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Abstract

Beyda, David; Molinaro, Marco Serpa (Advisor). Solving the Online
Packing IP Under Some Adversarial Inputs. Rio de Janeiro, 2022.
64p. Dissertação de Mestrado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

We study online packing integer programs, where the columns arrive one
by one. Since optimal algorithms were found for the RANDOMORDER model –
where columns arrive in random order – much focus of the area has been on less
optimistic models. One of those models is the MIXED model, where some columns
are adversarially ordered, while others come in random-order. Very few results are
known for packing IPs in the MIXED model, which is the object of our study.

We consider online IPs with d occupation dimensions (d packing constraints),
each one with capacity (or right-hand side) B. We also assume all items’ rewards
and occupations to be less or equal to 1. Our goal is to design an algorithm
where the presence of adversarial columns has a limited effect on the algorithm’s
competitiveness relative to the random-order columns. Thus, we use OPTStoch – the
offline optimal solution considering only the random-order part of the input – as a
benchmark. We present an algorithm that, relative to OPTStoch, is (1−5λ−O (ε))-
competitive with high probability, where λ is the fraction of adversarial columns.

In order to achieve such a guarantee, we make use of a primal-dual algorithm
where the decision variables are set by evaluating each item’s reward and occupa-
tion according to the dual variables of the IP, like other algorithms for the RAN-
DOMORDER model do. However, we can’t hope to estimate those dual variables by
solving a scaled version of problem, because they could easily be manipulated by
an adversary in the MIXED model. Our solution was to use online learning techni-
ques to learn all aspects of the dual variables in an online fashion, as the problem
progresses.

Keywords
Online Integer Programs; Online Algorithms; Convex Optimization; Online

Learning; Sequential Decision.
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Resumo

Beyda, David; Molinaro, Marco Serpa. Resolvendo Online Packing
IPs sob a Presença de Entradas Adversárias. Rio de Janeiro, 2022.
64p. Dissertação de Mestrado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

Nesse trabalho, estudamos online packing integer programs, cujas colunas são
reveladas uma a uma. Já que algoritmos ótimos foram encontrados para o modelo
RANDOMORDER– onde a ordem na qual as colunas são reveladas para o algoritmo
é aleatória – o foco da área se voltou para modelo menos otimistas. Um desses
modelos é o modelo MIXED, no qual algumas colunas são ordenadas de forma
adversária, enquanto outras chegam em ordem aleatória. Pouquíssimos resultados
são conhecidos para online packing IPs no modelo MIXED, que é o objeto do nosso
estudo.

Consideramos problemas de online packing com d dimensões de ocupação
(d restrições de empacotamento), cada uma com capacidade B. Assumimos que
todas as recompensas e ocupações dos itens estão no intervalo [0, 1]. O objetivo do
estudo é projetar um algoritmo no qual a presença de alguns itens adversários tenha
um efeito limitado na competitividade do algoritmo relativa às colunas de ordem
aleatória. Portanto, usamos como benchmark OPTStoch, que é o valor da solução
ótima offline que considera apenas a parte aleatória da instância. Apresentamos um
algoritmo que obtém recompensas de pelo menos (1 − 5λ − O (ε))OPTStoch com
alta probabilidade, onde λ é a fração de colunas em ordem adversária.

Para conseguir tal garantia, projetamos um algoritmo primal-dual onde as
decisões são tomadas pelo algoritmo pela avaliação da recompensa e ocupação
de cada item, de acordo com as variáveis duais do programa inteiro. Entretanto,
diferentemente dos algoritmos primais-duais para o modelo RANDOMORDER, não
podemos estimar as variáveis duais pela resolução de um problema reduzido. A
causa disso é que, no modelo MIXED, um adversário pode facilmente manipular
algumas colunas, para atrapalhar nossa estimação. Para contornar isso, propomos o
uso de tecnicas conhecidas de online learning para aprender as variáveis duais do
problema de forma online, conforme o problema progride.

Palavras-chave
Programas inteiros online; Algoritmos online; Otimização convexa; Apren-

dizado online; Decisões sequenciais.
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For success, like happiness, cannot be pursued;
it must ensue, and it only does so as the unin-
tended side effect of one’s personal dedication to
a cause greater than oneself...

Viktor E. Frankl, Man’s Search for Meaning.
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1
Introduction

Online optimization is a field of Optimization that deals with problems where
the inputs are not known upfront. Namely, the input arrives in portions, to which an
algorithm must immediately react by making irrevocable decisions, before receiving
the next portion of the input. In recent years, research was further motivated by
the emergence and relevance of possible applications, such as online display ads
allocation and load balancing of VM workloads to physical machines. In this
context, the object of our study is the online packing problem, which is an integer
program with linear objectives and linear packing restrictions, where each column is
revealed only after a decision has been made regarding the last column. We view this
problem as follows: a sequence of items is presented to an algorithm, each item has
a reward and a d dimensional vector that informs the occupation for each packing
constraint. After one item being presented, the algorithm must decide to pick or
not pick that item, before seeing the next one. The objective is for the algorithm to
maximize the picked rewards, while respecting a capacity of B in each occupation
dimension. The simplest example of an online packing problem is the secretary
problem: a hidden sequence of T numbers is revealed, one number at a time. The
algorithm can pick only one number, and his objective is to maximize the value of
the picked number.

When studying algorithms, it’s natural to pursue worst-case guarantees. How-
ever, sometimes, worst-case guarantees are too pessimistic, in the sense that no good
or useful guarantee is possible. In particular, this is true for online packing problems,
where the best guarantee possible is O (1/T ) OPT [4] in the adversarial model.
Generally, imposing limits on the adversary can yield more useful guarantees: the
adversary prepares every portion of the input, but those portions are presented in
random order. This is the RANDOMORDER model, which has taken the spotlight of
the area until optimal guarantees were found [1, 14, 19]. Nevertheless, the optimistic
RANDOMORDER model is not concerned with “worst-case” time steps, that may
happen in practice. This motivated the search for an intermediate model, with both
adversarial and random-order time steps, the MIXED model. This model introduces
new challenges on how to estimate the dual variables of primal-dual algorithms,
since most estimation methods can be manipulated by the adversarial fraction of
the instance.
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Chapter 1. Introduction 14

In this work we present a primal-dual algorithm for the online packing prob-
lem in the MIXED model: ROBUSTAD (Algorithm 3). Our solution to the prob-
lem of estimating the dual variables is to learn those variables as the problem pro-
gresses, using online learning mechanisms. In addition, we prove guarantees high
probability guarantees for our algorithm, which are relative to the optimum solu-
tion OPTStoch that considers only the random-order time steps. In other words, the
guarantee asserts how much the presence of some adversarial time steps degrades
the performance of the algorithm on the RANDOMORDER time steps.

1.1
Related Work

The online packing literature traces back to the secretary problem, originated
in the realm of optimal stopping problems. In the secretary problem, a sequence of
T numbers is secretly chosen, randomly shuffled, and then revealed to an algorithm,
one number at a time. The algorithm decides when to stop the revelations, and the
objective is to stop at the highest number of the sequence. Note this problem is
similar to the online packing problem in the random-order model, if all items have
occupation 1 and the right-hand side (RHS) capacity is also 1. The first optimal
result for the secretary problem was found in 1960 [13], with probability of success
greater than 1

e
(approaching this value as n → ∞). The algorithm consists of

observing the first (e T ) numbers, registering their maximum, and then stopping
at the first number that exceeds the registered maximum.

In 2005, Kleinberg [20] presented an algorithm for a more general problem:
the k-secretary problem. It’s a variation of the secretary problem where one can
pick k numbers and only stop at the k-th, with the objective of having the highest
number of the sequence in any of the picks. He also studies a variation of this
problem where the objective is to maximize the sum of the picked numbers. This
last variation is actually an online packing problem where all items have occupation
1 and the capacity is k. Kleinberg presented an algorithm with a competitive ratio of
1−O

(
1/
√
k
)

for the RANDOMORDER model. He also proved that the competitive
ratio achieved by his algorithm is the best possible for this problem. His algorithm
is a more complex and sophisticated version of the classic 1960’s algorithm.

Now consider the problem where, instead of a number, a set of items is
revealed to the algorithm at each time step. Each item has a reward, an occupation
vector of d dimensions and a capacity B of occupation in each dimension. At each
time step, the algorithm must pick zero or one items from the recently revealed
set. The objective is to maximize the sum of items’ rewards without exceeding the
capacity in any dimension. This problem is the online packing problem.

In 2010, Feldman et al. [12] presented a primal-dual algorithm for the online
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packing problem in the RANDOMORDER model, achieving a competitive ratio of
1 − ε, assuming B ≥ d log T

ε3 . Their algorithm observes the first εT time steps, than
solves the dual problem relative to those first εT samples, using capacity εB in
each dimension. They refer to that problem as the reduced instance. This way, they
estimate the vector of dual variables λ, representing the optimum reward/occupation
ratio for the reduced instance. Then, for every other time step, the algorithm picks
the item that maximizes (itemvalue − 〈λ, itemoccupation〉) (not picking any item is
always an option). Notice his algorithm solves a LP only once.

Almost concurrently, at the end of 2009, Agrawal et al. [2] made public their
work of the DPA (Dynamic Pricing Algorithm), similar to Feldman [12], but solving
the LP for the dual variables multiple times, in time steps εT, 2εT, 4εT, .... With
that, the assumption on B improved to B ≥ Ω(d log(T/ε)

ε2 ), but solving multiple
LPs required more computational work. Additionally, they proved that under the
RANDOMORDER model, no algorithm could achieve a competitive ratio of 1 − ε

with an assumption of B weaker than B ≥ O
(

log d
ε2

)
, revealing the state of the art

was getting close to the theoretical limits of the problem. Their work was published
later, in 2014.

On the same problem, in 2014, Molinaro and Ravi [26] were able to modify
the DPA, achieving a competitive ratio of 1− ε, with the knapsack size assumption
that B ≥ Ω(d

2 log(d/ε)
ε2 ). Note that they were able to remove the dependence on T for

cases where the number of constraints d was greater than 1. Before, only instances
with d = 1 had results free of any dependency on T .

Finally, in 2014, Kesselheim et al. [19] presented the first algorithm to achieve
the optimal bound on B for the random-order model: B ≥ Ω( log d

ε2 ). Their approach
was to solve, at each time step t, a scaled LP of the items already revealed, with
capacity t

T
B. Note this LP allows the solution to contain fractions of items. Then,

from the solution of the LP, the fraction of the items revealed in time step t are
viewed as probabilities, and the algorithm picks one item randomly, according to
those probabilities. Still, this algorithm required a LP to be solved for each time
step, which motivated the search for computationally cheaper algorithms.

Finally, Gupta and Molinaro [14] showed how to solve an online packing
problem by solving an associated load balancing problem. They show simple
algorithms to solve the load balancing problem, and build them into more complex
algorithms to solve the online packing problem. They present a high probability
guarantee, requiring that B ≥ Ω

(
log d
ε2

)
and assuming items’ rewards are small

compared to OPT. Then, they remove this last assumption, and present a guarantee
with dependency B ≥ Ω

(
log(d/ε)
ε2

)
.

Lastly, Agrawal and Devanur [1] also provided a primal-dual algorithm with
optimal guarantees for online packing in the RANDOMORDER model. They show
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a connection between online learning and convex optimization, based on the use
of the Fenchel duality. For the online packing problem, they present an algorithm
which tries to obtain the optimal solution by learning the Langrange multipliers λ
which is factored into λ = Zθ. Z is a scalar denoting the scale of the multipliers,
and is estimated by observing the first δ time steps of the problem. θ such that∑
j∈[d] θj ≤ 1 is a vector giving the “direction” of the Lagrange multipliers, and is

learned over time using online learning mechanisms (prediction with experts).
Regarding the MIXED model, that considers both advesarial and random-

order time steps, algorithms with good guarantees have been on the focus of
research for some related problems. It has been a topic of interest in the following
online problems: secretary problems [8, 17, 18], load balancing [11, 25], welfare
maximization [21], facility location [23] and budgeted allocation [24].

