the need for excessively small time steps to
maintain the accuracy of the temporal integration is also avoided. All equations
are solved in COMSOL with a fully coupled approach, where the backward
differentiation formulas (BDF) are used for the numerical integration.

Processing and 
presentation of 

the results

Simulation of 
scenarios of 

interest

Convergence
analysis

Mathematics 
module

(weak form 
PDE interface)

Chemical species
transport

(transport of
diluted species

interface)

Mathematics 
module
(global 

ODE interface)

Torsional 
formulation

(PDE)

Advection 
formulation

(PDE)

Axial 
formulation

(ODE)

Simulate
scenarios

Post-processing
Select

number of
elements

Write in
COMSOL

Statement 
of the 

equations

COMSOL Multiphysics

Figure 5.5: General simulation workflow employed.

The purpose of the first verification test (V1) is to check that the M1
model, with the new bit-rock interaction relations, reproduces the results of
[14] with fidelity. In contrast with the model in [14], two important differences
are presented in the new approach: 1) the new bit-rock interaction relations
avoid the need to switch the equations of motions, an approach often used when
non-continuous contact models are taken into consideration in low-dimensional
formulations (as in [86]); 2) the dynamics of the soil are captured through the
advection equation instead of a differential-delayed formulation.

The second verification test (V2) shows that model M1 is a limiting
case of model M2 if a quasi-static hypothesis is adopted. This is a first step
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into proving that, for the problems tackled within this work, the quasi-static
assumption is voided.

Next, the simulation scenarios C1 to C3 consider different possible
regimes of operations for a drill-string.

The study in [14] presents detailed results for two sets of non-dimensional
parameters, where β, a non-dimensional constant that is related to the friction
coefficient, take the values of 0.3 and 1.3, respectively. The cases C1 employ a
set of dimensional parameters that are compatible with the non-dimensional
parameters used in [14] for β = 0.3. For this reason, the C1 cases serve two
purposes: they work as a benchmark test for the simulations with model M1,
and they help to assess whether an appreciable difference in the response is
observed if a continuous approach is chosen. The simulations show that self-
excited regenerative vibrations appear, as predicted by [14]. More details about
the sources of these self-excited vibrations are available in [87], which is an
interesting review paper on the subject.

The cases C2-A and C2-B consider a set of dimensional parameters that
are compatible with the non-dimensional counterparts of [14] for β = 1.3,
which translates into a variation of the friction coefficient µ. According to the
results in [14], this case should experience decaying oscillations. However, the
simulations show a different behaviour for the continuous model.

So far, the previous cases considered an initial angular speed that is a
small deviation from the nominal solution (see Section 5.4), which is associated
with an imposed constant rotation at the top.

Finally, cases C3-A and C3-B depict a new scenario that has not been
analysed in [14] where, unlike the previous simulations, the imposed speed at
the top is not constant. This condition leads to backward rotation of the bit,
a situation that is, by hypothesis, not allowed in [14].

As already mentioned, the results of [14] are all based on some non-
dimensional parameters. To facilitate the comparison, the equations describing
the transformation from the dimensional parameters to their non-dimensional
counterparts employed in the reference are provided in Appendix C.2.

5.5.1
Parameters

A summary of the parameters employed in the simulations is provided
in Table 6.1. If a value is altered for a particular simulation, it is indicated
with an asterisk, and the details are given within the corresponding simulation
section.
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Following the recommendation of [14], the corrected inertia I of the BHA
for model M1 is calculated as

I = ρ
(1

3L1 J1 + L2 J2

)
. (5-39)

Considering the definitions in [14], the parameters in Table 6.1 charac-
terise the following non-dimensional parameters: system number ψ = 50, bit-
rock interaction number β = 0.3, non-dimensional imposed top-drive speed
ω0 = 5, non-dimensional weight-on-bit W0 = 7, and bluntness number λ = 5.
The previous non-dimensional parameters follow the definitions contained in
Appendix C.2.

The number of elements N1 (Table 6.1) is the sum of elements present
in the domains x1 and x2, employed in the discretisation of the torsional
wave equation, where quadratic Lagrange elements are used. This number was
chosen after the convergence study described below. Additionally, the number
of elements N2 is used in the discretisation of the advection equation, where
linear Lagrange elements are used. This number was selected after verifying
that the results can capture the dynamics seen in [14].

5.5.2
Convergence analysis

In all the simulations, the FEM is used to discretise the continuous
differential equations. The convergence analysis is a fundamental part of the
simulations using FEM, as it assures that the spatial error of the simulation
is kept below a pre-selected threshold. Also, it illustrates one of the main
differences between lumped models and continuous ones: with the first type,
the number of DOF is pre-set during the conception of the model itself, while
in the latter it is chosen after some criteria is met.

20 40 60 80 100 120
10-4

10-2

100

102

Figure 5.6: Convergence analysis. Error percentage in the angular position vs.
the sum of elements in used to mesh x1 and x2.
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A convergence analysis is carried out to define the number of elements
required to obtain an acceptable approximation for the equations (5-3) with the
boundary conditions given by (5-4) that will be used in the present simulations.

A total number of elements N i
1 within the spatial domain x ∈ [0, Lp +Lc]

is considered, with i varying from 12 to 126, in increments of 6 for each iteration
of i. The number of elements N2, associated with the advection equation, is
fixed for this analysis in N2 = 64 elements. The error for the spatial mesh is
calculated according to

Ξ% =

ˆ (
ΦN i

1
− ΦN i+1

1

)
dxˆ

ΦN i+1
1
dx

· 100

∣∣∣∣∣∣
t=80s

(5-40)

where Φ represents the angular position.
The results are depicted in Fig. 6.2 show that a mesh N i

1 ≥ 60 is sufficient
to ensure Ξ% ≤ 10−2. For that reason, it was chosen to take N1 = 64 elements.

5.5.3
Simulation V1: A benchmark test

The objective of this particular scenario is to verify that the implemen-
tation and modifications herein proposed do not appreciably affect the results,
compared to those already published in [14].

The reference [14] employs a lumped 2-DOF approach, with a bit-rock
interaction law that is discontinuous. In that study, the model was implemented
via a switch in the equations depending on the speed conditions (whether it
is a stick or slip phase). On top of that, the evolution of the soil profile was
obtained by introducing a set of delays, defining a system of delay-differential
equations to be solved.

The model M1 also considers a 2-DOF problem, one axial and one
torsional, but employs the new bit-rock interaction law defined by (5-5) and
(5-7) (see Section 5.3). With the current approach, the differential-delay set of
equations is avoided by replacing the function evaluations at a delayed time
with a third PDE equation, the advection equation.

Alike the reference, this scenario models the drill-pipes in a quasi-static
condition by means of an equivalent torsional spring, and the BHA as a rigid
body.

The parameters employed in this simulation are shown in Table 6.1 (see
Section 6.3.1). The initial conditions are:

U(t = 0) = 0, (5-41)
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Real structure Model M1 Model M2

L1

L2

C

I

L1

L2

I2

Property Description
L1 Drill-pipe length 1000 m spring (C) 1000 m
L2 BHA length 200 m rigid 200 m
N1 Number of elements (torsion) - − 64
N2 Number of elements (advection) - 64 64
I, I2 Lumped inertia - I = 112.67 kgm2 I2 = 0 kgm2 (*)
α Artificial parameter - 1.00 (*)
C Rigidity parameter - 469.05 Nm/rad -

ρ, ρ1, ρ2 Density 7800 kg/m3

rpo Drill-pipe external radius 63.5 mm
rpi Drill-pipe internal radius 54.0 mm
rco Collar external radius 76.2 mm
rci Collar internal radius 28.0 mm

G1, G2 Shear modulus 77 GPa
a Bit radius 108.0 mm
l Drill-bit wearflat length 1.2 mm
ϵ1 Rock intrinsic specific energy 0.252 GPa
σ1 Rock contact strength 0.252 GPa
ϵ2 Rock intrinsic specific energy 0.504 GPa
σ2 Rock contact strength 0.504 GPa
M Lumped mass 24614.40 kg
Ω0 Imposed angular speed 14.42 rad/s (**)
W0 Nominal weight-on-bit 45.7 kN
γ Drill-bit geometry parameter 1.00
ζ Cutter inclination coefficient 0.38
µ Coefficient of friction 0.80 (***)
c1 Regularisation constant 1 · 10−5

c2 Regularisation constant 1 · 10−1

c3 Regularisation constant 1 · 10−3

Table 5.1: List of parameters employed in the simulations. (*) Indicates that
the parameter changes for the simulation V2, (**) indicates that it changes
for simulation C3 and (***) that it changes for simulation C2 and C3. The
modified magnitudes are detailed within the corresponding study case. The
parameter α is used to vary the characteristic propagation speed of the wave
equation in V2.
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dU
dt

∣∣∣∣
t=0

= V0, (5-42)

Ls(η, t = 0) = −d0 nb

2π η, (5-43)
with the following conditions for model M1 only

Φ(t = 0) = Φ0(t = 0) = −T0

C
, (5-44)

dΦ
dt

∣∣∣∣
t=0

= Ω0 + ∆Ω0,with ∆Ω0 = Ω0/10; (5-45)
and the following conditions for model M2 only

Φj(xj, t = 0) = Ajxj +Bj(t = 0) , with j = {1, 2}, (5-46)
with Aj and Bj as defined in (5-30),

∂Φj

∂t

∣∣∣∣
t=0

= Ω0 + ∆Ω0 xj

(L1 + L2)
,with ∆Ω0 = Ω0/10. (5-47)

In the previous equations V0 and Ω0 are constants associated to the nominal
solution (obtained in Section 5.4).

The results for the angular speed ω(t) at the bit are plotted in Fig.
5.7, while Fig. 5.8 and Fig. 5.9 depict the non-dimensional angular speed at
the bit ω̂b(τ), with τ being a non-dimensional time. In the latter graph, the
non-dimensional axial speed v̂b(τ) is also shown. The conversions from the
dimensional to the non-dimensional forms follow the formulas in C.2.
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Figure 5.7: Simulation V1. Results obtained for the simulation V1, with model
M1. ωb(t) is the angular speed, expressed as a function of time t.

The simulations confirm that the non-dimensional results in V1, with the
lumped model M1 and the bit-rock interaction laws described in this chapter,
match the results of [14] for both the angular and axial speed.
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Figure 5.8: Simulation V1. Results obtained for the simulation V1, with model
M1. ω̂b(τ) is the non-dimensional angular speed as a function of the non-
dimensional time parameter τ .
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Figure 5.9: Simulation V1. Zoom of the results obtained in the simulation V1,
with model M1, for τ ∈ [97.70, 123.2]. ω̂b(τ) is the non-dimensional angular
speed as a function of the non-dimensional time parameter τ = t.

5.5.4
Simulation V2: The model M1 as a limiting case of M2

The aim of this scenario is to perform an extra verification of model
M2: it can be proved that model M1 is a limiting case of model M2, if some
assumptions are made.

The 2-DOF model defined in [14], M1, considered a quasi-static formu-
lation for the drill-pipes, i.e. the effect of all external excitations acting at one
end is transmitted instantly to the other. This assumption allowed the mod-
elling of the drill-pipes as a simple torsional spring with constant C. Also, the
flexibility of the BHA was neglected in the calculation of the spring constant.

For model M2 to behave like M1, the set of material and geometric
parameters needs to reflect the previous hypotheses. First, the rigidity of the
BHA should be negligible, thus G2 → 0 needs to be considered. Second, an
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artificial parameter α is introduced so that the propagation speed of the wave
equation, given by vw =

√
G/(αρ), can be controlled. In fact, a quasi-static

problem is equivalent to considering an infinite propagation speed, compatible
with taking α → 0. Additionally, the concentrated inertia, I2, in the boundary
conditions takes the form

I2 = (1 − α)I. (5-48)
This expression permits the transition from a fully distributed inertia, for
α = 1.00, to a fully concentrated inertia when α → 0. It is important to
remark that only M2 with α = 1.00 has a physical meaning. All intermediate
values, smaller than the unity, just make sense in helping to understand how
the response varies from a lumped quasi-static formulation with concentrated
inertia to a continuous approach, and to observe how the main frequency in
the signal of the angular speed at the bit changes.

The initial conditions coincide with those employed in the previous
simulation, V1.

The aforementioned theoretical result is illustrated by comparing the re-
sults associated with model M2 with varying α, and model M1. The parameters
used in this simulation are given in Table 6.1 (see Section 6.3.1), except for I2

which takes the form given in (5-48), and G2 that is made arbitrarily small.
The angular speed at the bit ωb(t) is plotted in Fig. 5.10 for (a) α = 1.00, (b)
α = 0.80, (c) α = 0.40, (d) model M1.

A quick inspection of the results confirms that the simulation gets closer
to that of M1 as α evolves from 1.00 in Fig. 5.10(a) to 0.40 in Fig. 5.10(c). On
top of that, it is observed that the behaviour changes substantially between
(a) and (e): it is apparent that the frequency content is different. To better
analyse these results, Figs. 5.11 and 5.12 show the response in the frequency
domain, for t > 50 s, after the transient effects vanish. In addition, Table 5.2
shows how some of the frequencies over 0.15 vary along with a change in the
parameter α. To such purpose, different colours are used to track the most
important frequencies in the signal. In blue, the evolution of the amplitude
content close to the first natural frequency is shown. In M1 and M2 with
α = 0.40, this represents the main component of the signal; for α = 0.80 it is
the third component; while for α = 1 it is negligible. The case where α = 0.8
shows two frequencies with almost the same importance in terms of amplitude
(coloured green and orange). Finally, the main frequency for α = 1 is coloured
in green.

According to Fig. 5.11, Fig. 5.12 and Table 5.2, the signal for the angular
speed with model M1 contains a main frequency that matches the fundamental
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Figure 5.10: Simulation V2. Angular speed at the bit ωb(t), (a) for model M2
with α = 1.00; (b) model M2 with α = 0.80; (c) model M2 with α = 0.40; (d)
Model M1.
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Figure 5.11: Simulation V2. FFT of the angular speed at the bit ωb(t).
Frequency range: 0 to 20Hz. The last 20 s of simulations were used to construct
the FRF.
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Figure 5.12: Simulation V2. Zoom of the FFT of the angular speed at the bit
ωb(t). Frequency range 0 to 2Hz. The last 20 s of simulations were used to
construct the FFT.
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one (0.45 Hz). This is different for model M2, where the main frequency is
close to the sixth natural frequency (7.40 Hz), and the amplitudes associated
to frequencies close to 0.45 Hz are negligible. This explains the appreciable
difference observed with the signals in the time domain.

Through the results herein presented, it has been shown that model M2
provides similar results to model M1 for small values of α, while for α = 1 the
frequency content differs greatly.

M1 M2, α = 0.40 M2, α = 0.80 M2, α = 1.00
A f (Hz) A f [Hz] A f [Hz] A f [Hz]

14.44 0.46 14.07 0.45 7.90 7.41 15.25 7.38
0.16 0.91 0.80 8.05 7.69 6.47 2.19 0.77

- - 0.53 6.70 3.10 0.45 2.03 8.15
- - - - 1.00 14.82 1.73 14.00
- - - - 0.86 0.94 1.69 14.76
- - - - 0.65 7.86 1.47 29.56
- - - - 0.60 8.87 0.60 6.61
- - - - 0.59 5.11 0.57 22.95
- - - - 0.57 5.05 - -
- - - - 0.54 1.88 - -
- - - - - - 0.05 0.43

Table 5.2: Simulation V2. List of frequency content in the FFT, for varying
values of α, ordered by amplitude (A). Only amplitudes greater than 0.50 are
shown. In blue, the evolution of the amplitude content close to the first natural
frequency is shown. In green, the main frequency for α = 1.00 is shown, as well
as for α = 0.80. For the latter, the second amplitude is highlighted in orange.

