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Abstract

Hirschfeldt, Natasha; Lima, Roberta (Advisor); Sampaio, Ru-
bens (Co-Advisor). Stability analysis applied to mechanical,
electromagnetic and electromechanical systems with pa-
rametric excitation. Rio de Janeiro, 2022. 115p. Dissertação de
mestrado – Departamento de Engenharia Mecânica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Parametric excitation is a type of excitation that arises from time-
varying coefficients in a system’s dynamics. More specifically, this disserta-
tion deals with time-periodic coefficients. This type of excitation has been
an extended topic of research from the fields of mechanics and electronics
to fluid dynamics. It appears in problems involving dynamical systems, for
example, as a way of controlling vibrations in self-excited systems, making
this subject worthy of more investigations. By approaching stability in the
sense of Lyapunov, this dissertation provides a didactic stability background
from basic concepts, such as equilibrium points and phase diagrams, to more
advanced ones, like parametric excitation and Floquet theory. The objects
of study here are linear systems with time-periodic parameters. Floquet the-
ory is used to make stability statements about the system’s trivial solution.
Several examples are discussed by making use of a developed numerical
procedure to construct stability maps and phase diagrams. The examples
presented herein encompass mechanical, electromagnetic and electromecha-
nical systems. By making use of stability maps, several features that can
be discussed in stability analysis are approached. Two different strategies
to evaluate the stability of the trivial solution are compared: Floquet mul-
tipliers and the maximum value of Lyapunov characteristic exponents.

Keywords
Stability analysis; parametric excitation; Floquet theory; Lyapu-

nov stability; electromechanical systems;
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Resumo

Hirschfeldt, Natasha; Lima, Roberta; Sampaio, Rubens. Análise
de estabilidade aplicada em sistemas mecânicos, eletro-
magnéticos e eletromecânicos com excitação paramétrica.
Rio de Janeiro, 2022. 115p. Dissertação de Mestrado – Departa-
mento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Excitação paramétrica se dá a partir de coeficientes variantes no tempo
na dinâmica de um sistema. Este tipo de excitação tem sido um amplo tema
de pesquisa desde os campos da mecânica e eletrônica até dinâmica de flui-
dos. Ela aparece em problemas envolvendo sistemas dinâmicos, por exemplo,
como uma forma de controle de vibrações em sistemas auto excitados, tor-
nando este assunto digno de mais investigações. Abordando estabilidade no
sentido de Lyapunov, esta dissertação fornece uma base didática de estabili-
dade desde conceitos básicos, como pontos de equilíbrio e planos de fase, até
conceitos mais avançados, como excitação paramétrica e teoria de Floquet.
Os objetos de estudo aqui são sistemas lineares com parâmetros periódicos
no tempo, o que permite usar a teoria de Floquet para fazer afirmações a
respeito da estabilidade da solução trivial do sistema. Vários exemplos são
discutidos fazendo uso de um procedimento numérico desenvolvido para
construir mapas de estabilidade e planos de fase. Os exemplos apresentados
abrangem sistemas mecânicos, eletromagnéticos e eletromecânicos. Fazendo
uso de mapas de estabilidade, diversas características de análise de estabili-
dade são abordadas. Duas estratégias diferentes para avaliar a estabilidade
da solução trivial são comparadas: multiplicadores de Floquet e valor má-
ximo dos expoentes característicos de Lyapunov.

Palavras-chave
Análise de estabilidade; excitação paramétrica; teoria de Floquet;

estabilidade de Lyapunov; sistemas eletromecânicos;
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1
Introduction

The topic of stability analysis is of great interest when dealing with
dynamic systems, with applications in simple systems such as pendulums and
circuits to more complex ones such as ships and helicopters. This study not only
provides additional knowledge of a system’s behaviour through time, but can
also be a way of finding possible improvements in terms of performance [1; 2; 3].
This study can be applied to time-invariant or time-variant systems, where
the latter is the main object of study in this dissertation. The time-variant
systems of most interest here are the parametrically excited ones. Parametric
excitation is a type of excitation that arises from time-varying coefficients in a
system’s dynamics. More specifically, this dissertation deals with time-periodic
coefficients.

Stability analysis is widely made in purely mechanical systems [4] as well
as in purely electromagnetic ones [5]. A classic example of its applicability
in parametrically excited systems is the Mathieu’s equation, a differential
equation capable of describing several real world problems. In the mechanical
realm, Mathieu’s equation can describe, for example, a pendulum with an
oscillating support [6]. Meanwhile, in the electromagnetic realm it can describe
an LC circuit with time-periodic capacitance [5]. Thus, there is a wide range of
applications to stability analysis. By fully comprehending its use in the types of
systems aforementioned, one can apply it to systems with both origins, called
an electromechanical system. Thereby, the final goal in this dissertation is to
apply stability analysis to electromechanical systems, more specifically, with
time-periodic coefficients.

Electromechanical systems have two different natures: mechanical and
electromagnetic [7; 8; 9; 10]. This means that the energies present in these
systems also have distinct origins, mechanical (such as kinetic and potential
energies) and electromagnetic (such as magnetic and electrical energies) [11;
12]. This class of system is characterized by the mutual interaction between
its subsystems, meaning that the dynamics of the mechanical subsystems
influence the dynamics of the electromagnetic subsystems as well as the inverse
[13; 14; 15; 16; 17]. This mutual interaction is only possible through coupling
elements that provide a way of exchanging energy among the subsystems. For
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Chapter 1. Introduction 13

some linear electromechanical systems, these coupling terms appear in the
equations of motion through gyroscopic and circulatory terms, matrices G and
N , respectively, as it will be discussed latter on. For an accurate description
of electromechanical system dynamics, it is not sufficient to describe each
subsystem separately. Thus, it is necessary to take into account parameters
of both mechanical and electromagnetic natures [18; 19]. To obtain their
equations of motion it is possible to use, for example, energetic methods such
as the Lagrangian method [8; 10]. Afterwords, it is possible to make a stability
analysis for this type of system.

1.1
Objectives of the dissertation

This dissertation aims to make use of numerical simulations to evaluate
the stability of a parametrically excited system’s trivial solution by using
Floquet theory. It is presented a step by step description of how to apply
the theory to this type of system. The simulations were made by making use
of the software MatLab, but the presented numerical procedure is given in a
general form that provides a guide for the reader to implement it using other
simulation softwares. Two different strategies to evaluate the stability of the
trivial solution are presented: Floquet multipliers and the maximum value of
Lyapunov characteristic exponents.

Following the introduction of the needed stability analysis concepts and
the numerical procedure used to address stability, this theory and computa-
tional process are applied to several examples. Them being purely mechanical
systems as well as purely electromagnetic systems, where the final goal is to
apply this theory and computational process to an electromechanical system:
the electromagnetic loudspeaker. More specifically, Floquet theory is going to
be used to analyse the stability of its trivial solution when the system has a
time-periodic coefficients.

1.2
Dissertation’s outline

The dissertation is divided as follows. Chapter 2 introduces the ideas
of resonance and instability, two concepts that are frequently confused. The
basics of the resonance phenomenon are addressed in appendix A in more
details. Some topics that are needed for a full understanding of stability are
also discussed in the chapter. They are: equilibrium points, phase diagrams
and linearization of nonlinear systems around equilibrium points.
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Chapter 3 starts by discussing different types of excitation through
examples. They are: self-excited systems and parametric systems. Externally
excited systems have been treated in previous sections. Thereafter, the concept
of stability according to Lyapunov is presented and stability analysis for
linear time-periodic systems is dealt with, where Floquet theory is discussed.
The concept of parametric resonance is also tackled. The chapter finishes
by presenting stability maps, a very useful tool in studies involving stability
analysis, as well as an approximation method to obtain the transition curves
that separates unstable from stable regions. Floquet’s theorem is given in
details in appendix B.

In chapter 4, Floquet theory is applied first to the well known Mathieu’s
equation, for undamped and damped cases. After that, several examples of two
degrees of freedom systems are also analyzed. Floquet theory is used to make
stability statements of these examples’ trivial solution while also making use of
stability maps and phase portraits. The chapter’s goal is to show how existing
parametric excitation influences the stability of their trivial solution. This is
accomplished by changing the elements of the system where there appears this
type of excitation for different scenarios of two degrees of freedom systems.
These scenarios include the association of purely mechanical systems with the
purely electromagnetic systems that can be described by the same differential
equations. Appendix C shows how to obtain the equations of motion of purely
electromagnetic systems, where an example is given so the reader can compare
the found dynamics with the examples in chapter 4.

Floquet theory is then applied in chapter 5 to electromechanical systems
by making use of a system called electromagnetic loudspeaker, where different
scenarios for this system are given. The consequences of existing time-periodic
parameters in electromechanical systems are then discussed. Appendix D
makes an introduction to electromechanical systems by discussing how to
obtain their dynamics.