1.2
Our Results

We present the first algorithm, to our knowledge, that solves online packing
IPs in the MIXED model. The main result of this work is algorithm ROBUSTAD (Al-
gorithm 3) and its guarantee (Theorem 5.1), which is presented bellow informally:

Informal Theorem 1.1. Assume ε ∈ (0, 0.1) and assume the fraction of adver-

sarial times λ ≤ 0.5. Suppose that each item reward ct ∈ [0, OPTStoch
B

] and the

capacity B ≥ Ω( (log log T+log(1/ε)) log d
ε4 ). Also suppose we have a poly(n) estimate of

OPTStoch. Then, if B ≥ Ω( 1
ε2 log[ (log log T−log ε)

ε2
d
δ′

]), with probability at least 1− δ′,
algorithm ROBUSTAD achieves

ROBUSTAD ≥ (1− 5λ−O (ε))OPTStoch

ROBUSTAD draws inspiration from primal-dual algorithms, in the sense that
they use dual variables to evaluate the “constraints-adjusted” rewards of picking
an item. However, it does not require the solving of any LPs. Items are accepted
if they have a positive gain itemvalue − Z〈θt, itemoccupation〉, where Z is a scalar
value updated from time to time (using MSMW algorithm [9]), and θt is a vector
balancing the occupation dimensions, updated at each time step (using MWU [3]).
Notice that learning Z θ can be interpreted as learning the scale and the direction
of Lagrange multipliers. Notice also that our algorithm assumes knowledge of a
poly(n) estimate of OPT, as did some other algorithms in this area (see [14] for a
more detailed discussion about this assumption).

Additionally, on the RANDOMORDER model (λ = 0), we obtain the opti-
mal result of (1 − ε)OPT, but we require stronger assumptions on B (by a fac-
tor of log log T+log(1/ε)

ε2 ) than other algorithms designed specifically for that model
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[1, 14, 19]. We also require an estimate of OPT, which is not a problem in the
RANDOMORDER model. Such an estimate can be obtained, for example, by watch-
ing a small fraction of the time steps, as done in [1].

Lastly, on section 6, we present experimental results comparing ROBUSTAD
and AD on instances generated by the procedure described by Wang [27]. Also, we
simulate MIXED instances by applying various types of manipulations on instances
generated from the Chu and Beasley [10] procedure. Overall, AD turned out to
be more stable and resilient than previously thought, and ROBUSTAD suffered big
losses due to the distribution of the capacity into the intervals, and due to the trade-
off between learning speed and stability.
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2
Online Packing IPs and the MIXED Model

2.1
Online Packing IPs

In the classical online packing problem, a set of items is revealed in each time
step, and the algorithm picks up to one item at each time step. For this work, we
consider a simpler problem, where only one item is revealed at each time step, as
defined below.

Definition 2.1 (Online Packing IP). The problem develops during T time time steps.

In each time step t, an item is revealed. An item has a non-negative reward ct ∈ R+

and an occupation vector at with d dimensions and entries in the interval [0, 1].
After an item is revealed, the algorithm makes the decision to pick or not the current

item, before the next item is revealed. The objective is to maximize the rewards of

picked items, while restricting the sum of its occupations to a maximum of B in

each dimension. The number of time steps T , the capacity B and the occupation

dimension d are known upfront.

That is, the goal is to solve the following packing problem in an online fashion
(where the columns come one-by-one):

max
T∑
t=1

ctxt

s.t.
T∑
t=1

atxt ≤ B1

x ∈ {0, 1}T ,

where xt denotes the decision of picking or not the item at time t.
Throughout the text, we use x = {0, 1}T to denote a solution, and xt

to denote the decision variable in time step t. We also use rt = ctxt (which
is in {0, ct}) to denote the reward obtained at time t by a solution x, and
vt = atxt ∈ [0, 1]d to denote the contribution to the occupation incurred by
this time step.

We note that the assumption of T and B being known upfront can be
relaxed: for example, if these quantities are only known within a (1 ± ε) factor,
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our results will simply incur an additional (1 − O (ε)) loss in the quality of the
solution obtained. We also note that we assume that all d constraints have the same
capacity/right-hand-side B, but this is without loss of generality because we can
simply re-scale the rows of the problem appropriately to obtain this property.

2.2
Online Input Models

The focus of this work is on Online Packing IPs in the MIXED model. But
since it is a mix of the adversarial and the RANDOMORDER models, we first define
them and, then, we define the model of interest.

2.2.1
Adversarial Model

This model considers that an adversary picks arbitrarily the sequence of items’
returns and occupations (ct, at) in advance. The items are presented one-by-one to
the algorithm. In particular, the adversary controls the order in which the items are
revealed to the algorithm.

2.2.2
RANDOMORDER Model

In the RANDOMORDER model (also known as random permutation model),
the adversary chooses the set of T items {(q1, u1), . . . , (qT , uT )} of the instance,
but they are sent to the time slots randomly. More precisely, the items (ct, at)
are sampled without replacement from the set {(q1, u1), . . . , (qT , uT )}. Then, the
sequence of items (ct, at)t∈[T ] is presented one-by-one to the algorithm. In short, the
adversary looses control over the order in which items are revealed to the algorithm.

Note that as soon as the set of items {(q1, u1), . . . , (qT , uT )} is chosen, there
is an optimal decision associated with each time step. That is, the offline optimum
does not depend on the order in which the inputs are presented to the algorithm. In
particular, the same holds for the optimal value OPT, which is then a deterministic
quantity.

Definition 2.2. (OPT) The offline optimum is the optimal solution for the whole

instance, namely, the solution of the optimal algorithm that knows the whole

instance in hindsight. We use OPT to denote the value obtained by this optimal

solution.
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Chapter 2. Online Packing IPs and the MIXED Model 20

2.2.3
MIXED Model

We now introduce the MIXED model, which is a mixture of the adversarial
and RANDOMORDER models, namely some time steps are “adversarial” and the
others are “random-order”. More precisely, inputs following this model are built as
follows:

1. An adversary partitions the time steps [T ] into “adversarial” times Adv ⊆ [T ]
and “random-order” times Stoch ⊆ [T ]. This partition is unknown to the
algorithm.

2. For the time steps in Adv, the adversary chooses its items’ rewards and
occupations arbitrarily.

3. For the time steps in Stoch, the adversary prepares a set of items
{(q1, u1), . . . , (q|Stoch|, u|Stoch|)}, but they are sent to the time slots in
Stoch randomly. More precisely, the items (ct, at) for the random-
order times t ∈ Stoch are sampled without replacement from the set
{(q1, u1), . . . , (q|Stoch|, u|Stoch|)}.

4. The full sequence of items (ct, at)t∈[T ] is presented one-by-one to the algo-
rithm.

2

3

4

1

Empty time slots

Time slots that were attributed an item

Time slots randomly shuffled (random-order instants)

Time slots fixed in place (adversary instants)

Figure 2.1: Step-by-step building of a MIXED instance

Note that the adversary can make an instance completely adversarial by
sending “dummy” random-order items: for example, it can set all random-order
items to have value 0. As mentiond above, no non-trivial guarantee is possible in
this case. In order to obtain meaningful guarantees, we compare the algorithm’s
performance only to the optimum over the random-order times, which we
denote by OPTStoch. Thus, our goal is to design algorithm for the MIXED model
that obtains expected value at least αOPTStoch for a constant α as close to 1 as
possible.

Definition 2.3 (OPTStoch). We denote by OPTStoch the value obtained by the offline

optimal solution that only considers the RANDOMORDER time steps.
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3
Known Results that we Need

In this section we have gathered some ideas and results that we’ll need. Sec-
tions 3.1 and 3.2 describe some problems and useful results from the online learning
area. Online learning algorithms proved to be useful in a variety of situations, from
the construction of online portfolios [22], to recommendation systems [16], de-
sign of efficient offline algorithms [3], and convex/online/robust/inverse optimiza-
tion [6, 7, 14, 15]. We will only need two (related) special cases of online learning
that we describe in this section.

Additionally, in Section 3.3, we describe an algorithm that is the basis of our
analysis.

3.1
Fractional Prediction with Expert Advice
Definition 3.1 (Fractional Prediction with Expert Advice). Let us define the simplex

4d := {θ ∈ Rd : ∑
i θi = 1}. In the Fractional Prediction with Expert Advice

problem, at time t the algorithm needs to choose a vector θt ∈ 4d. After that,

reward vector ht is revealed. The algorithm gets a reward of 〈θt, ht〉. This process

is repeated for T iterations. The objective is to maximize the total reward obtained:∑T
t=1〈θt, ht〉.

The benchmark used to evaluate algorithms for this setting is the value
obtained by choosing the best fixed vector θ∗ ∈ 4d in hindsight, at every time
step:

∑T
t=1〈θ∗, ht〉. Thus, good algorithms should achieve a total reward that satisfy

T∑
t=1
〈θt, ht〉 ≥ αmax

θ∈4n

T∑
t=1
〈θ, ht〉 − β,

for α as close to 1 as possible, and β as close to 0 as possible.
There are known algorithms that achieve those guarantees, such as the Mul-

tiplicate Weights Update Algorithm (MWU) [3], described in Appendix A.1. How-
ever, the Fractional Prediction with Expert Advice problem we have to solve
will be in the domain of a “full-dimensional simplex”, defined by Nd := {θ ∈
Rd : ∑

i θi ≤ 1}. Bellow, we present a result for the MWU in Nd, which follows
directly from Theorem 5 of [3], and a more extensive demonstration is presented in
Appendix A.2.
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Lemma 3.2 (MWU). Suppose that all reward vectors ht belong to [−3, 3]d. Then

there is an algorithm MWU such that for every ε ∈ (0, 1
2 ] its decisions satisfy

T∑
t=1
〈θt, ht〉 ≥

T∑
t=1
〈θ∗, ht〉 − ε

T∑
t=1
|〈θ∗, ht〉| −

3 log(d+ 1)
ε

where θ∗ ∈ Nd is the fixed vector that maximizes the rewards in hindsight.

3.2
(Integral) Prediction with Expert Advice
Definition 3.3 (Integral Prediction with Experts). In this problem, there is a set of

n “experts”. At time t, the algorithm needs to choose (possibly randomly) an expert

it ∈ [n]. After that, it sees the reward (ht)i obtained by each expert i ∈ [n] (so ht is

a reward vector with n coordinates). Again the goal is to maximize the total reward

obtained.

Similarly to the fractional problem, we evaluate algorithms for the integer
problem by comparing them to the best expert in hindsight; that is, to obtain

T∑
t=1

(ht)it ≥ αmax
i∈[n]

T∑
t=1

(ht)i − β,

for α as close to 1 as possible, and β as close to 0 as possible.
Notice that the problem from the previous section (definition 3.1) can indeed

be seen as a “fractional” version of this problem, where the ith coordinate (θt)i says
how much the algorithm wants to use of expert i, at time t.

We will need the following result, which while related to Lemma 3.2, offers a
guarantee that scales better with the range of the rewards for the individual experts.
The following can be obtained directly from the main result of [9]. The algorithm
that holds that result, MSMW, is reproduced in Appendix A.3.

