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Abstract

Mesquita, Leonardo Carvalho; Sotelino, Elisa Dominguez (Advisor).
Probabilistic method for uncertainties consideration in geomechanical

-order second-
moment method. Rio de Janeiro, 2023. 169 p. Doctoral thesis - Department
do Civil and Environmental Engineering, Pontifical Catholic University of
Rio de Janeiro.

The present work proposes a computationally efficient stochastic statistical

method (called Green-FOSM) that considers uncertainties in geomechanical

problems, with the objective of improving the decision-making process related to

problems associated with the process of fluid injection or depletion. The novelty of

with the first-order second-moment statistical method (FOSM), is used to propagate

uncertainties associated with the mechanical properties of material to the

displacement field of the geological formation. Furthermore, using the concepts of

stochastic grid and autocorrelation function, the proposed method allows the

consideration of the spatial variability of random variables that represent these

mechanical properties. The GFA uses the fundamental solutions of classical

mechanics (Kelvin fundamental solution, Melan fundamental solution, among

others) and the reciprocity theorem to calculate the displacement field of a

geological formation with irregular geometry, and different types of materials. The

great advantage of this method compared to the classical finite element method

(FEM) is that it does not require the imposition of boundary conditions and the

analysis of the problem can be performed considering only the reservoir or other

regions of interest. This modeling strategy decreases the degrees of freedom of the

model and the CPU time of the deterministic analysis. In this way, as the GFA

requires less computational effort, this approach becomes ideal for propagating the

uncertainties in geomechanical problems. Initially, an iterative version of the

Green-FOSM method was proposed, which presents statistical results similar to

those found through the classic Monte Carlo simulation (MCS). In this initial

version, the displacement field is calculated using an iterative numerical scheme,

which decreases the computational performance of the method and can generate

convergence problems. Such limitations would restrict the application of the
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original GFA and the iterative Green-FOSM method in real problems. Thus, the

present work also developed a new version of the GFA, which uses a non-iterative

numerical scheme. For the proposed validation problems, the non-iterative method

proved to be up to 17.5 times faster than the original version. This version is able

to expand the applicability of the GFA, since the convergence problems were

eliminated and the results obtained by this method, when analyzing a representative

geological profile of the Brazilian pre-salt, are similar to those found via FEM.

Finally, based on the non-iterative GFA, a non-iterative version of the Green-FOSM

method was proposed. This non-iterative version is capable of probabilistically

analyzing complex geological formations, such as the Brazilian pre-salt geological

formations. Using the same computational resources, the non-iterative Green-

FOSM method is at least 200 times faster than the iterative Green-FOSM method.

In general, the results found in the investigated analyzes (deterministic and

probabilistic) are close to the results obtained by the reference method (FEM and

MCS, respectively).

Keywords

-order second-
moment (FOSM); Geomechanical problems; Probabilistic method; Reciprocity
theorem.
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Resumo

Mesquita, Leonardo Carvalho; Sotelino, Elisa Dominguez (Orientador).
Método probabilístico para consideração de incertezas baseado no
método das funções de Green e no método estatístico first-order second-
moment. Rio de Janeiro, 2023. 169 p. Tese de Doutorado Departamento
de Engenharia Civil e Ambiental, Pontifícia Universidade Católica do Rio
de Janeiro.

O presente trabalho propõe um método estatístico computacionalmente

eficiente (chamado Green-FOSM) para consideração de incertezas em problemas

geomecânicos, com o objetivo de melhorar o processo de tomada de decisão ao

analisar problemas associados com o processo de injeção ou depleção de fluídos. A

novidade do método proposto está associada com a utilização do método das

funções de Green (GFA), que, com o auxílio do método estatístico first-order

second-moment (FOSM), é utilizado para propagar as inerentes incertezas

associadas às propriedades mecânicas do material para o campo de deslocamento

da formação geológica. Além disso, através dos conceitos de grid estocástico e

função de autocorrelação, o método proposto permite a consideração da

variabilidade espacial de variáveis aleatórias de entrada que representam essas

propriedades mecânicas. O GFA utiliza as soluções fundamentais da mecânica

clássica (solução fundamental de Kelvin, solução fundamental de Melan, entre

outras) e o teorema da reciprocidade para determinar o campo de deslocamento de

uma formação geológica com geometria irregular e diferentes tipos de materiais. A

grande vantagem deste método em relação ao clássico método dos elementos finitos

(MEF) é que ele não requer a imposição de condições de contorno e a análise do

problema pode ser realizada considerando apenas o domínio do reservatório ou

outras regiões de interesse. Esta estratégia de modelagem diminui os graus de

liberdade do modelo e o tempo de processamento da análise. Desta forma, como o

GFA requer menos esforço computacional, este método torna-se ideal para ser

utilizado na propagação de incertezas em problemas geomecânicos. Inicialmente,

baseado no método das funções de Green original proposto por Peres et al. (2021),

foi proposto uma versão iterativa do método Green-FOSM, que apresenta

resultados estatísticos semelhantes aos encontrados através da clássica simulação

de Monte Carlo (SMC). Nesta versão original, o campo de deslocamento é
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calculado usando um esquema numérico iterativo que diminui o desempenho

computacional do método e pode gerar problemas de convergência. Tais limitações

tem dificultado a aplicação do GFA original e do método Green-FOSM iterativo

em problemas reais. Assim, o presente trabalho desenvolveu uma nova versão do

GFA que utiliza um esquema numérico não-iterativo. Para os problemas de

validação analisados, o método não-iterativo demonstra ser até 17.5 vezes mais

rápido do que a versão original. Além disso, esta versão demonstra ser capaz de

expandir a aplicabilidade do GFA, pois os problemas de convergência foram

eliminados e os resultados obtidos por este método, ao analisar um perfil geológico

representativo do pré-sal brasileiro, são semelhantes aos encontrados via MEF. Por

fim, a partir do GFA não-iterativo foi proposta uma versão não-iterativa do método

Green-FOSM. Esta versão não-iterativa é capaz de analisar probabilisticamente

formações geológicas complexas, como é o caso das formações geológicas do pré-

sal brasileiro. Utilizando os mesmos recursos computacionais, o método Green-

FOSM não-iterativo é no mínimo 200 vezes mais rápido que o método iterativo. De

forma geral, os resultados encontrados nas análises realizadas (determinísticas e

probabilísticas) são próximos dos resultados obtidos pelo método de referência

(MEF e SMC, respectivamente).

Palavras-chave

Consideração de incertezas; Método das funções de Green; First-order
second-moment (FOSM); Problemas geomecânicos; Método probabilístico;
Teorema da reciprocidade.P

U
C

-R
io

-
C

er
ti

fi
ca

çã
o

D
ig

it
al

N
º

19
12

63
4/

C
A



Summary

1 Introduction...........................................................................................25

1.1. Motivation ...........................................................................................25

1.2. Objectives...........................................................................................28

1.3. Organization .......................................................................................28

2 State-of-art-review of uncertainties in geomechanics ......................30

2.1. Uncertainties consideration in geotechnical applications ...................30

2.2. Uncertainties consideration in geomechanical applications ...............34

3 Theoretical background.......................................................................37

3.1. Function of random variables .............................................................37

3.1.1. Functions of a single variable..........................................................38

3.1.2. Functions of two or more random variables ....................................39

3.1.3. Statistical moments of functions......................................................40

3.1.3.1. Statistical parameters of functions of a single variable ................41

3.1.3.2. Statistical parameters of functions of two or more random

variables ....................................................................................................42

3.1.3.3. Central limit theorem ....................................................................42

3.1.4. First-order second-moment method ................................................43

3.1.5. Monte Carlo simulation....................................................................43

3.2. Spatial variability of the mechanical properties of materials...............44

3.2.1. Covariance function and correlation length .....................................45

.................................................................48

n in elastically heterogeneous fluid-

saturated media using the first-order second-moment stochastic

..............................................50

Abstract .....................................................................................................50

4.1. Introduction.........................................................................................51

.................................................................54

4.2.1 Stress, fluid pressure change, and mechanical equilibrium .............54

4.2.2 Linear poroelasticity for heterogeneous problems............................55

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



4.2.3 Reciprocity theorem extended to linear, heterogeneous porous

media.........................................................................................................56

4.2.4 Numerical scheme............................................................................58

...........60

...................................60

4.3.2. Random variables, stochastic grid, and spatial variability of

properties...................................................................................................62

4.3.3. Numerical scheme for Green-FOSM method ..................................64

4.4. Numerical examples ...........................................................................65

4.4.1. Reservoir under uniform depletion with fully correlated or fully

uncorrelated random variables ..................................................................67

4.4.1.1. Moments and statistical response ................................................68

4.4.1.2. Displacement fields considering the uncertainties .......................71

4.4.1.3. CPU time comparison ..................................................................73

4.4.2. Reservoir under non-uniform depletion with spatially correlated

random variables .......................................................................................74

4.4.2.1. Moments and statistical response ................................................76

4.4.2.2. Displacement fields considering the uncertainties .......................78

4.5. Conclusions and remarks ..................................................................80

-

heterogeneous fluid- ..................................................83

5.1. Introduction ........................................................................................84

5.2. Theoretical background .....................................................................86

5.2.1. Linear poroelasticity for heterogeneous problems ..........................87

5.2.2. Reciprocity theorem applied to linear and heterogeneous porous

media ........................................................................................................87

5.2.3. Numerical scheme proposed by Peres et al. (2021) .......................89

5.2.3.1. Mathematical formulation .............................................................89

5.2.3.2. Limitations ....................................................................................90

5.3. Proposed numerical scheme..............................................................91

5.4. Validation ...........................................................................................94

5.4.1. h-convergence and material properties variation ............................96

5.4.2. CPU time comparison .....................................................................98

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



5.5. Application ........................................................................................100

5.6. Conclusion........................................................................................106

rocks in heterogeneous fluid-saturated media using non-iterative

Green's function approach and first-order second-moment stochastic

..................................................................................................108

6.1. Introduction.......................................................................................109

.............111

6.2.1. Linear poroelasticity applied to heterogeneous problems .............111

6.2.2. Reciprocity theorem extended to linear and heterogeneous porous

media.......................................................................................................112

6.3. Uncertainties evaluation using the non-

approach..................................................................................................114

6.3.1. FOSM based on non- ............115

6.3.1.1. First moment using non- .....116

6.3.1.2. Second moment using non-

.................................................................................................................118

6.3.2. Random variables, stochastic grid, and spatial variability of

properties.................................................................................................119

6.4. Validation study: Reservoir under uniform depletion ........................121

6.4.1. Validation regarding the spatial variability of the mechanical

parameters of the rocks...........................................................................122

6.4.2. CPU time comparison....................................................................126

6.5. Application: Uncertainties consideration in a Brazilian pre-salt

reservoir...................................................................................................127

6.6. Conclusions and remarks .................................................................134

7 Summary, conclusions, and future work .........................................137

7.1. Summary and general conclusions ..................................................137

7.2. Future research ................................................................................139

References .............................................................................................140

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



Appendix A Melan fundamental solution as an auxiliary solution ...155

.....................................................155

A.2. Complementary part.........................................................................156

Appendix B Numerical strategies for the treatment of singular points

.................................................................................................................158

B.1. Bartholomew quadrature..................................................................158

......................................................................159

Appendix C Frequency histograms and probability density function for

other reference points...........................................................................161

C.1. Random variables representing the horizontal and vertical

displacements of the problem with uniform depletion (Section 4.4.1)..... 161

C.2. Random variables representing the horizontal and vertical

displacements of the problem with non-uniform depletion (Section 4.4.2)

.................................................................................................................166

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



List of figures

Figure 1.1. Range of variation of the mechanical properties of rock (in (a)

26

Figure 3.1. Relation between the Random variables and (FENTON;

GRIFFITHS, 2008). ............................................................................38

Figure 3.2. Common 2D autocorrelation functions for geostatistical analysis

(normalized to unit scales of fluctuation) (LI et al., 2015). .................46

Figure 4.1. Scheme of the calculation process used in the Green-FOSM

method. .............................................................................................65

Figure 4.2. (a) 2D model used to simulate geological formation, (b) reservoir

under uniform depletion, and (c) reservoir under depletion and injection.

..........................................................................................................66

Figure 4.3. Mesh of triangular elements used in geomechanical analysis and

stochastic grid of statistical analysis of the example subjected to a

uniform fluid depletion process..........................................................67

Figure 4.4. Average difference between the results obtained by two MCS.

..........................................................................................................68

Figure 4.5. Frequency histograms and probability density function of the

random variable representing the vertical displacement of the reference

point 1. ..............................................................................................69

Figure 4.6. Relationship between the statistical moments obtained by

Green-FOSM method and by MCS. ..................................................70

Figure 4.7. Effect of uncertainties associated with the mechanical properties

of materials under the displacement field generated by a uniform

depletion process. (a) Lower and upper limits for 95% confidence

interval, (b) Deterministic results (mean values), (c) Green-FOSM lower

limit results, (d) MCS lower limit results, (e) Green-FOSM upper limit

results, and (f) MCS upper limit results. ............................................71

Figure 4.8. Horizontal and vertical displacements along Line 1 obtained after

the uniform depletion process. Graphs (a) and (c) present the results

for the totally correlated case and graphs (b) and (d) for the totally

uncorrelated case..............................................................................72

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



Figure 4.9. Relation between the CPU times needed to perform 3000

repetitions via MCS and the CPU times of the Green-FOSM method.

..........................................................................................................74

Figure 4.10. (a) Mesh of triangular elements used in geomechanical

analysis and (b) stochastic grid of statistical analysis of the example

subjected to a non-uniform fluid process...........................................75

Figure 4.11. Frequency histograms and probability density function of the

random variable representing the vertical displacement of the reference

point 1. ..............................................................................................77

Figure 4.12. Relationship between the statistical moments obtained by

Green-FOSM method and by MCS. ..................................................77

Figure 4.13. Effect of the uncertainties associated with the mechanical

properties of materials under the displacement field generated by a fluid

depletion and injection process. (a) Lower and upper limits for 95%

confidence interval, (b) Deterministic results (mean values), (c) Green-

FOSM lower limit results, (d) MCS lower limit results, (e) Green-FOSM

upper limit results, and (f) MCS upper limit results. ...........................78

Figure 4.14. Horizontal and vertical displacements along the upper edge of

the reservoir (Line 1 shown in Figure 4.10.a) obtained after the fluid

depletion and injection process. Graphs (a) and (c) present the results

for the totally correlated case and graphs (b) and the totally

uncorrelated case..............................................................................79

Figure 5.1. Geomechanical problem (real problem) (a) and auxiliary problem

(b) domains. ......................................................................................88

Figure 5.2. Layered cylinder geometry used for the numerical scheme

validation study. ................................................................................94

Figure 5.3. Meshes used in the validation study. The maximum normalized

sizes of the elements are (a) 0.0010, (b) 0.0025, (c) 0.0050, (d) 0.0075,

(e) 0.0100, (f) 0.0150, (g) 0.0200 e (h) 0.0500. .................................95

Figure 5.4. The relative error in displacement norm as a function of the

average element size. .......................................................................97

Figure 5.5. Comparison between the radial displacement results calculated

by GFA (solid line) and via the analytical solution (circle symbols). In

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



radial displacements of (b) are shown in detail. ................................97

Figure 5.6. (a) relative CPU time as a function of the average size of the

elements and (b) relative CPU time as a function of the elasticity

contrast between cap rock and reservoir rock...................................99

Figure 5.7. Representative 2D model of a geological section of the Brazilian

pre-salt. ...........................................................................................100

Figure 5.8. (a) horizontal and (b) vertical displacement along the dotted

segment defined in Figure 5.7.........................................................101

Figure 5.9. Vertical and horizontal displacement fields calculated from the

GFA (top) and FEM (bottom) after the injection and production process

indicated in Figure 5.7. ....................................................................102

Figure 5.10. Strain fields calculated from the GFA (top) and FEM (bottom)

after the injection and production process indicated in Figure 5.7...104

Figure 6.1. (a) real problem domain with reservoir region (subdomain )

and (b) auxiliary problem domain. ...................................................112

Figure 6.2. 2D model (plane strain state) used to represent the geological

formation. ........................................................................................122

Figure 6.3. Relationships between the statistical moments obtained by the

non-iterative Green-FOSM method and by MCS considering the CV

equal to 10%. In (a) the random variables are fully correlated, in (b) the

random variables are fully uncorrelated, and in (c) the random variables

are correlated following the exponential function described in Eq.

(6.20)...............................................................................................124

Figure 6.4. Relationships between the statistical moments obtained by the

non-iterative Green-FOSM method and by MCS considering the CV

equal to 20%. In (a) the random variables are fully correlated, in (b) the

random variables are fully uncorrelated, and in (c) the random variables

are correlated following the exponential function described in Eq.

(6.20)...............................................................................................125

Figure 6.5. Relative CPU times as a function of the number of random

variables in the model. ....................................................................126

Figure 6.6. Representative 2D model of geological section of the Brazilian

pre-salt field.....................................................................................128

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



Figure 6.7. Correlation variation among a reference point (located in the

center of the layer) and the other subdomains of the salt rock layer

as a function of horizontal and vertical correlation lengths. .............128

Figure 6.8. Vertical displacement fields obtained after the injection and

depletion process shown in Figure 6.6. In (a) the deterministic results

are shown, in (b) the displacements referring to the lower limit of the

95% confidence interval are shown, and in (c) the displacements

referring to the upper limit of the 95% confidence interval are shown.

........................................................................................................130

Figure 6.9. Vertical strain fields obtained after the injection and depletion

process shown in Figure 6.6. In (a) the deterministic results are shown,

in (b) the displacements referring to the lower limit of the 95%

confidence interval are shown, and in (c) the displacements referring to

the upper limit of the 95% confidence interval are shown. ..............131

Figure 6.10. Stress field variations obtained after the injection and depletion

process shown in Figure 6.6. In (a) the deterministic results are shown,

in (b) the displacements referring to the lower limit of the 95%

confidence interval are shown, and in (c) the displacements referring to

the upper limit of the 95% confidence interval are shown. ..............133

...155

Figure B.1. Mapping from the physical domain to the computational

domain . ......................................................................................158

Figure B.2. Position of integration points in the computational domain for

three levels of integration. ...............................................................159

Figure B.3. ied to the first sub-triangle of the

Bartholomew quadrature with integration level . ...........................159

Figure C.1. Frequency histograms and probability density function of the

random variable representing the horizontal (a-d) and vertical

displacement (e-h) of the reference point 1 (RF1) showed Figure 4.3.

........................................................................................................161

Figure C.2. Frequency histograms and probability density function of the

random variable representing the horizontal (a-d) and vertical

displacement (e-h) of the reference point 2 (RF2) showed Figure 4.3.

........................................................................................................162

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



Figure C.3. Frequency histograms and probability density function of the

random variable representing the horizontal (a-d) and vertical

displacement (e-h) of the reference point 3 (RF3) showed Figure 4.3.

........................................................................................................163

Figure C.4. Frequency histograms and probability density function of the

random variable representing the horizontal (a-d) and vertical

displacement (e-h) of the reference point 4 (RF4) showed Figure 4.3.

........................................................................................................164

Figure C.5. Frequency histograms and probability density function of the

random variable representing the horizontal (a-d) and vertical

displacement (e-h) of the reference point 5 (RF5) showed Figure 4.3.

........................................................................................................165

Figure C.6. Frequency histograms and probability density function of the

random variable representing the horizontal (a-b) and vertical

displacement (c-d) of the reference point 1 (RF1) showed Figure 4.10.

........................................................................................................166

Figure C.7. Frequency histograms and probability density function of the

random variable representing the horizontal (a-b) and vertical

displacement (c-d) of the reference point 2 (RF2) showed Figure 4.10.

........................................................................................................167

Figure C.8. Frequency histograms and probability density function of the

random variable representing the horizontal (a-b) and vertical

displacement (c-d) of the reference point 3 (RF3) showed Figure 4.10.

........................................................................................................168

Figure C.9. Frequency histograms and probability density function of the

random variable representing the horizontal (a-b) and vertical

displacement (c-d) of the reference point 4 (RF4) showed Figure 4.10.

........................................................................................................168

Figure C.10. Frequency histograms and probability density function of the

random variable representing the horizontal (a-b) and vertical

displacement (c-d) of the reference point 5 (RF5) showed Figure 4.10.