A summary is presented in chapter 6 of what was done in the dissertation
as well as possible ways of continuing with this study. Also, the developed
numerical procedure used throughout the dissertation is given in appendix E,
where a step by step description of how to make stability statements of a
system’s trivial solution using Floquet theory and stability maps is shown.
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2
Initial concepts

To start this study, take a linear system with n degrees of freedom (nDoF)
in the general form of second order differential equations

M ÿ(t) + [D +G] ẏ(t) + [K +N ] y(t) = f, (2-1)

where the response vector is y(t) ∈ Rn for t > 0, written as y(t) =
[y1(t) y2(t) ... yn(t)]T , with initial conditions y(0) = y0, ẏ(0) = v0, and
f ∈ Rn represents external forces. The size of all the coefficient matrices is
n × n, but they have different features. These matrices have the following
properties [20]:

– M is the mass matrix, that is symmetric (M = MT ) and positive definite
(M > 0);

– K is the stiffness matrix, that is symmetric (K = KT ) and positive
semi-definite (K ≥ 0);

– D is the damping matrix, that is symmetric (D = DT ) and positive
semi-definite (D ≥ 0);

– G is the gyroscopic matrix, that is skew-symmetric (G = −GT );
– N is the circulatory matrix, that is skew-symmetric (N = −NT ).

Equation (2-1) can be rewritten as

ÿ = h(y, ẏ, t), (2-2)

where y and its derivatives depend on time. A system is autonomous or time-
invariant when there is no explicit dependency on time in equation (2-2),
meaning that the coefficient matrices and external forces do not depend on time
explicitly. Otherwise, it is called a non-autonomous or time-variant system [3].

Next, two fundamental concepts when dealing with dynamic systems are
going to be discussed in this chapter: resonance and instability. Resonance
occurs when the system’s response is analyzed for a situation where there
exists an imposed excitation, known as forced response. This phenomenon is
briefly presented in section 2.1 and more discussions about this topic are given
in appendix A. Afterwords, the idea of instability is introduced in section 2.2
when dealing with the free response of linear time-invariant systems [2].
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2.1
Resonance

As previously mentioned, the resonance phenomenon appears when there
is a forced response, meaning that an imposed excitation is applied to the
system. Appendix A provides further content about resonance and how to
obtain the solutions of mass-spring and mass-spring-damper systems, with free
and forced vibrations.

Take here a single degree of freedom (SDoF) system with an applied
external force, as depicted in figure 2.1. This system is composed by a mass m
and a spring with stiffness coefficient k. The external force is harmonic of the
form f(t) = f0 cos(ωt), where f0 is its amplitude and ω, its frequency.

Figure 2.1: Undamped SDoF system with an applied external force.

The system’s equation of motion is

ÿ(t) + ω2
ny(t) = F0 cos(ωt), (2-3)

where ωn =
√
k/m is the natural frequency and F0 = f0/m. The initial

conditions are y(0) = y0, ẏ(0) = v0. The total response y(t) is the sum of an
homogeneous solution yh(t), found by taking the system with free vibration,
and by a particular solution yp(t), found by considering the applied external
force. The response y(t) = yh(t) + yp(t) can then be fully obtained by making
use of the initial conditions.

The proposed particular solution is taken in the same form as the forcing
term, being

yp(t) = Y0 cos(ωt), (2-4)
where Y0 is the amplitude of the forced response. By substituting this into
equation (2-3), one gets that for the case where the natural frequency and the
excitation frequency are not the same (ω ̸= ωn), the particular solution is

yp(t) = F0

ω2
n − ω2 cos(ωt).

The total solution y(t) is a sum of the homogeneous and particular
solutions, given by
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y(t) = v0

ωn

sin(ωnt) +
(
y0 − F0

ω2
n − ω2

)
cos(ωnt) + F0

ω2
n − ω2 cos(ωt), (2-5)

where the provided initial conditions were already used as discussed in ap-
pendix A. It is possible to notice through equation (2-5) that the solution’s
amplitude becomes larger as the excitation frequency approaches the natural
frequency, once the denominator of F0

ω2
n − ω2 becomes very small. When these

values are equal (ω = ωn) the previous solution does not apply anymore, once
the proposed particular solution in equation (2-4) for this situation is also a
solution for the homogeneous one. For this case, the particular solution must
be of the form

yp(t) = t Y0 sin(ωt).
Substituting this in the equation of motion, one can use the initial

conditions to obtain the system’s response for ω = ωn, that is

y(t) = v0

ω
sin(ωt) + y0 cos(ωt) + F0

2ω t sin(ωt).

By analyzing this result, one can see that for this given frequency the
solution’s amplitude grows indefinitely with a linear dependency on time. This
is the definition of the resonance phenomenon.

2.2
Stability and instability

Now that the concept of resonance was briefly covered, the meaning of
stability and instability will be discussed [20]. For a first intuition, take figure
2.2, where the behaviour of a pink ball in three different cases is going to be
discussed. Take the case on the left, where if the ball is placed slightly to one
of its sides, it will tend to come back to its rest position, the bottom of the
“valley”, considered a stable position. Now take the case in the middle of the
same figure, where the ball is placed at the top of a hill. If the ball is perfectly
placed at the peak, it will remain still, but if the ball is placed slightly to one
of its sides, it will distance itself from the rest position indefinitely. This is
considered an unstable position. The last case is considered neutral, where the
ball would be on a smooth flat surface, neither returning to or distancing itself
indefinitely from the original position.

These concepts have different applications depending on the system
under analysis: whether it is a linear or nonlinear system, with free or forced
vibration. In the remaining of this section, some basic concepts needed for
stability analysis are addressed for linear time-invariant systems with free
vibration.
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Figure 2.2: Stability of an equilibrium point.

2.2.1
Equilibrium points

Take equation (2-2) for a linear autonomous system. It can be rewritten
as

ÿ = h(y, ẏ), (2-6)
where y and its derivatives depend on time. An equilibrium point, also called
fixed point, is a point that satisfies

y(t) = constant = yeq,

ẏ(t) = 0, (2-7)

ÿ(t) = 0.

This means that the particle is not moving, thus it is said to be stationary
and can also be called a stationary point. To obtain these equilibrium points,
one must find the trio (y, ẏ, ÿ) = (yeq, 0, 0) that satisfy the equations of motion
of the given system. It is possible to obtain none, one or even more than one
equilibrium point for a given differential equation.

It is of interest now to discuss what happens to the particle at points
that are not the equilibrium ones. If it is slightly moved from an equilibrium
point, does the particle return to this position or continues to distance itself
from it? If the former holds, the equilibrium point is said to be stable, while if
the latter is true, the equilibrium point is said to be unstable. To define which
of these cases hold, one can analyze phase diagrams.

2.2.2
Phase diagrams

Phase diagrams are graphs that allow one to evaluate the stability of
an arbitrary number of solutions of a given dynamic system by plotting their
trajectory in a phase plane [21]. Let us rewrite the second order differential
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equation (2-6) in the form of two first order differential equations by doing

x = ẏ,

ẋ = h(y, ẏ).

This leads to a simple way of obtaining phase diagrams. The goal of this
approach is to evaluate stability without having to fully integrate the equations
of motion. To exemplify this, take the SDoF system with free vibration in figure
2.3 [2; 20]. The system is composed by a mass m, a damper with damping
coefficient b and a spring with stiffness coefficient k.

Figure 2.3: SDoF system with free vibration.

For this example, equation (2-1) reads

mÿ(t) + bẏ(t) + ky(t) = 0, (2-8)

with initial conditions taken as y(0) = y0, ẏ(0) = v0. Next, the equilibrium
points for different scenarios are going to be obtained as well as phase diagrams
for each one of them [22; 23]. Equation (2-8) can be rewritten in the form of
equation (2-6) as

ÿ = h(y, ẏ) = −bẏ

m
− ky

m
.

If there is no damping in the system, meaning that we are dealing with
a mass-spring system, the dynamics is given by

ÿ = −ky

m
. (2-9)

Now, take the definition in equation (2-7) to classify a point as an
equilibrium one. One can obtain it for this example by finding the trio
(y, ẏ, ÿ) = (yeq, 0, 0) satisfying the equation of motion (2-9). Thus, the equilib-
rium point yeq for this system is

0 = h(yeq, 0) = −kyeq

m
,

yeq = 0.
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To obtain the general form of the phase diagram, we can write the second
order differential equation as two first order differential equations by doing x1 = y

x2 = ẏ
→


ẋ1 = x2

ẋ2 = ÿ = − k

m
x1

Dividing one equation by the other and integrating, one gets

ẋ2

ẋ1
=

− k

m
x1

x2∫
− k

m
x1 dx1 =

∫
x2 dx2

− k

m

x2
1

2 + c1 = x2
2

2 + c2

mẏ2 + ky2 = constant,

that is a general form of an ellipse in the phase plane y× ẏ. Taking m = 1 and
k = 1, it becomes a circle given by

ẏ2 + y2 = constant,

where the constant value depends on the initial conditions provided to the
system. Figure 2.4 shows a schematic phase diagram for this case. The curves
in the phase diagram for this linear time-invariant system are called centers.
The circle’s radius is defined by the square root of the right-hand side of
the obtained relation, found by using the initial conditions in the integration
process.

