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Abstract

Rocha,Nickolas Gueller; Martinelli Pinto, Rafael (Advisor); Fânzeres dos
Santos, Bruno (Co-Advisor). Optimization of Battery Swapping
Stations with Battery Heterogeneity, Charging Degradation
and PV-Option. Rio de Janeiro, 2023. 63p. Dissertação de Mestrado –
Departamento de Engenharia Industrial, Pontifícia Universidade Católica
do Rio de Janeiro.

Greenhouse gas emissions-related issues have been extensively discussed
in the past years, with over 70 countries already committed to a carbon-neutral
economy by 2050. The electrification of transportation modals has increased
following these goals, where Electric Vehicles (EVs) are starting to take Internal
Combustion Engine Vehicles (ICEV) market share all over the globe. Besides
the particular complexity in comparing EVs and ICEVs, challenges involving
the nature of EVs and their integration with cities, such as the lack of public
locals for charging, are also critical and interfere with their development. In
this context, this work aims at studying the problem of a Battery Swapping
Station (BSS), a structure where the EVs users swap their depleted batteries
for fully or partially charged ones. In order to simulate the BSS daily operations
and batteries charging schedule, a novel Mixed Integer Linear Programming
(MILP) model is proposed, taking into account battery heterogeneity, the
use of local photovoltaic (PV) production and battery degradation based
on charging profile. A collection of BSS operation metrics are designed to
evaluate the solution quality of the proposed scheduling model. A numerical
experiment comprising four case studies based on real data from the US power
and transportation systems is presented, with insights and analyses on the PV
and grid power use, as well as a BSS financial comparison against close-related
benchmark scheduling approaches, together with sensitivities on BSS sizing
plan and costumers attendance.

Keywords
Battery Swapping Station; Electric Vehicles; Photovoltaic Power Pro-

duction; Mixed-Integer Linear Programs; Distributed Energy Sources; Bat-
tery Heterogeneity.
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Resumo

Rocha,Nickolas Gueller; Martinelli Pinto, Rafael; Fânzeres dos Santos,
Bruno. Otimização de Estações de Troca de Bateria com Bate-
rias Heterogêneas, Degradação na Carga e Opção Fotovoltáica.
Rio de Janeiro, 2023. 63p. Dissertação de Mestrado – Departamento de
Engenharia Industrial, Pontifícia Universidade Católica do Rio de Ja-
neiro.

Problemas de emissão de gases de efeito estufa vem sido amplamente dis-
cutidos nos últimos anos, uma vez que mais de 70 países já se comprometeram
a uma economia neutra em carbono até 2050. A eletrificação dos modais de
transporte tem sido ampliadas seguindo essas metas, onde os Veículos Elétri-
cos (VEs) começam a ganhar participação sobre o mercado de Veículos com
Motor de Combustão Interna (VMCI) por todo o mundo. Além da particular
complexidade na comparação entre VEs e VMCIs, desafios envolvendo a natu-
reza dos VEs e sua integração com as cidades, como a falta de locais públicos
para recarga, também são críticos e interferem no seu desenvolvimento. Nesse
contexto, este trabalho visa estudar o problema de uma Estação de Troca de
Baterias (ETB), uma estrutura onde os usuários de VEs trocam suas baterias
descarregadas por outras totalmente ou parcialmente carregadas. No intuito
de simular as operações diárias do ETB e o cronograma de carregamento das
baterias, um novo modelo de Programação Linear Inteira Mista (PLIM) é pro-
posto, levando em consideração a heterogeneidade da bateria, o uso de geração
fotovoltaica (PV) local e a degradação da bateria com base no perfil de carrega-
mento. Uma coleção de métricas de operação do ETB é projetada para avaliar
a qualidade da solução do modelo de cronograma proposto. É apresentado um
experimento numérico que compreende quatro estudos de caso baseados em
dados reais dos sistemas de energia e transporte dos EUA, contendo insights
e análises sobre o uso da energia fotovoltaica e da rede, bem como uma com-
paração financeira do ETB com abordagens de cronograma de benchmarks
relacionados, juntamente de sensibilidades no plano de dimensionamento do
ETB e atendimento a clientes.

Palavras-chave
Estação de Troca de Bateria; Veículos Elétricos; Produção de Energia

Fotovoltaica; Programas Lineares Inteiros Mistos; Recursos Energéticos
Distribuídos; Baterias Heterogêneas.
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1
Introduction

During the past years problems induced by large emission levels of
Greenhouse Gases (GHGs) have been widely discussed around the globe.
Several countries have already committed to net zero carbon emissions by 2050
[1], inducing the development of multiple techniques to trade, plan, control,
and operate power systems with large levels of renewable penetration [2, 3,
4]. In this context, the electrification of transportation modals has gained
momentum following these net-zero goals, leading to Electric Vehicles (EVs) to
increase their market share all over the world. In fact, despite the pandemic-
related worldwide downturn in car sales, with an estimated global overall drop
of 16%, electric car registrations increased by 41% in 2020 [5]. Although the
increasing penetration of EV and their benefits to air pollution and citizens
health [6], there are still critical aspects that current EV systems and related
infrastructure are not capable of efficiently handle in comparison to Internal
Combustion Engine Vehicles (ICEVs). One can cite for their driving range and
time spent in the battery charging process.

Furthermore, the lack of public locals for charging and stations, electric
network distribution congestion, battery degradation and recycling process are
also critical for a sustainable integration of EVs in modern cities. On the one
hand, charging stations, also named Battery Charging Station (BCS), are the
most popular adaptation of the current gas stations for the EVs. This type of
structure requires hours of wait until the EV replenishes their batteries, which
induces loss of time and higher costs for commercial applications. Although
it is possible to make use of fast chargers to decrease the charging time,
the process increases the battery degradation effect, reducing battery lifetime
as a consequence1 [8]. The installation of EV chargers at public or private
parking lots, on the other hand, would expand the access to charging locals,
where EV owners would take advantage of the parked car time, enabling even
an overnight recharging. However, it is not always a feasible solution due to
network congestion and other aspects.

In this context, an alternative solution would be to use the so-called
Battery Swapping Station (BSS), a structure where the EVs would only swap
their depleted batteries for fully or partially charged ones. While the EVs
would need hours to fully charge their batteries in a BCS, the BSS can provide

1A complete discussion and analyses of the key challenges involving fast charging
infrastructure can be found in [7]
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Chapter 1. Introduction 13

a swapping service in few minutes (e.g., less than 5 minutes) [9], thus being
recognized as a more viable solution than the standard BCS [10]. Recently,
Tesla® presented a battery swapping simulation for its Model S, where the
charging procedure was even faster than refill a gas tank. In addition, a
commercially use of BSS was made in China during the 2008 Summer Olympics
for electric buses [11]. Moreover, lining up with the desired net-zero emission
target, BSS can be operated with Photovoltaic (PV) panels such as a recent
application in Germany [12]. From an electrical-grid-wide perspective, several
benefits in promoting the battery swapping process are pointed in [13], with
the main ones being the load peak shaving, by the grid operator perspective,
and costumers benefits with EV price reduction by the adoption of battery
leasing business model, keeping the ownership for the BSS or some company.
Since battery costs by itself can account for up to one-third of total EV costs
[14], the leasing model can promote higher EV accessibility.

Although the BSS adoption can provide multiples benefits, several op-
erational challenges still need to be addressed, such as the batteries charging
schedule, demand forecast and battery lifetime management. In [9], a wide
discussion over battery degradation, interchangeability, and feasibility is pre-
sented. Furthermore, a wide range of BSS studies involving mathematical mod-
els and Monte Carlo Simulation [15], BSS integration with power grid [16] and
the BSS economic advantages translated into a business case [17] can be found
in technical literature. In this sense, the use of computational models can bring
insights about the BSS daily operation and all trade-offs decisions involved, es-
pecially in cases with hundreds of batteries, different battery models, subjected
to hundreds of EV arrivals at a day.

Given the BSS context challenges and based on the developed research of
[18], in this work, we propose a mathematical model that represents the daily
operation of a BSS considering PV generation, taking into account critical
feasibility and sustainability features for the business in the long-term, such as
battery heterogeneity and battery degradation due to charging process. The
model’s main objective is to maximize the daily profit of the BSS considering
the decision of the batteries charging schedule and the acceptance/rejection
of the EVs swapping requests. A collection of BSS operation metrics are
also designed in this work to evaluate the solution quality of the proposed
scheduling model. A numerical experiment comprising four case studies based
on real data from the US power and transportation systems from 2019 is
presented in order to illustrate the applicability and benefits of the proposed
model in different contexts. Results highlighted the importance of battery
degradation in the optimization model, since its consideration as an operational
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Chapter 1. Introduction 14

cost brought a reduction of 16%. Moreover, the BSS developed measurement
metrics enabled analyses along profitability towards the swapping process, as
well as operation impact of changes in the number of batteries and PV capacity.