5.5.5
Simulation C1 (with β = 0.3)

The cases for M1 and M2 with α = 1 that were presented in V2, namely
C1-A and C1-B, are further analysed. The set of properties described in Table
6.1 (Section 6.3.1) are used in the simulations. The case associated to β = 0.30
is simulated given that the results are among the few cases described in detail
in [14]. The initial conditions coincide with those used in simulations V1 and
V2. The simulation times were 1 h 49 min for C1-A and 3 h 56 min for C1-B.

The angular speed at the bit is plotted in Fig. 5.13 for t ∈ [0 s, 80 s],
and a zoomed graph for t ∈ [0 s, 10 s] is shown in Fig. 5.14.

The results show that the initial deviation from the nominal solution
leads to self-excited vibrations that do not vanish within the total simulation
time, as predicted by [14]. Moreover, the signals corresponding to the angular
speed at the bit are considerably different one from another in terms of
amplitude and frequency content. Also, for C1-B, some periods of negative
speed are observed, which means that backward bit rotation occurs.
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Figure 5.13: Simulation C1. Angular speed at the bit ωb(t) for the cases C1-A
and C1-B (models M1 and M2, respectively). The nominal angular bit speed
is shown in a dashed line.
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Figure 5.14: Simulation C1. Angular speed at the bit ωb(t) for the cases C1-
A and C1-B (models M1 and M2, respectively). Zoom for t ∈ [0s, 10s]. The
nominal angular bit speed is shown in a dashed line.

To gain further insight, the FFT of the angular speed is depicted in Fig.
5.15. Again, the transient effects are neglected by considering the portion of the
signal for t > 50 s. Also, the natural frequencies associated with the continuous
model are illustrated in the figure.

The FFT shows that the main frequency of C1-A (model M1) is close
to the fundamental frequency of 0.45 Hz. This changes for C2-B (model M2),
where the main frequency is 7.40 Hz, close to the sixth vibration mode. Some
other non-negligible frequencies exist in the range between 0.77 Hz to 30 Hz
(see Table 5.2 with α = 1 for more specific details).

In Fig. 5.16 the axial position at the bit, U(t), is shown along with the
nominal position, which corresponds to the unperturbed steady-state solution.
Fig. 5.17 depicts the associated axial speed. An interesting result is observed by
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Figure 5.15: Simulation C1. FFT of the angular speed at the bit ωb(t).

analysing the behaviour of U(t): both curves are above the nominal response,
which implies faster drilling.
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Figure 5.16: Simulation C1. Axial position of the bit U(t) for the cases C1-A
and C1-B (models M1 and M2, respectively). The nominal axial position is
shown in a dashed line.

On the one hand, the previous graphs show that the system undergoes
stick-slip motion for the axial dynamics as well as torsional vibrations. Stick-
slip motion is usually linked to a reduction in the efficiency of the drilling
tool [10, 88]. On the other hand, vertical oscillations mean that the system’s
dynamics are similar to those of a percussive driller. Given that the previous
simulations demonstrate better performance than the nominal case, in terms
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Figure 5.17: Simulation C1. Axial speed at the bit vb(t), for the cases C1-A
and C1-B (models M1 and M2, respectively). (a) For t ∈ [0, 1] and (b) (a) For
t ∈ [40.5, 45].
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Figure 5.18: Simulation C1. Torques at the bit T for the cases C1-A and C1-B
(models M1 and M2, respectively).
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of the depth achieved, the authors attribute the performance gain to the
percussive (vibro-impact) nature of the dynamics, which is known to improve
the penetration rate [89–92].

Finally, Fig. 5.18 depicts the simulated torques for t ∈ [72 s, 80 s].
These signals also present differences, although the mean values of both signals
are similar: 3295 Nm for C1-A and 3184 Nm for C1-B (a 3% difference).
Additionally, C1-A does not show any sign change, while C2-B does, exhibiting
short periods of backward rotation of the bit.

5.5.6
Simulation C2 (with β = 1.3)

The set of simulations C2 consider the same set of parameters from
Table 6.1, except for the coefficient of friction which now takes a value
µ = 3.46. This parameter is chosen so that, for the given geometric, material,
and bit-rock interaction properties, the non-dimensional counterparts match
those described in detail in [14]. More specifically, they take the values:
non-dimensional bit-rock parameter β = 1.3, system number ψ = 50, non-
dimensional imposed top-drive speed ω0 = 5, non-dimensional weight-on-bit
W0 = 7, and bluntness number λ = 5. For this set of values, [14] predicts
a solution with vanishing oscillations. The initial conditions are the same
employed for case V1.

The angular speed of the bit is shown in Fig. 5.19, for t ∈ [0 s, 50 s], and
a zoomed graph for t ∈ [0 s, 10 s] is depicted in Fig. 5.20.
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Figure 5.19: Simulation C2. Angular speed at the bit ωb(t) for the cases C2-A
and C2-B (models M1 and M2, respectively). The nominal angular bit speed
is shown in a dashed line.

The analysis of the signals corresponding to the angular speed in Fig.
5.19 and Fig. 5.20 show very different results from a qualitative point of view.
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Figure 5.20: Simulation C2. Angular speed at the bit ωb(t), for the cases C2-
A and C2-B (models M1 and M2, respectively). Zoom for t ∈ [0, 10]s. The
nominal angular bit speed is shown in a dashed line.

At a first glance, it is observed that the frequency content in the signals is
different, as well as the general behaviour of the system: C2-A shows decaying
oscillations, whereas in C2-B the vibrations do not vanish. In other words,
C2-B shows self-excited oscillations while C2-A does not. On top of that, the
speed never takes negative values, so no backward rotation is observed.

The FFT of the angular speed is plotted in Fig. 5.21, for t > 50 s. For C2-
A (model M1), as the oscillation vanishes, most of the amplitude is associated
with the zero-frequency, and the most prominent frequency is 8.70 Hz (with
an associated amplitude of 0.12). For C2-B (model M2), the main frequency is
8.30 Hz and it coincides with the seventh natural frequency of the structure.
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Figure 5.21: Simulation C2. FFT of the angular speed at the bit (ωb(t)).
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Figure 5.22: Simulation C2. Axial position U(t) at the bit, for the cases C2-
A and C2-B (models M1 and M2, respectively). The nominal bit position is
shown in a dashed line.
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Figure 5.23: Simulation C2. Angular speed at the bit (vb(t)), for the cases C2-A
and C2-B (models M1 and M2, respectively). The nominal axial bit speed is
shown in a dashed line.

Fig. 5.22 depicts the axial position of the bit, while Fig. 5.23 its respective
axial speed. Alike the simulations C1-A and C1-B, axial stick-slip motion is
observed. C1-A exhibits an increase in the drilling performance, in terms of
the maximum depth achieved when compared with the nominal case. C1-B
does not show such an evident increase, although the performance is slightly
above the nominal case at all times.

Finally, Fig. 5.24 depicts the simulated torques for t ∈ [79 s, 80 s]. These
signals also present differences, although the mean values of both signals are
similar: 7847 Nm for C1-A and 7339 Nm for C1-B (a 6% difference). None of
the cases show signs of backward rotations of the bit.
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Figure 5.24: Simulation C1. Torques at the bit T for the cases C1-A and C1-B
(models M1 and M2, respectively).

5.5.7
Simulation C3 for an imposed variable angular speed

This scenario considers the same set of parameters shown in Table 6.1,
except for the friction coefficient which takes the value µ = 0.40. In contrast
with V1, V2, C1, and C2, the boundary condition at the top for the torsional
dynamics is not defined by an imposed constant angular speed. Instead, it is
given by

Θ(t) =


Ω0t, for t ≤ 2

Ω0t+ cos
(

2(t− 2
)

+ 1
5 cos

(
10(t− 2)

)
− 6

5 , for t > 2
(5-49)

with Ω0 = 14.42 rad/s. Its time derivative is plotted in Fig. 5.25. The choice of
(5-49) is arbitrary, but the oscillatory behaviour is realistic: in drilling, a torque
is applied rather than an imposed angular speed. The magnitude of the torque
is usually defined by some control mechanism (e.g. a PID controller), which,
in general, cannot completely mitigate vibrations at the top. Thus, vibrations
are usually observed.

The oscillatory behaviour of the chosen input has an important effect on
the response, as it will be shown by the simulations: the new scenario shows
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that backward bit rotation occurs, with both models.
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Figure 5.25: Simulation C3. Imposed angular speed at the top, for the cases
C3-A and C3-B.

For the initial conditions, the values associated with the nominal solution
are adopted. The angular speed of the bit is depicted in Fig. 5.26,for t ∈
[0 s, 80 s] and zoomed in Fig. 5.27 t ∈ [54 s, 68 s].
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Figure 5.26: Simulation C3. Angular speed at the bit ω(t) for the cases C3-
A and C3-B (models M1 and M2, respectively). The imposed angular speed
(boundary condition at the top) is shown in a dashed line.

Alike the previous cases, by simple observation of the signals in the time
domain it is perceived that C3-A and C3-B differ in terms of frequency content.
Additionally, it is observed that backward rotation of the bit is experienced in
both simulations.

The FFT of the angular speed is depicted in Fig. 5.28. The graph shows
that the main frequency in C3-A is the fundamental one (0.45 Hz). For C3-B
this is close to the sixth frequency (7.40 Hz).

This scenario shows that backward rotation of the bit occurs in both
situations, for the set of parameters considered in the simulations.
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Figure 5.27: Simulation C3. Angular speed at the bit ωb(t) for the cases C3-
A and C3-B (models M1 and M2, respectively). Zoom for t ∈ [65s, 75s]. The
imposed angular speed (boundary condition at the top) is shown in a dashed
line. The arrows indicate where backward rotation is taking place.
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Figure 5.28: Simulation C3. FFT of the angular speed at the bit ωb(t).

5.6
More aspects about the results

The simulations V1, including the same structural models but different
strategies for the cutting dynamics, showed matching results. After that, the
dynamics of two drill-string models, a continuous torsional shaft representation
and a lumped one, were compared. In both cases, a 1-DOF-axial model was
used. Important discrepancies among the results with the different models
were found. The simulations V2 show that the model M1 can be obtained as
a limiting case of M2 if the parameters involved are such that the formulation
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behaves as a quasi-static problem. The fact that the simulations differ indicates
that this hypothesis is not satisfied by the structure under analysis: a 1200
m vertical drill-string. This conclusion is further supported by the three
simulations scenarios C1, C2 and C3, where the main vibration frequencies
in the angular speed of the bit for model M1 differ from those of M2, as well
as the maximum depth achieved. The accuracy of the prediction of the latter
is essential to determine the performance of the drilling process.

Cases C2-A and C2-B show diverging behaviour: vanishing vibrations are
observed in the first case, whereas self-excited oscillations appear in the latter.
However, [80] and [14] state that stick-slip vibrations are generally prohibited
for β > 1, a conclusion that is in direct opposition with the new simulations.

With regard to the magnitudes of the torques involved, in both cases,
C1 and C2, discrepancies in the shape of the simulated signals are observed,
although the difference is less than 6 % in terms of their mean values. In C1-A
short periods of backward rotation of the bit are observed.

Additionally, with case C3 it is also shown that the new model can
capture other phenomena such as backward rotation of the bit which, by
hypothesis, is not allowed in [14, 80]. The simulations show more pronounced
backward rotations in this case where the angular speed at the top is allowed
to oscillate.

5.7
Final comments concerning this chapter

The first part of this article contains a discussion regarding modelling
strategies for drill-strings, whether lumped or continuous. Part of the novelty
of this work lies, from a modelling perspective, in the combination of an
advection approach to deal with the cutting dynamics of a drill-string with
a new bit-rock interaction model and a continuous torsional shaft formulation.
After a search of relevant literature, it was found that the advection approach
had not been so far used in combination with a continuous description.
The resulting model is reducible to the established 2-DOF approach used
in the comparisons. Additionally, another contribution is that the advection
formulation was extended to deal with rotations in both directions, for which
switching boundary conditions were defined. From the perspective of the
results, the differences observed in the comparisons between the previous
model and an established 2-DOF approach could indicate that the continuous
torsional representation is capturing other aspects of the dynamics that are
neglected in the 2-DOF model. For this reason, this work is understood as a
step into exploring the hypothesis that the 2-DOF model may not capture the
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whole aspects of the dynamics of a full-length column.
The simulations including the same structural models but different

strategies for the cutting dynamics showed matching results, confirming that
the advection formulation is an effective alternative that can be numerically
integrated without the need for special solving strategies, unlike the delayed
approach, as pointed out by other existing investigations [73].

On the other hand, the simulations comparing the continuous and the
2-DOF model showed important discrepancies in the results, as expressed in
Section 5.6. The main differences observed, which in fact are the main findings
of this work, are an indication that more sophisticated models could reproduce
other aspects of the dynamics that are neglected in the 2-DOF approach. This
hypothesis is also supported by other existing works, such as [26] and partially
by [80], given that the simulations predict vibrations at higher frequencies that
the fundamental one, which cannot be reproduced with the 2-DOF model.
However, the continuous formulation herein employed is conservative, hence
the only responsible element taking energy out of the system is the contact at
the bit. The fact that no internal damping associated with the structure itself,
nor external damping associated with the drilling mud have been considered,
may also have an important impact on the responses, and should be studied
further.

On top of these findings, the contributions of this work included the
definition of a bit-rock interaction law that is also defined for negative speeds.
This is an improvement over the bit-rock interaction model of [14, 80], as the
new approach allows for backward rotation and bit-bounce. In this aspect, this
work continued the discussion on the ideas presented in [14].
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6
Simulating drill-string via a Cosserat model with cutting

In this chapter, a model based on the Cosserat formulation will be used
to study the dynamics of a drill-string with a bit-rock interaction model that
considers the dynamics of the cutting. With this choice, the analysis can be
broadened to account for axial, torsional and lateral motion, and it can be used
to simulate curved boreholes with the help of the strategy to detect contact
that was developed in Chapter 4.

One of the main objectives of the study is to evaluate the influence of
adding an internal source of dissipation for which a Kelvin-Voigt material
model is considered. For the task, two application cases are analysed. The
first one deals with a vertical borehole, while the second application case is
used to illustrate the full potential of the new model to tackle the 3-D lateral,
axial, and torsional dynamics in a curved borehole. A comparison among the
simulations obtained with the Cosserat model and others from the literature
show divergences in the predictions. These results justify the importance of
employing continuous approaches to study the dynamics of drill-strings, such
as the one adopted herein.