Lemma 3.4 (MSMW). Consider experts with non-negative rewards. Let c ∈ Rn be

a vector that upper bounds the reward vectors of every time t, namely (ht)i ≤ ci

for every i ∈ [n] and for all t. Then there is an algorithm MSMW such that for all

ε ∈ (0, 1], its (random) decisions satisfy

E
T∑
t=1

(ht)it ≥ (1− ε)
T∑
t=1

(ht)i −O
(
ci log(n/ε)

ε

)

for every expert i ∈ [n].

Notice how the guarantee presented on Lemma 3.2 differs from this one, and
not only by the randomness and expectations. The former compares the algorithm’s
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rewards with the rewards obtained by the best fixed decision in hindsight. The latter
allows us to compare the algorithm’s expected rewards with the rewards obtained
by any fixed expert i we want, and not only the best one.

3.3
Agrawal-Devanur (AD) Algorithm for Online Stochastic LPs

Agrawal & Devanur presented an online packing algorithm [1] that works for
the RANDOMORDER model and is central to this work. We refer to it as Algorithm
AD, and present it below. Recall ct and at denote, respectively, the reward and
occupation vector of the item presented in time step t. Also, vt = atxt is the capacity
occupation incurred by the algorithm relative to the choice xt = {0, 1} in time step
t. Below, we describe Algorithm AD and show how to set parameter δ.

Algorithm 1 Algorithm AD for the Random Order Model
1: procedure AD(B,T )
2: for t = 1, 2, . . . , δT do . Observation phase
3: Don’t pick any item
4: Set Z ← OPT′

δB
based on the items seen so far

5: Initialize θδT+1 from MWU with d+ 1 experts and gains in range [−1, 1]
6: for t = δT + 1, . . . , T do . Active phase
7: Pack item if ct − Z〈θt, at〉 ≥ 0
8: if any dimension of the occupation exceeds B then
9: Exit

10: Compute the gains ht,j = vt,j − B
T

of each dimension j = 1, . . . , d and
set ht,0 = 0

11: Send ht to the MWU to obtain the next occupation weights θt+1

Param. Value

δ 12 4ε2

log d log
(
d+2
ε2

)
Table 3.1: Parameter setting for Algorithm AD.

AD is a primal-dual algorithm that tries to learn the Lagrange multipliers that
best insert the constraints into the objective function. This is done by separating the
scale Z of the multipliers from their direction vector θ, and, at each time step t, the
decision is made trying to maximize the new objective function, that includes the
constraints.

To give another view of the algorithm, notice it works by attributing weights
θt to each dimension of the occupation vector, which are dynamically adjusted as
the algorithm progresses. θt tracks each dimension’s occupation, attributing higher
weights to the dimensions that were most used. Those weights θt are used to
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calculate a “dimension-adjusted cost” 〈θt, at〉 for each item, which goes into the
final cost Z〈θt, at〉 of an item. Z can be viewed as the estimated trade-off between
item’s rewards and occupations, and is set to a fixed scalar value. If an item’s reward
is higher than its final cost Z〈θt, at〉, the algorithm picks that item. Also, there is a
value for Z that minimizes AD’s regret, and it is Z∗ = OPT

B
. However, since Z∗

depends on the knowledge of OPT, the algorithm tries to estimate OPT using the
first δT time steps.

Notice AD works in two phases: an observation phase and an active phase.
During the observation phase, the algorithm doesn’t pick any item. When the
observation phase is done, the algorithm sets a value for Z, using an estimation
OPT′ of OPT, based on the items seen so far. The estimation for OPT is obtained
by solving a scaled version of problem to find OPT′ (Definition 3.5), and then
estimating that OPT ≈ OPT′

δ
. The scaled version of the problem, used to find OPT′,

is presented bellow:

Definition 3.5 (OPT′). We denote by OPT′ the value of the offline optimum solution

to the following problem, which is related to the first δT time steps:

max
δT∑
t=1

ctxt

s.t.
δT∑
t=1

atxt ≤
(
δB + η

√
δB
)

1,

where η =
√

3 log
(
d+2
ε2

)
and δ = 12 4ε2

log d log
(
d+2
ε2

)
.

The weights attributed to the occupation dimensions are managed using the
MWU algorithm [3]. Since more occupied dimensions are attributed a higher
weight, if an item has high occupation in a dimension already very occupied, its
adjusted cost 〈θ, at〉 gets higher, and the algorithm has an incentive to skip that
item. Thus, the algorithm is encouraged to keep the occupation balanced between
the available dimensions.

Considering that Algorithm AD was designed for the RANDOMORDER

model, at first, we deem it unsuitable for the MIXED model. An adversary aware
of the observation phase would choose to manipulate the first δT time steps, mak-
ing them adversarial, ruining the OPT estimation, resulting in a bad choice of Z by
the algorithm. Our hypothesis is that a bad choice of Z would make AD perform
poorly during the active phase. That is the main motivation behind our work, and
we test that hypothesis later, with experiments, on Section 6.
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4
Algorithm ADm for the MIXED Model

In this section we prove that even though AD was designed originally for
the RANDOMORDER model, a variation ADm of AD has good guarantees in the
MIXED model. To obtain a good final guarantee, ADm still requires a parameter Z
to be given beforehand such that Z ≈ Z∗ = OPTStoch

B
, which implies the knowledge

of OPTStoch. Since it is not easy to estimate OPTStoch (because we do not know
which times are random-order), this is a non-trivial issue that will be addressed in
the next section.

Actually, this estimation of OPTStoch will require us to run ADm(Z) on
multiple time intervals. More precisely, given an interval I ⊆ [T ] of the time steps,
our aim is to approximately solve the Online Packing IP only considering the items
in I but using the appropriately scaled capacity |I|

T
B1. That is, we want to solve the

following problem (with columns coming online):

max
∑
t∈I

ctxt

s.t.
∑
t∈I

atxt ≤
|I|
T
B1

xt ∈ {0, 1} ∀t ∈ I.

(IP(I))

We use OPTStoch(I) to denote the offline optimal solution that considers only
the RANDOMORDER time steps of this problem. We use λI to denote the fraction
of adversarial time steps in interval I . Again we use rt = ctxt (which is in {0, ct})
to denote the reward obtained at time t by a solution x, and vt = atxt ∈ [0, 1]d

to denote the contribution to the occupation incurred by this time step.
ADm(Z, I) is described as Algorithm 2, below. It is composed by only the

active phase of AD, since it receives Z as an argument. In addition, the maximum
occupation it allows is in accordance with problem IP(I). Notice that ADm uses a
version of MWU adapted to gains in the range of [−3, 3] and with d+ 1 experts, in
accordance with Lemma 3.2.
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Algorithm 2 Algorithm ADm for an interval in the Mixed Model
1: procedure ADm(B, T , Z, I)
2: Initialize θ1 from MWU with d+ 1 experts and gains in range [−3, 3]
3: for t ∈ I do
4: Pack item if ct − Z〈θt, at〉 ≥ 0
5: if any dimension of the occupation exceeds |I|B

T
then

6: Exit

7: Compute the gains ht,j = vt,j − B
T

of each dimension j = 1, . . . , d and
set ht,0 = 0

8: Send ht to the MWU to obtain the next occupation weights θt+1

The main result of this section is a high probability lower bound for ADm,
that follows. Recall OPTStoch is the optimal solution for the whole problem, with T
time steps (and not just over the interval I), considering only the RANDOMORDER

time steps. Also, without loss of generality, we assume throughout this section that
T > B, otherwise picking all the items is a feasible solution and obtaining the
optimal result would be trivial.

Theorem 4.1. Consider an instance (IP(I)) of the Online Packing IPs problem over

an interval I in the MIXED model. Assume |I| ≤ T
2 and ct ∈ [0, OPTStoch

B
]. Let λ ≤ 1

2

denote the fraction of adversarial time steps for the whole instance, and λI denote

the fraction of adversarial time steps within interval I .

Then, for any ε ∈ (0, 1
10 ] and any Z ≥ 0, if B ≥ Ω( T|I|

log d/δ
ε2(1−λ)), algorithm

ADm always produces a feasible solution, and with probability at least 1− δ it has

value

ADm(Z, I) ≥ min
{
|I|OPTStoch

T
, (1− ε) |I|ZB

T

}
− λI |I|

T
OPTStoch

− Z 3 log(d+ 1)
ε

− 2λ |I|
T
ZB −O

(
ε
|I|
T

(OPTStoch + ZB)
)
.

First, notice Z is present in both positive and negative terms, so indeed there
is a Z∗ maximizes the expression. Next, notice the bound is valid with probability
1 − δ, and B ≥ Ω( T|I|

log d/δ
ε2(1−λ)), meaning, if B increases, the probability that ADm

respects the lower bound increases. In contrast, if we have more dimensions, the
problem gets harder to solve, and our guarantee slowly deteriorates.

In addition, suppose we use Theorem 4.1 in a completely RANDOMORDER

instance, and suppose we use Z = OPTStoch
B

and B ≥ T
|I|

log(d+1)
ε2(1−λ) . Theorem 4.1

becomes
ADm(Z, I) ≥ (1− λI − 2λ−O (ε)) |I|

T
OPTStoch.
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On a completely RANDOMORDER instance, λ = λI = 0. Then, taking the sum over
all T
|I| intervals, we recover the result of the original AD algorithm, which is

AD(Z) ≥ (1−O (ε))OPTStoch,

and note that OPTStoch = OPT in that case, since every time step is stochastic.
For the remainder of this section we prove Theorem 4.1. Let (rt, vt) be the

rewards and occupation incurred by the algorithm at time t. Also, let us define
(r∗t , v∗t ) as the option picked by OPTStoch in each random-order time step t ∈ Stoch
(over the whole problem, not just the interval I). More formally:

(r∗t , v∗t ) =

option picked by OPTStoch in time step t , if t ∈ Stoch

(0, 0), if t ∈ Adv

The starting point is the following lemma, which relates the reward obtained
by ADm to the following “Lagrangian value” LI of the optimal solution restricted
to the interval I , namely:

LI :=
∑

t∈I,t≤τ

(
r∗t − Z〈θt, v∗t − B1

T
〉
)
.

Lemma 4.2. Consider the same assumptions as in Theorem 4.1. Assume we are

running ADm for an interval I . Let τI be the stopping time of ADm relative to

interval I , and let [τI ] be the sequence of time steps in I up to τI . Then in every

scenario, the reward obtained by ADm is at least

∑
t∈[τI ]

rt ≥ LI + (1− ε)ZB
(
|I| − τI
T

)
− Z 3 log(d+ 1)

ε
.