1.1
Objectives and Contributions Regarding the Existing Literature

Several works can be found in technical literature where the BSS is dis-
cussed over different aspects. Aiming at contextualizing the contributions of
this paper, some related works are discussed further on. A multi-objective opti-
mal scheduling of a BSS considering the number of batteries taken from stock,
charging damage, and charging cost has been shown in [19]. The Shuffled Frog
Leaping Algorithm was used to solve the model. In [20], a mathematical model
was developed to minimize the BSS operation cost considering uncertainty con-
straints, random customer demands of fully charged batteries, demand shifting
and energy sell back. The battery degradation process was also modeled to en-
sure a practical solution.

Within the Microgrid (MG) perspective, [21] proposed a bi-level schedul-
ing framework for optimal operation scheduling of MG and BSSs as two inde-
pendent stakeholders with inherently conflicting objectives. Moreover, battery
degradation cost was explicitly modeled and a hybrid probabilistic-possibilistic
approach considering correlation among uncertainties has been developed.

Taking into account studies where the BSS used distributed generation,
[22] studied an integrated PV-BSS model considering battery degradation,
speed-variable charging and weather/traffic forecast, solved using Particle
Swarm Optimization techniques.

The main reference study of this work is [18], which developed a mixed
integer non-linear model to define PV-based BSS operations, where sensitivity
analyses were made upon homogeneity of batteries. The study concluded that
the PV could increase the BSS profit by 67% and decreases costumer’s non-
attendance. The proposed model also enables the sale of partially charged
batteries, as long as the battery level stays greater or equal to the costumer
minimum desired level. Moreover, in [18] it is also cited the lack of studies in the
literature considering a BSS operation with renewable generation, highlighting
the existing literature gap.

The referenced researches usually develop algorithms and solution meth-
ods in order to solve a BSS model, or even bring aspects such as battery
degradation and uncertainty. However, there is a lack of studies that details
the BSS operation with measurement metrics to bring usable insights for BSS
operators. Moreover, it was not found a study that mixes the use of PV gener-

DBD
PUC-Rio - Certificação Digital Nº 2212363/CA



Chapter 1. Introduction 15

ation, battery heterogeneity (multiple battery types) and battery degradation
in a BSS context.

In this sense, contextualizing usable insights, this work presents numeri-
cal experiments in cases developed based on real data from the USA power and
transportation systems. Furthermore, a basic model formulation is presented
based on the enhancement of the developed model by [18], where two exten-
sions are proposed and further evaluated based on the consideration of battery
degradation and a control over the batteries charging profile. To summarize,
the main contributions of this work are fourfold:

1. Development of a novel mathematical model to obtain the daily schedule
of a BSS considering multiple battery types, PV generation flexible use
and battery degradation, extending the presented model in [18];

2. Development of a battery degradation cost model based exclusively on
the batteries charging power, adapting the developed model in [23];

3. Proposal of BSS measurement metrics based on operation decisions;

4. Insights provision about the BSS daily operation and sensitivity to the
station configuration such as number of batteries and PV capacity.

The remainder of the paper is organized as follows. Section 2 discusses
about the BSS considered business model, while Section 3 presents the problem
formulation. In Section 4 the case studies development is described and the
numerical experiments are shown in Section 5. Finally, Section 6 brings the
study conclusion and future works proposition.
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2
Battery Swapping Station and Business Model

A BSS functioning involves the use of a swapping lane, where the EVs
shall have their batteries swapped in a matter of minutes, an information
system responsible for all data flow such as swapping requests and charging
schedule decision, and at last an internal charging station, where the EVs
depleted batteries will be recharged along the day for the next swapping. A key
factor for a BSS economical feasibility is the energy contract, since the decided
energy price for the swapped batteries must be based on the expected energy
price of the day (which varies over the hours). The ideal price should be lower
than the peak price, otherwise EV costumers will prefer a BCS use, while also
maintain a price value that brings considerable profit for the swapping service.
A possible gain-gain zone that can be provided by the BSS would be to charge
the batteries at the cheapest hours of the day and delivery the batteries at
a slightly higher price during the peak price hours, still maintaining a lower
price than the peak.

Furthermore, an expected challenge for a BSS operation is the uncer-
tainty in the EVs swapping requests, since the batteries must be previously
charged before their arrivals and the energy price can be extremely volatile
along the day. Since the EVs market penetration is a future trend for several
countries, whereby the technology will be also further developed, a reasonable
assumption for the BSS context support would be the use of Internet of Things
(IoT) devices, specially for the EVs swapping requests data.

Overall, advances in technology, innovation and artificial intelligence (AI)
can be seen everyday with the development of new products and concepts.
In this sense, by the energy sector, these advances can be seen with the
development of smart grids and smart cities [24], as well as the use of Internet
of Things (IoT) devices. Moreover, it is expected that the amount of data
from the IoT that is analyzed and used to change business processes will be
as significant in 2025 as all the data created in 2020 [24]. In this sense, AI is
starting to play a major role in the energy market, including applications in
electric distribution networks and energy storage systems, which can be seen
in further detail in [25].

In this sense, the present research will consider a BSS system that makes
use of IoT devices within its operation in order to reduce the EVs swapping
requests uncertainties along the day. Such data which will be assumed as known
along the day includes the EVs respective batteries model, State of Charge
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Chapter 2. Battery Swapping Station and Business Model 17

(SoC)1 by time of arrival at the station, as well as their State of Health (SoH)2.
The BSS operation to be considered in this study can be illustrated by

Fig. 2.1. It is assumed that the EVs are constantly connected to the internet,
thus constantly sending swapping requests to a BSS. The station’s information
system receives the EV request and specifications, estimating its energy level
by the arrival time. Requests rejection due to infeasibility will redirect the
EV request to another BSS. Gathering the accepted swapping requests, the
information system creates a charging schedule which will be followed by the
BSS, where the batteries can be charged up with grid and/or PV power.
The PV power can also be fully or partially sold to the grid based on the
sale price. Moreover, due to business deals with the local system operator,
day-ahead energy spot prices will be assumed as known. Also, the BSS will
receive a recommended upper bound for the total power charged from the grid,
where there will be a price increase percentage on all power which exceeds this
recommended limit.

Under the operations of automatic systems (e.g., robots), the incoming
EVs get their depleted battery swapped in a few minutes with a reliable process.
At last, the batteries are assumed to be belonging to the BSS, therefore all costs
involving degradation and battery replacement are assumed by the station.

Battery Swapping Station

Charging Station

Grid PV

EV requests

Accept/Reject

Information System

Swapping Lane

Figure 2.1: Battery Swapping Station System

1Defined as the battery actual energy level as a percentage value of is capacity
2Defined as the battery health in terms of capacity fading percentage, since the degra-

dation process reduces its storage capacity
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3
BSS Operational Scheduling Formulation

The main objective of this work is to leverage mathematical programming
techniques to develop a novel daily operational scheduling methodology for
BSS considering multiple battery types, PV generation flexible use and battery
degradation. For this purpose, the following general assumption over the
business context are made:

1. PV generation is treated deterministically based on forecast values;

2. Battery pack swapping time, as well as the time between arrivals, is set
to 15 min. The BSS is equipped with only one swapping mechanism per
type of vehicle, therefore only one EV per type can be serviced at each
period;

3. Energy losses in general are ignored;

4. There is no purchase or sale of batteries, therefore the number of batteries
remains constant;

5. Day-ahead electricity price is known due to grid operator shared infor-
mation;

6. Since the work focuses on measure the BSS performance upon costumer
attendance, energy sellback to grid is limited by the PV generation.