Some of the novelties of the present study reside in the combination
of 1) a Cosserat rod model, capable of accounting for all possible motions,
axial, torsional and lateral; 2) the inclusion of a strategy to account for the
lateral contact in curved wells; 3) the adoption of the bit-rock interaction model
presented in 5 and [74]; 4) the addition of internal damping through the use
of a Kelvin-Voigt constitutive relation; 5) the inclusion of the 2-DOF model
M1 as a limiting case of the new Cosserat model, M3, through the addition
of an extra parameter α. A similar strategy to that utilised in [74] adopted,
allowing to verify the model in known scenarios; 6) a comparison among the
three models, M1, M2 and M3, in the time and the frequency domain, showing
that the continuous Cosserat approach provides different predictions than those
obtained with the other models. Moreover, the formulation overcomes many
of the limitations of the previous models used in [14, 74]. For instance, it does
not employ a lumped representation for the axial behaviour like the ones used
in Chapter 5 and in [14, 74].
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6.1
Description of the problem

In Chapter 5, the dynamics of a vertical drill-string were studied with two
different models. On the one hand, model M1 considered 2-DOF, one axial and
one torsional, in a similar way to that presented in [14]. On the other hand,
model M2 used a continuous torsional formulation and retained the 1-DOF
axial description. In that previous study, model M2 was devised so that it
contained M1. In this way it was verified that, through the use of a strategy
involving a controllable parameter α, in the limit where α → 0 the results
of M2 coincide with those of M1 and [14]. After that, different scenarios were
simulated with M2 and compared against those published in the reference [14].
The simulations predicted different outcomes, where other frequencies different
from the fundamental one are excited as well. The finding was understood as an
indicator that some aspects of the dynamics could be neglected by the choice
of a 2-DOF model and, as a consequence, that the low-dimensional lumped
model can be insufficient to represent a 1, 200 m column. However, the models
M1 and M2 suffer from some limitations:

– The axial dynamics were still based on a 1-DOF formulation, a choice
that was not justified. In the study of Chapter 5 it was arbitrarily decided
to modify the torsional part only, with the aim of evaluating the effect
of this change in isolation;

– The torsional formulation employed in M2 is that of a conservative wave
equation where the only source of dissipation is the friction force at the
bit;

– Other sources of dissipation were not considered. The fact that no inter-
nal damping associated with the structure itself nor external damping
that could be associated with external effects were included could have
some important impact on the responses.

In what follows, a continuation of the study carried out in Chapter 5 and
[74] is presented. The dynamics of a drill-string are studied with a Cosserat
rod model, namely M3, where the dynamics of the cutting are also taken
into account. The objective is to analyse the influence of introducing internal
dissipation in the formulation using a continuous model and to compare its
predictions with those of the discrete and semi-continuous approaches of
the previous chapter. To this purpose, structural damping is introduced by
considering a Kelvin-Voigt material.

Two application cases are analysed. The first one deals with a vertical
borehole. It includes four simulations that are used to further investigate the
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hypothesis that low-dimensional lumped formulations are not able to capture
the dynamics of a drill-string and, while doing so, evaluate the effect of the
damping in the system’s response. The predictions are compared with those
given by two other models: a 2-degrees-of-freedom (DOF) formulation (M1),
with 1-axial and 1-torsional DOF, and a semi-discrete one (M2), with 1 DOF
for the axial dynamics and a continuous torsional formulation. These are the
same models that were used in Chapter 5.

Divergences between the predictions are found, associated to the presence
of higher frequencies in the signals obtained with the new model, what
reassures the hypothesis that the new continuous approach can capture aspects
of the dynamics that cannot be modelled with low-dimensional representations.
The efficiency of the drilling is also assessed for the previous simulations with
the new model. The highest performance was attained in those simulations
where only axial oscillations occurred, while a performance drop was seen when
those vibrations were accompanied by torsional stick-slip , suggesting that an
optimum damping value associated to the best the drilling performance could
be found, were damping controllable. Finally, the second application case is
used to illustrate the full potential of the new model to tackle the 3-D lateral,
axial, and torsional dynamics in a curved borehole.

6.2
The drill-string models

Three drill-string models, namely M1, M2 and M3, will be used. A sketch
showing their main components is presented in Fig. 6.1. To the left, the different
structural models are depicted. To the right, the main elements used to obtain
the bit-rock interaction model are illustrated.

6.2.1
Models M1 and M2

Model M1 has been described in full in Chapter 5. It considers a 1-DOF
axial and 1-DOF torsional formulation. The equations of motion are given in
(5-1) and (5-2).

Model M2 has been explained in detail in Chapter 5 too. It considers
1-DOF for the axial equation, whereas a continuous wave equation is used for
the torsional one. The equations of motion are given in (5-1) and (5-3).

In both cases, the cutting dynamics are analysed following the description
given for the bit-rock interaction relations of Section 5.3.1. The previous
equations of motion are solved together with the advection formulation in
(5-21).

DBD
PUC-Rio - Certificação Digital Nº 1913178/CA



Chapter 6. Simulating drill-string via a Cosserat model with cutting 123

Structural model

Only axial and torsional motions 
are considered

Θ(t)Θ(t)Θ(t)Θ(t)

HHHH

self 
weight

Cosserat rod 
(3D motion
is allowed)

IIII

CCCC

L1L1

L2L2

I2I2I2I2

xxxx

Model M2Model M1

TTTTW0W0 WW W0W0 WW

1-DOF
(torsional)

1-DOF
(axial)

Continuous
shaft model

1-DOF
(axial)

Θ(t)Θ(t)
Θ(t)Θ(t)

RockWear�at

Cutting blade

Blunt cutter

Soil height after
a pass of the blade

Bit-rock interaction model

Model M3

L1L1

L2L2

Soil height before 
a pass of the blade

aa

Inferior view of 
the bit

aa

Detailed view of a section of the cutter in 
red.  The curved geometry is stretched 
and sketched as straight for simplicity.

Direction of advance

Advancing 
direction

TW

Figure 6.1: Sketch of the models M1, M2 and M3, used in the simulations, and
bit model used for the bit-rock interaction relation.

For M1 and M2, the boundary conditions match those given in the
previous chapter for scenarios C1-A and C1-B, respectively. With regard to
the initial conditions, they are taken as a perturbation from the nominal case,
also following the description given in Chapter 5.

6.2.2
Model M3

This new model, M3, is based on the theory of Cosserat rods. It accounts
for a continuous formulation for the axial and the torsional dynamics. In
comparison with M1 and M2, this formulation allows to capture more aspects
of the dynamics. The reason for this is that, unlike the previous approaches,
M3 can simulate the axial, torsional, and flexural motion in any direction; it
can detect lateral contact with the wall; and, on top of that, a continuous
formulation is used for any of the possible dynamics. Additionally, the main
contributions of the previous models are retained: the bit-rock interaction
relations account for the cutting at the bit, coinciding with that used for M1
and M2; and the approach can be used to study the dynamics in other borehole
geometries that are not necessarily vertical or straight.

The equations of motion for M3 are those given in (2-26), (2-51), and
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(2-61) of Chapter 2, coupled with the formulation for the dynamics of the
cutting described in Chapter 5. This is done through a coupling with the
advection equation given in (5-21), with boundary conditions (5-22) and (5-23),
plus some initial conditions. The constitutive relations are those of a Kelvin-
Voigt material, provided in Section 2.5 of Chapter 2, with cd being a damping
coefficient that will be varied in the simulations.

The distributed forces and torques to be considered are

fR
n = ρogA(so)e3, fR

m = 0, (6-1)
with A(so) being the area associated to the cross-section, ρo the density of
the material and g the gravity constant. Therefore, the only distributed force
acting in the length of the string is the self-weight in the longitudinal direction.

The model M3, consisting of a Cosserat rod formulation, admits a
non-oscillatory solution for the straight vertical case. This solution is herein
referred to as the nominal solution, and it can be found following an analogous
procedure to that of Section 5.4.

Also, alike with M1 and M2, the boundary conditions for M3 are taken
as those that correspond to the nominal case, as well as the initial conditions,
with the exception of the initial angular velocity that includes a perturbation
from the nominal state due to the magnitude ∆Ω0 ̸= 0.

Considering the functions

Ψ(so, t) =
(

Ω0 + ∆Ω0 s
o

(L1 + L2)

)
t, with ∆Ω0 = Ω0/10

h(so, t) = d
dt

(
Ψ(so, t)

)

f(so) =



so(2H0 − Apgρ
oso)

2ApEp

, if so ≤ Lp

so(H0 + AcLpgρ
o − ApLpgρ

o)
AcEc

− gρo(so)2

2Ec

−
Lp(2ApEpH0 − 2AcEcH0 − 2A2

pEpLpgρ
o)

2AcApEcEp

−Lp(AcApEcLpgρ
o + AcApEpLpgρ

o)
2AcApEcEp

, if so > Lp

(6-2)

the initial conditions for M3 are

rR(so, t = 0) =


0
0

f(so)

 (6-3)
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ωR(so, t = 0) =


0
0

h(so, t = 0)

 (6-4)

qR(so, t = 0) =


cos

(
Ψ(so, t = 0)/2

)
0
0

sin
(
Ψ(so, t = 0)/2

)

 (6-5)

where qR is found by using (2-15), with eq in the longitudinal direction,
taking the quaternion form eq = {0, 0, 0, 1}. The values taken for the previous
functions can be easily obtained given that, for the straight configuration, the
solution using a Cosserat rod matches that given by a classical straight 1-D
linear bar-shaft formulation.

The boundary conditions at the top are

rR(so = 0, t) =


0
0

N/A.

 , nR(so = 0, t) =


N/A.
N/A.
H0

 , (6-6)

ωR(so = 0, t) =


0
0

d
dtΨ(so = 0, t)

 , (6-7)

where N/A indicates that no condition is applied for the corresponding
component; H0 is the hook load at the top, from where the drill-string hangs.

At the bit, they are given by

rR(so = L1 + L2, t) =


0
0

N/A.

 ,nR(so = L1 + L2, t) =


N/A.
N/A.

Wc +Wf

 (6-8)

ωR(so = L1 + L2, t) =


0
0

N/A.

 ,mR(so = L1 + L2, t) =


N/A.
N/A.
Tc + Tf

 (6-9)

6.3
Simulations

A comparison among the predictions obtained with the Cosserat rod
model M3 and those given by M1 and M2 will be made. Four simulations will
be carried out focusing on studying a vertical borehole with varying damping
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levels. In those simulations, no lateral forces nor other lateral effects will act
over the string during the simulations. This choice is made for comparison
purposes, given that the other models do not consider lateral displacements.
After that, one last simulation concerning a curved borehole will also be
included to show the full potential of the Cosserat rod approach.

6.3.1
Parameters

A summary of the parameters employed in the simulations is provided
in Table 6.1.

– Following [14], a corrected inertia I for the BHA is used in model M1.
The inertia is calculated as

I = ρ
(1

3L1 J1 + L2 J2

)
. (6-10)

– The hook load H0 is calculated as the difference between the total weight
of the column (drill-pipes and BHA) and W0.

– Only for model M3, that includes the lateral contact, the parameters
ks = 104, µs = 0.3, µd = 0.15, nfr = 20, and ϵfr = 10−4 are adopted,
although these parameters will only play a role in the non-vertical drill-
string configuration of Section 6.3.6.

– The number of elements N1 (Table 6.1) is the sum of elements present
in the domains x1 and x2.

For M2, the convergence analysis that was used is provided in [74]. With
this model, the number of elements refers to the one used in the torsional
wave equation, with a discretisation considering quadratic Lagrange
elements. For M3, cubic Lagrange shape functions were used. The
number of elements is chosen after the convergence study further below.
Additionally, the number of elements N2 is used in the discretisation
of the advection equation, where linear Lagrange elements are used. Its
value is chosen after verifying that the results can capture the dynamics
seen in [14].
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6.3.2
Convergence analysis for M3

The finite elements method (FEM) is adopted to spatially discretise all
the equations that will be used in the simulations. An appropriate choice of
the number of elements in the mesh is fundamental before simulating any
problem with a FEM discretisation, as it allows to arbitrarily control the
accuracy of the approximation, by choosing an acceptable threshold for some
error criteria. This is a characteristic that, by construction, is not present in
lumped formulations.

The number of elements is linked to the number of DOFs that are consid-
ered in a discretised implementation of a continuous model. Its importance lies
in the capacity of the formulation to produce a sufficiently accurate represen-
tation of the waves that will be travelling within the structure, an aspect that
is among the main differences between the implementation of models based on
continuum approaches and lumped ones.

In what follows, this selection is done after a convergence analysis is
carried out. For the convergence analysis, a reference problem is solved many
times considering a different number of elements. In particular, the case of a
vertical borehole with the parameters in Table 6.1 and cd = 10−4 was used.
The results are depicted in Fig. 6.2, where a measure of the error, Ξ, is plotted
against the total number of elements N i

1 used in the approximations of each
of the equations.

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Figure 6.2: Convergence analysis. Error Ξ vs. the total number of elements in
each spatial domain N i

1. In the simulation cd = 10−4 was used.

The error is calculated as

Ξ =

ˆ (
ω3,Ni

− ω3,N300

)
dxˆ

ω3,N300dx

∣∣∣∣∣∣
t=80s

(6-11)
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where ω3 represents the angular speed in the longitudinal direction (the
direction of dR

3 ), and ω3,N300 , with 300 elements, is taken as the reference for
the comparisons.

The results are depicted in Fig. 6.2 show that a mesh Ni ≥ 40 is sufficient
to ensure the selected threshold Ξ% ≤ 0.02. It was chosen to take N1 = 64
elements.

Before moving forward to the actual simulations, it is important to point
out that the way the number of DOF, or elements in the mesh, is chosen, is
different in continuous models and lumped ones. In the latter type, the number
of DOF is preselected upon the model’s construction without a theoretical
justification. Thus, the only means to check the correctness of the results is
through validation. To the authors of this work, such an upfront choice only
makes sense when clear lumped elements are present in the system that is to
be studied. For instance, if the system contained evident elements with mass
and inertia concentrated in a small portion of the system, connected by flexible
elements with much smaller mass and inertia, which is not the case of a drill-
string. Drill-strings are a typical example of extremely slender long distributed
systems.

6.3.3
Simulation V1: a verification of model M3

A first simulation to verify the predictions of model M3 with other known
results is run. For this task, it is shown that the Cosserat model M3 can be
reduced to the lumped formulation M1 if a quasi-static condition is adopted for
the drill-pipes, and if the BHA inertia is concentrated at the end of the string.
Thus, a similar strategy to that used in [74] to show that the semi-continuous
model M2 can also be reduced to M1 is adopted. The strategy involves adding
an additional parameter, α, that modifies the distributed inertia of the drill-
pipes and the BHA. When α = 1, the inertia is fully distributed over the
total length of the system, while in the limit α → 0 the distributed inertia is
negligible, and it is added as a lumped element in the boundary condition at
the bit (for more details see [74]). In other words, in the limit where α → 0,
the results for M3 are those of a quasi-static condition and coincide with the
predictions given by M1 and M2.

In Fig. 6.3(a) the predictions for the angular speed at the bit, ωb(t), are
illustrated. Figure 6.3(b) depicts the non-dimensional angular and axial speeds
as functions of a non-dimensional time variable τ , in black thick and thin lines,
respectively. For this simulation, the parameter α = 0.05 was used. To express
the angular and axial speed in their non-dimensional form used in the figure,
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Figure 6.3: Considering model M3 with α = 0.05, the graph shows: (a) Angular
speed vs. time considering model M3 with α = 0.05; (b) Non-dimensional
angular and axial speed, ω̂b(τ) and v̂b(τ) vs. non-dimensional time τ .

the following definitions were considered: L∗ = 6.383 10−4 m, t∗ = 0.3467 s,
and ω̂b(τ) = ωb(t = τt∗)t∗, v̂b(τ) = vb(τt∗)t∗/L∗, τ = t/t∗ (see [74] for more
details).