........................................................................................................169

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



List of tables

Table 2.1. Scientific studies on the consideration of uncertainties in

geomechanical problems ..................................................................31

Table 2.2. Scientific studies on the spatial variability of the mechanical

properties of materials in geotechnical applications ..........................32

Table 3.1. Common autocorrelation function for geostatistical analysis (LI et

al., 2015). ..........................................................................................46

Table 4.1. Parameters for the tilted block reservoir problem presented in

Section 4.4. .......................................................................................66

Table 5.1. Material, geometrical, and numerical data for the layered cylinder

problem used for validation. ..............................................................95

Table 6.1. Mechanical parameters of the rock that form the geological profile

used in this application. ...................................................................123

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



List of abbreviations and symbols

p.d.f. probability density function
p.m.f. probability mass function
c.d.f. cumulative distribution function
MCS Monte Carlo simulation
LHS Latin hypercube sampling

FOSM first-order second-moment method
GFA
FEM finite element method
SNX autocorrelation function of type single exponential
SQX autocorrelation function of type squared exponential
SMK autocorrelation function of type second-order Markov
CSX autocorrelation function of type cosine exponential
BIN autocorrelation function of type binary noise
CV coefficient of variation
flop floating point operations

random variable
sample space
probability functions of the random variable
cumulative distribution function of the random variable
probability of occurrence of the random variable
function that correlates the random variables and
inverse function of
region in space
Jacobian of the transformation

th statistical moment of the random variable
mean value of the random variable (first statistical moment)
variance of the random variable (second statistical moment)
vector of mean values
covariance between the random variables and

standard deviation of the random variable

mean value of the random variable

variance of the random variable

fluctuation scale

autocorrelation function

relative distance between points and
reservoir subdomain
problem domain

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



variation of the stress state
change in pore pressure
external field generated by body or surface forces
second-order strain tensor
displacement vector
fourth-order stiffness tensor

second-order Biot tensor

additional second-order stress tensor
virtual displacement vector
virtual strain tensor
variation of surfaces forces
horizontal or vertical displacement in the position
Biot coefficient
Kronecker delta
strains in the position obtained from the fundamental solution
number of triangular regions in subdomain

number of triangular regions in domain
(Chapter 4) or

number of nodes in the mesh of triangular elements (Chapter 5
and Chapter 6)

approach
vector of the partial derivatives of the displacements
matrix with the spatial variability of the input random variables
variation of the stress state
second-order strain tensor
fourth-order stiffness tensor
second-order Biot tensor
pore-pressure variation
Complementary stress tensor

fourth-order constitutive tensor
virtual displacement vector
virtual strain tensor
vector with the variation of surface forces
body forces vector
identity tensor
displacement vector at position

direction vector of the unit point load

volumetric strain variation

strain vector at position obtained from the auxiliary problem

strain vector calculated at position of the real problem

matrix of the derivatives of the shape functions

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



energy generated by the volumetric strain
complementary elastic energy
global vector of nodal displacements
internal radius (reservoir)
reservoir bulk modulus (core)
reservoir shear modulus (core)
external radius (cap rock)
cap rock bulk modulus
cap rock shear modulus
bulk modulus of the infinite space
shear modulus of the infinite space

volume of the layered cylinder
random variable representing the Biot coefficient
random variable representing the Young's modulus of the
infinite medium

medium
random variable representing the Young's modulus

random variables representing global vector of nodal
displacements

vector of dimension that contain the partial derivatives

matrix that considers the spatial variability of input random
variables
horizontal correlation lengths
vertical correlation lengths

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



As far as the laws of mathematics refer to reality,

they are not certain, and as far as they are certain,

they do not refer to reality.

Albert Einstein
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The oil industry is one of the most important worldwide industries, since oil

and natural gas are the main commodities traded in the international market

(BAFFES; NAGLE, 2022). In Brazil, in recent decades, oil production has been

boosted by the discovery of pre-salt reservoirs. According to Petrobras1, the average

daily production of oil in the pre-salt layer increased from 41 thousand barrels in

2010 to 2.0 million barrels in 2020. Data from the bp Statistical Review of World

Energy 20222 reveal that Brazil produced around 3.0 million barrels of oil and

natural gas in 2022, being that more than 2/3 of Brazilian production comes from

pre-salt reservoirs. Oil extraction in pre-salt reservoirs, whose depth varies between

5 and 7 km, is a complex task that contains several uncertain factors. The present

work seeks to consider the influence of some of these factors on the geomechanical

response of a geological formation subjected to the process of fluid injection or

depletion.

1.1.
Motivation

The physical phenomena associated with the process of fluid injection or

depletion present different degrees of complexity and uncertainties. Historically,

most engineering problems have been analyzed using deterministic approaches.

Such approaches can generate low precision results, which do not represent all

possible answers to the problem (APOSTOLOPOULOU et al., 2019; PEREIRA et

al., 2014a; PEREIRA, 2015; WANG et al., 2016).

In its natural state, rocks are among the most variable engineering materials

(FENTON; GRIFFITHS, 2008). As shown in Figure 1.1, this natural variability is

1 https://petrobras.com.br/pt/nossas-atividades/areas-de-atuacao/exploracao-e-producao-de-
petroleo-e-gas/pre-sal/

2 https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-
economics/statistical-review/bp-stats-review-2022-full-report.pdf
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illustrated by the ranges of variation of mechanical properties (Young's modulus,

Figure 1.1.a, and Poisson's coefficient, Figure 1.1.b) of different rock types.

(a)

(b)

Figure 1.1.

(JOHNSON; DEGRAFF, 1988).

These and other uncertainties can be incorporated into the geomechanical

response using a probabilistic approach. For this, the input parameters and the

results obtained through the geomechanical analysis are admitted as random

variables (LI; SARMA; ZHANG, 2011). In this way, the process of interpreting the

results is not carried out based on the evaluation of a deterministic point result, but

on the statistical parameters (mean value, variance, probability density function and

others) of the random variable that represents the answer to the geomechanical

problem.

The present work aims to incorporate the uncertainties associated with the

spatial variability of the mechanical properties of rocks
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ratio, and Biot coefficient) to the geomechanical results generated by the

fluid injection and/or extraction process. Through these results, it is possible to

probabilistically analyze different types of phenomena associated with pore

pressure variation, for example, swelling or compaction of the reservoir rock, the

subsidence of the free surface, and fault reactivation. From an environmental point

of view, these results can help reservoir engineers in the decision-making process

in terms of CO2 storage in underground formations.

In this process, the uncertainties associated with the input random variables

(mechanical properties of materials) are propagated to the random variables that

represent the answer to the problem (displacement, strain, and stress fields) using

exact or approximate statistical methods. Exact methods use the concept of

functions of random variables, in which the probability density functions (p.d.f.) of

the output random variables are analytically calculated using a function

and the p.d.f. of the input random variables (FENTON; GRIFFITHS, 2008).

For complex functions, such as the functions that govern geomechanical

problems, the use of exact methods becomes unfeasible. In these situations, the

propagation of uncertainties can be performed through approximate statistical

methods such as the Monte Carlo simulation (MCS), Latin hypercube sampling

(LHS), and the first-order second-moment (FOSM) method.

Due to its simplicity and ease of implementation, the MCS has been the most

used statistical method in problems related to the propagation of uncertainties (LIU,

2004). However, this method requires a huge number of realizations (repetitions)

which, in general, requires a large computational effort. This makes it unfeasible

for the treatment of complex problems, as is the case of the problems treated in this

work. In this scenario, the FOSM method appears as an appropriate statistical

method, since it is computationally efficient and applicable to the variability range

of the input random variables.

Given this context, the present work proposes a new method for considering

uncertainties in geomechanical problems, which aims to improve the decision-

making process regarding the problems associated with the processes of recovery

and storage of fluids (water, oil, natural gas, or CO2) in underground reservoirs. The

novelty of the proposed method lies in the use of Green's function approach (GFA),

which uses the fundamental solutions of classical mechanics (Kelvin, Melan,
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Mindlin, or others) to propagate the uncertainties related to the mechanical

properties of materials to the displacement, strain, and stress fields of the geological

formation.

1.2.
Objectives

The main objective of this research is to develop a mathematical method for

considering the uncertainties associated with the mechanical properties of materials

(rocks) in geomechanical problems submitted to the process of fluid injection

and/or depletion in underground reservoirs.

The specific objectives are: (1) to extend the deterministic and iterative

GFA, originally proposed by Peres et al. (2021) 3, to the statistical case in order to

consider the uncertainties associated with the heterogeneity and variability of the

mechanical properties of the rocks in the geomechanical response of the problem;

(2) to eliminate the iterative calculation process from the original deterministic

GFA in order to improve its computational performance and, at the same time,

eliminate the convergence problems observed in the original version; (3) to extend

the non-iterative GFA formulation to the statistical case; and (4) study the effect of

the spatial variability of the mechanical properties of rocks on the displacement,

strain and stress fields of a geological section based on the Brazilian pre-salt layer.

1.3.
Organization

The organizational structure of this thesis follows the manuscript format, in

which the standard thesis chapters are replaced by manuscripts that have been either

published or submitted for publication in peer-reviewed international journals. To

orient the reader, Chapter 2 provides a literature review on the consideration of

uncertainties in geotechnical and geomechanical problems. Chapter 3 presents the

fundamental statistical concepts related to the theoretical developments shown in

the other chapters of the document. Chapter 4

consideration in elastically heterogeneous fluid-saturated media using first-order

3 Original G proposed by Matheus L. Peres, Leonardo C. Mesquita,
Modelagem Geomecânica do

Pré-Sal -Rio in partnership with TotalEnergies.
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published in Applied Mathematical Modeling Journal. This chapter deals with the

extension of the original GFA (deterministic and iterative) to the statistical

approach. Chapter 5 consists of -

function approach for unbounded heterogeneous fluid-

submitted to the International Journal for Numerical and Analytical Methods in

Geomechanics. This chapter proposes a new formulation to the original GFA,

which expands the applicability of the deterministic method and simultaneously

eliminates the original iterative calculation process, which greatly improved the

computational performance. Chapter 6 presents the manuscript n of the

spatial variability of the mechanical properties of rocks in heterogeneous fluid-

saturated media using non-iterative Green's function approach and first-order

which was submitted to Applied Mathematical

Modeling Journal. In this chapter, the non-iterative GFA is extended statistically

and the effect of spatial variability of the mechanical properties of rocks that make

up a geological formation of the Brazilian pre-salt is analyzed. Lastly, Chapter 7

summarizes the findings of this research and discusses directions for future work.

An extensive list of references is provided after Chapter 7. The computational

methods developed within the scope of this work were implemented using the

Python language.
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Consideration of uncertainties associated with a given process is an essential

part of any engineering project. An analysis that aims to provide data about the

behavior of a given problem must be able to offer an assessment of the uncertainties

associated with these data. Without this assessment, the actions taken based on this

data are questionable (PEREIRA, 2015).

Nowadays, works related to the quantification of uncertainties can be found

in several areas of knowledge, such as medical sciences (KOMPA; SNOEK;

BEAM, 2021; SHAN et al., 2020), environmental sciences (BESSAR; ANCTIL;

MATTE, 2021; MIRDAR HARIJANI; MANSOUR, 2022), economics (MEGLIN;

KYTZIA; HABERT, 2022), urban planning (PANDEY; DONGRE; GUPTA,

2020; TEBYANIAN et al., 2022), applied mathematics (WANG et al., 2021), and

nuclear engineering (FEDON et al., 2021). Most of these works are based on

concepts of classical probability theory (LOÈVE, 1977). However, in the literature

there are other methodologies for the quantification of uncertainties, for example,

the theory of imprecise probabilities (ASLETT; COOLEN, 2020), the theory of

possibility (DUBOIS; PRADE, 1998a, 1998b; GEORGESCU, 2012), and the

theory of evidence (KOHLAS; MONNEY, 1994; SHAFER, 1976). The statistical

developments presented in the next sections are based on classical probability

theory.

2.1.
Uncertainties consideration in geotechnical applications

Soils and rocks in their natural state are among the most variable of all

engineering materials (FENTON; GRIFFITHS, 2008). A thorough literature review

on the subject revealed that, over the last few decades, several studies that deal with

the consideration of uncertainties in geotechnical applications have been developed.

Table 2.1 summarizes some of the most prominent research on the consideration of

uncertainties in geomechanical applications found in the literature.
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Table 2.1. Scientific studies on the consideration of uncertainties in geomechanical

problems

Author(s) Application(s)

Brzakala and Pula (1996)

consider the randomness related to the location of the interface

between the layers, the properties of materials, and the acting load

in the calculation of the settlement of shallow foundations

Griffiths and Fenton

(1997)

deal with the steady seepage through a three-dimensional soil

domain in which the permeability is randomly distributed in space

Cai (2011)

presents a study that quantifies uncertainties associated with the in-

situ stress field, rock mass strength parameters, and deformation

modulus in tunnel and cavern design

Bungenstab and Bicalho

(2016)

perform probabilistic evaluation to assess the variability of footing

settlements on sandy soil

Yu et al. (2020)
propose a mathematical method to consider the uncertainties related

to soil parameters in pile designs for landslide stabilization

Ahamed et al. (2021)
consider uncertainties associated with geotechnical properties in the

design of bridge foundations

Franke and Olson (2021) incorporates uncertainties in predicting soil liquefaction risk

Pang et al. (2021)
considers uncertainties associated with soil properties in dynamic

slop analysis

Blondeel et al. (2022)
analyze cohesion as a random field in the calculation of slope

stability

Mazraehli et al. (2022) introduce uncertainties in the analysis of underground excavations

Zarrin et al. (2022)
consider the uncertainties associated with the mechanical properties

of the soil in the modeling of jacket offshore platforms

As can be seen, in these works the main geomechanical problems

(foundation settlement, seepage, stress and deformation in soils and rocks, slope

stability, and soil liquefaction risk) are analyzed probabilistically assuming some

degree of uncertainty. These works demonstrate that a probabilistic approach must

be employed when analyzing a geotechnical problem. Bungenstab and Bicalho

(2016) affirm that geotechnical analysis based on conventional deterministic

approaches, using safety factors, is highly dependent on available mathematical

models and information obtained in the field, which most often do not accurately

describe the characteristics of materials. According to Cai (2011), the variability of

soil and rock properties is intrinsic and subjective and has a considerable influence

on decision-making in geotechnical problems. In this study, the influence of

variability is highlighted when analyzing the radial displacements of a tunnel,
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which, due to uncertainties, can be up to 65% greater or less than the value found

using a deterministic approach. Even greater variation is found by Mazraehli et al.

(2022) when analyzing the stress field of an underground excavation, which can

assume values up to 80% higher than the values obtained deterministically. Pang et

al. (2021) say that traditional analysis methods, with a single factor of safety, cannot

consider the variations of the various facts involved in geotechnical problems and,

therefore, methods based on statistical concepts can provide a solid basis for the

decision-making. According to Yu et al. (2020), the mechanical properties of the

in-situ soil are highly variable, which makes it difficult to determine a single set of

optimal parameters to be used in deterministic analyses. As a result, statistical

methods that consider the uncertainties associated with these problems have been

widely used.

In addition to the aforementioned studies, there are several geotechnical

applications in the literature that deal with the spatial variability of the mechanical

properties of materials. The scientific studies in Table 2.2 are used as a reference

for the construction of the stochastic random field that defines the spatial variability

of the mechanical properties of rocks adopted in Chapters 4 and 6. This table

presents a brief description of these studies and the main conclusions found by the

authors.

Table 2.2. Scientific studies on the spatial variability of the mechanical properties of

materials in geotechnical applications

Author(s) Description(s) and main conclusion(s)

Srivastava and Babu

(2009)

consider the effect of the spatial variability of the mechanical

properties of the soil in the bearing capacity analysis of a shallow

foundation resting on a clayey soil and in the analysis of stability

and deformation pattern of a cohesive-frictional soil slope; the

results obtained demonstrate that the spatial variability of the

mechanical properties of the soil considerably influences the

performance of the evaluated geotechnical applications
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Table 2.2. Scientific studies on the spatial variability of the mechanical properties of

materials in geotechnical applications (continuation)

Author(s) Description(s) and main conclusion(s)

Suchomel and Masín

(2010)

consider the spatial variability of cohesion and friction angle in

slope stability analyses using three statistical methods (classic

FOSM; modified FOSM; and probabilistic reference method based

on FEM); the spatial variability of the mechanical properties under

analysis are introduced using a modified FOSM method; the results

demonstrate that the probability of failure is satisfactorily

calculated by the modified FOSM when the standard deviation of

the input random variables decreases or when their correlation

lengths increase; these authors conclude that the modified FOSM

method may provide a good estimate of the probability of slope

failure

Cho (2012)

performs a probabilistic analysis of seepage through an

embankment on soil foundation to study the effects of uncertainty

due to spatial heterogeneity of hydraulic conductivity on the

seepage flow; the spatial variability of the hydraulic conductivity is

considered through a Gaussian random field described by an

exponential autocorrelation function (this function is presented in

Section 3.2.1 of this document); the results demonstrated that the

correlation distances of the autocorrelation function have a

significant influence on the seepage flow

Li et al. (2015)

propose a multiple-response surface method for slope reliability

analysis considering spatially varying soil properties; differences

between results obtained using five theoretical 2-D autocorrelation

functions are systematically compared (these functions are

presented in Section 3.2.1); these results demonstrate that the SQX

(squared exponential) and SMK (second-order Markov) type

autocorrelation functions can characterize the spatial correlation of

soil properties more realistically

Wang et al. (2020)

propose an effective method for identification of representative slip

surfaces of slopes with spatially varied soils within the framework

of limit equilibrium method, which utilizes an adaptive K-means

clustering approach; the spatial variability of soil mechanical

properties is incorporated into the problem using an exponential

autocorrelation function; the results obtained by the proposed

method are compatible with the results obtained via Monte Carlo

Simulation
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In general, all the works presented in this section exemplify the importance

of considering the different types of uncertainties in the analysis of geotechnical

problems. Furthermore, due to the heterogeneity and inherent spatial variability of

rock formations found in geomechanical problems, it is understood that these types

of problems must take into account the different sources of uncertainties, as is done

in geotechnical applications.

2.2.
Uncertainties consideration in geomechanical applications

As demonstrated in the previous item, several studies have been done on the

consideration of uncertainties in geotechnical applications over the last few

decades. However, in the geomechanical field, especially in the area of reservoirs,

the literature review revealed that this type of approach has been used scarcely. The

few studies encountered are described next.

Muller et al. (2009a) and Muller et al. (2009b) consider the influence of the

spatial variability of hydraulic and mechanical properties on the elastoplastic

behavior of the rock mass when analyzing the stability of oil producing wells. In

both works, statistical analyzes are performed using a finite element program

developed by these authors. To analyze this same type of problem, Batalha et al.

(2020) present a 2D stochastic geomechanical model based on the MCS, in which

a spatially correlated random field is used to consider the variability of the Young's

modulus of the rocks that make up the geological formation.

Pereira et al. (2014b) quantify the uncertainties associated with the

reactivation of geological faults using the non-probabilistic method of evidence

theory. Seithel et al. (2019) use MCS to consider geological uncertainties in fault

reactivation problems in the Bavarian Molasse Basin (Germany). Rossi et al. (2020)

present a study that quantifies uncertainties related to the effects of local fault

surface orientation, pore pressure fluctuations, and friction coefficient variability in

a fault reactivation problem in the Val d'Agri oil field (Italy). Using data obtained

from the reactivation of geological faults, Zoccarato et al. (2019) propose a

mathematical model to quantify and reduce the uncertainties associated with

seismic event modeling, which are generated by the injection or extraction process

of fluids in underground reservoirs. For this, these authors use the finite element

method (FEM) together with the MCS and the Polynomial Chaos expansion
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method. Bourne et al. (2015) also use MCS to probabilistically analyze the seismic

risk induced by the production of natural gas in a reservoir in the Groningen field

(Netherlands).

In the specific area of reservoir engineering there are few applications.

Pereira et al. (2016) use a non-probabilistic method based on the theory of evidence

to introduce the uncertainties associated with the mechanical properties of rocks in

subsidence and compaction problems. Bottazzi and Della Rossa (2017) use the

MCS to quantify the uncertainties associated with the geomechanical analysis of

underground reservoirs. Mahdi Rajabi et al. (2022) developed a study that aims to

minimize the risks associated with geological uncertainties in CO2 storage problems

through an application that combines a multiphase numerical model, artificial

neural networks and MCS.

All these works highlight the importance of considering uncertainties in

different types of geomechanical problems. In the case of well problems, Muller et

al. (2009a) and Muller et al. (2009b) emphasize that the results obtained

deterministically can lead to evaluations that do not represent the real situation.

These studies demonstrate that the variability of the mechanical parameters of the

rocks has a great influence on the results obtained from three-dimensional analyzes

of wells. In addition, they also affirm that the variability of response variables

(stresses, strains, and displacements) increases as the variability of rock properties

increases. The examples analyzed by Batalha et al. (2020) demonstrate that, due to

the uncertainties associated with the Young's modulus, the mud pressure considered

safe for drilling a well calculated deterministically can be up to twice as high as the

pressure calculated statistically. Thus, this uncertainty has a great influence on the

stability of wells. Pereira et al. (2014b) point out that a reliable geomechanical

analysis (in this case, a fault reactivation analysis) must take into account the

inherent uncertainties associated with the rocks that make up the geological

formation. Using a hypothetical example, these authors demonstrate that the pore-

pressure variation that causes fault reactivation, obtained through a probabilistic

analysis, can be up to 27% smaller than the deterministic calculated variation.

As in the previous section, the works presented in this section demonstrate

the need to incorporate the uncertainties associated with the process of fluid

injection or depletion in the analysis of geomechanical problems. As can be seen,

in most of the studies found in the literature, the MCS is used to propagate the
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uncertainties of interest. However, in general, this method is computationally

expensive, which limits its application in complex geomechanical problems.

Therefore, the present work seeks to propose a computationally efficient

methodology that, at the same time, allows for the consideration of uncertainties

associated with the mechanical properties of rocks.
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This chapter provides a review of the theoretical concepts related to the

developments that are presented in the next chapters of this document.

3.1.
Function of random variables

As previously mentioned, the developments presented in the next chapters

are formulated using the concepts of probability theory (LOÈVE, 1977). Applying

these concepts, the mechanical properties of the rocks that form the geological

profile and the responses (displacement, strain, and stress fields) obtained through

geomechanical analysis can be treated as random variables.

