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Abstract

Santos, Iuri Martins; Hamacher, Silvio (Advisor); Oliveira, Fabri-
cio (Co-Advisor). Data-driven joint chance-constrained opti-
mization for the workover rig scheduling problem. Rio de
Janeiro, 2022. 176p. Tese de Doutorado – Departamento de Engen-
haria Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Workover rigs are a crucial resource in petroleum exploration and
production, used in the wells’ maintenance operations. The Workover Rig
Scheduling Problem (WRSP) determines which rigs will serve the wells and
when the activities will occur. This decision-making problem emerges in a
highly uncertain environment, and most literature approaches are based on
deterministic models and heuristics. Aiming to assist the WRSP, this thesis
proposes a regression-based data-driven (DD) optimization methodology,
applying it in real-life-based instances. This DD optimization approach
is composed of three phases: data treatment, where text mining and
clustering techniques are used to refine and retrieve information from the
data; predictive modeling, using ridge regression to estimate the workover
duration and the endogenous uncertainties in the model; optimization,
where the regression prediction and random error are inserted in the joint
chance-constrained (JCC) models, generating solutions more resilient to the
uncertainties. We propose a stochastic JCC formulation based on simulation
and Wasserstein distance to generate scenarios and reduce the problem
size. This model is compared with four alternatives: a non-stochastic DD,
a stochastic integrated CC, a stochastic budget-constrained model, and the
company’s current approach. For small and medium-sized instances, the
stochastic JCC model guarantees a feasibility confidence level with an error
of approximating lower than 5%. However, the stochastic JCC model does
not close the GAP in large instances. For these instances, the non-stochastic
DD model is a good alternative with disturbances not greater than 10%.
Overall, the DD optimization methodology finds schedules that are more
often feasible and with lower costs compared with the company’s method.

Keywords
Rig scheduling; Optimization under uncertainty; Data-driven opti-

mization; Joint chance constraints; Regression models
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Resumo

Santos, Iuri Martins; Hamacher, Silvio; Oliveira, Fabricio. Otimiza-
ção com restrições conjuntas probabilísticas orientada por
dados para o problema de programação de sondas de inter-
venção. Rio de Janeiro, 2022. 176p. Tese de Doutorado – Departa-
mento de Engenharia Industrial, Pontifícia Universidade Católica do
Rio de Janeiro.
As sondas de intervenção são um recurso crucial na exploração e

produção de petróleo, sendo utilizadas nas operações de manutenção de
poços. As empresas de petróleo planejam quais sondas atenderão os poços. O
Problema de Programação de Plataforma de Trabalho (WRSP) determina
quais sondas atenderão os poços e quando as atividades ocorrerão. Com
o intuito de auxiliar o WRSP, esta tese propõe uma metodologia de
otimização orientada por dados (DD) baseada em regressão, aplicando-
a em instâncias reais. Essa abordagem de otimização DD é dividida em
três fases: tratamento de dados, onde técnicas de mineração de texto e
agrupamento são usadas para refinar e recuperar informações dos dados;
modelagem preditiva usando regressão de cume para estimar a duração
do workover e as incertezas endógenas do modelo; otimização, onde a
previsão da regressão e seu erro aleatório são inseridos nos modelos de
restrições probabilísticas conjuntas (JCC), gerando soluções mais resilientes
às incertezas. Propomos uma formulação estocástica de JCC baseada em
simulação e distância deWasserstein para gerar cenários e reduzir o tamanho
do problema. Esse modelo é comparado com quatro alternativas: um DD
não estocástico, um CC integrado estocástico, um modelo estocástico com
restrição orçamentária e a abordagem atual da empresa. Para instâncias
de pequeno e médio porte, o modelo estocástico JCC garante um nível de
confiança de viabilidade e um erro de aproximação inferior a 5%. No entanto,
o modelo estocástico JCC não fecha o GAP em instâncias maiores. Para
essas instâncias, o modelo DD não estocástico é uma boa alternativa com
perturbações não superiores a 10%. No geral, a metodologia de otimização
DD encontra cronogramas que são mais frequentemente viáveis e com custos
menores em comparação com o método da empresa.

Palavras-chave
Programação de sondas; Otimização sob incerteza; Otimização

orientada sobre dados; Restrições probabílisticas conjuntas; Modelos de
regressão
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1
Introduction

The exploration and production (E&P) of oil and gas involves several
complex, expensive, and high-risk operations (Suslick and Schiozer 2004). One
of the most critical phases of the E&P is well construction and maintenance,
which relies mainly on oil rigs. Such rigs are typically costly and scarce
resources, for which daily rates can vary between US$ 50,000 and US$ 700,000,
depending on the rig type, market, and operational specifications (Kaiser
and Snyder 2013, Osmundsen et al. 2010). Companies generally hire rigs to
perform essential well operations, such as drilling, evaluation, completion, and
workover. An undersized fleet of rigs can result in oil production delays that
affect the profitability of the wells. On the other hand, an oversized fleet may
lead to high idleness and opportunity costs. Consequently, rig fleets must be
properly planned and scheduled to ensure that the rigs will be available at the
right place at the right time at the lowest cost possible.

The decision-making comprising the rig scheduling problem (RSP) is
highly complex, as it involves numerous widely varied tasks from different
phases of the E&P (Tavallali et al. 2016). Operations are subject to risks
in geological prospects, economic evaluations, development, and production
(Suslick et al. 2009). Moreover, several techniques from interdisciplinary areas
can be applied to the RSP (Khor et al. 2017). A large number of studies
aiming at supporting decision-making in this context have been proposed using
quantitative and analytical methods, such as mathematical programming,
heuristics, and data science techniques. However, few studies consider the
uncertainties inherent within the RSP, and those that consider it, lack data-
driven considerations.

Aiming to fulfill this gap, this thesis addresses a particular case of the
RSP, known as the workover rig scheduling problem (WRSP). In this problem,
wells require workovers (interventions to correct the oil flow) over the planning
horizon. These interventions are performed by oil rigs that need to be hired,
and the wells requiring workover have oil production loss associated with the
waiting time. The WRSP’s goals are to determine the fleet of rigs to be hired,
select the wells that will be attended to, and schedule the wells on the rigs
(when and by which rigs the wells will be served), minimizing the rig fleet
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PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 1. Introduction 17

costs and the oil production loss of the wells. These operations are subjected
to disruptions, which calls for the use of optimization models under uncertainty
to deal with duration variability.

Scheduling and sizing models under uncertainty are frequently subjected
to low-probability extreme cases that lead to over-conservative solutions.
Chance-constrained models allow some infeasible solutions to occur within a
confidence level, enabling robust solutions that are more realistic, considering
the uncertainty but less biased to extreme scenarios with low-probability. The
chance-constrained optimization, also known as probabilistic programming, is
divided into two types: individual and joint chance-constrained models (ICC
and JCC, respectively). The first refers to models in which the confidence
level is individual for each constraint, and the second, to cases in which
multiple constraints must respect a joint probability together. Several linear
formulations exist for the ICC models, but most JCC formulations often lead
to non-linear programming models. One of the goals of this thesis is to propose
a data-driven optimization methodology using regression models to obtain a
linear programming representation for joint chance-constrained models.

Data-driven optimization is a new trend in the Operations Research
(OR) community that combines data-science, statistics, and machine learning
algorithms with optimization models to properly estimate and account for the
uncertainty and errors within the data. This thesis proposes a data-driven joint
chance-constraint methodology based on text mining, clustering algorithms,
regression models, and scenario approximation algorithms, and applies the
methodology to the workover rig scheduling problem (WRSP). Our goal is to
find answers to the following research questions (RQs):

– RQ 1.What trends, gaps, and insights can be observed in the rig schedul-
ing problem literature from the academic and industrial perspectives?

– RQ 2. How can the optimization under uncertainty be applied in prob-
lems such as the workover rig scheduling problem to mitigate issues
emerging from uncertainties in the problem? Which techniques are avail-
able and suitable for the problem?

– RQ 3. What are the main assumptions of the workover rig scheduling
problem from an offshore industry perspective? Which uncertainties
affect the WRSP, and how can they be represented in the mathematical
modeling?

– RQ 4. How can the mathematical programming be used to support the
workover rig scheduling problem and address the offshore operational
demands? In other words, how can we model the WRSP for a practical
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Chapter 1. Introduction 18

case, i.e., with realistic assumptions, but still implementable in an oil
company.

– RQ 5. How can we combine chance-constrained models and data-driven
optimization to solve large and realistic problems such as the workover
rig scheduling problem?

Inspired by the aforementioned research questions, the thesis is divided
into seven sections, illustrated in Figure 1.1, where each dashed box is a
chapter.

Chapter 4 - RQ 4 and 5

Chapter 8 - Final
considerations

Chapter 1 - Introduction

Chapter 2 - RQ 1

Chapter 6 - RQ 4

Chapter 5 - RQ 3

Chapter 3 - RQ 2

Scenario-based data-driven optimization methods 
Chapter 7 - RQ 5

Data treatment 
(data science, text

mining, and
classification models)

Predictive modelling 
(GLM and Ridge

regression models)

Regression-driven
optimization

Regression-driven
stochastic JCC
optimization

Regression-driven
stochastic integrated

CC optimization

Regression-driven
stochastic budget-
constrained optim.

Rig Scheduling
Problem Systematic
Literature Review

OR review 
(optimization under
uncertainty, data-

driven, data science)

Methodologies
definition

Problem definition
and case study

Definition of
research questions

and steps

Research results
overview and next

steps

Figure 1.1: Thesis research structure and main phases.
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Chapter 1. Introduction 19

This thesis begins with this introductory chapter, where the research
questions are defined. Chapter 2 addresses the RQ 1. Not only a classifica-
tion and taxonomy for the rig scheduling problem are proposed, but also an
extensive and systematic literature review (SLR) on the RSP is performed,
analyzing all its dimensions and perspectives. A trend for data-driven opti-
mization models and more realistic assumptions is noticed. Furthermore, some
gaps are detected, including the application of more optimization under un-
certainty techniques, such as joint chance-constrained formulations, although
very few of these studies are being implemented or verified within the industry.

These trends of optimization models under uncertainty and data-driven
observed during the SLR contribute toRQ 2 regarding the available techniques
in the Operations Research and statistic literature that could be useful for
problems such as the WRSP, and what are their pros and cons. This second
question is approached in Chapter 3, where chance-constrained optimization
and data-driven techniques are studied. Using these techniques, Chapter 4
proposes different data-driven methodologies for these problems that will also
be useful in answering RQ 4-5.

Another question raised by the SLR is related to the modeling assump-
tions and uncertainties of the workover rig scheduling problem that should be
considered to meet the industry demands (RQ 3). Chapter 5 approaches this
research question by describing the offshore workover rig scheduling problem
of a Brazilian oil company (Petrobras SA) and analyzing the impact of the
workover duration disturbances on the schedule. A data-driven methodology
is proposed to estimate the uncertainties in Section 5.3.1, which is divided in
two parts: uncertainty treatment and joint chance constrained models. First,
it presents the text mining, clustering, and regression algorithms used to treat
and estimate the uncertainty. The definition of which uncertainties affect the
WRSP the most leads to searching for the best ways of representing it.

Aiming to properly represent these uncertainties and assumptions in a
mathematical model that addresses the offshore industry demands (RQ 4),
Chapter 6 applies some of the techniques studied in Chapter 3 in the real-life-
based WRSP instances presented in Chapter 5, following the regression-driven
optimization methodology from Chapter 4. Two alternatives of mixed-integer
linear programming models are proposed and compared with the current
methodology of the studied company. A sensitivity analysis with simulation
raises the concern of how the workover duration disturbances on the schedule
feasibility, motivating a search for a more suitable methodology.

During the optimization under uncertainty review, the data-driven
chance-constrained models stood out as a reliable alternative for dealing with
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solution feasibility uncertainty, which motivates the RQ 5 of how the data-
driven optimization and chance-constraints could be combined to solve realistic
problems such as the WRSP. This research question is tackled in Chapter 7,
where the data-driven stochastic chance-constrained optimization models pro-
posed in Section 4.1.2.2 are adapted to the offshore WRSP. Four regression-
driven models are proposed in this chapter: a joint chance-constrained (JCC)
deterministic-equivalent, a stochastic JCC, a stochastic integrated chance-
constrained, and a stochastic budget-constrained. From those models, only
the regression-driven JCC deterministic-equivalent requires mixed integer non-
linear programming (MINLP). The stochastic regression-driven models are
mixed-integer linear programming (MILP) reformulations based on scenar-
ios and multi-stage decision variables, using Monte Carlo sampling for the
scenario generation and a Wasserstein-distance-based method for the scenario
reduction. These different methods are compared with each other and other
alternatives mentioned earlier.

Last, Chapter 8 is dedicated to the final considerations of this thesis,
overviewing the main findings, analyzing the strengths and weaknesses of the
proposed methodology, and suggesting future studies to be performed.
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2
Systematic literature review

The lack of a standardized classification for the RSP is a critical short-
coming in the available literature. Against this backdrop, this thesis proposes
a new taxonomy and presents an extensive and systematic literature review
of the RSP. With the purpose of supporting future studies, this analysis also
describes the current gaps in the RSP literature and trends. By assembling
this literature review, our goal is to find answers to RQ1 "What trends, gaps,
and insights can be observed in the rig scheduling problem literature from the
academic and industrial perspectives?". To classify the different dimensions of
the RSP it is important to understand the exploration and production (E&P)
of oil and gas and how the rig scheduling problem is inserted in it, Section 2.1.

2.1
The exploration and production of oil and gas

The E&P plays a central role in the decision-making of the supply chain
of the oil and gas sector. E&P can take many years, and it is a crucial part
of the process for the company’s profitability. As mentioned by Baker (1996),
IFP School (2015), and Pereira (2005), the E&P can be separated into five
main phases:

1. Discovery phase: mapping of possible oil fields with geological and seismic
studies and the drilling of exploratory wells to confirm the presence of
hydrocarbons;

2. Appraisal phase: after the oil presence confirmation, delineation wells
are drilled and reservoir modeling studies are performed to estimate the
properties, size, value of the reserve, and its techno-economic develop-
ment feasibility;

3. Development phase: comprising essential activities and production deci-
sions, including field design (well location and type, surface network and
facilities design), field operation planning (well drilling schedule, flow
scheduling, rig fleet scheduling, and offshore logistics), and field construc-
tion (facilities fabrication and installation, well construction, drilling, and
completion);
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Figure 2.1: Exploration and Production of oil and gas - phases and decisions.
Adapted from Santos (2018), Agarwal et al. (2016), TOYO (2019), NORWEP
(2019).

4. Production phase: can extend through decades and has many different
successive phases to increase productivity, correct oil flow loss, and solve
mechanical failures;

5. Abandonment phase: when the hydrocarbon production rate becomes
economically infeasible and the reservoir is abandoned.

Figure 2.1 describes the aforementioned phases and their main decisions, in
which the underlined ones are related to the RSP.

From the oil discovery to the field abandonment, rigs are used to drill,
complete, maintain, and abandon wells, as shown in Figure 2.1. In the discovery
phase, exploratory wells are drilled using rigs to confirm hydrocarbon presence.
Then, in the appraisal phase, delineation wells are drilled to estimate the
reserve properties. In the development phase, injector and production wells
are drilled and completed also using rigs. In this phase, the rig fleet size is
decided, as well as the operation schedules of the rigs. While in the production
phase, completed wells often require workover rigs to perform an intervention
aiming to increase productivity, correct oil flow losses, and solve mechanical
failures. Last, wells must be plugged and abandoned (a process in which wells
are abandoned and cannot be used again after the installation of well barriers or
plugs), which is often performed using rigs. Each of these operations requires a
specific rig type (Bakker et al. 2017). In what follows, we describe the different
types of oil rigs and their purpose.

As pointed out earlier, the rigs are one of the primary resources used in
the exploration of oil and gas. These highly complex and expensive structures
are used in critical activities such as evaluation, drilling, completion, and
workover. There are several types of oil rigs, each one with a specific purpose in
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terms of operations it can perform and its own technical specifications. Figure
2.2 presents the different types of oil rigs.

Figure 2.2: Different types of onshore (left) and offshore (right) rigs. Adapted
from Santos et al. (2017), Petrobras (2014), IADC (2015), Khodro Diesel
(2019).

As shown in Figure 2.2, the main classification is according to the location
of the well, which can be onshore or offshore (Al-Azani 2014). According
to Bourgoyne et al. (2016), onshore drilling rigs are mainly classified based
on their mobility, being either conventional or mobile rigs. The first is a
fixed rig in which the derrick is assembled at the drilling location and is
the most frequently used land rig type. The second is a mobile rig coupled
on wheeled trucks, allowing it to be moved between drilling facilities more
efficiently. On the other hand, the most common offshore rigs are: fixed rigs
(bottom-supported oil platforms used until 300 meters of water depth); semi-
submersibles rigs (floating platforms used up to 2,000 meters of water depth);
jack-up rigs (bottom-supported platforms with elevating legs used until 150
meters) and drill-ships (floating platforms constructed in a vessel hull used
up to 2,000-meter water depth) (Petrobras 2014, Markit 2019, Al-Azani 2014,
Baker 1996). Next, Section 2.2 aims to classify the different dimensions of the
RSP under the perspective of available case studies and solution approaches.

2.2
The rig scheduling problem

Generally, an oil and gas company operates many oilfields and wells si-
multaneously, each one in a different E&P stage. To meet expected production
and delivery dates, well’s activities must be adequately scheduled and allo-
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cated to rigs, aiming to avoid delays and optimize the use of resources (Eagle
1996). This decision-making is called the Rig Scheduling Problem (RSP).

In essence, the RSP considers a set of wells (e.g., onshore or offshore,
injector or producer), a set of tasks (drilling, completion, or workover; notice
that the terms operation, activity, and job are used interchangeably in this
context) that have to be executed on these wells and a set of resources (onshore
or offshore rigs) available or to be hired to perform these activities. Usually,
the objective is to provide a schedule that minimizes the total costs or the total
oil production loss, considering a list of operating and engineering constraints
and assumptions (Tavallali et al. 2016).

The RSP can be classified according to several characteristics involving
the problem setting (oil field location, well operations, field development inte-
gration, resources considered) or the approach (how the problem is addressed
and solved: modeling, rig fleet, single/multiple jobs, and type of objective func-
tions). The setting attributes refer to characteristics of the problem that may
have implications for the approach, attributes connected with the oil and gas
exploration and production. And the approach refers to how the problem is
being modeled and solved, attributes related to the technique and modeling.
Figure 2.3 presents our taxonomy of the RSP.

Rig Scheduling Problem

Oilfield location Wells operations Jobs

Onshore

Modeling Rigs fleetResources

Offshore

Drilling/completion

Workover

Plug & abandonment

Single job

Multiple jobs

Scheduling

Routing

Homogeneous

Heterogenous

Planning level

Rigs

Crews

Equipment

Stand-alone

Integrated
field development

Setting Approach

Others

Figure 2.3: Characteristics for the rig scheduling problem.

The first division of the RSP is according to the oilfield location: onshore
or offshore. Onshore well operations are generally more straightforward, faster,
and less expensive than offshore well operations, for the latter is a more
complex and high-risk environment (Bassi et al. 2012). The problems also
vary according to the types of rig operations that are scheduled. Some studies
consider drilling activities, while others focus on the completion, which are
interventions to prepare the well for production after it has been drilled. Also,
some papers consider problems with workover activities, which consist of well
interventions performed after its completion (Holmager and Redda 2013, IOM3
2015).
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Rig scheduling is a multidimensional decision task related to several plan-
ning levels of the E&P. Most studies tackle the rig scheduling as an independent
decision-making process; we refer to this planning level stand-alone. However,
some studies have an integrated field development planning, considering other
problems such as reservoir modeling, field design, facilities locations, and pro-
duction scheduling. Similar behavior was noticed by Lasschuit and Thijssen
(2004) in planning and scheduling of the downstream of the oil and gas sector.
The more decisions are considered, the harder it will be to solve the problem.
Rig operations involve multiple resources and, thus, another classification is
possible, according to the planned resources. Usually, only rigs are considered
in the planning. However, sometimes other resources, such as crews, pieces of
equipment, and other vessels, are also considered.

In some cases, the wells are physically close to each other and the op-
erations have processing times that are much longer than the traveling time
between the wells, precluding the need of taking into account routing con-
siderations in the planning process. Therefore, the RSP can also be classified
according to the employment of routing techniques, dividing the problems into:
scheduling-only (or simply scheduling) problems, in which the traveling times
between wells are negligible; and routing and scheduling (to which we refer
simply as routing hereinafter, presuming that the scheduling activities are im-
plied by context), when the rigs transportation costs are significant and vary
between wells, and thus routing decisions have also to be considered (Bissoli
et al. 2016). Usually, routing and scheduling problems are classified according
to the fleet of vehicles or the set of machines (resources) available (Georgiadis
et al. 2019, Eksioglu et al. 2009). The fleet of rigs can be homogeneous when
all rigs share the same costs, processing times, technical specifications, and so
forth, or heterogeneous, meaning that the rigs possess different characteristics
and might be capable of performing specific operations or require particular
well conditions. According to the level of complexity of the problem, a well
might have more than one operation to be executed, or the rigs may consider
operations with different characteristics, as in Hasle et al. (1996) and Fernán-
dez Pérez et al. (2018). Therefore, another RSP classification depends on the
number of jobs: whether a single job for each well is considered or multiple
jobs from the same well are allocated to the rigs.

Another critical attribute is the objective function that will be optimized.
The problem can consider a single objective (when there is only one objective
to be optimized) or be multi-objective (when there are multiple objectives to be
optimized). As to the nature of the objective function, it can be a non-monetary
indicator (such as completion time, tardiness, distance traveled, number of rigs
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used, and wells served), a monetary indicator (total costs, net present value,
and cash flow), or an oil-related indicator (oil production, oil production loss,
or expected oil recovery).

Analyzing the RSP literature according to the aforementioned charac-
teristics, similarities between the papers were observed, enabling us to gather
them in four major classes of problem:

(1) Drilling Rig Scheduling Problem (DRSP): refers to drilling and comple-
tion rig scheduling problems in a stand-alone planning level, when the
rig scheduling is an independent decision from the rest of the field de-
velopment problems. Drilling and completion usually take place in the
development of non-completed (new) wells and the goal is to minimize
the rigs fleet costs meeting a due date for the wells to start oil produc-
tion. Some DRSP problems consider a well to have a single job to be
performed while others consider multiple jobs for each well;

(2) Workover Planning: problems in which the rigs are used in workover op-
erations. These operations occur in the production phase, when existing
and completed wells require maintenance or re-work to be performed. As
a result, this decision-making is usually separated from the other rig’s
decisions and there is only a single job (a single maintenance) to be
scheduled for each well. It can be divided according to the use of rout-
ing in two sub-groups: workover rig scheduling problems (WRSP) and
workover rig routing and scheduling problems (WRRSP);

(3) Field Planning (FP): refers to problems in which the rig scheduling
is integrated with other field development decisions, such as reservoir
modeling, field design, and production flow scheduling. In these cases,
the RSP depends on or influences other decisions related to the oilfield
development. For instance, the location of the platforms influences the
duration of the drilling and the traveling time between the platforms,
which are, in turn, crucial parameters in the RSP. On the other hand,
the rig scheduling affects the well production schedule, as the well can
only start producing after being drilled and completed. Usually, these
problems aim to maximize the net present value (NPV) of the oilfield;

(4) Resource Planning (RP): the rig scheduling problem is integrated with
the planning of other resources that also affect the decision or are affected
by the RSP, such as offshore support vessels (OSVs), equipment, and
crews. For instance, many OSVs are used to lay pipes connecting the wells
and platforms. As noted by Abu-Marrul et al. (2020), the connections
can only start after the drilling and completion of the well. Also, all
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rig operations demand the use of other resources, such as equipment
and crews. To assure that the equipment and crews will be available on
time to execute the rig tasks, it is important to consider the inventory
level (equipment) or schedule (crew) within the RSP. This supply chain
perspective usually aims to minimize the logistic costs of the operations.

This classification and the taxonomy in Figure 2.3 allows to classify the
different dimensions of the RSP under the perspective of available case studies
and solution approaches. Next, we present the methodology used to assemble
this literature review of the RSP.

2.3
Systematic literature review’s methodology

This systematic literature review (SLR) was executed based on a step-
by-step method adapted from Thome et al. (2016), which can be divided into:
(i) research delineation; (ii) literature search; (iii) data collection; (iv) data
analysis; (v) interpretation. This complete SLR process is illustrated in Figure
2.4, in which green labels represent the outputs of each step.

ii) LITERATURE SEARCH

SCOPUS
RESULTS

SEARCH QUERY

TITLE AND ABSTRACT ELIMINATION

3248 DOCUMENTS
(SCOPUS)

READING ELIMINATION

118 DOCUMENTS
(SCOPUS)

52 DOCUMENTS

66 DOCUMENTS
(SCOPUS)

69 DOCUMENTS CITED
(16 SCOPUS | 9 WOS)

140 DOCUMENTS
(82 SCOPUS | 41 WOS)

191 DOCUMENTS
(95 SCOPUS | 45 WOS)

3130 DOCUMENTS

51 CITING DOCUMENTS
(13 SCOPUS | 4 WOS)

FINAL SELECTION
130 DOCUMENTS*

(68 SCOPUS | 35 WOS)
*disregarding 4 literature reviews

READ ELIMINATION 61 DOCUMENTS

i) RESEARCH DELINEATION

KEYWORDS SELECTION

iii) DATA COLLECTION

PAPERS EXAMINATION
MAJOR TABLE WITH

PAPERS ATTRIBUTES
AND RESUMES

BIBLIOGRAPHIC DATA
(CO-CITATION

NETWORKS AND
KEYWORDS) 

IRREVELANT DATA
ELIMINATION

iv) DATA ANALYSIS and 
v) INTERPRETATION

BIBLIOGRAPHIC CHARTS CITNETEXPLORER AND
R TOOLS

TABLEAU AND EXCEL
TOOLS

REMARKS, TRENDS AND
OPPORTUNITIES

551 DOCUMENTS
(WEB OF SCIENCE)

92 DOCUMENTS
(WEB OF SCIENCE)

JOINING RESULTS

32 DOCUMENTS
(WEB OF SCIENCE, WOS)

DUPLICATES
ELIMINATION98 DOCUMENTS 27 DUPLICATED

DOCUMENTS

WEB OF SCIENCE
RESULTS

459 DOCUMENTS 60 DOCUMENTS

TITLE AND ABSTRACT ELIMINATION READING ELIMINATION

71 DOCUMENTS

Figure 2.4: Framework for the systematic selection process.
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The first step was the research delineation, the problem description in
Section 2.2, and the methodology definition (current section). In the second
step, we have chosen to use Scopus and Web of Science (WOS) as the primary
search databases. Aiming to define the most common keywords, a collection of
benchmark RSP studies was manually selected and their titles, keywords, and
abstracts were analyzed. As mentioned earlier, one of the main contributions
of this study is to propose a taxonomy and classification for the RSP that
can be used in its different dimensions and decision levels. This literature
gap can be observed through our SLR and especially after analyzing the
selected RSP papers. With the help of a word cloud plot (shown in the
Appendix), using titles, keywords, and abstracts, we selected a search query
that was simultaneously broad to avoid limiting results and limited to avoid too
many unwanted results. This search query combines the following keywords:
scheduling, rescheduling, routing, mobilization, move, programming, simulation,
optimization, model, algorithm, heuristic, procedure, technique, system, well,
oil, petroleum, onshore, offshore, workover, drilling, completion, downhole,
reservoir, evaluation, rig, and vessel. No specific time frame was considered,
and all articles found have been included as long as an online version of the
paper could be found. The complete search query is presented in the Appendix.

This search query was executed on the Scopus and WOS databases on
27th November 2020, resulting in 3248 papers from Scopus and 551 documents
from WOS. By reviewing titles, keywords, and abstracts, 3130 and 459 doc-
uments were eliminated from Scopus and WOS, respectively. The elimination
criteria used was to select only papers that consider routing or scheduling of oil
rigs and written in English or Portuguese. This large number of unwanted pa-
pers is a direct consequence of the lack of a robust classification and taxonomy
system for the RSP, which this SLR tries to address. The 118 (Scopus) and
92 (WOS) resulting articles were read and 52 (Scopus) and 60 (WOS) docu-
ments were eliminated from the review. After joining the 98 documents found
in Scopus and WOS, 27 duplicated papers were eliminated, culminating in the
selection of 71 papers. The articles cited by them were searched using Google
Scholar and Scopus databases, and 69 new documents were appended to the
list, of which just 16 and 9 were actually in Scopus and WOS, respectively.
Then, the papers citing the selected papers in Google Scholar and Scopus
databases were read and 50 new studies (13 from Scopus and 4 from WOS)
were found. Last, 61 documents were eliminated after a more profound analysis
to double-check the selection, resulting in 130 papers, of which 68 and 35 were
available in Scopus and WOS Databases, respectively. During this process,
some literature reviews were found: Bissoli et al. (2016), Tavallali and Karimi
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(2014), Tavallali et al. (2016), and Khor et al. (2017). We chose to exclude
these papers from the final selection as they do not specifically propose a new
method, model, or case study. Table 2.1 summarizes these literature reviews,
their scope, the number of studies revised (RSP and total), and the time frame
(the years considered). The literature reviews with an asterisk did not count
how many papers were being revised, but the total number was bigger than
100. As none of them did a systematic literature review and many classes of
the RSP were not considered, the number of RSPs revised by them is consid-
erably smaller than the number of publications found using our methodology.
Their results will be compared with our findings later on.

Literature
Review

Main goal
Papers
revised
(RSP)

Papers
revised
(total)

Years

Tavallali
and Karimi
(2014)

Field planning, develop-
ment decisions, and process
system perspectives

9 48 1990-2014

Tavallali
et al. (2016)

Field planning, develop-
ment decisions, and process
system perspectives

8 100* 1990-2016

Bissoli et al.
(2016)

Workover planning, its
drivers, and vehicle routing
perspectives

33 64 1977-2015

Khor et al.
(2017)

Optimization methods for
field development problems

13 100* 1972-2017

Table 2.1: Summary of the others literature reviews found.

For the third step (data collection), the papers were thoroughly exam-
ined. With the support of the classification presented in the previous section,
the data was gathered in a table with the essential information. Other data,
such as co-citation networks and keyword occurrence, were manually generated
and assembled in bibliographic citation files.

The fourth and fifth steps, data analysis and interpretation, are presented
in the following sections. Qualitative and quantitative content analyses were
performed with the assist of the following tools: CitNetExplorer (software for
bibliography analysis used for co-citation and keyword analysis of the papers),
R (a programming language and free software environment used for statistical
computing and graphics), Excel and Tableau (an interactive data visualization
software).

DBD
PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 2. Systematic literature review 30

2.4
Systematic literature review results

The use of Operations Research and quantitative methods in oil rig
scheduling dates back to the 1960s when Aronofsky and Williams (1962) and
Aronofsky (1962) proposed two linear models for oil production planning.
At that time, these models required substantial computational resources,
preventing any practical application to the problems (Pittman 1985). As a
result, most developments concerning rig scheduling employed approximation
techniques (Barnes et al. 1977) and decision-making rules (Cochrane 1989).
The body of research around the topic only started to fully develop in the 1990s
with the improvement in computational capacity and optimization methods,
as shown in Figure 2.5.

Figure 2.5: Evolution of the Rig Scheduling studies over the years.

It is possible to observe in Figure 2.5 that there was a significant growth
of workover rig planning (scheduling/routing and scheduling) research in the
early 2000s. This particular growth is mainly due to the interest of Brazilian
researchers and industry stakeholders in the problem, for which we can identify
three main reasons. First, the Brazilian Petroleum Investment Law mandates
that part of the royalties of oil and gas exploration and production is invested
in research and development applications (Pessôa Filho et al. 2006). Second,
during the 2000s and 2010s, major oil fields were discovered in Brazil, leading
to a significant growth in its oil production and, consequently, in investments
in research (Iachan 2009). Finally, the Brazilian exploration and production of
oil and gas are concentrated within the state-owned company Petrobras, which
used to hold a monopoly in the Brazilian downstream and midstream supply
chain (Iachan 2009). As a result, Brazil is one of the main rig markets, with
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57 active rigs in 2011, of which 10 are owned by Petrobras (Kaiser and Snyder
2013). This large fleet of active rigs poses significant challenges concerning its
planning. Consequently, with the massive amount of investments in research
and operations optimization, many rig scheduling studies were published by
authors affiliated with Brazilian institutions, as shown in Table 2.2. Also, it
is possible to observe that other petroleum-producing countries have a large
number of publications. The values in Table 2.2 were calculated by summing
the number of authorships from each country in each study.

Author’s Country Number of Publications

Brazil 144
USA 78
Norway 24
Argentina 20
United Kingdom 14
Canada 13
Saudi Arabia 11
United Arab Emirates 10
Iran 8
Austria 8
India 6
France 6
Indonesia 5
Others 17

Table 2.2: Author affiliation’s country distribution for the rig scheduling
problem.