The blue arrows in figure 2.4 show the direction the particle follows in
the phase paths. When the velocity ẏ (the rate of change of the displacement
y) is positive, the displacement is towards the right, increasing y. Meanwhile,
the particle goes to the opposite direction when ẏ is negative, decreasing y.
Therefore, the phase diagram of the present example follows the clockwise
direction.

The closed curves in the phase diagram represent periodic solutions
around the equilibrium point, that is then said to be a stable one. The
equilibrium point found before is depicted in figure 2.4 as a filled red circle,
used to represent that it is a stable equilibrium point.

Another interesting approach is by making use of the concept of energy
[23]. For example, take the equation of motion in (2-9)

mÿ + ky = 0.
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Figure 2.4: Phase diagram composed by centers.

Multiplying this by the velocity ẏ, one gets

mÿẏ + kyẏ = 0,

m
d

dt

(
ẏ2

2

)
+ k

d

dt

(
y2

2

)
= 0,

d

dt

(1
2mẏ

2 + 1
2ky

2
)

= 0,

that are, respectively, the kinetic and potential energies. The system is conser-
vative and, since the derivative is null, the sum of the energies must be equal
to a constant. This results in

mẏ2 + ky2 = constant,

the same relation found before. Taking m = 1 and k = 1, this relation is
describing circles, representing different energy levels that are defined by the
circles’ radius.

Moving on to another example, the situation changes if the system’s
dynamics is

mÿ − ky = 0,
that has the same equilibrium point as the last example. Taking m = 1 and
k = 1, the curves are now described by

ẏ2 − y2 = constant.

Figure 2.5 shows the phase diagram for this case. The curves seen in
the phase diagram for this linear time-invariant system are called saddles. The
solutions are non-periodic and their directions are shown in the figure, found
by following a reasoning analogous to the previous example. The equilibrium
point is given as a red unfilled circle to represent that it is an unstable one,
once the particle tends to distance itself from this point.

DBD
PUC-Rio - Certificação Digital Nº 2112347/CA



Chapter 2. Initial concepts 22

Figure 2.5: Phase diagram composed by saddles.

Continuing now with another example, if there is no stiffness in equation
(2-8), meaning the system is only composed by a mass and a damper, the
equation of motion is

ÿ = −bẏ

m
. (2-10)

Taking the definition in equation (2-7), one can finding the trio (y, ẏ, ÿ) =
(yeq, 0, 0) satifying the equation of motion (2-10) to obtain the equilibrium
point, that is

0 = h(yeq, 0).
This means that all points are equilibrium points, since h(yeq, 0) = 0 for

all values of y. Writing the second order differential equation as two first order
differential equations, one obtains x1 = y

x2 = ẏ
→


ẋ1 = x2

ẋ2 = ÿ = −bẏ

m
= −bx2

m

Dividing one by the other,

ẋ2

ẋ1
=

−b x2

m
x2

= − b

m
,∫

b dx1 =
∫

−m dx2,

bx1 + c1 = −mx2 + c2,

mẏ + by = constant.

This means that the curves in the phase diagram are defined by lines.
Making m = 1 and b = 1, for example,

ẏ + y = constant.

Figure 2.6 shows the corresponding phase diagram. The direction the
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lines take are shown in the figure and they are towards the equilibrium
points, which are then stable. The solutions are non-periodic and there are
no oscillations around the equilibrium points.

Figure 2.6: Phase diagram composed by lines.

Now, for a mass-damper-spring system, the equation of motion is

ÿ = −bẏ

m
− ky

m
.

Using equation (2-7), the equilibrium point is obtained as

0 = h(yeq, 0) = −kyeq

m
,

yeq = 0.

For this system, take m = 1 and k = 1. The phase diagrams differ
depending on the value of the damping b. For example, with b = 1 (when the
system is underdamped), the curves in the phase diagram of this linear time-
invariant system are called stable spirals or stable focus. They have oscillatory
solutions and the direction of the phase path is towards the equilibrium point,
which is then stable, as seen in figure 2.7. Meanwhile, for b = 3 (when the
system is overdamped) the curves in the phase diagram of this linear time-
invariant system are called stable nodes. They represent non-periodic solutions
with direction towards the equilibrium point, that is also stable, as seen in
figure 2.8.
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Figure 2.7: Phase diagram composed by stable spirals.

Figure 2.8: Phase diagram composed by stable nodes.

The examples shown until this point contained SDoF systems composed
by a mass, a spring and/or a damper. Take now a generalization of this linear
autonomous system in the first order form [22; 24]

 ẋ1(t)
ẋ2(t)

 =
 a11 a12

a21 a22

 x1(t)
x2(t)

 ,
ẋ(t) = A x(t),

where matrix A, composed by aij, is known as the coefficient matrix.
Solutions of the form x = ueλt are wanted, where λ are the eigenvalues

and u the respective eigenvectors. Substituting this in the above equation, the
eigenvalue problem (EVP) that must be solved is Au = uλ, that leads to the
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characteristic equation det[A− λI] = 0. Thus,

det
 a11 − λ a12

a21 a22 − λ

 = 0,

λ2 − tr(A)λ+ det(A) = 0,

where tr(A) = a11 + a22 is the trace of the coefficient matrix and det(A) =
a11a22 − a12a21, its determinant. Solving for λ,

λ1,2 =
tr(A) ±

√
[tr(A)]2 − 4 det(A)

2 .

This relation makes it possible to draw a graphic to represent the types
of curves obtained in phase diagrams in terms of the obtained trace and
determinant, given in figure 2.9. This type of diagram is called a bifurcation
diagram [24]. It provides important features: the light blue area represents the
oscillatory responses; the remaining area of the graphic represents the non-
oscillatory responses and the dark blue curve ([tr(A)]2 = 4 det(A)) is the limit
between oscillatory and non-oscillatory responses.

Thus, it is possible to know the nature of the behaviour by analyzing the
mentioned trace and determinant [22; 24], once they determine what happens
to the obtained eigenvalues. The different possible ones are:

– det(A) > 0 and tr(A) = 0: for this situation, the eigenvalues assume
purely imaginary values. This correspond to the case of centers, periodic
solutions around the equilibrium point that is then stable;

– det(A) < 0: this situation provides two purely real eigenvalues, one
positive and another one negative. This correspond to the case of saddles,
that have non-periodic solutions and an unstable equilibrium point;

– det(A) = 0: here, the eigenvalue assumes a null value, corresponding to
the case of lines, that can have stable or unstable equilibrium points;

– det(A) > 0 and [tr(A)]2 < 4 det(A): for this case, both eigenvalues are
complex values with real part equal to tr(A)/2. That is divided in two
cases:

– If tr(A) > 0, the system’s response is said to be unbounded, meaning
that its amplitude increases indefinitely with time. This corresponds
to the case of a unstable spirals (or unstable focus);

– If tr(A) < 0, it corresponds to the case of stable spirals (or stable
focus), that have oscillatory solutions with direction towards the
equilibrium point;
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– det(A) > 0 and [tr(A)]2 > 4 det(A): here, the eigenvalues are two purely
real numbers. It can also be divided in two cases:

– If tr(A) > 0, both eigenvalues are positive and, as time goes
by, the solution’s amplitude increases indefinitely. This situation
corresponds to the case of unstable nodes;

– If tr(A) < 0, both eigenvalues are negative. These situation corre-
sponds to the case of stable nodes.

Figure 2.9: Bifurcation diagram of the linear autonomous system.

So far, the analysis was restricted to the free vibration of linear au-
tonomous systems for simplification. Phase diagrams for this type of system
are easy to obtain and visualize. Meanwhile, the visualization of phase dia-
grams for linear non-autonomous cases can be quite tricky due to the explicit
dependency on time, thus it is not going to be treated at this point [21]. This
topic is left for chapter 4, where several examples are treated and phase dia-
grams for this type of system, discussed.
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2.3
Linearization around equilibrium points

Given a nonlinear system with equations of motion in the form of (2-6),
it is possible to linearize its dynamics around equilibrium points by making use
of Taylor’s expansion into series [25]. By doing so, the discussions in section
2.2.2 can be applied to the neighbourhood of such points.

Take a function h(y) infinitely differentiable. Its expansion into an infinite
sum of terms is

h(y) = h(y0)+
dh

dy

∣∣∣∣∣
y0

(y−y0)+
d2h

dy2

∣∣∣∣∣
y0

(y − y0)2

2! + d3h

dy3

∣∣∣∣∣
y0

(y − y0)3

3! +. . . . (2-11)

If we truncate this series, an approximation around point y0 for the
function h(y) is obtained. The greater the number of terms used in the
truncation, the more accurate will be the approximation around the given
point. For example, if a linear approximation is wanted, equation (2-11)
becomes

h(y) = h(y0) + dh

dy

∣∣∣∣∣
y0

(y − y0).