Conceptually, random variables are used to represent a set of possible

events. According to Fenton and Griffiths (2008), will be a random variable if it

is defined by a function that assigns a real number to each result , where

is the sample space formed by the set of results .

Random variables can be discrete or continuous. Discrete random variables

are those that assume only discrete values and they are described by a

probability mass function (p.m.f.). Continuous random variables can assume an

infinite number of possible outcomes (i.e., usually takes values from the real line

) and they are defined by a probability density function (p.d.f.). In both cases, the

probability functions of the random variable are mathematically represented by

. An additional description of the random variable is done through the

cumulative distribution function (c.d.f.), , defined by

(3.1)

or

(3.2)

where is a discrete or continuous random variable, respectively.
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As cited by Fenton and Griffiths (2008), one of the main reasons for using

random variables is the possibility of performing mathematical calculations that

implicitly consider the set of possible events. As shown in the following section,

the random variables resulting from these mathematical calculations can be

obtained exactly or approximately.

3.1.1.
Functions of a single variable

Problems containing a single random variable can be solved in an exactly

using the following methodology. Consider that the random variable (whose p.d.f.

is unknown) can be calculated in terms of the random variable (whose p.d.f. is

known) using the function

. (3.3)

When takes a specific value, that is, when , we can compute .

If we assume that is defined by the one-to-one function illustrated in

Figure 3.1, then the probability of will be exactly equal to the probability of

. Since the two probabilities are equal, we can calculate the height of p.d.f. of

in the neighborhood of . Analyzing the same situation in the neighborhood of

, it can be seen that the height of p.d.f. of close to depends not only on the

area (which is the probability that is in the neighborhood of ), but also on

the slope of at point . In this way, as the slope decreases, the height of

increases.

Figure 3.1. Relation between the Random variables and (FENTON; GRIFFITHS, 2008).
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Applying the concept of c.d.f. to two regions (such as the regions shown

in Figure 3.1) that have the same probabilities of occurrences results in the

following

(3.4)

where . The p.d.f. can be calculated by differentiating the c.d.f. with

respect to , which results in

(3.5)

Eq. (3.4) is obtained assuming that always increases when increases. However,

if decreases when increases, the probability of will be determined from

the probability of . To consider these two cases (and since the probability

values are always positive), the absolute value of the term is used in

Eq. (3.5). Furthermore, this equation demonstrates that increases when the

inverse of the slope increases.

When is not a one-to-one function, the probabilities of all the

values which lead to each are added into the probability that . That is if the

values , , , lead to the same value of , the result is the following

(3.6)

The number of terms usually depends on , so this computation over all can be

quite difficult (FENTON; GRIFFITHS, 2008).

3.1.2.
Functions of two or more random variables

The joint probability distribution of random variables in terms

of the joint distribution of can also be calculated exactly using the

following methodology. Consider the functions
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(3.7)

where the functions are obtained by inverting the (given) functions.

As shown in Eq. (3.5), the distribution of in terms of is obtained by the

product of and the derivative . This methodology can be

generalized to the case of several random variables. In this case, the joint probability

distribution of is given by

(3.8)

where is the region in space which corresponds to the possible values of ,

specifically

(3.9)

and is the Jacobian of the transformation

(3.10)

3.1.3.
Statistical moments of functions

In many cases, the complete probability distribution calculated from a

function of random variables is difficult to be determined. In these situations, it may

be interesting to approximately obtain at least the mean value and the variance of

the output random variables resulting from these functions. According to Fenton

and Griffiths (2008), calculating only these statistical parameters is usually easier

than calculating the complete probability distribution. Furthermore, the central limit

theorem can often be invoked to suggest that the final distribution is normal or

lognormal.
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3.1.3.1.
Statistical parameters of functions of a single variable

If is a function of random variables that allows calculating in terms of

, the th statistical moment of will be given by

(3.11)

Depending on how it is formulated, there are different levels of approximation for

the calculation of these moments. To show this, consider the expansion of the

function in terms of Taylor series centered on the mean value of the

random variable

(3.12)

A first-order approximation is obtained by truncating Eq. (3.12) after the

first two terms, which results in

(3.13)

(3.14)

where and represent the mean value (first moment) and the variance

(second moment) of the random variable , respectively. The second-order

(3.15)

(3.16)
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The second-order approximation is more accurate. However, it requires

knowledge of the third and fourth statistical moments of , which are difficult to

estimate.

3.1.3.2.
Statistical parameters of functions of two or more random variables

If is a function of the random variables , then the

corresponding Taylor series expansion is defined by

(3.17)

where is the vector of mean values. The first-order approximations of the mean

value and variance of are

(3.18)

(3.19)

The mean value of the second-order approximation is defined by

(3.20)

The variance obtained from the second-order approximation is difficult to express

mathematically because it involves quadruple summations and fourth-order

moments.

3.1.3.3.
Central limit theorem

According to the central limit theorem, the sum or product of a large number

of random variables, regardless of the type of distribution, tends to result in random

variables that follow a normal (Gaussian) or log-normal p.d.f., respectively (BECK,

2019). This theorem is often used to justify the choice of a particular type of

distribution, especially in cases where the p.d.f. cannot be defined exactly.
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3.1.4.
First-order second-moment method

The first-order second-moment (FOSM) method is based on the expansion

of the function in terms of Taylor series centered on the mean values

of the random variables . In this method, Eq. (3.17)

is truncated after the linear term, hence the name "first-order". The truncated

equation is then used to determine the first two statistical moments of the output

random variables, hence the - According to Benaroya and

Han (2005), the FOSM method is basically a formalized methodology based on a

first-order Taylor series expansion as defined by Eq. (3.13) and Eq. (3.14), for

functions with only one random variable, or Eq. (3.18) and Eq. (3.19), for functions

with two or more random variables.

In Eq. (3.19) and Eq. (3.20) the term refers to the covariance

between the random variables and , which is defined by

(3.21)

can also be written as a function of the correlation coefficient

(3.22)

where and are the standard deviations of the variables and ,

respectively.

3.1.5.
Monte Carlo simulation

Monte Carlo simulation (MCS) is an approximate statistical method used to

solve problems involving randomness. In this method, the p.d.f. of the output

random variables are defined from the equations that govern the deterministic

problem. These equations are then solved several times using different input

parameters, which are randomly extracted from a given sample space.

In general, this method provide

(BENAROYA et al.,

2005). However, these methods are computationally expensive, and their use is
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indicated for validation and/or complementation of other statistical methods

(LÖFMAN; KORKIALA-TANTTU, 2021; QI et al., 2022; WU et al., 2021).

3.2.
Spatial variability of the mechanical properties of materials

The mechanical properties of soils and rocks can be analyzed as random

variables due to their inherent spatial variability (VANMARCKE, 2010). This

spatial variability can be understood considering the following situation: during the

characterization of the geological formation, samples are extracted at two different

points located within the same geological layer. If these two points are close, the

mechanical properties are expected to be similar and close to the mean value (small

fluctuation). If these points are distant, it is expected that these properties are more

dispersed in relation to the mean value (great fluctuation), due to the presence of

impurities, inhomogeneities generated during the formation process of the rock

layer, fragmentation, or other causes. This fluctuation is measured using a scale,

which describes the variability of these properties in space.

In this work, the spatial variability of the mechanical properties of the rocks

is incorporated into the geomechanical problems through Gaussian and stationary

stochastic random fields. Gaussian random fields are fully characterized by the

mean value and variance of the input random variables. In stationary random fields,

the marginal p.d.f. are constant at any point located in the problem domain, however

the joint p.d.f. vary and depend only on the relative positions between these points.

These considerations (Gaussian and stationary) make the mean value, variance, and

higher-order moments constant within the problem domain. Fenton and Griffiths

(2008) mention that the use of non-stationary correlation structures is uncommon

in geotechnical and geomechanical problems due to the prohibitive amounts of data

needed to estimate their parameters.

Gaussian and stationary random fields are characterized by three

parameters: the mean value , the variance , and the fluctuation scale , which

defines how the random variables vary spatially. According to Vanmarcke (2010),

this last parameter is characterized by the second moment of the joint p.d.f. of the

random field variables, which can be considered by the covariance function, by the

spectral density function, or by the variance function. The first method is used in

the applications presented in this work.
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3.2.1.
Covariance function and correlation length

The second moments of a Gaussian random field can be considered using

the definition of covariance from Eq. (3.21). However, this approach does not

provide information about the degree of linear dependence between random

variables and . In this situation, a more meaningful measure can be

obtained using the autocorrelation function

(3.23)

where the parameters and represent the relative horizontal and vertical

distances between points and , and the parameters and are the standard

deviations of the random variables and , respectively.

This linear dependence can also be interpreted using the concept of

correlation length , also called fluctuation scale. In general, this parameter

represents the distance at which the random variables and are

significantly correlated (VANMARCKE, 2010). When the autocorrelation function

assumes values close to zero, the mechanical properties of the materials vary

considerably around the mean value and, in this case, the random variables that

represent these properties are weakly correlated. On the other hand, when this

function assumes values close to one, the mechanical properties present low

variability, and they are strongly correlated. According to Li et al. (2015), it is

important to estimate the fluctuation scale accurately because it plays a key role in

characterizing the spatial variability of the mechanical properties of soils and rocks.

Although there are methods that propose ways to quantify this scale in the field

(LLORET-CABOT; FENTON; HICKS, 2014; UZIELLI; VANNUCCHI;

PHOON, 2005), they are difficult to use because they require large amounts of data.

As a result, theoretical functions have been used to characterize the spatial

correlation of random variables in geotechnical problems. Table 3.1 and Figure 3.2

present some of these theoretical functions.
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Table 3.1. Common autocorrelation function for geostatistical analysis (LI et al., 2015).

Type Function 2D

Single exponential (SNX)

Squared exponential (SQX)

Second-order Markov (SMK)

Cosine exponential (CSX)

Binary noise (BIN)

(a) SNX

(b) SQX

Figure 3.2. Common 2D autocorrelation functions for geostatistical analysis (normalized

to unit scales of fluctuation) (LI et al., 2015).
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(c) SMK

(d) CSX

(e) BIN
Figure 3.2. Common 2D autocorrelation functions for geostatistical analysis (normalized

to unit scales of fluctuation) (LI et al., 2015) (continuation).
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3.3.

The Green's function approach (GFA) was originally proposed by Matheus

L. Peres, Leonardo C. Mesquita, Yves M. Leroy, and Elisa D. Sotelino within the

Modelagem Geomecânica do Pré-Sal

by PUC-Rio in partnership with TotalEnergies. The initial version of this method

was published in 2021 by the International Journal for Numerical and Analytical

heterogeneous and non-linear fluid-

(PERES et al., 2021)4.

This method uses the classic Green functions (Kelvin's fundamental

solution, Melan's fundamental solution, Mindlin's fundamental solution, or others)

as an auxiliary solution that together with the reciprocity theorem calculate the

variation of the displacement field of a geological formation subjected to fluid

injection and/or extraction processes. This approach has no limitations in terms of

geometry, number of layers, and heterogeneity of the geological profile and can be

applied to materials with linear or non-linear behavior. Compared to the classic

finite element method (FEM), the great advantage of the GFA is that it does not

require the imposition of boundary conditions, and the analysis of the problem can

be performed considering only the reservoir or other regions of interest.

In general, when analyzing a geomechanical model using FEM it is

necessary to discretize a large region around the domain of interest (here called the

semi-infinite medium) in order to represent the continuity of the geological profile

and reduce the effect of boundary conditions on this region of interest. This

increases the number of degrees of freedom of the problem and, consequently, the

CPU time of the analysis. Thus, to obtain the deterministic response of complex 3D

models, it may need a CPU time of the order of hours or days. In these situations,

it is certainly not computationally feasible to obtain the statistical answer to the

problem. When using the GFA, it is not necessary to perform the discretization of

the semi-infinite medium, which reduces the CPU time of the analysis. At the same

time, this makes the GFA a computationally viable method to consider the inherent

uncertainties contained in geomechanical problems. The GFA can also be classified

4 DOI: 10.1002/nag.3204
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as an analysis method for unbounded problems because the domain around

reservoir regions is treated as infinite or semi-infinite. The GFA formulation and its

extension to consider the uncertainties associated with the mechanical properties of

materials in geomechanical problems are detailed in the next chapters.
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Paper published by Leonardo C. Mesquita, Elisa D. Sotelino, and Matheus

L. Peres in the Applied Mathematical Modelling5.

Abstract

The present work proposes a stochastic statistical method, called Green-

FOSM, to consider the uncertainties associated with the mechanical properties of

rocks that form geological profile. This method intended to help improve the

decision-making process associated with the production of oil and gas, the

extraction of water, and the storage of CO2 or natural gas. The novelty of the method

ich, together with the FOSM

method (first-order second-moment method), is used to propagate uncertainties

associated with the material to the displacement field of the geological formation.

Furthermore, using the concepts of stochastic grid and autocorrelation function, the

proposed method allows the consideration of the spatial variability of the random

variables that represent these mechanical properties. This method is applied to a 2D

model subject to two processes of pore pressure changes (depletion only and

depletion combined with injection) with different levels of correlation and

variability. The statistical results obtained by the proposed method agree well with

the results obtained using Monte Carlo simulation. In problems with more than

1500 random variables, the relationship between the CPU times demonstrates that

the proposed method is up to 30 times faster than the Monte Carlo simulation.

5 DOI: 10.1016/j.apm.2022.11.012
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4.1.
Introduction

Human activities related to the process of fluid injection or depletion in

underground reservoirs, such as the production of oil and gas (MINKOFF;

KRIDLER, 2006; MORGAN; LEWIS; WHITE, 1980), the extraction of water

(TEATINI et al., 2006), and the storage of CO2 or natural gas (FERRONATO et

al., 2010; NAGELHOUT; ROEST, 1997; TEATINI et al., 2011), generate changes

in the displacement, strain, and stress fields in the geological formation. As a direct

consequence of these changes, there is the swelling or compaction of the reservoir

rock and, consequently, the subsidence of the free surface (BAÙ et al., 2015). These

changes can also generate secondary effects as, for example, wellbore collapse and

offshore platform failure (MINKOFF; KRIDLER, 2006), decreased production due

to reduced porosity and permeability of the geological formation (FERRONATO

et al., 2006), fault reactivation, and seismic events (BOURNE et al., 2014;

PAULLO MUÑOZ; ROEHL, 2017; VERDON et al., 2016). In the last decades,

several examples of subsidence due to fluid depletion have been reported in various

places such as Wilmington field in the USA (COLAZAS; STREHLE, 1995),

Boscan field in Venezuela (FINOL; SANCEVIC, 1995), Ekofisk field in Norway

(HERMANSEN et al., 2000; KRISTIANSEN; PLISCHKE, 2010), Dan field in

Denmark (HATCHELL et al., 2007), Groningen field in Netherlands (VAN

THIENEN-VISSER; FOKKER, 2017), Lower Loathe Plain in China (SUN et al.,

2017). From an environmental point of view, changes in the displacement, strain,

and stress fields can modify the transport of solutes in underground aquifers.

According to Bonazzi et al. (2021), the water-level decline associated with

subsidence modifies hydrological fluxes and can lead to deterioration of water

quality, due to a greater probability of seawater or wastewater infiltration in the

aquifer. In addition, the fault reactivation process can increase the likelihood of

aquifer contamination. These events have motivated the development of analytical

and numerical methods to predict changes in the displacement, strain, and stress

fields.

Among the analytical methods proposed to date, one of the most renowned

is the method proposed by Geertsma (GEERTSMA, 1957, 1973a, 1973b), which is

based on the theory of poroelasticity and nucleus-of-strain concept (LEWIS;
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MORGAN; WHITE, 1983; MINDLIN; CHENG, 1950). Using this method, it is

possible to calculate the displacements and stresses in a homogeneous geological

formation assuming that the reservoir has a cylindrical shape and is subjected to a

uniform depletion. In order to make this method more comprehensive, over the last

few years, several researchers have expanded the equations originally proposed by

Geertsma (DU; OLSON, 2001; FOKKER; ORLIC, 2006; MEHRABIAN;

ABOUSLEIMAN, 2015; PAULLO MUÑOZ; ROEHL, 2017; SEGALL, 1992;

TEMPONE; FJÆR; LANDRØ, 2010; VAN OPSTAL, 1975). In general, analytical

methods have the advantage of being simple, however, they are limited in relation

to geometry, heterogeneity of the geological profile, and mechanical behavior of

materials. To overcome these limitations, numerical methods are used. These

methods, usually based on the finite element method (FEM) (BELAYNEH;

GEIGER; MATTHÄI, 2006; HADDAD; EICHHUBL, 2020; LELE et al., 2016;

SETTARI; WALTERS, 2001; WATANABE et al., 2010), are able to consider the

particularities of each geological formation, however, in most situations, they

demand a high computational effort for the construction and processing of models.

(2021), is a hybrid method in

which analytical equations are numerically solved. As in the analytical methods,

this method is simple and computationally efficient, however, it does not have

limitations in relation to geometry, number of layers, and heterogeneity of the

geological profile and can be applied to linear and non-linear material behavior.

The great advantage of this method compared to the classic FEM is that it does not

require the imposition of boundary conditions and the analysis can be performed

considering only the reservoir or other regions of interest.

All methods discussed above deal with the effects of human activities

related to the fluid injection or depletion processes in a deterministic way, that is,

they do not consider the uncertainties associated with this process. However,

uncertainties can greatly affect the results obtained by these methods (BAÙ et al.,

2016) and lead to responses that do not faithfully represent in-situ observations

(MULLER et al., 2009a, 2009b). In geotechnical and geomechanical problems, the

main source of uncertainties is associated with the inherent spatial variability of the

mechanical properties of materials (DENG et al., 2017; GEDDES, 1977;

.
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The aforementioned uncertainties have been included in the analytical or

numerical models through statistical simulation-based methods (YANG; CHING,

2019), among which Monte Carlo simulation (MCS) is the most commonly

adopted. In the geotechnical field, this statistical method has been used in slope

stability problems (DENG et al., 2017; EL-RAMLY; MORGENSTERN;

and foundation settlement

(BRZ . In the

hydrogeological field, applications are found in problems related to solute transport

in aquifers (FIORI et al., 2015), and groundwater flow (SOHN; SMALL;

PANTAZIDOU, 2000). In the geomechanical case, it has been used in wellbore

stability problems (BATALHA et al., 2020; MULLER et al., 2009b, 2009a;

UDEGBUNAM; AADNØY; FJELDE, 2014), in inverse analyzes, to calibrate the

parameters of reservoir models using in-situ subsidence data (AICHI, 2020; BAÙ

et al., 2015, 2016; BOTTAZZI; DELLA ROSSA, 2017; GAZZOLA et al., 2020;

ZOCCARATO et al., 2020), and in problems with uncertainties related to the

hydraulic conductivity of materials (FRIAS; MURAD; PEREIRA, 2004). In MCS,

the statistical response is calculated through the deterministic equations of the

problem, which are solved repeatedly using several sets of parameters generated

randomly from the probability density function of the input variables (HWANG;

LANSEY; JUNG, 2018; MALLOR et al., 2020). Subsequently, the set of

deterministic results is analyzed in statistical terms in order to obtain the mean

value, the variance, and the probability density function of the output variables. As

MCS uses the deterministic equations of the problem, it can be performed with any

analytical or numerical method without the need for complex computational

implementations.

The MCS often demands great computational effort, as it may require

thousands or millions of repetitions before reaching satisfactory results, which

limits its application in complex problems, such as the problems related to the fluid

injection or depletion (WU et al., 2018). In these problems, statistical methods

approximated by Taylor series expansion can be used as an alternative to MCS,

since they are computationally more efficient (WENXIN; ZHENZHOU, 2018;

YANG; CHING, 2020). Among these approximate methods, the first-order second

moment (FOSM) method stands out. In this statistical method, the first and second
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-

(FENTON; GRIFFITHS, 2008). In the literature, there are applications of this

method for the treatment of different types of problems, such as uncertainties

quantification of creep in concrete (CRIEL et al., 2017) and seismic hazard

assessment (WANG; YUN; WU, 2013). In the geotechnical field, this method has

been applied in studies of tunnel stability (CHENG et al., 2019), slope stability

, and foundation settlement

(BUNGENSTAB; BICALHO, 2016). In geomechanical problems, its applications

are limited to estimating reserves and forecasting production (MISHRA, 1998).

In view of this scenario, it is identified a gap in knowledge between the

deterministic methods used to predict the changes generated by the fluid injection

or depletion and the uncertainties related to the mechanical properties of rocks that

make up the geological formation. Thus, this paper aims to contribute to address

this gap. More specifically, it presents a computationally efficient stochastic

method,

which allows the prediction of changes in the displacement field generated by

variations in pore pressure and, at the same time, considers the spatial variability of

the mechanical properties of the rocks that form the geological profile.

4.2.
Gre

4.2.1
Stress, fluid pressure change, and mechanical equilibrium

During the fluid injection or depletion process, changes in the pore pressure

occur within the reservoir (subdomain ). Such changes will modify the

displacement, strain, and stress fields of the entire problem domain ( ). Defining

as the variation of the stress state generated by a change in pore

pressure, the mechanical equilibrium for the total stress (initial + change) is

enforced by

, (4.1)

at any material point indicated by the vector within the domain . The term

represents an external field initially generated by body or surface forces.