Regarding the type of publication, the majority of studies was from
conference proceedings. However, there is a significant volume of papers
published in journals (49), as shown in Table 2.3.
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Type Publication

Conference 56
Journal 49
Master Thesis 10
Doctoral Dissertation 7
Book 4
Graduate 2
Tech Report 1
Book Chapter 1

Table 2.3: The number of rig scheduling publications per type of study

Using the CitNetExplorer software, we developed the citation network of
the rig scheduling publications found in the literature review shown in Figure
2.6. Studies without any citation link were omitted from the chart for the
purpose of clearance and clarity. The four major groups are marked in the
chart: Drilling Rig Scheduling (green labels); Workover Planning (blue labels);
Resource Planning (purple labels); and Field Planning (orange labels).

Figure 2.6: The citation network of the RSP studies.

The citation links in Figure 2.6 are also helpful in understanding the con-
nection between these RSP groups. For instance, workover planning problems
are highly centralized and connected, suggesting a greater level of discussion in-
side the literature. As expected, the drilling rig scheduling problems are closer
to the workover planning problems, as these two groups share many modeling
similarities. The integrated problems, resource planning and field planning, are
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more scattered, as these problems are more diversified. Next, we study each of
these groups, analyzing how the research outputs evolved and understanding
how the RSP has been addressed in the literature.

2.4.1
Drilling rig scheduling problem

Aronofsky and Williams (1962) and Aronofsky (1962) were the first
known studies addressing the RSP using linear programming. They proposed
a model for scheduling the oil production curve under a fixed drilling rig
schedule and another one to schedule rigs and drilling tasks under a predefined
production. Hartsock and Greaney (1971) developed a mixed-integer non-
linear programming (MINLP) inventory model for optimizing the drilling
schedule of an oilfield considering the rig’s operation and transportation
costs. Benefiting from the improved computational resources made available
since then, Haugland et al. (1991) proposed a linear programming model
for allocating fixed and movable offshore rigs to routes maximizing the net
presented value (NPV). Gutleber et al. (1995) presented a fuzzy ranking
method used in the drilling schedule. One year later, Eagle (1996) used a
simulated annealing (SA) algorithm to schedule drilling rigs and to maximize
NPV in a multi-period horizon.

A decade later, Irani (2007) described a system implemented in a
Mexican oil company that allows real-time managing and visualization of the
rig schedule and the drilling tasks. Irgens and Lavenue (2007) and Irgens
et al. (2008) used a stochastic local search to maximize oil production and
provide real-time visualization to schedule a heterogeneous fleet of drilling
rigs. Meanwhile, a drilling rig fleet sizing model was proposed by Husni
(2008) for scheduling oil projects using linear programming and a genetic
algorithm (GA) with a greedy heuristic (GH). Glinz and Berumen (2009)
presented a mathematical programming model to schedule drilling resources.
Falex (2009) proposed a GA to the drilling rig scheduling problem with
heterogeneous fleet that minimizes the rig’s hires and oil production loss.
Addressing a real case study of an Emirati oil company, Sumaida et al.
(2013) presented a systematic methodology for manually routing onshore rigs.
Amrideswaran et al. (2015) presented a framework for risk assessment in
workover and plug and abandonment (P&A) operations in which offshore rigs
are scheduled according to a GH, based on a priority ranking matrix. Another
systematic approach was later proposed by Arnaout et al. (2017), focusing
on the operational perspective of onshore drilling RSP. Amer et al. (2016)
described a system for scheduling and managing a fleet of drilling and workover
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rigs with feasibility validation over a master schedule.
Some authors combined simulation and optimization techniques for RSP.

Flager (2014) proposed a multi-objective GA with Monte Carlo simulation
to schedule a heterogeneous fleet of onshore drilling rigs maximizing oil
production and minimizing its cost. Zahran and Al-Fardan (2014) proposed an
automated system for scheduling and routing rigs that used both simulation
and optimization algorithms.

Meanwhile, other studies focused on mathematical formulations and
solving techniques. Gonçalves (2009) used a GA for the drilling rig routing
and scheduling problem, taking advantage of the ease of GA modeling to
introduce complex constraints, such as environmental and regulatory laws
and rigs displacement costs. Al Gharbi (2011) addressed the routing and
scheduling of a homogeneous fleet of onshore drilling rigs and proposed a
heuristic based on the Dijkstra algorithm. Haugland and Tjøstheim (2015)
presented alternative linear programming formulations for scheduling and
routing a heterogeneous fleet of offshore rigs. First, they introduced a model
for drilling and location decisions. As an alternative method, the authors
proposed a dynamic network flow model for rigs moving and drilling decisions.
Chowdhury (2016) optimized the routes and schedules of onshore drilling rigs
using the program evaluation and review technique and critical path method
techniques. Silva et al. (2016) proposed a mixed-integer linear programming
(MILP) model for the rig routing and scheduling problem of a heterogeneous
offshore fleet, minimizing production loss and rig utilization costs. They tested
their approach considering a small instance with a variety of tasks and realistic
assumptions, resulting in non-linear constraints.

Aiming to address technical and economic constraints, Tavallali and Zare
(2018) proposed a MILP model for routing and scheduling the drilling activities
on a fleet of owned/hired rigs, minimizing drilling costs, rigs movements costs,
and hiring costs and considering eligibility, rig’s contract length, and others
constraints. Using advanced techniques of the VRP literature, Kulachenko
and Kononova (2020) presented a Variable Neighborhood Search (VNS) based
matheuristic in which a MILP solver is used to optimize the well-drilling work
distribution and the VNS solves the routes.

A decision support system was presented by Carrilho and Villas Boas
(2016) for the RSP. It uses a MILP model to maximize the tasks allocation
to the rigs already hired and minimize the fleet of rigs to be hired. To re-
duce computational requirements, the authors considered the jobs in blocks
and the time horizon in weeks. Using this block structure, Santos (2018) pre-
sented two models for the offshore RSP, one for minimizing the fleet of rigs
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and another for minimizing its costs. Some local searches, constructive heuris-
tics, and matheuristics were also developed and tested in real-life instances.
However, most methods required considerable computational effort as a re-
sult of the time-indexed formulation considering long-term planning horizons.
An alternative formulation for the time-indexed parallel machine scheduling
was introduced by Carrilho et al. (2018) based on bucket-indexing. This time
formulation divides the planning horizon into periods of equal length (buck-
ets with a size that can assume values between 1 and the shortest processing
time of jobs) and achieved promising results that enable realistic rig scheduling
models for large instances with long planning horizons.

A trend that has become popular since 2015 is the use of machine learning
and data science techniques to support optimization algorithms, also known
as data-driven optimization. Ma et al. (2018) proposed a method that uses
a data mining system to extract key information from daily drilling reports
and historical data, convert and aggregate it in a database, identify drilling
opportunities, and use it to optimize the short-term rig schedule. Castiñeira
et al. (2018) used machine learning and natural language processing (NLP) for
an automated analysis of drilling data. The historical data was then used
to optimize the rig schedule through heuristics, maximizing NPV and oil
production. Both studies have used advanced machine learning techniques, but
the optimization methods and formulation are not defined in sufficient detail,
preventing us from comparing them with others formulations. A summary of
the total of the DRSP studies discussed in this section is illustrated in Figure
B.1 in the Appendix.

2.4.2
Workover rig scheduling problem

Barnes et al. (1977) investigated the workover rigs scheduling problem
(WRSP) and proposed two approximate techniques to minimize the oil pro-
duction loss, testing it on a small and short-term instance. Decades later, sev-
eral other papers addressing the WRSP were published. Noronha and Aloise
(2001) presented a GH for planning operations in onshore rigs that minimizes
not only the oil production loss but also the environmental risks. Aloise et al.
(2002) tested variations of ant colony with path-relinking (AC-PR) against a
GA and a greedy randomized adaptive search procedure (GRASP). Gouvêa
et al. (2002) proposed two evolutionary heuristics for scheduling workover op-
erations in a homogeneous fleet of onshore rigs: a transgenetic algorithm (TA)
and a memetic algorithm (MA). Maia et al. (2002) compared a simplified tabu
search (TS)-based heuristic with the heuristics from Gouvêa et al. (2002) and
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Aloise et al. (2002). The AC-PR remained achieving the best results. Accord-
ing to Bassi (2010), this study was related with a geo-referenced computational
system for workover onshore rigs management that was also discussed in Maia
et al. (2002), Gouvêa et al. (2002), Aloise et al. (2002), and Aloise et al. (2006).

After modeling the WRSP as a binary integer linear model, Costa
and Ferreira Filho (2004) created a maximum priority three-criteria heuris-
tic (MPTH), whose simplicity allows it to be implemented in simulations and
sensitivity analysis. Later, Costa and Ferreira Filho (2005) tested a dynam-
ical assemble heuristic (DAH) that overperformed the MPTH even in large
examples. These two methods can also be found in Costa (2005), which also
presents a GRASP and 300 real-life instances for the problem.

Several other authors used these instances later and tested them with
different solution algorithms: a GA (Alves and Ferreira Filho 2006); a scatter
search (SS) by Oliveira et al. (2007) and Lorenzoni and Polycarpo (2010); a
bubble swap (BS) by Pacheco et al. (2009a); a GA-2opt (Douro and Lorenzoni
2009); a GRASP-PR from Pacheco et al. (2009b) and Pacheco et al. (2010); a
simulated annealing (SA)-based heuristic from Ribeiro et al. (2011); a memetic
algorithm (MA) from Pacheco (2011). The greedy randomized adaptive search
procedure with path-relinking (GRASP-PR) from Pacheco et al. (2009b) and
Pacheco et al. (2010) was based on Costa (2005)’s GRASP. To achieve better
solutions for the WRSP, Lorenzoni and Polycarpo (2010) enhanced the SS
(Oliveira et al. 2007) using MPTH as a solution generator and found 11
new best solutions. Ribeiro et al. (2011) tried to solve the WRSP’s harder
instances, proposing a simple, yet robust, simulated annealing (SA)-based
heuristic to generate an initial solution and apply the SA iterative, ultimately
outperforming DAH, GRASP, GRASP-PR, SS, BS, GA-2opt and MA.

A few variations of the WRSP can be found in the literature. Specifically,
Lasrado (2008) created an application based on a manual methodology that
adapted the reservoir simulation technique from de Andrade Filho (1994) to
generate schedules and minimize the number of rigs and traveling distances,
reducing transportation and contract costs. Marques et al. (2014) presented a
decision support system that uses a MILP model to size and schedule homo-
geneous offshore rigs, minimizing the fleet size and maximizing its utilization.

Meanwhile, Monemi et al. (2015) addressed the heterogeneous WRSP,
proposing a new MILP model based on arc-time-indexed formulations and two
solution techniques: branch-price-and-cut (BPC) and hyper-heuristic (HH),
which found near-optimal solutions with just a few seconds. Danach (2016) also
tackled this problem with a (1,0)-linear programming model and a HH using
algorithms for construction, local search, perturbation, and reconstruction.
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The HH was tested in a real case and faced difficulties in solving large instances.
Hence, future works on the mathematical formulation were suggested by the
authors to improve its efficiency.

Aiming to achieve better solutions, Pérez et al. (2016) proposed a
decomposed reformulation of the (1,0)-linear model from Costa and Ferreira
Filho (2004) for the WRSP of homogeneous onshore rigs that had fewer
variables and constraints and was tested in the instances of Costa (2005),
finding new exact solutions for large instances and outperforming the heuristic
methods. Based on their model, Fernández Pérez et al. (2018), Pérez et al.
(2019) presented deterministic and stochastic models for the WRSP to fleet
size and to minimize the oil production loss and rig fleet costs. The authors
adapted the instances from Costa (2005), Paiva (1997), Soares et al. (2011),
Ribeiro et al. (2012a), and Bissoli (2014), testing it with several scenario
generation methods, including Monte Carlo simulation, scenario reduction, and
Quasi-Monte Carlo, and achieving robust solutions even for large instances. A
summary of the number of WRSP studies discussed in this section is illustrated
in Figure B.2 in the Appendix.

2.4.3
Workover rig routing and scheduling problem

Building upon advances in vehicle routing problem formulation and
solution techniques, Paiva et al. (2000) proposed a SA, based on Paiva
(1997), for the workover rig routing and scheduling problem (WRRSP),
minimizing rig expenses and oil production losses. Since then, many other
authors have tackled the homogeneous WRRSP with several heuristics. Rocha
et al. (2003) presented 3 variations of variable neighborhood search to the
WRRSP, obtaining the best results with a cooperative parallel VNS (CPVNS)
with PR. Trindade and Ochi (2004) proposed 6 variations of GRASP-PR,
later enhanced by Trindade (2005) and Trindade and Ochi (2005) to a hybrid
GRASP-PR. To improve the GRASP-PR efficiency, Neves (2007) and Neves
and Ochi (2006, 2007) presented a GRASP with adaptive memory (GRASP-
AM) and tested it against other heuristics such as TS and iterated local search
(ILS). Ribeiro et al. (2012b) compared this ILS with a clustering search (CS)
and an adaptive large neighborhood search (ALNS). In this study, the ALNS
outperformed the other methods. Finally, Shaji et al. (2019) proposed a new
aggregated rank removal heuristic (ARRH) to the ALNS (Ribeiro et al. 2012b)
and compared it with other heuristics: VNS (Aloise et al. 2006); GA; GA
with VNS (GA+VNS) and ALNS (Ribeiro et al. 2012b). These heuristics
were tested in some theoretical instances in which the ARRH based ALNS
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outperformed the other methods.
Some authors focused on new formulations for the homogeneous WRRSP.

Sabry et al. (2012) proposed a new MILP formulation minimizing oil produc-
tion and rig operation costs for a company that owned a dedicated rigs fleet
and could hire additional rigs. The authors tested their model considering a
short-term theoretical instance using a MA and GRASP. Duhamel et al. (2012)
proposed three models and hybrid methods for onshore workover rigs aiming
to minimize the total production loss: a MILP model based on Aloise et al.
(2006); an open vehicle routing problem (OVRP) strategy with lifted con-
straints and better bounds; and a set-covering formulation, obtained through
a Dantzig-Wolfe decomposition of the OVRP and enhanced using column gen-
erations with GRASP and VND. Last, Kromodihardjo and Kromodihardjo
(2016) used a discrete simulation software to propose exhaustive search and
combinatorial algorithms for the WRRSP, obtaining near-optimal or optimal
solutions in small instances based on real data.

Another variation of the WRRSP is to consider a heterogeneous fleet
of rigs. Aloise et al. (2006) addressed this problem using a VNS that mixes
several swap and insert moves (e.g., changing the wells allocated to a rig or
allocating different rigs to a well). The problem was tested in real-life instances
and later implemented in a Brazilian oil company, generating potential savings
of US$2.5M per year. Soares et al. (2011) analyzed the characteristics of the
WRRSP and proposed constructive heuristics and a new objective function
minimizing the rig’s fleet cost. Meanwhile, Ribeiro et al. (2012a) tried to
find exact solutions with a branch-price-and-cut (BPC) approach (based on
TS, column generation, ng-path-relaxation, and subset-row inequalities) that
enabled it to solve real-life examples with up to 200 wells and 10 rigs. Later,
Ribeiro et al. (2014) presented a hybrid-GA (HGA) to heterogeneous WRRSP
and compared it with three other methods: VNS (Aloise et al. 2006), branch-
price-and-cut (Ribeiro et al. 2012a), and ALNS (Ribeiro et al. 2012b). The
BPC, ALNS, and HGA were consistently superior to the VNS, having the
first, faster solutions than the alternative methods, but with lower qualities
than the ALNS and HGA, which in turn was the method that found all the
best solutions. Last, Bissoli et al. (2014) and Bissoli (2014) also addressed the
WRRSP using a bi-objective ALNS that minimizes the production loss and the
onshore rig fleet size, which, according to the authors, also minimizes the total
costs. However, this assumption is a simplification as, in reality, a minimal
fleet does not mean that chartering costs are optimal.

A different approach to the WRRSP was proposed by Vasconcelos et al.
(2017). The authors developed a genetic algorithm that uses operational
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historical data integrated into an optimization workflow to minimize the total
non-productive time of the offshore wells served by a heterogeneous fleet
of vessels with different load capacities and limited abilities. The proposed
algorithm was tested on real data of a petroleum company and improved,
in terms of navigation and operation time, between 20-40% of the original
plan. Later, Tozzo et al. (2020) proposed a hybrid GA for the WRRSP with
heterogeneous fleet minimizing oil production loss and rig fleet costs from a
multi-objective perspective.

A trend in the optimization models is to consider uncertainty in the
decision-making. This trend is important to RSP, which emerged from the
need to consider the uncertainties related to geological concepts (structure,
reservoir seal, and hydrocarbon charge), economic evaluations (costs, proba-
bility of finding, and producing economically viable reservoirs, technology and
oil price), development and production (infrastructure, production schedule,
quality of oil, operational costs, and reservoir characteristic), traveling time
between wells and well service time (especially in the offshore fields that are
subjected variable conditions such as weather and sea state) (Suslick et al.
2009).

Following this tendency, Bassi (2010) and Bassi et al. (2012) proposed
a simulation–optimization approach to minimize production loss for hetero-
geneous offshore rigs in two phases: simulation of well service times and oil
potentials; and optimization using GRASP. These phases were repeated for a
significant number of times, instances, and fleet sizes, enabling to make schedul-
ing decisions under uncertainty and unveiling the trade-off between fleet size
and oil loss as a larger number of rigs results in better performance measures
and higher operating costs. Bassi et al. (2012) also provide a literature review
concerning workover rigs with fruitful discussions.

Most WRRSP studies consider that the decision-maker knows beforehand
which wells will require intervention. However, in reality, often, one cannot
know with certainty which and when a well will be due maintenance. To
tackle this problem, Silva and Silva (2018) proposed a dynamic approach to
the WRRSP, minimizing the total oil production loss of wells that are revealed
along the planning horizon, called as D-WRRSP (dynamic workover rig routing
and scheduling problem). The model was based on the formulation of Ribeiro
et al. (2012a) and was tested considering new small and short-term instances
adapted from Costa (2005). We provide a summary of the total of the WRRSP
studies discussed in this section in Figure B.3 in the Appendix.
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2.4.4
Integrated problems

The interdependence of operations in the oil and gas sector requires that
oil and gas companies plan and optimize their processes on an enterprise-wide
level (Oliveira et al. 2013). As a result of the rig scheduling being a multifaceted
decision process, many studies approach this problem by integrating this rig
scheduling decision with others. We divide these studies into two classes of
integration: field planning and resource planning.

2.4.4.1
Field planning

Before scheduling the rigs to drill new wells, field design and planning
decisions are needed, such as well drilling schedule, well placement, facility
design, and flow scheduling. Ideally, these problems should be solved together
from a field planning perspective.

Using the Eclipse reservoir simulator and a polytope search optimization
algorithm, de Andrade Filho (1994) addressed the drilling RSP by deciding
the main development dates combined with the drilling rigs allocation and
schedules. Since then, other studies also integrated reservoir simulator models
with optimization algorithms, such as: linear programming and simulation
approaches (Nesvold et al. 1996); a procedure for BP’s (British Petroleum) top-
down reservoir modeling tool using an enhanced GA by Litvak et al. (2007),
Litvak and Angert (2009) and Litvak et al. (2011); a GA (Litvak et al. 2007)
with statistical proxies procedures using clustering-based techniques from
Onwunalu et al. (2008); design space exploration (Cong et al. 2008); automated
decision-making system with a first-in-first-out algorithm (Davidson et al.
2009); MINLP model and GA (Tavallali et al. 2015); approximation algorithms
with optimization and local searches (Tavallali et al. 2016).

Several authors proposed formulations for field design and planning
considering rigs. Iyer et al. (1998) proposed a multi-period MILP model with
branch and bound to maximize the NPV. Currie et al. (1997a,b) presented
a simplified MIP model for the redevelopment and reservoir management
of wells, deciding the projects, wells, and drilling rigs to be used annually.
Van Den Heever and Grossmann (2000, 2006) presented a MINLP model
maximizing the NPV, which was solved using a dynamic programming (DP)
approach with an iterative aggregation/disaggregation algorithm. Carvalho
and Pinto (2006) proposed a model and a decomposition method to determine
the drilling rigs (platforms) locations, the well to be drilled by each one, and the
drilling schedule. Later, Barnes and Kokossis (2007) proposed mathematical
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models for an integrated field development when deciding the location, drilling
schedule, and production rate of the wells. Similar models were also proposed
by Wang et al. (2019) and Ondeck et al. (2019). Still, none of these previous
studies considered the rig scheduling as a decision but only as something that
affects their decisions. Ondeck et al. (2019) performed a sensitivity analysis
demonstrating the impact of the drilling rig fleet and crew mobilization costs
in their model.

A system for field planning was presented by Martin et al. (2010),
mainly for well design. The system designs the well-pad layout, determines the
production facilities, allocates wells to rigs considering the fleet availability, rig
locations, and other related attributes, and returns the rig schedule as one of
its outputs. Omosebi et al. (2014) proposed a methodology based on project
management to correctly plan drilling projects and rigs schedules. However,
the authors did not mention the employment of optimization methods. Lange
and Lin (2014) and Dewan et al. (2016) presented solutions that model the
well scheduling process as a multi-agent system to allow optimal decisions,
including the rig schedule, for all parts involved in the scheduling process.
As mentioned by Neiro and Pinto (2004), this modeling strategy allows to
integrate the business entities involved in the supply chain management. Kelly
et al. (2017) introduced a MILP model for well startup considering each well as
a batch process subject to resource availability constraints (processing plants,
drilling rigs, and crew).

Also addressing the planning of an offshore oilfield infrastructure, Aseeri
et al. (2004) proposed a sample average approximation (SAA) algorithm to
maximize the NPV considering constraints of budget and the availability of
one rig to drill the wells, optimizing the flow balance between production
platforms, wells platforms, and the reservoirs. As showed by Smith (1956),
rig availability constraints for the case of one rig can be considered as a RSP.
The authors also considered the travel time between the wells when scheduling
the rigs operations. Barnes and Kokossis (2007) introduced a MILP model
for the analysis, design, and scheduling of offshore oilfields, considering the
drilling schedule, platform locations, and a single rig available. Last, Calderón
and Pekney (2020) focused on the field planning decisions related to the
enhanced oil recovery to reduce gas flaring in shale oil development. The
authors proposed a sophisticated model that optimizes drilling rig schedules,
workover decisions, pipeline and facilities infrastructure, location of wells, and
injection rates. A summary of the total of field planning studies discussed in
this section is illustrated in Figure B.4 in the Appendix.
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2.4.4.2
Resources planning

The E&P operations need several resources, which are often planned
separately. However, as their decisions might affect each other, resource usage
should ideally be integrated with the E&P operations planning. This is the
case for the rigs and the other resources involved in the E&P, such as crews
and vessels. For instance, Hasle et al. (1996) used constraint reasoning for
the well activity scheduling problem, where drilling rigs and wire-line cranes
are appointed for drilling, completion, perforation, and logging activities.
Horton and Dedigama (2006) presented a resource scheduling system used by
an Australian oil company to schedule several operations, such as drilling,
completion, and workover, and others that do not involve rigs, such as
interconnections.

After completing an offshore well with a rig and before starting its
production, offshore support vessels (OSV) are used to interconnect wells,
manifolds, and platforms. Focusing on integrating the rig scheduling with the
OSVs’ decisions, Accioly et al. (2002) used a constraint programming (CP)
model to maximize oil production considering drilling, completion, workover,
and pipelines connecting activities, priorities, precedence, wells, and ship
characteristics. To enable the use of optimization solvers, the authors used
different search heuristics to explore the solution space. Since then, several
authors tested formulations and solution methods: CP model solved with
hybrid TS algorithm (Nascimento 2002); GRASP (Pereira 2005, Pereira et al.
2005a,b, Moura et al. 2008); GA (Vasconcellos and Ferreira Filho 2006); CP
model (Serra et al. 2011, Serra 2012, Serra et al. 2012b,a); continuous-time
MILP formulation with upper bound relaxations (Serra et al. 2012c). Pereira
(2005) and Pereira et al. (2005a,b) formulated a CP model for scheduling
drilling, completion, and interconnection operations in offshore wells with rigs,
OSVs, and production units. The authors tested a GRASP to solve it in real
instances of the Brazilian oil company Petrobras, which resulted in considerable
savings for the company and, according to the authors, was implemented
in a system called ORCA. Moura et al. (2008) adapted the formulation to
consider resource displacement, proposing a GRASP to solve it. Based on the
model proposed in Serra et al. (2011), Serra (2012), and Serra et al. (2012b,a)
proposed a CP model for offshore resource scheduling of a heterogeneous fleet
of rigs and PLSVs, aiming to maximize production.

Other studies have tackled the RSP considering its equipment require-
ments. Drouven and Grossmann (2016) proposed a MINLP based on gen-
eralized disjunctive programming (GDP) for the shale gas development. The
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presented model maximizes the NPV defining which wells will be drilled, when
they will be drilled, which rigs, crews, and equipment will perform the drilling,
and the layout of the gathering pipelines. Mazzini et al. (2002) proposed a
MILP model that decides rigs equipment and drilling/completion rigs sched-
ules, minimizing the costs associated with resources contracts and rigs tardi-
ness. Finally, Marchesi et al. (2019) proposed a MILP model for the construc-
tion of wells considering rigs and equipment aiming to minimize tardiness and
earliness.

There are several types of workover operations, and, as a result, different
types of equipment are needed. With this assumption, McKechnie et al. (2002)
presented a management system for workover operations that allows control
of the rig schedule and the required equipment. Later, a different problem
was introduced by Pandolfi et al. (2010). The authors described a system
called PAE (evolutionary algorithm for planning), applied in an extension of
the WRRSP considering other resources such as crews and equipment used
to service onshore wells. Later, Villagra et al. (2013) adapted the model
proposed by Pandolfi et al. (2010) to consider penalty functions and repair
algorithms to transform infeasible solutions into feasible ones in a constrained
version of the problem. Achkar et al. (2019a,b) proposed a MILP model
for this extended WRRSP, considering a heterogeneous rig fleet, precedence
constraints, crew shifts, failure risks, and minimizing production loss and costs.
Finally, Aurachman et al. (2020) used an influence diagram analysis to model
a variation of the WRRSP considering equipment decisions. According to the
authors, they are developing a dynamic programming model in which the oil
production loss changes with the waiting time.

The decision-making integrated with other resources is especially im-
portant for offshore P&A campaigns, which relies on rigs and lighter vessels,
such as light well intervention vessels (LWIVs) and light construction vessels
(LCVs). Bakker et al. (2017) approached the planning of the offshore P&A
campaign, presenting a MILP model based on the VRP that aims to mini-
mize costs of a heterogeneous fleet of semi-submersible rigs, mobile offshore
drilling units, and light well intervention vessels. Adapting the model from
Bakker et al. (2017), Bakker et al. (2019) developed a commodity flow type
formulation for the P&A planning that allowed to tackle larger instances and
consider different assumptions such as multiple routes per ship and reduced
operability of lighter vessels in the winter. Bakker et al. (2021) adapted these
formulations to consider learning curve effects on the vessel’s processing times.
All these P&A models were part of Bakker (2020), in which the author also
presented a study problem using stochastic dual dynamic integer programming
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for the development of a mature offshore oilfield.
A summary of the total of resource planning studies discussed in this

section is illustrated in Figure B.5 in the Appendix, together with further
details on all of the literature presented.

2.5
Remarks, trends, and opportunities

The papers found in the literature review were classified according to
the taxonomy proposed in Section 2.2. These results are presented in the
supplementary files and analyzed with data visualization tools in what follows.
Figure 2.7 contains the number of papers found for each taxonomy (rows) and
classification group (columns), summarizing how the RSP has been most often
addressed in the literature, both from academic and industrial perspectives.
Note that "Scheduling" refers to problems that only consider scheduling, while
"Routing" refers to problems that consider routing integrated with scheduling.

Figure 2.7: Problems count according to their taxonomy and classification
group.

Clearly, there is a pattern between the problem classification groups
and the taxonomy. DRSPs tackle drilling/completion in stand-alone planning,
considering only the rigs. In some cases, they might consider other operations
(workover or P&A) as well. Usually, the duration of the drilling operations
is long and the distance (specifically the travel time) between wells is short.
As a result, these studies are usually modeled as scheduling problems. The
workover rig planning problems (WRSPs and WRRSPs) are also set in a stand-
alone planning level considering only the rigs. However, differently from the
DRSP, workover rig planning focuses on workover operations on wells, usually
considering single jobs representing interventions that are often unplanned
and can be of much shorter duration than drilling operations. Therefore, the
distance between the wells becomes a relevant aspect that is considered by
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modeling the problem as a routing problem (i.e., WRRSP). In addition, most
workover problems consider a homogeneous fleet of rigs.

Field planning problems are those problems that tackle rig operations
at an integrated planning level and are usually for drilling operations. Due
to its complexity, most of these RSPs are modeled as scheduling problems
and consider single jobs and homogeneous fleet. Resource planning problems
are related to those RSPs that consider others resources when planning well
operations (usually drilling or workover). As there are multiple types of
resources, these problems consider multiple jobs per well and a heterogeneous
fleet of rigs. Figure 2.7 also reveals some literature gaps: few DRSPs modeled as
routing problems; even fewer RSP considering P&A operations and workover
rig planning problems for offshore wells; and a lack of field planning and
resource planning for onshore oilfields or considering routing approaches.

2.5.1
Problem setting

Aiming to analyze the problem setting (oilfield and tasks type, planning
level, resources considered, and case study presented) evolution, the studies
were separated according to the publishing date in two groups: Before 2010
(orange bars) and 2010-2020 (blue bars). Figure 2.8 contains the number of
papers found in each group and problem characteristic.

Figure 2.8: Problem setting evolution.

In the past, the majority of studies were related to offshore wells, but
onshore problems have gained more attention in the last decade. Another
notable point regarding the type of operations considered is that drilling
RSP studies have decreased over the last decade. Meanwhile, the WRSP and
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WRRSP have increased considerably. However, the P&A field remains with
few studies and it might be thus an important direction for future works.

We can observe that the number of studies using public data has increased
significantly in the last decade. The majority of the research uses real or public
data, which means that there are studies with a practical perspective fostering
the exchange of knowledge between academy and industry. Nonetheless, few
studies were verified or implemented by companies, highlighting a gap in the
literature. Futures work should therefore focus more closely on meeting the
industry demands.

Furthermore, there was a decrease in integrated field development prob-
lems and an increase in stand-alone problems as the RSP gained priority in the
decision-making. In contrast, we can observe a slight growth in studies con-
sidering other resources besides rigs, such as offshore support vessels (OSVs),
lighters vessels, crews, equipment, and wire-line cranes, as shown in Figure 2.9.

Figure 2.9: Evolution of the study planning level and the resources considered
in the study.

With the purpose of understanding more about the relationships under-
neath the problem characteristics, Figure 2.10 presents a classification of the
papers according to their oilfield, task types, and planning levels.

Figure 2.10: Relationship between oilfield, task type, and the study planning
level.
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First, we observe in Figure 2.10 that the problems considering P&A are
more relevant for offshore wells and require an integrated field development
perspective. Second, as mentioned by Tavallali et al. (2016), workover planning
is a field operation (production phase) decision and is usually separated from
field development. Therefore, studies addressing workover planning are usually
stand-alone problems. Third, most of the attention of the workover problems
has been to onshore wells, so there is an opportunity for WRSP and WRRSP
for offshore oilfields. Last, we can observe that most of the drilling RSPs were
for offshore wells and integrated field development.

According to Suslick et al. (2009), the offshore environment is immersed
with uncertainties, high investments, and high-risk operations, which makes
the offshore RSP more complex, requiring the drilling RSP to be treated as an
integrated field development decision. Also, these results show new possibilities
for studies related to applying an integrated field development for onshore wells
and workover operations. Bissoli et al. (2016) suggested that in real situations,
the WRSP and WRRSP models should consider all the possible elements that
affect the optimization.

2.5.2
Approach

Aiming to observe the evolution of problem approaches (rout-
ing/scheduling, jobs, fleet type, and method) over time, the studies were
separated according to the publishing date in two groups: Before 2010 (or-
ange bars) and 2010-2020 (blue bars). Figure 2.11 contains the number of
papers found in each group and problem characteristic. The row R/S stands
for Routing/Scheduling. Note that "Scheduling" refers to problems that only
consider scheduling, while "Routing" refers to problems that that consider
routing integrated with scheduling.
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Figure 2.11: Problem approaches evolution.

One can observe in Figure 2.11 that there were some changes in the
modeling approach over the last decade. Before 2010, most of the studies
focused on scheduling, but since then, the number of studies incorporating
routing has grown considerably and the scheduling-based approaches alone
have fallen proportionally. A similar pattern is observed in the way that
the jobs (operations) are modeled. Studies considering multiple jobs to be
optimized have gained more attention. Meanwhile, single jobs have become
less frequent. Finally, just as the previous attributes, the RSP considering
a heterogeneous fleet has grown and was accountable for the majority of
the studies in the last decade. In summary, there seems to be a trend
towards turning modeling assumptions more realistic, and thus rig scheduling
studies started to consider more complex assumptions, such as considering
routing, multiple jobs, heterogeneous fleet, and other more realistic aspects, as
mentioned by Santos (2018).