7. It will be assumed that all swapping requests will be serviced, i.e, a
costumer attendance of 100%, as well as that the BSS is well sized in
order to make it possible;

8. Batteries are charged with a DC charger and it is assumed that EV
costumers accepts partially charged batteries, as long as their minimum
desired battery levels is serviced;

9. EV arrivals by BSS are assumed to be correlated with traffic volume;

10. The BSS will be available for swapping requests during 07:00AM to
10:00PM and will close at 11:00PM;

11. Battery degradation is considered based on the charging profile described
by an empirical function developed in [23].
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Chapter 3. BSS Operational Scheduling Formulation 19

3.1
Formulation

Sets and Indexes:
T Set of time slots with index t and final stage slot
tf

M Set of battery models with index m

Bm Set of batteries number of type m with index b

Parameters:
πt Energy spot price per kWh at
time t

Em Energy capacity of battery
model m

λ Price per kWh swapped SOCtf Final day minimum SOC

N Number of chargers present at
the BSS

Ẽt,m Minimum allowed energy level
of a battery model m to attend a
swapping request at time t

Rm Minimum power rate for battery
m

Rm Maximum power rate for bat-
tery m

D Time step fraction of an hour EP V
t PV generation at time t

EEV
t,m Remaining energy level of in-

coming EV at time t, with battery
model m

L Maximum recommended charging
power limit from the grid

At,m Binary matrix of EV arrivals at
time t (1 if has an arrival of model
m, 0 otherwise)

δ+ Cost percentage increase for ex-
ceeding power of the recommended
limit

Decision Variables:
Et,m,b Energy level of battery num-
ber b, model m, at time t

P T
t,m,b Total charging power destined

to the batteries
∆Et,m,b Energy sold during an ac-
cepted swapping at time t

SOCt,m,b State Of Charge for each
BSS battery

P P V
t,m,b Charging power provided by

the PV
EP V S

t PV energy sold to the grid

P G
t,m,b Charging power provided by

the grid
Kt,m,b Battery charging status at
time t (1 if in charging, 0 otherwise)

Pbt,m,b Charging power from the
grid below the recommended limit

St,m,b Battery swapping status at
time t (1 if being swapped, 0 oth-
erwise)

Pat,m,b Charging power from the
grid above the recommended limit

EP V
t,m,b Energy provided by the PV
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Chapter 3. BSS Operational Scheduling Formulation 20

The mathematical formulation extends the one developed in [18]. The
battery charging schedule is the decision variable involved and the main goal
is to maximize the BSS daily profit over the daily operations horizon, divided
into time steps of 15 minutes (D = 1/4). The daily decisions of the BSS
depend mainly on aspects such as the batteries charging status, i.e., which
moments the batteries will be keep in charging at a certain power rate, as
well as the acceptance of EV costumers swapping requests at each period, for
each type of battery. These decisions are represented by the model variables
P T

t,m,b, Kt,m,b, and St,m,b, respectively, and they are present in most of the model
constraints. Moreover, environment aspects such as the electricity price πt, PV
generation forecast EP V

t and the remaining energy level for each arriving EEV
t,m

are considered by the model and have directly influence at the optimal batteries
schedule. The proposed model is formulated as the following mixed-integer non
linear programming (MINLP) problem.

Max
∑
t∈T

∑
m∈M

∑
b∈Bm

λ∆Et,m,b (3-1)

+
∑
t∈T

πtE
P V S
t (3-2)

−
∑
t∈T

∑
m∈M

∑
b∈Bm

D(πtPbt,m,b + (1 + δ+)πtPat,m,b) (3-3)

− ϕ(K) (3-4)
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Chapter 3. BSS Operational Scheduling Formulation 21

Subject to:

Et,m,b = Et−1,m,b + (DP T
t,m,b) − ∆Et,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-5)

∆Et,m,b = (Et−1,m,b − EEV
t,m )St,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-6)

Kt,m,b + St,m,b ≤ 1 ∀t ∈ T , m ∈ M, b ∈ Bm (3-7)

Et,m,b ≤ Em ∀t ∈ T , m ∈ M, b ∈ Bm (3-8)

SOCt,m,b = Et,m,b

Em

· 100 ∀t ∈ T , m ∈ M, b ∈ Bm (3-9)

SOCt=tf ,m,b ≥ SOCtf ∀m ∈ M, b ∈ Bm (3-10)

Et−1,m,b ≥ Ẽt,mSt,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-11)∑
b∈Bm

St,m,b = At,m ∀t ∈ T , m ∈ M (3-12)
∑

m∈M

∑
b∈Bm

Kt,m,b ≤ N ∀t ∈ T (3-13)

RmKt,m,b ≤ P G
t,m,b ≤ RmKt,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-14)

P T
t,m,b = P P V

t,m,b + P G
t,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-15)

EP V
t =

∑
m∈M

∑
b∈Bm

EP V
t,m,b + EP V S

t ∀t ∈ T (3-16)

P P V
t,m,b =

EP V
t,m,b

D
∀t ∈ T , m ∈ M, b ∈ Bm (3-17)

P G
t,m,b = Pbt,m,b + Pat,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-18)∑

m∈M

∑
b∈Bm

Pbt,m,b ≤ L ∀t ∈ T (3-19)

Et,m,b, ∆Et,m,b, P P V
t,m,b ≥ 0 ∀t ∈ T , m ∈ M, b ∈ Bm (3-20)

P G
t,m,b, P bt,m,b, Pat,m,b ≥ 0 ∀t ∈ T , m ∈ M, b ∈ Bm (3-21)

P T
t,m,b, SOCt,m,b ≥ 0 ∀t ∈ T , m ∈ M, b ∈ Bm (3-22)

EP V S
t ≥ 0 ∀t ∈ T (3-23)

St,m,b, Kt,m,b ∈ {0, 1} ∀t ∈ T , m ∈ M, b ∈ Bm (3-24)(
Kt,m,b, Kt−1,m,b, St,m,b

)
∈ Ω ∀t ∈ T , m ∈ M, b ∈ Bm (3-25)

The objective function of the proposed model is illustrated by (3-1) –
(3-4). Expression (3-1) represents the swapping revenue of the BSS, which is
based on the energy sale ∆Et,m,b of an accepted swapping request, evaluated
at a fixed price λ per kWh to the costumer. Therefore, costumers only pay for
the energy they receive in the swapped battery, discounting the energy of the
depleted battery. Expression (3-2) represents the revenue provided by the sale
of PV generation to the grid EP V S

t at spot price πt. Expression (3-3) represents
the energy purchase costs from the grid, where Pbt,m,b is the part below the
recommended limit, with energy price πt, and Pat,m,b is the power that exceeds
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it, receiving a price increase of δ+%. All the related power is used during the
chosen time step D given in hours. Finally, (3-4) considers the use of ϕ(K)
function, which describes the degradation cost and will be further explained
in Section 3.1.2.

Constraints (3-5) define the energy level balance of the batteries, where
the previous energy level (Et−1,m,b) is added with the charged energy (D ·P T

t,m,b)
and balanced with the sold energy (∆Et,m,b), in case a swapping request is
assigned to that battery. In (3-6) the energy sold to a costumer is defined,
being null when the swapping request is not accepted (St,m,b = 0), otherwise it
becomes the difference to the energy level of the income EV costumer depleted
battery (EEV

t,m,b).
Constraints (3-7) indicate a relation of mutual exclusion between the

charging status (Kt,m,b) and the swapping acceptation (St,m,b), establishing
that a battery can be either swapped or charged or neither swapped nor
charged. On the other hand, Constraints (3-8) bound the battery energy level
with the respective model capacity (Em).

Equations (3-9) define the batteries State of Charge (SoC), while (3-10)
establish the batteries minimum SoC in the final time slot, that way all
batteries will start the next day at the desired level (SOCtf ). Constraints (3-11)
establish that a swap request can only be accepted if the battery satisfies the
minimum desired energy level (Ẽt,m) of the respective costumer. Constraints
(3-12) establish the swapping attendance based on the binary matrix At,m,
which is equal to one if there is an EV arrival of model m at time t and zero
otherwise. Moreover, as long as there is an EV arrival, only one swap per
battery model m can be made each period.

Constraints (3-13) limit the total batteries in charging by the total
number of available chargers N , while (3-14) establish the batteries minimum
(Rm) and maximum (Rm) charging power rate in case they are in charging
(Kt,m,b = 1). Equations (3-15) show the composition of the BSS charging
power, which may come both from the PV generation (P P V

t,m,b) or from the grid
(P G

t,m,b).
The PV generation distribution is defined with (3-16), where a part could

be be directed for the batteries charging (EP V
t,m,b) or sold to the grid (EP V S

t )
following the spot price (πt). Since there is no limitation involving its use, there
is no PV energy spillage being considered. These equations are given in energy
measure (KWh), therefore, Equations (3-17) convert EP V

t,m,b values from energy
to power rate unit (KW), creating variables P P V

t,m,b based on the time fraction
D.

Equations (3-18) show the composition of the grid power used by the
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BSS, with Pbt,m,b being the portion below the recommended limit by the grid
operator (L), where Constraints (3-19) represent this limitation, while Pat,m,b

is the above limit portion, which will pay a δ+% increased price. The variables
scope are shown in (3-20)-(3-24) and, at last, 3-25 define the set of constraints
that establish a charging control behavior, which will be further detailed in
Section 3.1.3.

As previously discussed, Equation (3-6) contain a bilinear product, which
was chosen to be treated using McCormick envelopes [26, 27, 28, 29], since for
bilinear products comprising binary variables, it is an exact linear relaxation.
Therefore, an auxiliary variable Yt,m,b is created to substitute the bilinear
product Et−1,m,b · St,m,b from (3-6), introducing together Constraints (3-26)
– (3-29) at the mathematical model, thus recasting the MINLP problem as a
MILP one.