If h is a function of two variables, y and ẏ for example, its linear
approximation around the point (yeq, ẏeq) is

h(y, ẏ) ∼= h(yeq, ẏeq) + ∂h

∂y

∣∣∣∣∣
yeq , ẏeq

(y − yeq) + ∂h

∂ẏ

∣∣∣∣∣
yeq , ẏeq

(ẏ − ẏeq).

This last approximation is now going to be used for a nonlinear system
with equations of motion in the form of (2-6). Knowing that an equilibrium
point is one satisfying equation (2-7), the linearization around an equilibrium
point (yeq, ẏeq = 0, ÿeq = 0) is

ÿ = h(y, ẏ) ∼= h(yeq, 0) + ∂h

∂y

∣∣∣∣∣
yeq , ẏeq=0

(y − yeq) + ∂h

∂ẏ

∣∣∣∣∣
yeq , ẏeq=0

(ẏ − 0).

Since h(yeq, 0) = ÿeq = 0, the linearized function can be written as

χ̈ = ∂h

∂y

∣∣∣∣∣
yeq , ẏeq=0

(χ− yeq) + ∂h

∂ẏ

∣∣∣∣∣
yeq , ẏeq=0

(χ̇− 0).

To exemplify this, let us take a classical example of a simple pendulum
and linearize it around its equilibrium points [23; 24]. This system is shown in
figure 2.10. Gravity acceleration is taken as g, the pendulum’s length is l0 and
its mass, m. Taking g/l0 = ω2

0, the pendulum’s dynamics is

θ̈ + ω2
0 sin(θ) = 0. (2-12)

For our purpose here, it is useful to present this equation of motion in
the form
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Figure 2.10: Simple pendulum.

θ̈ = h(θ, θ̇) = −ω2
0 sin(θ).

Knowing (2-7), the system’s equilibrium points are θeq = nπ, n ∈ Z.
Intuitively, one expects that when the pendulum is at its lower point, meaning
θ = 0, 2π, 4π, ..., the equilibrium positions are stable. Since the system is
not damped, the mass tends to oscillate periodically around these positions
if one moves it slightly to one of its sides. Meanwhile, when the pendulum is
at its highest point, meaning θ = π, 3π, 5π, ..., the equilibrium positions are
unstable. The mass does not return to this position if one moves it slightly to
one of its sides.

Let us verify this by taking the equilibrium points θeq = 0 and θeq = π.
The other ones would result in the same conclusions since they merely represent
more revolutions. For θeq = 0 the following derivatives are needed:

∂h

∂θ

∣∣∣∣∣
θeq=0

= −ω2
0 cos(θ)|θeq=0 = −ω2

0,

∂h

∂θ̇

∣∣∣∣∣
θeq=0

= 0.

Thus, linearizing the equation of motion around this equilibrium point
gives

χ̈ = ∂h

∂θ

∣∣∣∣∣
θeq=0

(χ− θeq) + ∂h

∂θ̇

∣∣∣∣∣
θeq=0

(χ̇− 0),

χ̈ = −ω2
0(χ− 0) + 0.

Supposing ω2
0 = 1, this results in

χ̈+ χ = 0,

which results in a center in the phase diagram, as done in the previous section
and depicted in figure 2.4.

For the equilibrium point θeq = π, the same procedure can be followed
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by first obtaining the derivatives

∂h

∂θ

∣∣∣∣∣
θeq=π

= −ω2
0 cos(θ)|θeq=π = ω2

0,

∂h

∂θ̇

∣∣∣∣∣
θeq=π

= 0.

Then, the linearization around θeq = π is given by

χ̈ = ∂h

∂θ

∣∣∣∣∣
θeq=0

(χ− θeq) + ∂h

∂θ̇

∣∣∣∣∣
θeq=0

(χ̇− 0),

χ̈ = ω2
0(χ− π) + 0.

Supposing once again ω2
0 = 1, this results in

χ̈− χ = −π.

Furthermore, by making the change of variables φ = χ− π, one gets

φ̈− φ = 0,

which results in a saddle around θeq = π in the phase diagram, as shown in
the previous section and depicted in figure 2.5.

Thus, the simple pendulum’s motion is given by a nonlinear differential
equation that can be linearized around its equilibrium points to evaluate
stability in their neighbourhoods. Figure 2.11 shows the phase diagram for
this system, where it is possible to see the stable and unstable equilibrium
points as well as the different phase paths.

Figure 2.11: Simple pendulum’s phase diagram.
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For an intuitive perspective, imagine the pendulum is slightly placed out
of its equilibrium point θ = 0 (the vertical downward point). The pendulum’s
mass is then oscillating with a periodic motion in the vertical position. If now
we slightly place it out of the equilibrium point θ = π (the vertical upward
point), the mass will fall from this vertical position, following the phase path
that leads it far from this equilibrium position.

Linear differential equations are quite particular cases to the vast world
of equations, where many problems actually involve nonlinear formulations.
However, obtaining solutions and/or phase diagrams for this type of system
sometimes is not so trivial. Therefore, linearization around equilibrium points
is of great interest in stability analysis. By doing so, one is able to make
stability statements in the neighbourhood of such points by using previous
knowledge of linear systems, as in section 2.2.2 for example. This makes it
possible to better understand the behaviour of nonlinear systems around these
equilibrium positions.
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3
Stability analysis

In the previous chapter, we saw that phase diagrams are used to describe
a system’s solution given an initial state. On top of that, they can provide a
set of solutions for different initial states [24]. Using this approach is simple
when dealing with linear autonomous systems, but it is not trivial to apply this
in other cases, such as nonlinear systems. To do so, one can use the already
presented process of linearization around equilibrium points, making it possible
to use the found linear differential equations to evaluate the behaviour of the
original nonlinear system in the vicinity of such points.

Furthermore, evaluating phase diagrams for non-autonomous systems can
also be challenging due to the explicit dependency of time. Thus, this chapter
begins by presenting two different types of excitations while providing examples
of each one. Afterwords, stability of an equilibrium is addressed by introducing
the concept of stability in the sense of Lyapunov [2; 24; 26]. For the type of
system that is of interest in this dissertation, meaning linear time-periodic
systems, stability analysis of the trivial solution is then address. Criteria for
stability classification of the zero solution of systems with parametric excitation
are given. More specifically, Floquet theory is presented, a theory that provides
a way of making stability statements about the trivial solution of linear systems
with time-periodic coefficients [26; 27; 28].

The phenomenon of parametric resonance is also discussed and a pertur-
bation method is used to obtain the curves that separates the unstable from
the stable regions in stability maps, where the Mathieu’s equation is used to
exemplify its application.
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3.1
Types of excitation

Now that the needed basic concepts from the previous chapter are clear,
this section will introduce through some examples two different types of
excitations that have not yet been addressed. They are: self-excitation and
parametric excitation.

3.1.1
Self-excited systems

Self-excitation happens due to the interaction between the internal
elements of a dynamic system [24]. This type of excitation can occur, for
example, in rotating shafts due to the friction between internal components,
also called internal damping [2; 4]. Another example of self-exciting oscillation
is the vibration of an aircraft wing [2; 20], illustrated in figure 3.1. This last
one is going to be analyzed in more details.

Figure 3.1: SDoF model of an aircraft wing.

The simplest aircraft wing model can be given as a SDoF system with
equation of motion [20]

mÿ + bẏ + ky = βẏ,

where m is its mass, b is the damping and k the stiffness of the aircraft wing.
The right-hand side of this equation represents the aerodynamic forces that are
imposed to the system, where β is a constant. This dynamics can be rewritten
as

mÿ + (b− β)ẏ + ky = 0.
Two cases can be addressed: b > β and b < β. If the former is true,

the system’s solution is given by one of the three cases of damped SDoF
systems in appendix A. However, if the latter proceeds, then the damping
ratio ξ = (b− β)

2mωn

assumes a negative value, which leads to a solution in the
form

y(t) = a e−ξωnt sin(ωdt+ ϕ).
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where ωd = ωn

√
1 − ξ2. Since ξ < 0 for all t > 0, the system’s response

increases indefinitely with time, making it unstable. This behaviour can be
seen in figure 3.2, where y(t) is plotted for a = 1, ϕ = 0, ωn = 2 and ξ = −0.1.
This situation is also called flutter instability, a phenomenon that can happen
to several engineering projects and that is unwanted.

Figure 3.2: Solution of the SDoF model of an aircraft wing, with a = 1, ϕ = 0,
ωn = 2 and ξ = −0.1.

3.1.2
Parametric systems

A system is said to be parametrically excited when it has time-varying
coefficients in its equations of motion. A common way of finding parametric
excitation in literature is when parameters are not only time dependent, but
are also periodic, called time-periodic coefficients. At the beginning of chapter
2, it was seen that, if equation (2-2) had a direct dependency on time, the
system is said to be time-variant or non-autonomous. Therefore, parametric
systems are non-autonomous systems.