As to the solution methods (the approach row in Figure 2.11), there
was a reduction in the use of heuristics and metaheuristics, even though they
still represent the most common type of method used. On the other hand,
there was an increase in other approaches: exact (mathematical programming),
matheuristic (hybrid methods combining heuristic and mathematical program-
ming), simulation, simu-optimization (a hybrid approach combining simulation
and optimization), and data-driven optimization (an emerging approach that
uses machine learning methods applied to the optimization). This pattern fol-
lows Khor et al. (2017) literature review of the optimization methods used in
field development problems, where sophisticated methods are being employed
more often, in particular matheuristics and models that consider uncertainties
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in costs, geological aspects, processing and traveling times, tasks occurrence,
and rig availability.

We also highlight that a dynamic programming approach for the WRRSP
(Silva and Silva 2018) was found during our review. Bissoli et al. (2016) and
Bassi et al. (2012) suggested, as future works, dynamic models allowing real-
time optimization and rescheduling. Another crucial point is the employment
of data-driven optimization (Ma et al. 2018, Castiñeira et al. 2018), which is
a new trend in the areas of Operations Research and Management Science
and entails using big data and machine learning (ML) techniques to devise
improved models and/ or solution methods. Both authors focused on using ML
to support the mathematical modeling, but there is the possibility of using ML
to improve the performance of the solution method as well. Next, Figure 2.12
presents the number of publications found of each modeling approach (routing
or scheduling), the task type studied (drilling/completion, P&A or workover),
and the objective function used (time indicator, rig fleet size, oil production,
oil production loss, costs, multi-objective or economic indicator).

Figure 2.12: Relationship between objective function and task types.

Figure 2.12 allows us to observe the most common objective function type
for each problem. Drilling rig scheduling problems usually consider economic
(NPV, cash flow, CAPEX, i.e., capital expediture, etc.), time (makespan,
tardiness, or completion time) or oil production indicators, or a combination of
these indicators using a multi-objective approach. However, drilling rig routing
and scheduling problems usually consider a monetary objective function (cost
or an economic indicator), as a routing problem often has transportation
costs associated. As mentioned earlier, few studies were published with P&A
operations. We can observe that all these use a routing approach and consider
objective functions associated with costs, which is expected, as P&A operations
involve more than one vessel and the distance between wells and ports in
these operations is not negligible. Finally, most of the WRSP and WRRSP
focus on minimizing oil production loss and some WRRSP might consider
objective function with costs or multiple objectives. As mentioned by Attia
et al. (2019), the oil and gas upstream is a multi-dimensional supply chain

DBD
PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 2. Systematic literature review 50

that requires multi-objective models to represent it properly. Therefore, future
multi-objective approaches should also be considered in other RSPs.

Figure 2.13 presents the evolution of the heuristics in the RSP. The
greedy randomized adaptive search procedure (GRASP) and the genetic
algorithm (GA) are common heuristic methods for the RSP due to their
general nature of implementation and flexibility. These are powerful well-
known methods that, if appropriately designed, can provide good solutions
reasonably fast. In some studies published between 2010-2020, the adaptive
large neighborhood search (ALNS) metaheuristic has also achieved outstanding
results for rig scheduling problems: Ribeiro et al. (2012b), Bissoli et al. (2014),
Bissoli (2014), and Shaji et al. (2019).

Figure 2.13: Evolution of the heuristics and metaheuristics methods for the rig
scheduling problem.

In summary, refined techniques, such as hybrid optimization methods,
sophisticated metaheuristics, and uncertainty models, are being used to ap-
proach complex problems involving multiple tasks, multiple types of resources,
and realistic assumptions.

2.6
Perspectives and insights

As mentioned earlier, the RSP has several dimensions and levels. There-
fore, it is important to analyze the previous trends and opportunities from
different perspectives. In this section, we present insights according to the
perspectives of uncertainty, data-driven, integrated field planning, and collab-
oration between academia and industry.

2.6.1
Uncertainty models

As mentioned by Suslick et al. (2009) and Santos et al. (2017), the RSP
has emerged in a risky environment, with uncertainties related to geological as-
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pects (structure, reservoir seal, and hydrocarbon charge), economic evaluations
(rigs, transportation, and operation costs, chances of finding hydrocarbonates
and producing economically viable reservoirs, and oil prices), development and
production (infrastructure, production schedule, oil quality, operation times,
and reservoir characteristic), and logistics (travel time, resource availability,
inventories, and weather). Therefore, it is paramount that any analytical ap-
proach for the RSP considers the uncertainty that affects its decision-making.

Uncertainty in this context can be presented in the optimization method
(e.g., simulation-optimization, when the uncertain parameter is simulated and
then the simulation result is used as an input in the optimization) or in the
modeling approach (e.g., optimization under uncertainty). According to Di-
wekar (2008), optimization under uncertainty can be divided into: (i) “wait
and see”: when the decision is made only after the observation of the ran-
dom values; (ii) “here and now”: optimization over some probabilistic mea-
sure, which includes stochastic and robust optimization; and (iii) “chance-
constrained optimization”: when constraints that are not expected to be al-
ways satisfied. Chaari et al. (2014) propose a classification for scheduling un-
der uncertainty, dividing the approaches into proactive (robustness measures,
probabilistic methods, simulation, and optimization under uncertainty), reac-
tive (priority rules), and hybrid (rescheduling or offline planning with real-time
scheduling).

The most common approach in the RSP to assess the impact of uncer-
tainties is through simulation models. de Andrade Filho (1994), Cong et al.
(2008), Lasrado (2008), Litvak et al. (2011) used reservoir simulation tools
to model the uncertainty associated with the reservoir, Gutleber et al. (1995)
simulated the oil production for a given rig fleet availability, and Zahran and
Al-Fardan (2014) used simulation to assemble scenarios for a rig scheduling
system.

Hybrid methods combining simulation models and heuristics in a "here
and now" approach are also standard. Onwunalu et al. (2008) simulated the
oil production of drilling rig schedules, aiming to maximize the NPV in a
hybrid GA. Bassi (2010) and Bassi et al. (2012) approached the WRSP using
a GRASP heuristic in which the job processing time was estimated with Monte
Carlo simulation. Flager (2014) also proposed a method for the onshore RSP
that simulated the job processing times.

Other "here and now" approaches were presented by Fernández Pérez
et al. (2018), Pérez et al. (2019). The authors proposed stochastic and robust
optimization models for the WRSP considering the uncertainty in the process-
ing time. The main difference between these models was the use of stochastic
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programming techniques to obtain globally optimal solutions. Bakker (2020)
also uses linear programming methods to acquire optimal solutions, but there
were no specific details about the uncertain variables considered. Silva and
Silva (2018) presented a dynamic programming model for the WRRSP that
deals with the uncertainty in the workover occurrences, that is, which wells
will need workover and when.

Despite the number of RSP studies considering uncertainty, this trend has
several gaps and opportunities. For instance, no chance-constrained optimiza-
tion model has been proposed for the RSP, despite their potential of generating
robust solutions. Furthermore, costs-related uncertainties are a critical feature
for industrial stakeholders and should receive more attention. Lastly, there
is the opportunity of employing data-driven optimization under uncertainty,
which will be further discussed in the next section.

2.6.2
Data-driven models

Data-driven techniques are a recent trend in the literature that relies on
the intelligent use of data. These techniques use machine learning, big data,
and data science to analyze data and extract relevant, accurate, and valuable
information to ease knowledge discovery and decision-making (Ning and You
2019). As a multifaceted problem, the RSP relies heavily on data from multiple
sources. Data-driven techniques become crucial to extract information from
this vast amount of data.

For instance, machine learning can be used for predicting when an inter-
vention will become necessary or how long workovers will last. As mentioned by
Carvalho et al. (2019), machine learning techniques (e.g., support vector ma-
chine, random forests, adaptive neural networks, deep learning, and k-means)
have been successfully applied to design predictive maintenance applications on
others fields. These promising developments involving predictive maintenance
could be adapted to the context of RSP.

Ma et al. (2018) proposed a method that uses a data mining system
to extract key information from daily drilling reports and historical data,
identifies drilling opportunities, and uses it to optimize the short-term rig
schedule. Castiñeira et al. (2018) used machine learning and natural language
processing (NLP) for the automated analysis of drilling data. The historical
data was then used to optimize the rig schedule through heuristics, maximizing
NPV and oil production. Both studies have used advanced machine learning
techniques to support the optimization, but none consider the uncertainty.

According to Ning and You (2019), data-driven optimization under un-
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certainty extracts rich information about uncertainty data in an automatic
and smart data-driven process. It can be divided in: (i) data-driven stochastic
programming and distributionally robust optimization (models the uncertainty
using a family of probability distributions); (ii) data-driven chance-constrained
optimization (focuses on chance-constraint satisfaction under the worst-case
probability); (iii) data-driven robust optimization (a particular case of robust
optimization); and (iv) data-driven scenario-based optimization (does not re-
quire knowledge of the probability distribution and uses a discrete uncertainty
set). Data-driven optimization under uncertainty is a trend in the field of
Operations Research that has not been employed in the RSP and is a clear
opportunity for future studies.

2.6.3
Integrated planning

As mentioned earlier, the RSP is a multifaceted problem that depends on
and affects other E&P decisions and resources, such as OSVs, equipment, and
crews. According to Tavallali et al. (2016), only a few references addressed the
integration of well placement with drilling scheduling. On the other hand, in
Section 2.4.4, 51 studies were found with integrated decisions, of which 24 were
from field planning and the others 27 integrating rig scheduling with decisions
comprising other resources. This finding suggests that there has been a trend
for models with an integrated planning perspective.

In Section 2.5, these studies were analyzed, and some trends and oppor-
tunities were detected. For instance, optimizing the RSP with other resources
is a trend that has gained more traction between 2010 and 2020, as shown in
Figure 2.8. 2.10 showed that very few studies had an integrated perspective
for onshore fields, which could be an opportunity for future studies. However,
it is important to notice that most field planning studies presented in Section
2.4.4.1 tackled the RSP with simplified assumptions. Tavallali et al. (2015),
Martin et al. (2010), and Calderón and Pekney (2020) were the only references
to consider the RSP with more realistic assumptions and integrated with the
field development planning. Future opportunity still exists in tackling the field
planning problem with constraints more closely representing industrial stake-
holders’ goals. This collaboration between the academia and industry will be
discussed in the next section.
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2.6.4
Industry and academia collaboration

Oil companies often collaborate with academic institutions to develop
advanced decision-support frameworks and achieve better results in their
decision-making. As many others decisions in the E&P, the RSP was born from
this type of collaboration. However, while the number of studies using public
data by academic stakeholders has grown exponentially, the collaboration
between the industry and academia has reduced in number considerably
between 2010 and 2020 (Figure 2.8). This cutback suggests a widening gap
between the industry demands and the academia research agenda. Aiming
to understand this gap better, this section analyzes RSP studies from both
industrial and academic perspectives.

Eagle (1996) implemented a SA algorithm to schedule drilling rigs
maximizing the NPV for BP (British Petroleum, Alaska), which led to savings
of 30 million dollars. Hasle et al. (1996) developed a system with Saga
Petroleum and other companies for scheduling well activities on rigs and
wire-line cranes. The system used constraint programming and considered
some technological precedence constraints in the model. Furthermore, it had
an efficient and easy user interface fully integrated with other systems from
the company. Currie et al. (1997a) and Currie et al. (1997b) implemented
a linear programming model for a Norwegian company to integrate and
optimize the development decisions. Another resource planning system was
developed by Horton and Dedigama (2006) for the Australian oil company
Santos Ltd. According to the authors, the system, named PRISM (Plan
Resource Implement Schedule Manage), was validated and resulted in gains
of approximately 450 million Australian dollars per year. Irgens and Lavenue
(2007) presented a system called Aris that was implemented in Saudi Aramco.
This software consisted of an interactive application for drilling rig scheduling
minimizing costs that reduced traveling costs by 35%. Another system with
an integrated field planning approach was discussed by Davidson et al. (2009).
The authors presented Exxon Mobil’s simulator EMpower, which has a module
for drilling rig scheduling using first-in-first-out rules. Another system used
by Saudi Aramco was reviewed by Amer et al. (2016), ASAS (Automated
Services Assignment System) was used for scheduling and monitoring the fleet
of drilling and workover rigs with potential savings of 15% in contrast with
the previously employed process. Lastly, Ma et al. (2018) presented a decision
support technique that was successfully applied in several major oil fields from
the Middle East, North America, and South America. This tool used natural
language processing and deep neural network models to extract information
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from daily drilling reports and historical data and to detect non-productive
time in the short-term rig scheduling, reducing it between 14-30%.

In summary, describing the main gaps between the academic literature
and industrial practice. From the 130 RSP studies found in this SLR, only
nine studies presented a method that was implemented in a real company, and
from those nine, only five were verified within the company as a successful
tool. Most of these studies were integrating the RSP with other decisions and
resources. Not only the approach ought to have an integrated perspective,
but when proposing a system, a critical factor for implementation is that
the system can be easily integrated with other systems (Hasle et al. 1996).
Finally, researchers must use realistic constraints and objective functions for
the problem. As mentioned by Tavallali et al. (2016), considering technical
constraints and removing unreasonable simplifying assumptions are critical
for gaining industrial acceptance.

2.7
Final considerations

To summarize, the RSP has several characteristics that are important
when approaching a problem. This study has proposed a methodology that
divides problem characteristics into two groups: setting (oil field location, well
operations, planning level, and resources considered) and approach (modeling,
rig’s fleet, single/multiple jobs). According to this taxonomy, a study can
be classified into Drilling Rig Scheduling Problem, Workover Rig Scheduling
Problem, Workover Rig Routing and Scheduling Problem, Field Planning, and
Resource Planning. This taxonomy and classification were used to analyze the
papers selected in the review, detecting trends and opportunities.

The first publications were in the 1960s and 1970s and refer to drilling rigs
scheduling problems from an oil field development perspective. However, only
in the second half of the 1990s, the discussions started to gain traction. New
mathematical models were proposed, but they were still not suitable for real-
world instances. In the 2000s, there was an increase in the research of new and
more efficient methods, mainly focusing on workover rigs. The improvement
in the algorithms’ and models’ performances allowed for approaching more
realistic scenarios. We also highlight that there are very few P&A studies.

The current trends identified in the RSP literature take advantage of
the sophisticated optimization techniques available in the literature. Develop-
ing hybrid methods (combining mathematical programming, metaheuristics,
or simulation) and considering multiple types of tasks (drilling, completion,
or workover), other resources (OSVs, equipment, and crews), and realistic ob-
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jective functions and assumptions (such as heterogeneous fleet, variable costs
rates over the time horizon, rigs capabilities learning, fleets availability, ma-
chine eligibility, net present value, and expected monetary value). Furthermore,
the dynamic and high-risk operations of the RSP demand studies considering
uncertainty; only a few approaches use stochastic and robust models, dynamic
programming, simulation-optimization, or data-driven optimization.

Many of these gaps and trends emerge from the needs of the oil and gas
sector. The rig scheduling problem is a crucial decision in the E&P phases,
considerably influencing the field profitability. Nevertheless, there were only a
handful of studies that were implemented or validated in the industry. Future
studies on the RSP ought to apply the advanced quantitative methods available
in real instances, validating it with industry stakeholders and integrating
academic and practical perspectives.

The SLR and RSP classifications that were presented in this chapter
culminated in the publishing of an article "A Systematic Literature review for
the rig scheduling problem: Classification and state-of-the-art" in the journal
Computers & Chemical Engineering (Santos et al. 2021).

In this thesis, we approach the offshore WRSP and try to address
some of these gaps. First, we address real-life instances, using sophisticated
optimization techniques with realistic objective functions and assumptions,
and validating the results with industry players. Second, we propose creative
and innovative data-driven optimization models considering the uncertainty
and the particularities, adapted to the industry demands. The methodologies
proposed in this thesis are presented in the next section as well as the review of
the optimization and data-science concepts involved in these type of models.
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3
Technical review and basic concepts

In the previous chapter, the rig scheduling problem was studied through
a systematic literature review, which led to several insights. From the problem
perspective, the workover planning has received significant attention, but the
vast majority of its studies consider only onshore wells. Another important gap
detected was the lack of implemented and validated models in the industry.
As to the approach perspective, a trend for optimization models considering
uncertainty was detected, with very few data-driven optimization models
having been made so far and none of them considered chance-constrained
approaches.

Aiming to fulfill these gaps, this thesis approaches the offshore workover
rig scheduling problem in real-life based instances through data-driven chance-
constrained optimization. Four data-driven optimization methodologies for the
workover rig scheduling problem are proposed and compared in this thesis. The
main methodology is a data-driven joint chance-constrained (DD-JCC) opti-
mization model, which is compared with others data-driven chance-constrained
variations (integrated chance-constrained and budget-constrained) and a deter-
ministic data-driven optimization model. All data-driven optimization models
use regressions to estimate the unknown parameter based on historical data.
These data-driven methodologies are separated in three major phases: data
treatment (where data science methods are used to clean and classify the
data), prediction (where predictive models are used to estimate uncertain pa-
rameters of the optimization, and optimization (where optimization models
are generated and solved).

With the purpose of enhancing the reader’s understanding of these
methodologies, this chapter presents a review of the techniques and basic
concepts related to the methodology. This technique overview is divided
according to the three phases of the proposed methodology: data treatment,
prediction, and optimization. Section 3.1 discuss the data science techniques
used to clean and classify the data in data-driven optimization. Section
3.2 overviews the regression models used to predict the uncertainty in the
data-driven optimization. Last, Section 3.3 discuss the different ways to
optimize under uncertainty, their data-driven optimization ramifications, and
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the basic concepts and the state-of-art of the data-driven chance-constrained
optimization.

3.1
Data treatment and grouping algorithms

Data science is a crucial part of any data-driven model. According to
Shcherbakov et al. (2014), data science is a result of the expansion of statistics
to practical problems with large volumes of data through computer science
methods. Data science can be used to extract information or treat, classify,
group, and predict data. Next, we describe some techniques commonly used in
text mining and classification algorithms that will be used in this thesis.

3.1.1
Text mining

Text mining is a technique used in unstructured text data to clean the
data and extract critical information from it (Shcherbakov et al. 2014). It is
separated into two main phases:

– Data cleaning: the removal of symbols (such as: " /,@,’,",|,-,_“), the
converting of the text to lower case only, and the removal of numbers,
accent marks, dots, and extra spaces.

– Data simplification: the removal of stopwords and use of the stemming
technique adapted for the Portuguese language (Lang 2004). Stopwords
are uninformative words often common in a text, such as: articles,
pronouns, and conjunctions (Sarica and Luo 2021). Meanwhile, the
stemming technique reduces inflected or derived words to their respective
word stems, simplifying the text and making it easier to identify fields
with the same meaning (Jivani et al. 2011). For instance, words such as
"removal", "removing", "removed", and "removes" are replaced by their
word stem "remov". Basically, the stemming technique and the data
cleaning simplify the data. However, these techniques would still not
recognize texts with the same meaning as similar. An example of this
similarity recognition failure is for the terms "Removing of equipment"
and "Equipment removal". The stopword removal would remove the "of"
from the first text and the stemming would transform each one of them
into "Remov equip" and "Equip remov", respectively.

Another important concept in text mining is string similarity and dis-
tance, which measures how close the sentences of a text data are to each other.
Two examples of string similarity measures are the Levenshtein (LV) (Yujian
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and Bo 2007) and the Longest Common Substring (LCS) (Sun et al. 2015)
distances. The LV distance is an edit-based string similarity, whereas the LCS
similarity is a sequence-based measure. Both similarity measures are efficient
for short strings.

3.1.2
Clustering algorithms

Clustering methods divide data into subsets in such a way that similar
examples are grouped together and distinct examples are divided into various
groups (Rokach and Maimon 2005). Clustering can be used to group data
according to a common and symmetric distance measure.

A common clustering technique is the k-means algorithm (Likas et al.
2003b), a partition method that separates the data into a pre-defined number
of mutually exclusive clusters (k). It is a point-based clustering method that
starts with the cluster centers initially placed in arbitrary positions and
proceeds by moving the cluster centers at each step to minimize the clustering
error (Likas et al. 2003c). The k-means algorithm is described in the following
pseudo-code:

Algorithm 1: Pseudo-code for the k-means algorithm (Likas et al.
2003a)

Data: D = {t1, t2, . . . , tn} = Set of n points; k = Number of
clusters

Result: K (set of clusters)
1 µ1, µ2, . . . , µk ← initial values;
2 while convergence criteria not met do
3 Assign each tn to k = arg min distance(tn, µk).;
4 Recalculate new means (µ1,mu2, . . . , µk) for each cluster k.;

A crucial part of the k-means algorithm is defining the number of clusters
(k), which is usually performed using the average silhouette analysis. The
silhouette score measures how similar objects are to their assigned clusters
compared to other clusters. The score varies between -1 and +1, and a higher
score indicates that the object is well-matched to its own cluster and poorly
matched to other neighboring clusters (Rousseeuw 1987).

3.2
Predictive modeling

Another popular application of data science is to predict the outcome
of future events. For that, predictive modeling techniques are used to analyze
patterns in a given set of input data and model it as a mathematical process
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(Kuhn et al. 2013, Laud and Ibrahim 1995). It is a crucial component of predic-
tive analytics, a type of data analytics that uses current and historical data to
forecast activity, behavior, and trend. There are two types of predictive mod-
els: linear or parametric models and non-linear or non-parametric regression
models. Linear regression models assume that the predicted variable is a linear
combination of the input variables. Meanwhile, non-parametric models do not
make strong assumptions about the form of the mapping function, allowing
non-linear combinations of the input variables.

Linear regression models are parametric statistical models used to de-
termine the relationship between a response variable (Y ) and its explanatory
variables (X) or to predict its value using other variables. A typical class of
these models is the generalized linear model (GLM), which is a generalization of
the ordinary linear regression models accepting response variables with errors
following an exponential family distribution, not necessarily a normal distri-
bution as the ordinary models (Nelder and Wedderburn 1972). The GLM’s
predicted value of the observation Yi is a linear sum of the effects of one or
more explanatory variables Xij, as shown in the equation:

Yi = β0 + β1Xi1 + · · ·+ βjXij + · · ·+ βJXiJ + εi ∀i, (3-1)

where j = 1, . . . , J denotes the number of explanatory variables (Xij) used
and βj represents their effect on the response variable Yi (McCullagh and
Nelder 2019). As mentioned earlier, in the GLM, the error variable ε follows
a distribution of the exponential family, which includes the Normal, Poisson,
Binomial, and Gamma distributions. The linear coefficients are estimated using
the maximum likelihood estimation (MLE) method if the residuals are non-
Normal or the ordinary least squares (OLS), if Normal (Yuan and Yang 2005,
Yan and Su 2009, Mahmoud 2019). However, if there is a large number of
dummy variables; as a result, a large number of coefficients, the model can
overfit on the training data and might not perform properly on an out-of-
sample data set.

Aiming to assist in those cases, regularization techniques can be used to
reduce the number of features and prevent overfitting results (McDonald 2009).
One of these techniques is the ridge regression. The ridge regression models are
a multiple regression analysis adapted for data with multicollinearity (when the
least-squares estimates are unbiased, but their variances are significant, causing
them to be far away from the actual value). Ridge regressions add a degree of
bias to the regression estimations, reducing the standard errors. This technique
is recommended for regression models with near-linear relationships among
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the independent variables or many dummies independent variables (Hoerl and
Kennard 1970).

To train and test any regression model, it is recommended to separate
the data into in-sample and out-of-sample, where the in-sample data is used
to train the regression model and the out-of-sample data to predict and
evaluate the trained models. Linear regression models can be trained using
several methods, such as iteratively reweighted least squares (IWLS) (Street
et al. 1988) and K-fold cross-validation (Bengio and Grandvalet 2004). Possible
metrics to evaluate the results of a linear regression model in the out-of-sample
data are the root-mean-square error (RMSE), R-squared (R2), and p-value fit
for residuals normally distributed.

Kernel smoothing are non-parametric statistical methods used to esti-
mate random variables without specifying their distribution (Racine 2008).
An example of kernel smoothing is the kernel density estimation (KDE). This
technique is used in mathematical programming applications to represent the
uncertainty when its distribution is unknown (Calfa et al. 2015, He and Li
2018, Wang and Li 2017)

Basically, the KDE uses a kernel function K(u) to weight the data points
of a histogram and estimate the density function as in Equations (3-2) and (3-3)
and Figure 3.1.

Figure 3.1: Example of a kernel density estimation (black line), the kernel
functions (blue lines) for each data point (red marks), and the histogram (grey
bars).

Suppose X is a continuous random variable that has an unknown
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probability density function (PDF) f(x), cumulative probability function
(CDF) F (x), and a sample of n data points of (Xi). The KDE can be
represented as a mathematical function, (3-2) and (3-3), for a given x:

f̂(x) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
(3-2)

F̂ (x) = 1
nh

n∑
i=1
K
(
x−Xi

h

)
, (3-3)

where h is the bandwidth (a scaling factor), K(u) is the kernel function that
weights the data points, and K is the integrated kernel function. As mentioned,
the bandwidth h is an essential parameter of the KDE that sets the smoothness
or roughness of the estimation. A larger h results in a smoother curve, and a
smaller h makes the density rougher, as illustrated in Figure 3.2.

Figure 3.2: Examples of the effect of different bandwidths in the kernel function
(blue lines) and the KDE (black lines).

Another important setting in the KDE is the choice of the kernel function
K(u) to be used. Several kernel functions are possible, such as: Gaussian, Box,
Tri, Triweight, Epnechnikov, and Tri-cube. As mentioned by Calfa et al. (2015),
an example of a Gaussian kernel function equal is the standard normal:

KGaussian(u) = 1
2

[
1 + erf

(
u√
2

)]
(3-4)

where: erf(u) = 1√
π

∫ u

−u
e−

t2
2 dt. (3-5)

As mentioned by Calfa et al. (2015), the choice of the bandwidth rather
than the kernel function type has more effect in obtaining accurate results with
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the KDE. There are four methods to select the optimal bandwidth: rule-of-
thumb, plug-in, least-squares cross-validation, and likelihood cross-validation
(Calfa et al. 2015). The cross-validation-based methods are fully automatic or
data-driven as they are tailored to the sample data under consideration, being
more recommended for data-driven optimization models than the others. Calfa
et al. (2015) used the R np package from Hayfield and Racine (2008) and
Racine (2008) in a data-driven joint chance-constrained optimization model
that can be applied to many other problems, including scheduling. Their
studies will be discussed later in Section 3.3.6.

3.3
Optimization under uncertainty and data-driven methods

There are several approaches to optimize under uncertainty. According
to Diwekar (2008), optimization under uncertainty can be divided into:

– “wait and see”: when the decision is made only after the observation of
the random values.

– “here and now”: optimization over some probabilistic measure, which
includes stochastic and robust optimization;

– “chance-constrained optimization”: a particular case of robust optimiza-
tion when constraints are not expected to be always satisfied.

The first approach requires distinguished knowledge of the uncertainty,
which is quite rare. The second is divided into stochastic and robust techniques
(Wets 2002). Particularly for scheduling and fleet sizing problems with uncer-
tainty in the duration, stochastic programming solutions are usually strongly
affected by extreme scenarios with a low-probability, as the model tries to find
feasible solutions for all scenarios (Prékopa 2013). Robust optimization tries
to generate solutions that are good in most cases, as long as it is feasible for
all scenarios (Ben-Tal et al. 2009). Chance-constrained optimization arises as
an alternative to the here-and-now standpoint that allows some infeasible so-
lutions within a predefined threshold, which is recommended for fleet sizing
and long-term models in which the solution feasibility allows some flexibil-
ity (Prékopa 2003, Verderame et al. 2010). This section explains the basic
concepts of chance constraints and its main relaxations and reformulations
(Section 3.3.1) and reviews the state-of-art of data-driven optimization (Sec-
tion 3.3.4) from data science algorithms (Section 3.1) to several data-driven
chance-constrained optimization approaches (Sections 3.3.5 and 3.3.6).
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3.3.1
Chance-constrained optimization: basic concepts

Mathematical programming under probabilistic constraints, also known
as chance-constrained programming or probabilistic programming, refers to
a type of optimization under uncertainty in which the objective function
is subject to at least one probabilistic constraint, i.e., a constraint that
must be satisfied within a certain probability. This type of optimization was
first introduced by Charnes and Cooper (1959) and Charnes et al. (1958)
for the problem of scheduling heating oil production. The authors proposed
probabilistic constraints that were imposed individually on each constraint
affected by the random variables.

Later, Miller and Wagner (1965) presented a formulation for constraints
with joint probability with random variables on the right-hand side of the
constraints. Finally, Prékopa (1971, 1973) proposed the general formulations
for chance-constrained optimization with joint probabilistic constraints and
stochastically-dependent random variables.

Basically, there are two types of probabilistic constraints: individual
chance-constrained (ICC) and joint chance-constrained (JCC). In the first case,
probability thresholds are individual for each constraint. The second type is
when at least two constraints must together satisfy a joint probability (Ahmed
and Shapiro 2008, Prékopa 2015, 2003, Li and Li 2015). General forms of ICC
and JCC are shown in (3-6) and (3-7), respectively:

P
[
gj(x, ξ̃j) ≥ 0

]
≥ αj, ∀j = 1, ...,m (3-6)

P
[
gj(x, ξ̃j) ≥ 0, ∀j = 1, ...,m

]
≥ α, (3-7)

where P[·] is the probability function of the random variables ξ̃j, x represents
the vector of decision variables, gj(x, ξ̃j) is a function of the decision variables
and the random variables, and α is the confidence level, reliability level, or
risk level. In the ICC, each individual chance constraint is associated to an
individual αj, i.e., the probabilistic constraint must be satisfied individually.
Alternatively, all the joint chance constraints must satisfy this confidence level
(α) simultaneously. Value-at-Risk (VaR) constraints are an example of chance
constraint commonly used in finance and economics (Cui et al. 2013, Zhao and
Xiao 2016).

A particular case of chance-constrained models occurs when the uncer-
tainty is on the right-hand side of the equation, which is presented in (3-8)
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and (3-9):

P
[
gj(x) ≥ ξ̃j

]
≥ αj, ∀j = 1, ...,m (3-8)

P
[
gj(x) ≥ ξ̃j,∀j = 1, ...,m

]
≥ α, (3-9)

where g(x) is a function of the decision variables and ξ̃ is the vector of
random variables. Note that in these cases the decision variables and random
variables are separated on the left-hand side (LHS, the variables side of
the constraints) and the right-hand side (RHS, the constant side of the
constraints), respectively.

Another common feature in probabilistic programming is to penalize
the constraint violations in the objective function. For that purpose, several
measures of violations can be used separately or with chance constraints. As
mentioned by Prékopa (2003), a hybrid model with probabilistic constraints
and penalization of constraints violations would be as follow:

Min cTx+
∑
j∈J

qiE
(
[ξ̃j − gj(x)]+

)
(3-10)

Subject to
P
[
gj(x) ≥ ξ̃j

]
≥ αj, ∀j = 1, ...,m (3-11)

Ax ≥ b, x ≥ 0 (3-12)

where qi are non-negative constants that penalize violations of the probabilistic
constraints and [·]+ is the non-negative approximation of a value.

A classic measure of violation is the integrated chance constraint. This
concept was introduced by Haneveld (1986) and instead of guaranteeing the
risk level of the probabilistic constraint, the integrated chance constraints
assure that the expected magnitude of violation is lower or equal to a specific
bound. Following Prékopa (2003), the integrated chance constraint general
form is represented in (3-13) and is used with or without the chance constraint.

E
(

max
i

[
gi(x, ξ̃)

]
+

)
≤ d (3-13)

The next section presents common reformulations and relaxations in
the literature for representing the probabilistic constraints of the chance-
constrained models.
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3.3.2
Chance-constrained optimization: reformulations and approximations

As chance-constrained models are generally non-linear, non-convex, and,
consequently, extremely difficult to solve, many researchers have analyzed their
structural properties, identifying particular cases in which the probabilistic
constraints are convex or proposing reformulations, approximations, or relax-
ations.

Special cases in which the chance constraints can be represented with
convex reformulations were identified by Charnes and Cooper (1963), Prékopa
(1973), and Calafiore and Ghaoui (2006). Charnes and Cooper (1963) used
decision rules to obtain, under specific conditions, deterministic equivalent
formulations for three classes of optimizing objectives functions with individ-
ual chance constraints: maximum expected value (E model), minimum vari-
ance (V model), and maximum probability (P model). Meanwhile, Prékopa
(1973) studied the convexity of individual and joint chance constraints with
log-concave probabilities. Last, Calafiore and Ghaoui (2006) convert individ-
ual chance constraints with radial distributions to convex second-order cone
constraints.