In general, in geomechanical analyses, the displacements generated by a

change in pore pressure are small when compared to the characteristic
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dimensions of the problem. Thus, it is assumed that the problem can be analyzed

considering small deformations and displacements. The first consequence is that

the linearized strain tensor can be used and is given by

(4.2)

The second consequence is that in the absence of geometrical effects in Eq. (4.1),

the local equilibrium conditions for the stress changes are

, (4.3)

where represents any field of interest, except for the fields considered initially,

since Eq. (4.1) is satisfied by the initial stress before any stress change. Therefore,

the problem to be solved is one in which the displacement and strain fields are

initially set to zero, and the changes in pore pressure ( ) over the subdomain

results in a displacement field ( ), a strain field according to Eq. (4.2), and a stress

change that satisfies the equilibrium condition of Eq. (4.3).

4.2.2
Linear poroelasticity for heterogeneous problems

According to the theory of linear poroelasticity proposed by Biot (1941), the

variation of the stress state generated by a change in pore pressure can be

calculated as follows:

, (4.4)

where , , and are the fourth-order stiffness tensor, the second-order strain

tensor, and the second-order Biot tensor, respectively. Eq. (4.4) is only applicable

to homogeneous problems. In the case of heterogeneous problems (heterogeneity

generated by the difference among the elastic properties of the rocks that make up

the geological formation), Peres et al. (2021) propose the inclusion of additional

tensor given by:

, (4.5)

which represents the difference between the elastic properties of the homogeneous

and heterogeneous problems. In this equation, Eq. (4.5), is the fourth-order

stiffness tensor obtained from the mechanical properties of materials found in an

position contained in the problem domain ( ). Thus, the equation for linear

poroelasticity applied to heterogeneous problems can be rewritten as:
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. (4.6)

4.2.3
Reciprocity theorem extended to linear, heterogeneous porous media

During the fluid injection or depletion process, changes in the pore pressure

occur within the reservoir (subdomain ). Such changes will modify the

displacement, strain, and stress fields of the entire problem domain ( ). Using the

principle of virtual work, it is possible to establish the following relationship

between the displacement field and the strain and stress fields:

(4.7)

where is any virtual displacement vector associated with the virtual strain tensor

, represents the variation of surfaces forces caused by the fluid injection or

depletion processes and is the force vector that does not consider the surface

forces.

(PERES

et al., 2021). Using this theorem, the displacement field of the geomechanical

problem (real problem) can be calculated with the aid of a fundamental solution

(auxiliary problem), whose analytical answers are known (Kelvin fundamental

solution, Melan fundamental solution, among others). For this, consider that the real

problem (index 1) and the auxiliary problem (index 2) have the same domain ( )

and the same boundary conditions. Applying Eq. (4.7) to the real problem with the

virtual field corresponding to the auxiliary problem and vice versa, we have:

(4.8)

(4.9)

Using Eq. (4.6), the left sides of Eq. (4.8) and Eq. (4.9) can be rewritten as

follows:
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(4.10)

(4.11)

As the constitutive tensor is symmetric, the first integrals on the right side of

the Eq. (4.10) and Eq. (4.11) are equal, resulting in:

(4.12)

In the real problem (superscript 1), the unknown displacements are

generated only by the change in pore pressure , therefore, the vectors and

can be suppressed. In the auxiliary problem (superscript 2), the unknown

displacements come from a unit point load applied in a position of the domain

( ) and, therefore, the vector and the pore pressure can be disregarded
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(LEHNER; KNOGLINGER; D, 2005). Furthermore, as the fundamental solution

used to solve the auxiliary problem consider homogeneous materials, the tensor

is null. Removing the superscripts (1) and (2), Eq. (4.12) can be rewritten

as:

(4.13)

where is the horizontal ( ) or vertical ( ) displacement in the position

, is the Biot coefficient, is the pore pressure variation, is the Kronecker

delta, are the strains in the position obtained from the fundamental solution

considering a unit point load (horizontal for the calculation of the horizontal

displacement or vertical, otherwise) applied in the position, and is the

tensor that corresponds to the stress variation generated by the differences between

the mechanical properties of the real problem and the auxiliary problem.

In Eq. (4.13) the first integral is applied to the subdomain , which

represent the reservoir region, that is, the region where the pore pressure change

will occur, and the second integral is applied to the domain , which is the real

(MELAN, 1932), which

considers a point load applied in a semi-infinite domain (plane strain state). The

equations for calculating the strains were taken from Telles and Brebbia

(1981) and are presented in

extended to three-

example, the 3D Kelvin solution (infinite domain) or Mindlin solution (semi-

infinite domain).

4.2.4
Numerical scheme

There are two ways to solve Eq. (4.13), which is implicit in terms of the

displacement field. The first method consists of determining the strains , Eq.

(4.5), by directly calculating the strain gradient from the differentiation of
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Eq. (4.13). The second method, which is simpler, consists of discretizing the

domain in triangular regions, generating a mesh similar to those in the finite

element method. Using this mesh, the displacements are calculated at each node

through Eq. (4.13). In this work, linear interpolation is used to construct the

displacement field. As a result, the stress is uniform in each element and the

displacement can be calculated by:

(4.14)

where is the number of elements in the reservoir region (subdomain ) and

is the number of elements in the entire model (domain ). The additional term

and the deformations are calculated from the displacements and,

thus, Eq. (4.14) must be solved interactively. For this, Peres et al. (2021) propose

an iterative method, in which the displacement field of the step is used to calculate

the strains and the stresses in step . The initial displacement

is calculated considering only the first summation of Eq. (4.14) and the convergence

of the method is based on the error measure calculated using the nodal

displacements in steps and , given by:

(4.15)

where is the displacement at position calculated in step ,

is the displacement at position calculated in step , is the number

of nodes in the problem, and is the tolerance used as a stopping criterion. The

convergence of this iterative method is widely discussed by Peres et al. (2021).

The two integrals of the right side of Eq. (4.14) are solved numerically using

the Gaussian quadrature, when the auxiliary problem is not singular, or the

Bartholomew quadrature (BARTHOLOMEW, 1959) associated with the Duffy

transformation (BONNET, 2017; MOUSAVI; SUKUMAR, 2010), when the

auxiliary problem is singular. As can be seen in Appendix A, the equations of the
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and (complementary part) which are singular when the position of the unit

point load applied approaches the evaluation point . Additional information on

transformation is presented in Appendix B.

4.3.
approach

4.3.1.

Using Eq. (4.14), it is possible to calculate deterministically the changes in

the displacement field generated by the fluid injection or depletion process. To

approach can be extended using statistical methods. In these methods, the

mechanical properties of materials are considered as random variables defined by

their statistical moments and probability density function . This extension is

done using statistical methods that can propagate uncertainties from random input

variables to random variables that represent the answer to the problem, which can

be exact or approximate.

According to Fenton e Griffiths (2008), exact methods use the concept of

random variables functions, in which the probability density functions of input ( )

and output ( ) random variables are calculated analytically through a function

. For complex functions, as in the case of Eq. (4.14), the use of exact

methods become impracticable. In these situations, the propagation of uncertainties

can be performed using approximate methods, such as the MCS and the FOSM

method.

In MCS, Eq. (4.14) is solved times and, in each of these times, the input

variables assume random values defined from their probability density functions

. After the realizations, the statistical moments and the probability density

functions that represent the output random variables (in this case, the nodal

displacements) are obtained. In the FOSM method, the statistical moments of the

output random variables are determined through the first terms of the Taylor series

expansion about the mean values ( ) of the random variables (ANG; TANG,

2015) as shown in Eq. (4.16) and Eq. (4.17):
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(4.16)

(4.17)

In these equations, and are the mean value and standard deviation of the

random variable , and is the linear correlation coefficient between the

random variables and . Differently of MCS, in the FOSM method is not

necessary to know the probability density function of the input random

variables, because in this method the uncertainties are propagated using only the

first two statistical moments (mean value and variance) and the linear correlation

coefficient (CRIEL et al., 2017). As mentioned before, the great advantage of

this method is related to CPU time, which is usually lower than the CPU time

consumed via MCS.

Associating Eq. (4.14), with the FOSM

method, Eq. (4.16) and Eq. (4.17), the mean values and variances of the nodal

displacements (represented by the output random variable ) at position are

given by:

(4.18)

(4.19)

where is the vector of the partial derivatives of the displacements

generated by each triangular region of the subdomain in relation to the input

random variables, is the vector of the partial derivatives of the

displacements generated by each triangular region of the domain in relation to

the input random variables, defined by:
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(4.20)

(4.21)

The matrix considers the spatial variability of input random

variables that represent the mechanical properties of materials, as further discussed

in the next section.

4.3.2.
Random variables, stochastic grid, and spatial variability of
properties

The mechanical properties of soils and rocks can be considered random

variables due to their inherent spatial variability (VANMARCKE, 2010). This

spatial variability is exemplified considering two distinct points located within the

same geological layer. If these points are close, the mechanical properties are

similar and close to the mean value. Otherwise, these properties show a greater

fluctuation in relation to the mean value, due to the presence of impurities,
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inhomogeneities generated during the formation of the rock layer, fragmentation,

or other causes. This fluctuation is measured though a scale, which describes the

spatial variability of these properties, forming a random field. From a statistical

point of view, this spatial variability is introduced into the geomechanical problem

through a stochastic random field, here represented by the domain ( ) of the

problem. As proposed by Cho (2012) and Li et al. (2015), the domain is then

partitioned into several subdomains forming a stochastic grid, in which the input

random variables are significantly correlated and consequently there is no

fluctuation. This fluctuation is considered between two subdomains using an

autocorrelation parameter, which varies from 0 (properties fluctuates rapidly about

the mean values) to 1 (properties are significantly correlated).

According to Li et al. (2015), it is important to estimate the scale of

fluctuation accurately because it plays a key role in characterizing the spatial

variability of the mechanical properties of soils and rocks. Although there are

methods that propose the quantification of this fluctuation scale in the field

(LLORET-CABOT; FENTON; HICKS, 2014; UZIELLI; VANNUCCHI;

PHOON, 2005), these methods are difficult to apply because large amounts of data

are required. As a result, theoretical autocorrelation functions have been used to

characterize the spatial correlation of soil mechanical properties. This type of

approach has been widely used in geotechnical problems, however, in

geomechanical problems no reference was found. Assuming that is

the autocorrelation function between the random variables and that belong

to the subdomains and , respectively, the matrix can be

defined by:

(4.22)

where and are the standard deviation of the random variables and .

When the function is equal to 1.0 for all random variables and
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, the mechanical properties (of the same nature) of all subdomains that belong

to the same region assume equal random values and, therefore, the properties are

homogeneous within the geological layer. On the other hand, when the function

is different than 1.0, these properties assume different values in each

subdomain and, consequently, the properties are heterogeneous.

In this work, the correlation between two subdomains from different

regions (i.e., different geological layers) and the cross-correlation between random

variables of different natures (random variables that represent different properties)

are equal to zero. For each subdomain of the reservoir region, three random

are considered. In the other subdomains and in the auxiliary problem, the two

number of random variables, which is equal to the number of partial derivatives in

Eq. (4.19), is given by .

These partial derivatives can also be calculated numerically by the finite

difference method (WANG; YUN; WU, 2013). However, this mathematical

approach is computationally unfeasible in problems that have many random

variables. For instance, when using the centered approximation method, it is

necessary to solve the deterministic problem twice to calculate each partial

derivative. Applying the proposed method (called Green-FOSM) this limitation is

overcome since all partial derivatives are calculated simultaneously at each

4.3.3.
Numerical scheme for Green-FOSM method

The calculation sequence of the Green-FOSM method can be divided into

two stages. The first stage is characterized by the geomechanical processing of the

problem, in which the mean values of the nodal displacements, Eq. (4.16), and the

partial derivatives of these displacements in relation to the random variables

, Eq. (4.20) and Eq. (4.21), are calculated. In the second stage, a

statistical post-processing is performed. In this post-processing, the variances of the

nodal displacements, Eq. (4.19), are calculated using the partial derivatives of the

first stage and the matrix , Eq. (4.22). The convergence in the first stage is
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evaluated using Eq. (4.15) and with the mean values of the nodal displacements. In

Figure 4.1 a representative scheme of the calculation process used in the Green-

FOSM method is presented.

Figure 4.1. Scheme of the calculation process used in the Green-FOSM method.

Another advantage of the Green-FOSM method in relation to MCS is

associated with the calculation of the nodal displacement variances. By keeping the

input parameters of the geomechanical analysis (stage 1) fixed, the displacement

fields of different degrees of correlation and variability can be calculated almost

instantaneously, since it is not necessary to recalculate the mean values and partial

derivatives.

4.4.
Numerical examples

In this Section, two numerical examples are presented to demonstrate the

validity of the proposed methodology. These examples use the 2D model (plane

strain condition) shown in Figure 4.2, which represents a geological formation

composed of four layers of rocks with different mechanical properties. The

reservoir is bounded by two straight faults that form a tilted block system. In the

first example, the reservoir is subjected to a uniform fluid depletion process, shown

in Figure 4.2.b, and in the second example, shown in Figure 4.2.c, the reservoir is

subjected to a combined fluid depletion and injection process.
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Figure 4.2. (a) 2D model used to simulate geological formation, (b) reservoir under uniform

depletion, and (c) reservoir under depletion and injection.

In both examples, the uncertainties related to the mechanical properties of

propagated to the nodal displacements using MCS and the Green-FOSM method.

Despite being computationally expensive, MCS is adopted to generate the reference

solutions used to validate the proposed method. As mentioned in Section 4.3.1, to

perform the MCS it is necessary to know the probability density function of

the random variables that represent the mechanical properties of materials. Thus,

are described using a normal distribution function, as in the works by Plúa et al.

(2021a), Plúa et al. (2021b), and Jha et al. (2015). The random variables referring

to the Biot coefficient are represented by a uniform distribution function (PLÚA et

al., 2021a, 2021b). The set of mechanical and numerical parameters used in this

section are presented in Table 4.1.

Table 4.1. Parameters for the tilted block reservoir problem presented in Section 4.4.

Mechanical Parameters

Biot coefficient

Layer Mean CV Mean CV Mean CV

Reservoir 10.0 10% - 20% 0.20 10% - 20% 0.80 10%

Cap rock 8.0 10% - 20% 0.20 10% - 20% - -

Overburden 5.0 10% - 20% 0.20 10% - 20% - -

Substratum 15.0 10% - 20% 0.20 10% - 20% - -

Inf. domain 10.0 10% - 20% 0.20 10% - 20% - -

Numerical Parameters

Definition Values

Tolerance in the displacement field 10-4

Gauss quadrature (non-singular point) 4×4

Bartholomew level for quadrature (singular point) 3

3×3
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4.4.1.
Reservoir under uniform depletion with fully correlated or fully
uncorrelated random variables

In this example, the problem domain is divided into 397 sub-regions, which

form the triangular element mesh for the geomechanical analysis and the stochastic

grid for the statistical analysis (Figure 4.3). This stochastic grid results in 876

random variables. The displacement fields are constructed by evaluating the

horizontal and vertical displacements obtained at 254 nodal points.

Figure 4.3. Mesh of triangular elements used in geomechanical analysis and stochastic

grid of statistical analysis of the example subjected to a uniform fluid depletion process.

In order to evaluate the effectiveness of the Green-FOSM method in relation

to the spatial variability of the mechanical properties of materials, the example

presented in this section is analyzed assuming two limit cases. In the first case,

random variables from different subdomains are fully correlated,

equal to 1.0, and in the second, they are fully uncorrelated, equal to

0.0. As discussed in Section 4.3.2, in the first case the mechanical properties are

homogeneous and in the second they are heterogeneous. For the fully correlated

the CV is taken as 10% in all analyses, since coefficients of variation above 10%

can result in Biot coefficients greater than 1.0, which have no real physical meaning.

The results obtained through Green-FOSM method are compared to the results
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obtained using MCS. In the simulations performed with the MCS, the statistical

moments of the displacements are determined after 3000 repetitions of the

that the average difference between the results obtained by two MCS, performed

for the same problem, is less than 3%, as can be seen in Figure 4.4.

Figure 4.4. Average difference between the results obtained by two MCS.

4.4.1.1.
Moments and statistical response

Using the geological profile presented in Figure 4.2, the effect of the

uncertainties associated with the mechanical parameters of rocks on the

displacement field generated by a uniform depletion process is analyzed. In Figure

4.5 the frequency histograms constructed from the vertical displacements of the

reference point 1 (indicated in Figure 4.3) are presented. The curves in black

represent normal probability density functions calculated from mean values and

variances found via MCS. The curves in red describe the distribution functions

fitted using the statistical parameters obtained by the Green-FOSM method.
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Figure 4.5. Frequency histograms and probability density function of the random variable

representing the vertical displacement of the reference point 1.

These histograms show that the vertical displacement random variable

follows a bell shape and thus can be adequately represented by a normal distribution

function. The Kolmogorov-Smirnov normality test

2008) is used to verify this quantitatively. Applying this test, it is observed that for

all evaluated reference points the p-value is not lower than the 5% limit (assuming

a confidence interval equal to 95%) and, therefore, the null hypothesis (the

probability distribution function follows the format of the normal distribution

function) should not be rejected. This format can be justified by the central limit

theorem, in which the statistical answer given by the sum of several individual

contributions follows a normal probability distribution. As shown in Eq. (4.14), the

statistical response of the nodal displacements (output random variables) is

obtained from the sum of several random variables that represent the individual

displacements calculated in each triangular element of the geomechanical mesh,

which justifies the bell shape of the histograms. In all cases, it is observed that the

probability distribution curves adjusted from the statistical moments (mean value

and variance) calculated using the Green-FOSM method are similar to the curves

obtained via the MCS. When analyzing the other nodes and horizontal

displacements (see other reference points in Appendix C), it is noted that the other

random variables have similar behavior.
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An overview of the results obtained through the proposed method and via

MCS is shown in Figure 4.6, which presents the relationships between the statistical

parameters calculated by the two methods for each node. In the analyses with CV

equal to 10%, the statistical parameters calculated by the proposed method are close

to the values found via MCS, with the greatest difference being equal to 4.4%. For

the CV equal to 20%, the statistical parameters present greater dispersion. In most

of the nodes analyzed, the mean values obtained via Green-FOSM are close to those

found using MCS. However, for some nodes (located between nodes 1 and 50), it

is noted that the average values of vertical displacements found by the proposed

method are between 10.6% and 13.7% higher than the values found using MCS.

This difference is justified by the magnitude of the vertical displacements in these

nodes, which are close to zero, and can be reduced by increasing the number of

repetitions in MCS. On the other hand, for the fully correlated situation, the

variances obtained by the proposed method are, on average, 6.2% (horizontal

displacement) and 7.2% (vertical displacement) smaller than the variances found

via MCS. For the totally uncorrelated situation these values are 1.1% (horizontal

displacement) and 1.3% (vertical displacement).

Figure 4.6. Relationship between the statistical moments obtained by Green-FOSM

method and by MCS.

As mentioned by Bungenstab and Bicalho (2016), due to the truncation of

the Taylor series, the FOSM method tends to underestimate the values of the

variances when the CV of the input random variables increases. Despite this
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limitation, for the situations of variability and CV levels analyzed, the difference

between the values obtained by the proposed method and by MCS are small when

compared to the dimensions of the geomechanical problems. Therefore, it can be

said that for typical geomechanical problems, the Green-FOSM method is able to

provide results comparable to those found by MCS.

4.4.1.2.
Displacement fields considering the uncertainties

Figure 4.7 shows the vertical displacement fields found after the depletion

process for the fully correlated case with CV equal to 10%. These displacement

fields are created assuming that the output random variables are described by

normal probability density functions. The lower and upper limits are shown in

Figure 4.7.a and represent the extreme values of the interval with a confidence level

equal to 95%.

Figure 4.7. Effect of uncertainties associated with the mechanical properties of materials

under the displacement field generated by a uniform depletion process. (a) Lower and

upper limits for 95% confidence interval, (b) Deterministic results (mean values), (c) Green-
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FOSM lower limit results, (d) MCS lower limit results, (e) Green-FOSM upper limit results,

and (f) MCS upper limit results.

These results demonstrate the importance of considering the effect of

uncertainties associated with the mechanical properties of materials in the

calculation of displacement generated by a change in pore pressure. In the

deterministic analysis (shown in Figure 4.7.b) the maximum free surface

subsidence is approximately 0.3 meters. However, due to uncertainties this

displacement can be up to 27% higher (Figure 4.7.c and Figure 4.7.d) or lower

(Figure 4.7.e and Figure 4.7.f). Comparing the vertical displacement fields found

by the Green-FOSM method and by the MCS, it can be observed that the two

methods found similar results.

The horizontal and vertical displacements found along Line 1 (shown in

Figure 4.3) considering all analyzed cases are presented in Figure 4.8.a and Figure

4.8.c present the results for the totally correlated case and Figure 4.8.b and Figure

4.8.d for the totally uncorrelated case. Regions between two curves of the same

color represent 95% confidence response intervals. The deterministic answer of the

problem calculated using

by black solid and dashed curves, respectively.