An important feature of parametrically excited systems is that the phe-
nomenon of parametric resonance may occur for some excitation frequencies
[29; 30; 31]. This frequencies are dependent on the natural frequencies of the
undamped system without parametric excitation [4; 3] , as discussed in more
details in section 3.3.1.

A well known example of parametric excitation is in systems that can be
described by the second order differential equation

ÿ + b(t) ẏ + k(t) y = 0, (3-1)

where k(t) = k(t + T ) and b(t) = b(t + T ) with T > 0, meaning that these
coefficients are periodic. Taking the undamped case,
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ÿ + k(t) y = 0.

The generalization given by this equation is known as Hill’s equation and
it appears in several studies of real dynamic systems. A special case of a system
that can be described by this equation is

ÿ + [δ + ϵ cos(ωt)] y = 0, (3-2)

called Mathieu’s equation [22; 27; 32; 33], where δ, ϵ and ω are constant
parameters. Since there are no dissipation terms, this equation is also known
as undamped Mathieu’s equation.

As an example, take a pendulum with an oscillating support, depicted
in figure 3.3 [2; 29; 34]. This system is composed by a mass m and a rod
of length l0 with negligible mass. Gravity acceleration is taken as g and the
vertical oscillation of the pendulum’s support is uv(t) = uacos(ωt), where ua

is its amplitude and ω, its frequency.

Figure 3.3: Pendulum with an oscillating support.

The general form of Mathieu’s equation can be found by making use
of, for example, Lagrange’s method [6]. By knowing that z1 = l0cos(θ) and
z2 = l0sin(θ), the kinetic energy T and potential energy V are

T = 1
2m ż2

2 + 1
2m (ż1 − u̇v)2 = m

2
[
l20θ̇

2 − 2l0θ̇u̇vsin(θ) + u̇2
v

]
,

V = −mg(z1 − uv) = −mg[l0cos(θ) − uv]

Thus, the Lagrange function is

L = T − V = m

2
[
l20θ̇

2 − 2l0θ̇u̇vsin(θ) + u̇2
v

]
+mg[l0cos(θ) − uv].

By using the formula for this case with no dissipative terms

d

dt

(
∂L

∂θ̇
− ∂L

∂θ

)
= 0,

one obtains the equation of motion as being
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θ̈ + (g − üv)
l0

sin(θ) = 0.

Linearizing this equation around its equilibrium point at the lowest
position as done in section 2.3, one can write

θ̈ +
[
ω2

0 − ua ω
2

l0
cos(ωt)

]
θ = 0,

where g/l0 = ω2
0. This equation has the form of equation (3-2). The pendulum

in this situation is said to be parametrically excited, where the excitation is
provided through a stiffness term.

The form of Mathieu’s equation does not only appear in mechanical
systems, it may also be applicable to oscillatory electrical circuits [5; 29]. Take
for example an LC circuit with a time-varying capacitance, as seen in figure
3.4.

Figure 3.4: LC circuit with a time-varying capacitance.

The system is taken with no resistance or voltage source (υ = 0). Taking
q as the charge in the circuit, l the inductance and a capacitance that varies
periodically with time as in c(t) = c0/(1 + a cos(ωt)), it is possible to take
ωlc = (l c0)−1/2 [5]. This system is described by the differential equation

lq̈ + 1
c(t) q = 0,

q̈ +
[
ω2

lc + ω2
lc a cos(ωt)

]
q = 0,

that also has the form of the undamped Mathieu’s equation. Further informa-
tion about obtaining the equations of motion of purely electromagnetic system
is provided in appendix C.

Those two examples are some of the many systems that can be described
by Mathieu’s equation. This differential equation is deeply studied until today
and having a clear understanding of the systems that can be described by this
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equation is of great interest in stability analysis studies. Therefore, this is going
to be discussed in several sections and in more details in section 4.1.

Systems with parametric excitation are the ones of interest in this
dissertation. Next, the idea of stability used throughout this dissertation is
presented so stability for this type of system can be addressed.

3.2
Lyapunov stability

Stability studies are widely used in many fields, from fluid dynamics
to stability of structures and electronics. However, its concept may vary
depending on the object of study being dealt with. This section will introduce
the definition of stability used for the rest of the dissertation, that is stability
according to Lyapunov [2; 22; 24; 26].

It is important to highlight the fact that stability as defined here is a
property assigned to the solution of a system. A differential equation may
have both stable and unstable solutions [6; 26], once they are unique for given
initial conditions.

Take equation (2-2) and write it as a first order differential equation in
the generic form

ẋ = w(x, t). (3-3)
where x = [x1 x2 . . . x2n]T and w = [w1 w2 . . . w2n]T . A solution of this
system is unique for given initial conditions x(0) = x0. To start the task of
defining stability, take a known solution x∗ with initial conditions x∗

0. This
solution is said to be stable in the sense of Lyapunov if

∀ϵ > 0 ∃δ > 0 such that |x0 − x∗
0| < δ ⇒ |x− x∗| < ϵ, ∀t ≥ 0,

where | · | is the norm of a vector, for example the Euclidean norm |x| =√
x2

1 + x2
2 + · · · + x2

2n. The solution x∗ is thus considered stable if x stays
arbitrarily close to x∗ (meaning that |x− x∗| stays smaller than an arbitrarily
small ϵ) for all times, given that the initial condition x0 is sufficiently close to
the initial condition x∗

0. A schematic representation of this definition is depicted
in figure 3.5.

If the solution is stable and also

|x0 − x∗
0| < δ ⇒ lim

t→∞
|x− x∗| = 0,

it is said to be asymptotically stable.
If there exists an ϵ > 0 for an arbitrarily small |x0 − x∗

0| that results in
|x− x∗| > ϵ for some time t, the solution x∗ is said to be unstable in the sense
of Lyapunov.
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Figure 3.5: Stability of a motion in the sense of Lyapunov.

This concept of stability concerns stability of motions in general. How-
ever, the solution of interest here is an equilibrium position, that is, a sta-
tionary position. More specifically, the dissertation deals with stability of
the trivial solution, an equilibrium position such that it is zero for all times
(x = [0 0 . . . 0]T ).

3.3
Linear time-periodic systems (Floquet theory)

After this introduction to how stability is approached, recall that the
main focus of the dissertation is to make stability analysis for linear time-
periodic systems, where the stability of the trivial solution is of interest.

To continue, it is necessary to introduce some initial concepts to investi-
gate the stability of the trivial solution of this type of system [27; 28]. Take the
first order linear differential equation for the homogeneous case in the generic
form

ẋ(t) = A(t) x(t), (3-4)
where x(t) = [y(t) ẏ(t)]T ∈ R2n. A(t) ∈ C2n×2n is the coefficient matrix, that is
time-periodic with period T , which means that for T > 0, A(t) = A(t+ T ) for
every t ∈ R. For a set of linear independent solutions (x1(t), x2(t), ..., x2n(t))
of this equation, it is possible to define

Φ(t) = [ x1(t) x2(t) ... x2n(t) ],

called the fundamental matrix, a non-singular matrix where its columns are
composed by the linear independent solutions of (3-4).

If the coefficient matrix A did not vary with time, we would be dealing
with linear time-invariant systems, already discussed in previous sections. For
these autonomous systems, it is known that the solution is given by a linear
combination of

ui e
λi t, (3-5)
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where λi and ui are, respectively, the eigenvalues and eigenvectors of the
constant coefficient A. However, when dealing with time-periodic systems as
seen in section 3.1.2, the solutions cannot be obtained with the same approach
due to the time dependency of the coefficient matrix A(t). The solution for a
linear time-periodic system must be of the form

xi(t) = pi(t)eϱi t, (3-6)

where pi(t) are time-periodic [3; 28; 35] and ϱi are constant values that are
going to be treated at the end of this section.

Next, Floquet’s theorem is enunciated [1; 3; 27; 28; 35], a theorem
that provides a form for the fundamental matrix of systems with time-
periodic coefficients described by (3-4). This form allows one to make stability
statements about the trivial solution’s stability, as discussed in details latter
on in this section. Appendix B shows this theorem in more details while also
providing several important features that lead to it.

Theorem 3.1 (Floquet’s theorem) The fundamental matrix Φ(t) with
Φ(0) = I has a Floquet normal form

Φ(t) = Q(t)eBt, (3-7)

where Q ∈ C1(R) is a T -periodic (Q(t) = Q(t+ T )) invertible matrix for all t
and B ∈ C2n×2n is a constant matrix given by B = 1

T
ln(Φ(T )).

For linear systems with constant coefficients, as treated in chapter 2
with SDoF systems, stability is addressed by evaluating the eigenvalues of
the constant coefficient matrix A [26]. As previously said, this same approach
cannot be applied for the type of system being dealt with, meaning time-
periodic systems, due to the time dependency of the coefficient matrix A(t).
Floquet’s theorem provides a way of doing such analysis. The solutions of
equation (3-4) are products of periodic functions with eBt and thus it is possible
to determine stability through the eigenvalues of the constant matrix B.