Some conservative reformulations use p-efficient concepts. The p-efficient
concept was introduced by Prékopa (1990) and involves the definition of
sufficient conditions for the probabilistic constraint to be feasible. These
conditions, or p-efficient points, can be represented as a set of deterministic
constraints, allowing deterministic inner approximations of the problem. Other
reformulations using this concept for individual and joint chance constraints
have been proposed by: Dentcheva et al. (2000), Lejeune and Ruszczyński
(2007), Lejeune and Noyan (2010), Saxena et al. (2010), Lejeune (2012), and
Dentcheva and Martinez (2013).

There are two other popular reformulations of chance constraints men-
tioned by Lejeune and Prékopa (2018). The first uses scenario-based reformu-
lation with binary and knapsack constraints (Ruszczyński 2002). Another one
is based on pattern-and-boolean programming, as in Lejeune (2012), Kogan
and Lejeune (2014), and Lejeune and Margot (2016).

Using the properties of normal and log-normal distributions, Biswal et al.
(2005) and Sahoo and Biswal (2005) proposed reformulations for the joint
constraint programming when the uncertainty in the RHS follows normal and
log-normal distributions. However, these formulations lead to nonlinear joint
constraints, as shown in the constraints (3-14)-(3-17) for the case in which
the RHS uncertainty is made by independent random variables that follow a
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Normal distribution N(µ, σ):

P
[
gj(x) ≥ ξ̃, ∀j

]
≥ α (3-14)∏

j

P
[
ξ̃ ≤ gj(x)

]
≥ α, (3-15)

∏
j

P
[
ξ̃ − µ
σ
≤ gj(x)− µ

σ

]
≥ α, (3-16)

∏
j

[
Φ
(
gj(x)− µ

σ

)]
≥ α, (3-17)

where the RHS uncertainty ξ̃ ∼ N(µ, σ), gj(x) is the LHS, and Φ(·) is the
cumulative distribution function of the standard normal distribution, which is
equal to Φ(x) = P(Z ≤ x) = 1√

2π
∫ inf
− inf e

−u
s

2 du.
Most of these reformulations are only for individual chance constraints.

Thus, the reformulations that are applicable to joint chance-constrained models
require several conditions and complex calculations that reduce the flexibility
of the model to be re-adapted when the problem’s assumption or instances
change. An alternative is through the approximation of the chance constraints.

Nemirovski and Shapiro (2007) proposed a Bernstein-based approxima-
tion of the chance constraints, which is convex and efficiently solvable. How-
ever, Bernstein-based approximations, despite being easy to use and solve,
often generate too conservative solutions, as mentioned by Bertsimas and
Sim (2004), Nemirovski (2012), and Zhao and Kumar (2017). Lejeune and
Prékopa (2018) review several reformulations of joint chance constraints and
proposed approximations using bounding schemes (based on Boole-Bonferroni
and product-type inequalities, binomial moments, and step-wise dependence
concepts) for problems with continuous random variables.

Another approximation of the chance constraints is through scenario-
based reformulations. Calafiore and Campi (2006, 2005) sampled the prob-
abilistic constraints to obtain a standard convex optimization problem that
satisfies the probabilistic constraint confidence level. Nemirovski and Shapiro
(2007) combined this scenario-based reformulation with the Bernstein approx-
imation in a simulation-based method. As mentioned by Luedtke and Ahmed
(2008), these previous approximations are conservative methods that are at-
tractive only when probabilistic constraint confidence level is high (1−α is very
small, such as 10−6. Conservative approximations with lower confidence levels,
i.e., a bigger 1−α (such as 1%), often cannot to measure how much worse the
objective function is relative to the optimal value of that risk level. Aiming to
tackle this issue, Luedtke and Ahmed (2008) proposed a sample approximation
approach and a scenario-based reformulation for chance-constrained optimiza-
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tion. The authors also proposed a measure for the approximation error to be
used to set the scenario sample size of the optimization model. This sample
approximation was later used by Nikzad et al. (2019) to propose a two-stage
stochastic optimization reformulation for a chance-constrained optimization
model in a medical drug inventory routing problem.

3.3.3
Scenario generation and Wasserstein distance

As mentioned earlier, some chance-constraints reformulations use sce-
narios to represent the uncertainty and solve it as a stochastic programming
model. The problem of scenario-based optimization is that the models’ size
increases considerably with the number of scenarios. To reduce the size of the
models, scenario reduction is often used with the scenario generation method.
This section focuses on scenario generation using Monte Carlo sampling (MCS)
and the scenario reduction technique using the Wasserstein distance. Note that
scenario reduction methods are sometimes referred to in the literature as sce-
nario set generation algorithms (Fu et al. 2017). Kaut (2021) suggested several
benefits of using Wasserstein distance-based scenario reduction algorithms that
will be explained later in this section.

MCS is a sampling technique that generates N replications of a random
vector ξ using its probability distribution. This is achieved by generating
a random sequence of independent numbers between [0,1] and constructing
a sample by applying an appropriate transformation using the probability
distribution (Shapiro 2003).

After generating a large number |S| of scenarios, the Wasserstein dis-
tances between the scenario sets are calculated and used to select a set of
|S ′| scenarios that minimizes the Wasserstein distances, i.e., the best set of
|S ′| scenarios to represent S. This set can be obtained by redistributing the
original probabilities from S to S ′, which is to minimize the amount of moved
probability multiplied by the moving distance, represented in Equation (3-18):

Min
∑
i∈J

∑
j∈J
||Dij||rπij (3-18)

Subject to: ∑
j∈J

πij = Pi ∀i (3-19)

∑
i∈J

πij = Pj ∀j, (3-20)

where ||Dij|| is a distance metric to compare the scenarios, r is the Wasserstein
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distance order, πij is the amount of probability moved from i to j, Pi is the
probability of each scenario obtained in the scenario generation. Constraints
(3-19) and (3-20) are transportation constraints. Note that the Wasserstein
distance problem is a linear transportation problem in which there are several
algorithms available to solve it in an efficient manner.

As mentioned by Kaut (2021), k-means and Wasserstein-distance-based
methods can both be used in scenario generation. To compare and evaluate
the scenario generation, Kaut and Stein (2003) and Pflug (2001) suggest using
the error of approximating measure, which is the difference between the value
of the true objective function at the optimal solutions of the actual process
and the approximated problems. Next, we discuss data-driven optimization
and review some studies on it.

3.3.4
Data-driven optimization: state-of-the-art

Optimization under uncertainty relies on the quality of the data (Bert-
simas and Sim 2004). As mentioned by Ning and You (2019), a wide variety
of machine learning and data science methods can be used to analyze uncer-
tainty data and extract accurate, relevant, and useful information for decision-
making. The combination of these techniques with optimization is known as
data-driven optimization. Data-driven optimization approaches have emerged
in recent years aiming to formulate the uncertainty model based on the data
(Bertsimas et al. 2018).

Ning and You (2019) reviewed the data-driven optimization under un-
certainty literature and classified the studies into four categories:

– Distributionally robust optimization (DRO), also known as data-driven
stochastic programming.

– Data-driven chance-constrained programming.

– Data-driven robust optimization.

– Data-driven scenario-based optimization.

Data-driven stochastic programming or distributionally robust optimiza-
tion model the uncertainty through an ambiguity set, i.e., a family of proba-
bility distributions that accurately represent the uncertainty in the data. Dis-
tributionally robust optimization models mitigate the effects of a worst-case
distribution by constructing an ambiguity set that does not assume a single
uncertainty distribution, but instead an uncertainty set of probability distribu-
tions estimated through statistical inference and data science (Ning and You
2019).
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Data-driven chance-constrained (DCC) models, on the other hand, con-
centrate on satisfying the chance constraints in their worst-case probabili-
ties. Instead of optimizing the worst-case expected objective as the DRO ap-
proaches, DCC models optimize under uncertainty in the probability distribu-
tions of the chance constraints (Ning and You 2019).

Data-driven robust optimization combines robust optimization with
stochastic programming (Namakshenas and Pishvaee 2019). According to
Zhang et al. (2022), robust optimization uses an uncertainty set to represent
the uncertain knowledge and is divided into three types: statistic robust opti-
mization (SRO), when all decisions are made at once before the uncertainty
realization; two-stage adaptive or adjustable robust optimization (ARO); and
multi-stage ARO. Conventional robust optimization models usually define the
uncertainty set/model beforehand, without allowing enough flexibility to cap-
ture the structure and complexity of uncertainty data. Data-driven robust op-
timization arises by integrating the uncertainty set definition into the robust
optimization model.

Data-driven scenario-based optimization refers to scenario optimization
approaches for chance-constrained models. Unlike from the stochastic pro-
gramming models, scenario-based optimization models do not require ex-
plicit knowledge of probability distribution. In the data-driven scenario-based
chance-constrained optimization, uncertainty scenarios are used to achieve an
optimal solution satisfying the chance constraints (Ning and You 2019). The
following sections present some data science algorithms often used in data-
driven optimization and details data-driven chance-constrained optimization
approaches.

3.3.5
Data-driven chance-constrained optimization

As mentioned by Ning and You (2019), Calfa et al. (2015), and Ben-Tal
et al. (2011), the DCC programming models are subjected to chance constraints
that need to be satisfied under an ambiguity set (a family of probability
distributions representing the uncertainty data). Their general form is the
following:

min
x∈X

f(x)

Subject to: min
P∈D

P [G (x, ξ) ≥ 0|ξ ∈ Ξ] ≥ α, (3-21)

where x is the vector of decision variables, ξ represents a random vector that
follows a probability distribution P with an ambiguity set D. The chance
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constraints are defined by the function G (g1, . . . , gm), using the decision
variables X and the random vector ξ, and has to satisfy a risk level α.

Several data-driven chance-constrained approaches have been proposed
in the optimization under uncertainty literature. Assuming that all distribu-
tions in the ambiguity set had equal and known mean and covariance, Calafiore
and Ghaoui (2006) reformulated the distributionally robust individual chance
constraints to convex second-order cone constraints. Considering first and
second-order moment information of the chance constraint uncertainty, Zym-
ler et al. (2013) used the worst-case conditional value-at-risk (CVaR) approx-
imation to approximate the distributionally robust joint chance constraints.
There were also some non-linear approaches for distributionally robust chance-
constrained optimization with ambiguity sets constructed according to mean
and variance (Yang and Xu 2016); mean absolute deviation (Postek et al.
2018); convex moment constraints (Xie and Ahmed 2018); distributions mix-
tures (Chen et al. 2018b, Lasserre and Weisser 2021); Kullback–Leibler diver-
gence (Hu and Hong 2013); Wasserstein metrics (Ji and Lejeune 2018, Chen
et al. 2018a, Hota et al. 2019, Xie 2019, 2021).

As this study is related to a joint chance-constrained problem, this review
is focused more on the data-driven joint chance-constrained approaches. Zhang
et al. (2016) used kernel smoothing models to reformulate the JCC model and
obtain better solutions for their problems. Zhang et al. (2016)’s reformulation
applies kernel smoothing in the robust approximation from Bertsimas and
Sim (2004). However, this type of robust approximation leads to strongly
conservative solutions. Jiang and Guan (2016) proposed DCC models with
ambiguity set constructed using φ-divergence. Calfa et al. (2015) extended the
models using the kernel smoothing method to avoid conservative solutions,
obtaining non-linear programming models for the JCC scenarios.

Another type of data-driven CC approach is the contextual chance-
constrained model, which was proposed by Rahimian and Pagnoncelli
(2020). Unlike traditional stochastic programming models, contextual
chance-constrained programming does not ignore the dependence on multi-
dimensional features, i.e., the auxiliary information connected to the random
variables. Rahimian and Pagnoncelli (2020)’s formulation can use kernel or
machine learning (ML)-weights to consider the auxiliary data. Their kernel-
based approach cannot be solved in most cases, especially when continuous
and categorical variables are combined in the data. The ML-weights approach
is formulated for k-nearest neighbors (kNN), CARTs (classification and re-
gression trees), and random forest techniques. The authors use the proposed
contextual CC programming to give emphasis on data points closer to each
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observation, being recommended in data-driven CC in which the historical
data changes the behavior over time. Sometimes, the uncertainty data and
its features are subjected to the decision-making, i.e., the realization of the
uncertainty is dependent on the decision variables and the auxiliary data.
Bertsimas and McCord (2018) proposed an algorithm using machine learning
methods for data-driven optimization problems that fall in this case. Finally,
Bertsimas and Kallus (2020) studied the formulations, theorems, and prop-
erties of the conditional stochastic optimization problems using several ML
methods, such as Kernel, kNN, locally weighted least squares (LOESS), and
decision trees, suggesting that ordinary linear regression and ridge regression
models could also be used to capture the features dependence.

3.3.6
Kernel-based joint chance-constrained optimization

As mentioned in the last section, several data-driven joint chance-
constrained approaches have been proposed in the optimization under uncer-
tainty literature. Calfa et al. (2015), Jiang and Guan (2016), and Zhang et al.
(2016) used kernel smoothing models to reformulate the model and obtain
better solutions for their problems. Zhang et al. (2016)’s reformulation applies
kernel smoothing in the robust approximation from Bertsimas and Sim (2004).
However, this type of robust approximation leads to strongly conservative so-
lutions. This section details Calfa et al. (2015)’s reformulation, which is based
on Jiang and Guan (2016), and does not lead to over-conservative solutions.

Consider the following joint chance constraint:

P
[
gij(x) ≤ ξ̃i,∀j

]
≥ α ∀i|i 6= 0. (3-22)

According to Calfa et al. (2015), if the distributions for ξ̃i are independent,
uncorrelated, and each one follows a Gaussian model, constraint (3-22) can be
reformulated using kernel distribution estimation properties as:

L∑
l=1

∏
j

Ki
gij(x)− ξ̂li

hi

 ≥ α
′

+ ∀i, (3-23)

where ξ̂li are data points of the uncertainty, α′ is a reduced risk level,
α
′
+ = max{α′ , 0}, hi is the bandwidth selected for the kernel estimation of

uncertainty for i, and Ki(·) is the kernel or weighting function estimated for i.
If we use the Gaussian kernel:
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KGaussian(u) = 1
2

[
1 + erf

(
u√
2

)]
, where erf(u) = 1√

π

∫ u

−u
e−

t2
2 dt. (3-24)

This will lead to the following equations:

L∑
l=1

∏
j

1
2 + 1

2erf
gij(x)− ξ̂li

hi
√

2

 ≥ α
′

+ ∀i (3-25)

According to Calfa et al. (2015), the reduced risk levels α′+ can be
estimated through the Kullback–Leibler (K–L) divergence formula: α′+ =
infx∈(0,1)

e−dx1−α−1
x−1 , which is explained and proved in Jiang and Guan (2016).

Last, the bandwidths can be selected using the algorithms available in R
packages, as mentioned in Section 3.2.

The advantages of this kernel-based reformulation shown in Constraint
(3-25) are that the distributions are estimated based on the available data, and
the risk levels are directly associated with the quality and size of the data-set,
allowing to generate data-driven solutions.

However, this deterministic-equivalent reformulation of the joint chance-
constrained optimization model leads to a non-linear equation that is also
non-convex. As a result, the kernel-based JCC becomes a non-convex mixed-
integer non-linear programming (MINLP) model, which is known to be one
of the most challenging classes of mathematical programming problems to
solve (D’Ambrosio et al. 2012). Therefore, other alternative methods should be
developed. In the next section, we detail the proposed data-driven joint chance
constraints programming methodologies, which use some of the data science
algorithms presented earlier and were based on some of the studies described
in this section, such as Prékopa (2013), Biswal et al. (2005), Sahoo and
Biswal (2005), Nemirovski and Shapiro (2007), Luedtke and Ahmed (2008),
and Nikzad et al. (2019).
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4
Methodology overview

In this thesis, a data-driven optimization methodology for the workover
rig scheduling problem using regression-driven models is proposed and an-
alyzed. Several variations of the regression-driven models are compared to
improve the optimization. The final model is a data-driven joint chance-
constrained (DD-JCC) optimization model, which is compared with other
data-driven chance-constrained variations (integrated chance-constrained and
budget-constrained) and a regression-based data-driven optimization model.
All data-driven optimization models use regression models to estimate the un-
known parameter based on historical data.

The proposed data-driven methodology is divided into three major
phases: data treatment (where data science methods are used to clean and
classify the data), prediction (where predictive models are used to estimate
uncertain parameters of the optimization, and optimization (where optimiza-
tion models are generated and solved). These three phases are illustrated in
Figure 4.1:
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Scenario-based models

Data treatment 
(data science, text

mining, and classification
models)

Predictive modelling 
(GLM and Ridge

regression models)

Non-stochatic model 
(only uses regression

estimation)

Stochastic JCC model 
(uses regression

estimation and error)

Stochastic integrated
CC model 

(uses regression
estimation and error)

Stochastic budget-
constrained model 

(uses regression
estimation and error)

Regression-driven
optimization 

(4 MILP alternatives for
mathematical modeling)

Figure 4.1: Overview of the proposed data-driven optimization methodology.

The techniques involved in these three major phases were discussed in
Chapter 3, which included a review of optimization under uncertainty, data-
driven optimization approaches, data treatment, and predictive modeling.
Next, the different phases and possible models of the proposed methodology
are detailed.

4.1
Methodology description

At the beginning of this chapter, a data-driven optimization methodology
was proposed (Figure 4.1). After reviewing the basic concepts and techniques
involved in these and the state-of-art of the data-driven chance-constrained
optimization (Chapter 3), we can now describe in more detail the phases of
the proposed methodology, the models, and the software tools used to develop
them.

As mentioned earlier, a data-driven methodology is proposed and four
alternative optimization models are compared in this study. These methods
use regression models to estimate the unknown parameter based on historical
data. A regression-driven optimization model is proposed considering only the
regression estimations. Other more sophisticated regression-driven models were
created using not only the regression estimations but also their associated
errors.
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First, we develop a regression-driven JCC formulation, but it proves to be
non-linear and extremely hard to solve, just as the kernel-based JCC from Calfa
et al. (2015) and Jiang and Guan (2016), mentioned in Section 3.3.6. Aiming
to obtain a practical JCC formulation, we propose a new linear program-
ming JCC model combining regression models and stochastic programming
(the scenario-based regression-driven JCC). As an alternative, we also create
two other regression-driven chance-constrained variations: integrated chance-
constrained and budget-constrained optimization. Figure 4.2 summarizes the
linear variations of the proposed regression-driven methodology (green labels),
a non-linear regression-driven model also developed in this thesis (yellow la-
bels), and Calfa et al. (2015)’s non-linear formulation (red labels).

Predictive models

Regression-driven optimization models

Historical
data

Data treatment 
(data cleaning, text mining,

classification, outliers)

Treated data

Regression models
(GLM and Ridge regression:
training, testing, validation)

Uncertainty
estimation

Non-stochastic model 
(MILP formulation)

Regression
uncertainty

Sochastic JCC model 
(MILP formulation)

Kernel
smoothing

Uncertainty
distribution

JCC via Kernel 
(MINLP) 

(Calfa et. al, 2015)

Stochastic integrated
CC model 

(MILP formulation)

Stochastic budget-
constrained moodel 
(MILP formulation)

JCC deterministic-
equivalent model 

(MINLP formulation)

Figure 4.2: Proposed data-driven methodology (green labels are variations
using linear models and yellow label is non-linear) and Calfa et al. (2015)’s
non-linear formulation (red).

The first two stages of the methodology are related to the uncertainty
treatment, which will be presented in Section 4.1.1. In the proposed regression-
driven optimization methodology (green and orange labels), the data is first
prepared and analyzed using text mining techniques and the k-means clustering
algorithm for classification. This treated data is then used in regression
models, such as generalized linear models and ridge regression, to estimate
the uncertainty. Later, the regression estimators are used to represent the
unknown parameter in the data-driven optimization and the regression errors
are used in the JCC models as a new uncertainty. An alternative would be
to apply Calfa et al. (2015)’s method (red labels), which instead of using
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parametric regression models to predict the uncertainty, uses kernel soothing
models to estimate the uncertainty density distribution and later apply it in
the optimization. However, as mentioned earlier in Section 3.3.6, this approach
would eventually lead to a challenging non-linear programming model.

The last stage of the methodology is the optimization, which augments
the model with the regression to consider uncertainty related to prediction
errors using the proposed method based on chance constraints (detailed in
Section 4.1.2). Two formulations with regression are proposed for the JCC
optimization: one with non-linear programming (yellow label, Section 4.1.2)
and another with stochastic linear programming (green labels, Section 4.1.2.2).
Two other chance-constraints variations are also suggested as alternatives for
the regression-driven stochastic models (green labels, Section 4.1.2.2). These
stochastic linear programming approaches use stage decisions and scenarios
sets to make the chance constraints linear.

The data analysis, treatment, and prediction of the workover rig schedule
data are presented in Chapter 5. The regression-driven model is applied in the
workover rig scheduling problem in Chapter 6. Meanwhile, the data-driven
chance-constrained models are implemented in the workover rig scheduling
problem in Chapter 7. Next, we detail the proposed methodology for analyzing
the data and estimating uncertainty.

4.1.1
Data analysis methodology

Focusing on the data analysis underneath the data-driven optimization
models, this section is dedicated to the data treatment and regression algo-
rithms used to estimate the uncertainty, proposing a methodology and com-
paring it with others in the literature. The data analysis is separated into two
parts: data treatment and predictive models.

The data treatment uses text mining and clustering methods to simplify
and classify the qualitative data, which are used with the quantitative data as
input of predictive models that predict the distribution of the duration of the
residuals. The data treatment methodology is illustrated in Figure 4.3.
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Figure 4.3: Framework with the data treatment methodology.

The text mining (stemming and string similarity) and the clustering al-
gorithms (k-means) used were presented in Sections 3.1.1 and 3.1.2, respec-
tively. These methods were applied based on the data science framework from
Shcherbakov et al. (2014), which separates data into two types, qualitative and
quantitative data, applying text mining, clustering, and statistical techniques.

As explained by Srnka and Koeszegi (2007), quantitative data refers to
numerical variables, such as duration, costs, and other measures of value. On
the other hand, qualitative data are categorical variables, usually represented
with text, symbols, codes, and other nominal categories. The quantitative data
is cleaned by removing errors, duplicated rows, and empty fields. With the
assistance of plots, such as box plots and histograms, outliers are eliminated,
generating numerical variables for the predictive models. The qualitative data
is treated with text mining techniques (responsible for cleaning the data) and
classification models (which propose better groups for the treated data) to
generate dummy variables. The text mining procedures were generated using
the R public packages "tau", "tm", "SnowballC", and "wordcloud" include: data
cleaning, and data simplification using stopwords and stemming,

The classification of the text data was made using the R public packages
"stringdist", "pheatmap", "dendextend", "ggdendro", and "cluster" and include
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the following procedures:

– Distance measure: uses string similarity and distance tools to measure
how close the sentences of the qualitative data are to each other.
After several preliminary tests, a custom string similarity measure was
employed using the Levenshtein (LV) (Yujian and Bo 2007) and the
Longest Common Substring (LCS) (Sun et al. 2015) distances. This
custom string similarity measure for two strings is the mean between
both these measures:

String Similarity (s1, s2) = LV (s1, s2) + LCS (s1, s2)
2 , (4-1)

where s1 and s2 in Equation (4-1) refer to "String1" and "String2", re-
spectively. As mentioned earlier, both similarity measures are efficient for
short strings and the combination of the two resulted in suitable matches
combining an edit-based similarity with a sequence-based measure (KD-
nuggets 2019).

– Clustering methods: applies the previous string similarity measure as a
distance measure in a k-means algorithm (Likas et al. 2003b) to group
textual data according to their similarities, obtaining richer labels for the
categorical data.

Two types of predictive models are employed to estimate the uncertainty:
linear regression models and ridge regression models. Both model types were
introduced earlier in Section 3.2. The data prediction methodology is illus-
trated in Figure 4.4.

Predicitive models

Duration
estimation

Regression
Models

Linear
regression

Ridge
regression

Proposed
regression

Uncertainty
estimation

Residual
distribution

Treated data

Figure 4.4: Framework with the predictive modeling phase of the proposed
methodology.

However, the linear regression models (GLM) might overfit on the
training data if there is a large number of dummy variables, and, as a result,
a large number of coefficients. Therefore, the model can overfit and might not
perform appropriately on an out-of-sample data set. As this study proposes to
use qualitative data as an input to predicting the uncertainty, a large number of
dummy independent variables might be generated. Therefore, the ridge model
has been chosen as an alternative testing method.
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Using the previous libraries for GLMs and ridge regression, a procedure
was created to exhaustively test all possible combinations of response variables
to predict each of the regressions mentioned above. Based on the hold-out
validation, the procedure separates the 80% of the data in the in-sample set
and the 20% left in the out-of-sample set. The GLMs are fitted using the
iteratively reweighted least squares (IWLS) (Street et al. 1988). Meanwhile,
the ridge regression models are trained using a 10-fold cross-validation (Bengio
and Grandvalet 2004) within the in-sample data.

The trained models are then evaluated by predicting the out-of-sample
data with the following metrics: root-mean-square error (RMSE), R-squared
(R2), and p-value fit for residuals normally distributed. The goal is to choose
a model with a high R-squared, a low error, and possibly low complexity and
residuals normally distributed. Last, the selected model is used to predict the
uncertainty parameter affecting the optimization.

The combination of the regression model and the optimization variables
will be presented in Sections 4.1.2.1 and 4.1.2.2.

Several packages are available in the R programming language for esti-
mating generalized linear models (GLMs). In this study, we used the native
library Stats (R Core Team 2013) and the package olsrr (Hebbali and Hebbali
2017) for the GLMs. These packages allow estimating the coefficients of the
model that minimize the loss function. The ridge regression models were esti-
mated using the glmnet (Engebretsen and Bohlin 2019) and the native library
Stats (R Core Team 2013) libraries for the R programming language.

4.1.2
Regression-driven optimization: methodologies and formulations

As mentioned earlier, the optimization phase uses regression estimators
for the uncertain parameter. A possible regression-driven formulation would be
to consider these estimators as fixed and not subjected to any error associated
with the regression method. However, we do know that the regression is highly
dependent on the data quality, the features selected, and its training. As a
result, the regression has an error associated with it. To obtain more robust
solutions that consider the regression uncertainty and have some level of
flexibility in the solution to absorb these deviations, we propose formulations
with regression-driven chance constraints. These alternative formulations are
presented in Figure 4.5:
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Figure 4.5: Methodology for regression-driven optimization.

The regression-driven optimization methodology shown in Figure 4.5 use
text mining, classification algorithms, and regression models to estimate the
uncertain parameter (as proposed in Section 4.1.1). Equation (4-2) presents
an example of a regression output for a parameter ξi:

ξi ∼ ξ̃i = ξ̂i + ε, (4-2)

where ξi is the actual value of the parameter, ξ̃i is its approximation, ξ̂i is its
prediction from the regression model, and the distribution of ε can be estimated
using the residuals from the regression.

The regression-driven non-stochastic model assumes that ξ̃i ' ξ̂i. Mean-
while, the other more sophisticated methods use the regression error distribu-
tion as an uncertainty parameter in its optimization. This thesis opts for the
chance-constrained approach. As mentioned earlier in Section 3.3, the chance-
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constrained optimization allows a certain level of probability of infeasibility,
which enables us to find less conservative solutions than classic robust opti-
mization and can be more accurate to the reality of fleet sizing and scheduling
problem.

However, chance-constrained optimization usually leads to non-linear for-
mulations. This was observed in the regression-driven deterministic-equivalent
JCC formulation (Section 4.1.2.1 details this formulation we developed). To
tackle that, a scenario-based modeling approach and a stochastic JCC for-
mulation are proposed (which is described in Section 4.1.2.2). Two other
chance-constraints variations based on stochastic programming are also pro-
posed as alternative formulations for the problem (integrated-CC and budget-
constrained) and are presented in Section 4.1.2.2. Next, we detail these differ-
ent regression-driven chance-constrained optimization models proposed in this
thesis.

4.1.2.1
Regression-driven JCC: general-form and deterministic-equivalent

This section proposes a regression-driven JCC formulation based on the
ridge regression output from Section 4.1.1 assuming that ξ̃i = ξ̂i + ε (4-2),
where ξ̂i are the ridge regression estimations and ε the residuals associated
with it.

First, we apply this equation to the probabilistic joint constraints,
obtaining the general-form for the proposed regression-driven JCC:

P
[
gij(x) ≤ ξ̂i + ε,∀j

]
≥ α ∀i, (4-3)

where ε ∼ N(0, σ), the residuals error follows a Normal distribution, and ξ̂i

are the regression estimations of the uncertain parameter.
As mentioned in the literature review, Biswal et al. (2005) and Sahoo

and Biswal (2005) used the properties of normal and log-normal distributions
to reformulate the joint constraint programming when the uncertainty in the
RHS follows normal and log-normal distributions (as shown in Equations (4-4)-
(4-9)). Based on their reformulations, we can modify the regression-driven JCC
(4-3) for the case where the residuals are independent random variables and
follow a Normal distribution N(µ, σ).

P
[
gij(x)− ξ̂i ≤ ε, ∀j

]
≥ α, ∀i (4-4)

=
∏
j

P
[
gij(x)− ξ̂i ≤ ε

]
≥ α, ∀i (4-5)
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=
∏
j

P
[
ε ≥ gij(x)− ξ̂i

]
≥ α, ∀i (4-6)

=
∏
j

P
[
ε ≥ g

′

ij(x)
]
≥ α, ∀i (4-7)

=
∏
j

P
[
ε− µ
σ
≥ (

g
′
ij(x)− µ

σ

]
≥ α, ∀i (4-8)

=
∏
j

[
1− Φ

(
g
′
ij(x)− µ

σ

)]
≥ α, ∀i, (4-9)

where ε ∼ N(µ, σ), g′ij = gij(x) − ξ̂i, and Φ(·) is the cumulative distribution
function of the standard Normal distribution, which is equal to Φ(x) = P(Z ≤
x) = 1√

2π
∫ inf
− inf e

−u
s

2 du.
Additionally, if we consider µ = 0, then (4-9) can be simplified into:

∏
j

1− Φ
gij(x)− ξ̂i

σ

 ≥ α, ∀i, (4-10)

Nonetheless, this proposed regression-driven joint chance-constrained
deterministic equivalent reformulation obtained using the JCC reformulation
from Biswal et al. (2005) and Sahoo and Biswal (2005) is still an MINLP model.
As mentioned earlier, MINLP models are complex and computationally hard
to solve. A possible solution for this is to use the regression-based formulation
of the JCC and adapt it to a stochastic formulation, which will be presented
in the next section.

4.1.2.2
Regression-driven stochastic chance-constrained optimization

The regression-based joint chance-constrained models presented in the
last section resulted in the non-linear constraints, (4-9) and (4-10). An alter-
native solution that has linear constraints is to represent the uncertainty with
scenarios. In this section, we propose a scenario-based reformulation for the
regression-driven JCC model, named regression-driven stochastic joint chance-
constrained model.

As mentioned in Figure 4.5, the stochastic approaches of this study are
basically divided into three procedures:

– Scenario Generation: Using the distribution estimated within the regres-
sion residuals (ε ∼ N(µ, σ)). A large and sufficient number of scenarios
is generated using Monte Carlo Simulation (several runs of simulations
are made until the average mean and standard deviation converges to
respectively distribution’s mean and standard deviation).
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– Scenario Reduction: A algorithm using the Wasserstein distance (ex-
plained in Section 3.3.3) is used to reduce the number of scenarios. Two
measures are considered while evaluating the best number of scenarios
to be used in the optimization: the error of approximating and the ex-
pected feasibility ratio. The error of approximating was explained in Sec-
tion 3.3.3 and was proposed by Kaut and Stein (2003), Pflug (2001), and
Luedtke and Ahmed (2008). The expected feasibility ratio was calculated
by simulating the solution and the JCC for the entire set of scenarios and
measuring the proportion of feasible solutions (Hong et al. 2015).

– Stochastic linear programming: After generating and reducing the sce-
narios of the regression residuals, the regression estimations and the
optimally reduced scenarios of the regression uncertainty are provided
for the two-stage stochastic linear programming model with the chance
constraints. The three mathematical formulation alternatives for the
regression-driven stochastic CC optimization proposed are a JCC-
approach, an integrated-CC, and a budget-constrained. They will
be detailed further in this section.

As mentioned, the scenario generation uses the distribution of the resid-
uals obtained through the ridge regression commented in Section 4.1.1 and
applies Monte Carlo Simulation to generate a large number of scenarios. In
stochastic programming, the scenarios generated must represent as truthfully
as possible the uncertainty, which usually is made considering a large num-
ber of scenarios. However, in most large-scale and real-life problems, it is only
computationally feasible to optimize with a small number of scenarios. Sev-
eral scenario generation and reduction methods exist to reduce the number of
scenarios, but still keep them a reliable representation of the uncertainty (Du-
pačová et al. 2003, Heitsch and Römisch 2003). Problems with probabilistic
constraints already require a significant computational effort; when combined
with stochastic programming, the scenario sets ought to be as small as possible
without losing their accuracy (Nikzad et al. 2019).

Therefore, after generating multiple scenarios with the Monte Carlo
simulation, a Wasserstein-distance-based scenario reduction method is used
to reduce the number of scenarios as much as possible while retaining the
stochastic information of the data. To select the number of scenarios, the
measures error of approximating (Kaut and Stein 2003, Pflug 2001, Luedtke
and Ahmed 2008) and expected feasibility ratio (Hong et al. 2015) were
analyzed.