The graphs of Fig. 6.3, obtained with the Cosserat rod model, are very
similar to those presented in [14], as well as to the ones simulated with M2 for
small α in [74].

To analyse these new results in the frequency domain, Fig. 6.4 contains
the FFT for both the angular and the axial speed at the bit. The spectrum
shows that the same frequencies are excited in all cases, as it was expected due
to the similarity of the responses in the time domain.
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at the bit. The results obtained with models M1, M2 and M3 are overlaid.
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Real structure Model M1 Models M2 and M3

L1

L2

C

I

L1

L2

I2

Property Description
L1 Drill-pipe length 1000 m spring (C) 1000 m
L2 BHA length 200 m rigid 200 m
N1 Number of elements (torsion) - − 64
N2 Number of elements (advection) - 64 64
I, I2 Lumped inertia - I = 112.67 kgm2 I2 = 0 kgm2 (*)
α Artificial parameter - - 1.00 (*)
H0 Hook load - - 463.93 kN (**)
C Rigidity parameter - 469.05 Nm/rad -

ρ, ρ1, ρ2 Density 7800 kg/m3

rpo Drill-pipe external radius 63.5 mm
rpi Drill-pipe internal radius 54.0 mm
rco Collar external radius 76.2 mm
rci Collar internal radius 28.0 mm

G1, G2 Shear modulus 77 GPa
a Bit radius 108.0 mm
l Drill-bit wearflat length 1.2 mm
ϵ1 Rock intrinsic specific energy 0.252 GPa
σ1 Rock contact strength 0.252 GPa
ϵ2 Rock intrinsic specific energy 0.504 GPa
σ2 Rock contact strength 0.504 GPa
M Lumped mass 24614.40 kg
Ω0 Imposed angular speed 14.42 rad/s (**)
W0 Nominal weight-on-bit 45.7 kN
γ Drill-bit geometry parameter 1.00
ζ Cutter inclination coefficient 0.38
µ Coefficient of friction 0.80 (***)
c1 Regularisation constant 1 · 10−5

c2 Regularisation constant 1 · 10−1

c3 Regularisation constant 1 · 10−3

Table 6.1: List of parameters employed in the simulations. (*) indicates that
the parameter changes for some of the simulations. (**) indicates that the
parameter is only used in model M3. This table is an adaptation from [74].
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6.3.4
Simulations C1: assessing the influence of damping in the response

The Cosserat rod model, M3, will be used in all the simulations presented
in this section. The effect of taking different values for the damping coefficient
cd is analysed, considering the cases cd = 10−2, 10−3, 10−4, and 10−5. All the
simulations are run for 1000 s, and special attention is paid to the signals of
the angular speed at the bit, ωb(t), and the axial speed at the bit, vb(t), in
both the time and the frequency domains.

To begin with, the torsional behaviour of the system is analysed through
Fig. 6.5. The graph contains a time domain representation of the angular speed
at the bit for each of the different damping cases. Three different qualitative
behaviours are observed when these cases are compared:

– Vanishing torsional oscillations appear in Fig. 6.5(a) and 6.5(b). These
two belong to the cases with cd = 10−2 and cd = 10−3, which correspond
to the highest dampings that were used.

– Non-vanishing oscillations are found in Fig. 6.5(c), with cd = 10−4. The
response observed for the angular speed is divided into two regions of
similar qualitative characteristics, named as R1 and R2 in the plot.
Three different sub-regions can be also identified within each of the
previous: the first sub-region is characterised for presenting a response
where low frequencies are dominant; then, another one follows where
higher frequencies prevail; and in the last sub-region, a combination of
both low and high frequencies is observed. This observations are further
justified below where a study in the frequency domain is conducted.

– Torsional stick-slip behaviour: extreme torsional oscillations showing
stick-slip oscillations are observed in Fig. 6.5(d), with cd = 10−5.

Through the previous analysis it was noted that the results notably
changed as the damping in the system decreased, giving rise to dynamics where
higher frequencies appeared throughout the simulated time. To understand
why this behaviour occured, a study in the time and frequency domain will be
conducted further below. In that analysis focus will be given to the link between
the torsional and the axial dynamics provoked by the coupling produced by
the bit-rock interaction model. However, before doing so, a brief comment
about the torques involved in this simulations is made as a means to verify the
rationality of the results.

The torques associated with the previous cases are depicted in Fig. 6.6,
for some portion of the total simulated time. The aim of including a graph
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showing their variation is to verify that the involved magnitudes do not differ
greatly, in their mean, from the values reported in [14, 74]. The simulations in
[74] present a completely developed permanent response after t = 50 s, while
the total simulation lasts 80 s. This is shorter than the simulated time with
M3, which also needs a longer simulated time window for the oscillations to
fully develop. For that reason, the comparisons are made using different time
windows: t ∈ [75; 80] s for the prediction of [74], and t ∈ [195; 200] s for the
new cases with different damping coefficients.
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Figure 6.5: Angular speed at the bit for different values of the damping
coefficient cd, where (a) cd = 10−2;(b) cd = 10−3;(c) cd = 10−4;(d) cd = 10−5

.

The torques found with the three different models show a difference in
their mean value of less than 4% from that obtained with M1. The shape and
amplitude are different in all cases, although the variation from the mean is
smaller in all the scenarios simulated with M3. For that reason, the new model
does not produce very different results in terms of the mean forces and torques
that act in the structure.
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Figure 6.6: Torques at the bit T for (a) model M1; (b) Model M2; (c) model M3
with cd = 10−2; (d) model M3 with cd = 10−3; (e) model M3 with cd = 10−4;
and (c) model M3 with cd = 10−5. The mean value is indicated, for each case,
with dashed blue line.

Next, the previous signals associated with the torsional behaviour as well
as the ones related to the axial speed at the bit will be analysed in more detail
in the frequency domain.

Each of the following plots, from Fig. 6.7 to Fig. 6.10 present a similar
structure where four subplots are used: in (a) the angular speed at the bit
is depicted; in (b) the axial speed at the bit is shown; (c) to (e) give the
FFTs associated to different time windows of the angular speed signal; and
(f) to (h) depict the FFTs associated to different time windows of the angular
speed signal. These windows have been named and coloured in grey for easy
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identification in the plots in the time domain. In all cases the first 200 s of
simulations are analysed.

6.3.4.1
Simulation with damping cd = 10−2
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Figure 6.7: (a) Angular speed at the bit for cd = 10−2; FFT of the previous
signal for (b) slice S1; (c) slice S2; (d) slice S3.

Figure 6.7 depicts the results associated with the damping coefficient
cd = 10−2. This case considers the highest damping that was simulated. In
this scenario, vanishing oscillations are observed for both the torsional and the
axial dynamics at the bit, consistent with the graphs of the temporal domain
in Fig. 6.7 (a) and (b). This is also seen in the FFTs in (c) to (e) and (f) to (h),
where the only identifiable frequency is the fundamental torsional frequency of
0.45 Hz. As already mentioned, the amplitudes observed in these FFTs decay
with time.
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6.3.4.2
Simulation with damping cd = 10−3

Figure 6.8 shows the results for a damping coefficient cd = 10−3. Low-
frequency vanishing oscillations are observed for the torsional dynamics in the
time domain. The axial response shows self-excited oscillations throughout
the whole simulation. Due to the coupling in the bit-rock interface, the axial
dynamics have a forcing effect on the torsional one. Additionally, these axial
oscillations lead to stick-slip behaviour in the axial direction, characterised by
phases where the column advances in the longitudinal direction and phases
where the axial advance is stopped, while the column can still rotate and
drill (removing material at a constant axial bit position, at most, up to the
completion of a turn). In this context, the axial stick can occur for, at the most,
one turn of the bit, where all the material that was preventing the axial advance
of the column will have been removed. Additionally, no torsional stick-slip is
observed.

An analysis in the frequency domain allows a better understanding of
the underlying behaviour of the response. The FFTs for the torsional and
axial behaviour show an evolution in the frequency profiles as time goes by.

The FFT associated with the torsional behaviour in (c), for a time
window t ∈ [0; 20] s shows that the main and only identifiable frequency
in the signal is the fundamental torsional one of 0.45 Hz. For the same time
window, the FFT of the axial response depicts a secondary frequency of higher
amplitude, at around 13 Hz, while the main frequency is still 0.45 Hz.

As time evolves, for t ∈ [90; 110] s, (d) shows that the fundamental
frequency in the torsional response continues to be the main frequency, but
now the secondary amplitude at 13.09 Hz can also be distinguished in the
torsional signal. In fact, this secondary amplitude is the one driving the axial
response due to the regenerative cutting’s self-excited oscillations, as shown in
(g).

Finally, looking at the time window associated with the end of the
simulation for t ∈ [180; 200] s, in (e) the main frequency in the torsional
response is 13.09 Hz. In contrast with the previous time windows, the structure
does not vibrate at the fundamental frequency anymore. Again, this secondary
frequency of 13.09 Hz is driving the axial behaviour due to the regenerative
cutting effect (the repeated cutting of a wavy surface).

The simulation showed how the frequency content is affected as time goes
by. It was observed that the structure vibrates at the fundamental frequency
at the beginning of the simulation, and with the passing of time, due to the
couplings and the different interactions, the response changes to a vibration in
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Figure 6.8: (a) Angular speed at the bit for cd = 10−3; FFT of the previous
signal for (b) slice S1; (c) slice S2; (d) slice S3.

a higher frequency.
The analysis at the different time windows helped to understand the

energy exchange between the axial and the torsional dynamics due to the
coupling produced by the bit-rock interaction. More importantly, the findings
reassure the importance of considering continuous approaches to the modelling
of the dynamics of drill-strings, in line with the findings of [74]. In particular,
these higher frequency self-excited oscillation that, through the coupling,
passes energy to the torsional model, could not have been captured with the
1-DOF axial representation used in M1 and M2. In that matter, M3 presents
an advantage over very low-dimensional models which, by construction, are
unable to capture the behaviour around the higher frequencies.
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Figure 6.9: (a) Angular speed at the bit for cd = 10−4; FFT of the previous
signal for (b) slice S1; (c) slice S2; (d) slice S3.

6.3.4.3
Simulation with damping cd = 10−4

Figure 6.9 depicts the predictions for a damping coefficient cd = 10−4.
The simulation presents different results from the previous two cases with
higher damping coefficients.

In the time domain, the axial dynamics exhibit self-excited oscillations
that lead to axial stick-slip. In the torsional response, self-excited oscillations
that do not vanish for the simulated time are also observed. The latter shows
three distinguishable regions from a qualitative point of view, where different
frequency bands drive the response.

Figure 6.9(c) shows that the main frequency in the torsional response
considering the time window t ∈ [0; 20] s is the fundamental one of 0.45 Hz,
while in the axial prediction, in (f), a higher frequency of 13.10 Hz is the most
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prominent one driving the response. This means that the main frequencies
found in the signals at the beginning of the simulation are very different, being
the torsional response driven by a low frequency, and the axial response driven
by a higher one.

Observing the second time window, t ∈ [90; 110] s in (g), the situation
changes. The frequencies found in the torsional dynamics are 0.45 Hz, 3.20 Hz
and 16.24 Hz. The latter, 16.24 Hz, is also in the range of the higher frequencies
that drive the axial behaviour.

Finally, the torsional behaviour in (e) for a time window which t ∈
[180; 200] s, shows that low and high frequencies dominate the torsional
predictions. Some of these are 0.45 Hz, 3.20 Hz, 13.50 Hz and 16.20 Hz. The
illustration in (h) for the axial response where the band between 11 Hz and
16 Hz is dominant.

0 10 20

10-5

0 10 20

10-5

0 10 20

10-5

0 20 40 60 80 100 120 140 160 180 200

0

0.05

0.1

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

ωb(t) cd = 10−5

vb(t) cd = 10−5

S1A S3A

S1B S2B

S2A

S3B

0.
45

3.
15

13
.0

5

8.
60

4,
45

0.
45

3.
20 9.
19

6.
95

15
.6

4

3.
20

15
.2

8

0.
45

0.
45

3.
20

3.
20

8.
29

7.
40

4.
70

8.
30

16
.2

0

16
.1

4
16

.1
4

16
.1

5
15

.2
5

10-1

10-4

S1A

S2A S3A

S1B S2B S3B

0 10 20

100

0 10 20

100

0 10 20

100

0.
45

ω
b
(t
)

v b
(t
)

Figure 6.10: (a) Angular speed at the bit for cd = 10−5; FFT of the previous
signal for (b) slice S1; (c) slice S2; (d) slice S3.
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Again, the analysis at the different time windows shows the existing
energy exchange between the torsional and the axial dynamics, where the self-
exited oscillations due to the regenerative effect provoked axial stick-slip and
torsional vibrations.

6.3.4.4
Simulation with damping cd = 10−5

Figure 6.10 illustrates the results for a damping coefficient cd = 10−5.
The vibrations lead to stick-slip phenomena in both the torsional and axial
dynamics. The FFTs show an evolution of the frequencies with time, where
both low and higher frequencies drive the torsional response at all times, and,
as with the previous cases, they show an energy exchange between the vibration
modes. For instance, from (c) to (e), 0.45 Hz, 3.20 Hz, 15.28 Hz and 16.20 Hz
are among the frequencies with the most prominent amplitudes in the FFTs of
the torsional response. With the axial ones, a similar situation occurs, where
both low and high frequencies are dominant.

As already stated, this case presents a situation where both low and high
frequencies are observed in the response in all the time windows, although the
higher frequencies are more prominent after the stick-slip vibrations are fully
developed, that is, close to the ending of the simulated time, in 6.10(e) and
(h).

6.3.5
Comparing the responses with those produced by models M1 and M2

The responses obtained with M3 are compared against those with M1
and M2 in the frequency domain. The corresponding FFTs associated with
the models M1 and M2 are depicted in Fig. 6.11, which is included below to
facilitate the analysis. The comparisons consider the signals in the time window
where t ∈ [180; 200] s, being ωb(t) the angular speed at the bit and vb(t) the
axial speed at the bit.

6.3.5.1
Simulation with damping cd = 10−5

Figure 6.12 shows that the results for cd = 10−5, with M3, present higher
frequencies than those observed with M1 and in [14]. This is in line with the
findings presented in [74] for the comparison between M2 and M1, where M2
also showed a response involving higher frequencies. Nevertheless, with M2, the
most prominent amplitude is linked to 7.40 Hz, which coincides with a torsional
natural frequency, while with M3 the most prominent peaks in the FFT are
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Figure 6.11: FFT of the angular speed at the bit obtained with models M1
and M2. α = 1 was used.

0.45 Hz, 3.20 Hz and 16.14 Hz. That is, both lower and higher frequencies
appear. The main difference between the two models is that M2 considers a
1-DOF rigid axial approach, thus it is incapable of exciting any axial natural
frequency, as opposed to what happens in a continuous model like M3.