As an example, take a linear system with coefficient matrix [36]

A(t) =
 −1 + 3

2 cos2(t) 1 − 3
2 cos(t) sin(t)

−1 − 3
2 sin(t) cos(t) −1 + 3

2 sin2(t)

 . (3-8)

First, let us show that

Φ(t) =
[
x1(t) x2(t)

]
=
 et/2 cos(t) e−t sin(t)

−et/2 sin(t) e−t cos(t)


is the fundamental matrix of this system, meaning that the system’s response
is given by the general form of
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Φ(t) =
 cos(t) sin(t)

−sin(t) cos(t)

  et/2 0
0 e−t

 . (3-9)

By direct substitution it is possible to conclude that Φ(0) = I. The
columns of the fundamental matrix are the linear independent solutions of the
analyzed system. Thus, take the first column x1(t) of Φ(t) to find its derivative,
that is

x1(t) =
 x11

x21

 =
 et/2 cos(t)

−et/2 sin(t)

 ,
ẋ1(t) =

 ẋ11

ẋ21

 =
 1

2e
t/2 cos(t) − et/2 sin(t)

−1
2e

t/2 sin(t) − et/2 cos(t)

 .
The goal is to show that this derivative is obtained by multiplying the

coefficient matrix A(t) by x1(t), concluding then that this is indeed a solution
of the given system. Thus,

A(t) x1(t) =
 (

−1 + 3
2 cos2(t)

)
et/2 cos(t) −

(
1 − 3

2 cos(t) sin(t)
)
et/2 sin(t)(

−1 − 3
2 sin(t) cos(t)

)
et/2 cos(t) +

(
−1 + 3

2 sin2(t)
)
et/2 sin(t)


that simplifying leads to

A(t) x1(t) =
 1

2e
t/2 cos(t) − et/2 sin(t)

−1
2e

t/2 sin(t) − et/2 cos(t)

 = ẋ1(t).

The same can be done for x2(t). Finding its derivative, one gets

x2(t) =
 x12

x22

 =
 e−t sin(t)

−e−t cos(t)

 ,
ẋ2(t) =

 ẋ12

ẋ22

 =
 −e−t sin(t) + e−t cos(t)

−e−t cos(t) − e−t sin(t)

 .
Then,

A(t) x2(t) =
 (

−1 + 3
2 cos2(t)

)
e−t sin(t) +

(
1 − 3

2 cos(t) sin(t)
)
e−t cos(t)(

−1 − 3
2 sin(t) cos(t)

)
e−t sin(t) +

(
−1 + 3

2 sin2(t)
)
e−t cos(t)


that simplifying leads to

A(t) x2(t) =
 −e−t sin(t) + e−t cos(t)

−e−t cos(t) − e−t sin(t)

 = ẋ2(t).

Therefore, it is possible to conclude that Φ(t) is indeed the system’s
fundamental matrix.

DBD
PUC-Rio - Certificação Digital Nº 2112347/CA



Chapter 3. Stability analysis 40

One can also find that

log (Φ(t)) = log
 et/2 cos(t) e−t sin(t)

−et/2 sin(t) e−t cos(t)


= log

 cos(t) sin(t)
−sin(t) cos(t)

  et/2 0
0 e−t


= log

 cos(t) sin(t)
−sin(t) cos(t)

+ log
 et/2 0

0 e−t

 .
By continuing the calculations in the example, one may obtain the

constant matrix B by using its definition B = 1
T

ln(Φ(T )) in theorem 3.1.
Thereafter, stability of the trivial solution could be addressed through its
eigenvalues. However, obtaining the matrix B explicitly is not a simple task
and some times it is not even possible to obtain it analytically. For the example
being carried out here, the calculation of the logarithm of a rotation matrix
would be necessary, a not so simple task (this calculation is provided, for
example, in [27]).

Therefore, numerical approximations of the fundamental matrix are
widely used in stability analysis. To achieve so, another important definition
in stability analysis for time-periodic systems is the monodromy matrix R,
defined as being

Φ(t+ T ) = Φ(t) R. (3-10)
The existence of such matrix is proved in appendix B. Substituting the

relation (3-10) into equation (3-7),

Q(t+ T )eB(t+T ) = Q(t)eBtR.

Recalling that Q(t) is periodic with period T leads to

Q(t+ T )eBteBT = Q(t)eBtR,

eBT = R.

The monodromy matrix R is a non-singular constant matrix and its
eigenvalues are denoted γi, i = 1, ..., 2n, called Floquet multipliers. Making use
of Floquet multipliers is an usual way to make stability statements about the
system’s trivial solution. For example, if the magnitude of an eigenvalue of R is
greater then 1, it means that an eigenvalue of B has positive real part, making
the solution’s amplitude increase indefinitely with time. It is thus unbounded
and therefore unstable.

Since the monodromy matrix is time-independent, take the case where
R = Φ−1(0)Φ(T ) with initial conditions Φ(0) = I to go accordingly to

DBD
PUC-Rio - Certificação Digital Nº 2112347/CA



Chapter 3. Stability analysis 41

Floquet’s theorem. The monodromy matrix is resumed to

R = Φ(T ). (3-11)

Therefore, Floquet theory makes use of the Floquet multipliers of a linear
time-periodic system in the form of equation (3-4) to evaluate the stability of
its zero solution. These stability statements are [3; 26; 27]:

– If |γi| ≤ 1 for all i, the trivial solution of equation (3-4) is stable;

– If |γi| < 1 for all i, the trivial solution of equation (3-4) is asymptotically
stable;

– For other cases, the trivial solution of equation (3-4) is unstable.

The monodromy matrix for the last example with coefficient matrix (3-8)
is now going to be found to exemplify this. The fundamental matrix evaluated
at t = 0 is Φ(0) = I, as one can conclude by simple substitution. Evaluating
the fundamental matrix at t = T ,

Φ(T ) = Φ(2π) =
 eπ 0

0 e−2π

 .
Thus, the monodromy matrix is

R = Φ(T ) = Φ(2π) =
 eπ 0

0 e−2π

 .
To obtain the Floquet multipliers, one must solve the eigenvalue problem

Ru = γu, that leads to

det(R − γI) =
 eπ − γ 0

0 e−2π − γ

 = 0,

(eπ − γ)(e−2π − γ) = 0.

The roots are γ1 = eπ and γ2 = e−2π, the Floquet multipliers. Since
|γ1| > 1, the trivial solution is unstable.

Floquet multipliers depend only on the coefficient matrix A(t) and are
independent of the basis chosen for the set of solutions [25; 35]. To prove this,
take Φ(t) and Φ∗(t) as two different fundamental matrices. Since a fundamental
matrix cannot be singular, there exists a non-singular constant matrix V from
which

Φ∗(t) = Φ(t)V
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is valid. Being T the period, one gets that

Φ∗(t+ T ) = Φ(t+ T )V

= Φ(t)RV

= Φ∗(t)V −1RV

= Φ∗(t)W,

where W = V −1RV . It is possible to use determinant properties to obtain

det[W − γI] = det[V −1RV − γI]

= det[V −1(R − γI)V ]

= det[V −1V ] det[R − γI]

= det[R − γI],

meaning that W and R have the same eigenvalues. Therefore the Floquet
multipliers do not depend on the basis of the set of solutions.

Theorem 3.1 also leads to an important result: there exists a time-
periodic transformation capable of transforming a time-periodic system into
an autonomous system [27; 28]. Taking equation (3-7) and substituting it in
the known relation Φ̇(t) = A(t)Φ(t), one gets

Q̇(t)eBt +Q(t)BeBt = A(t)Q(t)eBt,

Q̇(t) +Q(t)B = A(t)Q(t).

Multiplying this by a vector ν(t) results is

Q̇(t)ν(t) +Q(t)Bν(t) = A(t)Q(t)ν(t). (3-12)

Now, take the transformation

x(t) = Q(t)ν(t)

and substitute this into equation (3-4), getting

Q̇(t)ν(t) +Q(t)ν̇(t) = A(t)Q(t)ν(t). (3-13)

Using equations (3-12) and (3-13), one has that

ν̇(t) = Bν(t),

a system with constant coefficients. This is also known as Lyapunov-Floquet
transformation. This result implies that the relation x(t) = Q(t)ν(t) transforms
a system described by ẋ(t) = A(t)x(t) with a time-periodic coefficient matrix
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into a system described by ν̇(t) = Bν(t) with a constant coefficient matrix
[27; 28].

Nevertheless, as discussed previously, finding analytical solutions for
these cases can be a tiring process depending on the dynamics and sometimes
not even possible to solve analytically. Thus, numerical methods are widely
used in stability analysis. The numerical procedure followed in this dissertation
is given in details in appendix E, where some important remarks regarding it
are discussed. The process of finding the monodromy matrix and using the
Floquet multipliers to evaluate stability is called Floquet analysis [28].