Last, the scenarios are included in a two-stage stochastic MILP model,
in which the probabilistic constraints were reformulated as linear constraints
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and the uncertainty parameter is estimated via regression. The scenario-based
model is made by applying the stochastic reformulations of Nemirovski and
Shapiro (2007) and Nikzad et al. (2019) on the regression-driven JCC model
from Section 4.1.2.1. Its general representation is as follows:

Sets:

– i ∈ {1, 2, . . . , N}: Variables dimensions.

– j ∈ {1, 2, . . . ,M}: Constraints dimensions.

– ω ∈ {1, 2, . . . ,Ω}: Scenarios for the uncertainty. Each scenario represents
a realization of the uncertainty.

Parameters:

– c1
i : First-stage costs.

– c2
i : Second-stage costs.

– ϕi : Penalization for infeasible solutions.

– ξωi : Regression estimations for the uncertainty parameter.

– εωi : Simulations of the regression error ε.

– πω : Probability of scenario ω’s occurrence.

– α : Risk level of the probabilistic constraints.

Variables:

– Xij: First-stage decision variables.

– Y ω
ij : Second-stage decision variables.

– V ω
ij : Slack variable between [0,1] that measures the relaxation of con-

straint (ij) feasibility in scenario ω (second-stage decision).

– Zω
i : Binary variables for not violating the joint chance-constraints of i in

scenario ω (second-stage decision).

A stochastic model is usually divided into multi-stages decisions. In this
study, we consider first-stage and second-stage decisions, both presented in
the objective function (Equation (4-11)). The first-stage decisions (Xij) are
associated with the decisions made before the occurrence of the uncertainty,
i.e., before the value of the uncertain parameter ξ̃i is known. Alternatively, the
second-stage costs are associated with the decisions made after the realization
of the uncertainty (Y ω

ij ). Each scenario has a probability πω. We use binary
variables that indicate when the JCCs are violated, as in Nemirovski and
Shapiro (2007) and Nikzad et al. (2019). The slack variables between [0,1] was
an adaption that we have made to allow some flexibility in the amount of
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feasibility tolerated and guarantee that the infeasibility was only associated
with the regression error. The objective function and its constraints are
presented as follows:

Min
∑
i∈N

∑
j∈M

c1
iXij +

∑
ω∈Ω

πω
∑
i∈J

∑
j∈M

c2
iY

ω
ij (4-11)

Subject to
gij
(
Xij + Y ω

ij

)
≤ ξ̂i + εωi (1− V ω

ij ) ∀i, j, ω (4-12)

V ω
ij ≥ Zω

i ∀i, j, ω (4-13)
1− V ω

ij ≤ Zω
i ∀i, j, ω (4-14)∑

ω∈Ω
πωZω

i ≥ α ∀i (4-15)

Xij ≥ 0 ∀i, j (4-16)
V ω
ij ∈ [1, 0] ∀i, j, ω (4-17)
Zω
i ∈ {1, 0} ∀i, ω (4-18)

Y ω
ij ≥ 0 ∀i, j, ω. (4-19)

The joint chance constraints are defined in constraints (4-12), (4-13), and
(4-15). Constraint (4-12) has a slack variable V ω

ij that allows some violations
within a range (not greater than the value of εωi ). If the slack variable is used
for any (i, j) in constraint (4-12) (variable V ω

ij lower than one), then constraints
(4-13) and EQ:413b indicate that the joint constraint of i is infeasible in
scenario ω, i.e., Zω

i equals zero. Constraint (4-15) guarantees that the joint
probabilistic constraint respects the confidence level α of being feasible for all
i. The other constraints (4-16), (4-17), (4-18), and (4-19) define the variables’
domains.

Two other regression-driven stochastic CC formulations are also proposed
to be compared with the JCC approach. The first alternative was using
regression-driven integrated chance constraints (integrated-CC). As mentioned
earlier in Section 3.3.1, the integrated chance constraint is a measure of
violation introduced by Haneveld (1986) in the expected magnitude of violation
instead of its probability. Modifying the general integrated-CC formulation
from Prékopa (2003) to the regression-driven stochastic approach and changing
the variable Zω

i to measure the maximum violation would lead to the following
constraints:

gij
(
Xij + Y ω

ij

)
≤ ξ̂i + εωi V

ω
ij ∀i, j, ω (4-20)

DBD
PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 4. Methodology overview 87

εωi (1− V ω
ij ) ≤ Zω

i ∀i, j, ω (4-21)∑
ω∈Ω

πωZω
i ≤ µεα + Kσε√

(|Ω|)
∀i (4-22)

Xij ≥ 0 ∀i, j (4-23)
V ω
ij ∈ [1, 0] ∀i, j, ω (4-24)
Zω
i ≥ 0 ∀i, ω (4-25)

Y ω
ij ≥ 0 ∀i, j, ω. (4-26)

The regression-driven integrated chance-constraints are represented by
constraints (4-20), (4-21), and (4-22). Just as in the JCC, constraint (4-20) is
the chance constraints with the slack variable V ω

ij that allows some violations
within a range (not greater than the value of εωi ). The worst violation of
the chance-constraint each scenario, i.e., the largest product of εωi and V ω

ij

is calculated as Zω
i in constraint (4-21). The expected worst violation is

calculated in constraint (4-22), which also guarantees that its values respect
the upper bound considering K from the percentile point associated with an α
confidence level of the standard Normal distribution. Last, constraints (4-23),
(4-24), (4-25), and (4-26) are related to the variables’ domains. Note that the
variable Zω

i is continuous and non-negative in the regression-driven stochastic
integrated-CC formulation.

The other scenario-based formulation is the budget-constrained formula-
tion. This formulation focus on limiting the total amount of feasibility allowed
in each scenario, regardless of their probability or expected value. This ap-
proach is subjected to the following constraints:

gij
(
Xij + Y ω

ij

)
≤ ξ̂i + εωi V

ω
ij ∀i, j, ω (4-27)∑

i∈N

∑
j∈M

εωi (1− V ω
ij ) ≤Mα ∀ω (4-28)

Xij ≥ 0 ∀i, j (4-29)
V ω
ij ∈ [1, 0] ∀i, j, ω (4-30)
Y ω
ij ≥ 0 ∀i, j, ω (4-31)

Next, we present a case study regarding real-life-based instances of the
workover rig scheduling problem and perform a data analysis focusing on
the two first stages of the regression-driven methodologies, data treatment
and predictive modeling (Chapter 5). Then, using the regression estimations,
we implement the regression-driven optimization model in the WRSP and
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test it in several instances, analyzing its sensibility, simulating the solutions,
and comparing it with the current company methodology (Chapter 6). After
implementing the first regression-driven model in the WRSP, we implement
and test the scenario-based methods, such as the regression-driven stochastic
JCC, integrated-CC, and budget-constrained optimization models, simulating
their first-stage solutions and comparing them by different metrics. Finally,
these data-driven joint chance-constrained optimization methodologies are
applied in the workover rig scheduling (Chapter 7).
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5
The workover rig scheduling problem: assumptions and un-
certainty analysis

As mentioned in the systematic literature review, the workover rig
scheduling problem has received significant attention in the literature. How-
ever, very few problems in the SLR have been implemented or verified within
the oil and gas industry. One of the main reasons for this gap between academia
and industry is the lack of studies adapted to industry demands. The SLR also
enabled us to detect trends and opportunities of approaches and methods. One
of those was the data-driven optimization under uncertainty.

Aiming to address this problem, this thesis approaches a real-life case of
the offshore workover rig scheduling problem in a major Brazilian oil company,
proposing data-driven methodologies. In the previous chapter, the concepts
and the state-of-art of data-driven optimization and optimization under un-
certainty were reviewed. Remarkably, the data-driven chance-constrained op-
timization appeared to be the most suitable approach for this Thesis. Several
regression-driven optimization methodologies were also proposed in Chapter
4. Before implementing these methodologies in the WRSP, the current section
presents the case study, its instances, and its data sets.

First, we present the case study and its assumptions (Section 5.1). Then,
we describe the instances and the datasets used for the mathematical models
(Section 5.2). Last, the workover data is treated and predictive models are
used to estimate the uncertainty affecting the problem (Section 5.3).

5.1
Case study

As mentioned earlier, the workover rig scheduling problem (WRSP) is
a particular case of the rig scheduling problem for workover operations from
a stand-alone planning perspective. In this study, we approach the offshore
WRSP of Petrobras, a Brazilian oil company that operates the majority of
the oil fields and needs to plan a large fleet of rigs on its offshore wells. As a
result, this case study has some particularities. A large set of wells requires
workover operations, and a fleet of rigs needs to be hired to serve them. The
goal is to decide which wells will be served by which rig in the planning horizon,
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minimizing the costs associated with hiring the rigs and the oil production loss
of the wells waiting for workover service.

The workover planning is performed separately from the others opera-
tions at a stand-alone planning level and a dedicated fleet of heterogeneous
rigs is hired to execute them and no other operation. Each rig has a particular
maximum water depth and a drilling depth. Moreover, each well has a water
depth and a drilling depth that cannot exceed the rig limits. Rigs have fixed a
cost when hired. Others resources besides rigs are not considered in this case
study.

Each well has an oil production associated with it, regardless if it is an
injector or producer well. Further details on the oil production of the wells are
provided in the instance generation (Section 5.2). Every well requires only one
maintenance or rework operation, existing only a single job for a well, and has
a release date related to the date it starts needing the workover. There is a cost
associated with the oil production loss of the wells waiting to be served, which
extends until the end of the planning horizon if the well is not served. As in
this case study, each well requires only one workover operation or task, i.e.,
a single job scheduling problem, for which we use the terms well, workover,
operation, task, and job interchangeably.

In this setting, the oilfields are located offshore. The wells are relatively
close to each other, and their processing times are much longer than the
traveling times between them, making thus traveling times negligible. Wells
only need to be scheduled, and the routing problem is negligible.

Last, the processing time for each workover operation varies for each
class of rig. In the deterministic case, these processing times are known and
constant for each rig and well. However, in the real-life process, there is much
uncertainty associated with the workover operation. Most workover operations
are unpredictable, being extremely complex to determine which wells will
demand workover, when, and the duration of the workover. Figure 5.1 classifies
the studied WRSP, labels in blue, according to the taxonomy proposed in
Section 2.2.
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Figure 5.1: The studied workover rig scheduling problem according to the
proposed taxonomy.

5.2
Instances and datasets

To test the proposed data-driven optimization methodology on the
workover rig scheduling problem, data from a major Brazilian oil company
was gathered and structured as follows in Figure 5.2.

Figure 5.2: Data structure and instance generation frameworks.

Several historical workover rig schedules (1.000 records) were gathered
with workover information regarding wells, rigs, dates, durations, and tasks.
Information about the wells and rigs was extracted from the collected data,
generating two large data sets:

– Wells/tasks data: The cluster in which the workover is grouped
(obtained through the text mining and classification methods that were
described in Section 4.1.1), the type of well (basically if it is injector,
producer, or something else), the type of operation (workover, drilling,
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abandonment, etc.), the well’s water depth, the well’s depth, rig type
that can serve the well (if exists a particular one), and the oil production
of the well (further details on its calculation will be provided later in this
section).

– Rigs data: The type of rig, the rig’s maximum water depth, the rig’s
maximum depth, the rig’s operation cost, and the rig’s hiring costs.
Details on calculating the rig’s fees will be provided later in this section.

Based on Wigwe et al. (2020), the wells’ oil production (in bbl, barrels)
were generated randomly according to their type, using the Gamma distribu-
tion, as follows in Equations (5-1) and (5-2):

pi = ScaleOperationi · ScaleWell
i · p0

i (5-1)
p0
i ∼ 103 · Γ (α = 2.3, β = 4.2) , (5-2)

where pi is the oil production loss of the well, ScaleOperationi and ScaleWell
i are

parameters that make the oil production loss proportional with the operation
type and well type (respectively), and p0

i are the random oil production
generated using the Gamma distribution Γ (α = 2.3, β = 4.2), in which α and
β are the shape and scale of the distribution (respectively). Fernández Pérez
et al. (2018) suggested using the oil barrel price as 55 $/barrel. As a result, the
oil production loss cost li in dollars is equal to 55·pi. Details on the proportional
scales values, ScaleOperationi and ScaleWell

i , are provided in Table 5.1:

ScaleOperationi ScaleWell
i

Operation Type Value Well Type Value
Drilling 1 Producer 1
Workover 0.8 Injector 0.8
Appraisal 0.4 Exploratory 0.3

Abandonment 0.3 Other 0.6

Table 5.1: Proportional scales of oil production according to the type of well
and operation.

The rig hiring and operation costs were randomly selected obtained from
Markit (2021) database, which has historical information on the rig average
day rates according to the type of rig and market.

Using the wells and rigs data sets, an instance generation algorithm was
developed, such that it creates instances for a desirable number of rigs, wells,
planning horizon, random seed, and density coefficient (represented by ρ). A
random seed is a number used to initialize the random number generator and
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to allow the reproduction of the instance. As to the density coefficient (ρ), it
is a setting parameter between 0 and 1 that controls the release dates of the
workovers. A small ρ tends to result in later release dates, reducing the feasible
windows of the tasks. However, a large ρ would generate smaller release dates,
increasing the window of allocation of the workovers. The algorithm selects
random samples of the set to generate the instance sets and parameters. With
the sets and parameters selected, the algorithm calculates an eligibility matrix
that indicates which rigs from the sample set can serve the sample wells. This
eligibility matrix is calculated according to the rig data (the type of rig, the
rig’s maximum water depth, and the rig’s maximum depth) and the well data
(the well’s water depth, the well’s depth, and the rig type that can attend the
well). A rig will only be able to serve a well if the well respect its maximum
water depth and depth and its type. While constructing the eligibility matrix,
the algorithm checks the feasibility of the instance, i.e., if there is a rig for every
well and if all rigs have a well to serve. In case of infeasibility, new samples
are calculated until a feasible instance is found, outputting this instance to the
data-driven models.

5.3
Workover uncertainty analysis

Considering that this study focuses on the short-term workover planning,
where the demands are more predictable and known. However, their durations
are still uncertain and subject to variations, being extremely challenging to
predict the duration of the operations. Several different types of workovers
exist and the processing times are affected by a handful of factors, such as well
and rig properties. As a result, the duration can vary from days to more than
a year, as shown in Figure 5.3.

Aiming to predict this disturbance in the workover duration and avoid
infeasible schedules, we present in this section several data treatment and
regression models to estimate the uncertainty. All techniques presented in this
Section were implemented using the R programming language and the RStudio
software.

5.3.1
Workover data treatment

In this study, the scheduler has a limited amount of available information
when planning the workovers. Table 5.2 summarizes what is available according
to the data group (well or rig attributes) and type (qualitative or quantitative
data):
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Figure 5.3: Histogram and density plot for the workovers durations.

Data Group Type Description
Workover group Well Qualitative Groups the workover in workover, light

workover, and heavy workover.
Workover type Well Qualitative Specifies the type of workover made.
Task description Well Qualitative Describes all the essential information

about the workover and the well.
Well’s project Well Qualitative Specifies the company’s project in which

the well is part of.
Well’s basin Well Qualitative Related to the basin in which the reserve

is located.
Well’s subpool Well Qualitative Specifies the company’s department re-

sponsible for the well operation and plan-
ning.

Well’s water
depth

Well Quantitative Stores the distance between the sea level
and bottom in which the well is located.

Well’s depth Well Quantitative Stores the distance between the sea bot-
tom in which the well is located and the
oil reserve.

Rig’s type Rig Qualitative Specifies if the offshore rig is a fixed rig,
a semi-submersible, a jack-up rig, or a
drill-ship.

Rig’s maximum
water depth

Rig Quantitative Defines the rig’s maximum water depth
that it can operate.

Rig’s maximum
depth

Rig Quantitative Defines the rig’s maximum depth that it
can operate.

Table 5.2: Description of the historical data gathered
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Most of this information is qualitative data, i.e., non-numerical. Only a
few fields are quantitative data (numerical), such as those related to depth and
water depth. Furthermore, there are several problems with the qualitative data
that require corrections. For instance, the workover groups and workover types
are poorly grouped, making it hard to obtain any distribution for the duration
using only this information. Figure 5.4 presents boxplots of the workover
duration according to the type of workover.

Figure 5.4: Box plots for the workover durations per each type of task.

Despite a large number of outliers in Figure 4.3, these observations are
highly concentrated, especially the workover type (pink boxplot). This excess
of outliers indicates that the groups are gathering operations with different
duration behaviors.

Aiming to enhance the task grouping, the methodology presented in
Figure 5.4 was used to obtain better clusters of tasks and to improve the
qualitative data of the case study. The proposed method uses the well data
with the task description, which is unstructured, with unnecessary words and
letters, and prone to errors. Figure 5.5 shows the most common fields in the
original data of the task description.
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Figure 5.5: Bar-plot of the most common fields in the original task description.

After cleaning the text, the fields are simplified using the stemming
technique (adapted for the Portuguese language). This technique reduces
inflected or derived words to their respective stem-word, simplifying the text
and making it easier to identify fields with the same meaning. Figure 5.6 shows
the data simplified after this procedure:

Figure 5.6: Bar-plot of the most common fields in the treated task description.

Comparing Figures 5.5 and 5.6, it is possible to observe that the data-
cleaning process has successfully simplified the terms and made the count of
most common descriptions more accurate. For instance, "abandono definitivo"
was the second most common, but others were very similar in meaning and
were not being counted with it. After cleaning and simplifying the data, the
text "abandon definit" became the most common task description.
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Word cloud plots were made to check if there is any pattern in the data.
Figure 5.7 contains two word-clouds plots, (a) for one word alone (1-gram) and
(b) for two words together (2-gram). We can observe that some words are more
common in the task description, such as "abandon" (when a well needs to be
abandoned), "troc" and "substitu" (related to the replacement of equipment in
the well), and "bcs" (which is a Portuguese acronym for Bombeio Centrifugo
Submerso, in English: Electrical Submersible Pump, ESP). However, there are
many sentences that still have similar meanings and, technically, could be
considered as the same sentence. For instance, "substitu bcs" (replacement of
ESP) and "bcs substitu" (ESP replacement) share the same meaning. This
also happens with "abandon definit" (abandonment definitive) and "definit
abandon" (definitive abandonment) and other sentences.

Figure 5.7: Word clouds for one word (a) and two words (b) using the simplified
task description.

String similarity and distance tools can be used to measure how close
these sentences are, and combined with clustering methods, such as h-cluster
and k-means, a classification method for the task description can be created.
The string similarity measure in Equation (4-1) was used as the distance
measure of a k-means algorithm (Likas et al. 2003b), aiming to group the
textual descriptions according to their similarities. Figure 5.8 shows a plot
with the silhouette analysis that was used to determine the cluster size.
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Figure 5.8: Plot with the average silhouette scores for different numbers of
clusters (k) using k-means.

Our ultimate goal is to achieve extract information from the data through
new labels and regression models, it is important to choose a number of clusters
that it is not excessively big, disabling the training and testing of the regression
model in the data. As a result, the number of clusters does not need to have an
optimal silhouette, just enough to obtain better labels than the current ones.

Therefore, two strategies are possible for clustering and classifying the
workover tasks. The first is to classify into major groups of tasks (a low number
of clusters). The second would be to select smaller groups but not too small
(a medium or a large number of clusters). Analyzing Figure 5.8, there are two
particular peaks of the average silhouette score that fit these strategies: k = 7
(a smaller number of clusters) and k = 45 (a bigger number of clusters). Table
5.3 summarizes some of the final clusters for k (clusters) equal to 45

Cluster Original data (in Portuguese) Number of obs.
A Substituição de BCS 100
A Substituição de ANM 3
A Substituição de BCSS + SEP 2
A Substituição da COP e VGLs 2
A Substituição de BCSS e SEP 2

Table 5.3: Examples of clusters using k-means with k=45.
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Cluster Original data (in Portuguese) Number of obs.
A Substituição da BCSS 2
B Abandono Definitivo 32
B Abandono Temporário 14
B Abandono - Corte dos revestimentos 9
B Abandono - Checagem do topo do tampão de

superfície
5

B Abandono - Corte dos revestimentos e tampão
de superfície

5

B Abandono Permanente 2
B Abandono Definitivo (Interrompido) 1
B Abandono Definitivo (não finalizado) 1
B Abandono - Concluir recuperação do revesti-

mento de 30"
1

B Abandono Temporário (MLS-002) 1
C Dissociação de Hidrato 37
C Dissociação de Hidrato e Troca de VGL 4
C Dissociação de Hidrato + Troca de VGL 3
C Dissociação de hidrato (Retorno) 1
C Dissociação de Hidrato e Abandono Temporário 1
C Dissociação de hidrato nas LGL e LPO 1
C Dissociação de Hidrato + Desincrustração 1
D C - Restauração 7
D Restauração 6
D Teste de estanqueidade 2
D BG-16 - Restauração 2
D CH-32 - Restauração 2
D CH-27 - Restauração 1

Table 5.3: Examples of clusters using k-means with k=45.

The results in Table 5.3 indicate that using text mining and clustering
algorithms to classify the workover operations according to their descriptions
is possible. The text mining procedures were able to clean the qualitative data,
which had several errors, and to extract only the critical information. Further-
more, the clustering algorithms are potent tools to group the critical informa-
tion and obtain new data classifying the workovers. This new classification will
be used as an input to the duration prediction in Section 5.3.2.

Though, some improvements might still be possible, such as:
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– Text cleaning: Replacing specific words of the problem or the Por-
tuguese language that are semantically similar. For instance: "troc" (Por-
tuguese stem word for "change") and "substit" (Portuguese stem word for
"replace") share similar meanings and could one could be replaced by the
other.

– String distance and similarity: testing the combination of other
string distances with the methodology and comparing the final results.

– Classification: Others clustering and classification algorithms could be
tested as well. A comparison between the k-means and the hieraquical
clustering (h-cluster) is presented in Appendix E using heatmaps for the
workover data. As shown in Appendix E, the k-means resulted in better
groups. However, others classification algorithms and variations could
still be tested.

The following section presents the regression models used to model the
uncertainty in the workovers’ durations after the treatment of the workover
data in this Section.

5.3.2
Regression models for the workover duration

Statistical techniques and big data play an important role in the oil
and gas upstream. There have been several successful cases using statistics to
predict operations and to support their planning. Desai et al. (2020) reviewed
some of these studies and mentioned techniques such as regression models,
neural networks, machine learning, and support vector machine models.

In this section, we apply the workover data treated in Section 5.3.1
in some parametric regression models to predict duration’s uncertainty, as
explained earlier in Figure 4.1. Two types of regressions are tested and
evaluated: generalized linear models and ridge regression models.

To test and obtain a better fitting of the regression, some transformations
of the duration of workover i in rig k (dki ) were also tested with the models. A
logarithmic scale (log(dki )) and a normalization ( dki−min(dki )

max(dki )−min(dki )) were applied
in the data. Last, different settings on the regression modes were made. For
instance, the GLMs were tested using Gaussian and Gamma distributions,
and the ridge regression (RR) models were tested using Gaussian and Poisson
distributions. These different settings are described below:

– GLM for duration (dki ) and Gaussian distribution: GLMdGaus.

– GLM for duration and Gamma distribution: GLMdGam.
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– GLM for log of the duration (log(dki )) and Gaussian distribution: GLM-
logGaus.

– GLM for log of the duration and Gamma distribution: GLMlogGam.

– GLM for normalized Duration ( dki−min(dki )
max(dki )−min(dki )) and Gaussian distribu-

tion: GLMnormGaus.

– GLM for normalized Duration and Gamma distribution: GLMnormGam.

– RR for duration and Gaussian distribution: RRdGaus.

– RR for duration and Poisson distribution: RRdPois.

– RR for log of the duration and Gaussian distribution: RRlogGaus.

– RR for log of the duration and Poisson distribution: RRlogPois.

– RR for normalized duration and Gaussian distribution: RRnormGaus.

– RR for normalized duration and Poisson distribution: RRnormPois.

Using the testing procedure described on Section 4.1.1, all combinations
of response variables to predict were tested exhaustively for each of these
regressions mentioned above. The best results for each regression model and
setting are presented in Table 5.4.
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Method Distribution Dependent Variable Independent Variable R2 RMSE pValue
GLM Gaussian dki WellWaterDepth, WellDepth, Subpool,

Group, Basin, RigWaterDepth, RigDepth,
Clusters45, RigType

0.134 7.688 0.401

GLM Gaussian log(dki ) WellWaterDepth, WellDepth, Subpool,
Group, Basin, RigWaterDepth, RigDepth,
Clusters45, RigType

0.134 0.538 0.145

GLM Gaussian dki−min(dki )
max(dki )−min(dki ) WellWaterDepth, WellDepth, Subpool,

Group, Basin, RigWaterDepth, RigDepth,
Clusters45, RigType

0.134 0.078 0.401

GLM Gamma dki WellWaterDepth, WellDepth, Subpool,
Group, Basin, RigWaterDepth, RigDepth,
Clusters45, RigType

0.134 7.688 0.676

GLM Gamma log(dki ) WellWaterDepth, WellDepth, Subpool,
Group, Basin, RigWaterDepth, RigDepth,
Clusters45, RigType

0.134 0.540 0.169

GLM Gamma dki−min(dki )
max(dki )−min(dki ) WellWaterDepth, WellDepth, Subpool,

Group, Basin, RigWaterDepth, RigDepth,
Clusters45, RigType

0.134 0.079 0.674

RR Gaussian dki Basin, RigType 0.241 7.898 0.699
Table 5.4: Best results for the regressions models
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Method Distribution Dependent Variable Independent Variable R2 RMSE pValue
RR Gaussian log(dki ) WellDepth, Subpool, Basin, Clusters45,

RigType
0.400 0.574 0.086

RR Gaussian dki−min(dki )
max(dki )−min(dki ) Group, Basin, Clusters45, RigType 0.122 0.087 0.214

RR Poisson dki Basin, RigType 0.241 7.897 0.567
RR Poisson log(dki ) WellWaterDepth, Basin, RigType 0.401 0.574 0.067
RR Poisson dki−min(dki )

max(dki )−min(dki ) Group, Basin, Clusters45, RigType 0.120 0.087 0.219
Table 5.4: Best results for the regressions models
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Analyzing Table 5.4, we can observe that all best regressions use data
related to the well (i) with some data from the rig. Attributes such as Basin
(the basin in which the well is associated) and RigType (the type of rig used)
are important dependent variables selected in all the best regressions. The
small clusters resulting from the text mining and classification in Section 5.3.1
(Clusters45) were also a common attribute in most of the regression models,
which indicates that the techniques were successful in revealing the underneath
the task description. As expected, the number of independent variables is
smaller in the ridge regression as this technique penalizes the models for an
excess of dummy variables.

The best-fitted models used ridge regression and a logarithmic duration
for the workover (log(dki )). The Gaussian distribution has a good R2 (slightly
lower than using the Poisson distribution) and a better p-value for a normal
distribution for the errors, which suggests that it would be easier to fit
distributions for them. Therefore, we have chosen to work with the log of
the duration as variable dependent and to use the following Equation (5-3)
obtained through the ridge regression model:

log(dki ) ∼ (Intercept)+αWellDepthi+βSubpooli+γBasini+δCluster45
i +φRigTypek+ε,

(5-3)
where:

– dki : Duration of the workover from well i by rig k.

– WellDepthi: Depth of well i.

– Subpooli: Subpool responsible for well i.

– Basini: Exploratory Basin where well i is located.

– Cluster45
i : Cluster for the descriptions of the operation executed in well

i (type of workover), obtained using k-means for k = 45.

– RigTypek: Type of the rig k.

– ε: Residuals or errors of the regression, its uncertainty.

The final coefficients for this regression are presented in Appendix F.
Using this regression, Equation (5-3) can be rewritten and simplified to the
following linear regression:

log(dki ) ∼ (Intercept) + αWellDepthi + ψSubpooli + γBasini+
δCluster45

i + φRigTypek + ε (5-4)
log(dki ) ∼ Intercept+WellEffecti +RigEffectk + ε (5-5)
dki ∼ eIntercept+WellEffecti+RigEffectk + ε (5-6)
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dki ∼ d̃ki = d̂ki + ε, (5-7)

where dki is the real duration of workover i in rig k, WellEffecti =
αWellDepthi+ψSubpooli+γBasini+δCluster45

i , RigEffectk = φRigTypek,
d̃ki is its approximation, d̂ki is its prediction from the regression (d̂ki =
eIntercept+αWellDatai+βRigDatak), and the distribution of the last ε (after the ex-
ponential operation) can be estimated using the residuals from the regression
as a Normal distribution N ∼ (µ = 2.522719, σ = 8.261636).

To summarize, this section describes how text mining and clustering
algorithms can be used to clean, extract, and reveal data from the workover
operations and applies the data in regression models, obtaining estimations of
the duration of the workover operation for each well and rig and the uncertainty
that affects it. Some improvements could still be possible. For instance, other
regression methods and calibration algorithms, such as neural networks, or
stacked ensembles, might achieve better results and should be tested in the
future.

The following sections use the outputs of this predictive algorithm in
regression-driven optimization models adapted for WRSP, comparing each
proposed method.
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6
A regression-driven optimization model for the workover rig
scheduling problem

This chapter applies the regression-driven optimization formulation from
Figure 4.1 in the workover rig scheduling problem presented in Section 5.1.
For that, the regression estimations from the previous chapter are used with
the instances generated in Section 5.2 as inputs for optimization models
proposed in this Section. While approaching the regression-driven WRSP,
two formulations are created and a final formulation for the regression-
driven WRSP is proposed and compared with the studied company’s current
methodology.

Sections 6.1 and 6.2 present the first and final regression-driven formula-
tions, respectively. The computational experiments comparing both proposed
formulations and the current company’s method are described in Section 6.3,
which also includes a sensitivity analysis that studies the impact of regression
error in the solution quality (Section 6.3.1).

6.1
The workover rig scheduling problem

As mentioned in the literature review in Section 2.4, several formulations
have been proposed for the rig scheduling problem. Costa and Ferreira Filho
(2004, 2005) proposed models using a time-indexed formulation for the WRSP
and represent the first formulations for the WRSP. The authors used routing
elements to define the sequence in which the rigs serve the wells and scheduling
rules to determine when each workover is performed. Pérez et al. (2016)
adapted this formulation by removing the routing elements and reducing the
variables indices, obtaining a time-index model with low dimensions. More
recently, Carrilho et al. (2018) proposed a bucket-index model for the DRSP
and Monemi et al. (2015) proposed an Arc-time-index formulation for the
WRSP. The problem with these formulations is that they are unsuitable
for chance-constrained models with uncertainty on the duration time. As
the variables are indexed by a time-related set, any parameter with time
uncertainty will lead to uncertainty on the variables indices, precluding the
development of linear formulations. Therefore, these were deemed unsuitable
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as a formulation for the non-stochastic WRSP.
Although it was a time-index formulation, the model proposed in Costa

and Ferreira Filho (2004, 2005) had several routing elements, such as flow
balance constraints, to ensure the correct sequencing of workover activities in
each rig. Their objective function aimed to minimize oil production loss. As a
result, this formulation was quickly adapted for this WRSP study, removing
the time-index elements and modifying it to a routing formulation with the
assumptions discussed in Section 5.1, such as release dates for the operations,
rig hiring costs, and the selection of which wells to serve.

Costa and Ferreira Filho (2004, 2005) did not consider any release date
for the workover activities, so a new constraint for the release date was created.
Their objective function was to minimize oil production loss only and all wells
were required to be served. We modified the objective function to consider
the rig hiring costs and a penalty for not performing a workover in a well.
Furthermore, we added a fictional depot node 0, in which all hired rigs must
start their “routes” and return to it at the end of the planning horizon. Despite
being a routing model, the travel times between the wells were considered to
be negligible. However, the formulation can be easily adapted to a workover rig
routing and scheduling problem (WRRSP) if the context requires it. This new
model and its sets, parameters, variables, objective function, and constraints
are presented next.

Sets:

– (i, j) ∈ {1, 2, . . . , J}: workover wells (each well represents a single job).
Well 0 represents a fictional depot node.

– k ∈ {1, 2, . . . , K}: rigs (resources or machines) that are available for
hiring.

Parameters:

– ai: The release date for workover well i.

– li: Costs associated with the oil production loss of well i. Equal to the
product of the oil price and the oil flow rate in well i. (US$/day)

– eki : A binary matrix indicating if rig k is eligible to serve well i.

– dki : Duration of the intervention in well i using rig k (in days). The
processing time of any rig in the fictional depot node 0 is equal to 0.

– ck : Hiring cost of rig k. (US$/rig)

– H : Planning horizon of the scheduling (in days).

Variables:
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– Xk
ij: A binary variable that indicates if rig k goes from well (task) i to

well j.

– Si: A integer variable equal to the starting time of task i in days.

– Zk: A binary variable representing if rig k is hired (used) or not.