Yt,m,b ≤ EmSt,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-26)

Yt,m,b ≤ Et−1,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-27)

Yt,m,b ≥ Et−1,m,b − Em(1 − St,m,b) ∀t ∈ T , m ∈ M, b ∈ Bm (3-28)

Yt,m,b ≥ 0 ∀t ∈ T , m ∈ M, b ∈ Bm (3-29)

3.1.1
Literature Formulation Changes

Besides the battery degradation and charging control extensions devel-
oped in this work, the initial formulation presented in [18] was adapted in order
to incorporate the assumed BSS business model and several modeling aspects.

Overall, the formulation structure was maintained, where it was included
a new set of battery types m, and several constraints were changed in order
to consider this new set. Moreover, it was unconsidered the presence of a
revenue per swapping process, therefore the parameter Cf was excluded from
the model, since it used to represent a fixed price for replacing a battery
unit. Furthermore, parameters associated with energy losses, conversion and
efficiency were also not considered anymore.

Along the model constraints, the energy balance between power provided
by the grid and PV was adapted in order to increase the PV flexibility, since in
[18], during PV generation hours, the BSS was allowed to charge its batteries
using only the PV. Following the same idea, the flexibility of power provided
by the grid was also increased with the insertion of Constraints (3-18) – (3-19),
allowing the grid limitation L to be surpassed with a price increase of δ+%.
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At last, in reference of the model from [18], Constraints (15) and (19)
were also removed, since the first one takes use of a rough approximation for
the charging limitation due to SoC increment, while the second use wasn’t
used in the optimization process, since the SoH wasn’t even mathematically
defined.

3.1.2
Battery Degradation Model

Batteries are the main resource of a BSS and there are inherent associated
costs to their use that must be considered as operational costs. Besides their
acquisition capital, there exists operating costs associated to the battery
degradation process, since at long term they bring the necessity of battery
replacement. The most severe consequence of batteries degradation is their
capacity fading, which happens due to battery calendar and cycle aging. The
first one refers to batteries inherent degradation over time, while the second one
is the life lost each time the battery cycles between charging and discharging
[30].

Overall, the battery degradation rate depends on several factors such as
charging and discharging cycles, aging, discharge depth, temperature, and also
on its current State of Health (SoH), composing a non linear and complex
process. Address a feasible mathematical model that accurately represents
the battery degradation cost is a critical challenge in the existing literature,
however it is fundamental for more realistic model applications. In this sense,
this research takes base on [23] obtained results and develops a linear battery
capacity degradation rate model based on charging current profile, which will
be detailed further on.

Since energy sellback to grid is not the focus of this study, as it is
limited to PV generation, overall the BSS can only control the batteries
charging profile, where the discharge process is dependent on EV costumers
use, therefore unknown to the BSS. On the other hand, following the same
idea, Gao et al. [23] developed a Lithium-ion battery capacity degradation
rate model based on the charging profile, which fits well for the present
BSS operation model. Based on several experiments, the authors developed
a general curve for battery degradation based on the used charging rate and
the battery actual capacity loss, i.e, their State of Health (SoH).

Since the original capacity degradation values were based on a complete
battery cycle using a constant charging and discharging rate, the obtained
degradation values are also based on the same corresponding charging time,
which will be commonly different from the adopted time steps at the mathe-
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matical model. Furthermore, the present study develops a model that considers
different time intervals, where in each step the charging rate is decided again
and can be changed, thereby raising the necessity of a normalization on the
degradation values, making then proportional to the model time step. There-
fore, an adaptation on the degradation rate values provided in [23] is proposed
over below, fitting them considering the chosen time step discretization upon
the day hours and the batteries SoH. Moreover, in the same work, it was
provided degradation curves for batteries capacity loss states of 10,20,30 and
40%, however, for this study it is assumed that all BSS batteries have the same
capacity loss state and it is equal to 10%.

Further on, taking the 10% capacity loss battery values and the chosen
time step of 15 min, Table 3.1 exemplifies the used normalization method.
The Charging time column represents the equivalent time for a full charge
with the correspond charging rate (C), while the column Factor represents the
proportion of the charging time to the time step value. For exemplo, the first
line, of 0.5C, represents a full charging time of 120 min, which is 8 times greater
than the 15 min time step, which makes the factor being 120

15 = 8, therefore

the normalized degradation value is 0.03419%
8 = 0.00427%.

Table 3.1: Battery Degradation Adaptation

Charging Rate (C) Degradation (10 %) Charging time (min) Factor 15min Degradation (10 %)

0.5 0.03419 120 8 0.00427

0.8 0.03756 75 5 0.00751

1 0.04433 60 4 0.01108

1.2 0.05812 50 3.33 0.01744

Given the normalized degradation values, the formed function still follows
a non linear curve the same way as the original values. Given the context, it
was used a piecewise linear function to approximate the original curve and
insert them at the mathematical model. Fig. 3.1 shows the developed linear
function based on the same values from Table 3.1. The charging rate values
were bound by the same limits of 0.5C and 1.2C as originally used in [23], since
the developed curve fit belong to this limit and battery degradation follows a
different behavior when near 1.5C. Further details of the battery degradation
based on charging rate model can be seen in [23].
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Figure 3.1: Battery degradation curve linearized for 15min time slots

The following set of Constraints (3-31) – (3-36) are used to describe the
degradation cost, while Expression (3-30) defines the function ϕ(K), which is
added at the objection function in order to incorporate the battery degradation
as an operational cost.

Sets and Indexes (Degradation):

Γ Set of linear segments with index γ

Parameters (Degradation):

INom
m 1C Charging current rate for

battery model m

V DC
m Volts of direct current for bat-

tery model m

αγ Angular coefficient of segment γ βγ Linear coefficient of segment γ

Cm Battery m acquisition capital
cost

θ Maximum % degradation value

IC Minimum established C-
Charging rate

I
C Maximum established C-

Charging rate

Decision Variables (Degradation):

θt,m,b % degradation per cycle for
battery b, model m

IC
t,m,b C-Charging rate for battery b,

model m
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Objective Function (Degradation):

ϕ(K) =
∑
t∈T

∑
m∈M

∑
b∈Bm

Cmθt,m,b

2 (3-30)

Subject to:

P T
t,m,b = V DC

m It,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-31)

It,m,b = INom
t,m,b IC

t,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-32)

ICKt,m,b ≤ IC
t,m,b ≤ I

C
Kt,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-33)

θt,m,b ≥ αγIC
t,m,b + βγKt,m,b ∀t ∈ T , m ∈ M, b ∈ Bm, γ ∈ Γ (3-34)

θt,m,b ≤ θKt,m,b ∀t ∈ T , m ∈ M, b ∈ Bm (3-35)

It,m,b, IC
t,m,b, θt,m,b ≥ 0 ∀t ∈ T , m ∈ M, b ∈ Bm (3-36)

Expression (3-30) counts the battery degradation cost by Cmθt,m,b value,
which is directly related to battery type m capital cost Cm, since expensive
batteries must have proportionally higher degradation cost. Equations (3-31)
relate the charging power with the charging current based on the volts of direct
current of the respective battery model (V DC

m ).
Constraints (3-32) relate the charging current with the respective C-rate

(IC
t,m,b) based on the nominal current (INom

t,m,b ) of 1C, while (3-33) bound the
C-rate limits. Constraints (3-34) establish the degradation percentage θt,m,b

based on the C-rate value IC
t,m,b though a piecewise linear function with αγ and

βγ coefficients, while Constraints (3-35) bound the θt,m,b values up to θ, took
as the maximum value of the respective degradation curve, according to the
charging status Kt,m,b. Moreover, according to Constraints (3-34) - (3-35), the
value of θt,m,b will be nulled in cases where the battery is not being charged.
The variables scope are shown in (3-36).

3.1.3
Charging Control Constraints

The basic formulation aims at deciding the batteries’ optimal charging
schedule such that the BSS daily profit is maximized. As the day passes,
multiples swapping services are realized while stored batteries are being
charged for future EV costumers. Furthermore, each serviced costumer leaves
a battery with a remaining energy level, therefore increasing the variability
of energy level along the BSS storage. In this context, it would be common
to see multiple feasible solutions of charging schedule that leads to the same
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costumer attendance. However, these multiple solutions can enable unwanted
behaviors in the charging schedule, which can include repeatedly turn on
and off movement on the chargers. Fig. 3.2 exemplifies the cited situation,
which retracts a possible result of the basic model formulation and there is a
constantly change in the charger use along the hours.