Let us now introduce a final definition that is going to be used throughout
this dissertation. The characteristic exponents or Floquet exponents (ϱi) are
the eigenvalues of matrix B [35], that can be defined as

γi = eϱi T ,

where γi are the Floquet multipliers. The Lyapunov characteristic exponents
(LCEs) µi can be expressed as the real part of such Floquet exponents [28; 35].
They can also be obtained directly by the Floquet multipliers [28; 35] as

µi = 1
T

ln|γi|. (3-14)

Taking the type of solution for the system given in its general form by
equation (3-6), it is possible to categorize stability just as it was done for
the Floquet multipliers. The trivial solution is stable when µi ≤ 0 for all i
and asymptotically stable when all the LCEs are strictly negative, once the
response will eventually damp out as time goes by. For an unstable trivial
solution, at least one of the LCEs is a positive number.

Take the example used throughout this section that has a solution with
the general form of equation (3-9): it has an LCE µ1 = 1/2 and another one
µ2 = −1. Since µ1 is a positive value, the trivial solution is considered unstable,
as it was also concluded by the use of the Floquet multipliers.

It is sufficient for the largest LCE to be positive so that the trivial solution
is unstable. This value is denoted Λ, meaning Λ = max(µi), i = 1, ..., 2n
[1; 28]. One of the benefits of using Lyapunov characteristic exponents is that
stabilizing and destabilizing effects can be seen in stability maps and in the
ω×Λ plane, as discussed further on in chapter 4. Another advantage is that the
use of LCEs offers a stability criterion that allows one to compare autonomous
and time-periodic systems, as done in [28].
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3.3.1
Stability maps and parametric resonance

After understanding how to determine stability of the trivial solution of
linear time-periodic systems, it would be useful to do so for a given range of
parameters that compose the system. The tool capable of doing this is called
stability map. Stability maps are plots capable of graphically show stable and
unstable regions for given range of parameters. The boundary between these
two types of behavior are known as transition curves [2; 3; 4; 5; 6; 24; 32; 33].

To obtain these plots, one may use numerical or analytical methods
[3; 6; 26; 32; 33]. Perturbation methods are widely used to address transition
curves and the Lindstedt-Poincaré technique is going to be used to obtain such
curves [22; 26]. The Lindstedt-Poincaré technique is an interesting approach
for the objective here. The transition curves obtained from this method uses
directly the fact that periodic solutions occur for parameter values placed right
at this boundary, thus providing the parameters values that result in periodic
behavior. The process to search for transition curves is done here as it was in
[22; 26].

To exemplify this procedure, one can make use of the well known
Mathieu’s equation, given by (3-2). To proceed, take this equation in the form
ÿ+ω2

n (1 + ϵ cos(ωt)) y = 0, where ω2
n = δ and the excitation amplitude is now

given by ω2
nϵ. Taking the dimensionless time τ by making ωt = 2τ , one gets

y′′ + (σ + η cos(2τ)) y = 0, (3-15)

where y′′ = d2y/dτ 2, σ = (2ωn/ω)2 and η = ϵ (2ωn/ω)2. Here, ϵ << 1 is
assumed, meaning that the approximations obtained further on are only valid
for small amplitudes of excitation.

The transition curves in the σ × η plane correspond to the pairs of
parameters that result in periodic solutions, thus approximate solutions can be
obtained by finding pairs (σ, η) that makes this true. The Lindstedt-Poincaré
procedure starts by taking the following expansion for σ and y:

σ = p2 + ησ1 + η2σ2 + . . . (3-16)

y(τ) = y0 + ηy1 + η2y2 + . . . (3-17)

where σ1, σ2, . . . are unknown constants that are going to be obtained.
Substituting the expansions (3-16) and (3-17) into equation (3-15) one gets

(y′′
0 + ηy′′

1 + η2y′′
2 + . . . ) +

+
(
p2 + ησ1 + η2σ2 + · · · + η cos(2τ)

)
(y0 + ηy1 + η2y2 + . . . ) = 0.
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Grouping terms of equal power of η,

y′′
0 + p2y0 = 0,

y′′
1 + p2y1 = −(σ1 + cos(2τ))y0,

y′′
2 + p2y2 = −(σ1 + cos(2τ))y1 − σ2y0,

...

Take now the two sets of initial conditions y(0) = 1, y′(0) = 0 and
y(0) = 0, y′(0) = 1. Using them in the equation regarding y0, one gets that its
solutions must be in the form

y0 = cos(p τ) (3-18)

and
y0 = 1

p
sin(p τ), (3-19)

respectively for the two sets of initial conditions.
Let us find the first approximation for p = 0. By the first set of initial

conditions, y0 = cos(0) = 1 in equation (3-18), one gets

y′′
1 = −σ1 − cos(2τ).

To obtain periodic solutions through this relation, σ1 must be taken as
0. Integrating this equation for σ1 = 0 leads to

y1 = 1
4 cos(2τ) + a,

where a is a constant. Substituting y1 in the equation due respect to y2,

y′′
2 = −σ2 − 1

8 − a cos(2τ) − 1
8 cos(4τ),

that for periodic solutions must have σ2 = −1/8. Substituting σ1 = 0 and
σ2 = −1/8 in equation (3-16), one gets

σ = −1
8η

2 +O(η3),

where O(η3) corresponds to orders higher than the second one in the approx-
imation for σ. However, for p = 0, it is not possible to obtain a non-trivial
periodic solution for the second set of initial conditions. Therefore, p = 0 does
not lead to transition curves.

Moving on to the approximation for p = 1, equation (3-18) corresponding
to the first set of initial conditions means that we begin the procedure with
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y0 = cos(τ). This leads to

y′′
1 + y1 = − (σ1 + cos(2τ)) cos(τ),

= − (σ1 cos(τ) + cos(2τ) cos(τ)) ,

= −
(
σ1 + 1

2

)
cos(τ) − 1

2 cos(3τ),

that must have σ1 = −1/2. Thus

y′′
1 + y1 = −1

2 cos(3τ),

which solution is
y1 = 1

16 (cos(3τ) − cos(τ)) .
Substituting the just found y1 in the equation due respect to y2 gives us

y′′
2 + y2 = −

( 1
32 + σ2

)
+ 1

16 cos(3τ) − 1
32 cos(5τ),

that must have σ2 as −1/32. Substituting σ1 = −1/2 and σ2 = −1/32 in
equation (3-16),

σ = 1 − 1
2η − 1

32η
2 +O(η3).

Beginning now with (3-19), y0 = sin(τ) for p = 1, the process leads to

y′′
1 + y1 = − (σ1 + cos(2τ)) sin(τ),

= − (σ1 sin(τ) + cos(2τ) sin(τ)) ,

= −
(
σ1 − 1

2

)
sin(τ) − 1

2 sin(3τ),

that must have σ1 = 1/2 for periodic solutions. Thus

y′′
1 + y1 = −1

2 sin(3τ),

which solution is
y1 = 1

16 (sin(3τ) − sin(τ)) .
Substituting the just found y1 in the equation due respect to y2,

y′′
2 + y2 = −

( 1
32 − σ2

)
− 1

32 sin(5τ),

that must have σ2 as 1/32. Substituting σ1 = −1/2 and σ2 = 1/32 in equation
(3-16), one gets

σ = 1 + 1
2η + 1

32η
2 +O(η3).

The same procedure can be done for other values of p. For example, for
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p = 2 this process leads to

σ = 4 + 5
48η

2 +O(η3).

σ = 4 − 1
48η

2 +O(η3).

Before, the stability of the trivial solution was dependent on ωn, ω and
ϵ. With the change to dimensionless time, the stability is only dependent on
σ and η. Recalling now that σ = (2ωn/ω)2 and η = ϵ (2ωn/ω)2, one can plot
the obtained curves in the ω/ωn × ϵ plane, shown in figure 3.6 for p = 1 and
2. The areas outside these transition curves are the stable regions, while the
areas inside them are the unstable regions.

Since this is only valid for small values of ϵ, as this parameter increases
the approximations no longer hold. If higher order terms in σ were used, better
approximations would be obtained. However, this would lead to even longer
calculations that require algebraic manipulation in computers.

It is possible to see that the unstable areas arise from ω/ωn = 2/p, p ∈
N+. For p = 1, ω/ωn = 2; for p = 2, ω/ωn = 1; for p = 3, ω/ωn = 2/3 and
so on. These frequencies are known as critical frequencies. In the just seen
example of Mathieu’s equation, a small parameters approximation method to
obtain these critical frequencies was used. By doing so, it is possible not only to
obtain these frequencies, but it also provides a way of obtaining the boundaries
between stable and unstable regions.

Figure 3.6: Transition curves in the ω/ωn × ϵ plane, for p = 1 and 2.

As discussed in previous sections, for systems with applied external
forces, where the excitation is provided by a periodic input, the resonance
phenomenon occurs when the excitation frequency equals the system’s natural
frequency. The response’s amplitude grows without bound as it approaches this
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value. Meanwhile, for time-periodic systems parametric resonance [2; 3; 28]
occurs for several excitation frequencies. Such frequencies depend on the
natural frequencies of the undamped system without parametric excitation.