6.3.5.2
Simulation with damping cd = 10−4

Figure 6.13 depicts the reuslts for cd = 10−4 This scenario is different
from the previous one with the lowest damping. The most prominent frequency
found is 0.45 Hz, followed immediately by 3.20 Hz. As it was shown, the case
cd = 10−4 did not show self-excited vibrations that lead to a torsional stick-
slip motion for the period evaluated, as opposed to the predictions of [14], and
the models M1 and M2, where torsional stick-slip is expected. On top of that,
these simulations show that other amplitudes apart from the fundamental one
are excited even in these scenarios, what indicates that considering only a rigid
mode of axial vibration is insufficient to capture all the aspects of the dynamics
given by this model. This result reinforces the observations made by [74] as to
the importance of the use of a continuous approach.
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Figure 6.12: FFT of the angular speed at the bit obtained with models M1,
M2, and M3 with damping cd = 10−5. α = 1 was used.
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Figure 6.13: FFT of the angular speed at the bit obtained with models M1,
M2, and M3 with damping cd = 10−4. α = 1 was used.
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6.3.5.3
Measuring the performance of the drilling process

To assess the performance of the drilling process, the evolution of the
depth reached by the bit is analysed.
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Figure 6.14: Drilling performance. (a) Depicts the bit displacement δcd
for each

damping case cd; (b) depicts the bit displacement difference ∆cd
calculated as

the bit displacement δcd
(where each case follows the colouring indicated in

the legend of the figure), substracted by δR corresponding to the case with
cd = 10−2.

The evolution of the bit depth δcd
, for each value of damping cd, is

depicted in Fig. 6.14(a). In Fig. 6.14(b) the bit displacement difference ∆cd

is shown. The latter is calculated as ∆cd
= δcd

− δR, where δi is the bit
displacement for the current damping coefficient (following the colouring in
the legend) and δR is that obtained with cd = 10−2.

Figure 6.14(b) is used to identify what cases present the highest and
lowest performances. In the graph:

– The highest damping condition, cd = 10−2, is represented by the
horizontal axis (∆10−2 = 0). The fact that all other cases are depicted
above this line indicates that this is the simulation with the lowest reach,
thus, the poorest performance. Recalling that the case showed quickly
decaying torsional and axial oscillations (see Fig. 6.7), this result is, at
first, counter-intuitive. The simulation is the closest, at all times, to the
nominal solution which is non-oscillatory, and it was expected to be the
most efficient case.
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– The simulation with cd = 10−3 shows an increased performance in com-
parison with the previous. The reason for this is that it is characterised
by very small torsional oscillations accompanied with axial stick-slip be-
haviour (see Fig. 6.8).

– The simulation with the highest efficiency is that with cd = 10−4.
This corresponds to a case where torsional oscillations exist and they
show higher amplitudes than the previous scenarios, but those torsional
vibrations do not enter into a stick-slip regime. At the same time, the
axial behaviour is characterised by the presence of stick-slip vibrations.

– The simulation with cd = 10−5, the lowest damping, shows a cutting
process that is more efficient than with cd = 10−2 and 10−3, but below
the performance of cd = 10−4. It is important to recall that this scenario
is characterised by both torsional and axial stick-slip.

The previous observations show that the drilling performs better when
axial oscillations exist, what makes the system act as a percussive driller.
However, performance drop was found when torsional stick-slip occurs. This is
expected given that cutting cannot take place when the bit is not rotating.

The findings of this section suggest that, were the damping variable con-
trollable, there exists an optimum level of damping for which the performance
is at a maximum.

6.3.5.4
Some remarks concerning the three models

In relation to the axial dynamics, the models of [74], M1, and M2, employ
a 1-DOF axial formulation consisting of a free-body subjected to the bit-
rock interaction forces. Such models can only account for axial movements
compatible with those of a rigid body, that is, no natural axial frequencies
can be excited. Therefore, the only axial vibration possible is forced, it is
due to the contact and impacts with the soil and the coupling with the
torsional dynamics. Then, the self-exited vibrations that are observed in those
models must occur on the torsional side, due to the axial-torsional coupling. In
contrast, M3 considers a continuous formulation, thus natural axial frequencies
can also be excited. The analysis at the different time windows has been useful
in understanding the energy exchange between the axial and the torsional
dynamics due to the coupling produced by the bit-rock interaction and
evaluating how axial vibrations appear. All the results that showed self-excited
vibrations reassure the importance of considering a continuous approach to
model the dynamics of a drill-string, in particular, to capture this exchange
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that can produce axial and torsional vibrations at higher frequencies than those
predicted by the aforementioned low-dimensional lumped models.

6.3.6
Simulation C2: considering a non-straight borehole

Up to now, the simulations that were run considered a straight and
vertical borehole, with an initial configuration where the string is centred in
the borehole. The forces and torques applied were such that the configuration
remained centred at all times. Therefore, even though a Cosserat formulation
was used, the full potential of the approach with regard to its ability to model
non-straight wells was not fully exploited.

Figure 6.15: Well geometry considered in simulation C2.

The aim of this last simulation is to present a case of a string moving in
a curved well, what can only be tackled with the continuous Cosserat model
M3. Thus, this application aims at showing other advantages that model M3
presents over the previous two models, apart from those benefits related to
using a continuous formulation, discussed in the previous scenario, C1. In
this simulation, the drill-string advances into a curved well path provoking
lateral contact with the wall, thus forcing the column to change its shape
to accommodate to the geometry of the well. Also, when this happens, extra
lateral friction affects the system. The well geometry that is considered is given
in Fig. 6.15. The set of parameters and initial conditions are those used for
the previous simulation considering cd = 10−2, with exception of except for the
nominal weight on bit, W0 = 68, 550 N, and the hook load, H0 = 441.08 kN.
A total of t = 10000 s are simulated.
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The position of the centreline of the drill-string is depicted in Fig. 6.16
for 1000, 5000 and 10000 s. The graph illustrates how the drill-string gets
curved, following the pre-defined well path, as drilling takes place. Recalling
that neither M1 nor M2 consider the lateral dynamics, to exemplify one of
the advantages of M3, the bending moments associated with the latter time,
t = 10000 s, are depicted in Fig. 6.17. All the bending moments present a local
change in their values in an area close to the contact region.

The behaviour shown in the previous two figures can only be captured
with a model that includes the lateral dynamics, thus the importance of
a Cosserat rod formulation that can account for large displacements and
rotations.
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Figure 6.16: Position of the centreline of the string in the xz plane at (a)
t = 1000 s; (b) t = 5000 s; t = 10000 s.

The torsional speed of the bit is shown in 6.15(a) and the axial one in
6.15(b). Also, in (a), some areas of the plot are zoomed in that illustration.
The simulations show vanishing low-frequency oscillations. This behaviour is
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Figure 6.17: Well geometry considered in simulation C2.

similar to that observed for the same level of damping in a straight well, in the
simulations C1 of Section 6.3.4. On top of that, a small variation is observed in
6.15(b) that the authors assume it could be linked to the lateral effects present
in the simulations. It is important to recall that the spirit of this simulation
is not to perform a deep analysis of the dynamics of the case, but rather to
show some of the differences that justify the use of a more refined model such
as M3.

The results, in terms of the angular speed and position, are not very
different from those of the straight configuration in the highly damped system.
This is due to two aspects: the lateral vibrations damp fast enough and do not
present great amplitude due to the lateral wall distance being small; and the
speed at the top is constant, which means that the power done by the top
drive to the system will accommodate to assure the constant angular speed at
the top, thus the forces are able to overcome the extra friction that is being
added. Another graph is included in Fig. 6.19 to show how the power changes
over time as the drilling takes place and the bit is deeper into the well. This
is linked to the increment of the contact region as the string enters the curved
path.

With regards to the performance, the drilling advanced 80.468 m, mea-
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sured in the direction of the arc length of the curve that defines the well. The
true vertical depth (max. rz) that was achieved is 1280.62 m.
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Figure 6.18: Comparison of the dynamics of the curved and straight boreholes.
a) shows angular speed in the longitudinal direction; and b) the axial speed in
the longitudinal direction.
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Figure 6.19: Mechanical power produced by the top-drive rotary system.

To sum up, with this application case, it was shown that the dynamics of
the drill string comprise other aspects than those associated with the torsional
and axial behaviour of the system. Some of those aspects can only be captured
with a model that considers the lateral dynamics of the system. Although it
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was not shown in the present application case, model M3 can be useful to study
other phenomena that may occur, such as buckling. Also, the more information
provided can be of use for a deeper understanding of the stresses that affect
the mechanical system during the drilling process.

6.4
Final comments of this chapter.

In this Chapter, the dynamics of a drill-string were studied with a model
that uses a Cosserat rod approach. The model, referred to as M3, considers
a Kelvin-Voigt material; it includes lateral contact; and it takes into account
the cutting dynamics of the bit, which allows defining the advancing of the
column as a consequence of the bit-rock drilling dynamics.

The objective of the study was threefold: 1) to consider a comprehensive
model that includes the 3-D motion of the structure, including the lateral
dynamics, included in the other models that were compared, as well as
the axial-torsional behaviour.; 2) to understand how the behaviour of the
continuous model M3 changed for different values of the friction coefficient
cd, associated with internal structural damping, considering a Kelvin-Voigt
material; and 3), to compare the results with those obtained with other models
from the literature: a discrete model, M1, and semi-discrete one, M2.

The consideration of a Kelvin-Voigt material makes the model more
general than that obtained by using a linear elastic constitutive relation given
that the latter is contained in the Kelvin-Voigt approach if the damping
coefficient were taken as zero.

With regard to the simulations, first, a verification of the Cosserat model
M3 was conducted, showing that it can reproduce the results of M1. The
verification relied on the addition of a parameter α in the equations, used
to control whether the formulation behaves as a fully distributed approach
or, in the limit where α → 0, as a quasi-static problem. The latter leads to
mathematical expressions that coincide with those of M1. In a previous paper,
a similar procedure had been used to verify that M1 is also contained in M2.

The Cosserat model M3 was used to study a 1, 200 m column in two
simulation scenarios. The simulations associated to the first scenario, C1,
involved a column that moves within a straight vertical borehole. In this
context, four simulations were carried out, each considering a different value
for the damping coefficient. A comparison of the simulations of M3 obtained
with different amounts of damping was conducted, both in the time and the
frequency domain. In that analysis special attention was given to the axial and
torsional speeds at the bit.
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The graphs concerning the responses obtained with M3, in the time
domain, showed a variation in the qualitative response of the mechanical
system. For the highest levels of damping, the oscillations vanished; for
intermediate damping, self-excited axial oscillations arose; and for the smaller
one, self-excited oscillations that led to torsional and axial stick-slip were found.

When the previous results were compared against those obtained with the
other models, M1 and M2, it was observed that the predictions also differed.
For the higher values of damping, the results with all models were similar
in terms of frequencies. The torsional fundamental frequency was dominant,
but different qualitative behaviour was observed. However, the new Cosserat
model produced vanishing torsional oscillations, while the discrete model and
the semi-discrete models, M1 and M2, showed self-excited torsional stick-slip.

When lower values of damping were used, the simulations with M3
contained other frequencies than the fundamental ones, which were not excited
in the simulations with M1 or M2. This was expected given the nature of the
lumped axial representation used for the discrete and the semi-discrete models,
which impedes the excitation or resonance with higher frequencies. However,
from a qualitative point of view, all models predicted self-excited torsional
stick-slip oscillations. Thus, for the lower dampings, the predictions were more
similar in terms of qualitative behaviour.

Evaluations of the behaviour of the system in the frequency domain
were performed, considering different time windows within a simulation. These
evaluations allowed to assess the energy exchange between the axial and
torsional modes that occur in a simulation as vibrations fully develop. The
results showed that this exchange cannot be captured with a low-dimensional
lumped model that uses for the axial response a 1-DOF formulation consisting
of a rigid mass, such as the one used in M1 and M2. As a matter of
fact, the model M3, with a continuous mathematical description, captured
aspects that were not present in M1: those related to frequencies different
than the fundamental one in the torsional response, and those related to the
vibrations in the axial direction which cannot be captured with the 1-DOF rigid
representation. The simulations, and particularly those with cd = 10−4, showed
clearly that the axial dynamics are responsible for the higher frequencies
observed in the torsional response, due to their coupling through the bit-rock
interaction relations.

The analysis of the simulations in terms of the performance of the drilling
process, taken as the maximum depth achieved, led to another interesting
result. It was found that the drilling performance is higher for an intermediate
amount of damping, what suggests that an operating point of maximum
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efficiency exists, were the damping variable controllable. Also, it implied that
axial vibrations could be not as detrimental to the drilling performance, as it
is often presented in the literature.

Additionally, a second simulation scenario C2 was also conducted where
the dynamics of the 1, 200 m column entering into a curved well were studied.
With this simulation, it was shown that the Cosserat model M3 has other
advantages over the previous models. For instance, M3 is capable of simulating
the lateral dynamics of the well, and it could also reproduce effects such as
the buckling of the structure, should they occur. On top of that, the extra
information that is obtained with the model can be of use to other studies
that can help understand how the stress distribution changes over time.

With all the previous results, the most important findings in this study
confirmed that a low-dimensional lumped representation can be insufficient
to capture all the aspects involved in the dynamics of a drill-string, when a
comprehensive representation of the column, that is, capable of describing the
behaviour at the bit as well as the drill-pipes and the BHA, is sought.

The contributions of this study were: 1) the development of a drill-string
model based on the theory of Cosserat rods where the dynamics of the cutting
were also taken into account; 2) the inclusion of a strategy to account for
the lateral contact along the string, if needed; 3) the consideration of internal
damping by considering a Kelvin-Voigt material, recalling that the constitutive
also contains the elastic model if damping is taken as zero; 4) the inclusion
of the discrete model M1 as a limiting case of the new Cosserat model, M3,
through a controllable parameter α; 5) a comparison between the three models,
M1, M2, M3, showing that the predictions obtained differ and that M3 captures
aspects of the dynamics that are not present in discrete or semi-discrete low-
dimensional lumped models, confirming the initial hypothesis that continuous
models should be used instead; 7) the simulation of a curved borehole to
illustrate the potential of the model to tackle 3-D drill-string dynamics.
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7
Simulating a horizontal well with stochastic friction

This chapter presents a brief introduction to another important aspect
to consider in the dynamics of a drill-string that has not been yet dealt with in
this thesis: the uncertainties present in the elements that compose or interact
with the system. For instance, randomness is an inherent attribute of the soil.
For this reason, the problem dealt in [28] is revisited. The presentation of this
problem does not pretend to be a comprehensive treatment of the variability
affecting drill-strings. It just aims at presenting the reader with the problem of
variability that is an inherent characteristic of these type of problems. In what
follows, the axial dynamics of a drill-string moving within a horizontal section
of the well are analysed with a Cosserat rod model. Analogously to [28], the
torsional dynamics are not taken into account in this study.

The objective of the study is to compare the results of two different
application cases, simulated with each model. One that considers the full
lateral-axial dynamics, and a simpler one where the static solution is used
for the lateral behaviour. In the first application case, the friction force is
deterministic, taking a fixed value for the friction coefficient. In the second
case, the friction coefficient is modelled as a random field.

Some of the novelties in this study lie in the combination of: 1) a
stochastic approach to the modelling of the lateral friction forces, taking
into account the randomness of the material to generate a random field; 2)
the combination of the previous with a Cosserat model; 3) the evaluation
of the effect of taking some simplification in the contact assumptions, this
way disregarding the flexural dynamics, against a model where the flexural
dynamics are taken into account and influence the contact forces.