Figure 3.2: Charging Power (Basic)

Figure 3.3: Charging Power (C-Control)

A charging schedule containing multiples turn on/off movements can
decrease the chargers’ lifespan, as well as increase the schedule implementation
difficulty. Given the cited problems for the basic formulation, a model extension
is proposed by constraints (3-37) – (3-39) insertion together with variables
Ut,m,b and Vt,m,b, therefore creating the set Ω. The new constraints propose a
sequence of logical relationships to disable the charging profile observed in Fig.
3.2, mainly establishing that only one charging process must occur between
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two battery swapping for the same battery index b. The expected behavior
can be seen in Fig. 3.3, where the charging profile is smoother and there are
less chargers shutdowns. Ahead on the Numerical Experiments section this
extension will be further evaluated. The remaining of the section will explain
the new proposed variables and constraints.

Ut,m,b Charging stopped status for
battery b, model m

Vt,m,b Charging allowance for bat-
tery b, model m

Ω =

(
Kt,m,b, Kt−1,m,b, St−1,m,b

)
∈ {0, 1}3

∣∣∣∣∣∣ ∃
(
Vt,m,b, Ut,m,b

)
∈ {0, 1}2;

Kt,m,b ≤ Kt−1,m,b + Vt,m,b (3-37)

Ut,m,b ≥ Kt−1,m,b − Kt,m,b (3-38)

Vt,m,b ≥ Vt−1,m,b − Ut,m,b + St−1,m,b

.

(3-39)

Constraints (3-37) establish that a charging battery can maintain being
charging if it was being charged last stage (Kt−1,m,b = 1) or if it has the
allowance (Vt,m,b = 1) to start charging. On the other hand, Constraints (3-38)
establish that when a battery stops being charged (Kt−1,m,b = 1,Kt,m,b = 0 ), it
forces Ut,m,b = 1. Finally, Constraints (3-39) establish that a battery acquires
a charging allowance (Vt,m,b = 1) if it already obtained it before (Vt−1,m,b = 1)
or if it already stopped being charged previously (Ut,m,b = 1) and a swapping
request for it has been accepted (St,m,b = 1). Overall, these constraints establish
that only one charging cycle occurs between two accepted swapping requests
for the same battery index b, disabling multiples turn on/off movements during
the process while maintaining flexibility in the charging power. Moreover, it
is not mandatory that the charging cycle must finish immediately before the
swapping process.
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4
Case Study

This section presents four case studies developed to investigate the
effectiveness of the proposed model and study the optimized decisions, bringing
insights about the BSS daily operation in different contexts. Both extensions
of battery degradation and charging control are analysed upon their impact
at all cases results, as well as sensitivities are realized in order to evaluate
the impact of BSS energy precification, number of operating batteries and PV
installed capacity.

The case studies mix real and generated data based on historical data
from the AECO zone from PJM marketplace [31]. The historical data contem-
plates real-time price and irradiation rate information based on January and
July from 2019 year. Data setup and treatments are further explained in the
next sections.

The formulation was implemented using the Julia language 1.6.4 with
the support of JuMP® 1.1.1 package and Gurobi® 9.5.1 Optimizer. All results
are obtained on an Intel® i7-10700K 3.8GHz processor and 64GB of RAM.

4.1
Data Setup

The proposed case studies take use of BSS configuration data, which
will be equal in all cases and includes BSS infrastructure information such as
number of chargers. This information is presented in Table 4.1. The L value is
took as approximately 35% of the power provided by all chargers at maximum
power rate. Moreover, due to operation rules, it was also considered that all
BSS batteries start and finish the day completely full.

Table 4.1: BSS General Configuration

Parameters Value

D 1/4
SOCtf 100%
N 5
L 170 kW
δ+ 5%
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The remaining parameters were extracted from real databases or gener-
ated following consistent values or probability distributions. The remaining of
the section will present all data setup involved at the case studies development.

4.1.1
Traffic and Arrivals Data

The EVs time arrival data were considered to be previously known at
beginning of the day and were generated based on the USA urban traffic data
divided into weekdays and weekdays, available at [32] and represented by Fig.
4.1. Although the data belongs to 2011, the urban traffic profile shall remain
the same, where the peak hours occur during work time and decreases by night.
Since the EV arrivals are described by binary values for each battery model
type with the At,m matrix, the Bernoulli distribution with an hourly variable
probability was used for the values generation. The maximum traffic hours were
associated with a maximum arrival probability, as well as the minimum ones
were associated to a minimum arrival probability. The middle hours probability
values were calculated with a linear interpolation. The maximum and minimum
EV arrival probabilities assumed were 70% and 5%, respectively.
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Figure 4.1: USA Hourly Urban Interstates Traffic Distribution

The EV costumers data related to the battery remaining energy level by
arrival time (EEV

t,m ), as well as their minimum desired energy level to accept the
swapping of the depleted battery (Ẽt,m) are also considered to be known and
were generated with random values. The first one followed values between 5%
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and 30 % for respective battery SOC, while the second one remained between
70% and 100 %.

4.1.2
PV Generation

The PV generation power values were generated using the Time Series
Lab (TSL), a renewable modeling tool developed by PSR company [33] which
contains a module that enables the extraction of an irradiation and wind
speed historical data based on a 40 years global reanalyses database provided
by MERRA-2 or ERA-5 sources, where the first one is used in this work.
Based on the renewable source geographic location, his type, attributes and
additional information, varying from solar to wind plants, the TSL executes
the appropriate conversion to transform irradiation and wind speed data into
generation values. The TSL also contains a module that generates synthetic
scenarios based on the converted generation historical data, however it is not
used in this work. It was assumed a PV panel with a installed capacity of 500
KW, zero tracking axis and a AC/DC ratio conversion of 1.1.

Fig. 4.2 displays the PV profile along the January and July, where the
impact of weather stations in PV expected generation can be clearly seen.
Furthermore, the production factor difference of both months quantifies the
differences, where January owns a 0.06 average production factor, while July
has 0.23. Although there are hourly PV generation available, the proposed
model uses minor time steps, therefore requiring an equivalence of hourly
generation for hour fractions generation.
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Figure 4.2: PV Power Distribution

In order to put the obtained hourly values into time slots of 15 min-
utes and consider variability, the PV generation values were decomposed as
following: Considering the hour h with estimated PV generation PV h, each
decomposed value for the belonging time slot t PV m

t and ϵ being a random
value between -10% and 10%, equation (4-1) shows the proposed hour-minute
equivalence.

PV m
t =


PV h(1 + ϵ)

4 t = 1...3

PV h −
3∑

t′ =1
PV m

t′ t = 4
(4-1)

The method brings variability within PV generation inside minutes
horizon while still keeping the original hour generation, as one possible
realization can be seen in Fig. 4.3 with the Jul/2019 PV data.
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Figure 4.3: PV Generation Distribution in 15 min horizon

4.1.3
Batteries data

The BSS batteries configuration are presented in Table 4.2. The station
operates with a total of 8 batteries and two different types with the same
amount. Battery Model 1 represents a Tesla Model Y battery [34], while Model
2 represents a Nissan Leaf Standard [35]. Both battery data are available at
the respective manufactures’ manual. The power rate values were calculated
based on the batteries capacity and the charging rate bounds cited at Section
3.1.2 in order to maintain consistency. Both batteries cost (Cm) were estimated
based on the Li-Ion battery cost per kWh of 2019 provided by Reka et al. study
[36], thereby adopting a cost of $200 per KWh. Finally, the nominal voltage
of direct current values (V DC

m ) were also took from manufacturer’s.
The remaining battery data relative to the proposed degradation model

(IC
Min,IC

Max, θMax) is already cited in Section 3.1.2.
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Table 4.2: BSS Batteries Configuration

Parameters Value (m = 1) Value (m = 2)

B(m) 4 4

Em 67 KWh 40 KWh

Rm 80.4 KW 48 KW

Rm 33.5 KW 20 KW

Cm $13400 $8000

V DC
m 360 360

INom
m 0.186 A 0.111 A

4.1.4
Energy price

The energy market price information were took from the PJM database
[31] based on the real-time hourly price from AECO zone. The average hourly
price was calculated for the weekdays and weekends of the selected horizon,
thereby bringing different price profiles for the study. Fig 4.4 shows the
energy price curves, reflecting their differences according to the day type and
associated month. During the cases model execution, the prices were brought
into the 15 minutes time slots only repeating the respective hour price.
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Figure 4.4: Average Hourly Real Time Energy Price by AECO zone in 2019

4.2
Cases Description

Given the presented data setup and all involved assumptions, 4 case
study types are developed in order to evaluate the proposed model at different
situations based on the historical data of PJM AECO zone. For each case study
type it was generated 3 instances, summing up to 12 cases to be evaluated by
the proposed methodology. Table 4.3 showcase the cases description summary,
where each one involves different interaction between the available information,
i.e, the traffic data, PV generation and energy price profile. The cases are
generated based on typical weekdays and weekends, since the traffic and
energy time profile follow different pattern, while the January and July months
represent the winter and summer weather, respectively, providing variability
on both expected PV generation and also energy price profile.