Proof. Recall the decision criteria for ADm (Algorithm 2) to choose an item is to
pack it only if ct − Z〈θt, at − B1

T
〉 ≥ 0. In other words, the algorithm assigns to

(rt, vt) either (ct, at) or (0, 0) in time t, and it chooses the option that maximizes the
expression rt − Z〈θt, vt − B1

T
〉, like so:

(rt, vt) = argmax(r,v)∈{(ct,at),(0,0)} r − Z〈θt, v − B1
T
〉

Since we are maximizing the above expression, we can state that, for every time
step t,

rt − Z〈θt, vt − B1
T
〉 ≥ r∗t − Z〈θt, v∗t − B1

T
〉,
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and so adding over all times in I up to τI and reorganizing the terms gives

∑
t∈[τI ]

rt ≥
∑
t∈[τI ]

(
r∗t − Z〈θt, v∗t − B1

T
〉
)

︸ ︷︷ ︸
LI

+
∑
t∈[τI ]

Z〈θt, vt − B1
T
〉. (4-1)

We claim that the second summation on the right-hand side can be lower bounded
as

∑
t∈[τI ]
〈θt, vt − B1

T
〉 ≥ (1− ε)

(
|I|B
T
− τIB

T

)
− 3 log(d+ 1)

ε
. (4-2)

To see this, recall that ht = vt − B
T

1, therefore the left-hand side in the required
inequality is

∑
t∈[τI ]〈ht, θt〉. Notice that for every θ ∈ Nd, the absolute value

of 〈ht, θ〉 is at most 〈ht, θ〉 + 2B
T

, because when vt = {0}d, |〈ht, θ〉| = B
T
≤

〈vt, θ〉 − 〈BT , θ〉+
2B
T

= 〈ht, θ〉+ 2B
T

. Using the hypotheses vt ∈ [0, 1]d and B ≤ T ,
we arrive at |〈ht, θ〉| ≤ 1 + 2B

T
≤ 3. Now if we let θ∗ := argmaxθ∈Nd

∑
t∈[τI ]〈ht, θ〉,

we can use the guarantee from Lemma 3.2 to get

∑
t∈[τI ]
〈ht, θt〉 ≥ (1− ε)

∑
t∈[τI ]
〈ht, θ∗〉 −

3 log(d+ 1)
ε

. (4-3)

Moreover, when the algorithm stops, there are two possible, but mutually exclusive,
situations:

1. The algorithm stopped early due to a constraint violation. Let ej to be the d-
dimensional vector with all entries 0, except for the j-th entry, which is 1. If
some occupation dimension j violated its constraint, then

∑
t∈[τI ]〈vt, ej〉 ≥

|I|B
T

at the stopping time τI . Now, looking at the MWU gain functions,∑
t∈[τI ]〈ht, θ∗〉 ≥

∑
t∈[τI ]〈ht, ej〉 ≥

∑
t∈[τI ]〈vt, ej〉 −

∑
t∈[τI ]〈BT , ej〉 ≥

|I|B
T
−

τIB
T

.

2. The algorithm stopped at the end of the interval I , that is, τI = |I|, in which
case

∑
t∈[τI ] vt ≤ |I|B1

T
. Because of that,

∑
t∈[τI ](vt − B1

T
) ≤ 0, so the θ∗ that

maximizes
∑
t∈[τI ]〈ht, θ〉 is θ∗ = 0, and hence

∑
t∈[τI ]〈ht, θ∗〉 = 0 = |I|B

T
− τIB

T

(recall that in this current case we have τI = |I|).

Therefore, for both cases, we can state that
∑
t∈[τI ]〈ht, θ∗〉 ≥ |I|B

T
− τIB

T
. Using this

bound on (4-3) then proves (4-2). Employing the latter on (4-1) concludes the proof
of the lemma. �

Next, we lower bound the “Lagrangian value” LI of the optimal solution
(r∗t , v∗t ). Recall that λ is the fraction of adversarial time steps in the whole instance
(i.e., there are λT adversarial time steps in the whole instance).
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Lemma 4.3. Let τI be the stopping time of ADm relative to interval I . Let sI be

the number of stochastic time steps in I up to (and possibly including) the time τI .

Assume ct ∈ [0, OPTStoch
B

], ε ∈ (0, 1
10 ], B ≥ Ω( T|I|

log d/δ
ε2(1−λ)), |I| ≤ (1 − λ)T2 . Then,

with probability at least 1− δ
2 , we have

LI ≥ sI
OPTStoch

T
− 2λ |I|

T
ZB −O

(
ε |I|
T

(OPTStoch + ZB)
)
.

The proof of this lemma is quite technical and deferred to Appendix B. Here,
instead, we give an informal idea of the proof to convey the main ideas.

Idea of the proof. By definition, we have that
∑
t∈Stoch r

∗
t = OPTStoch. Since the

items in the random-order part of the instance are sampled (without replacement),
we see that the expected reward Er∗t is the same for all the (1− λ)T random-order
times t. Then, together with the previous equality this implies that Er∗t = OPTStoch

(1−λ)T

for all random-order times t. For adversarial times t, by definition r∗t = 0.
Similarly, the optimal solution (r∗t , v∗t ) certainly respects the constraints of

the problem, meaning that
∑
t∈Stoch v

∗
t ≤ B1. Again, since the items in the random-

order part of the instance are sampled (without replacement), the expected vector
Ev∗t is the same for all the (1 − λ)T random-order times t. Thus, the previous
inequality implies that Ev∗t ≤ B1

(1−λ)T . For adversarial times t, by definition v∗t = 0,
so in particular Ev∗t = 0. Thus, we can state that Ev∗t ≤ B

(1−λ)T for any time step t.
Putting these two observations together gives that the expected Lagrangian

value LI is, roughly speaking, at least

ELI = E
∑

t≤τI ,t∈Stoch
r∗t − E

∑
t≤τI

Z〈θt, v∗t − B1
T
〉

& sI · Er∗t − E
∑
t≤τI

Z〈θt, v∗t − B1
T
〉

& sI ·
OPTStoch

T
−
∑
t≤τI

Z〈Eθt,Ev∗t − B1
T︸ ︷︷ ︸

.0

〉

& sI ·
OPTStoch

T
,

where we need to justify several things. In the first inequality, because of the random
stopping time τI , it is not clear that we can “move the expectation inside”. Even
more problematic, is the second inequality, where to move the expectation inside
the inner product we further assumed that the random variables θt and v∗t were
independent on a random-order time t; however this is definitely not the case: since
items are sampled without replacement, information about items up to time t − 1
(which determine θt) offers some information about which item will appear at time
t, and hence some information about v∗t .

DBD
PUC-Rio - Certificação Digital Nº 2012386/CA



Chapter 4. Algorithm ADm for the MIXED Model 30

Nonetheless, ignoring these issues, this essentially prove the lemma in expec-
tation. In the full proof we make these steps formal, and also prove the lemma with
high probability instead of in expectation. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let [τI ] denote the sequence of time steps in I up to, and
possibly including, τI . Recall τI is the stopping time of algorithm AD running in
interval I . Substituting the inequality from Lemma 4.3 in Lemma 4.2, we get that
with probability at least 1− δ

2

∑
t∈[τI ]

rt ≥ sI
OPTStoch

T
+ (1− ε)ZB

(
|I| − τI
T

)
− Z 3 log(d+ 1)

ε
− 2λ |I|

T
ZB

−O
(
ε
|I|
T

(OPTStoch + ZB)
)
.

We know that sI ≥ τI − λI |I|. Substituting in the above, we get:

∑
t∈[τI ]

rt ≥ (τI − λI |I|)
OPTStoch

T
+ (1− ε)ZB

(
|I| − τI
T

)
− Z 3 log(d+ 1)

ε

− 2λ |I|
T
ZB −O

(
ε
|I|
T

(OPTStoch + ZB)
)

= τI
|I|
|I|OPTStoch

T
+ (1− ε) |I|ZB

T

(
1− τI
|I|

)
− λI |I|

T
OPTStoch − Z

3 log(d+ 1)
ε

− 2λ |I|
T
ZB −O

(
ε
|I|
T

(OPTStoch + ZB)
)

Notice that the first two terms have the form x·a+b·(1−x) for some x ∈ [0, 1]. This
expression is always greater than min{a, b}, since it is a weighted average between
a and b. Using that, we arrive at the statement of the theorem:

∑
t∈[τI ]

rt ≥ min
{
|I|OPTStoch

T
, (1− ε) |I|ZB

T

}
−λI |I|

T
OPTStoch−Z

3 log(d+ 1)
ε

− 2λ |I|
T
ZB −O

(
ε
|I|
T

(OPTStoch + ZB)
)
.

�
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5
Proposed Robust Algorithm for the MIXED Model

In this section we present the proposed algorithm for the MIXED model and
prove a high probability lower bound for its rewards. We make use of ADm and
solve the problem of providing ADmwith a “good enough”Z value, which depends
on OPTStoch.

Let Z∗ be the optimal fixed value for Z in hindsight. The idea of the proposed
algorithm is to start ADm with a random Z and learn Z∗ in an online fashion.
To learn Z∗, we consider a discrete set Z of possible values, under the framework
of integral prediction with expert advice (Section 3.2). Then, we use the MSMW
algorithm (Lemma 3.4) to learn the best approximation of Z∗ that is present in Z .
We denote this value by z̃. After presenting the algorithm formally, we prove the
following result:

Theorem 5.1 (Main Theorem). Assume ε ∈ (0, 1
10) and assume the frac-

tion of adversarial times λ ≤ 1
2 . Suppose that ct ∈ [0, OPTStoch

B
] and B ≥

Ω( (log log T+log(1/ε)) log d
ε4 ). Also suppose we have a poly(n) estimate of OPTStoch, de-

noted by ÔPTStoch, such that ÔPTStoch
T 10 ≤ OPTStoch ≤ T 10ÔPTStoch.

Then, algorithm ROBUSTAD produces a feasible solution, and if B ≥
Ω( 1

ε2 log[ (log log T−log ε)
ε2

d
δ′

]), then, with probability at least 1− δ′, its value is

ROBUSTAD ≥ (1− 5λ−O (ε))OPTStoch

5.1
Algorithm

First, let us group the time steps into K intervals, such that we are left with
K instances of the problem (IP(I)) (for simplicity we assume K divides T ). Recall
the i-th interval will have its own λi (fraction of adversarial times). Our algorithm,
then, at a high-level consists of the following steps:

1. Run ADm(Z) for one whole interval.

2. Choose the next Z value through MSMW.

3. Repeat from Step (1) but using the new value of Z.
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Discretization of experts. In order to learn a good Z∗ approximation using
a prediction with expert advice perspective, we need a discrete set of experts. We
propose a discretization of some range of R+, such that each discretized value is
a candidate for the Z∗ approximation. Moreover, each discretized value will be
assigned to an expert, that predicts its associated value repeatedly.

Let Z denote a discrete set of candidate values to approximate Z∗. Since Z∗

may or may not be contained in Z , we aim to learn z̃ = min{z ∈ Z|z ≥ Z∗}.
Recall that in hindsight the “right” Z∗ is OPTStoch

B
.

Additionally, when thinking about how numerous or granular shouldZ be, we
are faced with a trade-off: making the size of Z small lowers MSMW’s regret, but
increases the discretization error (due to the greater distance from z̃ to Z∗). On the
other hand, making Z more numerous reduces the discretization error, but increases
MSMW’s regret.

In order to choose the range of R+ to be discretized by the experts, we assume
knowledge of ÔPTStoch, a poly(n) estimate of OPTStoch, such that

ÔPTStoch
T 10 ≤ OPTStoch ≤ T 10ÔPTStoch.

Assumptions about having an estimate of the optimum available are also present in
other works concerning Online Packing IPs, and [14] provides a detailed discussion
and some techniques to work around it. We reproduce one of their arguments stating
that, in most applications, previous data is available, allowing such an estimate to
be made. Finally, we choose

Z = { ÔPTStoch
T 10 , 2 ÔPTStoch

T 10 , 22 ÔPTStoch
T 10 , . . . , T 10 ÔPTStoch},

namely discretizing using powers of 2. We collect the following properties of this
set that will be useful later.