The contents of this analysis have been published in [78].

7.1
Description of the problem

In [28], a bar model, described by a longitudinal wave equation, was
employed to analyse the dynamics of a drill-string during the penetration
process. This means that the formulation only accounts for longitudinal
displacements and that no lateral and torsional motions are allowed. The model
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also includes the bit-rock interaction force between the bit and the borehole
wall by using a Coulomb model.

As already stated, the present study is a continuation of the work carried
out in [28]. This time, the same problem is studied by means of a Cosserat
rod. This approach is an improvement over the original proposal, as it allows
studying the effects of the lateral dynamics in the axial predictions.

First, a comparison between the approach in [28] and the current model
is made with a deterministic problem. The comparisons are used to evaluate
the influence of the lateral displacements in the predictions. In particular, [28]
considers a normal force that is the solution of the static problem, while the
new model takes into account the whole dynamics of the structural system.

After that, a stochastic problem considering a random field for the
friction coefficient is studied. The random field is constructed by using an
approximation based on the Karhunen-Loève expansion.

7.2
The deterministic model

The dynamics of a horizontal drill-string considering contact at the bit
as well as friction and contact within the drill-string length are studied in [28],
where the authors employed a bar model given by a longitudinal wave equation.
It was assumed that contact occurs along the whole length of the drill-string
under static conditions, that is, the normal force equals the self-weight of the
structure. Also, the frictional force was considered to be proportional to the
self-weight.

In the new model, a Cosserat rod is employed to simulate the dynamics of
a horizontal drill-string, considering the forces depicted in Fig. 7.1. Although
the Cosserat rod can describe longitudinal, lateral, and torsional dynamics, as
opposed to the original model where only longitudinal effects were considered,
the torsional dynamics are not important for the present study. The focus is
given to the lateral-flexural motion. The equations of motion are those given
in (2-26), (2-51), and (2-61) of Chapter 2.

Three distributed forces are considered in the previous equations, being
the total distributed force fR

n = fs + ffr + fg with: fs being the normal force, ffr

the friction force and fg the self-weight. The self-weight is taken into account
in the dynamics of the drill-string, and in the calculation of the frictional
force, which is proportional to the normal force. The geometric and material
properties used in the simulations are shown in Table 7.1.

The expression for the distributed self-weight is given by
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fg = −ρAgk̂, g = 9.81 m/s2 (7-1)

fsta fbit

fc  and  ffric 
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On contact condition:

fg ffric
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Figure 7.1: Sketch of the drill-string model employed. In the graphic, fsta stands
for the force transmitted by the pipes before the simulated segment of drill-
string, fc is the normal force, the friction force is given by ffric, and the self-
weight is fg. Dext and Dint are the internal and external diameters of the
cross-section.

Property Value Description
L 60 m Length of the drill-string
Dext 0.15 m Cross-section external diametre
Dint 0.10 m Cross-section internal diametre
ρ 7850 kg/m3 Material density
E 210 GPa Young modulus
mbit 20 kg Mass at the bit
ks 1 · 106 N/m2 Soil constant
c1 1.4 103 N Coefficient of the bit-rock interaction model
c2 400 Coefficient of the bit-rock interaction model
b 10 Bit-rock cross-correlation decay length
ωf 100 · 2π/60 rad/s Frequency of harmonic excitation
t ∈ [0, 10] s Simulation time
fsta 5500 N Transmitted force
f0 500 N Mean magnitude of the oscillatory force
µ − Mean value of the friction coefficient
σ − Standard deviation for the friction coefficient

Table 7.1: Material and geometric properties used in the modelling of the
horizontal drill-string.

The normal force fs is modelled with the penalty method, as explained
in [40]. The force is supposed to be proportional to a penetration constant ks,
and it can be written as

fs = −ks fsp r̂r (7-2)
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In the previous expression, r(x, t) is the current position vector of the
centreline of the drill-string; rp(s) is position vector of the centreline curve of
the borehole; rr = r−rp is a relative position vector that describes the position
of the centreline of the drill-string with respect to the borehole centreline; r̂r

is a unitary vector in the same direction; and fsp is a penetration function
defined by

fsp =

|rr| − cgap, if |rr| − cgap ≥ 0.

0, otherwise.
(7-3)

with cgap being the radius of the borehole.
The friction force is given by the expression hereunder, where v̂c denotes

a unitary vector in the direction of the velocity at the contact point. It is
assumed that contact occurs only at one point of the cross-section.

ffr = −kfr|fs|v̂c (7-4)
The boundary conditions for this problem are: at the points lying in

section A-A of Fig. 7.1, the rotation of the section in any direction is restricted,
and no movement around the x-axis and y-axis is allowed, while in the z-axis
direction a load fsta = fstak̂ is applied.

On the other hand, at the points within section B-B, a free-end condition
with an applied load fbit is considered. The force applied to the bit actually
describes the following three effects: a contact force with the wall (fwall), a
harmonic force (fhar) due to the mud motor, and the inertial effect of the mass
of the bit (fm), which is modelled as a lumped mass.

fbit = fhar − fwall − fm (7-5)
The contact force at the bit fwall is expressed as in [28]. The constants

c1 and c2 are two constants related to the bit-rock interaction.

fwall =


(
c1e

−c2u̇(L,t) − c1
)
k̂, if u̇(L, t) > 0

0, otherwise
(7-6)

A harmonic force applied at the bit is also imposed on the system, as the
driving source of the horizontal drilling is the mud motor, which rotates about
a given nominal rotational speed (in steady operation).

fhar(x, t) = F0 sin(ωf t)k̂ (7-7)
Finally, the initial conditions are such that the structure is at rest at the

initial time t = 0.
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7.3
The stochastic model

The nature of the soil as a material is a source of uncertainties in any
mechanical problem, given that properties such as the friction coefficient may
vary greatly from one point to another. For this reason, following [28], the
soil is simulated as a random force, by taking the friction coefficient k∗

fr as a
random field.

It is be assumed that k∗
fr follows a truncated gaussian field with support

[0, 0.6], and exponential autocorrelation given by

R(x1, x2) = σ2e

(
−

|x2 − x1|
b

)
(7-8)

where b is the correlation length that measures the rate of decay of the
autocorrelation function.

A Karhunen-Loève expansion is employed to approximate the friction
field k∗

fr [41], by taking the first N terms of the series as follows:

k∗
fr ≈ µ(x) +

N∑
k=1

√
λkZk(ζ)ϕk(x) (7-9)

In the previous expression, µ is the mean value of the friction coefficient, λk

and ϕk are the eigenvalues and eigenvectors of the autocorrelation function R.
Zk are independent standard Gaussian random variables.

7.4
Results

In this section, the results for the simulations are presented. Two different
cases are considered. Firstly, a deterministic problem with the current approach
is compared against a model where, like in [28], the normal force is the self-
weight, which is the solution to the static problem. Secondly, a numerical
approximation to the solution of the stochastic problem is shown.

7.4.1
The deterministic case

The Cosserat model is solved considering the parameters in Table 7.1.
For the time being, the friction field is not considered stochastic.

For this problem, the friction coefficient kfr takes the value kfr = 0.10.
All simulations use a Cosserat approach. Two different cases are considered.
In case A the contact force is a direct consequence of the dynamics of the
model. It is obtained by considering the penalty approach given as stated in
(7-2), following the strategy presented in Section 4.2.2. Case B introduced
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the normal contact force as a constant whose magnitude is the distributed
self-weight of the rod along its whole length. The latter coincides with the
hypothesis provided in [28]. The solution is shown in Fig. 7.2 and compared
against that of [28].

The results show how a different contact model can drastically change
the dynamics obtained for the system and in particular the displacement at
the bit which is one of the possible measures of the performance of the driller.
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Figure 7.2: Results for the deterministic problem. Comparison of the displace-
ments and velocities at the bit, which are directly linked to the performance of
the drilling process. Case A corresponds to the hypothesis that contact occurs
due to the deflection and contact of the beam. Case B considers contact on
the whole length of the beam, with the hypothesis that the distributed normal
force equals the self-weight of the structure. (a), (b) and (c) show the displace-
ment of the bit in the direction of the z-axis δz, while (d) shows the velocity
vz at the bit.

A stick-slip motion in a mechanical system implies that two very distinct
phases can be appreciated in the dynamics. Namely, the stick and the slip
phases. On the one hand, the stick is characterized for presenting zero relative
velocities between the two surfaces in contact for a given period (not just an
instant). On the other hand, the slip phase is defined for those instants that
do not comply with the previous conditions.

In a qualitative comparison between the solutions, it is observed that
Case A and B differ greatly. Due to the use of a numerical model, the system
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Figure 7.3: Soil penetration function fsp [m].

exhibits vibrations in which the velocities go to almost zero, but not exactly
zero, as observed in Case B from Fig. 7.2. For this reason, the motion is said to
be pseudo stick-slip. In case A contact acts only on a section of the structure,
as shown in Fig. 7.3. Therefore, the friction force varies in such way that case
A does not exhibit any stick-slip-like behaviour, while case B exhibits pseudo-
stck-slip motion. This implies that, under certain conditions, it is important
to consider the lateral dynamics of the structure. Moreover, case A shows a
penetration δz that is 100 times higher in order than that of case B.

7.4.2
Stochastic results

In this section, a stochastic problem considering friction as a random field
(see Section 7.3) is presented. The parameters employed are those provided in
Table 7.1 are employed in the simulations, with µ = 0.12, σ = 0.1µ, and
N = 100 terms in the Karhunen-Loève expansion. The problem is treated in
an analogue manner to previous case A in all simulations, that is, contact is
obtained with the strategy presented in Section 4.2.2, and it is a consequence
of the drillers’ dynamics.

The power ratio pr = pout/pin is used as a measurement of the efficiency
of the system. It is defined as the ratio between the input power (pin) and the
output power (pout), given by the following expressions:

pin = 1
t1 − t0

ˆ t1

t0

(fstaṙz(0, t)) + fharṙz(L, t) dt (7-10)

pout = 1
t1 − t0

ˆ t1

t0

fbitṙz(L, t) dt (7-11)

The probability density function (PDF) of the power ratio is shown in
Fig. 7.5, as well as a convergence graph for the standard deviation of the
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Figure 7.4: Some realisations from the Monte-Carlo simulations.(a) Displace-
ment of the bit. (b) Speed of the bit.

response. The PDF obtained is very different from those presented in [28],
showing a better performance for the analysed case. This result is expected.
The contact forces produced are smaller in magnitude, thus less energy is
dissipated and the driller’s performance in terms of the power ratio is improved.

7.5
Final comments concerning this chapter

In this chapter, a model capable of capturing the longitudinal, lateral
and torsional dynamics of a drill-string has been employed. The Cosserat
rod model has been compared with a bar model to show the importance of
considering lateral displacements in the calculation of the contact and friction
forces involved. Firstly, it is observed that the mechanical system changes its
behaviour depending on the value of the friction coefficient. In fact, under
some conditions, stick-slip motion is shown, which greatly affects the rate of
penetration. Moreover, when the contact and friction forces are obtained as
a result of the dynamics of the system, the solution can be different than
that obtained by considering contact to be equal to the self-weight (at an
equilibrium state). Secondly, the stochastic problem is solved by employing
the current Cosserat rod model, and the PDF of the power ratio is obtained,
which is one possible measure of the performance of the drilling process.

To conclude, although the objective of this chapter is not to present an
extensive study in relation to the techniques involving stochastic simulations,
some interesting publications worth reading, regarding techniques to perform
uncertainty propagation can be found in [93–96].
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8
Final considerations

8.1
Summary

In this thesis, the study of the dynamics of drill-strings was tackled
through a formulation based on the theory of Cosserat rods. The literature
related to the modelling of drill-strings is vast and many different approaches
can be found, from low-dimensional lumped models to continuous ones. For this
reason, to the author of this thesis, it was not entirely clear to what extent
the low-dimensional formulations found in other studies had the ability to
reproduce the dynamics of a real-scale column. The main objective of the thesis
was to show that a Cosserat rod approach can successfully account for the
many different phenomena that affect such structures, particularly when drill-
strings move within curved boreholes. On top of that, it was desired to provide
answers as to how a Cosserat rod performed at representing long drill-strings in
comparison with the low-dimensional approaches found in the literature. Also,
it was desired to investigate the advantages that the continuous model herein
presented could have over the low dimensional models and other continuous
formulations where contact is treated via simplifying assumptions, for example
by considering the lateral response in the static case, thus simplifying the
complexity of the problem.

For this quest, first, the foundations for the Cosserat theory of rods
were revisited. After that, through an application example consisting of an off-
bottom drill-string, the formulation was used to study the dynamics of a string
within a curved borehole. In particular, a strategy involving a parametrisation
of the borehole was developed, to relate the position of the string with the
position where contact occurs in the borehole. This was calculated by adding
an extra algebraic equation to be solved along with the equations of motion.
On top of that, a comparison between the dynamics obtained with a Cosserat
rod model and those with a straight shaft that used an ad-hoc hypothesis
to account for the curvature of a well was made. The simulations provided
similar results in terms of the torsional oscillations. However, the Cosserat
model showed differences in the distribution of the contact forces (normal and
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friction) in the region where the well bends. These differences justify the use
of the newly developed approach, particularly if interest is paid to this region
of the string.

Next, a study including the dynamics of the cutting was carried out.
The objective of this study was two-fold. To compare the predictions of one
low-dimensional model from the literature, with those given by a continuous
approach, and to include the dynamics of the cutting in the bit-rock interaction
model. The model of [14] concerning the bit-rock interaction relations was
extended to account for other operation regimes, where now backward rotation
and bit-bounce can occur. As already stated, in this study two different
approaches to modelling the structure were used. One of them considered a
2-DOF discrete formulation, and the other a semi-discrete formulation, where
the torsional dynamics were given by a wave-equation and the axial with
a 1-DOF equation. In these models, the forces and torques associated with
the bit-rock interaction were calculated through a depth-of-cut that depends
on the dynamics of the cutting. For this purpose, an advection equation
was also solved together with the equations of motion. An interpretation of
the behaviour given by the equation and a geometrical interpretation of the
boundary conditions was provided. At this stage, the predictions of 2-DOF
model (one axial, one torsional) were compared with those of a semi-discrete
model that employed a wave equation for the torsional dynamics. Among the
main results of this study, it was shown that some aspects of the dynamics
could be neglected by using low-dimensional models, which was in line with
the main assumption presented in this thesis. In particular, it was observed that
the semi-discrete model could capture higher frequencies than those present
in the low-dimensional one. Nevertheless, the formulations used so far were
conservative, with the exception of the forces associated with the bit-rock
interaction. This implies that other possible sources of damping were not been
included in the study. For this reason, it was deemed of interest to assess what
role introducing some level of damping would play in mitigating the higher
frequencies, as well as what would be the effect of this damping in the general
qualitative behaviour of the dynamics. Additionally, it is important to reinforce
that, up to here, the two models contained a 1-DOF axial formulation, which
was an arbitrary choice.