Each case instance is described in Table 4.4 together with their assumed
EV arrivals, which were generated based on the traffic curves described in
Section 4.1.1, making use of the described probabilities along the traffic
profile for the respective typical day, where each arrival is considered as
an independent random variable. Overall, in average, the developed cases
presented an expected total EV arrivals of 60, therefore the aspect that differs
then is the distribution of these arrivals along the day, which follows the
respective traffic curve profile.
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Table 4.3: Study Cases Description Summary

Case Typical Day Month λ ($)

1 weekday Jul 26.04

2 weekend Jul 27.47

3 weekday Jan 37.62

4 weekend Jan 26.76

Table 4.4: Cases Instances Arrivals Summary

Case Instance Arrivals (m = 1) Arrivals (m = 2) Total

1 A 33 29 62

1 B 28 31 59

1 C 29 28 57

2 A 32 29 61

2 B 35 33 68

2 C 32 29 61

3 A 28 30 58

3 B 27 25 52

3 C 33 27 60

4 A 31 33 64

4 B 30 34 64

4 C 26 32 58

Accordingly to the respective month, the price per swapped battery λ is
formed as the 60th percentile of the energy price hours along the day, thereby
encouraging the BSS to sell batteries with a reduced value regarding the peak
price.

4.3
BSS Metrics

In order to measure the performance of the BSS operations, five metrics
were developed focusing on aspects such as costumers attendance and equip-
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ment use, thereby enabling useful information gathering for BSS operators.
We would like to highlight that, these metrics can also be used to create high-
level insights on the BSS sizing and expansion plan. Further below the metrics
are described along with their respective mathematical formulation in (4-2) –
(4-6).

Service Level (SLm): Percentage of serviced swapping requests (4-2)
Charger Use (ChUt): Percentage use of the BSS chargers (4-3)
Charger Power Use (ChPUt): Percentage use of the BSS chargers maxi-
mum power rate (4-4)
Power Above Use (PAt): Percentage of used grid power above the recom-
mended limit (4-5)
PV Sold Energy (PVS): Percentage of PV sold energy (4-6)

SLm =

∑
t∈T

∑
b∈Bm

St,m,b∑
t∈T

∑
b∈Bm

At,m

∀m ∈ M (4-2)

ChUt =

∑
m∈M

∑
b∈Bm

Kt,m,b

N
∀t ∈ T (4-3)

ChPUt =

∑
m∈M

∑
b∈Bm

P G
t,m,b

Rm

∀t ∈ T | Kt,m,b = 1 (4-4)

PAt =

∑
m∈M

∑
b∈Bm

Pat,m,b∑
m∈M

∑
b∈Bm

P G
t,m,b

∀t ∈ T (4-5)

PV S =

∑
t∈T

EP V S
t∑

t∈T
EP V

t

(4-6)

Along with the described metrics, it is important to consider the cos-
tumer attendance along with the delivered energy level by the batteries. Ac-
cording to the problem assumptions, costumers are willing to receive batteries
fully charged, yet they accept partially charged ones considering that the BSS
may have difficulties to deliver complete batteries to all costumers. Therefore,
considering two BSS situations with the same service level, the one that deliv-
ered fully charged batteries more frequently or above the minimum acceptable
energy level for each costumer will be classified as better. Considering this
business model aspect, the following metric is proposed in order to increase
the operation performance detailing:
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Full Batteries (FB): Percentage of serviced swapping requests with full
batteries

It should be highlighted that ChPUt metric only considers charging
batteries, thereby not including stages of batteries in swapping status, which
would include null values at the metric average value. Apart from the metrics
proposed in this section, the cases are also evaluated based on the net revenue
distribution, which is composed by the sold PV energy and the revenue relative
to the realized swapping process along the day.
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5
Numerical Experiments

This section provides a descriptive analytics of the numerical experiments
performed with the proposed model with the setup, cases and BSS metrics
described in Section 4. Furthermore, the proposed model extensions are
individually evaluated in each case setup and all numerical experiments were
optimized with a time limit of 1 hour. We highlight that, as previously said
in Section 3, it will be assumed that all requests will be accepted, thereby
establishing a Service Level of 100%.

5.1
Case Studies Overview

Making use of the complete model version, which includes both degrada-
tion and charging control extensions, all developed cases were optimized and
their results are presented in Table 5.1. Values from columns 3 – 6 are given
in dollar unit, while from column 7 to 12, all values are given in percentages.
In order to present an overview of each case type, Table 5.2 summarizes the
results taking the average value of all instances for each case.

Results indicate that, overall, the BSS profit is composed by the swapping
profit, i.e., the profit involved at the EVs battery swapping service, which is
represented by the third column, together with the PV profit, which is shown
at the fourth column. The degradation cost is indicated in the fifth column
and is treated as a referential cost, since it is related to the future necessity
of battery replacement, so not being an immediate cost as the charging cost,
which is incorporated in the swapping profit. Although the degradation is not
considered as an immediate cost, its consideration in the mathematical model
as an operational cost influences the profit maximization. More details in these
aspects will be given in Section 5.2. The remaining columns present the value
of the metrics for the given solution, excepts for Column 7 where the solution
GAP is shown.

Fig. 5.1 summarizes the case studies results over the operational profit
aspect, which are divided in swapping and PV profit. The degradation is
considered as a reference operational cost, since its consideration in the
problem extends the battery lifetime with an optimized charging profile,
however, due not being an immediate cost, it is not counted to the BSS daily
profit. Moreover, for each case study, the obtained total operational profit is
highlighted at the top of the charts, where Case 1, the most profitable one,
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Table 5.1: Case studies results

Case Instance Profit Swp. Profit PV Profit Degrad. GAP ChU ChPU PA PVS FB
1 A 802.76 242.42 560.34 82.47 0.89 68.44 27.76 1.45 61.31 22.26
1 B 834.87 242.39 592.48 80.71 1.35 67.19 30.02 0.06 62.58 27.62
1 C 833.29 173.41 659.88 75.50 1.47 62.81 35.87 1.88 72.48 26.79
2 A 830.59 366.98 463.61 82.74 1.36 65.00 24.38 0.00 50.28 23.01
2 B 787.05 337.25 449.80 93.63 1.34 68.13 27.92 1.19 50.97 19.26
2 C 839.61 320.54 519.07 84.35 1.31 64.06 26.01 0.14 56.50 24.73
3 A 283.38 187.98 95.40 84.59 4.06 64.38 41.38 6.07 38.47 34.04
3 B 255.51 151.28 104.23 75.90 3.15 56.88 41.45 5.00 42.30 40.06
3 C 255.81 161.66 94.15 84.79 3.91 65.00 41.86 8.08 39.18 38.23
4 A 170.27 97.16 73.11 83.11 4.11 68.44 39.08 8.96 40.87 12.51
4 B 172.09 115.78 56.31 84.76 4.59 66.88 40.18 9.31 31.19 14.22
4 C 188.82 121.65 67.17 71.26 3.75 62.19 39.89 6.96 37.54 14.14

Table 5.2: Case studies average results

Case Profit Swp. Profit PV Profit Degrad. GAP ChU ChPU PA PVS FB
1 823.64 219.41 604.23 79.56 1.24 66.15 31.22 1.13 65.46 36.53
2 819.08 341.59 477.49 86.91 1.34 65.73 26.10 0.44 52.58 29.02
3 264.90 166.97 97.93 81.76 3.71 62.08 41.56 6.38 39.98 47.86
4 177.06 111.53 65.53 79.71 4.15 65.83 39.72 8.41 36.54 24.28

is evaluated at $823.64. Along Cases 1 and 2, where a summer weather is
retracted, the BSS profit is mainly composed by PV sale to grid, while Cases 3
and 4 own a predominant profit arising from the swapping service. The battery
degradation associated costs are very similar in all cases, except for Case 2,
where there is a slightly higher value, indicating a more degradable operation
for the batteries.
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Figure 5.1: Case Studies Profit Overview
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Figure 5.2: Case Studies Metrics Overview

Fig. 5.2, on the other hand, illustrate the case studies metrics overview,
which complements the previous analyses on the profit. In proportion with
their high PV profit, Cases 1 and 2 also have a high PV sale percentage, which
indicates that July’s typical energy price curve favours the PV sale at spot
prices. According to PA metric, these same cases also presented the lowest
values of power above limit, indicating the least-need of more than 170kW
power for their optimized operations, which would be helpful for an energy
contract planning. Since all cases achieved the same Service Level of 100%, the
FB metric is primordial to distinguish the better operations, where is possible
to notice Case 3 presenting almost 50% of fully batteries delivery, indicating
that winter typical weekday price curve favours the profitability of the BSS
energy delivery.