Figure 4.8. Horizontal and vertical displacements along Line 1 obtained after the uniform

depletion process. Graphs (a) and (c) present the results for the totally correlated case and

graphs (b) and (d) for the totally uncorrelated case.
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These results indicate that the effect of spatial variability of mechanical

properties is greater when the random variables that represent these properties are

totally correlated. On the other hand, when the random variables are totally

uncorrelated the statistical answer of the problem approaches the deterministic

answer. In this situation, each subdomain assumes different random values,

which fluctuate around their mean values. These values generate small parcels of

displacements, which also vary around the mean values. Thus, when performing

the sum of these parcels, the positive variations are canceled out by the negative

variations, and the final displacement approaches the mean displacement

(deterministic result). In the totally correlated case the subdomain assumes equal

random values and consequently, this does not occur. The maximum difference

among the results with CV=10% is equal to 2.25% and occurs between the curves

that represent the lower limit of the vertical displacement (Figure 4.8.c). The results

for CV=20% follow the same behavior, however, the difference between these

curves is 8.85%. In general, the difference between the results found by the two

methods increases when the CV of the mechanical properties increases. This

happens because the FOSM method tends to underestimate the values of the

variances when the CV of the input random variables increases, due to the

truncation of the Taylor series. Despite this, for the levels of correlation and

variability analyzed, the Green-FOSM method is able to obtain results close to those

achieved by MCS.

4.4.1.3.
CPU time comparison

Figure 4.9 shows the relationship between the CPU time of the MCS (with

3000 repetitions) and the CPU time taken by the Green-FOSM method as a function

of the number of random variables considered in the problem. Except for the model

that has 836 random variables (Figure 4.3) whose results are discussed in this

section, the CPU times of the MCS are estimated using the average time obtained

by a set of 50 samples. These CPU times are obtained using a workstation with an

Intel Core i9-10850K processor and 64 Gb of RAM.
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Figure 4.9. Relation between the CPU times needed to perform 3000 repetitions via MCS

and the CPU times of the Green-FOSM method.

The relationships between CPU times (Figure 4.9) vary with different

degrees of correlation and variability. This occurs because, the greater is the

variability of mechanical properties, the greater is the number of iterations

necessary for the convergence of the analyses via MCS. In the Green-FOSM

method, this variability does not affect the CPU time. As discussed in Section 4.3.3,

in this method the partial derivatives are calculated from the mean values in the

geomechanical analysis and the uncertainties are introduced after this in the post-

processing step, whose processing is almost instantaneous. As can be seen in Figure

4.9, the relationships between CPU times converge to a fixed value when the

number of random variables increases. In the most disadvantageous situation, the

Green-FOSM method is approximately seven times faster than the MCS.

For the proposed levels of correlation and variability, the results presented

in this section demonstrate that the Green-FOSM method can propagate the

uncertainties associated with the mechanical properties of materials to the

displacement field generated by a uniform fluid depletion process consuming less

computational effort than the MCS.

4.4.2.
Reservoir under non-uniform depletion with spatially correlated
random variables

In this section, the geological profile used in the previous example is

analyzed considering the fluid depletion and injection process presented in Figure
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4.2.c. In this example, the geomechanical mesh is decoupled from the stochastic

grid. Thus, the geomechanical problem domain ( ) is divided into 1812 sub-

regions and 960 nodes, which form the mesh of triangular elements shown in Figure

4.10.a. The stochastic grid is divided into 397 sub-regions (Figure 4.10.b), which

result in 876 random variables.

Figure 4.10. (a) Mesh of triangular elements used in geomechanical analysis and (b)

stochastic grid of statistical analysis of the example subjected to a non-uniform fluid

process.

In order to evaluate the effectiveness of the proposed method relative to the

spatial variability of the mechanical properties of materials, this example is

analyzed assuming that the spatial variability of these properties is defined by the

exponential autocorrelation function (WANG et al., 2020; WU et al., 2021) shown

in the following
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(4.23)

where and are the absolute distances between the centroids of the

subdomains and in the horizontal and vertical direction, respectively, and

and are the horizontal and vertical autocorrelation distances, respectively. For the

horizontal autocorrelation distance ( ) the value of 1000 meters is admitted and for

the vertical autocorrelation distance ( ) the value of 200 meters is used.

As in the previous section, the results obtained via MCS are used as a

reference as the statistical response. Thus, when performing MCS, the random

which are defined by a normal probability distribution function, are generated using

the Cholesky decomposition technique, as performed by Li et al. (2015) and Yang

et al. (2022). The random values that represent the Biot coefficient, which are

defined by a uniform probability distribution function, are assumed to be fully

oefficient,

the CV is taken as 10% in all analyses.

4.4.2.1.
Moments and statistical response

In Figure 4.11 the frequency histograms constructed from the vertical

displacements of the reference point 1 (RF1 indicated in Figure 4.10.a) are

presented. The curves in black represent normal probability density functions

calculated from mean values and variances found via MCS. The curves in red

describe the distribution functions fitted using the mean value and standard

deviation obtained by the Green-FOSM method. As in the previous section, the

histograms show that the vertical displacement random variable follows a bell shape

curve and, therefore, it can be adequately represented by a normal distribution

function. This visual verification is confirmed quantitatively by the Kolmogorov-

Smirnov test Smi , assuming a confidence level of

95%. When analyzing the other nodes and horizontal displacements (see other

reference points in Appendix C), it is noted that the other random variables present

similar behavior.
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Figure 4.11. Frequency histograms and probability density function of the random variable

representing the vertical displacement of the reference point 1.

Figure 4.12 present the relationship between the statistical parameters (mean

value and variance) calculated by the Green-FOSM method and by MCS. For the

two values of CV analyzed, it is observed that for some nodes the relationships

between the mean values of the vertical displacements vary by up to 20%. This

difference is justified by the magnitude of the vertical displacements in these nodes,

which are close to zero. It can be reduced by increasing the number of repetitions

in MCS. In general, the results obtained for CV=20% present a greater dispersion

when compared to the results of the analysis with CV=10%. In this case, the average

differences between the variances are 5.2% and 7.9% for the horizontal and vertical

displacements, respectively. Again, the main limitation of the proposed method is

that it tends to underestimate the variances when the CV of the input random

variables increases, as can be seen in this example.

Figure 4.12. Relationship between the statistical moments obtained by Green-FOSM

method and by MCS.
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4.4.2.2.
Displacement fields considering the uncertainties

Figure 4.13 shows the vertical displacement fields found after this process

considering CV equal to 10%. These results are obtained considering that the output

random variables are described by normal distribution functions. The lower and

upper limits shown in Figure 4.13.a represent the extreme values of the interval

with a confidence level equal to 95%.

Figure 4.13. Effect of the uncertainties associated with the mechanical properties of

materials under the displacement field generated by a fluid depletion and injection process.

(a) Lower and upper limits for 95% confidence interval, (b) Deterministic results (mean

values), (c) Green-FOSM lower limit results, (d) MCS lower limit results, (e) Green-FOSM

upper limit results, and (f) MCS upper limit results.

The obtained displacement fields show that non-uniform pore pressure

variations within the reservoir cause both swelling and compaction of the geological

formation. As a result, analyzing the lower limit (Figure 4.13.c and Figure 4.13.d)

it is observed the growth of the compacted and the decrease of the swollen region.

For the upper limit case (Figure 4.13.e and Figure 4.13.f) the inverse behavior is
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observed. These results reaffirm the importance of considering the effect of

uncertainties related to the mechanical properties of materials in the calculation of

displacements generated by changes in pore pressure. As in the previous example,

the vertical displacement fields obtained by the Green-FOSM method and by the

MCS are similar.

Figure 4.14 presents the horizontal and vertical displacements found along

the upper edge of the reservoir (Line 1 shown in Figure 4.10.a) considering all

analyzed cases. Regions between two curves of the same color represent 95%

confidence response intervals. The deterministic answer of the problem calculated

using the Green

dashed curves, respectively.

Figure 4.14. Horizontal and vertical displacements along the upper edge of the reservoir

(Line 1 shown in Figure 4.10.a) obtained after the fluid depletion and injection process.

Graphs (a) and (c) present the results for the totally correlated case and graphs (b) and the

totally uncorrelated case.

Again, the results show that the effect of spatial variability of mechanical

properties is greater when random variables are totally correlated. For the levels of

correlation and variability analyzed, the displacements found through the Green-

FOSM method and via MCS have similar behavior. Among these results, the

maximum difference found is 2.4%, given by the curves that represent the vertical

displacement (Figure 4.14.b). Therefore, for the proposed correlation and

variability levels, the results presented in this section demonstrate that the Green-

FOSM method can propagate the uncertainties associated with the mechanical

properties of materials to the displacement field generated by a combined fluid

depletion and injection process.
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4.5.
Conclusions and remarks

The present work proposes a computationally efficient stochastic statistical

method (Green-FOSM) that considers uncertainties in geomechanical problems,

with the objective of improving the decision-making process related to problems

associated with production of oil and gas, the extraction of water, and the storage

of CO2 or natural gas, such as swelling or compaction of the reservoir rock,

subsidence of the free surface, decreased production, fault reactivation, seismic

events, and others. The novelty of the method lies in the use of the

approach (GFA), which, together with the FOSM method, is used to propagate

uncertainties associated with the mechanical properties of material to the

displacement field of the geological formation. Furthermore, using the concepts of

stochastic grid and autocorrelation function, the proposed method allows the

consideration of the spatial variability of random variables that represent these

mechanical properties.

The GFA uses the fundamental solutions of classical mechanics (Kelvin

fundamental solution, Melan fundamental solution, among others) and the

reciprocity theorem to calculate the displacement field of a geological formation

with irregular geometry, and different types of materials. The great advantage of

this method compared to the classical FEM is that it does not require the imposition

of boundary conditions and the problem analysis can be performed considering only

the reservoir or other regions of interest. In general, when analyzing a

geomechanical model using the FEM, it is necessary to discretize a large region

around the domain of interest (semi-infinite media) to represent the continuity of

the geological profile and, at the same time, reduce the effect of boundary condition

in this domain. This modeling strategy increases the degrees of freedom of the

model and the CPU time of the deterministic analysis. In GFA, the discretization of

the semi-infinite media is not necessary, consequently, the degrees of freedom of

the geomechanical model and the CPU time of the deterministic analyzes are

smaller.

As GFA demands less computational effort, this approach becomes ideal for

propagating the uncertainties associated with production of oil and gas, the

extraction of water, and the storage of CO2 or natural gas. In this work, the GFA is
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formulated to be used with the FOSM statistical method. This statistical method is

adopted because it is applicable to the range of variability of the mechanical

properties of the rocks that form geological profiles and because it is capable of

quickly obtaining the statistical answer to the problem. In addition, using GFA it is

possible to directly calculate the partial derivatives used in FOSM, Eq. (4.17). These

partial derivatives can also be calculated numerically by the finite difference

method. However, this mathematical approach is computationally unfeasible in

problems that have many random variables. For instance, when using the centered

approximation method, it is necessary to solve the deterministic problem twice to

calculate each random variable.

The validity of the Green-FOSM method is analyzed by comparing the

statistical parameters (mean values and variances) obtained by the proposed method

with the statistical parameters found via MCS. For this, two numerical examples

are presented. In the first example, the mesh of elements of the geomechanical

analysis and the stochastic grid are the same, the reservoir region is subjected to a

uniform depletion process, and the random variables that represent the mechanical

properties are considered fully correlated or fully non-correlated. In the second

example, the mesh of the geomechanical problem and the stochastic grid are

decoupled, the reservoir region is subjected to a non-uniform depletion process and

the random variables that represent the mechanical properties are spatially

correlated using an exponential autocorrelation function. In both example, two

are considered, 10% and 20%. For the Biot coefficient, the CV is taken as 10% in

all examples. The results obtained show that, in both examples, the first two

statistical moments obtained using Green-FOSM method and by MCS are similar.

The largest differences between the mean values are found when CV is equal to

20%. For the variances, it is observed that, due to the truncation of the Taylor series,

the FOSM method tends to underestimate the values of the variances when the CV

of the input random variables increases. Despite this limitation, for the situations of

variability and CV levels analyzed, the difference between the values obtained by

the proposed method and by MCS are small when compared to the dimensions of

the geomechanical problems.

In general, the displacement fields found by the Green-FOSM method agree

well with the statistical results obtained via Monte Carlo simulation, which
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confirms the validity of the proposed method. Comparing the displacement fields

obtained through statistical analysis with the displacement fields calculated

deterministically, it is possible to observe a large difference between them, which

highlights the importance of considering the effect of uncertainties associated with

the spatial variability of the mechanical properties of rocks in the calculation of

displacement generated by variations in the pore pressure of the reservoir rock. The

relationships between the CPU times show that the proposed method is

computationally significantly more efficient than Monte Carlo simulation

(considering 1500 random variables it can be 30 times faster). The different levels

of correlation and variability show that the effect of spatial variability of mechanical

properties is greater when the random variables that represent these properties are

totally correlated. On the other hand, when these variables are totally uncorrelated,

the statistical response approaches the deterministic response. Therefore, the Green-

FOSM method achieves all the proposed objectives, since because its simplicity

and efficiency it is capable of assisting reservoir engineers in decision-making

process when evaluating problems related to the injection or depletion of fluids in

underground reservoirs.
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Peres, and Yves M. Leroy in the International Journal for Numerical and Analytical

Methods in Geomechanics (under review).

Abstract

uses the

fundamental solution, and others) and the reciprocity theorem to capture changes in

the displacement, strain, and stress fields of a geological formation subjected to the

processes of extraction or injection of fluids. The great advantage of this method

compared to the classical FEM is that it does not require the imposition of boundary

conditions and the problem analysis can be performed considering only the

reservoir or other regions of interest. In the original version of the GFA, the

displacement field is calculated using an iterative numerical scheme, which

decreases the computational performance of the method and may present

convergence problems. Such limitations have made it difficult to use the GFA in

real problems. The present work proposes a non-iterative numerical scheme capable

of expanding the applicability of GFA and, simultaneously, improving its

computational performance. The results presented in this work demonstrate that

using this numerical scheme, the GFA consumes up to 17,5 times less CPU time

compared to iterative scheme and this relationship can be even greater if the

heterogeneity of the material increases. Using a geological profile constructed from

seismic images of the Brazilian pre-salt (Tupi field located in the Santos basin), it

is shown that the non-iterative GFA allows the analysis of complex geological

formations.
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5.1.
Introduction

The activities associated with the processes of fluid injection or extraction

in underground reservoirs, such as the production and storage of oil and gas (YANG

et al., 2015), the extraction of water (GALLOWAY; BURBEY, 2011; SHEN; XU,

2011), and the sequestration of CO2 (BACHU, 2008; KALAM et al., 2020),

generate variations in the displacement, strain, and stress fields of the geological

profile. As a direct consequence of these activities, the swelling or compaction of

the geological formation occurs, which can lead to the subsidence or uplift of the

free surface (BAÙ et al., 2015), wellbore collapse (MINKOFF; KRIDLER, 2006),

fault reactivation (BUIJZE et al., 2017), seismic events (BOURNE et al., 2014;

VERDON et al., 2016), and a decrease in production (XIONG et al., 2018). These

problems have motivated the development of analytical and numerical methods that

allow predicting the impact of these activities on the rock mass state.

Among the analytical methods, one of the most used for these applications

is the method proposed by Geertsma (GEERTSMA, 1957, 1973b, 1973c), which is

based on the nucleus-of-strain principle introduced by Mindlin and Cheng (1950).

Through this method, it is possible to predict the subsidence generated by the

uniform depletion of a cylindrical-shaped reservoir embedded in a semi-infinite

homogeneous elastic medium. In order to make this method more comprehensive,

over the last few years, several researchers have incorporated new concepts into

(1975) introduced the concept of the rigid base in

the calculation of subsidence. Tampone et al. (2010)

method to obtain the displacement and strain fields of the geological profile. Segall

(1992) developed a formulation to analyze strains and stresses in axisymmetric

reservoirs. In general, the analytical methods have the advantage of being simple,

however, they are limited in terms of the geometry and heterogeneity of the

geological formation and the mechanical behavior of the materials that they can

consider.

Numerical methods are more comprehensive, as they can consider the

particularities of each geological formation. In addition, they allow the coupling of

flow analysis to geomechanical simulation (DEAN et al., 2006; RUTQVIST, 2011).

The majority of numerical analyzes are performed using the finite element method
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(FEM), which is capable of considering different types of nonlinearity, such as

plasticity (KOSLOFF; SCOTT; SCRANTON, 1980; NIU; LI; WEI, 2017),

viscosity (CHANG; MAILMAN; ZOBACK, 2014; VOYIADJIS; ZHOU, 2018),

fracturing (WANGEN, 2013), and fault reactivation (HADDAD; EICHHUBL,

2020; LESUEUR; POULET; VEVEAKIS, 2020). Despite these qualities, in most

cases, the simulations demand a high computational effort for the construction and

processing of models. Furthermore, in the FEM, it is difficult to represent the

boundary conditions of the semi-infinite environment in which the geological

formation is embedded.

(2021), uses

with the reciprocity theorem to capture the variation in the stress state of a

geological formation subjected to processes of injection or extraction of fluids. This

approach has no limitations in terms of geometry, number of layers, and

heterogeneity of the geological profile and can be applied to materials with linear

or non-linear behavior. Compared to the classical FEM, the great advantage of the

GFA is that it does not require the imposition of boundary conditions and the

problem analysis can be performed considering only the reservoir or other regions

of interest. In general, when analyzing a geomechanical model using the FEM, it is

necessary to discretize a large region around the domain of interest (semi-infinite

media) to represent the continuity of the geological profile and, at the same time,

reduce the effect of boundary condition in this domain.

The GFA can also be classified as an analysis method for unbounded

problems, as the domain surrounding the reservoir regions is treated as infinite or

semi-infinite. Chen et al. (1997) present several strategies to analyze unbounded

electromagnetic problems. Some of these strategies are also applied to mechanical

problems, such as FEM with simple truncation of the outer boundaries (LEUNG et

al., 2004), FEM using infinite elements (BEER, 1983; LEUNG et al., 2004;

MEDINA; TAYLOR, 1983) and hybrid methods that couple FEM to other methods

on methods (BEER, 1983;

LEUNG et al., 2004; MOLINA-VILLEGAS; BALLESTEROS ORTEGA; RUIZ

CARDONA, 2022; YUAN; YIN, 2011; ZIENKIEWICZ; KELLY; BETTESS,

1977). Hybrid methods are widely used to solve unbounded electromagnetic

problems (CHEN; KONRAD, 1997; LOBRY, 2021; ORIKASA et al., 1983;
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QIUSHI CHEN; KONRAD; BIRINGER, 1994; SILVESTER; HSIEH, 1971;

SILVESTER et al., 1977). In the field of mechanical problems, these unbounded

hybrid methods are treated in the works of Zienkiewicz et al. (1977) and Beer

(1983), who perform a coupling between FEM and BEM, Leung et al. (2004),

where the fractal FEM is extended to the analysis of static unbounded axisymmetric

problems, Yuan and Yin (2011), who use Green's functions to consider an unlimited

elastic domain when analyzing functionally graded materials, and Molina-Villegas

et al. (2022)

the response of beams supported on elastic Winkler foundation.

In the original version of the GFA, the displacement field generated by a

pore-pressure change is calculated using an iterative numerical scheme, which

limits the computational performance of the method. In addition, the validation

study presented by Peres et al. (2021) shows that the convergence rate of the

iterative scheme decreases when the ratio among the mechanical properties of the

rocks increases, reaching a point of no convergence when the ratio is greater than

100%. These limitations have prevented the application of the GFA in real

problems. To overcome this limitation, this work presents a non-iterative numerical

scheme capable of expanding the applicability of the GFA and, simultaneously,

improving its computational performance. Analogously to the FEM, in the

proposed method the domain of interest is discretized using finite elements, whose

displacement, strain and stress fields are interpolated using polynomial shape

functions. However, the nodal displacements are determined without the need to

truncate the mesh or use elements with special formulations (infinite elements,

interface elements or others) as show in previous studies (BEER, 1983; LEUNG et

al., 2004; MEDINA; TAYLOR, 1983). The integral equation of the geomechanical

problem is solved from the inversion of a full matrix, as in BEM. In the proposed

method, the contact interface between the region of interest and the infinite domain

is solved without using specific formulations or additional discretization, as done

by Chen et al. (1994) and Lobry (2021), respectively.

5.2.
Theoretical background

theorem, from which the displacement field of the geomechanical problem is
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al solution, among others) as shown in the following.

5.2.1.
Linear poroelasticity for heterogeneous problems

According to the theory of linear poroelasticity (BIOT, 1941), the

poroelastic response of a porous material is defined through the linear relationship

formed by the stress change , the strain , and the pore-pressure variation

, as shown in the following

, (5.1)

where and are the fourth-order stiffness tensor and the second-order Biot

tensor, respectively. Eq. (5.1) is only applicable to homogeneous problems. In the

case of heterogeneous problems, Peres et al. (2021) propose the inclusion of

complementary tensor:

(5.2)

that represents the difference between the mechanical properties of the auxiliary

(homogeneous) and geomechanical (heterogeneous) problems. In this equation,

is the fourth-order constitutive tensor obtained from the mechanical properties

found at a position contained in the geomechanical problem domain. Considering

this complementary tensor, Eq. (5.1) can be rewritten as

(5.3)

5.2.2.
Reciprocity theorem applied to linear and heterogeneous porous
media

The oil and gas recovery processes generate changes in the pressure of the

fluids contained in the pores of the reservoir rock that cause changes in the

displacement, strain, and stress fields of the geological formations. As demonstrated

by Peres et al. (2021), using the principle of virtual works it is possible to establish

the following relationship between displacement, strain, and stress

(5.4)
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where is the virtual displacement vector associated with the virtual strain tensor

, is the vector with the variation of surface forces generated during the fluid

recovery process and is the body forces vector.