Lemma 5.2. The discretization set Z has size log2 T
20 = Θ(log T ). Moreover, if

z̃ = min{z ∈ Z|z ≥ Z∗}, it offers the following approximation for Z∗ = OPTStoch
B

:

there is z̃ ∈ Z such that

1. z̃ ≥ OPTStoch
B

2. z̃ ≤ 2 OPTStoch
B

Proof. To find the size of the set Z is to find |Z| such that ÔPTStoch
T 10 2|Z| =

T 10 ÔPTStoch, so

|Z| = log2 T
20 = 20(log T

log2 ),
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which is Θ(log T ).
Also, let z̈ and z̃ be the closest values toZ∗ in the setZ , such that z̈ ≤ Z∗ ≤ z̃,

with z̃ possibly being equal to Z∗. By definition, z̃ ≥ Z∗, and z̈ ≤ Z∗. By the way
the set was constructed, we know that z̈ = z̃

2 , resulting in z̃ = 2 z̈ ≤ 2 Z∗. Lastly,
using Z∗ = OPTStoch

B
proves both bounds for z̃. �

Gains Function. We need a gains function to evaluate how well each expert did
in a given interval and to feed that evaluation to MSMW. The gains function should
map a Z value and an interval to a score representing the performance of that Z
value in the given interval. Let ADm(Z, Ii) denote the reward obtained by algorithm
ADm(Z) with parameter Z applied to the i-th interval. The gains function we chose
is a truncation of ADm(Z), denoted by ADm(Z):

ADm(Z, Ii) = min
(

ADm(Z, Ii) ,
|I|B
T

Z

)

Note that different Z values yield different truncation thresholds and also result in
different items being picked by ADm, which consequently results in different gains.
Also note that in order to compute the gains of each expert for the i-th interval, the
algorithm has to run a simulation of ADm(Z, Ii) for each Z candidate. We call this
a simulation because the items picked during those runs do not account for the final
reward or occupation of the algorithm. They merely answer the question of “What
reward would we gain if we used this other Z expert instead, on the i-th interval?”.
And surely, to be able to run this simulation, the items of the interval need to be
known, so this simulation will run for everyZ candidate when the algorithm reaches
the end of an interval, and that interval. We present the algorithm below.

Algorithm 3 Robust Algorithm for the Mixed Model

1: procedure ROBUSTAD(B,T ,ÔPTStoch)
2: Using ÔPTStoch create the discretized set of experts Z
3: Call the procedure MSMW overZ to obtain the expert Z1 for the first round
4: Set the number of intervals K ← log log T+log(1/ε)

ε2

5: for all i = 1, 2, . . . , K do . Consider each interval
6: Run algorithm ADm(Zi) over the current interval Ii, and pick the items

according to its decisions
7: At the end of the interval, compute the rewards for all the experts
Z ∈ Z . That is, compute (hi)Z := ADm(Z, Ii) for all Z ∈ Z

8: Send the reward vector hi to the algorithm MSMW to obtain the next
expert Zi+1
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5.2
Theoretical Guarantees: Proof of Theorem 5.1

The outline of the main proof is:

1. Since we run ADm(Z) on each interval, our total reward is ROBUSTAD =∑K
i=1 ADm(Zi, Ii) ≥

∑K
i=1 ADm(Zi, Ii), so it suffices to lower bound the

last term.

2. We use the MSMW guarantee with gains function (hi)Z = ADm(Z, Ii) to
obtain

K∑
i=1

ADm(Zi, Ii) ≥ (1− ε)
K∑
i=1

ADm(z̃, Ii)−O
(
cz̃ log(n/ε)

ε

)
,

where cz̃ is an upper bound for all (hi)z̃ of the intervals. Recall z̃ ∈ Z is good
approximation of Z∗ present in Z .

3. Lower bound the term
∑K
i ADm(z̃, Ii) in the right-hand side using Theo-

rem 4.1 with Z = z̃, and upper bound the last term (more precisely cz̃) using
the the truncation imposed.

We now present a complete proof of the theorem.

Proof of Theorem 5.1. First, by the definition of ROBUSTAD, we know total reward
it obtains is

ROBUSTAD =
K∑
i=1

ADm(Zi, Ii) ≥
K∑
i=1

ADm(Zi, Ii). (5-1)

Now let z̃ be the expert in the discretized setZ described by Lemma 5.2. Because of
the truncation applied to the gains function that evaluates Z candidates, the largest
reward expert z̃ gets is

max
i≤K

ADm(z̃, Ii) ≤
|I|B
T

z̃.

Therefore, using the MSMW guarantee from Lemma 3.4, we get

K∑
i=1

ADm(Zi, Ii) ≥ (1− ε)
K∑
i=1

ADm(z̃, Ii)−
|I|B
T

z̃ ·O
(

log(|Z|/ε)
ε

)

in which we can use that z̃ ≤ 2OPTStoch
B

and |Z| = O(log T ), from Lemma 3.4, to
get

K∑
i=1

ADm(Zi, Ii) ≥ (1− ε)
K∑
i=1

ADm(z̃, Ii)− OPTStoch ·O
(

log log T + log(1/ε)
εK

)
.
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From the fact that K ≥ Ω( log log T+log(1/ε)
ε2 ) it follows that

≥ (1− ε)
K∑
i=1

ADm(z̃, Ii)− OPTStoch ·O (ε)

≥ (1− ε)
K∑
i=1

min
{

ADm(z̃, Ii),
OPTStoch

K

}
− OPTStoch ·O (ε) ,

(5-2)

where the last inequality follows from the truncation in the definition of ADm(·)
and the guarantee z̃ ≥ OPTStoch

B
. Applying Theorem 4.1 to interval Ii with Z = z̃

and δ = δ′

K
, we have that with probability at least 1− δ′

K
we have

ADm(z̃, Ii) ≥ OPTStoch

[
(1− ε)
K

− λIi |Ii|
T
− 2 log(d+ 1)

εB
− 4λ
K
−O

(
ε

K

)]

≥ OPTStoch
K

− OPTStoch

[
λIi
K

+ 4λ
K

+O

(
ε

K

)]
,

where the last inequality uses the assumption B ≥ Ω(K log d
ε2 ). Note that indeed

we can apply the theorem with δ = δ′

K
because we assumed here that B ≥

Ω( log(Kd/δ′)
ε2 ). Taking a union bound over all the K intervals I1, . . . , IK , we see that

with probability at least 1 − δ′ this bound holds for all these intervals. In this case,
employing this bound together with (5-1) and (5-2) we get

ROBUSTAD ≥ (1−O(ε))OPTStoch − OPTStoch ·
K∑
i=1

[
λIi
K

+ 4λ
K

+O

(
ε

K

)]

= (1−O(ε))OPTStoch − OPTStoch ·
[
5λ+O(ε)

]

=
(

1− 5λ−O(ε)
)

OPTStoch

with probability 1− δ′. This concludes the proof of Theorem 5.1. �
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6
Experiments

Throughout this section, we present results of computational experiments
comparing ROBUSTAD with AD. We detail experiments on various types of in-
stances, as we investigate the robustness, advantages and drawbacks of each algo-
rithm. First, we introduce some practical improvements on ROBUSTAD, and we run
sensitivity tests using Wang [27] instances. Then, we use those results to set the pa-
rameters ε for AD and ROBUSTAD, and we also setK for ROBUSTAD. Afterwards,
we present experiments with Chu and Beasley [10] instances that were manipulated,
in order to simulate some MIXED model scenarios.

The environment in which experiments were conducted was an Ubuntu 18
running inside a Windows 10 through WSL 2 (Windows Subsystem for Linux).
The machine has an Intel i5-7400 processor (4 cores at 3.00 GHz each) and
24Gb of RAM. Due to the high number of decision variables of the instances
(i.e. T = 10000), solving the instances as integer programs would not allow us
to run all the experiments in a viable time. Therefore, all the optimums presented in
this section were obtained by solving the instances as linear programs instead. The
solver used was Coin-OR’s Cbc 1, integrated into the Python-MIP package 2. The
language chosen to generate the instances and run the algorithms in was Python 3.9.

The metric we use to evaluate the algorithms is the Relative Loss. For an
algorithm Alg(instance) and a set of instances S, the Relative Loss can be defined
as:

RLS = 1− 1
|S|

∑
i∈S

Alg(i)
OPTi

,

that is, one minus the average score across all instances in S. Again, we emphasize
that OPT will be approximated by the optimum of the linear program associated
with the instance.

6.1
Wang Instances

In this section, we run sensitivity tests for AD and ROBUSTAD’s parameters,
using instances proposed by Wang [27]. In addition, we use those tests to set the
parameters for the next section. The instances proposed by Wang were designed to

1https://github.com/coin-or/Cbc
2https://www.python-mip.com/
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fit the customer bidding model, which is simply another way of viewing the online
packing problem.

The customer bidding model considers that there is a store with an inventory
of d products and Bj of each product j in stock. There is a line of T customers
and when a customer t arrives at the counter, he states the products he wants (at)
and bids a total price he is willing to pay (ct). The store owner, then, decides to
serve (xt = 1) or not to serve (xt = 0) that customer, and then proceeds to hear
the next customer’s proposal. The objective is for the store owner to make decisions
trying to capture the maximum revenue, while being constrained to the availability
of products in stock. Notice how this model fits perfectly into the Online Packing
Problem, where items now are represented by customers.

The method used to generate those instances is the same used by Wang [27],
except for a final extra step to ensure rewards are between 0 and 1. The full
procedure is described below:

– (Step 1) Receive T , d, and B as parameters.

– (Step 2) Set customer requests (item occupation): each entry of the cost matrix
A has value 1 with probability 0.5, and value 0 otherwise. Each entry is set
independently.

– (Step 3) Set the perceived prices of products: for each dimension j, generate
an underlying price p∗j ← U(0, 1).

– (Step 4) Set customer offers (item rewards): ct = 〈p∗, at〉 + N(0, 1), where
N(0, 1) is the standard normal distribution.

– (Step 5) Shift and normalize the rewards, to ensure they are in the range [0, 1].
It was done by applying the following transformation to each reward: new_ct
= ct−cmin
cmax−cmin

.

6.1.1
Tracking the Source of ROBUSTAD’s Loss

Preliminary results turned out unsatisfactory regarding ROBUSTAD’s perfor-
mance. Setting the best ε and K (number of intervals) according to theory yielded
relative losses from 40% to 60%, on Wang instances. Given those results, before
any parameter tuning, we try to identify the causes for the loss experienced by
ROBUSTAD. In this section, all results will be performed with 10 permutations
of a base Wang instance with T = 10000, B = 1000, and d = 5. Also, we will
fix ε = 0.25 and K = 150 arbitrarily. At each step of the process, we make new
modifications, measuring the performance changes relative to the modification. This
way, we should be able to identify where the majority of losses comes from. Before
making any modifications, we have a relative loss of 46.8%.
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Loss relative to learning Z. On this first variation of the algorithm, we run
ROBUSTAD with fixed Z∗ = OPT/B on every interval. This way, the difference
to be observed in the performance will be relative to the learning of Z only. We
observed a relative loss of 29.7%. This 17.1 percentage points of advantage suggests
that maybe the algorithm is not learningZ fast enough. While varying the number of
intervals could be a valid attempt here, we deffer that experiment to the sensitivity
tests in the next section, and here we try to increase the learning rate for the Z
learning mechanism. This rate was previously set equal to ε, at 0.25. Our tests
showed that, for running the algorithm without Z∗, using a value of 0.75 for the
learning rate of Z showed promising results, improving the relative loss from 46.8%
to 36.4%. We incorporate this learning rate for Z into the algorithm.

Remembering θ from previous intervals. Next, we modify ROBUSTAD
so that the learned weights attributed to the θ dimensions are not reset at the
beginning of every interval. On one hand, we expect that with more time to learn
θ∗, performance could be better. On the other hand, changes in Z could destabilize
the learned weights for θ, in the sense that weights learned for a previous value of
Z wouldn’t be optimal for the new value of Z. With that modification, we observed
no significant change in the relative loss. We conclude that resetting the θ learning
is not one of the main sources of loss, thus, rejecting this modification.

Loss due to splitting distributing the capacity to multiple intervals.
When we break [T ] into K intervals and attribute a capacity of B/K for each
interval, we remove a huge degree of flexibility from the algorithm. That happens
because unoccupied capacities from past intervals are lost. We can mitigate this
effect by, at the end of every interval, reassigning the capacities of future intervals
based on the current remaining capacity. So instead of every interval receiving a
fixed capacity, each interval will receive its capacity according to the following:

– Letm be the total occupation of the most occupied dimension until the current
time step.