The objective function (6-1) minimizes the total cost. The first two terms
represent the oil production loss, which can be associated with the time until
the execution of the task after it is released (first term) or the production loss
from the entire time horizon (since the well is released) when the well is not
served (second term). The last term of the objective function is related to the
fleet size cost.

Min
∑

i∈J |i 6=0
li

Sj +
∑
j∈J

∑
k∈K

(dki − ai)Xk
ij + (H − ai)(1−

∑
j∈J

∑
k∈K

Xk
ij)
+

∑
k∈K

ckZk

(6-1)

Subject to
∑
j∈J

Xk
ji =

∑
j∈J

Xk
ij ∀i ∈ J, k ∈ K (6-2)

∑
k∈K

∑
i∈J

Xk
ij ≤ 1 ∀j ∈ J |j 6= 0 (6-3)

∑
k∈K

∑
j∈J

Xk
ij ≤ 1 ∀i ∈ J |i 6= 0 (6-4)

Sj − dki ≥ Si −M(1−Xk
ij) ∀i ∈ J, j ∈ J, k ∈ K|i 6= 0 (6-5)

Si ≥ ai
∑
k∈K

∑
j∈J

Xk
ij ∀i ∈ J |i 6= 0 (6-6)

∑
j∈J

Xk
ij ≤ Zk ∀i ∈ J, k ∈ K (6-7)

Xk
ij ∈ {1, 0} ∀i ∈ J, j ∈ J, k ∈ K|eki , i 6= j (6-8)

Si ∈ Z+ ∀i ∈ J |i 6= 0 (6-9)
Zk ∈ {1, 0} ∀k ∈ K. (6-10)

Constraints (6-2), (6-3), and (6-4) are flow balance rules from the vehicle
routing formulation, where the last two constraint guarantees that a well i
or j can only be served once. Constraints (6-5) calculate each task j starting
time (Sj) according to the previous service of the rig (Si + dki ). Constraints
(6-6) guarantee that the task i starting time (Si) respects its release date (ai).
Constraints (6-7) connect variables Zk and Xk

ij, forcing the model to hire a
rig (Zk) to execute a task i with this rig k. The other constraints (6-8), (6-9),
and (6-10) are related to the variables’ domains. Note that this model could
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be easily adapted to a WRRSP by simply adding the duration of the travels
between well i and j using rig k with the duration of the intervention in well
j (dk′ij = dkij + dkj ) and replacing it in the model, more specifically in equations
(6-1) and (6-5). Next, we show how we have reformulated the model (6-1)–
(6-10) to achieve better computational performance.

6.2
Reformulated workover rig scheduling problem

Aiming to improve the performance of the WRSP model, we propose a
reformulation adding new auxiliary variables hoping to help the branching
process of the MILP solver employed. The additional auxiliary variables
required are detailed below:

– X1ki : If a rig k arrives at well j.

– X2ki : If a rig k leaves well i.

– Wi: If any rig serves (enters and leaves) well i.

The use of the auxiliary variables aims to avoid summations inside the
constraints, which can then improve the linear programming relaxation of the
problem. The objective function terms were equivalently reformulated with the
auxiliary variables. As shown in Equation (6-11), it minimizes the total costs
associated with the oil production losses and the fleet size cost.

Min
∑

i∈J |i 6=0
li

Si +
∑
k∈K

(dki − ai)X1ki + (H − ai)(1−Wi)
+

∑
k∈K

ckZk

(6-11)

Subject to: X1ki = X2ki ∀i ∈ J, k ∈ K (6-12)
X1ki =

∑
j∈J

Xk
ji ∀i ∈ J, k ∈ K (6-13)

X2ki =
∑
j∈J

Xk
ij ∀i ∈ J, k ∈ K (6-14)

Wi =
∑
k∈K

X1ki ∀i ∈ J |i 6= 0 (6-15)

Wi =
∑
k∈K

X2ki ∀i ∈ J |i 6= 0 (6-16)

Si − dkj ≥ Sj −M(1−Xk
ij) ∀i ∈ J, j ∈ J, k ∈ K|i 6= j (6-17)

Si ≥ aiWi ∀i ∈ J |i 6= 0 (6-18)
X1ki ≤ Zk ∀i ∈ J, k ∈ K (6-19)
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Xk
ij ∈ {1, 0} ∀i ∈ J, j ∈ J, k ∈ K|eki , i 6= j (6-20)

X1ki ∈ {1, 0} ∀i ∈ J, k ∈ K (6-21)
X2ki ∈ {1, 0} ∀i ∈ J, k ∈ K (6-22)
Wi ∈ {1, 0} ∀i ∈ J |i 6= 0 (6-23)
Si ∈ Z+ ∀i ∈ J (6-24)
Zk ∈ {1, 0} ∀k ∈ K (6-25)

New constraints were added to define the auxiliary variables and simplify
the equations. Constraints (6-12) are flow balance rules. The new auxiliary
variables (X1ki , X2ki , and Wi) are defined in constraints (6-13), (6-14), (6-15),
and (6-16), and they guarantee that a well i can only be served once.
Constraints (6-17) calculate the starting time (Si) of each task i according
to the previous service of the rig (Si + dki ). Constraints (6-18) guarantee that
the task i starting time (Si) satisfies its release date (ai). Constraints (6-19)
connect variables Zk and X1ki , forcing the model to hire a rig (Zk) to execute
a task i with this rig k (X1ki ). The other constraints (6-20) to (6-25) state the
domains of the variables.

6.3
Computational experiments

To test the proposed data-driven optimization methodology for the
workover rig scheduling problem, data from a major Brazilian oil company
were gathered and structured. A total of 74 real-life based instances were
created based on these data. A detailed description of the instance generator
was provided Section 5.2. Instances in this study vary according to the number
of rigs (2, 3, 5, 10, and 15), the number of wells (15, 25, 50, and 75), the
release date density (0.1, 0.5, and 0.9), and the random seed used for drawing
numbers and replicating an instance. These instances were used to compare
the two formulations, analyze their robustness and the impact of the regression
error on the mathematical models, and compare the trade-off between the
proposed data-driven model and the current technique used by the company.
The computational experiments were performed in a computer with Intel
® Core ™ i7-8565U CPU and a 20.0 GB RAM memory. The models were
implemented using the Julia programming language (Bezanson et al. 2012)
and optimized with Gurobi solver v. 9.1.2 (Gurobi Optimization 2018).

Table 6.1 presents a solution comparison between both models, the
original model (I) and the reformulated model (II), for different instances with
a planning horizon of 360 days and using the different seeds (1019, 2657, and
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3229) in the instance generator. The terms "UB" and "LB" are acronyms for
"Upper Bound" and "Lower Bound", respectively, both in million (M) dollars.
A time limit of 3600 seconds was also enforced to solve the models.

Jobs Rigs Instace
UB (avg. in M.) LB (avg. in M.) GAP (avg.) Time (avg. in sec.)

Density I II I II I II I II

15

2
0.1 457.0 457.0 427.0 444.0 5% 2% 1204 1200
0.5 484.9 484.2 419.5 441.5 10% 7% 1812 1231
0.9 465.7 465.7 388.1 441.1 15% 4% 2400 1841

3
0.1 431.7 431.7 431.7 431.7 0% 0% 11 3
0.5 446.3 446.3 446.3 446.3 0% 0% 8 1
0.9 459.5 459.5 459.5 459.5 0% 0% 7 1

25

5
0.1 697.0 697.0 615.8 675.6 11% 3% 2462 2406
0.5 737.6 737.6 612.1 672.6 16% 8% 2512 2405
0.9 715.2 704.5 657.0 704.5 7% 0% 1875 243

10
0.1 649.2 649.2 643.1 649.2 1% 0% 1861 526
0.5 684.0 685.0 684.0 642.8 0% 5% 1444 1860
0.9 664.8 664.8 664.8 664.8 0% 0% 575 714

15
0.1 609.3 609.3 603.6 609.3 1% 0% 1852 1746
0.5 639.2 639.2 605.1 599.2 5% 6% 1829 1820
0.9 655.5 655.2 610.6 591.6 6% 8% 1839 1825

50

5
0.1 1334.4 1330.9 840.4 941.6 37% 29% 3600 3600
0.5 1434.4 1427.7 836.9 935.6 42% 35% 3600 3600
0.9 1434.2 1385.0 824.7 939.3 42% 32% 3600 3600

10
0.1 1133.2 1153.5 861.8 898.4 24% 22% 3600 3600
0.5 1165.4 1142.4 871.3 904.1 25% 21% 3600 3600
0.9 1124.1 1126.0 885.7 899.7 21% 20% 3600 3600

15
0.1 1318.2 1212.9 759.2 814.6 42% 32% 3600 3600
0.5 1300.9 1221.8 759.1 846.5 39% 29% 3600 3600
0.9 1212.5 1221.4 760.1 864.7 36% 27% 3600 3603

75

5
0.1 1838.9 1794.5 1109.9 1183.5 38% 33% 3600 3600
0.5 2003.3 1879.8 1105.2 1161.2 42% 36% 3600 3600
0.9 1976.0 1852.7 1105.5 1153.3 40% 35% 3600 3600

10
0.1 1726.3 1633.4 951.4 1055.7 45% 35% 3600 3600
0.5 1741.0 1620.0 950.4 1049.4 45% 35% 3600 3600
0.9 1543.2 1616.7 957.6 1088.4 38% 32% 3600 3600

15
0.1 1630.0 1635.2 966.7 1054.4 41% 36% 3600 3600
0.5 1783.3 1715.1 966.8 1042.4 46% 39% 3600 3600
0.9 1620.7 1574.9 966.9 1040.5 40% 34% 3600 3600

Table 6.1: Comparison between models (I) and (II).

The results in Table 6.1 show the gap and the computational time differ-
ence between the two mathematical models. Model I (the original formulation)
requires, in most instances, a longer time than Model II (the reformulation with
auxiliary variables) to obtain optimal solutions. In the larger instances, both
models reached the 3600-seconds time limit, but the GAPs from the original
model are consistently higher than those from the reformulated model. These
results indicate that, despite the more significant number of constraints and
variables in the reformulated model, the auxiliary variables reduce the compu-
tational effort required and enables the model to obtain better solutions.

Another important analysis is to compare the non-stochastic optimiza-
tion model with the current approach of the company. As mentioned in Section
5.1, the company uses the average duration based only on the type of workover.
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Using instances generated with out-of-sample records, the reformulated model
was used to generate optimal schedules according to a given duration. Three
types of duration are used: the conservative duration (d̄i), which is the current
strategy used by the studied company and does not consider any information
about the rig; the regression estimation (d̂ki ), which is the proposed strategy
using the data-driven model and depends on the rig and the well; the actual
duration of the well i (d̃i), which was obtained from the out-of-sample histor-
ical data (as the optimization cannot guarantee that the rig performing the
workover is the same from historical records, this duration is not influenced by
the rig in this case).

Aiming to analyze the robustness and the flexibility of the model’s
solution, i.e., the capacity to accomplish what was planned by the model and
how much the solution needs to change to adjust itself to the actual workover
durations, two comparisons were made. First, the schedule was obtained from
the optimization model, using the conservative duration and the regression
estimation. These are then compared with the schedule obtained knowing the
actual duration of the well i, that is, the schedule with perfect information.
The comparison is performed in terms of their relative difference between their
objective function values, where the schedule with perfect information is the
reference. This comparison analyzes the robustness of the models’ solutions
and can be seen in the green box plots in Figure 6.1.

The second comparison considers that there is an option for rescheduling
considering the actual workover duration for each well i (d̃i), but considering
the rig fleet and list of served wells obtained when performing the schedule
using estimated workover durations (d̄i or d̂ki ). This analysis emulates the
process of planning the workover resources beforehand in terms of defining
which rigs will be hired and how contracts (i.e., which wells are to be served
by the hired rigs) are designed in advance. This comparison focuses on the
solution flexibility and is presented as the orange bars in Figure 6.1. The
vertical axis in Figure 6.1 is the percentage of deviation of each comparison.
The comparisons made are specified according to the box-plot color (green
refers to the models robustness and orange represents the solution flexibility),
and the rows are, respectively, the current method of the studied company
(average or conservative duration) and the proposed data-driven methodology
(regression duration).
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Figure 6.1: Box-plot comparing the objective function difference to the schedule
with perfect information according to the duration estimation and the stage
(scheduling or rescheduling).

Clearly, the solutions using the duration estimation through the proposed
regression model are closer to the “best possible” solutions (obtained with
the actual duration of the workover) than the solutions generated with the
current approach of the studied company (average duration). Furthermore, the
regression solutions fit better with the real duration of the workover activities,
as the rescheduling not only is closer to the “best possible”, but also varies
much less than the solutions using the conservative duration.

6.3.1
Sensitivity analysis

In the previous section, the robustness of the data-driven optimization
model was tested against the non-data-driven model. Undoubtedly, the data-
driven approach generates solutions closer to the “best possible” solutions
(obtained with the actual duration of the workover) than the traditional
method. Nonetheless, this solution is subjected to the quality of the regression
model selected. The duration predictions can vary due to the error associated
with the regression, which might impact the data-driven model results.

To check the impact of the regression error component on the objective
function value of the data-driven model, a sensitivity analysis was performed
simulating the workover duration estimated by the regression. As mentioned
earlier, the regression estimation and the actual duration of the workover

DBD
PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 6. A regression-driven optimization model for the workover rig
scheduling problem 114

differ from each other according to regression error, i.e., d̃ki = d̂ki + ε, where
d̃ki is the actual workover duration, d̂ki is the regression estimation, and ε

represents the regression error, which follows a normal distribution estimated
as N ∼ (µ = 2.522719, σ = 8.261636), as mentioned in Section 5.3.1. In
this sensitivity analysis, the WRSP is optimized using the duration estimated
by the regression (d̂ki ). The solution of each optimal schedule is fixed in the
number of rigs and the wells that can be attended to. Five hundred simulations
of the regression error (ε) are made by sampling from the Normal distribution
N ∼ (µ = 2.522719, σ = 8.261636), to determine the actual duration of the
workover (d̃ki ) for each simulation. With this duration using the regression
error, a reschedule is generated according to the rigs and wells selected in
the first schedule. The rescheduled solutions are used to obtain a confidence
interval for our data-driven optimization model. Figure 6.2 presents this
sensitivity analysis for each instance according to the number of rigs (horizontal
axis), and the number of wells (color labels). The objective function is given
by the markers relative position on the vertical axis. The error bar represents
the confidence interval of this objective function calculated using the t-score
(tfracalpha2,N−1), where alpha is 5% and N is the sample size of 500 replications.

Figure 6.2: Confidence intervals of the objective function due to the regression
error.

Analyzing Figure 6.2, we can observe that the objective function and its
variability is highly influenced by the instance size. The larger the number of
wells needing intervention, the larger are the costs associated, as expected. The
number of rigs is also important; a small number of rigs reduces the solution
flexibility, and when the number of rigs is sufficiently large, increasing the
selection of available rigs allows the model to select cheaper and better rigs,

DBD
PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 6. A regression-driven optimization model for the workover rig
scheduling problem 115

reducing the costs. Regardless of the instance, the regression residuals do not
disturb more than 10% of the object function value.

Despite generating small disturbance, the duration uncertainty can not
be diminished as, in some cases, it can lead to infeasible or undesirable
solutions. For instance, one of the assumptions of this sensitivity analysis was
that a well expected to be served could be easily deselected if needed. However,
deselecting a well in the short-term should always be avoided as this decision
has a tremendous impact on several plannings and agreements made by the
company, possibly resulting in large expenses of capital and lost of credibility
with suppliers and clients.

Therefore, it is crucial to guarantee a hedge for these potential losses and
minimize their risk to an acceptable level. For that, a better approach with a
complete analysis of the data and considering the uncertainty in the workover
operations is crucial. The regression-driven chance-constrained optimization
methodologies proposed in Section 4.1.2.1 could solve this problem.

The regression-driven optimization methodology proposed in this chapter
and its application in the WRSP culminated in the publishing of an article "A
data-driven optimization model for the workover rig scheduling problem: Case
study in an oil company" in the journal Computers & Chemical Engineering
(Santos et al. 2023).

Next, we apply the regression-driven chance-constrained optimization
methodologies on the studied WRSP, aiming to deal with the solution fea-
sibility uncertainty.
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7
Regression-driven optimization models for the workover rig
scheduling problem

The SLR allowed us to identify opportunities for the WRSP, including
the application of joint chance-constrained formulations and data-driven op-
timization models. Another insight from SLR was related to the gap between
academic studies and industry demands. Very few studies were actually imple-
mented in the industry, despite the importance of the rig scheduling problems.
Aiming to address this gap and exploit the aforementioned opportunities, a
regression-driven optimization model was formulated for a real case study of
the WRSP in Section 5. A sensitivity analysis was made and the importance
of data-driven joint chance-constrained models was once again reinforced.

However, most data-driven JCC models in the literature are non-linear,
as mentioned earlier in Chapter 3. Thus, a new approach based on stochastic
programming was proposed as a linear alternative. This new methodology of
regression-driven stochastic joint chance-constrained optimization (presented
in Section 4.1.2.2) is applied to the WRSP in this section. In addition, we
also compare this proposed regression-driven stochastic JCC model with two
other regression-driven stochastic chance-constraints variations: integrated-
CC and budget-constrained. As the regression-driven models from Chapter
6, the stochastic models proposed and tested in this section use the data from
the regression algorithms from Section 5.3.1. The main difference is that the
regression uncertainty is also considered in these models.

7.1
Mathematical modeling

As mentioned in Section 5.1, the workover rig scheduling problem setting
is surrounded by risks. One of its main uncertainties is the duration of the
operations. In Section 5.3, the duration was analyzed and treated using text
mining, clustering, and regression algorithms. In this section, the outputs
of these data processes are used in the optimization under uncertainty in a
data-driven optimization approach with three chance-constraints variations,
in which the mathematical models are based on the reformulated regression-
driven mathematical model proposed in Section 6.2 and the scenario-based
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data-driven methodology from Section 4.1.2.2. Sections 7.1.2 and 7.1.3 present
the regression joint CC workover rig scheduling models.

7.1.1
The chance-constrained workover rig scheduling problem

In the WRSP, the uncertainty exists in the duration of the tasks. When
fleet sizing or scheduling for the short and mid-terms, the ideal is to have a
solution that can accommodate minor disruptions in the planning. Therefore,
it might be helpful to allow some tasks to overlap with each other (when a
rig has to serve two or more wells simultaneously) within some tolerance, as
the main goal is to generate a solution that will not need major reschedules.
Another particularity of this short-term case study is that after sequencing
a rig, several contracts and commitments are taken. The ideal is to keep the
actual schedule as similar as possible to the planned schedule, respecting the
planned fleet sizing, rig allocation, and sequencing.

This problem can be formulated as a chance-constrained model, in which
constraint (6-17) from the regression-driven WRSP (Section 6.2) becomes a
probabilistic constraint. The original constraint is for each well i, well j, and rig
k. However, the goal is to guarantee that the sequence of the schedule is feasible
and every well’s workover does not exceed the start of any other workover or
the planning horizon with a certain probability, i.e., the new chance constraint
should guarantee that the schedule is feasible with a confidence level α for every
sequencing of wells i and j and rig k associated with the constraint. As a result,
we have chosen to model the WRSP as a joint chance-constrained programming
problem, represented by the constraint (7-7). Using the notation and variables
from Section 6.2, the joint chance-constrained workover rig scheduling problem
is given as follows:

Min E

 ∑
i∈J |i 6=0

li

Si +
∑
k∈K

(d̃ki − ai)X1ki

+
∑

i∈J |i 6=0
(H − ai)li(1−Wi) +

∑
k∈K

ckZk

(7-1)

Subject to
X1ki =

∑
j∈J

Xk
ji ∀i, k (7-2)

X2ki =
∑
j∈J

Xk
ij ∀i, k (7-3)

Wi =
∑
k∈K

X1ki ∀i|i 6= 0 (7-4)
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Wi =
∑
k∈K

X2ki ∀i|i 6= 0 (7-5)

X1ki = X2ki ∀i, k (7-6)
P
[
Sj +H(1−Xk

ij) ≥ Si + d̃ki ,∀i, j, k|i 6= 0, i 6= j
]
≥ α (7-7)

Si ≥ ai ∗Wi ∀i|i 6= 0 (7-8)
Xk
ij ≤ Zk ∀i, j, k|i 6= j (7-9)

Xk
ij ∈ {1, 0} ∀i, j, k|i 6= j (7-10)

X1ki ∈ {1, 0} ∀i, k (7-11)
X2ki ∈ {1, 0} ∀i, k (7-12)
Si ≥ 0 ∨ Si ∈ Z+ ∀i|i 6= 0 (7-13)
Wi ∈ {1, 0} ∀i (7-14)
Zk ∈ {1, 0} ∀k (7-15)

The objective function (7-1) minimizes the expected costs. The first cost
term represents the expected oil production loss associated with the tardiness
of the task, which is the expected time to execute the task after its release. The
second term refers to the cost of not serving a well, which can be explained as
the production loss from the entire time horizon starting from its release date.
The last term of the objective function is related to the fleet size cost.

Auxiliary variables are defined in constraints (7-2), (7-3), (7-4), and (7-5),
and they guarantee that a well can only be served once. Constraints (7-6) are
flow balance rules. Note that constraint (7-6) is already presented in constraints
(7-4) and (7-5), but we insert it again in the model as valid equalities,
potentially improving its linear relaxation. The joint chance constraint (7-7)
calculates the starting time of each task according to the rig’s previous service
and determines that each well has a confidence level 1 − α of being feasible.
This confidence level refers to the probability of this constraint for a well i
be simultaneously satisfied for all other wells j and rigs k, i.e., the well i has
a probability 1 − α of respecting, in any rig k, the start of any other well.
Constraints (7-8) guarantee that the task starting time respects its release
date.

Constraints (7-9) connect variables Zk and Xk
ij, forcing the model to hire

a rig in order to execute a task with this rig. The last constraints (7-10), (7-11),
(7-12), (7-13), (7-14), and (7-15) are related to the variables’ domains.

Thanks to the text mining, classification algorithms, and regression
models that were used to estimate the duration of a workover in a specific
well and rig, it is possible to adapt this generalized chance-constrained WRSP
model to a regression-driven model, where the uncertain duration d̃ki is replaced
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by the estimated duration and regression error (d̂ki +ε). These estimations (d̂ki )
represent the effects of the well and rig properties on the workover duration,
and the distribution of the regression residuals can be used to represent the
uncertainty unrelated to the well and the rig (ε), thus reducing infeasibility
risks. As a result, we can transform the objective function (7-1) and constraint
(7-7), respectively, into:

Min E

 ∑
i∈J |i 6=0

li

Si +
∑
k∈K

(d̂ki + ε− ai)X1ki

+
∑

i∈J |i 6=0
(H − ai)li(1−Wi) +

∑
k∈K

ckZk

(7-16)

P
[
Si − Sj −M(1−Xk

ij) ≤ −d̂ki − ε, ∀i, j, k|i 6= 0, i 6= j
]
≥ α (7-17)

where ε ∼ N(µ, σ), the residuals error follow a normal distribution, and d̂ki are
the regression estimations of the duration of a workover on well i and rig k.

Nevertheless, the regression-driven joint chance constraint represented in
(7-17) cannot yet be used in any optimization solver due to the probability
function. The following sections use the methodologies of Section 4.1.2.1 to
explicitly represent the JCC with approximations and reformulations, enabling
its application. Another possibility would be to formulate the JCC with Kernel
smoothing methods, as made by Calfa et al. (2015). This alternative is outside
of the thesis scope but is presented in the Appendix G.

7.1.2
Regression-driven JCC deterministic-equivalent WRSP model

Aiming to propose a deterministic-equivalent for the regression-driven
JCC-WRSP model presented in the previous section, this section applies the
methodology proposed in Section 4.1.2.1 to the JCC-WRSP. This methodology
is based on Biswal et al. (2005) and Sahoo and Biswal (2005) and exploits
properties of normal and log-normal distributions to reformulate the joint
constraints when the uncertainty in the RHS follows normal and log-normal
distributions. Following the steps of the reformulations from (3-14)-(3-17), we
can modify constraint (7-17) for the case in which the residuals are independent
random variables and follow a Normal distribution N(µ, σ).

P
[
Si − Sj −M(1−Xk

ij) + d̂i
k
≤ −ε,∀i, j, k|i 6= 0, i 6= j

]
≥ α (7-18)∏

i∈J,j∈J,k∈K|i 6=0,i 6=j
P
[
Si − Sj −H(1−Xk

ij) + d̂ki ≤ −ε
]

≥ α (7-19)
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∏
i∈J,j∈J,k∈K|i 6=0,i 6=j

P
[
−ε ≥ Si − Sj −H(1−Xk

ij) + d̂ki
]

≥ α (7-20)

∏
i∈J,j∈J,k∈K|i 6=0,i 6=j

P
[
ε
′ ≥ gkij(x)

]
≥ α (7-21)

∏
i∈J,j∈J,k∈K|i 6=0,i 6=j

P
[
ε
′ − µ′

σ
≥ (

gkij(x)− µ′

σ

]
≥ α (7-22)

∏
i∈J,j∈J,k∈K|i 6=0,i 6=j

[
1− Φ

(
gkij(x)− µ′

σ

)]
≥ α, (7-23)

where ε′ = −ε, µ′ = −µ, ε′ ∼ N(µ′ , σ), gkij(x) = Si − Sj − H(1 − Xk
ij) + d̂ki ,

and Φ(·) is the cumulative distribution function of the standard normal
distribution, which is equal to Φ(x) = P(Z ≤ x) = 1√

2π
∫ inf
− inf e

−u
s

2 du. As
mentioned in Section 4.1.2.1, if we considered µ = 0, then Constraint (7-23)
could be simplified into:

∏
i∈J,j∈J,k∈K|i 6=0,i 6=j

1− Φ
Si − Sj −H(1−Xk

ij) + d̂ki
σ

 ≥ α (7-24)

The problem is that the regression-driven joint chance-constrained de-
terministic equivalent reformulation for the workover rig scheduling problem
is still a MINLP model. A possible solution for this is to use the regression-
based formulation of the JCC-WRSP and adapt it to a scenario-based model,
as proposed in the regression-driven stochastic JCC formulations from Section
4.1.2.2. Their application in the WRSP will be discussed in the next section.

7.1.3
Regression-driven stochastic joint chance-constrained WRSP model

Aiming to develop a linear programming alternative for the joint chance-
constrained workover rig scheduling problem, we apply the methodology from
Section 4.1.2.2 on the workover rig scheduling problem, reformulating the
model from Section 7.1.2 to a stochastic optimization model based on Luedtke
and Ahmed (2008), Nemirovski and Shapiro (2007) and Nikzad et al. (2019).
For this, sets, parameters, and variables were required to be modified or added
as follows:

New Set:

– ω ∈ {1, 2, . . . ,Ω}: Scenarios for the uncertainty. Each scenario represents
a realization of the uncertainty.

Parameters modified or added:
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– πω: Probability (weight of the Scenario, initially equals to 1/|Ω|).

– d̂ki : Duration estimated by the ridge regression on the workover of rig k
in well i.

– εkωi : Duration disturbance associated with regression estimation error for
the workover duration of well i in rig k and scenario ω.

Variables modified or added:

– Sωi : Non-negative integer variable that indicates the starting time of task
i at scenario ω (second-stage decision of scheduling).

– V kω
ij : Slack variable between [0,1] that measures the relaxation of con-

straint (ijk) feasibility in scenario ω (second-stage decision related with
the JCC).

– Y ω: Binary variables indicating the respect of the joint chance constraints
of the schedule in scenario ω, i.e., if the well i is feasible or not in scenario
ω (second-stage decision related to the JCC).

– Xk
ij, X1ki , X2ki , Wi and Zk: These variables are first-stage decisions

(fleet sizing, well service selection, rig allocation, and sequencing) and,
therefore, no modification in them is needed.

The objective function of the model is presented in Equation (7-25).
Its goal is to minimize the expected costs. In this study case, the first-stage
decisions are the fleet size (the decision of which rigs will be hired), the selection
of the wells (which wells will be served), rig allocation (which rig will serve each
well), and rig sequencing (the sequence/order of the wells that each rig serve).
Meanwhile, the second-stage decisions are the scheduling (when each wells
selected will be served in that scenario) and the infeasibilities (if the schedule
will be feasible in that scenario and how much will that infeasibility be). As a
result, the objective function is divided into first-stage costs and second-stage
costs. The first-stages costs are associated with the decisions made before the
occurrence of the uncertainty, i.e., before the duration of workovers is known.
The first-term of these costs is the oil production loss for not serving a well,
which is equal to oil production loss for the entire time horizon observing the
release date. The second term is the fleet size cost. Alternatively, the second-
stage costs are associated with the decisions made after the realization of the
uncertainty. Each scenario has a probability πω and the second-stage expected
costs are equal to the expected oil production loss associated with the time
to execute the task after its release. The objective function and its constraints
are presented as follows:
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Min
∑

i∈J |i 6=0
(H − ai)li(1−Wi) +

∑
k∈K

ckZk

+
∑
ω∈Ω

πω
∑

i∈J |i 6=0
li

Sωi +
∑
k∈K

(d̂ki + εkωi − ai)X1ki

 (7-25)

Subject to

X1ki =
∑
j∈J

Xk
ji ∀i, k|eki = 1 (7-26)

X2ki =
∑
j∈J

Xk
ij ∀i, k|eki = 1 (7-27)

Wi =
∑
k∈K

Xk
i ∀i (7-28)

Wi =
∑
k∈K

Xk
i ∀i (7-29)

X1ki = X2ki ∀i, k|eki (7-30)

Sωj +H(1−Xk
ij) ≥ Sωi + d̂ki + εkωi V kω

ij ∀i, j, k, ω|eki , 0 6= i 6= j (7-31)

1− V kω
ij ≤ Xk

ij ∀i, j, k, ω|eki , 0 6= i 6= j (7-32)

V kω
ij ≤ Y ω ∀i, j, k, ω|eki , 0 6= i 6= j (7-33)

1− V kω
ij ≥ Y ω ∀i, j, k, ω|eki , 0 6= i 6= j (7-34)∑

ω∈Ω
πωY ω ≥ α (7-35)

Sωi ≥ ai ∗Wi ∀i, ω|i 6= 0 (7-36)

Xk
ij ≤ Zk ∀i, j, k|eki = 1, 0 6= i 6= j (7-37)

Xk
ij ∈ {1, 0} ∀i, j, k|eki = 1, 0 6= i 6= j (7-38)

X1ki ∈ {1, 0} ∀i, k|eki = 1 (7-39)

X2ki ∈ {1, 0} ∀i, k|eki = 1 (7-40)

V kω
ij ∈ [1, 0] ∀i, j, k, ω|eki = 1, 0 6= i 6= j (7-41)

Y ω ∈ {1, 0} ∀ω (7-42)

Sωi ∈ Z+ ∀i, ω|i 6= 0 (7-43)

Wi ∈ {1, 0} ∀i (7-44)

Zk ∈ {1, 0} ∀k (7-45)

Auxiliary variables are defined in constraints (7-26), (7-27), (7-28),
and (7-29). Constraints (7-28) and (7-29) also define when a well is served.
Constraints (7-30) are flow balance rules from vehicle routing models.

The joint chance constraints are defined in constraints (7-31), (7-32),
(7-33), EQ:733b, and (7-35). Constraint (7-31) calculate the starting time
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of each task according to the rig’s previous service, where the slack variable
V kω
ij allows some violation within a range. Constraints (7-32) allow that slack

variable V kω
ij can only be applied to reduce εkωi when the probabilistic constraint

is active, i.e., when Xk
ij equals to one. If the slack variable is used, then

constraints (7-33) indicate that the sequencing is infeasible in scenario ω, i.e.,
Y ω equals to one. Last, constraint (7-35) guarantees that the joint probabilistic
constraint respects the confidence level α of the schedule being feasible.

Constraints (7-36) guarantee that the task starting time respects its
release date. Constraints (7-37) connect variables Zk andXk

ij, forcing the model
to hire a rig in order to execute a task with this rig. The others constraints
(7-38), (7-39), (7-40), (7-41), (7-42), (7-43), (7-44), and (7-45) are related with
the variables domains.

Next, other chance-constraints variations are presented for the WRSP.

7.1.3.1
Regression-driven stochastic integrated chance-constrained WRSP model

Instead of guaranteeing the probability of infeasibility under a certain
level, one might desire to guarantee that the expected magnitude of the
infeasibility is never greater or equal to a value. This is the case of the
integrated chance-constraint, introduced by Haneveld (1986) and Prékopa
(2003). In Section 4.1.2.2, a methodology for regression-driven stochastic
integrated chance-constrained optimization was proposed as an alternative for
the JCCs. In this section, we apply this alternative approach in our WRSP.