Using the reciprocity theorem, the displacement field of the geomechanical

problem (the real problem) can be determined with the aid of a classical

fundamental solution (auxiliary problem) whose analytical answer is known. To

demonstrate this application, consider that the real problem (index 1) and the

auxiliary problem (index 2) are represented by the same semi-infinite domain .

In the real problem, this domain is divided into subdomains, which represent the

layers that make up the geological formation. As shown in Figure 5.1.a, one of these

subdomains defines the reservoir region (

fundamental solution, in which a point force is applied in a semi-infinite elastic

medium, is admitted (Figure 5.1.b).

Figure 5.1. Geomechanical problem (real problem) (a) and auxiliary problem (b) domains.

Applying Eq. (5.4) to the real problem with the virtual field corresponding

to the auxiliary problem and vice versa, and substituting Eq. (5.3), where the

stiffness tensor is symmetric, results in the following relationship

(5.5)

In the real problem (Figure 5.1.a) the unknown displacements are generated only

by the pore-pressure variation , so the vectors and are both null.

In the auxiliary problem (Figure 5.1.b) the unknown displacements come from the
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unit point load applied at a position of the domain ( ) and, consequently,

the vector and the variation can be disregarded (LEHNER;

KNOGLINGER; D, 2005). The tensor is also null, since is equal to

for any position of the auxiliary problem domain. For the case of isotropic

materials, the Biot tensor is equal to the product of the Biot coefficient by the

identity tensor Thus, eliminating the indices (1) and (2), the displacement in

position can be calculated by

(5.6)

where is a subscript referring to the auxiliary problem, is the displacement

vector at position , is the direction vector of the unit point load applied in the

auxiliary problem, and are, respectively, the volumetric strain

variation and the strain vector at position obtained from the auxiliary problem

considering the unit point load applied at position , and is the strain vector

calculated at position of the real problem.

5.2.3.
Numerical scheme proposed by Peres et al. (2021)

5.2.3.1.
Mathematical formulation

Peres et al. (2021) present two ways of solving Eq. (5.6), which is implicit

in terms of the displacement field for heterogeneous problems. The first method

consists in determining the strain field directly by calculating the gradient

from the differentiation of the right side of Eq. (5.6). The second method,

which is simpler and was used by the authors, consists of discretizing the problem

domain into triangular regions, generating an element mesh like those used in the

FEM. As the strain field is defined by , it is possible to use the

discrete collocation method (ATKINSON; FLORES, 1993) to calculate the
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displacements at all nodes of the discretized domain. As a result, Eq. (5.6) can be

rewritten as

(5.7)

where is the number of elements in the reservoir region (subdomain ) and

is the number of elements in the domain . In this equation, the pore-pressure

variation and the Biot coefficient are assumed to be constant in each

element. This consideration is coherent since the pore-pressure variation is provided

by flow models, which are solved using discrete numerical methods.

An iterative fixed-point scheme is used to Eq. (5.7). In this scheme, the

displacement field of iteration is used to calculate the strains in iteration

. The displacement field of the initial iteration is obtained using only the first

summation of Eq. (5.7). The convergence of this numerical scheme is based on the

norm of the displacement field (square root of the sum of the squared nodal

displacement components) over the discretized domain.

5.2.3.2.
Limitations

The iterative numerical scheme proposed by Peres et al. (2021) presents

limitations related to the convergence rate and the CPU time required for the

analysis. The results presented by them show that the numerical scheme tends to

various rocks that compose the geological profile is greater than two. As the

geological profile of an oil field is predominantly composed of siliciclastic rocks,

than two, the use of GFA with iterative scheme to real problems becomes restrict.

These results also demonstrate that the number of iterations increases with the

growth of this ratio, which increases the CPU time of the analyses.

Another limitation related to the numerical scheme presented by Peres et al.

(2021), which was not discussed in the article by the authors, is associated with the
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formed by salt rocks (evaporitic rocks), such as the Brazilian pre-salt fields, it is

common to admit that this type of rock behaves like an almost incompressible fluid

(HUDEC; JACKSON, 2007; JACKSON; HUDEC, 2021; OUELLET et al., 2011).

To simulate this behavior, some authors (OUELLET et al., 2011; WILLSON;

FOSSUM; FREDRICH, 2002) suggest adopting a Poisson coefficient close to 0.5.

For these Poisson coefficient values, the iterative scheme does not converge.

Due to these limitations, in the next section, a new numerical scheme is

proposed with the aim of expanding the applicability of the GFA and,

simultaneously, increasing its computational performance.

5.3.
Proposed numerical scheme

The proposed numerical scheme consists of rewriting the strain vector

of Eq. (5.7) in order to explicitly determine the nodal displacements

and, consequently, eliminate the iterative process. For this, the matrix that

correlates the nodal displacements with the strains is used. This

matrix is formed by the derivatives of shape functions, as is classically found in the

finite-element literature.

If the domain is discretized into triangular regions, as proposed by

Peres et al., the displacement at each position (nodes) can be calculated by Eq.

(5.7). The first summation of this equation corresponds to the energy

generated by the volumetric strain of the elements contained in the subdomain ,

that is represented by the vector with dimension shown in the following

equation
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(5.8)

where is the number of nodes in the mesh of triangular elements, and

is the volumetric strain variation of the triangular element generated by a

horizontal unit point load ( equal to the horizontal force ) or vertical unit point

load ( equal to the vertical force ) applied at position .

The second summation represents the complementary elastic energy

produced by the difference between the mechanical properties of the real and

auxiliary problems. At the element level, this energy results in the vector with

dimension as

(5.9)

with the vector defined by

(5.10)
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where is the matrix of the derivatives of the shape functions. Considering

the connectivity of the elements used to discretize the domain and assuming that

the nodal displacements are written in terms of the global vector

(5.11)

Eq. (5.9) can be rewritten in global terms as

(5.12)

being a matrix with dimension . Using the vectors and and

the definition of the vector , the nodal displacements can be obtained by

(5.13)

where is the identity matrix of order

The integrals of Eq. (5.8) and (5.10) are calculated using the quadrature rules

indicated by Peres et al. (2021)

tional to the terms or

and , respectively. In this way, if the point load is not at one of the nodes of the

triangular element in which the quadrature is estimated, the quadrature rule

proposed by Bartholomew (1959) is used directly. The presence of a point load at

one of the nodes of the triangular element in which the quadrature is estimated

makes the numerical scheme imprecise, due to the singularity in the terms or

(BONNET, 2017; MOUSAVI;

SUKUMAR, 2010) is performed, where the triangular element is transformed into

a rectangle over which the function to be estimated is not singular.

The numerical system to be solved in Eq. (5.13) is formed by a full

symmetric system of order , which under similar conditions requires a

higher processing time than the band system classically used in FEM. According to

Golub and Van Loan (2013), to solve a full symmetric system using LU

decomposition (method used by Python's NumPy library) flops (floating

point operations) are required and for the band system flops are

required, where is the band size. When the dimensions of the two systems are

equal and tends to infinity, the ratio between the flops needed to solve the two
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systems is equal to . However, when comparing the flops of the two processes,

it must be considered that the geomechanical analysis via GFA requires the

discretization of a small region of interest. On the other hand, when using the FEM,

a large region surrounding the domain of interest must be discretized in order to

simulate the infinite media and avoid the effects generated by the boundary

conditions. In this way, the number of nodes in the geomechanical model used by

the GFA is typically much smaller than the number of nodes in the model

used in the FEM (for the application problem shown in Section 5.5, the

relationship is equal 364). Since , the number of

operations to solve the full system of Eq. (5.13) will be less than the number of

operations needed to solve the FEM band system.

5.4.
Validation

The problem of a cylinder with two layers embedded in an infinite medium

shown in Figure 5.2 is used to validate the proposed numerical scheme. This

problem is selected because de analytical solution is available. The core of this

cylinder corresponds to a reservoir of internal radius , composed of an elastic-

linear porous material with bulk modulus , shear modulus , and Biot

coefficient . The outer layer corresponds to the cap rock of external radius and

is formed by an elastic-linear material with incompressibility and shear modulus

. These two layers are embedded in an infinite space composed of a linear-elastic

material characterized by the modules and . The core of this cylinder is

subjected to a depletion process, in which the pressure of the fluids undergoes a

variation . During this variation, the pore-pressure in the other layers remains

constant.

Figure 5.2. Layered cylinder geometry used for the numerical scheme validation study.
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The results obtained via numerical simulation are compared with the results

calculated from the analytical solution presented in Peres et al. (2021). The

parameters selected for the numerical solutions are given in Table 5.1. The meshes

of triangular elements are created using the Delaunay triangulation algorithm

implemented in the Triangle software (SHEWCHUK, 1996) and are shown in

Figure 5.3. Circular interfaces between layers are approximated using 200 line

Table 5.1. Material, geometrical, and numerical data for the layered cylinder problem

used for validation.

Notation Definition Value/Range Unit

Ratio cap rock to Reserv. radius 1.5 -

10.0 GPa

0.200 -

Biot coefficient, reservoir 0.800 -

Fluid pressure change, reservoir -5.0 MPa

5.0(*) / 10.0 / 15.0 / 20.0 / 50.0 GPa

0.20(*) / 0.40 / 0.45 / 0.49 / 0.495 / 0.499 -

10.0 GPa

0.200 -

Numerical scheme

Bartholomew level for quadr. 3

Gauss quadr. . 3 3

Iterative scheme tol. (**) (***) 10-6

Max. number of iterations (***) 50

(*) Default value used in the analyses, except for the analyzes where the other values are evaluated.

(**) Tolerance used to calculate the relative CPU times shown in Section 5.4.2.

(***) Parameters for iterative scheme used by Peres et al. (2021).

Figure 5.3. Meshes used in the validation study. The maximum normalized sizes of the

elements are (a) 0.0010, (b) 0.0025, (c) 0.0050, (d) 0.0075, (e) 0.0100, (f) 0.0150, (g)

0.0200 e (h) 0.0500.
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Figure 5.3. Meshes used in the validation study. The maximum normalized sizes of the

elements are (a) 0.0010, (b) 0.0025, (c) 0.0050, (d) 0.0075, (e) 0.0100, (f) 0.0150, (g)

0.0200 e (h) 0.0500 (continuation).

5.4.1.
h-convergence and material properties variation

The h-convergence analysis aims to verify if the numerical solution

approaches the analytical solution when the size of the elements decreases. The

error introduced by the spatial discretization of the layered cylinder domain is

estimated through the displacement field norm

(5.14)

where is the volume (area in 2D) of the layered cylinder. Figure 5.4 presents

the relative error, defined by the difference between the norm of the numerical

solution and the norm of the analytical solution and normalized by the latter, as a

function of the average size of elements. This average size corresponds to the

average area of the elements divided by the area of the layered cylinder. The results

obtained show that the relative error decreases when the average size of the

elements tends to zero. For an average size of less than 0.0002, it is observed that

the relative error is less than 0.2%, an acceptable value for geomechanical

problems.
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Figure 5.4. The relative error in displacement norm as a function of the average element

size.

To illustrate h-convergence, the radial displacements of different models are

plotted in Figure 5.5

coefficient) of the rocks that form these models were defined to demonstrate that

modulus of the rocks that make up the geological profile is greater than two or when

the Po

describe the results obtained via GFA and the circular points represent the analytical

results. In all cases analyzed, the difference between these results is not perceptible.

Figure 5.5. Comparison between the radial displacement results calculated by GFA (solid

modulus for the cap rock are analyzed, in (b) di

verified, and in (c) the radial displacements of (b) are shown in detail.
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Figure 5.5. Comparison between the radial displacement results calculated by GFA (solid

line) and via the analytical solution

verified, and in (c) the radial displacements of (b) are shown in detail (continuation).

5.4.2.
CPU time comparison

The computational performance of the proposed numerical scheme is also

an important parameter to be analyzed. For this, it is used the relative CPU time

calculated by the relation between the CPU time obtained with the numerical

scheme proposed by Peres et al. (2021) and with the current numerical scheme.

The results of Figure 5.6.a show that the proposed scheme is between 5.5

and 8.0 times faster than the iterative scheme when the mechanical properties are
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kept constant, and the element sizes are changed. Figure 5.6.b shows that the

and reservoir rock (elasticity contrast) increases. When the elasticity contrast is

close to 1%, the CPU times of both numerical schemes are approximately equal.

On the other hand, when the elasticity contrast is 90% the CPU time of the proposed

scheme is between 12.5 (more refined mesh) and 17.5 (less refined mesh) times less

than the CPU time of the iterative scheme.

Figure 5.6. (a) relative CPU time as a function of the average size of the elements and (b)

relative CPU time as a function of the elasticity contrast between cap rock and reservoir

rock.
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5.5.
Application

In this Section, a geological profile formed by four distinct layers (Figure

5.7 -iterative

numerical scheme. This profile represents a typical section of the Brazilian pre-salt

and was inspired by a seismic image of the Tupi field (Santos Basin, Brazil) found

in Mohriak et al. (2012). The mechanical properties of the rocks that form the

geological profile are shown in Figure 5.7. The salt rock is simulated as an almost

the lithostatic stress state of the geological formation. The reservoir is divided into

two regions whose pore-pressure variations are -50 MPa, in the production

solution (MELAN, 1932) is used as an auxiliary problem. The mechanical

properties of semi-infinite media are the same as those of the under-burden layer.

Figure 5.7. Representative 2D model of a geological section of the Brazilian pre-salt.

The analysis using GFA is performed considering the Bartholomew

quadrature with level 3 and the Gauss quadrature, applied after the Duffy

transformation, with 9 integration points. The results obtained with the GFA are

compared with the results found in five FEM models developed using the

commercial software Abaqus (DASSAULT SYSTEMES, 2017). In these models,

the semi-infinite media is modeled considering the simple truncation of the outer

boundary. For this, an extra layer with a length (showed in Figure 5.7), which
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varies between 0 (model without semi-infinite media), 2 , 5 , 10 , and 20

with equal to 6.0 km, is used. In the analysis via non-iterative GFA the domain

of interest (domain ) is discretized using triangular elements with three nodes and

linear shape functions. In the analyzes carried out with the FEM, quadrilateral

elements with four nodes and linear shape functions are used. In all cases, elements

with a maximum dimension equal to 100 meters are used (this value was defined

after carrying out mesh convergence studies). Due to the values of the mechanical

properties of the materials, the solution to this problem is not achieved using the

numerical scheme proposed by Peres et al. (2021), because the iterative process

does not converge.

Figure 5.8 presents the horizontal and vertical displacement along the dotted

segment defined in Figure 5.7. These curves show that the results obtained by GFA

are close to the results found using FEM when increases. Furthermore, the

results obtained via FEM by the models with equal to and are the

closest to the results obtained using the proposed method. For these two values, the

greatest divergences are observed at the ends of the horizontal displacement curve

(Figure 5.8.a), where the values calculated by the GFA are 0.87% ( ) and 0.84%

( ) higher than those found by the FEM. In the case of vertical displacement

(Figure 5.8.b), in both methods, the maximum value occurred close to the position

of 3900 meters, where the value obtained by the GFA is 2.4% and 0.5% higher than

the values found using FEM with and , respectively.

Figure 5.8. (a) horizontal and (b) vertical displacement along the dotted segment defined

in Figure 5.7.
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Figure 5.8. (a) horizontal and (b) vertical displacement along the dotted segment defined

in Figure 5.7 (continuation).

Figure 5.9 presents the displacement fields obtained from GFA (Figure

5.9.a) and FEM model with (Figure 5.9.b). Visually analyzing these

results, it is noted that the displacement fields are almost identical at all points in

the problem domain.

(a)

(b)

Figure 5.9. Vertical and horizontal displacement fields calculated from the GFA (top) and

FEM (bottom) after the injection and production process indicated in Figure 5.7.
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(c)

(d)

Figure 5.9. Vertical and horizontal displacement fields calculated from the GFA (top) and

FEM (bottom) after the injection and production process indicated in Figure 5.7

(continuation).

Comparing the strain fields found by both methods (Figure 5.10), it is

observed an agreement between the results, being possible to identify the same

regions of maximum swelling and compaction. In both cases, the maximum

horizontal swelling (Figure 5.10.a and Figure 5.10.b) occurs within the production

region and in part of the salt rock layer. The maximum vertical swelling (Figure

5.10.c and Figure 5.10.d) happens in the injection region and the salt rock layer

above the reservoir. The maximum vertical compaction (Figure 5.10.c and Figure

5.10.d) is located in the production region, the same region where shear strains

(Figure 5.10.e and Figure 5.10.f) are visible.
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(a)

(b)

(c)

(d)

Figure 5.10. Strain fields calculated from the GFA (top) and FEM (bottom) after the

injection and production process indicated in Figure 5.7.
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(e)

(f)

Figure 5.10. Strain fields calculated from the GFA (top) and FEM (bottom) after the

injection and production process indicated in Figure 5.7 (continuation).

It is important to note that in the present work, the non-iterative GFA

method was implemented using Python and it was not parallelized. On the other

hand, the FEM results were obtained using Abaqus software, which is implemented

in FORTRAN, which is widely recognized to be a much more efficient language

than Python. Furthermore, Abaqus is a commercial software that has been

parallelized and optimized. Thus, comparing CPU times between the two

simulations would not be very meaningful. A fairer way of comparing the efficiency

of the two methods would be to count the number of floating-point operations

(flops) performed in each method. The number of degrees of freedom (DOF) of the

model used in the GFA is 364 smaller than the DOF of the model analyzed through

the FEM ( ). Using the concept of flops discussed in Section 5.3, it takes

approximately flops to solve the full system ( ) of the GFA

shown in Eq. (5.13) and flops to solve the band system classically used

in FEM, a value that is times large. This demonstrates that the

application of the proposed method for the analysis of real geomechanical problems

is feasible and computationally attractive.
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5.6.
Conclusion

The present work proposes a non-iterative numerical scheme for the GFA.

Through this scheme, the GFA can be used for the analysis of geological formations

with mechanical properties like those found in the field. Using the iterative

numerical scheme proposed by Peres et al. (2021), this type of analysis does not

converge, due to the ratios of Young´s modulus of elasticity between rock layers.

Furthermore, when compared to the iterative scheme, the validation and

performance tests demonstrate that the proposed scheme is more efficient. In the

layered cylinder problem, the non-iterative scheme is between 5.5 and 8.0 times

faster than the iterative scheme when the mechanical properties are kept constant,

and the element sizes are modified. In the analysis where the elasticity contrasts are

changed this relation reaches 17.5. The validation tests also show that the GFA

using the proposed numerical scheme presents satisfactory results when the

ke the iterative scheme.

-iterative scheme is

demonstrated using a geological profile constructed from a seismic image of the

Tupi field located in the Brazilian pre-salt. In this analysis, the salt rock is simulated

as a near

coefficient of 0.495. The displacement and strain fields found from the GFA are

compared to the fields obtained through the FEM using the commercial software

Abaqus (DASSAULT SYSTEMES, 2017). However, to obtain similar accuracy,

in the FEM model it is necessary to discretize a region much larger than the one

necessary to carry out the analysis via GFA. Consequently, the GFA has 364 times

fewer degrees of freedom (considering the model ) than the FEM and,

therefore, less computational effort is required to perform the analysis. This is

highlighted using the metric of floating-point operations (flops) discussed in

Section 5.3. According to this metric, it takes approximately flops to

solve invert the complete system of the GFA shown in Eq. (5.13) and

flops to solve the band system classically used in FEM, a value that is

times larger.

The non-iterative numerical scheme is able to expand the applicability of

the GFA and to reduce the CPU time of the analysis. In this way, it can be concluded
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that the objectives of the research are achieved. Future developments include the

extension of the method for the analysis of 3D problems and the implementation of

viscoelastic and plastic constitutive models that allow an adequate representation

of the mechanical behavior of rocks.
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Paper submitted by Leonardo C. Mesquita, Elisa D. Sotelino, and Matheus

L. Peres in the Computer Methods in Applied Mechanics and Engineering (under

review).