– At the beginning of the i-th interval, assign to it a capacity of (B−m)/(K −
i+ 1).

Note that we simply allowed the interval to pack more items, but we did not
change any gain functions of the MWU. With that modification, unused capacity
of previous intervals are redistributed to the remaining intervals. Also note that the
first interval receives a capacity of B/K, and following intervals receive at least
B/K of capacity. With this modification, the relative loss improved further more,
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from 36.4% to 22.9%. Therefore, this modification was accepted and incorporated
into ROBUSTAD.

Summary of modifications. Altogether, two modifications applied to
ROBUSTAD. The first was to increase the learning rate for Z to 0.75. The sec-
ond was to redistribute unused capacities from previous intervals. When used
together, those modifications were responsible for an improvement in relative loss,
from 46.8% to 22.9%.

6.1.2
Sensitivity Tests

For the sensitivity tests below, we use base instances with T = 10000,
B = 1000 and d = 5 as default values for those settings. Additionally, our tests
and methods are similar to the ones described in Wang [27], such that a comparison
between both works is possible, but the methodology has little variations. Such
variations emerge from the running speed of ROBUSTAD, that does not allow us to
test against the same number of instances that Wang [27] uses. Next, we describe
those differences in detail.

For the ε and K sensitivity tests, we generate one base instance, and then
we shuffle the arrival order of that base instance to generate 10 new instances. For
each value of ε and K, the presented result is the average across those 10 instances.
Wang [27] presents this test based on one instance also, but runs his algorithms on
500 permutations of that instance, for each ε.

For all the other sensitivity tests, we vary one setting of the base instances.
For each different variation of the tested parameter, we generate 5 new instances,
and then we shuffle each of those instances 5 times, generating a total of 25
instances. The final result presented is the average across those 25 instances. For
those tests, Wang [27] generates 20 base instances, and shuffles each instance 20
times, reaching a total of 400 instances for each variation of the tested parameter.

Lastly, the ε and K sensitivity test will be used as a calibration step for
ROBUSTAD, such that all the other tests will be done using a fixed ε and K, chosen
based on the results from their sensitivity test. In addition, we set AD’s δ to 0.05,
meaning AD will use 5% of each instance’s time steps to estimate Z, while not
picking any item. That value was chosen based on preliminary tests.

ε and K sensitivity. The first experiment presented will evaluate ROBUSTAD
sensitivity to a change in ε (the learning rate) and K (the number of intervals).
Notice that even though K is set according to ε in the algorithm’s description,
theoretically,K is allowed to vary by a constant factor, which prompts the necessity
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Figure 6.1: ROBUSTAD’s relative loss (%) according to ε and K.

to test K separately from ε. Also, since we expect K to be somewhat dependent on
ε, we evaluate changes in both variables simultaneously (similar to a grid search).
For ε we test values ranging from 0.1 to 0.5, and for K we test values ranging
from 2 to 500. Results for ROBUSTAD are presented on Figure 6.1. Notice the two
green zones where the algorithm works best. One of them, where K = 2, makes
ROBUSTAD too similar to AD, since there are only 2 intervals. Moreover, there is no
learning of Z, and higher ε gives best results because it makes it easier for the extra
dimension in the θ-MWU to compensate for a bad choice of Z. The other green
zone, where our Z learning mechanism really works, is the range of parameters
where we are really interested in, and where some learning of Z could happen.

Next, we run a sensitivity test of ε for algorithm AD. Both AD and
ROBUSTAD present guarantees in which the competitiveness decreases with a
higher ε, meaning we should set ε as low as possible, while respecting the al-
gorithm’s assumptions. For AD, the assumption is that ε ≥

√
log d/B, resulting

in ε = 0.04, if we consider log as ln. As for ROBUSTAD, assumptions are quite
stronger:

ε = 4

√
(log log T + log(1/ε)) log(d+ 1)

B
,

which gives ε = 0.27. Results are presented in Figure 6.2. For both algorithms,
calibrating ε according to theory showed to be effective, however, ROBUSTAD’s
performance still lagged behind. Finally, for the remaining experiments, we will
use AD with ε = 0.05 and ROBUSTAD with ε = 0.2 and K = 100.

Next, we compare both algorithms with the ones presented by Wang [27].
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Figure 6.2: Sensitivity to ε on Wang instances. The intervals represent the standard
deviation.

Note that methodologies for obtaining those results differ slightly between our
experiments and those of Wang, as explained in the beginning of Section 6.1.2.
Particularly, the instances used for AD and ROBUSTAD had a final normalization
step (step 5 described in Section 6.1), and the ranges of ε tested also differ. Results
are presented in Figure 6.3. AD and ROBUSTAD’s experiments are work of our
own, while One-Time Learning and Dynamic Learning’s results were reproduced
from [27]. We notice the Dynamic Learning algorithm is the one that presents the
best experimental results.

d sensitivity. Next, we check the impact of a variation in d in both AD and
ROBUSTAD algorithms. In AD, the loss relative to d is of order O

(
2
√

log d
)
, and

in ROBUSTAD it is O
(

4
√

log d
)
, so no considerable change is expected. Results can

be found on Figure 6.4. Although the impact of varying d seems to be large on
ROBUSTAD, in reality, ROBUSTAD is operating in its normal performance range,
between relative losses of 20% and 25%. Thus, the variation of d had no perceptible
impact on any algorithm.

B sensitivity. The next test we present is the sensitivity to B. This test is
specially important, since we make assumptions of the kind “B ≥ . . .” in order to
achieve the presented guarantees. The assumption on B for AD is B ≥ log(d+1)

ε2 ,
so it becomes true when B ≥ 717. For ROBUSTAD, the assumption is B ≥
log d
ε4 (log log T + log(1/ε)), and becomes true when B ≥ 1485. The results are
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Figure 6.3: Sensitivity to ε on Wang instances, including Wang’s algorithms. Results
for One-Time Learning and Dynamic learning were extracted from Wang [27].
Methodologies differ slightly.
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Figure 6.4: Sensitivity to d on Wang instances. The intervals represent the standard
deviation.

DBD
PUC-Rio - Certificação Digital Nº 2012386/CA



Chapter 6. Experiments 43

1000 2000 3000 4000 5000
B

5

10

15

20

25

30

35

R
el

at
iv

e
L

os
s

(%
)

RobustAD
AD

Figure 6.5: Sensitivity to B on Wang instances. The intervals represent the standard
deviation.

presented in Figure 6.5. ROBUSTAD appears to be highly sensitive to B, so much
that he algorithm does not seem suitable for cases when the capacity B is below its
theoretical threshold, while AD is much more stable.

T sensitivity. At last, we check the sensitivity on T , as presented in Figure 6.6.
AD showed to be very robust to variations in T , with excellent performance.
ROBUSTAD, on the contrary, didn’t do so well, and displayed high instability when
faced with changes in T , specially for the lower values of T . A possible reason for
the instability could be the role that T plays within the algorithm. Some important
parameters have a theoretical dependency on T , such as K, and the set of Z experts
Z ,
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Figure 6.6: Sensitivity to T on Wang instances. The intervals represent the standard
deviation.
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6.2
Chu and Beasley Instances

In the previous section, we only worked with independent and identically dis-
tributed (i.i.d) instances, that fit the RANDOMORDER model. However, ROBUSTAD
should also work for MIXED model instances, which contain some adversarial parts.
In this section, we create more adversarial instances to test both algorithms’ robust-
ness. We use Chu and Beasley [10] instances, with some manipulation. We did not
use the original instances provided with their paper, but instead we used their gen-
eration method to generate instances with T = 10000. Also, for every experiment
in this section, we run AD with ε = 0.05 and a start phase of size 0.05T , and we
run ROBUSTAD with ε = 0.2 and K = 100.

Unfortunately, the original Chu and Beasley procedure [10] break some of
our model’s assumptions, in particular: 1) all occupation entries and rewards must
be in the range [0, 1]; 2) each constraint must have the same capacity B. Thus, some
adaptation is needed in order to make those instances compatible with our model.
The adapted generation procedure is described below:

– (step 1) Receive T , d and α (tightness) as parameters.

– (step 2) Generate all the occupations: at,j ← U(0, 1) ∀j ∈ [d], ∀t ∈ [T ]

– (step 3) Since the sum of occupations for each dimension will be similar, if
we set B = α 1

d

∑
j∈[d]

∑
t∈[T ] at,j , the tightness α will be approximately the

same for every dimension.

– (step 4) Generate the rewards for each time step t: ct = 1
d

∑
j∈[d] at,j +

0.5 U(0, 1).

– (step 5) If any reward is greater than 1, we normalize the rewards.

Next, we enumerate the changes we made to the original procedure from Chu and
Beasley [10]:

1. On step 2, they generated at,j by selecting a random integer in the range
[0, 1000]. We scaled that range down to a random real number in the range
[0, 1].

2. On step 3, they generated a different capacity for each occupation dimension
j:Bj = α

∑
t∈[T ] at,j . We calculatedB, the average acrossBj’s, and attributed

that same capacity B to every dimension.

3. On step 4, they set the rewards as ct = 1
d

∑
j∈[d] at,j + 500U(0, 1). We scaled

the random part down to 0.5U(0, 1).
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Methodology. For all remaining experiments, we generate 10 Chu and Beasley
instances with T = 10000, d = 5 and α = 0.2, for each configuration, and
the presented relative loss is relative to those instances. Notice since the expected
sum of occupation for all items in each dimension is 5000, using α = 0.2 would
result in an expected capacity of B = 1000, similar to the base problem for Wang
instances. When manipulation is applied, it is applied on top of those base instances,
consequently ruining the tightness α, but we do not worry about that.

6.2.1
Instances with Exceptional Initial Items

In this section, we simulate an adversary that manipulates only the initial
part of the instance, where AD is running its start phase (0.05T time steps).
Additionally, two types of manipulation will be tested: one where items’ quality
is improved (higher rewards), and another where it is worsened (lower rewards).

Higher quality initial items. In this experiment, we make the first 500 items
better than the rest. This is done by dividing the all rewards by a scale factor q,
except for the first 500 rewards. For q, we test values 1.25, 1.5, 2, 4, 8, 16. We
expect that AD will learn an artificially high value for Z, making it algorithm more
selective, resulting in only few items being good enough to be picked. Results are
presented on Figure 6.7.

The behavior of AD can be explained by two factors. First, since is does not
pick any item in the starting phase, the higher the q, the higher are the rewards of the
items AD is skipping in the start phase. Higher values for q also make increase the
initial items’ contribution to OPT. Second, the higher the q, the more is AD skewed
towards judging remaining items as low quality items, thus, not picking them. In
fact, most of the times, we checked that AD finished processing the instance without
using its full capacity in any of the dimensions.

The behavior observed for ROBUSTAD was not expected. With the current
settings, using K = 100 intervals in ROBUSTAD and working with instances with
T = 10000, the 500 manipulated time steps correspond to 5 manipulated intervals,
out of a total of 100 intervals. Still, the manipulation introduced such a strong bias
in the Z-MSMW mechanism, that the algorithm needed much more than 5 new
intervals in order to re-establish a feasible value for Z. As an example, for q = 4
(initial items rewards 4 times higher than the rest), ROBUSTAD needed to run until
interval 17, in average, to re-establish a reasonable value for Z. Likewise what
happened to AD, ROBUSTAD also did not use its full capacity in any dimension.
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Figure 6.7: Sensitivity to the manipulation magnitude when the initial items have
higher quality. The intervals represent the standard deviation.