Overall, the results show that high PV expected generation increases the
BSS profit, (Cases 1 and 2). Besides the PV generation level due to weather
station, Cases 1 and 2 also indicate a energy price profile that mostly favours
the PV sale to grid, which is enhanced with the energy storage capability.
Cases 3 and 4, on the other hand, show a lower profit, mostly associated to the
lower PV generation of the winter, however Case 3 presented the better EV
swapping requests attendance in terms of full batteries delivery. It is important
to highlight that PV sale profitability is directly associated with the spot price,
which also depends on the weather station, especially in energy systems with
a great penetration of renewable generation.
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5.2
Model Extensions Evaluation

This section provides a comparison between the proposed model exten-
sions and its impact on the empirical/numerical results. All developed case
studies are used to evaluate each extension and support a general insights
upon the use of both proposed model extensions. For the sake of model nota-
tions, the complete model with all extensions is named as final model, while
the one without extensions, the simplest one, is named as basic model. Fur-
ther on, following a similar structure as the previous section, the results will
be compared based on both profit and metrics values for each case study. Figs.
5.3 – Fig. 5.10 summarize the obtained results for each case study and each
possible combination of the model extensions. Similar as in Section 5.1, each
case values are taken as the average value of all solved instances.
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Figure 5.3: Profit Comparison for Case 1
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Figure 5.4: Metrics Comparison for Case 1
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Figure 5.5: Profit Comparison for Case 2
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Figure 5.6: Metrics Comparison for Case 2
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Figure 5.7: Profit Comparison for Case 3
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Figure 5.8: Metrics Comparison for Case 3
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Figure 5.9: Profit Comparison for Case 4
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Figure 5.10: Metrics Comparison for Case 4
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In all figures the rightest column shows a result related to the complete
model, while each following column to the left updates the result with a
removed extension until achieve the most basic model, i.e., disregarding the
degradation cost and charging control constraints.

Overall, the obtained results show a behavior on each model extension
impact in the profit and metrics results. Under the profit aspect, no consid-
erable changes can be observed among the different combinations, however,
when the degradation is considered as an immediate cost (illustrated by the
Profit & Degradation curve), the results point to a more profitable operation
with the use of the degradation extension. The charging control constraints,
on the other hand, slightly change the BSS total profit, while maintaining a
smart use of the battery chargers. Although this constraint use points to an
extension of the BSS chargers lifetime and an easier real implementation of the
solution, the developed metrics are not capable of directly show its benefits,
as shown in Figs. 5.4, 5.6, 5.8 and 5.10.

Therefore, by analysing the metrics impact over the model extensions, it
is possible to notice the expressive impact of the degradation extension, since it
significantly changes the Chargers Power Use and Power Above metric values,
especially in Cases 3 and 4, while the PV sale and Chargers use increase.
Overall, the results confirm that a BSS operation without considering battery
degradation improves the swapping service, since more fully batteries are
delivered, however the degradation costs increasing may not compensate this
better service. Furthermore, comparing the complete and basic models, Cases
2 and 4 were the least and most affected cases in terms of degradation cost,
presenting a reduction of 16% and 26%, respectively. Towards the metrics, the
use of the charging control constraints give slightly changes in the charger
related metrics, since they change the flexibility of the charging schedule
decisions. In this sense, together with the minimal impact in the profit values,
it is possible to conclude that the use of these constraints bring more benefits
to the BSS solution.

Both proposed model extensions evaluated at this section point towards
a benefit for the BSS operations, especially at battery lifetime management,
reducing the need for battery replacement in the long term, as well as
chargers lifetime management and simpler schedule real implementation with
the charging control extension.
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5.3
Case 1 Analyses

Case 1A is selected to be further detailed at this section due to its repre-
sentativeness and higher opportunities to evaluate the developed metrics and
other analyses. Being a typical summer weekday amplifies the consideration of
its analysis, as well as the higher PV generation enables a higher interaction
between the model decision variables. In order to obtain an overview of the
station decisions, it will be presented and discussed the optimized decisions
of charging schedule, PV energy use, charging power profile, profit distribu-
tion, EV requests attendance, all of them evaluated during the horizon of 7AM
– 11PM, there the BSS operates. At last, it will be provided an economical
evaluation of the BSS towards the costumers perspective.

5.3.1
Charging Schedule

Considering the presented parameters from Section 4.1, the mathematical
model has optimized the charge schedule of the batteries, deciding for each
period the energy level, battery assignment and the respective charging power.
A sample of a charging scheduling over the time can be seen in Fig. 5.11 for
Battery 2 of Model 1, while Fig. 5.12 shows for Battery 3 of Model 2. The
battery SOC and C-Charging Rate are used in order to unify the analysis with
no need to further discuss batteries capacity or maximum charging power rate
values.
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Figure 5.11: Charging schedule for m = 1, b = 2
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Figure 5.12: Charging schedule for m = 2, b = 3

Each sudden drop of the SOC values indicates the swapping service,
where the charged battery is swapped with a depleted one. A visual analysis
on both charts show that Model 1 battery has been swapped seven times,
being two of them with a full charged battery delivery, while Model 2 battery
realized six swaps, with only one fully battery swapping. Moreover, Model 1
battery has been swapped by the day’s first hours, with a more sparse swapping
frequency along the day, while Model 2 battery has been swapped for the first
time around Hour 14 and has a more concentrated swapping frequency between
Hours 14 and 19. Both batteries finishes the day at 100% SOC in accordance
with the final SOC constraint.

On the other hand, the charging profile also shows considerable differ-
ences between the models, where the maximum charging rate achieved for
Model 1 and Model 2 batteries were 1C and 1.2C, respectively. Since the pro-
posed degradation cost model is based on the battery capital cost and there is
a high curve inflation between 1C and 1.2C charging rate, a cautious charging
rate is expected to be seen in these values. However, a charging above 1C may
be required in cases of sequentially EV requests for the same model. Overall,
Model 1 battery presented a less degrading charging profile in comparison to
Model 2 battery, since the average value of their non null charging rate values
were 0.69C and 0.8C, respectively.

Finally, the effect of the proposed charging control constraints can be
clearly seen, since each battery followed a single charging cycle between two
swapping services, thereby increasing the BSS chargers lifespan, even-though
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they are not directly evaluated at the mathematical model.

5.3.2
PV Energy Use

The selected case study contemplates a typical weekday of the USA
summer, where the irradiation rate and PV generation shall be elevated. Along
the sunny hours, the BSS can decide to use the PV energy for batteries charging
or to grid sale at the spot price. Fig. 5.13 shows the hourly distribution of the
PV generation together with the energy price and BSS swapping price per
KWh being equal to the 60th percentile of the day energy price. It is possible
to notice the mismatch of the peak hour for both curves, thereby providing a
mixed solution between PV energy intended to batteries charging and sale to
grid.
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Figure 5.13: PV Energy use and Energy Price

Overall, the maximum profit can be achieved by PV energy sale during
the hours where the spot price is above the swapping price, while the remaining
hours would be intended for batteries charging. However, besides the most
profitable decision, PV energy sale is an easier and more flexible decision,
since batteries charging requires the availability of a battery, which depends
on the swapping realization in order to obtain depleted batteries in the first
hours of the day. Moreover, the use of PV energy can also be associated with
the minimization of charging costs, i.e, avoid the use of charging power above
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the recommended limit by the grid operator. More details towards this aspect
will be given next.

5.3.3
Charging Power Profile

Besides having the use of PV energy to support the operation, the BSS
often needs to buy energy from the grid in order to attend EV swapping
requests, especially in off-peak hours, where the spot-price is at relatively low
levels. Fig. 5.14 illustrates the BSS charging profile along the day, where it is
possible to see the PV energy function to avoid or reduce the use of grid power
in peak hours. We highlight that, instead of imposing a power limit for the
grid power provided to the BSS, the present analysis assumes a limit of 170kW
that, when surpass, brings a 5% increased price for the charging
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Figure 5.14: PV Use and Energy Price

A few moments of increased cost in power use can be observed by the at
the last operating hours – from Hour 20 onward – which can be related to the
final SOC constraints together with cheaper energy price. The first hour, on
the other hand, does not require grid power since the batteries start the day
fully charged, while several hours have a low or even zero power provided by
the grid due to PV power presence. The greatest benefit from PV energy can
be observed near Hour 14, when there is the peak of PV generation, and Hour
18, when still has PV availability during the peak of energy price.
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5.3.4
Profit Distribution

Fig 5.15 illustrates the BSS profit distribution, where it is possible to
observe the revenue and costs balance. It is noticeable the revenue peak
right before Hour 18, where there is a mix between PV generation, and its
consequently sale to grid, which is consistent with Fig. 5.13, together with
attended swapping requests. Hour 21 onward concentrates the BSS costs
associated with batteries charging, exploring the lower energy price in order to
finish the day with all batteries at 100%, in accordance with Fig. 5.14 behavior.
The degradation cost was not illustrated due to its charging reference use,
despite it impacts in the charging profile and reduces the future necessity of
battery replacing.
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Figure 5.15: PV Energy use and Energy Price