For that, variable Y ω must be converted to a non-negative interval and
the regression-driven joint chance constraints (7-31), (7-32), (7-33), and (7-35)
must be replaced by the following constraints:

Sωj +H(1−Xk
ij) ≥ Sωi + d̂ki + εkωi V

kω
ij ∀i, j, k, ω|eki , 0 6= i 6= j (7-46)

1− V kω
ij ≤ Xk

ij ∀i, j, k, ω|eki , 0 6= i 6= j (7-47)
εkωi · (1− V kω

ij ) ≤ Y ω ∀i, j, k, ω|eki , 0 6= i 6= j (7-48)∑
ω∈Ω

πωY ω ≤ µεα + Kσε√
(|Ω)|

(7-49)

V kω
ij ∈ [1, 0] ∀i, j, k, ω|eki , 0 6= i 6= j (7-50)
Y ω ≥ 0 ∀ω (7-51)
Sωi ∈ Z+ ∀i, ω|i 6= 0 (7-52)
Xk
ij ∈ {1, 0} ∀i, j, k|eki , 0 6= i 6= j (7-53)
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The regression-driven integrated chance-constraints are represented by
constraints (7-46), (7-47), and (7-48). Just as in the JCC, constraints (7-46) are
the chance constraints with the slack variable V kω

ij that allows some violations
within a range (not greater than the value of εωi ). Constraints (7-47) force that
the slack variable is only used when the chance-constraint is active. The worst
violation of the chance-constraint each scenario, i.e., the largest product of εωi
and V kω

ij is calculated as Y ω in constraint (7-48). The expected worst violation
is calculated in constraint (7-49), which also guarantees that its values respect
the upper bound considering K from the percentile point associated with an α
confidence level of the standard Normal distribution. Last, constraints (7-50),
(7-51), (7-52), and (7-53) are related to the variables’ domains.

Next, another chance-constraint variation is also applied in the WRSP.

7.1.3.2
Regression-driven stochastic budget-constrained WRSP model

The other scenario-based formulation proposed in Section 4.1.2.2 is the
budget-constrained, which focuses on limiting the total amount of feasibility
allowed in each scenario, regardless of their probability or expected value. This
approach can be applied in the WRSP by replacing the regression-driven joint
chance constraints (7-31), (7-32), (7-33), and (7-35) with the following set of
constraints:

Sωj +H(1−Xk
ij) ≥ Sωi + d̂ki + εkωi V

kω
ij ∀i, j, k, ω|eki , 0 6= i 6= j (7-54)

1− V kω
ij ≤ Xk

ij ∀i, j, k, ω|eki , 0 6= i 6= j (7-55)∑
i∈J

∑
j∈J

∑
k∈K

εkωi (1− V ω
ij ) ≤ Hα ∀ω (7-56)

V kω
ij ∈ [1, 0] ∀i, j, k, ω|eki , 0 6= i 6= j (7-57)
Sωi ∈ Z+ ∀i, ω|i 6= 0 (7-58)
Xk
ij ∈ {1, 0} ∀i, j, k|eki , 0 6= i 6= j (7-59)

The regression-driven budget-constraints are represented by constraints
(7-54), (7-55), and (7-56). Just as in the other models, constraint (7-46) is
the chance constraints with the slack variable V kω

ij that allows some violations
within a range (not greater than the value of εωi ). Constraint (7-47) forces
that the slack variable is only used when the chance-constraint is active. The
total violation of the chance-constraints in each scenario, i.e., the sum of the
product of εωi and 1−V kω

ij is calculated in constraint (7-56), which assures that
this sum respects the bound H ·α. Last, constraints (7-57), (7-58), and (7-59)
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are related to the variables domains.

7.2
Computational experiments

The models proposed in this chapter were implemented using the Julia
programming language and Gurobi solver and executed in a computer with
Intel(R) Core(TM) i7-5960X CPU 3.00 GHz and RAM memory of 64 Giga-
bytes. These computer experiments were made using the instances discussed
in Section 5.2 and are presented in this section. First, Section 7.2.1 details the
scenario generation and reduction. Section 7.2.2 first illustrates an example of
the proposed regression-driven stochastic JCC-WRSP model, tests it in several
instances, and analyzes the solution behavior. Then, Section 7.2.3 compares,
under the offshore WRSP, this regression-driven stochastic JCC model with
other chance constraint variations. Last, Section 7.2.4 compares the stochastic
models against the non-stochastic approach from Chapter 6.

7.2.1
Scenario generation and reduction

Before testing a scenario-based stochastic model, it is important to
generate a scenario population that faithfully represents the uncertainty and,
in most cases, this scenario population needs to be reduced to a smaller, yet
statistically significant, sample. This section is dedicated to presenting the
results of this scenario generation and reduction. We apply the methodology
from Figure 4.5 to generate a scenario sample for regression error, which follows
the Normal distribution estimated in Section 5.3.1 (N ∼ (µ = 2.522719, σ =
8.261636)).

First, we use Monte Carlo simulation (MCS) to generate several samples
of the regression uncertainty. The results of these MCS are shown in Figure
7.1. Each line represents the sample mean (y-axis) of a MCS run (colors) as
its size grows (x-axis). Each run stops when the absolute difference between
the sample mean and the actual distribution’s mean (µ = 2.522719) is lower
than 10−3

µ
.
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Figure 7.1: Monte Carlo simulation for the regression uncertainty.

Analyzing Figure 7.1, we can observe that, for most runs, the difference
between the sample mean and the actual distribution’s mean is lower than 0.1%
after two thousand iterations, indicating that the sample mean converges to
the distribution mean after this number of iterations. In other words, a set
of 2,000 scenarios (S = 2000) generated sampling the Normal distribution,
N ∼ (µ = 2.522719, σ = 8.261636), can be used to accurately represent the
regression error ε.

However, this number of scenarios is extremely large and culminates
in an enormous and practically infeasible computational effort to solve an
optimization model of this size.

Aiming to determine a smaller set of scenarios that can accurately rep-
resent these 2,000 scenarios, the Wasserstein distance-based method described
in Section 3.3.3 was used iteratively for S∗ = {5, 10, 15, . . . , 40, 45, 50}, keeping
the scenarios subsets contained in each other, i.e., the S∗ scenarios obtained
for 5 must be in the S∗ scenarios for 10 and so recursively for 10 and 15, 15
and 20, and so forth, where the last S∗ scenarios of 50 are contained in the
2,000 initial scenarios (S) obtained in the MCS. To obtain a number of scenario
suitable for any confidence level, six different confidence levels were also tested
(α = {0.70, 0.75, . . . , 0.90, 0.95}) and the two metrics presented in Chapter
3, Error of Approximation and Feasibility Frequency, were used. Their results
are presented in Figure 7.2, where the charts in the first row is for the Error
of Approximation (%) metric, the second chart row is related to the Feasibil-
ity Frequency, and each column of the charts is for a joint chance constraint
confidence level α. All charts have the same shared x-axis that represents the
scenario size. The results are average values taken of the metrics calculated
separately for different instances.
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Figure 7.2: Scenario reduction metrics for different scenario sizes and confi-
dence levels.

We can observe in Figure 7.2 that the performance of both metrics
is related not only to the number of scenarios but also to the confidence
level considered. A very small number of scenarios, such as 5, generates
a bad representation of the uncertainty with large Error of Approximation
(deviations of more than 8% between the predicted objective function and
the actual objective function) and feasibility frequencies lower than their
expected confidence levels. As the number of scenarios enlarges, the feasibility
frequency also rises and approximates itself to its respective confidence level.
A sample size with at least 20 scenarios is enough to respect the confidence
level regardless if it is low (such as 0.7 and 0.75) or high (greater or equal to
0.9). Regarding the Error of Approximation, its values stays in an acceptable
difference (lower than 5%) from 20 scenarios and so on.

However, the performance difference between these two scenario sizes
(20 and 25) is very small and both levels respect the confidence levels. As we
aspire to reduce the computational effort required for the models as much as
possible without affecting the model performance, we have selected the scenario
reduction size to 20, which is enough to respect the confidence levels considered
and achieve a solution with low deviations from the distribution reality. This
setting of generating 2,000 initial scenarios with the MCS and reducing to 20
scenarios with the Wasserstein distance-based algorithm will be used in the
subsequent experiments for the regression-driven stochastic JCC-WRSP.

DBD
PUC-Rio - Certificação Digital Nº 1812639/CA



Chapter 7. Regression-driven optimization models for the workover rig
scheduling problem 128

7.2.2
Stochastic JJC-WRSP numerical results

This section is dedicated to the results of the regression-driven stochastic
JCC-WRSP model presented in Section 7.1.3. However, prior to presenting its
results, it is important to illustrate the joint probabilistic constraints using the
scenario-based approach with the slack variable V kω

ij and the binary variable
Y ω. Figure 7.3 shows examples of schedules with different values of V kω

ij and
Y ω.

Figure 7.3: Examples of the scenario-based JCC reformulation for different
values of the chance-constrained variables.

When no violation occurs in a scenario, both variables V kω
ij and Y ω are

equal to zero in that scenario. This is the case of the first row of Figure 7.3,
when no task overlaps with the duration of the others. However, this is not
always the case. In the second row, Task 2 overlaps with the start of task 3
with a violation of εkωi ×V kω

ij = 2×0.5 = 1 day, making this scenario infeasible
and Y ω equal to one. Another case of an infeasible schedule is shown in the
third row when both variables V kω

ij and Y ω are equal to one: Well 2 overlaps
the start of workover 3 in 2 days (εkωi × V kω

ij = 2× 1).
Computational experiments were performed with instances considering

20 scenarios, a planning horizon of 360 days and a confidence level of 0.90. The
size of the resulting models are presented on Table 7.1, which shows the size
of the stochastic model and its solutions for different instances.

Setting
# Variables # Integer Variables # Binary Variables # Constraints # Non-zerosWells Rigs

25
10 71466 41526 40746 142375 407098
20 169876 95896 95116 339475 981162

50
10 333541 179611 178081 665750 1950797
20 578291 310661 309131 1155530 3390953

Table 7.1: Number of variables/constraints and size of the scenario-based JCC-
WRSP via-regression model (before Gurobi presolve).
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We can observe that all models have a large size, even though there are
only 20 scenarios. Table 7.2 presents the solutions and computational time for
each instance. Seven metrics are used to evaluate the model: average GAP
in percentage; average solving time in seconds, the models were forced to
have an execution time limit of one hour (3600 seconds); average objective
function (OF) in millions (M); average expected value solution (EEV) in
millions (M), which is the expected objective function fixing the first stage
solution, simulating 500 scenarios, and solving the second-stage optimally; the
approximation error (EOA) in millions (M) and in percentage (%), which is the
difference between the estimated objective function and the EEV; feasibility
frequency in percentage (%) of the second-stage simulating 500 scenarios.

Wells Rigs
Confidence

Level
GAP
(%)

Time
(s)

OF
(M)

EEV
(M)

EOA
(M)

Feasibility
Frequency (%)

EOA
(%)

10

2
0.7 0% 11 166.0 169.3 -3.2 84.2% -1.9%
0.8 0% 23 183.8 179.5 4.3 98.0% 2.3%
0.9 0% 9 178.1 182.3 -4.2 98.7% -2.4%

3
0.7 0% 13 130.3 133.0 -2.7 91.0% -2.1%
0.8 0% 16 138.4 141.0 -2.5 91.5% -1.8%
0.9 0% 19 132.9 136.4 -3.5 99.5% -2.6%

5
0.7 0% 1 71.2 74.5 -3.3 98.9% -4.7%
0.8 0% 2 70.9 75.6 -4.8 96.8% -6.7%
0.9 0% 2 72.0 74.4 -2.4 96.8% -3.3%

15

2
0.7 27% 3600 317.8 316.3 1.6 89.9% 0.5%
0.8 21% 3600 312.4 318.1 -5.7 96.2% -1.8%
0.9 0% 712 309.3 310.1 -0.8 88.7% -0.3%

3
0.7 0% 481 224.0 219.8 4.2 96.3% 1.9%
0.8 0% 105 227.2 231.9 -4.8 95.3% -2.1%
0.9 0% 174 233.3 228.5 4.8 98.0% 2.0%

5
0.7 0% 67 118.7 121.6 -2.9 85.1% -2.4%
0.8 0% 43 124.0 123.1 1.0 95.6% 0.8%
0.9 0% 34 122.1 122.1 0.0 94.1% 0.0%

25

2
0.7 39% 3600 626.5 627.9 -1.3 92.6% -0.2%
0.8 29% 3600 627.0 614.2 12.8 91.0% 2.0%
0.9 16% 3600 616.2 610.1 6.0 88.9% 1.0%

3
0.7 30% 3600 441.6 437.8 3.8 81.5% 0.9%
0.8 30% 3600 447.1 444.1 3.0 90.3% 0.7%
0.9 13% 3600 447.6 436.9 10.7 91.3% 2.4%

5
0.7 8% 1938 264.8 264.5 0.3 84.8% 0.1%
0.8 0% 596 272.9 272.4 0.6 94.3% 0.2%
0.9 0% 257 268.5 272.4 -3.8 93.7% -1.4%

50

2
0.7 60% 3600 1345.6 1344.6 0.9 89.6% 0.1%
0.8 53% 3600 1346.2 1339.7 6.4 89.7% 0.5%
0.9 53% 3600 1348.8 1342.0 6.8 84.2% 0.5%

3
0.7 53% 3600 1173.8 1176.8 -3.0 86.8% -0.3%
0.8 50% 3600 1148.6 1163.4 -14.8 86.7% -1.3%
0.9 41% 3600 1147.5 1147.8 -0.2 78.6% 0.0%

5
0.7 36% 3601 718.2 726.9 -8.8 74.6% -1.2%
0.8 30% 3600 718.8 725.0 -6.2 83.0% -0.9%
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Table 7.2 continued from previous page

Wells Rigs
Confidence

Level
GAP
(%)

Time
(s)

OF
(M)

EEV
(M)

EOA
(M)

Feasibility
Frequency (%)

EOA
(%)

0.9 27% 3600 713.7 718.0 -4.3 80.8% -0.6%

Table 7.2: Computational results for the regression-driven stochastic JCC-
WRSP.

Analyzing Table 7.2, the computational requirement seems to be related
not only to the size of the model (number of wells and rigs) but also to the
complexity of the instance. Apparently, the complexity of the instances varies
according to the ratio of wells per rig (a low ratio is more straightforward to
solve than a higher ratio) and the density of the release dates (low densities
imply in concentrated release date on the end of the planning horizon and
seems to be harder to solve than a high-density number).

The results from Table 7.2 also indicate that the model can generate
solutions for instances with 20 scenarios in a feasible time. In the instances
with at least 25 wells, the model had difficulty closing the gap but still was able
to obtain optimal solutions in some cases. This number of scenarios is usually
enough to obtain, through scenario reduction algorithms, a set of scenarios
that accurately represents the uncertainty. Another instance behavior is that
instances with a smaller number of rigs require more computational efforts to
be solved than other instances with the same number of wells but more rigs
available. Last, instances with a lower confidence level also seem to have more
difficulty closing the gap.

As to the solution quality of the model, we can observe that the
confidence level is respected in most instances, especially those solved close
to optimally, and that instances with a larger confidence level usually have a
higher feasibility frequency. We can also observe very low EOA (in percentage),
which indicates that the estimated costs are also really close to the actual
solution costs.

Nonetheless, there are other chance-constraints alternatives that can be
tested in this problem. Next, section 7.2.3 compares these different data-driven
stochastic formulations.

7.2.3
Comparison between stochastic formulations

This section compares the chance-constraints variations for the data-
driven workover rig scheduling problem: the JCC (Section 7.1.3), the integrated
chance-constrained (Section 7.1.3.1), and the budget-constrained (Section
7.1.3.2). These models were tested with instances with 20 scenarios, a planning
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horizon of 360 days, a release date density of 0.50, and two random seeds.
Averages results (fifth to last columns) comparing the performance of each
model (fourth column) according to the number of wells (first column), the
number of rigs (second column), and the confidence level (third column) are
presented on Table 7.3.

Wells Rigs
Confidence

Level
Chance

Constraints
GAP
(%)

Time
(s)

OF
(M)

EEV
(M)

EOA
(M)

Feasibility
Frequency

(%)

EOA
(%)

15

2

0.7
JCC 25% 3600 297.4 292.1 5.3 92.6% 1.8%

Integrated 12% 3600 273.5 258.9 14.6 59.7% 5.3%
Budget 0% 366 235.0 237.2 -2.2 26.5% -0.9%

0.8
JCC 23% 3600 291.8 281.3 10.5 75.5% 3.6%

Integrated 17% 3600 271.2 268.2 3.0 67.8% 1.1%
Budget 0% 1151 232.8 258.9 -26.2 59.7% -11.2%

0.9
JCC 15% 3600 291.3 293.0 -1.7 88.5% -0.6%

Integrated 0% 3393 295.3 293.0 2.2 88.5% 0.8%
Budget 17% 3600 257.2 269.4 -12.2 68.8% -4.7%

3

0.7
JCC 0% 22 234.9 234.8 0.1 94.4% 0.0%

Integrated 0% 203 228.0 222.1 5.9 47.4% 2.6%
Budget 0% 39 202.5 198.4 4.1 5.5% 2.0%

0.8
JCC 0% 9 225.2 235.7 -10.5 94.7% -4.7%

Integrated 0% 166 224.1 227.3 -3.2 64.0% -1.4%
Budget 0% 102 200.2 219.4 -19.2 36.0% -9.6%

0.9
JCC 0% 11 230.2 233.9 -3.7 93.4% -1.6%

Integrat 0% 44 232.2 235.1 -2.9 94.3% -1.3%
Budget 0% 130 208.5 212.2 -3.6 16.5% -1.7%

25

2

0.7
JCC 34% 3604 602.7 625.4 -22.7 87.1% -3.8%

Integrated 36% 3600 567.8 562.7 5.2 39.3% 0.9%
Budget 33% 3601 513.4 532.8 -19.4 13.7% -3.8%

0.8
JCC 29% 3600 629.7 635.1 -5.4 98.9% -0.9%

Integrated 38% 3600 602.8 601.7 1.2 66.7% 0.2%
Budget 36% 3601 555.7 572.0 -16.3 36.9% -2.9%

0.9
JCC 28% 3600 641.6 632.9 8.6 88.5% 1.3%

Integrated 32% 3602 618.8 613.9 4.9 89.2% 0.8%
Budget 35% 3600 559.4 570.8 -11.4 37.8% -2.0%

3

0.7
JCC 32% 3600 408.3 423.6 -15.3 88.3% -3.7%

Integrated 27% 3600 385.6 402.9 -17.2 62.1% -4.5%
Budget 17% 3601 335.4 343.1 -7.7 7.3% -2.3%

0.8
JCC 24% 3600 406.7 409.3 -2.6 87.7% -0.6%

Integrated 25% 3600 392.4 396.0 -3.7 63.7% -0.9%
Budget 16% 3600 344.4 349.2 -4.8 7.6% -1.4%

0.9
JCC 12% 3600 400.0 410.3 -10.4 89.9% -2.6%

Integrated 17% 3600 396.1 407.8 -11.6 88.4% -2.9%
Budget 19% 3601 344.2 363.2 -19.0 20.3% -5.5%

Table 7.3: Results comparing the regression-driven chance-constraints varia-
tions.

Analyzing Table 7.3, we can observe that despite being slightly more
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costly in terms of computational effort, the data-driven JCC model tends
to obtain solutions with lower approximation error and greater feasibility
frequency than the other stochastic formulations, being superior in 9 out of 12
instances and having similar results in the remaining. The integrated chance-
constrained model achieves inferior results to the JCC in 8 of 12 instances,
violates the confidence level set in 11 instances, and requires computational
efforts similar to the JCC. On the other hand, the budget-constrained model
is usually easier to be solved but often has a larger EOA. It is also much
more challenging to set a good confidence level, as it does not consider any
probability measure in its modeling, which leads to extremely low feasibility
frequency in comparison with the other formulations. Aiming to support this
comparison, Figure 7.4 separates the average EOA in percentage (y-axis) and
the feasibility frequency in percentage (x-axis) for each model according to the
confidence level (facet charts):

Figure 7.4: Performance comparison of the difference regression-driven chance-
constrained approaches.

We can observe in Figure 7.4 that the JCC (blue labels) has much less
variability than the others models in terms of EOA and feasibility frequency.
The least consistent results were for the budget-constrained model (red labels),
with the average feasibility frequency varying from 10% to 70% and the
average EOA between -12% and 3%. These inconsistent results were expected
as this model does not consider the probability in its constraints nor has a
straightforward confidence level parameter, compromising its feasibility level
or low EOA guarantees. On the contrary, the integrated CC (green labels)
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has a risk measure in its constraints but performs poorly in low confidence
levels and has a less consistent approximation error than the JCC model.
This performance was expected as the integrated does not consider any
implicit measure of feasibility frequency of the JCC, focusing on the expected
infeasibility and not necessarily it’s chance.

In summary, these results confirm the reliability and robustness of data-
driven JCC model and support it as our primary choice for the proposed
regression-driven optimization methodology. The following section compares
the proposed regression-driven JCC with the non-stochastic regression-driven
model and the current company methodology.

7.2.4
The trade-off between stochastic and non-stochastic optimization

Last, the selected stochastic regression-driven approach with JCCs is to
be compared with the non-stochastic regression-driven optimization and the
company’s methodology that uses plans for the workover duration with av-
erage estimations according to the workover group, enabling the assessment
of the gains of employing the final proposed regression-driven optimization
methodology. These stochastic models were tested in instances with 20 sce-
narios (stochastic model only), a planning horizon of 360 days, a release date
density of 0.50, and two random seeds.

Table 7.4 compares the three models (first column: "Plan" for the com-
pany current methodology that uses the workover conservative duration to
estimate a rig schedule; "Non-stoc." for the data-driven optimization model
proposed in Chapter 6; "JCC" for the final stochastic regression-driven JCC
model selected in the previous Section) according the number of wells (15 or 25,
second column) and the number of rigs (2 or 3, third column) for the metrics:
GAP, solving time, OF, EEV, EOA, and feasibility frequency in percentage
(%) of the second-stage simulating 500 scenarios.

Model Wells Rigs
GAP
(%)

Time
(s)

OF
(M)

EEV
(M)

EOA
(M)

Feasibility
Frequency (%)

EOA
(%)

Plan
15

2 0% 1 435.2 344.2 91.1 100% 21%
3 0% 0 363.8 259.7 104.2 100% 29%

25
2 0% 18 797.1 687.5 109.6 100% 14%
3 0% 5 651.9 501.6 150.3 100% 23%

Non-stoc.
15

2 0% 17 232.2 237.2 -5.1 26% -2%
3 0% 1 196.4 213.1 -16.6 32% -8%

25
2 27% 3600 537.4 547.1 -9.7 11% -2%
3 0% 3152 344.9 346.6 -1.8 3% -1%

JCC
15

2 21% 3600 293.5 288.8 4.7 86% 2%
3 0% 14 230.1 234.8 -4.7 94% -2%
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Table 7.4 continued from previous page

Model Wells Rigs
GAP
(%)

Time
(s)

OF
(M)

EEV
(M)

EOA
(M)

Feasibility
Frequency (%)

EOA
(%)

25
2 30% 3602 624.7 631.2 -6.5 92% -1%
3 23% 3600 405.0 414.4 -9.4 89% -2%

Table 7.4: Results comparing the stochastic and non-stochastic approaches.

The results from Table 7.4 reinforce the power of the proposed regression-
driven methodology in generating models with less approximation error. By
using the average workover group duration in a deterministic model, the com-
pany original methodology results in extremely conservative solutions, leading
to an inefficient solution and a significant error of approximation. Alternatively,
the non-stochastic regression-driven optimization model does not have a reli-
able feasibility frequency when simulated. The only alternative that achieved
simultaneously high feasibility levels and low errors of approximation was the
proposed stochastic regression-driven JCC. Even though it requires more com-
putational effort, it is much less conservative than the company’s current ap-
proach, with solutions close to reality and guaranteeing a good confidence
level for the solution’s feasibility. The comparison of the stochastic and non-
stochastic models can easy be seen in Figure 7.5, where the labels are the model
strategy (red for the stochastic regression-driven JCC, green for the company’s
current approach, and blue for the non-stochastic regression-driven), the y-axis
is the error of approximating (EOA) in percentage (%), and the x-axis is the
feasibility frequency, also in percentage (%). Note that the ideal spot of the
model result is the bottom-right (EOA and feasibility frequency close to 0%
and 100%, respectively).
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Figure 7.5: Performance comparison of the stochastic and non-stochastic
regression-driven models and current company approach.

Analyzing Figure 7.5, we can confirm the superiority of the regression-
driven stochastic JCC model. Meanwhile, the results of the non-stochastic
models are outside the ’ideal zone’, with high approximation errors or high
rate of infeasible solutions, the results of the stochastic regression-driven JCC
models are concentrated in the ’ideal zone’, with EOA and feasibility frequency
close to 0% and 100%, respectively. Moreover, the non-stochastic results are
scattered and seem much more variable than the proposed stochastic model.
Not only the proposed stochastic regression-driven JCC model is accurate but
also precise and outperforms the others models that writhe with a lack of
precision and reliability.

These results reinforce the importance of considering uncertainty in the
mathematical modeling. The data-driven methodology is extremely helpful
in obtaining models more accurate to reality. However, underneath any data-
driven approach, there is still uncertainty related to the data models and other
endogenous uncertainties. These uncertainties affect the precision of the model.
Therefore, considering the uncertainty of the data-driven optimization model
is crucial for obtaining accurate and precise data-driven models. This data-
driven optimization paradigm was also mentioned by Ning and You (2019) in
their review of data-driven optimization under uncertainty studies.

Some final considerations, suggestions for future studies and other future
developments are discussed in the Section 8.
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8
Final considerations

Oil rigs are expensive and scarce resources used in the exploration and
production of oil & gas. They are crucial for several wells operations, such as
workover, which is an intervention in the wells’ operations for maintenance or
inspection. The proper planning of these operations is critical for the wells’
profitability due to the high costs associated with rigs and oil production
losses of an inactive well waiting for a workover. Moreover, the workover
operations occur in an environment surrounded by uncertainties, such as
whether workovers will be needed and their durations. In this environment, the
workover rig scheduling problem (WRSP) emerges as the problem of selecting
a fleet of workover rigs and a set of workover wells to be served, allocating the
wells to the rigs, and scheduling the operations, while minimizing the costs
associated with the rigs hiring and the oil production loss of the wells waiting
for service. The WRSP is a particular case of the rig scheduling problem (RSP).
Both problems are extremely important for oil companies and have attracted
a lot of attention from the literature, motivating RQ 1, which addresses trends
and gaps that can be observed in the RSP literature from academic and
industrial perspectives.

Despite the risky environment in which the WRSP and the RSP are
inserted, few studies applying optimization under uncertainty or data-driven
optimization were detected in the systematic literature review (SLR) from
Chapter 2. Another opportunity noticed in the SLR was the gap between
academic research and industry needs, with insufficient studies implemented
or validated in the industry. Many advanced optimization techniques are
available in the literature and should be applied in the WRSP with realistic
assumptions, such as a heterogeneous fleet of rigs, multi-objective functions,
and uncertain parameters. As a result of the aforementioned gaps detected in
answering RQ 1, we posed RQ 2 of how the optimization under uncertainty
could be applied in WRSP to mitigate any uncertainty-related issues. The
SLR and RSP classifications that were presented in Chapter 2 resulted in the
publishing of an article "A Systematic Literature review for the rig scheduling
problem: Classification and state-of-the-art" in the journal Computers &
Chemical Engineering (Santos et al. 2021). Aiming to answer RQ 2 and fulfill
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the literature gaps, this thesis addresses real-world-based instances of the
WRSP and proposes a data-driven optimization methodology with clustering
algorithms, ridge regression, stochastic programming, and chance-constrained
optimization.

This proposed methodology was developed after reviewing the state-of-
art of the data-driven optimization under uncertainty in Chapter 3, in which
a lack of linear reformulations for data-driven joint chance-constrained models
was detected. As explained in Chapter 4, the methodology is divided into three
major phases: data treatment, predictive modeling, and optimization. The data
treatment uses text mining and clustering techniques to refine and retrieve
information from the data. In the predictive modeling, ridge regression and
generalized linear models are used to estimate not only the workover duration
but also the endogenous uncertainties in the model. Last, in the optimization
phase, the regression prediction and error are inserted in a scenario-based
joint chance-constrained (JCC) model, generating solutions more resilient to
uncertainties.

One of the main contributions of this thesis was applying the data-
driven optimization methodology in a WRSP with real-world-based instances.
Chapter 5 focused on the assumptions of the WRSP from the offshore oil
industry perspective, motivating RQ 3. The case study is an offshore workover
rig scheduling problem in which the goal is to select the wells requiring
workover that will be served and an optimal fleet of heterogeneous rigs to
be hired and to schedule the wells to the rigs, minimizing the oil production
losses associated with the well waiting for service and the hiring costs of
the rigs’ operation, respecting the machine eligibility and workover release
date. An innovative assumption of this WRSP is the uncertainty in the
intervention durations of the wells. These durations are difficult to estimate
and depend not only on the well’s characteristics but also on the rig that
performs the operation, and other unknown factors, such as weather conditions.
The current methodology of the studied company is a deterministic approach
using conservative estimation according to the workover type that is required.
However, the company stores past information on the wells, rigs, and workover
operations that is possibly useful in the workover planning. These records were
gathered for this study and several real-world-based instances were created
based on them.

In the first part of the work, the past workover dataset was analyzed
following rigorous data science practice. Text mining (stemming, stop-words,
and string similarity measures) and clustering algorithms (k-means) were used
to treat the data by cleaning, simplifying, and labeling the workover historical
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data. This treated data was used as input for the training of the GLM and ridge
regression models, which estimate the duration. Text mining and clustering
procedures proved to be an efficient way of labeling the historical data and
acquiring hidden information, discovering new features to be used in the
predictive models. Overall, combining these data science techniques with the
regression model improved the prediction of the workover duration, which is
currently poorly estimated by the studied company.

Later, in Chapter 6, the workover duration estimations were used in
the linear programming model for the WRSP, following the proposed data-
driven optimization methodology and tackling RQ 4, which queries how we can
model the WRSP for a practical case. The proposed data-driven optimization
methodology obtained solutions much closer to the "perfect" schedule (optimal
schedule with the actual duration) than the schedules generated with the com-
pany’s current methodology. The proposed approach achieves solutions with a
deviation of less than 15% and, therefore, requires considerably less reschedul-
ing. Meanwhile, the current approach employed by the company usually has
deviations of 20 to 120%, requiring more frequent rescheduling. These results
indicate how well the regression model can represent the uncertain workover
duration and its dependency on the rig allocation, which in turn leads to more
stable and reliable schedules. However, every regression model has an error
associated with the regression residuals, i.e., the difference between the esti-
mation and the actual value of the predicted variable. A sensitivity analysis
performed by simulating the regression error showed a low deviation from the
objective function, demonstrating that the proposed data-driven optimization
methodology was suitable for the problem. Nonetheless, the uncertain nature
of the regression is an important feature to be considered as it can represent
other exogenous uncertainties that are incredibly complex to estimate and
that might affect the solution’s feasibility. This regression-driven optimization
methodology proposed in Chapter 6 resulted in the publishing of an article "A
data-driven optimization model for the workover rig scheduling problem: Case
study in an oil company" in the journal Computers & Chemical Engineering
(Santos et al. 2023).

Aiming to hedge against these potential losses and minimize their risk
to an acceptable level, a better approach with a complete analysis of the
data and considering the uncertainty in the workover operations is crucial. A
chance-constrained formulation was proposed in Chapter 7 for the WRSP to be
used in our regression-driven optimization methodology. Usually, joint chance
constraints result in non-linear programming models. Based on the stochas-
tic reformulations of Luedtke and Ahmed (2008), Nemirovski and Shapiro
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(2007), and Nikzad et al. (2019), a regression-driven stochastic joint chance-
constrained model was proposed for the WRSP. In that, the regression errors
are used as an uncertain parameter in the mathematical model. A Normal
distribution is estimated for the regression error and used in a Monte Carlo
simulation to generate scenarios that are reduced to a practical sample size
with a Wasserstein distance-based method. This regression-driven stochastic
JCC model allowed us to tackle RQ 5, which inquires how we can combine
chance-constrained models and data-driven optimization to solve large and
realistic problems such as the WRSP. The regression-driven stochastic JCC
model was compared not only with the company’s current approach, but also
with other variations of the regression-driven methodology, such as integrated
CC, a budget-constrained, and the model from Chapter 6. Meanwhile, the
proposed regression-driven methodology achieves solutions with a much lower
error of approximation, being more reliable to achieve efficient schedules. As
to the different formulation alternatives for the regression-driven methodology,
the data-driven stochastic JCC model outperformed the other models, obtain-
ing solutions that were reliable and robust, not only with lower expected objec-
tive functions and low error of approximating (between -5% and 5%) but also a
guaranteed feasibility level. Nonetheless, the regression-driven stochastic JCC
model requires more computational effort than the regression-driven model
and, as a result, has more difficulty closing optimally gaps in larger instances.
Therefore, we recommend using the regression-driven methodology with the
stochastic JCC model for small and medium instances and, if needed, in large
instances, the non-stochastic data-driven model is a good alternative with dis-
turbances not greater than 10%. Next, we suggest future studies related to this
thesis, its methodology, and the RSP literature.