Abstract

The present work proposes a new version of the Green-FOSM method,

which eliminates the iterative calculation process of the original version and,

simultaneously, solves the convergence problems related to the mechanical

properties of rocks that form the geological formation. Considering the same

computational resources, this non-iterative version of the Green-FOSM method is

up to 200 times faster than the original iterative process. In addition, it allows

analyzing problems with more than 10,000 random variables, value that in the

original method is less than 3,000. To demonstrate its validity, the proposed method

is applied to a hypothetical 2D model submitted to a fluid depletion process. For all

the different levels of correlation and spatial variability, the statistical results

obtained by the proposed methods agree well with the results obtained via Monte

Carlo Simulation (MSC). The relationship between CPU times demonstrates that

the proposed method is at least 50 times faster than MCS. In the end, the non-

iterative Green-FOSM method is used to obtain the displacement, strain and stress

fields of a geological section constructed from a seismic image of Brazilian pre-salt

oil region. The results found show that, depending on the levels of spatial

variability, the analyzed fields can assume values up to 30.6% higher or lower than

the values obtained deterministically.
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6.1.
Introduction

The injection or extraction of fluids in underground reservoir produces

alterations in pore pressure of the reservoir rock, which impacts the mechanical

behavior of the entire geological formation. These alterations, generated during the

processes of hydrocarbon production (MINKOFF; KRIDLER, 2006), water

extraction (TEATINI et al., 2006), transport of solutes in aquifers (BONAZZI;

JHA; DE BARROS, 2021), or CO2 or natural gas storage (FERRONATO et al.,

2010; LU, 2010; PAN et al., 2016; RUTQVIST et al., 2016; SIRIWARDANE et

al., 2016; TEATINI et al., 2011; VILARRASA et al., 2019), modify the

displacement, strain and stress fields of the rock massif. As a direct consequence of

these alteration, the rock reservoir undergoes a volumetric variation, which can

affect its permeability and reduce the rate of fluid extraction (GAMAGE et al.,

2011; OSTENSEN, 1986). At the same time, subsidence or uplifting of the free

surface can occur, and this affects the functionality and stability of the structures

present in the reservoir region (FIGUEROA-MIRANDA et al., 2018). These

alterations can also generate secondary problems, such as wellbore collapse,

failures in offshore platforms, fault reactivation, and seismic events (BOURNE et

al., 2014; MINKOFF; KRIDLER, 2006; PAULLO MUÑOZ; ROEHL, 2017;

VERDON et al., 2016). In addition, during the fluid recovery process, the

monitoring of the geological profile is done using seismic measurements, which are

affected by alterations in the strain field (BARKVED; KRISTIANSEN; FJÆR,

2005; HATCHELL et al., 2007; HERWANGER; HORNE, 2009; TEMPONE;

LANDRØ; FJÆR, 2012). These examples have motivated the development of

deterministic analytical and numerical methods that allow the prediction of the

impact of injection or extraction of fluids on the geological formation.

In general, the analytical methods have the advantage of being simple.

However, they are limited in terms of the geometry and heterogeneity of the

geological profile and the mechanical behavior of the materials that they can

consider. Among these methods, the most used is the method proposed by Geertsma

(GEERTSMA, 1957, 1973a, 1973b), which is based on the nucleus-of-strain

principle introduced by Mindlin and Cheng (1950). The restrictions of analytical

methods are overcome using numerical methods, which are commonly based on the
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finite element method (FEM) (HADDAD; EICHHUBL, 2020; LELE et al., 2016;

WATANABE et al., 2010). These methods are capable of considering the

particularities of each geological formation. However, in most situations, the

construction of the models is labor intensive and require large amounts of storage,

and model processing demands a high computational effort.

(PERES et al., 2021), uses classical

an auxiliary solution to obtain the variation of the displacement

field of a geological massif subjected to a fluid injection and/or extraction process.

The great advantage of this method compared to the classic FEM is that it does not

require the imposition of boundary conditions and the analysis can be performed

considering only the reservoir or other regions of interest. As the analytical

methods, o GFA is simple and computationally efficient. Furthermore, it does not

present limitations in terms of geometry, number of layers, and heterogeneity of the

geological profile, and it can be applied to materials with linear and non-linear

behavior.

The analytical and numerical methods presented above deal with the effects

of fluid extraction or injection process deterministically, as they do not consider the

uncertainties associated with the process. However, these uncertainties can affect

the results (BAÙ et al., 2016) and lead to responses that do not agree with in-situ

observations (MULLER et al., 2009b, 2009a). In order to consider these

uncertainties, Mesquita et al. (2023) developed a stochastic statistical method,

called Green-FOSM, based on GFA and the first-order second-moment method

(FOSM). Using this method, it is possible to predict changes in the displacement

field generated by variation in pore pressure and, at the same time, consider the

spatial variability of the mechanical properties of the rock that form the geological

profile.

As in the original version of the GFA, the original Green-FOSM method

uses an iterative calculation scheme, which presents convergence problems when

ke up the

geological profile increases (not converging when this relationship is greater than

5). These limitations prevent

the application of the Green-FOSM method in real problems. Additionally, the

iterative scheme jeopardizes the computational performance of the method. Due to

these limitations, the present work proposes a new version of the Green-FOSM
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method. This version eliminates the iterative calculation process of the original

version and, simultaneously, solves the convergence problems related to the

mechanical properties of rocks. Furthermore, by eliminating the iterative process,

the computation performance of the Green-FOSM method is improved.

6.2.
Deterministic

The GFA is formulated from the principle of virtual work and the theorem

of reciprocity (PERES et al., 2021). Using these concepts, the displacement field of

the analyzed geomechanical problem is calculated with the aid of a classic

fundamental solution such as (THOMSON, 2015)

and (MELAN, 1932), among others as is presented

in the following sections.

6.2.1.
Linear poroelasticity applied to heterogeneous problems

The linear poroelasticity theory proposed by (BIOT, 1941) establishes that

the poroelastic response of a porous material is given by the linear relationship

between stress variation , strain , and pore pressure variation , as shown

in Eq. (6.1)

, (6.1)

where and are the fourth-order constitutive tensor and the second-order Biot

tensor, respectively. Eq. (6.1) is valid for homogeneous problems. For

heterogeneous problems, Peres et al. (2021) propose the addition of the

complementary tensor, which considers the difference between the mechanical

properties of the homogeneous problem, represented by the classical fundamental

solution, and the heterogeneous problem, defined as a real geomechanical problem.

This is shown in Eq. (6.2), in which the term corresponds to the fourth-order

constitutive tensor calculated from the mechanical properties of the material located

in position contained in the domain of the real geomechanical problem.

(6.2)

Using this tensor, the poroelastic response of the heterogeneous geomechanical

problem is given by
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(6.3)

6.2.2.
Reciprocity theorem extended to linear and heterogeneous porous
media

From the principle of virtual work, it is possible to establish the following

relationship amongst displacement, strain, and stress

(6.4)

with being the virtual displacement vector, the virtual strain tensor,

the vector that contains the variation of surfaces forces generated by the fluid

injection or depletion processes, and the force vector that does not consider the

surface forces. Applying the theorem of reciprocity, the displacement field of the

geomechanical problem (real problem) can be determined with the aid of a classic

fundamental solution (auxiliary problem) whose analytical response is known. To

demonstrate this application, admit that the real problem (index 1) and the auxiliary

problem (index 2) have the same semi-infinite domain . In the real problem, this

domain is divided into subdomains , which define the layers of geological

formation. As shown in Figure 6.1.a, one of these subdomains represents the

reservoir region (subdomain ), which is subjected to pore pressure variation .

As the (MELAN, 1932) is

adopted, where a concentrated force is applied in a homogeneous elastic semi-

infinite domain (Figure 6.1.b).

Figure 6.1. (a) real problem domain with reservoir region (subdomain ) and (b) auxiliary

problem domain.

Applying the Eq. (6.4) to the real problem (index 1) with the virtual field of

the auxiliary problem (index 2) and vice versa, and substituting in Eq. (6.3), in

which the fourth order constitutive tensor is symmetric, it is possible to reach

the following relationship
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(6.5)

In the real problem (index 1) the unknown displacements are generated only

by pore pressure variation , so the vectors and are both nulls. In

the auxiliary problem (index 2) the displacements come from the unit concentrated

force applied to a position of the domain ( ) and, therefore, the vector

and the variation can be disregarded (LEHNER; KNOGLINGER; D,

2005). The tensor is also null, because is equal to for any position

within the domain of the auxiliary problem. For the case of isotropic materials,

the second-order Biot tensor is equal to the product of the Biot coefficient by

the second order identity tensor . Thus, eliminating the indexes (1) and (2), the

horizontal or vertical displacement in position can be obtained by

(6.6)

where is a subscript referring to the auxiliary problem, is the displacement

vector at position , is the direction vector of the unit point load applied in the

auxiliary problem, and are, respectively, the volumetric strain

variation and the strain vector at position obtained from the auxiliary problem

considering the unit point load applied at position , and is the strain vector

calculated at position of the real problem.
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6.3.
Uncertainties evaluation using the non-
approach

Due to the heterogeneity of the real problem, in Eq. (6.6) the displacement

vector is implicitly calculated from the strains . Peres et al. (2021)

present two ways to solve this equation. The first way consists in determining the

strains directly, calculating the gradient from the differentiation of

the right side of Eq. (6.6). The second way, which is used by Peres et al. (2021),

consists of discretizing the domain into triangular regions forming an

element mesh like those used in the FEM. From the direct colocation method

(ATKINSON; FLORES, 1993), the displacements are calculated at each node of

the discretized domain . Considering this discretization, Eq. (6.6) can be

rewritten as

(6.7)

where is the number of elements in the reservoir region (subdomain ) and

is the number of elements in the entire model (domain ). In this equation, the

terms referring to the pore pressure variation and Biot coefficient are

constants within each element.

Peres et al. (2021) solve Eq. (6.7) using an iterative fixed-point method, in

which the displacement field of iteration is used to calculate the strains of

iteration . The displacement field of the initial iteration is determined

considering only the summation in the subdomain and the convergence of the

method is based square root of the sum of the squared nodal displacement

components over the domain . As demonstrated in Chapter 5, this iterative

method has limitations related to convergence, values of the mechanical properties

of the materials, and computational performance. As a result, the authors proposed

a non-iterative numerical scheme capable of expanding the applicability and

improving the computational performance of the GFA.
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An iterative fixed-point method, similar to that proposed by Peres et al.

(2021), is used in the original version of the Green-FOSM method by Mesquita et

al. (2023). However, despite the original method being up to 30 times faster

(problem with 1,500 random variables) than the MCS, the iterative Green-FOSM

method also has the same limitations mentioned in Chapter 5. Furthermore, it is

computationally infeasible when the problem to be analyzed has more than 3,000

random variables (considering the following computing resources: workstation

with an Intel Core i9-10850K processor and 64 Gb of RAM). Due to this, a non-

iterative version of the Green-FOSM method is proposed. This new version aims to

expand the applicability of the Green-FOSM method (application to problems with

more than 10,000 random variables) and, at the same time, to improve its CPU time.

6.3.1.
FOSM based on non-

Using the Eq. (6.7) it is possible to deterministically calculate the

displacements produced by pore pressure variations. As presented by Mesquita et

al. (2023), the GFA can be statistically extended in order to incorporate the

uncertainties related to the mechanical properties of the rocks that make up the

geological formation. This extension is done using statistical methods that are able

to propagate the uncertainty of the random input variables (in this case, the

mechanical properties of the rocks) to the random variables that represent the

answer to the problem (displacement, strain, and stress fields).

According to Fenton and Griffiths (2008), statistical methods of uncertainty

propagation can be exact or approximate. When the relationship between input and

output random variables is represented by a complex mathematical function, such

as Eq. (6.7), the exact method becomes unfeasible. In this case, approximate

methods such as Monte Carlo Simulation (MCS) and FOSM method can be used.

Mesquita et al. (2023) use the FOSM method to statistically expand GFA.

In the FOSM method, the mean values and variances

of the response random variables are determined through the first terms of the

Taylor series expansion centered on the mean values of the random input

variables as shown in the following

(6.8)
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(6.9)

Where is the mean value of random variable , is the standard deviation of

random variable , and is the correlation coefficient between random variables

and (ANG; TANG, 2015). Compared to MCS, the great advantage of the FOSM

method is associated with the CPU time required to obtain the statistical answer to

the problem.

6.3.1.1.
First moment using non-

As shown in Eq. (6.8), in the FOSM method the mean values of the output

random variables are determined from the function and the mean

values of the input random variables . By extending the GFA to the statistical

case, the function is defined by Eq. (6.7). In this way, the mean values of

the variables can be obtained directly using the non-iterative numerical

scheme proposed in Chapter 5. In this scheme, the strain vector is rewritten

using a matrix , formed by the derivatives of shape functions, which

correlate the nodal displacements with this strain vector, as it is

classically done in the finite-element literature.

The first summation shown in Eq. (6.7) corresponds to the energy

generated by the volumetric deformation of the elements contained in the reservoir

region, which is statistically represented by the dimension vector shown

below
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(6.10)

where is the number of nodes in the element mesh, is the number of random

variables in the problem, is the volumetric deformation do the triangular element

generated by a concentrated horizontal ( equal to the horizontal force ) or

vertical ( equal to the vertical force ) force applied at position , and ,

and are the mean values of the random variables that represents the Biot

,

respectively.

The second summation of Eq. (6.7) represents the portion of complementary

energy generated by the difference between the mean values of the input random

variables of the real problem and the random variables of the auxiliary problem. At the

element level, this energy portion can be written using the follows

(6.11)

The vector is defined by
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(6.12)

where is the matrix formed by the derivatives of shape functions and

are the mean values of input random variables that make up the matrix , that is,

of each triangular element .

Considering the connectivity of the triangular elements used to discretize the

domain and assuming that the output random variables that represent the nodal

displacements are written in terms of global vector

(6.13)

the Eq. (6.11) can be rewritten as

(6.14)

where is a matrix with dimension .

Using the vectors and , and the

definition of , the mean values of the nodal displacements can be

approximated by

(6.15)

where is the second order identity matrix.

6.3.1.2.
Second moment using non-

As shown in Eq. (6.9), in the FOSM method the variances of the output

random variables are determined from the partial derivatives of function

in relation to the input random variables . As previously mentioned,
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the function is defined by Eq. (6.7). In this way, the derivatives with respect

to input random variables can be calculated as

(6.16)

The terms and are obtained during

the calculation process of the mean values shown in Eq. (6.15). Using the partial

derivatives of the nodal displacements with respect to the input random variables

, the variance of the horizontal ( ) or vertical ( ) displacements at

position is given by

(6.17)

where is a vector of dimension that contain the partial

derivatives,

(6.18)

is the matrix that considers the spatial variability of input random

variables that represent the mechanical properties of materials, as discussed in the

next section.

6.3.2.
Random variables, stochastic grid, and spatial variability of
properties

Due to their inherent spatial variability, the mechanical properties of the

rocks that make up the geological formation can be treated as random variables
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(VANMARCKE, 2010). This variability is incorporated into the geomechanical

problem through a stochastic random field, which is delimited by the domain .

As proposed by Cho (2012) and Li et al. (2015), the domain is discretized into

several subdomains forming a stochastic grid in which the input random

variables are considered statistically stationary, that is, the mean values and

variances remain constant within the same geological layer, and an autocorrelation

function defines the degree of correlation between random variables of any two

subdomains , regardless of their absolute coordinates. In this work, the

correlation between random variables of subdomains contained in different

geological layers and the cross correlation between random variables that represents

different mechanical properties are assumed equal to zero. Defining

as the autocorrelation function between the random variables of the subdomains

and , respectively, the matrix is defined by

(6.19)

where and are the standard deviations of the random variables and .

The autocorrelation function varies between 0.0 and 1.0 (LI et al., 2015). When

is equal to 1.0, the random variables of the domains and

assume equal values. Otherwise, these variables assume different values. The

mechanical properties of materials are considered homogeneous when all the

relationships between the and subdomains of the same geological layer are

equal to 1.0. On the other hand, when this ratio is different from 1.0, the materials

are considered heterogeneous. In general, to define the autocorrelation function

between the random variables of a geological layer, a large dataset is needed, which

are not always available. As a result, the theoretical equations presented by Li et al.

(2015) are commonly used in statistical analysis of geotechnical problems.

In the applications presented in the following sections, the mesh of

triangular elements used to discretize the domain in the geomechanical analysis

is used to define the subdomains of the stochastic grid. For each triangular
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more random variables are considered to represent the mechanical properties of the

infinite medium. Therefore, the total number of random variables is equal to

.

6.4.
Validation study: Reservoir under uniform depletion

The non-iterative Green-FOSM method is validated using the geological

profile shown in Figure 6.2. This section is composed of three rock layers

(overburden, reservoir, and underburden) with different mechanical properties. The

variables (nodal displacements) using the non-iterative Green-FOSM method and

the proposed methodology, as has been done in other works (LÖFMAN;

KORKIALA-TANTTU, 2021; QI et al., 2022; WU et al., 2021).

In this application, the problem domain ( ) is divided into 608 sub-regions,

which form the mesh of triangular elements of the geomechanical analysis and the

stochastic grid of the statistical analysis. This number of divisions was defined

through a sensitivity analysis and represents the maximum number of sub-regions

for which the MCS is computationally feasible considering the computational

resources available (workstation with an Intel Core i9-10850K processor and 64 Gb

of RAM). The reservoir region (subdomain ) is subjected to a uniform fluid

extraction process in which the pore pressure variation ( ) is equal to -20 MPa.
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Figure 6.2. 2D model (plane strain state) used to represent the geological formation.

In the MCS, the statistical moments of the nodal displacements are

determined after 3000 repetitions, performed using the deterministic and non-

iterative GFA presented in Chapter 5. In addition, it is also necessary to know the

probability density function that describes the input random variables. In this work,

described using a normal distribution function (JHA et al., 2015; PLÚA et al.,

2021a, 2021b). The random variables that represent the Biot coefficient are defined

by a uniform distribution function (PLÚA et al., 2021a, 2021b).

In all analyses, the integrals of Eq. (6.10) and Eq. (6.12) are numerically

solved using Gauss quadrature (4×4 points), Bartholomew quadrature (level 3), and

Duffy transformation, similarly to Peres et al. (2021), and Mesquita et al. (2023).

6.4.1.
Validation regarding the spatial variability of the mechanical
parameters of the rocks

In order to evaluate the effectiveness of the non-iterative Green-FOSM

method with respect to the spatial variability of the input random variables, the

example presented in this section is analyzed assuming three situations. In the first

situation, the input random variables (with the same nature and belonging to the

same geological layer) of the subdomains and are admitted as fully

correlated. In the second situation, these random variables are assumed to be totally

uncorrelated. In the last situation, these input random variables are correlated

through the exponential autocorrelation function in Eq. (6.20), which equation is
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used in geotechnical problem by Cho (2012), Wang et al. (2020), and Wu et al.

(2021).

(6.20)

The parameters and are the absolute distances between the centroids of

the subdomains e in the horizontal and vertical directions, respectively. The

parameters and are the horizontal and vertical correlation lengths, respectively.

In this example, the horizontal correlation length is equal to 1,000 meters and the

vertical correlation length is equal to 200 meters. In this last situation, to obtain the

random variables defined by a normal density function)

are generated using the Cholesky decomposition technique (LI et al., 2015; YANG;

WANG; BRANDENBERG, 2022) and the random values representing the Biot

coefficient (values generated from a uniform density function) are assumed to be

fully correlated.

In the three situations described above, two coefficients of variation (CV)

For the Bi

can result in Biot coefficients greater than 1.0, which have no real physical meaning.

The set of all mechanical parameters used in this application are shown in Table

6.1.

Table 6.1. Mechanical parameters of the rock that form the geological profile used in this

application.

Material Parameters

[GPa] Biot coefficient

Layer Mean CV Mean CV Mean CV

Reservoir 15.0 10% - 20% 0.30 10% - 20% 0.80 10%

Overburden 6.0 10% - 20% 0.20 10% - 20% - -

Underburden 20.0 10% - 20% 0.25 10% - 20% - -

Infinite domain 20.0 10% - 20% 0.25 10% - 20% - -

In Figure 6.3 the relationships between the statistical moments of horizontal

and vertical nodal displacements calculated using the non-iterative Green-FOSM

method and MCS are presented, considering the CV equal to 10% and the three

situations of spatial variability proposed. As can be seen, in general, the values
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obtained by the proposed method are close to the values found through MCS. In

some nodes, it is observed that the mean value of the vertical displacement

calculated by proposed method is up to 20% higher than the mean value found via

MCS. This difference is justified by the magnitude of the vertical displacements in

these nodes, which are close to zero, and can be reduced by increasing the number

of repetitions in MCS.

Figure 6.3. Relationships between the statistical moments obtained by the non-iterative

Green-FOSM method and by MCS considering the CV equal to 10%. In (a) the random

variables are fully correlated, in (b) the random variables are fully uncorrelated, and in (c)

the random variables are correlated following the exponential function described in Eq.

(6.20).

In Figure 6.4 the relationships between the results obtained via non-iterative

Green-FOSM method and MCS with CV equal to 20% are presented. For this

situation, the variances of the horizontal and vertical displacements present a

greater dispersion compared to the case with CV equal to 10%. In the three cases
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of spatial variability analyzed, the mean values obtained by non-iterative Green-

FOSM method are close to those found through MCS. On the other hand, the

variances obtained by the proposed method are, on average, 5.5% (horizontal

displacement) and 6.9% (vertical displacement) lower that the variances found via

MCS for the fully correlated situation (Figure 6.4.a). For the totally uncorrelated

situation (Figure 6.4.b) these values are 6.9% (horizontal displacement) and 9.7%

(vertical displacement). For the situation whose random variables follow the

exponential autocorrelation function (Figure 6.4.c) these values are 2.7%

(horizontal displacement) and 2.8% (vertical displacement). Also, except for three

nodes shown in Figure 6.4.c, the relationships between the variances found via

Green-FOSM method and MCS are less 0.8.

Figure 6.4. Relationships between the statistical moments obtained by the non-iterative

Green-FOSM method and by MCS considering the CV equal to 20%. In (a) the random

variables are fully correlated, in (b) the random variables are fully uncorrelated, and in (c)

the random variables are correlated following the exponential function described in Eq.

(6.20).
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As verified by Bungenstab and Bicalho (2016), due to the truncation of the

Taylor series, when increasing the CV of the input random variables, the FOSM

method tends to underestimate the variances of the output random variables.

Despite this, as already discussed by Mesquita et al. (2023), for the variability

situations and the analyzed CV levels, the difference between the values obtained

through the proposed method and by SMC are small in relation to the dimensions

of the geomechanical problems. Thus, it can be concluded that for the analyzed

situations, the non-iterative Green-FOSM method is able to obtain results

compatible with those found by the MCS.