Lower quality initial items. In this experiment, we make the first 500 items
worst than the rest. For that, we divide the initial items’ rewards by a scale factor q.
For q, we test values 1.25, 1.5, 2, 4, 8 and 16. With that, we expect AD to become
less selective, and to accept lower quality items more frequently. We also expect its
performance to be damaged since the capacity could get fully occupied early on, in
consequence of the loose selection criterion. Results are available on Figure 6.8.

When the first items have an exceptionally lower quality, a weakness from
AD is turned into a strength: skipping the items from the initial phase. With
that, it avoids the worst items in the whole instance, which explain the increasing
performance until q = 2. Afterwards, however, the bias introduced by a maladjusted
value of Z dominates the performance of the instance, until it becomes a greedy
algorithm, which just picks every items, regardless.

ROBUSTAD, on the other hand, did not seem much impacted by the manipu-
lated instance, displaying its normal performance. However, for q = 4, for example,
it was able to recover the optimum Z by interval 15, which still means it operated
biased on 15% of the instance. This suggests that, for ROBUSTAD, acting too selec-
tive can be more damaging than acting too greedy.

6.2.2
Instances with Regime Changes

In this experiment, we manipulate items’ rewards based on waves, to see how
the algorithms behave when there are changes in the underlying distribution, which
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Figure 6.8: Sensitivity to the manipulation magnitude when the initial items have
lower quality. The intervals represent the standard deviation.

items’ rewards are drawn from. Some real life examples representing this scenario
are shocks in the market, resulting in big changes in input costs or sale prices for
manufactured goods. We divide the instance into W waves, and we scale down the
rewards of each second wave. The scale down is done by a factor q, for which we
test values 1.25, 1.5, 2, 4 and 16. We also experiment with 5, 10, 50, 100 and 500
waves. Results are available on Figure 6.9.

Our first observation is that, as the number of waves increases, the perfor-
mance of both algorithms comes closer to their performance on i.i.d. instances
(when no manipulated waves are present). This happens because as the wave lengths
get shorter, the algorithm has less time to learn the new wave’s pattern and to solid-
ify it as a bias to follow.

We can also see that ROBUSTAD can adapt to new regimes quite fast, given
that waves are long enough (when waves = 5), especially under high magnitude
changes (when q = 4, 8, 16). For waves = 10, the big loss in performance
experienced by ROBUSTAD has an explanation: experiments from previous sections
showed that under those instance settings (T , α, d and q), ROBUSTAD could take
up to 10 intervals to adapt to a new value of Z. When waves = 10, each wave has
length 1000, which is equivalent to 10 intervals for ROBUSTAD, since we are using
K = 100. That shows that roughly every time ROBUSTAD is able to complete the
learning for a new Z value, the regime changes, which is a strongly adversarial
scenario.

AD, on the other hand, was not able to adapt well when few regime changes
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Figure 6.9: Sensitivity to manipulation magnitude when instances are manipulated
in waves. The intervals represent the standard deviation.

occur. However, on every other scenario, it still displayed a large advantage in
performance over ROBUSTAD. Moreover, it became stable faster, as the number
of waves increased. Possibly, this performance is a consequence of using a low
ε (which also appeared to be optimal for AD). That would cause a much slower
learning rate, which could hurt the algorithm when there are few regime changes,
and help the algorithm become more stable when regime changes are frequent.

6.2.3
Instances with Regime Changes in One Occupation Dimension

In experiment, we manipulate instances to introduce regime changes in a
single dimension of occupation. In a real-life manufacturing scenario, this would
be equivalent to a sudden change in the costs of a single raw material, one of the
many inputs needed to manufacture a product. The objective is to evaluate how
adaptable are the θ-learning mechanisms within the algorithms. Again, the sequence
of time steps [T ] is divided into W waves, and each second wave gets manipulated.
The manipulation applied is to multiply the first occupation dimension by a factor
q > 1. We vary q in 1.25, 1.5, 2, 4, 8 and 16, and we vary the number of waves W
between 5, 10, 50, 100, 500. Results are presented on Figure 6.10.

This experiment is especially different from the above, as the previous was
designed to test the ability to learn new values for Z. A situation where all the
occupation dimensions suffer the same manipulation, would be more similar to the
previous experiment. This experiment, in contrast, tests the θ-learning mechanisms.
In that sense, it appears that ROBUSTAD is not prepared to deal with instances where
a single occupation dimension suffers a manipulation. AD, however, showed to be
incredibly stable in this case.
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7
Conclusions and Directions For Future Work

In this work, several contributions were made to the corpus of works directed
at solving online packing IPs effectively, the main one being our theoretical analy-
sis. This work was the first, that we are aware of, to consider online packing IPs in
the MIXED model. In addition, we presented the first algorithm, to our knowledge,
that solves the this problem effectively with provable guarantees.

A second contribution of this work was the experimental section. We proposed
modified instances that simulate possible scenarios for the MIXED model. In
addition, we implemented two algorithms, AD and ROBUSTAD, and presented
results comparing their performance. In almost every experiment, surprisingly, AD
displayed superior performance and robustness. In addition, those results show
how practical performance may deviate from theoretical guarantees, meaning,
algorithms with the similar guarantees can experience very different performances
in practice. This highlights the importance of making experiments while selecting
an algorithm to implement in a real-life scenario.

Regarding directions for future work, much is still unknown about online
packing IPs in the MIXED model. One research direction is to investigate whether
assumptions on B can be weakened. Another direction is to inspect how low can c
get, where c is the linear coefficient in Alg ≥ (1 − cλ − O (ε))OPTStoch. One last
suggested direction is to study if the adversarial optimum OPTAdv can also be used
in a lower bound for the MIXED model, as in Alg ≥ αOPTStoch + βOPTAdv.

Lastly, we hope to bring more attention to the MIXED model, in an attempt
to encourage the research of algorithms in more generic models, and we hope our
analysis techniques will be useful to other future works.
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A
Online Learning

A.1
MWU Algorithm

This section describes algorithm MWU [3], that solves the Fractional Predic-
tion with Expert Advice problem (Definition 3.1). We reproduce it below:

Definition A.1 (Fractional Prediction with Expert Advice – Definition 3.1). Let us

define the simplex4d := {θ ∈ Rd : ∑i θi = 1}. In the Fractional Prediction with
Expert Advice problem, at time t the algorithm needs to choose a vector θt ∈ 4d.

After that, reward vector ht is revealed. The algorithm gets a reward of 〈θt, ht〉. This

process is repeated for T iterations. The objective is to maximize the total reward

obtained:
∑T
t=1〈θt, ht〉.

Next, we present the algorithm. For vectors w, θ and h, we annotate the time step
index in subscript, and the dimension index in superscript. The parameter ε controls
the size of each learning step. The algorithm assumes knowledge of a value ρ such
that hit ∈ [−ρ, ρ], for all t and for all i ∈ [d].

Algorithm 4 Algorithm MWU
1: procedure MWU(d, ρ, ε)
2: Initialize θ1 and w1 with 1/d in each entry of those vectors
3: for t = 1, 2, . . . do
4: Choose/play vector θt
5: Observe ht

6: For each dimension i, set wit+1 ←

wit(1 + ε)hit/ρ, if hit ≥ 0
wit(1− ε)h

i
t/ρ, if hit < 0

7: totalWeight← ∑d
i=1 w

i
t+1

8: For each dimension i, set θit+1 ← wit+1/totalWeight
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A.2
Fractional MWU Applied to a Full-Dimensional Simplex

Theorem 5 of [3] proves guarantees of MWU applied to the Fractional
problem (Definition 3.1), which occurs in the simplex 4d. In this work, we will
also need to work with a slightly modified version of the problem where the
decision set is the “full-dimensional simplex” that includes the origin, namely the
set Nd := {θ ∈ Rd : ∑

i θi ≤ 1}. In order to use the MWU guarantees (which
are defined for the simplex domain), we can reduce the problem in Nd to a problem
in 4d+1, simply by adding a new dimension d + 1 to account for the extra vertex
0 in Nd. More precisely, we can consider the (d + 1)-dimensional reward vector h′t
obtained from the original one via (h′t)i = (ht)i for all i ∈ [d] and (h′t)d+1 = 0.

Applying the MWU to this new problem in 4d+1, then, gives a solution
θ′1, . . . , θ

′
T ∈ Rd+1. Now, if all reward vectors h′t ∈ [−ρ, ρ]d+1, Theorem 5 of [3]

gives us a guarantee that

T∑
t=1
〈θ′t, h′t〉 ≥

T∑
t=1
〈θ′∗, h′t〉 − ε

T∑
t=1
|〈θ′∗, h′t〉| −

ρ log(d+ 1)
ε

.

where θ′ and θ′∗ belong to4d+1

Recalling that (h′t)d+1 = 0, we know that dimension d + 1 will not influence
our guarantee (even if, at some point, we choose (θ′t)d+1 6= 0). So, if we define
the vectors θt ∈ Nd as (θt)i = (θ′t)i for i ∈ [d], namely, removing the (d + 1)-th
dimension, and we arrive at Lemma 3.2.
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A.3
MSMW Algorithm

This section describes algorithm MSMW [9], that solves the (Integral) Pre-
diction with Expert Advice problem (Definition 3.3). We reproduce it below:

Definition A.2 (Integral Prediction with Experts – Definition 3.3). In this problem,

there is a set of n “experts”. At time t, the algorithm needs to choose (possibly

randomly) an expert it ∈ [n]. After that, it sees the reward (ht)i obtained by each

expert i ∈ [n] (so ht is a reward vector with n coordinates). Again the goal is to

maximize the total reward obtained.

Next, we present the algorithm. For vectors w, p and h, we annotate the time step
index in subscript, and the dimension index in superscript. The parameter ε controls
the size of each learning step. Consider experts with non-negative rewards. Let
c ∈ Rn be a vector such that hit ≤ ci for every i ∈ [n] and for all t.

Algorithm 5 Algorithm MSMW
1: procedure MSMW(n, ε)
2: Initialize p1 with 1/n in each entry of the vector
3: for t = 1, 2, . . . do
4: Pick an expert i randomly, according to distribution pt
5: Observe ht
6: For each expert i, set wit+1 ← pit · exp(ε · hit/ci)
7: Find λ∗ such that

∑n
i=1 w

i
t+1/ exp(λ∗/ci) = 1

8: For each expert i, set pit+1 ← wit+1/ exp(λ∗/ci)

DBD
PUC-Rio - Certificação Digital Nº 2012386/CA



B
Proof of Lemma 4.3

The ideas, lemmas and proofs in this appendix are a contribution from Marco
Molinaro.

B.1
Handling Correlations due to Sampling Without Replacement

In order to prove Lemma 4.3, we need to handle correlations due to sampling
without replacement. For that we will use the following general lemma.

Lemma B.1. Consider a set of vectors {y1, . . . , ym} ∈ [0, 1]d and let Y 1, . . . , Y k

be sampled without replacement from this set. Let Z1, . . . , Zk be random vectors

in Nd such that Zj is a (possibly random) function of Y 1, . . . , Y j−1 for all j. Let

τ be a stopping time for the sequence ((Y t, Zt))t such that τ ≤ m
2 . Then for any

ε ∈ (0, 1
10 ] and δ ∈ (0, 1], with probability at least 1− δ we have

∑
j≤τ
〈Zj, Y j〉 ≤ (1 + 4ε)

∑
j≤τ
〈Ej−1Z

j,EY j〉 + O(log d/δ)
ε

,

where Ej−1Z
j = E[Zj | (Y1, Z1), . . . , (Yj−1, Zj−1)].