Following the previous analysis, a new model, based on the Cosserat rod
formulation was utilised to continue the study. The dynamics were described
through a continuous formulation, thus eliminating the previously mentioned
arbitrary selection of a lumped axial formulation. With this model, the effects
of introducing internal damping were analysed through the consideration of
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a Kelvin-Voigt material constitutive. The results obtained with the Cosserat
approach for different values of the damping coefficient were compared against
each other, and against the predictions obtained for the discrete and semi-
discrete approaches used in the previous study. The analysis showed that
low-dimensional lumped models cannot reproduce the behaviour obtained
with continuous approaches. This was tested by analysing the predictions
considering different values of the damping coefficients. It was found that,
with the higher values, the predictions led to responses where low frequencies
were present in both approaches, but with different amplitudes, and that the
general behaviour of the solution changed. For instance, while the Cosserat
approach showed vanishing oscillations in some scenarios, the discrete and
semi-discrete models showed non-vanishing stick-slip vibrations. Additionally,
when the level of damping was low enough, all models experienced stick-
slip vibrations, but the predictions with the Cosserat model and the semi-
discrete one contained higher frequencies than those captured by the discrete
low-dimensional formulation. Also, with the latter low-damping cases, it was
possible to evaluate how the signals change their frequency content as the
vibrations develop. By doing so, and combining the results with the previous
observations, it is clear that the low-dimensional models are not able to predict
nor capture the general behaviour of the dynamics of a real-size drill-string.

Finally, there are many elements involved in drill-string dynamics that
show some source of variability. Particularly those associated with the soil,
which is inherently heterogeneous. Including the stochastic aspects of the
problem was an idea originally contemplated in the work plan of the Ph.D.
For this reason, it was decided to include a brief study concerning stochastic
simulations in this thesis, just as a mean to grasp the complexities involved
and future lines of research to coninue all the work that has been presented
so far. To this purpose, a problem from the literature was revisited. The
Cosserat approach was used to evaluate the difference in the results between
this model, and another simpler model where the normal contact force is
considered constant along the length, instead as a result of the dynamics and
the boundary conditions.

8.2
Contributions

With regards to the structural model:

– A complete and accessible description of the Cosserat rod formulation
was provided. This can be of use for didactic purposes too, and for those
interested in continuing this line of research;
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– the rotations were parametrised by utilising a quaternion approach. This
approach is not often studied in a general engineering course. Thus,
the importance of explaining the details of the formulation also has
some didactic implications too. This was combined with the findings
of [53], who developed a formulation to perform the time integration
of quaternions in the context of the dynamics of a rigid body without
enforcing the unitary quaternion constraint, a constraint that would be
required in a more classical approach involving quaternions;

– a procedure to derive the constitutive relations from a known 3-D consti-
tutive was presented. This procedure was used to state the constitutive
relations of the linear material in this thesis. In addition, although it
was not included in this text, because it is not the focus of the study,
this procedure was originally used to find the constitutive relations for
a piezoelectric material, which up to the author’s knowledge, was also a
novelty;

– the utilisation of a Kelvin-Voigt material model in the Cosserat formu-
lation that for zero damping coincides with that of an isotropic elastic
material. For other values it can be used to assess the effect of considering
internal damping;

– the inclusion of an algorithm for the Cosserat model to detect when
and where contact and friction occur along the drill-string, as well as
the magnitudes of the forces and torques involved. In this approach,
the friction depends upon some parameters which were unknown. These
parameters were calibrated with the results of [29]

With regard to the bit-rock interaction at the bit:

– The definition of a new bit-rock interaction relation that does not restrict
backward rotation of the bit nor bit-bounce, and that is dependent on
the dynamics of the cutting blade, such as the depth-of-cut;

– the implementation of an advection equation to avoid dealing with a
system of delay-differential equations in the simulation of the cutting
process;

– the extension of the advection approach treated in the previous works of
[14, 73] to allow rotation in both directions;

– the inclusion of the 2-DOF model as a limiting case of the continuous
models M2 and M3. For this purpose, a strategy considering an extra
parameter α is developed.
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With the results:

– it is shown the Cosserat model can successfully deal with contact and
friction in inclined and curved boreholes;

– a comparison between the three models, M1, M2 and M3, shows that
there are conditions where the continuous approaches provide different
predictions than those obtained with the simpler discrete model M1.
Thus, the findings are an important step into showing that the continuous
Cosserat model can capture aspects of the dynamics that cannot be
reproduced by the low-dimensional models.

8.3
Future work

Future lines of work include

– Further explore the dynamics of a drill-string considering cutting in
curved boreholes, such as the one used in the chapter related to the
lateral contact formulation;

– The implementation of reduced-order techniques to reduce the simulation
time of the current models;

– The stochastic treatment of the problem, where the soil is treated as a
stochastic field, and other sources of uncertainty are considered;

– A study considering the variable mass problem, as pipes are added as
the drilling advances, which is also related to the free boundary problem
concerning the cutting of the soil;

– An analysis focusing on other phenomena such as buckling, helical
buckling, and whirling, that can be reproduced with the theory of
Cosserat rods.
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A
Appendix to Chapter 2

A quick introduction of some mathematical concepts that are required
for the current implementation of the theory of Cosserat rods is presented.
In particular, the formulation that is adopted in Chapter 2 uses quaternions,
a mathematical tool the reader might not be familiar with, to parametrise
rotations.

The aim of is to present the mathematical tools without going into
very complex demonstrations. To do such thing, an intuitive idea for the
development of quaternions is provided: first, a brief discussion about rotations
in R2 by employing complex numbers is shown. Next, the previous notion is
extended to define quaternions, which are hyper-complex numbers of rank 4,
and to provide an elegant means to treat rotations in R3.

A.1
Quaternions as a tool to parametrise rotations in space

It is known that the components of a vector that rotates rigidly with a
given frame of reference can be expressed as a linear transformation pθ = Qp.
Here, Q is some rotation matrix with its columns formed by the directors of
the rotated frame with respect to the original frame of reference (see Fig. A.1
), p is the vector to rotate in the original frame, and pθ the resulting rotated
vector.

j

i

(cos θ, sin θ) 

θ 

(-sin θ, cos θ) 

p
pθ

θ 

Figure A.1: A representation of the directors of the rotating frame with respect
a the fixed frame of reference, employed to form the rotation matrix Q.
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Let v be any vector such that v ∈ R2, and θ be a rotation angle, as in
Fig. A.1, then

pθ = Qp =
cos θ − sin θ

sin θ cos θ

 x
y

 =
x cos θ − y sin θ
x sin θ + y cos θ

 . (A-1)

It is also known that complex numbers can be employed to describe
rotations in R2. The mathematical aspects of this affirmation are simple. Let
{p, zθ} ∈ C, {x, y} ∈ R, and consider a vector v = (x, y) to rotate. Then,
some complex numbers p = x + iy, zθ = eiθ = cos θ + i sin θ can be defined
such that the multiplication pθ = zθp results in a rotation from the origin of p
in an angle θ in the complex plane. Moreover, the real and imaginary parts of
the product are the components of the rotated vector.

zθ(x+ iy) = (cos θ + i sin θ)(x+ iy)
= x cos θ − y sin θ + i(x sin θ + y cos θ)

(A-2)

Note that the real and imaginary parts of (A-2) coincide with the
components of the rotated vector in (A-1), as expected.

Second, any complex number {z ∈ C, {a, b} ∈ R : z = a + bi} can be
represented in matrix form so that the operations between complex numbers
become simple matrix operations:

z = aI + biq = a

1 0
0 1

 + b

0 −1
1 0

 =
a −b
b a

 . (A-3)

Here the matrix iq satisfies the condition i2
q = −1I. Therefore, it behaves like

the imaginary unit.
In a few words, a multiplication of complex numbers can be used to

define a rotation in R2, and that operation can be expressed by means of
matrix multiplications. With this idea in mind, it seems natural to extend the
use of complex numbers to represent rotations in R3. It was Hamilton who,
in 1843, developed the tool for such calculation: the so-called hyper-complex
number of rank 4, namely a quaternion [55].

Let q be a quaternion, an object defined by considering a 4-tuple
q = {qa, qb, qc, qd}, such that

q = qaI + qbiq + qcjq + qdkq, (A-4)
with

I =
1 0
0 1

 , iq =
0 −1
1 0

 , jq =
 0 −i
−i 0

 , kq =
i 0
0 −i

 , (A-5)

or expressed in matrix form as
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q =
qa + iqd −qb − iqc

qb − iqc qa − iqd

 . (A-6)

Also, let q∗ be the quaternion conjugate defined as

q∗ = qa − qbiq − qcjq − qdkq. (A-7)
With the previous definitions, a relation between vectors in R3 and

quaternions can be stated. Consider a vector in R3 such that p = p1i+p2j+p3k,
where {i, j,k} is some base on R3. The same vector can be represented in
quaternion form as pq = 0+p1iq+p2jq+p3kq. This means that a correspondence
between vector in R3 and quaternions can be established, as illustrated in
Fig.A.2.

Vectors in R3
g = bi+cj+dk gq = 0I+biq+cjq+dkq

Pure imaginary 
quaternion 

Figure A.2: Correspondence vector - quaternion, and vice versa.

The matrixes iq, jq,kq behave similarly to the imaginary unit: i2
q = j2

q =
k2

q = iqjqkq = −I. Moreover, some analogy can be established between the
product of those matrixes and the vectorial product of elements that form an
orthonormal base. For example, as illustrated in Fig. A.3, iqjq = kq if multiplied
in the clockwise sense, or jqiq = −kq if multiplied counter-clockwise.

iq

kq jq

Figure A.3: Multiplication diagram.

Now, let a pure real quaternion be of the form {qa, 0, 0, 0}, a pure
imaginary quaternion be of the form {0, qb, qc, qd}, and let the norm of a
quaternion be |q| =

√
q2

a + q2
b + q2

c + q2
d. In what follows, consider q and eq

to be unitary (|q| = |eq| = 1), with eq = {0, eq1, eq2, eq3}.
Then,

Lq(pq) = qpqq∗, q = cos(θ2)I + eq sin(θ2) (A-8)
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defines an operator Lq(pq) applied to some pure imaginary quaternion pq =
{0, pq1, pq2, pq3} that results in a rotation of vector p in a angle θ over the axis
defined by {e1, e2, e3}. In fact, Lq(pq) gives another imaginary quaternion,
whose imaginary parts coincide with the rotated vector.

Also, the transformation can be expressed in terms of a rotation matrix
Q as Lq(pq) = Qp such that

Lq(pq) =


q2

a + q2
b − q2

c − q2
d 2(qbqc − qaqd) 2(qaqc + qbqd)

2(qaqd + qbqc) q2
a − q2

b + q2
c − q2

d 2(qcqd − qaqb)
2(qbqd − qaqc) 2(qaqb + qcqd) q2

a − q2
b − q2

c + q2
d



p1

p2

p3

 ,

(A-9)
with

q2
a + q2

b + q2
c + q2

d = 1. (A-10)

A.1.1
Demonstration

In order to prove that the product in (A-8) is in fact a rotation, the
following strategy will be used: first, any vector (•) can be written as a pure
imaginary quaternion. The subscript (•)q will be used to denote explicitly
the quaternion representation. With this in mind, let q be a quaternion with
imaginary part eq. Let p = pt + pn be an arbitrary vector resolved into two
orthogonal components: the component along e, pt = αe , and its normal
component pn. Then, it is shown that under the quaternion rotation operator,
the first component is invariant, and the second is rotated about e through an
angle θ.

As stated above, e and p are some vectors in R3, and can be written as
purely imaginary quaternions

eq = e1iq + e2jq + e3kq, (A-11)

pq = p1iq + p2jq + p3kq. (A-12)
It is evident that the sum of pure imaginary quaternions still belongs

to R3. This reasoning does not apply to multiplication of pure imaginary
quaternions, a calculation which can be written in terms of the usual scalar
and vectorial products of vectors, as follows:

eqpq = −e · p + e × p (A-13)
Immediately, some comments can be made from the analysis of the

previous equation: given that the scalar product is always a real number,

DBD
PUC-Rio - Certificação Digital Nº 1913178/CA



Appendix A. Appendix to Chapter 2 181

e · p = 0 if eqpq is also a pure imaginary quaternion. On the other hand,
eqpq is a pure real quaternion only if the vector product e × p = 0, which
means that e and p are on the same direction.

Now, let eq and q be unitary quaternions, then it is shown that the
operators

Lq(pq) = qpqq∗, q = cos(θ2)I + eq sin(θ2) (A-14)

L∗
q(pq) = q∗pqq, q = cos(θ2)I + eq sin(θ2) (A-15)

produce rotations of p.
The conjugate of a complex number is such that the imaginary part has

a sign change. In the case of quaternions, it is defined analogously: let q∗ be
the conjugate of q, then the conjugate is obtained by multiplying by −1 the
imaginary part

q∗ = cos(θ2)I − eqsin(θ2), (A-16)
and the inverse is defined as

q−1 = q∗

|q|2
. (A-17)

Given that q is unitary, q−1 = q∗. The existence of an inverse implies
that the multiplication to the left or to the right by q and q∗ is also invertible.

To show that Lq(pq) defines rotations, two properties need to be satisfied:
first, there has to exist a set of points within an axis that, after the application
of the rotation operator, remain unchanged. That axis is the axis of rotation
itself. Second, it needs to be shown that distances are preserved and angles are
preserved.

To prove the first affirmation, Lq(pq) will be applied to any linear
combination of eq, which represent all the vectors in the direction of e in
R3.

Lq(eq) = qαeqq

= α

 cos(θ2)I + eq sin(θ2)
eq

 cos(θ2)I − eq sin(θ2)


= α

eq cos(θ2)I + e2
q sin(θ2)

 cos(θ2)I − eq sin(θ2)


= α
(

eq cos2(θ2) − e2
q sin(θ2) cos(θ2) + e2

q sin(θ2) cos(θ2) + eq sin2(θ2)
)

= α
(

eq cos2(θ2) + eq sin2(θ2)
)

= αeq

,

(A-18)

DBD
PUC-Rio - Certificação Digital Nº 1913178/CA



Appendix A. Appendix to Chapter 2 182

The previous equation shows that Lq(αeq) = αeq, which means that e
defines an axis that is left unchanged under the transformation. Namely, the
rotation axis.

Second, if wq is a pure imaginary quaternion, it is shown that Lq(pq −wq)
is an isometry, meaning that distances are preserved. To do so, the following
properties will be used: the norm of a quaternion is given by |q| =

√qq∗ =
√q∗q, and (qb)∗ = b∗q∗, where b is another quaternion.

|Lq(pq − wq)| = |q(pq − wq)q∗|
=

√
q(pq − wq)q∗q(pq − wq)∗q∗

=
√

q|pq − wq|q∗

=
√

|pq − wq|2qq∗

= |pq − wq|

(A-19)

This shows that distances are preserved, and if wq = 0, it shows that
norms are also maintained during the transformation.

Finally, let p = pt+pn, where pn be orthogonal to e in R3. Then e·pt = 0,
and pt is unchanged by Lq.

eqpqn = e × pn = wq

pqnwq = eq

wqeq = pqn

(A-20)

Remembering that quaternion multiplication is non conmutative,

qpqnq∗ =
(

cos(θ2)I + eq sin(θ2)
)

pqn

(
cos(θ2)I − eq sin(θ2)

)
= pn cos2(θ2) + 2eqpqn sin(θ2) cos(θ2) − eqpqne sin2(θ2)

= pn cos2(θ2) + pqneqeq sin2(θ2) + 2eqpqn sin(θ2) cos(θ2)
= pqn cos(θ) + wq sin(θ)

(A-21)

and

qpqq∗ = pqt + pqn cos θ + wq sin θ (A-22)
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e

pn

θ

w = e x pn

Lq(pn)

pt

Figure A.4: Representation of the effect of the application of the operator Lq

to some vector v.