8.1
Future research and suggestions

Data-driven optimization under uncertainty is a new trend in the Op-
erations Research community with a lot of potential. The regression-driven
methodology enhanced the workover estimations considerably. Nonetheless,
future improvements could still be possible. For instance, the R2 values of the
selected predictor are still in the order of 0.5, which ensues further efforts
in improving the prediction accuracy. This improvement can be achieved by,
e.g., investigating additional feature engineering strategies. Furthermore, al-
ternative prediction methods can be tested and compared with the current
data-driven methodology, such as LASSO regression, gradient-boosted trees,
random forest, or support vector clustering.
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As to the optimization phase, new strategies of joint chance-constraint
formulations and stochastic programming could be tested. For instance, the
non-linear joint chance-constrained representation (Section 4.1.2.1) could be
treated using a Branch-price-and-cut solving formulation for MINLP. More
comparison of the regression-driven stochastic JCC method with others data-
driven joint chance-constrained models, such as Calfa et al. (2015)’s kernel-
based one, also needs to be tested. Kernel density estimations can also be used
as a distribution for the scenario generation, simulating the regression resid-
uals or the workover duration. Another possibility is to evaluate the impact
of the choice of the type of optimization under uncertainty, comparing the
joint chance-constrained WRSP with a stochastic programming WRSP or a
robust programming WRSP. Further experiments also can be developed com-
paring different stochastic programming approaches, such as sample average
approximation and others simulation and scenario reduction techniques.

Another optimization perspective would be to adapt the data-driven op-
timization methodology to approximate algorithms, such as metaheuristics,
simheuristics, and matheuristics, instead of exact methods (mathematical pro-
gramming). These approaches have the potential of reducing the computational
effort considerably, enabling the consideration of more complex assumptions
in the problem.

The WRSP is highly complex decision-making problem subjected to
several risks and sharing ties with other resources and decisions of the
petroleum E&P. This thesis approached a problem considering uncertainty
in the workover duration, which is one of the most significant uncertainties
affecting the workover planning. Nonetheless, other uncertainties could also be
considered in the problem, such as the occurrence of the workover in a well,
known as the dynamic-WRSP, its release date, the fleet availability can also be
subjected to disruptions, weather conditions affecting the operation, the costs
associated with oil production loss, and the rigs hiring costs.

Furthermore, new assumptions can be incorporated into the modeling,
such as due dates, fleet availability, objective functions with net present values,
different types of rig hiring contracts, learning curves for the workover duration
in a rig, and travel times between the wells, possibly varying according to
the rig type. As seen in the SLR, learning curves are an important feature
from the industry perspective that has received very low attention in the
literature due to its complexity. Others assets should also be integrated with
the WRSP decision-making from a resource-planning perspective. For instance:
the crew availability or scheduling; equipment availability; offshore support
vessels usage. As mentioned in the SLR of RSP, to close the gap between the
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industry demands and the academy studies, it is essential to consider realistic
assumptions and integrate the RSP decisions.

Last, the proposed data-driven methodology could be applied to similar
scheduling problems, especially problems with sufficient amounts of historical
data for the use of predictive models.
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A
Search query generation

Figure A.1 shows the word plot that supported the search query used in
this SLR.

Figure A.1: Word clouds plot.

Table A.1 contains the complete search query used in the Scopus database
during this SLR.
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(TITLE-ABS-KEY(schedul*) OR TITLE-ABS-KEY(reschedul*) OR TITLE-ABS-KEY(rout*)
OR TITLE-ABS-KEY( mobilization) OR TITLE-ABS-KEY("move*") OR TITLE-ABS-
KEY("programing")) AND (TITLE-ABS-KEY(simulat*) OR TITLE-ABS-KEY(optimiz*)
OR TITLE-ABS-KEY(model*) OR TITLE-ABS-KEY(algorithm) OR TITLE-ABS-KEY(
*heuristic*) OR TITLE-ABS-KEY(procedure) OR TITLE-ABS-KEY(technique) OR TITLE-
ABS-KEY(system)) AND ( TITLE-ABS-KEY(wells) OR TITLE-ABS-KEY("oil well") OR
TITLE-ABS-KEY(oil) OR TITLE-ABS-KEY ( oilfield ) OR TITLE-ABS-KEY(petroleum))
AND (((TITLE-ABS-KEY(onshore) OR TITLE-ABS-KEY(offshore)) AND (TITLE-ABS-
KEY(workover) OR TITLE-ABS-KEY(drilling) OR TITLE-ABS-KEY("well completion") OR
TITLE-ABS-KEY("downhole completion") OR TITLE-ABS-KEY ("reservoir evaluation"))) OR
((TITLE-ABS-KEY(onshore) OR TITLE-ABS-KEY(offshore)) AND (TITLE-ABS-KEY(rig)
OR TITLE-ABS-KEY(rigs))) OR ((TITLE-ABS-KEY(rig) OR TITLE-ABS-KEY(rigs)) AND
(TITLE-ABS-KEY(workover) OR TITLE-ABS-KEY (drilling) OR TITLE-ABS-KEY("well
completion") OR TITLE-ABS-KEY("downhole completion") OR TITLE-ABS-KEY("reservoir
evaluation")))) OR ((((TITLE(rig) OR TITLE(rigs) OR TITLE(vessel)) AND (TITLE(workover)
OR TITLE(drilling) OR TITLE("well completion") OR TITLE("downhole completion") OR
TITLE("reservoir evaluation") OR TITLE(well))) AND ((TITLE-ABS-KEY(schedul*) OR
TITLE-ABS-KEY(reschedul*) OR TITLE-ABS-KEY(rout*) OR TITLE-ABS-KEY(mobilization)
OR TITLE-ABS-KEY("move*") OR TITLE-ABS-KEY(planning ) OR TITLE(problem)) OR
(TITLE-ABS-KEY(simulat*) OR TITLE-ABS-KEY(optimi?*) OR TITLE-ABS-KEY(model*)
OR TITLE-ABS-KEY (algorithm) OR TITLE-ABS-KEY(*heuristic*) OR TITLE-ABS-KEY(
programming)))) OR (((TITLE(rig) OR TITLE(rigs)) OR (TITLE(workover) OR TITLE(drilling)
OR TITLE("well completion") OR TITLE("downhole completion") OR TITLE("reservoir
evaluation") OR TITLE(well))) AND ((TITLE(schedul*) OR TITLE(reschedul*) OR TI-
TLE (rout*) OR TITLE(mobilization) OR TITLE("move*") OR TITLE(planning)) AND
(TITLE(simulat*) OR TITLE(optimi?*) OR TITLE(model*) OR TITLE(algorithm) OR
TITLE(*heuristic*) OR TITLE(programming) OR TITLE(problem))))) OR (((TITLE(rig)
OR TITLE(rigs)) OR (TITLE(workover) OR TITLE(drilling) OR TITLE("well completion")
OR TITLE("downhole completion") OR TITLE("reservoir evaluation")) OR (TITLE(well)))
AND (TITLE-ABS-KEY(schedul*) OR TITLE-ABS-KEY(reschedul*) OR TITLE-ABS-
KEY(rout*) OR TITLE-ABS-KEY(mobilization) OR TITLE-ABS-KEY("move*")) AND
(TITLE-ABS-KEY (oil) OR TITLE-ABS-KEY(oilfield) OR TITLE-ABS-KEY(petroleum))
AND (TITLE-ABS-KEY(simulat*) OR TITLE-ABS-KEY(optimi?*) OR TITLE-ABS-
KEY(model*) OR TITLE-ABS-KEY(algorithm) OR TITLE-ABS-KEY(*heuristic*) OR
TITLE-ABS-KEY(programming))) AND (LIMIT-TO(PUBSTAGE,"final")) AND (LIMIT-
TO(DOCTYPE,"cp") OR LIMIT-TO(DOCTYPE,"ar") OR LIMIT-TO(DOCTYPE,"cr") OR
LIMIT-TO(DOCTYPE,"re") OR LIMIT-TO(DOCTYPE,"ch") OR LIMIT-TO(DOCTYPE,"bk"))
AND (LIMIT-TO(LANGUAGE,"English"))

Table A.1: Scopus search query used for the rigs scheduling literature review.

Table A.2 contains the complete search query used in the Web of Science
database during this SLR.
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(TS=(schedul* OR reschedul* OR rout* OR mobilization OR "move*" OR "programing" ) AND
TS=(simulat* OR optimiz* OR model* OR algorithm OR *heuristic* OR procedure OR technique
OR system) AND TS=("wells" OR "oil well" OR "oil" OR oilfield OR petroleum) AND ( (
TS=(onshore OR offshore) AND TS=("workover" OR drilling OR "well completion" OR "downhole
completion" OR "reservoir evaluation") ) OR ( TS=(onshore OR offshore) AND TS=("rig" OR
"rigs") ) OR ( TS=("rig" OR "rigs") AND TS=("workover" OR drilling OR "well completion"
OR "downhole completion" OR "reservoir evaluation") ) ) OR ( ( TI=("rig" OR "rigs" OR
vessel) AND TI=("workover" OR drilling OR "well completion" OR "downhole completion" OR
"reservoir evaluation") AND ( TS=(schedul* OR reschedul* OR rout* OR mobilization OR "move*"
OR planning) OR TI=(problem) OR TI=(simulat* OR optimi?* OR model* OR algorithm
OR *heuristic* OR programming) ) ) OR ( ( TI=("rig" OR "rigs") OR TI=("workover" OR
drilling OR "well completion" OR "downhole completion" OR "reservoir evaluation" OR well) )
AND TI=(schedul* OR reschedul* OR rout* OR mobilization OR "move*" OR planning) AND
TI=(simulat* OR optimi?* OR model* OR algorithm OR *heuristic* OR programming OR
problem) ) ) OR ( ( TI=("rig" OR "rigs") OR TI=("workover" OR drilling OR "well completion" OR
"downhole completion" OR "reservoir evaluation" OR well) ) AND TS=(schedul* OR reschedul* OR
rout* OR mobilization OR "move*") AND TS=("oil" OR oilfield OR petroleum) AND TS=(simulat*
OR optimi?* OR model* OR algorithm OR *heuristic* OR programming) )) AND IDIOMA:
(English) AND TIPOS DE DOCUMENTO: (Article OR Abstract of Published Item OR Book
OR Book Chapter OR Book Review OR Early Access OR Proceedings Paper)

Table A.2: Web of Science search query used for the rigs scheduling literature
review.

Note: The search query selects only final studies in English published in
journals, conferences, and books. And some terms might be in Portuguese.
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B
Problems details

Follow, Figures B.1, B.2, B.3, B.4, and B.5 contain the number of papers
found for each taxonomy (columns) for the DRSP, WRSP, WRRSP, FP,
and RP, respectively. Note that the "Scheduling" and "Routing" taxonomies,
respectively, refer to problems that only do scheduling and problems that
consider routing with scheduling.

Figure B.1: Distribution of the drilling rig scheduling problem studies according
to the taxonomy.

Figure B.2: Distribution of the workover rig scheduling problem studies ac-
cording to the taxonomy.
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Figure B.3: Distribution of the workover rig routing and scheduling problem
studies according to the taxonomy.

Figure B.4: Distribution of the field planning studies according to the taxon-
omy.

Figure B.5: Distribution of the resource planning studies according to the
taxonomy.
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C
SLR results details

The following table resumes the rig scheduling publications found in the
literature review. The "Rout./Sched." row means "Routing/Scheduling" and
note that the "Scheduling" and "Routing" taxonomies, respectively, refer to
problems that only do scheduling and problems that consider routing with
scheduling. In the "Fleet" row, "Homog." and "Heterog." are shortening for
"Homogeneous" and "Heterogeneous", respectively. In the Method row, "Heur.",
"Matheur.", "Simu.", "Simu-Opt.", and "Data Driven Opt." refer to "Heuristic",
"Matheuristic", "Simulation", "Simulation-Optimization", and "Data-Driven
Optimization", respectively. Last, the "O.F." row is the Objective Function
row, it’s field "Econ. Index" refers to "Economic Index" and "Prod." refers to
"Oil Production".
Authors (Year) Oilfield Task Fleet Rout./Sched. MethodSection O.F.
Aronofsky (1962) - DrillingHomog. Sched. Exact2.4.1 Econ. Index
Aronofsky and Williams (1962) - DrillingHomog. Sched. Exact2.4.1 Econ. Index
Hartsock and Greaney (1971) Offshore Drilling;

Oth-
ers

Homog. Sched. Exact2.4.1 Econ. Index

Barnes et al. (1977) - WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Haugland et al. (1991) Offshore DrillingHomog. Rout. Exact2.4.1 Econ. Index
de Andrade Filho (1994) Offshore DrillingHomog. Sched. Simu-

Opt.
2.4.4.1 Econ. Index

Gutleber et al. (1995) Offshore DrillingHomog. Sched. Simu. 2.4.1 Econ. Index
Eagle (1996) Onshore DrillingHomog. Sched. Heur. 2.4.1 Econ. Index
Hasle et al. (1996) Offshore Drilling;

Oth-
ers

Homog. Sched. Exact2.4.4.2 Time

Nesvold et al. (1996) Offshore DrillingHomog. Sched. Exact;
Heur.

2.4.4.1 Multi

Currie et al. (1997a) Offshore Drilling;
Oth-
ers

Homog. Sched. Exact2.4.4.1 Econ. Index

Currie et al. (1997b) Offshore Drilling;
Oth-
ers

Homog. Sched. Exact2.4.4.1 Econ. Index

Paiva (1997) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Multi
Iyer et al. (1998) Offshore DrillingHomog. Sched. Matheur.2.4.4.1 Econ. Index
Paiva et al. (2000) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Multi
Van Den Heever and Gross-
mann (2000)

Offshore DrillingHeterog. - Matheur.2.4.4.1 Costs

Noronha and Aloise (2001) Onshore Workover- Sched. Heur. 2.4.2 Prod. Loss
Accioly et al. (2002) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact2.4.4.2 Multi

Aloise et al. (2002) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Gouvêa et al. (2002) - WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Maia et al. (2002) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Multi
McKechnie et al. (2002) Offshore WorkoverHeterog. Sched. - 2.4.4.2 -
Nascimento (2002) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact;
Heur.

2.4.4.2 Prod.

Rocha et al. (2003) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Aseeri et al. (2004) Offshore DrillingHomog. Sched. Exact2.4.4.1 Econ. Index
Costa and Ferreira Filho (2004) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Trindade and Ochi (2004) Onshore WorkoverHeterog. Rout. Heur. 2.4.3 Prod. Loss

Table C.1: Rig scheduling publications found in this literature review
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Authors (Year) Oilfield Task Fleet Rout./Sched. MethodSection O.F.
Costa (2005) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Costa and Ferreira Filho (2005) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Pereira (2005) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact;
Heur.

2.4.4.2 Prod.

Pereira et al. (2005a) Offshore Drilling;
Oth-
ers

Heterog. Sched. Exact;
Heur.

2.4.4.2 Prod.

Pereira et al. (2005b) Offshore Drilling;
Oth-
ers

Heterog. Sched. Exact;
Heur.

2.4.4.2 Prod.

Trindade (2005) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Trindade and Ochi (2005) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Aloise et al. (2006) Onshore WorkoverHeterog. Rout. Heur. 2.4.3 Prod. Loss
Alves and Ferreira Filho (2006) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Carvalho and Pinto (2006) Offshore DrillingHomog. Sched. Matheur.2.4.4.1 Econ. Index
Horton and Dedigama (2006) Onshore Drilling;

Oth-
ers

Heterog. Sched. - 2.4.4.2 -

Neves and Ochi (2006) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Van Den Heever and Gross-
mann (2006)

Offshore DrillingHeterog. Sched. Matheur.2.4.4.1 Econ. Index

Vasconcellos and Ferreira Filho
(2006)

Offshore Drilling;
Oth-
ers

Heterog. Sched. Heur. 2.4.4.2 Time

Barnes and Kokossis (2007) Offshore DrillingHomog. Sched. Exact2.4.4.1 Econ. Index
Irani (2007) - Drilling;

Oth-
ers

- Sched. - 2.4.1 -

Irgens and Lavenue (2007) Onshore DrillingHeterog. Sched. Heur. 2.4.1 Multi
Litvak et al. (2007) Offshore Drilling;

Oth-
ers

Homog. Sched. Heur. 2.4.4.1 Multi

Neves (2007) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Neves and Ochi (2007) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Oliveira et al. (2007) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Cong et al. (2008) Offshore Drilling;

Oth-
ers

Heterog. Sched. Simu-
Opt.

2.4.4.1 Prod.

Husni (2008) - Drilling;
Oth-
ers

Homog. - Exact;
Heur.

2.4.1 Econ. Index

Irgens et al. (2008) Onshore DrillingHeterog. Sched. Heur. 2.4.1 Multi
Lasrado (2008) Offshore WorkoverHomog. Sched. Simu. 2.4.2 Multi
Moura et al. (2008) Offshore CompletionHeterog. - Exact;

Heur.
2.4.4.2 Prod.

Onwunalu et al. (2008) Offshore DrillingHomog. Sched. Simu-
Opt.

2.4.4.1 Econ. Index

Davidson et al. (2009) Offshore DrillingHomog. Sched. Heur. 2.4.4.1 -
Douro and Lorenzoni (2009) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Falex (2009) Offshore DrillingHomog. Sched. Heur. 2.4.1 Multi
Glinz and Berumen (2009) Offshore DrillingHeterog. Sched. Exact2.4.1 Econ. Index
Gonçalves (2009) Offshore DrillingHeterog. Rout. Heur. 2.4.1 Econ. Index
Litvak and Angert (2009) Offshore Drilling;

Oth-
ers

Homog. Sched. Heur. 2.4.4.1 Econ. Index

Pacheco et al. (2009b) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Pacheco et al. (2009a) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Bassi (2010) Offshore WorkoverHeterog. Rout. Simu-

Opt.
2.4.3 Prod. Loss

Lorenzoni and Polycarpo
(2010)

Onshore WorkoverHomog. Sched. Heur. 2.4.3 Prod. Loss

Martin et al. (2010) Offshore DrillingHeterog. - - 2.4.4.1 Distance
Mazzini et al. (2010) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact2.4.4.2 Costs

Pacheco et al. (2010) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Pandolfi et al. (2010) Onshore WorkoverHomog. Rout. Heur. 2.4.4.2 Time
Al Gharbi (2011) Onshore DrillingHomog. Rout. Heur. 2.4.1 Costs
Litvak et al. (2011) Offshore Drilling;

Oth-
ers

Homog. Sched. Simu-
Opt.

2.4.4.1 Econ. Index

Pacheco (2011) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Ribeiro et al. (2011) Onshore WorkoverHomog. Sched. Heur. 2.4.2 Prod. Loss
Serra et al. (2011) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact2.4.4.2 Multi

Soares et al. (2011) Onshore WorkoverHeterog. Rout. Heur. 2.4.3 Prod. Loss
Table C.1: Rig scheduling publications found in this literature review
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Authors (Year) Oilfield Task Fleet Rout./Sched. MethodSection O.F.
Bassi et al. (2012) Offshore WorkoverHeterog. Rout. Simu-

Opt.
2.4.3 Prod. Loss

Duhamel et al. (2012) Onshore WorkoverHomog. Rout. Heur.;
Matheur.

2.4.3 Prod. Loss

Ribeiro et al. (2012a) Onshore WorkoverHeterog. Rout. Matheur.2.4.3 Prod. Loss
Ribeiro et al. (2012b) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Prod. Loss
Sabry et al. (2012) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Costs
Serra (2012) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact2.4.4.2 Prod.

Serra et al. (2012a) Offshore Drilling;
Oth-
ers

Heterog. Sched. Exact2.4.4.2 Prod.

Serra et al. (2012b) Offshore Drilling;
Oth-
ers

Heterog. Sched. Exact2.4.4.2 Prod.

Serra et al. (2012c) Offshore Drilling;
Oth-
ers

Heterog. Sched. Exact2.4.4.2 Prod.

Sumaida et al. (2013) Onshore Drilling;
Oth-
ers

Heterog. Rout. - 2.4.1 -

Villagra et al. (2013) Onshore WorkoverHomog. Rout. Heur. 2.4.4.2 Time
Bissoli (2014) Onshore WorkoverHomog.+Heterog. Rout. Heur. 2.4.3 Multi
Bissoli et al. (2014) Onshore WorkoverHomog. Rout. Heur. 2.4.3 Costs
Lange and Lin (2014) Onshore Drilling;

Oth-
ers

Homog. Sched. - 2.4.4.1 Costs

Marques et al. (2014) Offshore WorkoverHomog. Sched. Exact2.4.2 Rigs Fleet
Omosebi et al. (2014) Offshore DrillingHeterog. Sched. - 2.4.4.1 -
Ribeiro et al. (2014) Onshore WorkoverHeterog. Rout. Heur.;

Matheur.
2.4.3 Prod. Loss

Zahran and Al-Fardan (2014) - Drilling;
Oth-
ers

Heterog. Sched. Simu. 2.4.1 Multi

Amrideswaran et al. (2015) Offshore Workover;
Oth-
ers

Homog. Sched. Heur. 2.4.1 -

Haugland and Tjøstheim
(2015)

Offshore DrillingHeterog. Rout. Matheur.2.4.1 Econ. Index

Monemi et al. (2015) Onshore WorkoverHeterog. Sched. Heur.;
Matheur.

2.4.2 Prod. Loss

Tavallali et al. (2015) - DrillingHomog. - Exact;
Heur.

2.4.4.1 Econ. Index

Amer et al. (2016) - Drilling;
Oth-
ers

Heterog. Sched. - 2.4.1 -

Carrilho and Villas Boas (2016) Offshore Drilling;
Oth-
ers

Heterog. Sched. Exact2.4.1 Multi

Chowdhury (2016) Onshore DrillingHomog. Sched. Heur. 2.4.1 Time
Danach (2016) Onshore WorkoverHeterog. Sched. Heur. 2.4.2 Prod.
Dewan et al. (2016) Onshore Drilling;

Oth-
ers

Homog. Sched. - 2.4.4.1 Costs

Drouven and Grossmann
(2016)

Offshore Drilling;
Oth-
ers

Homog. Sched. Exact2.4.4.2 Econ. Index

Flager (2014) Onshore Drilling;
Oth-
ers

Heterog. Sched. Simu-
Opt.

2.4.1 Multi

Kromodihardjo and Kromodi-
hardjo (2016)

- WorkoverHomog. Rout. Heur. 2.4.2 Prod. Loss

Pérez et al. (2016) Onshore WorkoverHomog. Sched. Exact2.4.2 Prod. Loss
Silva et al. (2016) Offshore Drilling;

Oth-
ers

Heterog. Rout. Matheur.2.4.1 Multi

Tavallali et al. (2016) - DrillingHomog. Sched. Exact;
Heur.

2.4.4.1 Econ. Index

Arnaout et al. (2017) Onshore Drilling;
Oth-
ers

Heterog. Sched. - 2.4.1 Time

Bakker et al. (2017) Offshore P&A Heterog. Rout. Exact2.4.4.2 Costs
Kelly et al. (2017) Offshore CompletionHomog. Sched. Exact2.4.4.1 Prod.
Vasconcelos et al. (2017) Offshore WorkoverHeterog. Sched. Heur. 2.4.2 Time
Carrilho et al. (2018) Offshore Drilling;

Oth-
ers

Heterog. Sched. Exact2.4.1 Rigs Fleet

Table C.1: Rig scheduling publications found in this literature review
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Authors (Year) Oilfield Task Fleet Rout./Sched. MethodSection O.F.
Castiñeira et al. (2018) Onshore Drilling;

Oth-
ers

Heterog. Sched. Data
Driven
Opt.

2.4.1 Multi

Fernández Pérez et al. (2018) Onshore WorkoverHeterog. Sched. Simu-
Opt.

2.4.2 Prod. Loss

Ma et al. (2018) Onshore Drilling;
Oth-
ers

- Sched. Data
Driven
Opt.

2.4.1 Econ. Index

Santos (2018) Offshore Drilling;
Oth-
ers

Homog. Sched. Exact;
Heur.

2.4.1 Multi

Silva and Silva (2018) Onshore WorkoverHeterog. Rout. Exact2.4.3 Prod. Loss
Tavallali and Zare (2018) - DrillingHeterog. Rout. Exact2.4.1 Costs
Achkar et al. (2019a) Onshore WorkoverHeterog. Rout. Matheur.2.4.4.2 Multi
Achkar et al. (2019b) Onshore WorkoverHeterog. Rout. Matheur.2.4.4.2 Multi
Bakker et al. (2019) Offshore P&A Heterog. Rout. Exact2.4.4.2 Costs
Pérez et al. (2019) Onshore WorkoverHeterog. Sched. Simu-

Opt.
2.4.2 Prod. Loss

Marchesi et al. (2019) (2019) Offshore Drilling;
Oth-
ers

Homog. Sched. Exact2.4.4.2 Time

Shaji et al. (2019) Onshore WorkoverHeterog. Rout. Heur. 2.4.3 Prod. Loss
Aurachman et al. (2020) Onshore; Offshore WorkoverHomog. Rout. - 2.4.4.2 Prod. Loss
Bakker (2020) Offshore P&A Heterog. Rout. Exact;

Simu-
Opt.

2.4.4.2 Costs

Bakker et al. (2021) Offshore P&A Heterog. Rout. Exact2.4.4.2 Costs
Calderón and Pekney (2020) Offshore DrillingHomog. Sched. Exact2.4.4.1 Econ. Index
Kulachenko and Kononova
(2020)

Onshore DrillingHomog. Rout. Matheur.2.4.1 Distance

Tozzo et al. (2020) Onshore WorkoverHeterog. Rout. Heur. 2.4.3 Multi
Table C.1: Rig scheduling publications found in this literature review

For more details about each paper, see the complete table in the supple-
mentary file SupplementaryFile-IuriSantos.xlsx .

https://drive.google.com/file/d/1d7PtTmFhXgP7qF9j7wTmW_XVbQ-hNeke/view?usp=sharing
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Portuguese stopwords

The following table D.1 presents the complete list of the Portuguese
stopwords used for the data cleaning process.

"de", "a", "o", "que", "e", "do", "da", "em", "um", "para", "é", "com", "não", "uma", "os", "no", "se",
"na", "por", "mais", "as", "dos", "como", "mas", "foi", "ao", "ele", "das", "tem", "à", "seu", "sua",
"ou", "ser", "quando", "muito", "há", "nos", "já", "está", "eu", "também", "só", "pelo", "pela", "até",
"isso", "ela", "entre", "era", "depois", "sem", "mesmo", "aos", "ter", "seus", "quem", "nas", "me",
"esse", "eles", "estão", "você", "tinha", "foram", "essa", "num", "nem", "suas", "meu", "às", "minha",
"têm", "numa", "pelos", "elas", "havia", "seja", "qual", "será", "nós", "tenho", "lhe", "deles", "essas",
"esses", "pelas", "este", "fosse", "dele", "tu", "te", "vocês", "vos", "lhes", "meus", "minhas", "teu", "tua",
"teus", "tuas", "nosso", "nossa", "nossos", "nossas", "dela", "delas", "esta", "estes", "estas", "aquele",
"aquela", "aqueles", "aquelas", "isto", "aquilo", "estou", "está", "estamos", "estão", "estive", "esteve",
"estivemos", "estiveram", "estava", "estávamos", "estavam", "estivera", "estivéramos", "esteja", "es-
tejamos", "estejam", "estivesse", "estivéssemos", "estivessem", "estiver", "estivermos", "estiverem",
"hei", "há", "havemos", "hão", "houve", "houvemos", "houveram", "houvera", "houvéramos", "haja",
"hajamos", "hajam", "houvesse", "houvéssemos", "houvessem", "houver", "houvermos", "houverem",
"houverei", "houverá", "houveremos", "houverão", "houveria", "houveríamos", "houveriam", "sou", "so-
mos", "são", "era", "éramos", "eram", "fui", "foi", "fomos", "foram", "fora", "fôramos", "seja", "sejamos",
"sejam", "fosse", "fôssemos", "fossem", "for", "formos", "forem", "serei", "será", "seremos", "serão",
"seria", "seríamos", "seriam", "tenho", "tem", "temos", "tém", "tinha", "tínhamos", "tinham", "tive",
"teve", "tivemos", "tiveram", "tivera", "tivéramos", "tenha", "tenhamos", "tenham", "tivesse", "tivésse-
mos", "tivessem", "tiver", "tivermos", "tiverem", "terei", "terá", "teremos", "terão", "teria", "teríamos",
"teriam".

Table D.1: Stopword (in Portuguese) removed from the text.
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Comparision between k-means and h-cluster

A comparison of the clusters obtained through k-means and h-clusters
was used using heatmaps and dendrograms. This comparison was developed
with an arbitrary number of clusters and supported the choice of the k-means
as our classification algorithm and is shown in Figure E.1.

Figure E.1: Heatmaps with dendrogram for k-means (vertical axis) and h-
cluster (horizontal axis).
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Final regression

The final coefficients for the regression of the workover duration are
presented in Table F.1. Note that the null coefficients values were ommited
from the table.

Parameter Coefficient
(Intercept) 2.250047e+00
Depthi -9.305728e-06

SubpoolAGP -6.981267e-02
SubpoolCORP 4.968064e-01
SubpoolDPT 1.212296e-01
SubpoolSSE 4.431450e-03
BasinCeara -2.017823e-02
BasinEspirito -4.528720e-01
BasinPontiguar 2.071196e-01
BasinSergipe -4.644360e-02
Clusters45

2 5.103918782
Cluster45

2 6.607015e-02
Cluster45

3 -1.754563e-01
Clusters45

4 5.203951e-02
Clusters45

7 3.480876e-02
Clusters45

8 1.103593e-01
Clusters45

9 3.791715e-02
Clusters45

1 0 8.499537e-02
Clusters45

1 3 -2.468064e-01
Clusters45

1 7 -2.193741e-01
Clusters45

2 1 -1.551534e-01
Clusters45

2 5 3.278956e-01
Clusters45

2 8 -1.192809e-01
Clusters45

2 9 1.332856e-01
Clusters45

3 1 -2.830062e-02
Clusters45

3 3 4.813594e-02
Clusters45

3 6 -1.515326e-01
Table F.1: Coefficients for the final regression of log(dki ).
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Parameter Coefficient
Clusters45

3 9 1.102441e-01
Clusters45

4 0 2.317509e-01
Clusters45

4 2 -4.002683e-01
Clusters45

4 3 -8.011800e-02
TypeFixedRig 5.857882e-01
TypeSS/Drillship 7.656649e-01

Table F.1: Coefficients for the final regression of log(dki ).
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G
Kernel-based joint chance-constrained model

This Appendix applies the kernel-based data-driven joint chance-
constrained optimization approach from Calfa et al. (2015), described in Sec-
tion 3.3.6, on the chance-constrained workover rig scheduling problem from
Section 7.1.1. First, we reformulate the probabilistic constraint from (7-7) can
be reformulated as:

P[Si − Sj +H(Xk
ij − 1) ≤ −d̃ki ∀j, k|i 6= j] ≥ α ∀i|i 6= 0 (G-1)

P[gkij(x) ≤ ξ̃ki ∀i, k|i 6= j] ≥ α ∀i|i 6= 0, (G-2)

where gkij(x) = Si − Sj +H(Xk
ij − 1) and ξ̃ki = d̃i

k.
According to Calfa et al. (2015), if the distributions for ξ̃ki are indepen-

dents, uncorrelated, and each one following a Gaussian model, constraint (G-2)
can be reformulated using kernel distribution estimation properties as:

L∑
l=1

∏
j∈J,k∈K|i 6=j

Kki
gkij(x)− ξ̂kli

hki

 ≥ α
′

+ ∀i ∈ J |i 6= 0 (G-3)

L∑
l=1

∏
j∈J,k∈K|i 6=j

Kki
gkij(x) + d̂kli

hki

 ≥ α
′

+ ∀i ∈ J |i 6= 0, (G-4)

where ξ̂kli are data points of the uncertainty, d̂kli represents the data points l of
the duration of the workover i using rig k, hki is the bandwidth selected for the
kernel estimation of that type of well of the workover i and rig k, and K(·) is
the kernel or weighting function estimated for that type of well of the workover
i and rig k. In this case study, as recommended by Calfa et al. (2015), we use
the Gaussian kernel KGaussian(u), which leads to the following equations:

L∑
l=1

∏
j∈J,k∈K

1
2 + 1

2erf
gkij(x) + d̂kli

hki
√

2

 ≥ 1− α′+ ∀i ∈ J |i 6= 0

(G-5)
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L∑
l=1

∏
j∈J,k∈K

1
2 + 1

2erf
Si − Sj +H(Xk

ij − 1) + d̂kli

hki
√

2

 ≥ 1− α′+ ∀i ∈ J |i 6= 0

(G-6)

As mentioned earlier, this deterministic-equivalent reformulation leads
to a non-linear equation that is also non-convex. As a result, the kernel-based
JCC-WRSP becomes a non-convex mixed-integer non-linear programming
(MINLP) model. Therefore, other alternative methods should be developed.
In the next section, we propose alternative data-driven JCC-WRSP method
based on regression models.
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