6.4.2.
CPU time comparison

The computational performance of the proposed method is evaluated using

a relative CPU time parameter calculated by the relation of the CPU times obtained

by iterative Green-FOSM method or MCS and the proposed method. As shown in

Figure 6.5, the relative CPU times are evaluated considering different meshes and,

consequently, different numbers of random variables. In the case of the iterative

Green-FOSM method, the maximum number of input random variables is 2,388,

since the available computational resources (workstation with an Intel Core i9-

10850K processor and 64 Gb of RAM) do not allow the analysis the problems with

more random variables.

Figure 6.5. Relative CPU times as a function of the number of random variables in the

model.
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The results obtained show that the non-iterative Green-FOSM method is

between 100 and 200 times faster than the iterative Green-FOSM method.

Comparing the CPU times of the MCS and the proposed method, it is observed that

the proposed method is at least 50 times faster than the MCS. Furthermore, using

the same computational resources, with the proposed method it is possible to

analyze problems with more than 10,000 random variables.

Despite sharing the same theoretical formulation, Eq. (6.7), in the iterative

Green-FOSM method (MESQUITA et al., 2023) the mean values and partial

derivatives are calculated times in each interaction, where is the number

of random variables. In the non-iterative method, the partial derivatives are

calculated from the mean values of the nodal displacements and the inverse matrix

shown in Eq. (6.15), which is previously determined. As a result, in addition to

eliminating iterations, the proposed method presents an additional performance

gain, since it is not necessary to perform any additional matrix inversion.

6.5.
Application: Uncertainties consideration in a Brazilian pre-salt
reservoir

In order to demonstrate the applicability of the proposed method to real

problems, the uncertainties related to the mechanical properties of materials are

incorporated into the geomechanical analysis of the geological profile shown in

Figure 6.6. This geological profile represents a typical section of the Brazilian pre-

salt and is inspired by a seismic image of the Tupi field (Santos Basin, Brazil) found

in Mohriak et al. (2012). The mean values of the mechanical properties of the rocks

that make up the geological profile are presented in Figure 6.6. The problem domain

( domain) is divided into 3,642 sub-regions, which form the mesh of triangular

elements of the geomechanical analysis and the stochastic grid of the statistical

analysis, totaling 10,929 random variables. The reservoir region (subdomain ) is

divided into two regions whose pore pressure variation are -80 MPa (depletion

(MELAN,

1932) is used as an auxiliary problem. The mechanical properties of the infinite

domain are the same as the underburden layer. The integrals in Eq. (6.10) and Eq.

(6.12) are numerically solved using Gauss quadrature (4×4 points), Bartholomew
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quadrature (level 3), and Duffy transformation, as was done in Peres et al. (2021),

and Mesquita et al. (2023).

Figure 6.6. Representative 2D model of geological section of the Brazilian pre-salt field.

The random variables of the and subdomains, contained in the same

geological layer, are correlated through the exponential autocorrelation function

defined in Eq. (6.20), assuming the horizontal and vertical correlation lengths

shown in Figure 6.7. Although Figure 6.7 uses as a reference a subdomain located

in the salt rock layer, the correlation lengths shown in this figure are considered in

the Biot coefficient, a CV equal

to 10% is used.

Figure 6.7. Correlation variation between a reference point (located in the center of

the layer) and the other subdomains of the salt rock layer as a function of horizontal

and vertical correlation lengths.
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(a) Deterministic results (mean values)

(b) Lower limit results

(c) Upper limit results

Figure 6.8. Vertical displacement fields obtained after the injection and depletion process

shown in Figure 6.6. In (a) the deterministic results are shown, in (b) the displacements

referring to the lower limit of the 95% confidence interval are shown, and in (c) the

displacements referring to the upper limit of the 95% confidence interval are shown.

Analyzing these displacements fields, it is observed that the deterministic

and statistical responses can be significantly different. The maximum vertical

displacement obtained by the deterministic analysis is 1.20 meters. Considering the
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uncertainties and correlation lengths shown in Figure 6.7.a, this parameter can vary

between 0.97 and 1.42 meters, which corresponds to 18.5% of the deterministic

value. Increasing the correlation lengths this percentage increases, being equal to

24.0% for the lengths shown in Figure 6.7.b, 28.1% for the lengths shown in

Figure 6.7.c, and 30.6% for the lengths shown in Figure 6.7.d.

Using seismic measurement results and geomechanical analysis it is

possible to predict future events associated with the fluid injection or extraction

process (HERWANGER; HORNE, 2009). This prediction is performed through the

R-factor, which relates the vertical strains estimated by the geomechanical model

with seismic velocity variations measured in the field (HATCHELL; BOURNE,

2005; RØSTE; STOVAS; LANDRØ, 2006). As shown in Figure 6.9, the statistical

vertical strain fields differ from the deterministic strain field. This demonstrate that

the uncertainties associated with the mechanical properties of rock must be

considered when predicting future events associated with the fluid injection or

extraction process.

(a) Deterministic results (mean values)

Figure 6.9. Vertical strain fields obtained after the injection and depletion process shown

in Figure 6.6. In (a) the deterministic results are shown, in (b) the displacements referring

to the lower limit of the 95% confidence interval are shown, and in (c) the displacements

referring to the upper limit of the 95% confidence interval are shown.
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(b) Lower limit results

(c) Upper limit results

Figure 6.9. Vertical strain fields obtained after the injection and depletion process shown

in Figure 6.6. In (a) the deterministic results are shown, in (b) the displacements referring

to the lower limit of the 95% confidence interval are shown, and in (c) the displacements

referring to the upper limit of the 95% confidence interval are shown (continuation).

In all analyzed situations, the maximum vertical compaction happens in the

depletion reservoir region and the maximum vertical elongation occurs in the salt

rock layer located above the reservoir. The maximum vertical compaction obtained

e

uncertainties and correlation lengths shown in Figure 6.7 this strain can be 12.8%,

17.1%, 19.6%, or 20.7% greater or smaller than the deterministic value,

respectively. For vertical elongation, the maximum deterministic value is equal to

Figure 6.7

this value can be 19.4%, 23.1%, 26.3%, or 28.5% greater or smaller than the

deterministic value.
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Figure 6.10 shows the stress fields (maximum principal stresses) found from

the deterministic analysis and statistical analysis considering the correlation lengths

shown in Figure 6.7.d. Again, it is possible to verify that the statistical answer of

the problem may differ from the deterministic answer. Through deterministic

analysis, the maximum principal stress at the center of the depleted reservoir is

equal to -30.7 MPa. However, depending on the uncertainties and correlation

lengths this value can be up to 25.2% greater or smaller.

(a) Deterministic results (mean values)

(b) Lower limit results

Figure 6.10. Stress field variations obtained after the injection and depletion process

shown in Figure 6.6. In (a) the deterministic results are shown, in (b) the displacements

referring to the lower limit of the 95% confidence interval are shown, and in (c) the

displacements referring to the upper limit of the 95% confidence interval are shown.
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(c) Upper limit results

Figure 6.10. Stress field variations obtained after the injection and depletion process

shown in Figure 6.6. In (a) the deterministic results are shown, in (b) the displacements

referring to the lower limit of the 95% confidence interval are shown, and in (c) the

displacements referring to the upper limit of the 95% confidence interval are shown.

(continuation).

As demonstrated by other authors (JEANNE et al., 2016; PEREIRA et al.,

2014a, 2014b; ZOCCARATO et al., 2019), the uncertainties associated with the

fluid extraction or injection process produce variation in the stress state of

geological faults, which are relevant for fault reactivation studies. Although these

studies demonstrate the importance of considering uncertainties in fault reactivation

analyses, they do not consider the spatial variability of input random variables. As

demonstrated, the ranges of variation of the displacement, strain and stress fields

are altered when the correlation lengths of the input random variables are modified,

and this must be considered in the decision-making process in problems involving

fluid extraction or injection process.

6.6.
Conclusions and remarks

The Green-FOMS method (MESQUITA et al., 2023) is a stochastic

statistical method capable of considering the uncertainties associated with the

mechanical properties of materials in geomechanical problems. The novelty of the

method lies in the use of the GFA, which, together with the FOSM method, is used

to propagate these uncertainties to the displacement, strain, and stress fields of the

geological formation. Furthermore, using the concepts of stochastic grid and

autocorrelation function, the proposed method allows for the consideration of

spatial variability of the random variables that represent these mechanical
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properties. Despite the fact that the original method presents satisfactory results

when applied to hypothetical problems, when applied to real problems it has

limitations. By using an iterative calculation scheme, the original Green-FOSM

method presents a convergence problem when the relationship between the

100% or when the Poisson's ratio approaches 0.5. In addition, this iterative scheme

jeopardizes the computational efficiency of the method and requires the storage of

a large volume of data, which impede the analysis of problems with more than 3000

random variables (for the available computing resources, workstation with an Intel

Core i9-10850K processor and 64 Gb of RAM).

The present work proposes a new version of the Green-FOSM method,

which eliminates the iterative process and, simultaneously, solves the convergence

problems related to the mechanical properties of the materials that make up the

geological formation. As shown in Section 6.4.1, the present method is up to 200

times faster than the original method and, with the computational resources

mentioned above, allows analyzing problems with more than 10,000 random

variables.

The validity of the non-iterative Green-FOSM method is analyzed by

comparing the statistical moments of the output random variables (horizontal and

vertical displacements) obtained through this method with the results found via

MCS (reference method). For this, a 2D model that represents a hypothetical

geological formation with three layers of rocks with different mechanical properties

is used. The spatial variability of the mechanical properties is incorporated into the

geomechanical model using the exponential autocorrelation function shown in Eq.

(6.20). In all evaluated situations, the results obtained by the proposed method

present good agreement with the results found by the MCS. The CPU times of the

geomechanical analyses performed using the proposed method demonstrate that, in

the most unfavorable situation, this method is about 50 times faster than the MCS.

The applicability of the non-iterative Green-FOSM method and the

importance of considering the uncertainties associated with the mechanical

properties of materials in the geomechanical analysis are discussed using a

geological section constructed from a seismic image inspired in the Tupi field,

located in the Brazilian pre-salt. For the considered confidence level, the results

obtained demonstrate that, due to these uncertainties, the displacement,
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deformation, and stress fields can assume values that differ considerably from the

values found deterministically. Furthermore, it is demonstrated that, depending on

the correlation lengths, the variation intervals of these fields can be up to 30.6%

greater or smaller than the deterministic results. Despite the large amounts of data

required, it is important to estimate correlation lengths accurately. For this, the

studies of Uzielli et al. (2005) and Lloret-Cabot et al. (2014) developed in the

geotechnical field can be used as references.

In general, the non-iterative Green-FOSM method achieves all the proposed

objectives, since because its simplicity and efficiency it is capable of assisting

reservoir engineers in decision-making process when evaluating problems related

to the injection or depletion of fluids in underground reservoirs.

P
U

C
-R

io
-

C
er

ti
fi

ca
çã

o
D

ig
it

al
N

º
19

12
63

4/
C

A



137

This chapter provides an overview of the present work. The first section of

this chapter presents a summary of the developed methodology, highlighting the

advances obtained from the iterative version of the Green-FOSM method to the

non-iterative version. Also in this section, the importance of considering

uncertainties in geomechanical problems is emphasized and the main limitations of

the proposed approach are presented. The second section of this chapter presents

directions for future research.

7.1.
Summary and general conclusions

The present work proposes a computationally efficient statistical method,

called the Green-FOSM method, to consider the inherent uncertainties associated

with the mechanical properties of rocks in geomechanical analyses. Through this

method it is possible to improve decision-making processes by analyzing the

geomechanical problems generated by the production of oil and natural gas, water

extraction or CO2 storage. The main novelty of this method is the use of the Green's

function approach, which together with the first-order second-moment statistical

method, is used to propagate the uncertainties of the input random variables to the

displacement, strain, and stress fields of the geological formation. Furthermore,

using the concepts of stochastic grid and autocorrelation function, the proposed

method allows the consideration of the spatial variability of random variables that

represent these mechanical properties.

The first version of the Green-FOSM method uses the GFA formulation

proposed by Peres et al. (2021). In this version the displacement field and the partial

derivatives of the displacements with respect to the input random variables are

calculated using an iterative calculation scheme (Figure 4.1). However, due to this

iterative process, this version presents convergence problems when the relationship

between the Young's modulus of the rocks that form the geological profile is greater
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Despite

being computationally efficient, when compared to the traditional Monte Carlo

simulation, this iterative calculation process compromises the CPU time of the

statistical analysis.

The above limitations are eliminated using the non-iterative calculation

process shown in Chapter 5. In this process, the iterative calculation scheme is

replaced by the resolution of the system described in Eq. (5.13). The CPU times

obtained from the validation examples (Section 5.4.2) demonstrate that, in

deterministic applications, the non-iterative GFA is between 2.5 and 17.5 times

faster than the iterative GFA (Figure 5.6). In the statistical case (Figure 6.5), the

non-iterative Green-FOSM method is more than 200 times (model shown in Figure

6.2) faster than the iterative Green-FOSM method. Furthermore, using the non-

iterative version it is possible to analyze problems with more than 10,000 random

variables. Considering the same computational resources (workstation with an Intel

Core i9-10850K processor and 64 Gb of RAM), in the iterative version these

analyses are limited to a maximum of 3000 random variables.

In Chapter 6 the non-iterative Green-FOSM method is used to analyze a

geological profile constructed from a seismic image of the Brazilian pre-salt Tupi

field, located in the Santos basin. The obtained results demonstrate the capability

of the non-iterative Green-FOSM method and highlight the importance of

considering the inherent uncertainties associated with the mechanical properties of

materials in geomechanical problems. For the confidence level considered, the

results obtained demonstrate that, due to these uncertainties, the displacement,

strain, and stress fields can assume values that differ considerably from the values

found deterministically. Furthermore, it is demonstrated that, depending on the

correlation lengths, the ranges of variation of these fields can be up to 30.6% larger

or smaller than the deterministic results.

In general, it can be concluded that the methodology proposed in this work

fulfills all the objectives presented in Chapter 1. Thus, the proposed method is able

to assist reservoir engineers in decision making when evaluating problems related

to the injection or depletion of fluids in underground reservoirs.
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7.2.
Future research

The set of future research proposed from the developments presented in the

present work can be divided into two groups, the first related to the deterministic

(GFA) and the second related to the probabilistic

analysis of geomechanical problems using the Green-FOSM method.

Regarding the deterministic GFA, the following study ideas are proposed:

(1) to develop and to implement the GFA for the treatment of 3D geomechanical

problems, using Mindlin's fundamental solution as an auxiliary solution; (2) to use

parallel computing techniques to improve the computational performance of the

GFA in 2D and 3D problems; (3) to implement constitutive models (non-linear

elastic, plastic, viscoelastic or viscoplastic) that allow simulating the non-linear

behavior of materials; (4) to perform the fluid-mechanical coupling using the GFA;

and (5) to modify the GFA to be applied in geotechnical problems that involve the

consideration of stresses in the soil, emphasizing the calculation of initial stresses

in-situ.

Regarding the probabilistic analysis of geomechanical problems, the

following points are proposed: (1) to analyze the possibility of extending the GFA

to the statistical case using other uncertainty propagation methods (for example, the

second-order second-moment method) in order to obtain the statistical response of

the analysis when the coefficients of variation of the input random variables are

greater than 20%; (2) to analyze the feasibility of using an exact statistical method

(such as the method presented in Section 3.1.2) to obtain the p.d.f. of the output

random variables; (3) to extend the Green-FOSM method to analyze reliability

problems such as fault reactivation; (4) to verify the possibility of using other

methods to consider the spatial variability of the mechanical properties of materials

(for example, methods based on the spectral density function or variance function);

and (5) to propose a methodology to obtain the statistical parameters of random

input variables (mean value, variance, and spatial variability) using data from field

measurements.
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According to Telles and Brebbia (1981)

represented by , and the second formed by complementary terms, represented

by .

A.1.

Using the Cartesian coordinate system shown in Figure A.1, the strains at

position generated by a horizontal unit point load applied at point are given

by:

Figure A.1.

(A.1)

(A.2)

(A.3)

Where:

(A.4)

The strains at position generated by a vertical unit point load applied at point

are given by:
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(A.5)

(A.6)

(A.7)

A.2.
Complementary part

The complementary strains at position generated by a horizontal unit

point load applied at point are given by:

(A.8)

(A.9)

(A.10)

The strains at position generated by a vertical unit point load applied at point

are given by:

(A.11)

(A.12)
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(A.13)
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To solve the auxiliary problem, when it is singular, the use of the

Bartholomew quadrature (BARTHOLOMEW, 1959) with the Duffy

transformation (BONNET, 2017; MOUSAVI; SUKUMAR, 2010) is proposed.

B.1.
Bartholomew quadrature

The numerical integration using the Bartholomew quadrature

(BARTHOLOMEW, 1959) is performed using the mapping from the physical

domain to the computational domain shown in Figure B.1.

Figure B.1. Mapping from the physical domain to the computational domain .

This mapping is mathematically expressed by

(B.1)

with

(B.2)

where and are the orthonormal bases of the physical and computational

domains, respectively.

Bartholomew quadrature can be used considering different levels of

integration, as shown in Figure B.2. Level corresponds to divisions on each

side of the triangular reference element (domain in Figure B.1), which results in
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sub-triangles of the same area. The integration points are in the middle

positions of the sides of the sub-triangles and have weights equal to ,

when the integration point is on the boundary of the reference triangle, or

, when the integration point is inside the triangular reference element.

Figure B.2. Position of integration points in the computational domain for three levels of

integration.

B.2.

riangular element to a quadrilateral

element in which the function to be calculated is not singular (BONNET, 2017;

MOUSAVI; SUKUMAR, 2010). For this mapping, consider the unit point load

applied at node A and the first sub-triangle defined by Bartholomew quadrature

with level , as shown in Figure B.3 -

triangle is transformed into a quadrilateral element (with sides equal to two) using

the following equations

(B.3)

where the Jacobian of the transformation is .

Figure B.3. -triangle of the Bartholomew

quadrature with integration level .
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As discussed in Appendix A, the Melan solution can be decomposed into

formed by

complementary terms. The first part will be singular when the distance tends to

zero, which can occur in any position of the semi-infinite domain . The second

part will be singular when tends to zero, which will only occur when the unit

point load and the evaluated point are on the surface of the semi-infinite domain.

transformation. In this way, the integral of the strains found from the auxiliary

problem in the physical domain can be written as

(B.4)

this integral is transformed into the computational domain

(B.5)

using the mapping Eq. (B.1) and the Jacobian . Eq. (B.5) becomes singular When

the unit point load is applied to one of the nodes of the triangular elements (Figure

B.1). Assuming that this force is applied at node A, the first sub-triangle of the

Bartholomew quadrature (Figure B.3) can be transformed into a quadrilateral

element through Eq.(B.3). Thus, Eq. (B.5) is rewritten as

(B.6)

eliminating the singularity problem in the integrand, where . In this

work, the integral Eq. (B.6) is calculated using the Gaussian quadrature.
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This appendix presents the frequency histograms and p.d.f. of the random

variables that represent the horizontal and vertical displacements of the reference

points shown in Figure 4.3 and Figure 4.10.a.

C.1.
Random variables representing the horizontal and vertical
displacements of the problem with uniform depletion (Section 4.4.1)

Figure C.1. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 1

(RF1) showed Figure 4.3.
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Figure C.1. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 1

(RF1) showed Figure 4.3 (continuation).

Figure C.2. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 2

(RF2) showed Figure 4.3.
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Figure C.2. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 2

(RF2) showed Figure 4.3 (continuation).

Figure C.3. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 3

(RF3) showed Figure 4.3.
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Figure C.3. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 3

(RF3) showed Figure 4.3 (continuation).

Figure C.4. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 4

(RF4) showed Figure 4.3.
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Figure C.4. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 4

(RF4) showed Figure 4.3 (continuation).

Figure C.5. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 5

(RF5) showed Figure 4.3.
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Figure C.5. Frequency histograms and probability density function of the random variable

representing the horizontal (a-d) and vertical displacement (e-h) of the reference point 5

(RF5) showed Figure 4.3 (continuation).

C.2.
Random variables representing the horizontal and vertical
displacements of the problem with non-uniform depletion (Section
4.4.2)

Figure C.6. Frequency histograms and probability density function of the random variable

representing the horizontal (a-b) and vertical displacement (c-d) of the reference point 1

(RF1) showed Figure 4.10.
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Figure C.6. Frequency histograms and probability density function of the random variable

representing the horizontal (a-b) and vertical displacement (c-d) of the reference point 1

(RF1) showed Figure 4.10 (continuation).

Figure C.7. Frequency histograms and probability density function of the random variable

representing the horizontal (a-b) and vertical displacement (c-d) of the reference point 2

(RF2) showed Figure 4.10.
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Figure C.8. Frequency histograms and probability density function of the random variable

representing the horizontal (a-b) and vertical displacement (c-d) of the reference point 3

(RF3) showed Figure 4.10.

Figure C.9. Frequency histograms and probability density function of the random variable

representing the horizontal (a-b) and vertical displacement (c-d) of the reference point 4

(RF4) showed Figure 4.10.
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Figure C.10. Frequency histograms and probability density function of the random

variable representing the horizontal (a-b) and vertical displacement (c-d) of the reference

point 5 (RF5) showed Figure 4.10.
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