Eq. (A-22) shows that the vector in the direction of e remain unchanged;
that normal vectors n to e rotate in an angle θ on a plane that is perpendicular
to e; and that distances are preserved, which demonstrate that the operator
actually defines a rotation.
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B
Appendix to Chapter 4

B.1
Benchmarks and model verifications

The objective of this section is to present set of verifications that
were performed to verify the implementation of the Cosserat formulation in
COMSOL [68]. The solution for the Cosserat rod (CR) model are compared
against known solutions for non-linear problems reported in the literature.

B.1.1
A pendulum under the action of gravity

In this test, the dynamics of a pendulum are analysed. The pendulum
consists of a straight beam pinned at one end, and free on the other. Only
the effect of gravity is considered, with no friction at the hinge. In its
initial position, the pendulum is horizontal and at-rest, as in Fig. B.1. The
geometrical and material properties of the structural element are presented in
the aforementioned figure.

L
a

a

1
1

Cross-section

L=5m

a=0.1m

E=4 ·10-7 N·m-2

ν=0.3

ρ
0
=7850 kg·m-3

Figure B.1: Example B.1.1. Initial configuration for the pendulum, with its
respective geometrical and material properties.

The time response for the centreline of the pendulum is depicted in Fig.
B.2, along with the results from [42]. In the latter, two models are compared:
Model SM1 where the motion described by a small displacement theory is
composed with a rigid motion; Model SM2 where a 2D non-linear theory of
elasticity (NLTE) accounting for finite displacements is considered. Then, the
shapes of the solution presented herein coincide with the results for model
SM2, that is, a plane stress model that accounts for large displacements.
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0.0

x [m]

y 
[m

]

(a) Axis position at di�erent time intervals for
the CR model.

(b) Model comparisons: centreline axis position
at di�erent time intervals.
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y 
[m
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CR Model
SM1
SM2

CR Model

Figure B.2: Example B.1.1. (a) Cosserat rod (CR) model centerline position
at different times. Intervals ∆t = 0.1s are considered. (b) Model comparison.
The results obtained with the models SM1 and SM2 from Reference [42] vs
the CR model are shown.

B.1.2
A spin-Up manoeuvre

This problem was proposed in [97] in an attempt to demonstrate that
solutions obtained for linearised models could completely differ from non-lineal
models and from real observed phenomena. The problem has been employed
by many authors, such as [42, 98, 99], to verify results for non-linear theories.
A cantilever beam under the influence of a spin-up manoeuvre is analysed. A
rotation is forced from one of its end, accelerating from at-rest position to a
constant angular speed as described by the function Ψ(t).

The geometrical and material aspects of the beam are shown in Fig. B.3.
The rotation is applied at point P .
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L

r

1
1

Cross-Section

L=5m

r=0.1m

E=4 ·10-7 N·m-2

ν=0.3

ρ
0
=7850 kg·m-3

ψ (t)

P

Figure B.3: Example B.1.2. Initial configuration for the cantilever beam with
its respective geometrical and material properties.

Ψ(t) =



6
15

[
t2

2 +
( 15

2π

)2(
cos(2πt

15 ) − 1
)]

if t ≤ 15

6t− 45 if t > 15
Considering a perfectly rigid beam as reference, the difference between

positions for the non-linear model and the rigid beam are evaluated at the
free-end. Its longitudinal component δ in the direction of the rigid-beam axis
is plotted against time in Fig. B.4. The authors of [42] present a solution based
on a plain stress non-linear theory , while a solution based on a rod theory is
shown in [97].

0 2 4 6 8 10 12 14 16 18 20
-20

-15

-10

-5

0
10-3

Simo et al. [35]

Buezas et al. [34]

CR Model

δ
 [

m
]

t [s]

5,132   10-4

Figure B.4: Example B.1.2. Spin-up manoeuvre. Comparison of the δ values
obtained by the Cosserat rod (CR) model and the works of [42] and [97]. The
model from S is that of Reference [97], model B is that of [42], and the CR
model stands for the Cosserat approach herein presented.

B.1.3
A beam under pure bending

The problem of a cantilever beam with an applied moment at its free
end is presented in [42]. A bending moment is applied at the free-end of the
beam and its magnitude is varied until the beam axis turns into a perfect
circumference where its ends meet. The CR model solution is compared to
that reported in [42] , which is based on a non-linear plain stress elasticity
theory.
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The geometrical and material aspects of the beam are shown in Figure
B.5.

L

1
1

Sección 1-1
L=1m

h[m]=(24/E)^(1/3)

E=5·105 N·m-2

ν=0.3

ρ
0
=7850 kg·m-3

M h

h

Figure B.5: Example B.1.3. Sketch of the bending beam problem with its
geometrical and material properties.
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δ = 8,94   10-10

M = 12,566
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Figure B.6: Example B.1.3. Distance between the beam ends (δ) vs. applied
bending moment (M).

The results are shown in Fig. B.6. The bending moment required to close
the beam into a perfect circumference isM = 4π ≈ 12.566 Nm, which coincides
with the value reported in the literature.

B.1.4
A drill-string model for a straight vertical borehole

The kinematics of a drill-string for the friction model proposed by [20]
are analysed. The original problem consists of a straight beam under axial-
torsional effects, with a friction law acting at the bit of the drill-string. The
authors solve the axial and torsional wave equation. Concentrated masses at
both ends of the rod representing the top-drive and the BHA-bit, respectively,
are considered.

B.1.4.1
Rotary speed control

An optimal drilling operation implies that the drill-string angular speed
ω matches the target speed Ω. With this aim, a control strategy is implemented
via a proportinal-integral controller (PI-Controller) at the top drive.

Following [20], the response of the PI controller in terms of torque at the
top of the drill-string is introduced as a boundary condition at the upper end.
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Ttop = kp(Ω − ω) + ki((Ω · t− ϕ)) (B-1)

Table B.1: Adopted parameter values for the PI controller, based on the values
presented in [20].

Variable Symbol Value Units
Target Speed Ω 100 rpm

Proportional constant kp 200 N m s rad−1

Integral constant 1 ki 100 N m rad−1

B.1.4.2
Contact model

The original model only considers axial and torsional effects. The CR
model can also account for lateral displacements. A simple contact model for
the borehole wall and bit is proposed, with a penalisation method to the
Signorini problem. The soil is assumed to be fully elastic, and the contact
force is considered linearly proportional to the penetration on the borehole
wall, with ks the proportionality constant. For this reason, Hooke’s law is
adopted to represent soil behaviour. To avoid any possible lateral deflection,
e.g. product of the buckling of the drill-string due to the WOB magnitude, a
value ks is chosen so that the drill-string remains bounded within the specified
clearance cgap = 1 · 10−4 m. As already stated, the clearance is considered
sufficiently small in order to guarantee that the solution cannot differ greatly
from the straight configuration of the original model.

B.1.4.3
Friction model

The friction model was obtained from drilling measurements under stable
drilling conditions by [20], for constant drill-bit angular speed (Ω ≈ 100 rpm).
It correlates the frictional torque-on-bit (TOB), weight-on-bit (WOB), depth-
of-cut (DOC), angular speed, and rate-of-penetration (ROP ), through the
following expressions.

ROP = −a1 + a2WOB + a3Ω (B-2)

DOC = ROP

Ω (B-3)

TOB = a4DOC + a5 (B-4)
Table B.2 depicts the set of chosen parameters for the friction model.
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Table B.2: Parameters for the friction model presented in [20].
Variable Symbol Value Units

Weight on bit WOB 100 kN
Model parameter 1 a1 3.429 · 10−3 m s−1

Model parameter 1 a2 5.672 · 10−8 m N−1 s−1

Model parameter 2 a3 1.374 · 10−4 m rad−1

Model parameter 4 a4 9.537 · 106 N rad
Model parameter 5 a5 1.475 · 103 N m

As stated by the authors, in order to model Coulomb frictional effects, it
is necessary to regularise the frictional torque and rate-of-penetration so that
they vanish as the drill-bit angular speed tends to zero [69]. Therefore, the
following expression is considered, with a regularisation factor ϵ = 2 rad s−1

and a varying angular speed ω .

TOB = (−a1 + a2Fbit) a4
ω3

L

(ω2
L + ϵ2)2 +

a3a4
ω3

L

(ω2
L + ϵ2)3/2 + a5

ωL

(ω2
L + ϵ2)1/2

(B-5)

B.1.5
Initial Conditions

At t = 0, the drill-string is supposed to be rotating at a uniform speed
of 70 RPMs.

B.1.5.1
Solution

The responses of the drill-string for times t = 0 s to t = 100 s, at the
top and the bit, are shown in Fig. B.7 and Fig. B.8 respectively. The solution
matches that presented by [20].
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Figure B.7: Comparison between the Cosserat rod (CR) model and that
presented in [20]. Angular speed ωz at the top vs time. The target speed for
the PI-controller is represented by a dashed line. The model used by Sampaio
et al. is that of [21].
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Figure B.8: Comparison between the Cosserat rod (CR) model and that
presented in [20]. Angular speed ωz at the bit vs time. The target speed for
the PI-controller is represented by a dashed line. The model used by Sampaio
et al. is that of [21].
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C
Appendix to Chapter 6

C.1
Geometrical interpretation of the equation for the cutting process

A geometrical interpretation for the equation (5-21) and boundary con-
ditions (5-22) and (5-23) is given through Fig. C.1.
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Figure C.1: Schematic example of the behaviour of the advection equation to
model the cutting process. (a-c) depict an off-bottom case, at times t0, t1 > t0,
and t2 > t1,, respectively. (d-e) show an example of a normal drilling condition.
The red arrow depicts the direction in which the advection equation translates
the soil profile with a speed ω.

The Fig. C.1 (a-c) exemplifies the behaviour of (5-21) for an off-bottom
case, i.e. when the bit is rotating without contact with the soil. Meanwhile,
Fig. C.1 (d-f) shows an example of a normal cutting condition.

To better understand the behaviour of the equation, consider a frame
that is fixed at the cutting blade, so that the blade is always at angle η = 0.
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During the drilling process, the cutter will move following a circular path over
the soil. The equation and the boundary conditions are devised so that the
endpoints η = 0 and η = 2π

nb

represent the soil profile immediately after and
before the cutting blade.

Let (a) define the soil profile for the off-bottom case Ls(η, t = t0), (b) and
(c) be a snapshot of the soil profile at times t1 > t0 and t2 > t1, respectively. In
the off-bottom case, the solution of the advection equation in conjunction with
a periodic boundary condition give a response that is a spatial translation of
the solution at time t0 (there is no change in the shape of the profile). The speed
at which the soil profile moves spatially is given by ω, thus it is coupled with
the torsional equation of motion. Moreover, it is observed that the endpoints
η = 0 and η = 2π

nb

coincide, which means that the instantaneous depth of cut
is exactly di = 0.

Now, Fig. C.1 (d-f) depict an example of a normal drilling condition.
Let (d) show an initial state of the soil profile Ls(η, t = t0). Also, let the
position of the bit U(t = t0) be given by the blue dot, and for the illustrative
purpose of this example only, it is assumed that the axial position U(t) remains
constant in time. The fact that U(t) > Ls(η = 0, t) means that cutting is taking
place. Then, (b) and (c) show the evolution of the soil profile at times t1 > t0

and t2 > t1. As depicted in the sketch. Now there is a difference between
the values of Ls(η = 0, t), the soil height after cutting has taken place, and
Ls(η = 2π

nb

, t), the soil height before cutting. This difference is the so-called
instantaneous depth of cut given by (5-24). Finally, the recently removed soil
depth is depicted by a dashed line.

C.2
Non-dimensional parameters

The problems studied throughout this work are defined in terms of pa-
rameters with direct physical interpretations, such as a length or an elasticity
modulus. Therefore, the equations of motion are not required in their non-
dimensional form, as employed in [14]. Nonetheless, for the sake of comple-
tion and to ease comparison with their results, the definitions of the non-
dimensional parameters in terms of the dimensional ones are stated below.

û = U − U0

L∗ , v̂ = V t∗

L∗ (C-1)

ω̂ = Ωt∗, ω0 = Ω0t
∗. (C-2)

t∗ =
√
I/C, L∗ = 2C

ϵ1a2 (C-3)
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d =
∑

i

di, δ = d

L∗ , τ = t

t∗
(C-4)

W = W

ζϵ1aL∗ , W0 = W0

ζϵ1aL∗ (C-5)

T = T

C
, T0 = T0

C
(C-6)

β = µγζ, λ = σ1l

ζϵ1L∗ , ψ = ζϵ1aI

MC
(C-7)

In the previous equations, the quantities û, v̂, ω̂ represent the non-
dimensional axial position, axial speed, and angular speed, respectively. They
are calculated in terms of the dimensional magnitudes U and U0, the position
of the bit and the nominal position of the bit; V , the axial speed; t∗, a time
parameter; and L∗, a length parameter. d stands for the instantaneous depth
of cut. All other parameters are defined in Table 6.1.
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D
The weak form

In what follows the expression for the weak form associated to some
equations that will be used in the simulations is given. The general form is
given by

Ξ1,i + Ξ2,i + Ξ3,j + Ξ4 + Ξ5 = 0, (D-1)
where

– Ξ1,i and Ξ2,i are the terms associated to the weak formulation of the
Cosserat theory of rods given by (2-51) and (2-61). In this case, i =
{1, 2, 3}, and the test functions Λ1,i and Λ2,i are used.

– Ξ3,j is linked to the integration of the quaternion components in (2-26),
with j = {1, 2, 3, 4}. In its expression, the test functions Λ3,j are used.

– Ξ4 is related to the integration of the advection equation. The test
function Λ4 is used.

– Ξ5 is an algebraic equation linked to the detection of the lateral contact.
The test function Λ5 is used.

Each of the expressions can be writen as

Ξ1,i = −Λ1,i n
R
i

∣∣∣∣so=L

so=0
+
ˆ so=L

so=0

(
nR

i

d
dso

(Λ1i
) − fR

n,iΛ1,i

)
ds0+ˆ so=L

so=0

(
Λ1,i

d
dt(ρRARṙR

i )
)

ds0,

(D-2)

Ξ2,i = −Λ2,i m
R
i

∣∣∣∣so=L

so=0
+
ˆ so=L

so=0

(
mR

i

d
dso

(Λ2i
) − fR

m,iΛ2,i

)
ds0+ˆ so=L

so=0

(
− Λ2,iζi + Λ2,i

d
dt(IR

iiω
R
i )

)
ds0 with ηi =

( d
dso

(
rR

)
× nR

)
i
,

(D-3)

Ξ3,j =
ˆ so=L

so=0
Λ3

(
− 1

2ψj − cqm + d
dtqj

)
dso, with ψj =

(
Ωq

)
j
, (D-4)

Ξ4 =
ˆ so=L

so=0
Λ4

(
∂Ls

∂t
+ ω

∂Ls

∂η

)
dso, (D-5)
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Ξ5 =
ˆ so=L

so=0
Λ5

(
rr · tp

)
dso. (D-6)

In the previous expressions, (·)i and (·)j represent the components of
some vector (·).
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