Special cases of the above lemma have appeared before in the literature, e.g.
of [14, Lemma 5]. We will need the following convenient concentration inequality
for “martingales with drift”.

Lemma B.2 (Lemma 2.2 of [5]). Let X1, X2, . . . , Xk be a sequence of (possibly

dependent) random variables with values in (−∞, 1] and such that there is α ∈
(0, 1) such that

E[Xj | X1, . . . , Xj−1] ≤ −αE[X2
j | X1, . . . , Xj−1]

for all j. Then for all λ ≥ 0

Pr(X1 + . . .+Xk > λ) ≤ e−αλ.

We also need a maximal Bernstein’s inequality for sampling without replace-
ment. It follows by applying Lemma 1 of [14] to the scaled random variables
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Xi
M
∈ [0, 1] and using the fact that Var(X) ≤ EX for every random variable in

[0, 1] (the last inequality follows from the inequality a
b+c ≥ min{ a2b ,

a
2c}, valid for

all non-negative reals a, b, c).

Lemma B.3 (Lemma 1 of [14]). Consider a set of real values x1, . . . , xm in [0,M ],
and let X1, . . . , Xk be sampled without replacement from this collection. Assume

k ≤ m/2. Let Si = X1 + . . . Xi. Also let µ = 1
m

∑
i xi and σ2 = 1

m

∑
i(xi − µ)2.

Then for every α > 0

Pr
(

max
i≤k
|Si − iµ| ≥ α

)
≤ 30 exp

(
− (α/24)2

M(2kµ+ (α/24))

)

≤ 30 exp
(
−min

{
(α/24)2

4kµM ,
α

48M

})

Let Fj be the σ-algebra generated by Y 1, . . . , Y j and Z1, . . . , Zj , i.e., the
history up to time j. We use Ej−1[·] := E[ · | Fj−1] to denote expectation
conditioned on the history up to time j − 1.

Lemma B.4. Consider i ∈ [d]. Then with probability at least 1 − δ
d

we have

Ej−1Y
j
i ≤ (1 + 2ε)EY j

i + O(log d/δ)
mε

for all j ≤ m
2 simultaneously.

Proof. Let µ = 1
m

∑
j≤m y

j
i , which is the expected value of Y j

i . Moreover, the
conditional expectation Ej−1Y

j
i is the average of the yti’s that have not appeared

up until time j − 1, namely

Ej−1Y
j
i =

∑
t y

t
i −

∑
t≤j−1 Y

t
i

m− (j − 1) =
mµ−∑t≤j−1 Y

t
i

m− (j − 1) . (B-1)

We then bound the last term uniformly for all j ≤ m
2 using the maximal Bernstein’s

inequality Lemma B.3.
For that let σ2 := 1

m

∑
t(yti − µ)2 and notice that

σ2 = 1
m

∑
t

(yti)2 − µ2 ≤ 1
m

∑
t

yti = µ,

where the inequality uses yti ∈ [0, 1]. Applying Lemma B.3 with

α := εmµ+ 2 · (24)2

ε
(log d/δ + log 30)
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we get, since α2 ≥ 4mµ (24)2 (log d/δ + log 30),

Pr
(

max
j≤m/2

|∑t≤jY
j
i − jµ| ≥ α

)

≤ 30 exp
(
−min

{
4mµ(log d/δ + log 30)

2mµ ,
2(24)2(log d/δ + log 30)/ε

48

})

≤ 30e−(log d/δ+log 30) ≤ δ

d
.

Finally, whenever this event holds, Equation (B-1) gives that for all j ≤ m/2

Ej−1Y
j
i ≤

(m− (j − 1))µ+ α

m− (j − 1) ≤ µ+
εmµ+O( log d/δ

ε
)

m− (j − 1) ≤ (1+2ε)µ+O(log d/δ)
mε

,

the last inequality using j ≤ m
2 . This concludes the proof. �

Proof of Lemma B.1. Since Zt and Y j are independent conditioned on Fj−1, we
have

Ej−1〈Zj, Y j〉 = 〈Ej−1Z
j,Ej−1Y

j〉

Moreover, applying a union bound on Lemma B.4 over all coordinates i, with
probability at least 1 − δ

2 for all j ≤ m
2 (in particular for all j ≤ τ ) we have

〈Ej−1Z
j,Ej−1Y

j〉 ≤ (1 + 2ε)〈Ej−1Z
j,EY j〉+ O(log d/δ)

mε
. Adding over all j ≤ τ we

get that, with probability ≥ 1− δ
2 ,

∑
j≤τ

Ej〈Zj, Y j〉 ≤ (1 + 2ε)
∑
j≤τ
〈Ej−1Z

j,EY j〉+ O(log d/δ)
ε

.

We now show using Lemma B.2 that with good probability the desired
quantity

∑
j≤τ 〈Zj, Y j〉 is close to

∑
j≤τ Ej〈Zj, Y j〉. Define the stopped random

variable

Xj := 1(τ ≥ j) ·
[
(1− ε)〈Zj, Y j〉 − Ej〈Zj, Y j〉

]
.

Recall that by definition of stopping time, the event 1(τ ≥ j) is Fj−1-measurable,
and hence EjXj = 1(τ ≥ j) · (−εEj〈Zj, Y j〉). Moreover,

EjX2
j = 1(τ ≥ j) ·

[
(1− ε)2 Ej 〈Zj, Y j〉2︸ ︷︷ ︸

≤〈Zj ,Y j〉

− (2(1− ε)− 1)︸ ︷︷ ︸
≥0

(Ej〈Zj, Y j〉)2
]

≤ 1(τ ≥ j) · Ej〈Zj, Y j〉,

where the first underbrace is because 〈Zj, Y j〉 ≤ 1 and the second because
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ε ∈ (0, 1
2 ]. Together, these observations give

EjXj ≤ −εEjX2
j .

Then applying Lemma B.2 to the sequence (Xj)j with λ = log 1/2δ
ε

we obtain

Pr
(

(1− ε)
∑
j≤τ
〈Zj, Y j〉 >

∑
j≤τ

Ej〈Zj, Y j〉+ log 1/2δ

ε

)
≤ δ

2 .

Then by union bound with (B.1), with probability at least 1− δ we have

∑
j≤τ
〈Zj, Y j〉 ≤ (1 + 2ε)

(1− ε)
∑
j≤τ
〈Ej−1Z

j,EY j〉+ O(log d/δ)
ε

.

Verifying that (1+2ε)
(1−ε) ≤ 1 + 4ε for all ε ∈ (0, 1

10 ] then proves Lemma B.1.
�

B.2
Proof of Lemma 4.3

Let τI denote the stopping time of AD in an interval I . Let [τI ] = {t ∈ I : t ≤
τI} be the sequence of time steps in I up to τI , and let tj be the time step of the jth

random-order item in the interval I . Recall that sI is the number of random-order
time steps in I up to τI . Then

LI =
∑
t∈[τI ]

r∗t − Z
∑
t∈[τI ]
〈θt, v∗t − B1

T
〉 =

∑
j≤sI

r∗tj − Z
∑
j≤sI
〈θtj , v∗tj〉+ Z

∑
t∈[τI ]
〈θt, B1

T
〉.

(B-2)

We lower bound the first two terms of the right-hand side with high probabil-
ity.

By definition we have OPTStoch = ∑
j E [r]∗tj . Moreover, since the items are

sampled (without replacement), the conditional expected value from time step tj

µ := Er∗tj

is the same for all (1 − λ)T random-order times tj . Putting these observations
together, we get that µ = OPTStoch

(1−λ)T . Similarly, by feasibility of the optimal solution,∑
j v
∗
tj
≤ B1 and the expected occupation vector

~µ := Ev∗tj

is the same for all random-order times tj , and thus ~µ ≤ B1
(1−λ)T .
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Moreover, the revenue is concentrated around the expectations: using the
maximal Bernstein inequality Lemma B.3 (with Xj := r∗tj , M = OPTStoch

B
, and

α = εc |I|
T

OPTStoch), we have for a suitably large constant c

Pr
(

max
`≤|I|

∣∣∣∑j≤`(r∗tj − µ)
∣∣∣ ≥ εc |I|

T
OPTStoch

)
≤

30 exp
(
−min

{
ε2 ( |I|

T
)2 OPTStoch2

|I|
T

OPTStoch2

(1−λ)B

,
ε |I|
T

OPTStoch
OPTStoch

B

})

≤ 30 exp
(
− (1− λ)ε2 |I|

T
B
)
≤ δ

8 ,

where the last inequality uses B ≥ Ω( T|I|
log 1/δ
ε2(1−λ)). Notice that since sI ≤ |I| this

also implies concentration for the sum
∑
j≤sI (r∗tj − µ) with random range j ≤ sI .

In addition, the occupation is also concentrated: applying Lemma B.1, we get

Pr
( ∑
j≤sI
〈θtj , v∗tj〉 > (1 + 4ε)

∑
j≤sI
〈θtj , ~µ〉+ Ω

(
log d/δ
ε

))
≤ δ

8 .

Notice we can indeed apply Lemma B.1 because θtj is a function of the random-
order items before the jth random-order item, namely (ct1 , at1), . . . , (ctj−1 , atj−1) (it
also depends on the adversarial items, but these are deterministic), and similarly
sI is a stopping time with respect to the sequence ((ctj , atj))j and sI ≤ |I| ≤
(1 − λ)T/2 (the last inequality by assumption). Taking a union bound over both
concentration inequalities and using the fact that B ≥ Ω( T|I|

log d/δ
ε2 ) to upper bound

the term Ω
(

log d/δ
ε

)
we get

Pr
( ∑
j≤sI

r∗tj − Z
∑
j≤sI
〈θtj , v∗tj〉 < sIµ− (1 + 4ε)

∑
j≤sI
〈θtj , ~µ〉 −O

(
ε |I|
T

(OPTStoch + ZB)
))
≤ δ

4 .

Whenever this event holds, we have

LI ≥ sIµ− (1 + 4ε)Z
∑
j≤sI
〈θtj , ~µ〉+ Z

∑
t∈[τI ]
〈θt, B1

T
〉 −O

(
ε |I|
T

(OPTStoch + ZB)
)
.

(B-3)

By definition of ~µ the second term is

(1 + 4ε)Z
∑
j≤sI
〈θtj , ~µ〉 = (1 + 4ε)Z

∑
j≤sI
〈θtj , B1

(1−λ)T 〉 (B-4)

and, since s ≤ τI , the third term can be lower bounded

Z
∑
t∈[τI ]
〈θt, B1

T
〉 ≥ Z

∑
j≤sI
〈θtj , B1

T
〉 = (1− λ)Z

∑
j≤sI
〈θtj , B1

(1−λ)T 〉.

DBD
PUC-Rio - Certificação Digital Nº 2012386/CA



Appendix B. Proof of Lemma 4.3 64

Applying these observations in (B-3) gives

LI ≥ sIµ− (4ε+ λ)Z
∑
j≤sI
〈θtj , B1

(1−λ)T 〉 −O
(
ε |I|
T

(OPTStoch + ZB)
)

≥ sI
OPTStoch
(1− λ)T − sI(4ε+ λ) ZB

(1− λ)T −O
(
ε
|I|
T

(OPTStoch + ZB)
)
,

where the last inequality uses 〈θtj ,1〉 ≤ 1. Since sI ≤ |I| ≤ T and we assumed
λ ≤ 1

2 , the second term sI(4ε + λ) ZB
(1−λ)T is at most O(εZB) + 2λ |I|

T
ZB. In total

we obtain

LI ≥ sI
OPTStoch
(1− λ)T − 2λ |I|

T
ZB −O

(
ε
|I|
T

(OPTStoch + ZB)
)
,

concluding the proof of the lemma.
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