5.3.5
EV Requests and Attendance

The BSS energy attendance decisions along the day can be seen for
both Models 1 and 2 in Figs. 5.16 – 5.17, respectively. Since all requests have
been accepted, these charts also describe the distribution of the 33 requests
for Model 1 and 29 for Model 2 along the time. The yellow bars represent
the minimum SOC required by the EV costumers, while the blue ones show
the delivered energy above this minimum, which is not mandatory for the
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BSS. A common pattern can be seen in both models, where all batteries
above the minimum level are delivered until Hour 11, while the remaining
are serviced at the minimum level. This profile shows the BSS ease in energy
delivery during the first quarter of the day, since the energy is cheaper and
each swapped battery can be quickly recharged. Further on, this profile can
be directly related with the energy price profile and traffic curve interaction,
since a lower frequency of swapping requests enables the BSS to charge the
depleted batteries until the next request, while lower energy prices ensures a
profitable process. In this sense, situations where there is a match between the
energy peak price and many EV arrivals are tougher to be treated in the BSS
operation.
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Figure 5.16: EV Energy Attendance for Model 1
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Figure 5.17: EV Energy Attendance for Model 2

5.3.6
BSS Economical Evaluation

Since this work argues towards BSS business model for the properly
attendance of EVs, it is important to evaluate the use of this structure in
several aspects for a global understanding. The previous analyses focused on
the benefits by the BSS perspective, where is possible to see the financial
feasibility of the operation even with a Service Level of 100%, especially due to
the use of PV generation. In this sense, this section goes towards the costumers
perspective, where a cost analysis is presented in order to see which structure
better attends the costumers.

Figs. 5.18 – 5.19 summarizes the sold energy along the optimized case,
illustrated by the orange bars, together with the spot price and the swapping
price. For the sake of simplicity of costs comparison, it will be assumed that
EV costumers would use fasting charge at the same time they would arrive
at the BSS, therefore the energy price of their time arrival will be used for
the charging cost reference. In this sense, fast charging users would operate
the chart orange bars following the spot price, while BSS users operate with
the constant swapping price, which is the 60th percentile of the day prices.
Considering all costumers of the case, Table 5.3 summarizes the obtained values
of this evaluation, thereby showing that the BSS offers a lower cost than the fast
charging. This result can be directly associated to the high density of requests
between Hours 17 and 19, which matches with the energy price’s peak and
tends to increase the charging costs. The BSS structure tends to mitigate this
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problem with previously charged batteries, as well as the use of PV generation.
Having a centralized structure that aims to charge at minimum cost is easier
than transfer this job to several EV users that may not have the knowledge or
time availability to do the same, especially treating the battery degradation
properly.
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Figure 5.18: BSS Evaluation for Model 1
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Figure 5.19: BSS Evaluation for Model 2
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Table 5.3: BSS Economical Evaluation

Battery Model 1 2 Total

BSS Cost $415.72 $221.44 $637.16
Fast Charging $484.99 $300.85 $785.84

5.3.7
Sensitivities

This section explores sensitivities in the problem parameters to provide
helpful insights with respect to the impact of a BSS sizing plan, PV capacity
and number of available batteries. In this sense, this section evaluates the
impacts of changes along the number of operating batteries, PV capacity and,
at last, the impact of service level changes at the operation profit.

5.3.7.1
Batteries Number

This section provides a sensitivity along the impacts of the number
of batteries, exploring the benefits BSS operation expansion in terms of
available batteries. Fig. 5.20 presents the battery number sensitivity, showing
the impacts at the BSS profit and associated metrics FB and PA increasing
each battery model by one unit. First of all, it is possible to notice a variable
marginal profit gain along the possible numbers per type of battery that tends
to decrease. Changing this number from four to five, it was achieved a gain of
$140.76, representing an increase of 17%, while the next gain had a drop to
$12.93, dropping this increase to only 1%. This behavior can be explained by
a more loose operation as the batteries number increase, since the analyzed
case study showed that four batteries per type are already sufficient for the
operation, eventhough there will be profit increases with the use of more
batteries, which must be planned accordingly with the investment cost.

Moreover, towards the metrics observed impacts, the increase in the
percentage of full batteries delivery highlights a better swapping service, which
together with the increase in power above limit use gives the conclusion that
more batteries imply in a better use of cheap spot price moments. Overall,
with a higher number of batteries, the BSS can make complete recharges in
hours of cheaper price that will be worth even considering the cost increase
in power above the limit L, which explains the metrics evolution in Fig. 5.20.
As previously said, this decision must be planned together with the cost of
acquiring new batteries for the station.
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Figure 5.20: BSS Profit and Metrics Relation with Batteries Number

5.3.7.2
PV Capacity

This section explores the impact of the PV capacity in the BSS oper-
ation in terms of costumer attendance and profit. The sensitivity results are
presented in Fig. 5.21, where is noticeable the high impact of PV capacity in
the BSS profit, even showing losses in the case where there is no PV genera-
tion available. Overall, in the evaluated case, the profit gain was similar in all
ranges of PV capacity, where it is observed a gain of $446.00 for every 250kW
of PV installed capacity added, which could be helpful for a BSS sizing plan.
Moreover, the use of PV generation enables the swapping service at a fixed
price for the whole day, thus making possible a lower price for the costumers.

The metrics FB and PA are also shown in Fig. 5.21, since it is noticeable a
constancy in the percentage of full batteries delivery, together with a decreasing
in the power above limit used. These obtained results show that increased
PV generation tends to reduce the amount of energy bought from the grid,
decreasing the charging costs, while maintaining the same priority for both
energy sale to grid and costumers attendance.
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Figure 5.21: BSS Profit and Metrics Relation with PV Capacity

5.3.7.3
Service Level

This section provides a sensitivity along the impacts of the BSS costumers
attendance in the profit and other BSS aspects. Following actual gas stations
operations practice, where the fossil based fuels are storage at large amounts,
the fuel price occasionally changes and often all costumers are fully supplied. A
BSS business model, however, cannot follow the same behavior, since energy
price is extremely volatile and there are limitations within actually energy
storage capacity together with battery lifetime management difficulties. Fig.
5.22 shows the service level sensitivity results, where the star point highlights
the service level around 40 and 50%, that achieves the best profit points
considering the degradation as an immediate cost, evaluated at $930.05 and
$928.86, respectively. Although this were the best points, it is noticeable by
the chart’s black curve that the profit differences are marginal until the Service
Level of 90%, where there is a sudden drop until 100% value.

Overall, analyzing the profit marginal evolution, it is possible to conclude
that higher service levels require the use of more expensive energy, thus
reducing the BSS profit. Towards the degradation cost evolution, on the
other hand, it is possible to notice the degradation almost linear increment,
showing that higher charging rates are necessary to attend more swapping
requests, therefore increasing battery degradation. All of these aspects must
be considered by the business model plan, especially considering the drop
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from Service Level 90%, where the profit disregarding the degradation cost
is evaluated at $956.36, which drops to $802.76 at the 100% level, representing
a drop of 19%. Ideally, the chosen business model should protect the BSS from
eventual economical losses by planning the batteries rent payment based on a
service level of reference.
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Figure 5.22: BSS Profit and Degradation relation with Service Level
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6
Conclusion

This work proposed a MILP problem to describe the BSS operation with
PV power option considering multiple types of batteries. Battery degradation
cost was considered by adapting an existing literature curve based exclusively
on the battery charging rate, being treated with a piecewise linear function.
Moreover, a charging control constraint was also developed in order to enhance
the battery charging profile. Both proposed model extensions were evaluated
and BSS metrics were developed in order to measure the station performance.
Furthermore, four case studies were analysed based on realistic data from the
US transportation and energy sectors. Numerical results brought insights over
the BSS daily operation with a hourly energy price, presenting its PV power
optimal use, grid charging over time, costumers attendance, and an expected
daily profit of $823.64 with a service level of 100% in the summer typical
weekday analyzed. Sensitivities illustrated the impacts of batteries number,
PV capacity and service level variation in the BSS profit and measurement
metrics. Regarging the service level sensitivity, it was presented a considerable
drop in the BSS profit when it aims over a service level of 90%, therefore
bringing useful insights for BSS plannings and raising discussions about the
BSS ideal business model.

Ongoing research includes the consideration of batteries SoH in the
swapping process and second life batteries for operation support. Moreover,
the consideration of a stochastic model development is in future research
scope, where the uncertainty in EVs’ time arrival and remaining energy would
be considered. At last, the use of exact methods for model computational
complexity enhancement, such as decompositions, are also being considered in
future research.
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