One can conclude that parametric resonance occurs when the excitation
frequency approaches

ωcrit, p = 2 ωn

p
, p ∈ N+, (3-20)

where ωcrit, p are the critical frequencies, which depend on the natural frequen-
cies ωn of the undamped system without parametric excitation. For MDoF
systems, parametric resonance may also occur at

ωcrit, p = |ωr ± ωl|
p

, p ∈ N+ for r ̸= l, (3-21)

with ωr and ωl representing, respectively, the r-th and l-th natural frequencies
of the undamped system without parametric excitation. The index p can be
seen as the order of the parametric resonance.

Parametric resonance is thus a phenomenon that can result in large re-
sponse amplitudes even for small excitation frequencies. For critical frequencies
originated from (3-20), the effect is always destabilizing [28]. However, for some
of the critical frequencies originated from the combination of natural frequen-
cies in (3-21), a stabilizing effect can be obtained. This is where parametric
anti-resonance occurs, that, differently from the parametric resonance, does
not result in instability. Parametric anti-resonance can actually be used as a
way of doing vibration control [2; 3]. By strategically setting the excitation
frequency to be the one corresponding to the parametric anti-resonance, self-
excited systems can have their vibration totally extinguished. An example of
this phenomenon is given in chapter 4. This could be widely used in control
vibration in rotating machinery to higher their efficiency, as discussed in [4].

Therefore, instability for parametrically excited systems occurs in several
excitation frequency intervals. These unstable regions can be seen clearly
through stability maps, where stable and unstable regions are shown for
different pairs of parameters. However, notice that until this point only an
undamped system was treated. A logical doubt that could follow this is: what
are the effects of damping in stability maps? The damping shrinks the unstable
areas, as it is going to be discussed in more details in the next chapter.

Even though an approximation method was briefly discussed, this disser-
tation deals from now on with numerical approximations, where the followed
numerical procedure is given in appendix E, used in the next chapter to discuss
in more details the Mathieu’s equation as well as several examples of 2DoF
systems.
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4
Stability analysis examples

This chapter’s goal is to provide several examples of systems with time-
periodic coefficients to exemplify the use of Floquet theory. First, single degree
of freedom (SDoF) systems that can be described by Mathieu’s equations
are going to be dealt with, embracing both undamped and damped cases.
These equations are capable of describing several real world system and are
widely studied until today in stability analysis. A good comprehension of their
applications and implications is of great interest in the stability studies, being
a first step into this topic.

Afterwords, examples of two degrees of freedom (2DoF) systems are going
to be discussed. The goal is to analyze the stability of the trivial solution of
these 2DoF systems using Floquet theory and see how parametric excitation
influences stability. In the examples, purely mechanical systems and purely
electromagnetic systems that can be described by the differential equations
are shown.

To do a complete analysis of these systems, stability maps using different
parameters are plotted for each example. Two different strategies to evaluate
the stability of trivial solutions are compared: Floquet multipliers and the
maximum value of Lyapunov characteristic exponents (Λ). Phase diagrams
are also shown so the general behaviour of the numerical approximations can
be discussed. Furthermore, plots in the ω×Λ plane are shown for more details
into the analysis. The numerical procedure followed here is given in appendix
E in details.
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4.1
SDoF examples: Mathieu’s equation

A brief introduction to Mathieu’s equation was present in section 3.1 as
well as in 3.3.1. Now, stability analysis of the trivial solution of systems that
can be described by this equation is going to be made by using Floquet theory.
Stability maps using Floquet multipliers and the maximum value of LCEs as
well as phase diagrams are going to be discussed. Both the undamped and
damped Mathieu’s equations are going to be dealt with in this section.

4.1.1
Case I: undamped system

As seen in section 3.1, a special case of a system that can be described
by equation (3-1) is

ÿ + [δ + ϵ cos(ωt)] y = 0,
known as Mathieu’s equation. Writing it in its two-dimensional first order form, ẏ

ÿ

 =
 0 1

−[δ + ϵ cos(ωt)] 0

 y

ẏ

 , (4-1)

where δ, ϵ and ω are parameters of the system.
It is possible to use the numerical procedure in appendix E to obtain

stability maps for this equation. An usual stability map for systems that can
be described by this equation is obtained by varying the values of excitation
frequency ω and amplitude ϵ. This allows one to use different values of δ, where
for each one of its values a ω × ϵ plane can be plotted. Figure 4.1 shows these
stability maps with a grid of 0.005 for the undamped Mathieu’s equation with
δ = 4 and 9, where the dark blue area represents the unstable regions and the
light blue area, the stable regions.

The stability maps in this plane provide the frequency vicinities where
instability takes place for each fixed value of δ. As seen in section 3.3.1, the
critical frequencies where parametric resonance occurs depend on the natural
frequencies of the undamped system without parametric excitation. By taking
ϵ = 0, the equation becomes

ÿ + δy = 0.
Thus, for this example, the natural frequency is

ωn, δ =
√
δ.

For both of the proposed systems, these frequencies are, in rad/s,

ωn, δ=4 = 2 and ωn, δ=9 = 3.
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By using equation (3-20) with the just obtained natural frequencies, it is
possible to say where the “tongues” of instability start forming. For example,
by taking δ = 4, the critical frequencies are: 4, 2, 1 and so on. In the vicinities
of these frequencies, instability behaviour takes place.

Figure 4.1: Stability maps for the undamped Mathieu’s equation with δ =
4 and 9, respectively.

It is also possible to make use of the maximum value of the Lyapunov
characteristic exponents (Λ) to evaluate the stability of the trivial solution.
The stability maps in figure 4.1 are also plotted in the ω× ϵ plane, with a grid
of 0.05. The values of Λ for each pair of excitation frequency and excitation
amplitude are obtained. The more red is the region of the map, the higher is
the value of Λ. The difference between the two forms of plotting these stability
maps is that a gradient of values of Λ is obtained, disposed in different colors
through the color bars.

Figure 4.2: Stability maps using Λ for the undamped Mathieu’s equation for
δ = 4 and 9, respectively.

By fixing values of ϵ as well as of δ, it is possible to obtain the Λ as
function of the excitation frequency ω, provided by figure 4.3 for ϵ = 1 and

DBD
PUC-Rio - Certificação Digital Nº 2112347/CA



Chapter 4. Stability analysis examples 52

the same values of δ = 4 and 9. It is possible to notice the predominance of
the first critical frequency between the other ones, fact already mentioned in
section 3.3.1. The peaks of instability, meaning the intervals where Λ is higher
then zero, appear exactly where expected by figure 4.2, once we are simply
taking a “cut” from the previous stability maps. Critical frequency of lower
orders do not appear in this plot due to the chosen section of figure 4.2 and
the used grid in the simulations. If a smaller grid and/or a higher value of ϵ
were used, these peaks could be seen in the ω × Λ plot.

Figure 4.3: The maximum value of the LCEs Λ for the undamped Mathieu’s
equation with ϵ = 1 and δ = 4 and 9, respectively.

The influence of the excitation frequency on the stability of the trivial
solution is analyzed next by making use of stability maps in the δ × ϵ. Four
different values of ω were used in a simulation and for each one of them a
stability map of this type was plotted. The δ × ϵ planes were plotted with a
grid of size 0.02, given in figure 4.4. These stability maps for the undamped
Mathieu’s equation were plotted for ω = 1, 2, 3 and 4 rad/s, where the
dark blue areas represent once again the unstable regions according to Floquet
theory. The first important observation about these stability maps is that if
a smaller grid was used, the instability “tongues” would all be touching the
δ-axis. This was not done because it would imply in longer simulations times.

It is possible to observe through the stability maps that, with the increase
of the frequency ω, the unstable regions are shifted to the right direction of
the δ-axis. This means that there are less instability “tongues” for the same
range of values of the parameters δ and ϵ. However, the remaining unstable
regions are wider, as if the map was being zoomed in (or enlarged).

It is also possible to use the maximum value of LCEs (Λ) to obtain
stability maps in this same plane. Figure 4.5 shows these maps with a grid of
0.1. The more red is the region of the map, higher the value of Λ and more
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Figure 4.4: Stability maps for the undamped Mathieu’s equation for ω =
1, 2, 3 and 4, respectively.

unstable the trivial solution is for the given pair of parameters, as seen through
the color-bars on the right-hand side of the stability maps.

Phase diagrams can also be plotted to evaluate the behaviour around
the trivial solution. The chosen parameters values are δ = 4 and ϵ = 2. The
simulations were done for 0 s to 100 s with a grid of 0.002 and with initial
conditions y(0) = 0.001, ẏ(0) = 0 to represent a small deviation from the zero
solution. These phase diagrams are shown in figure 4.6, where the motions’
start points are marked with a red dot and the numerical approximations at
the final time are marked with a black dot. The numerical approximations for
ω = 1 and 3 with the chosen parameters and initial conditions are stable, but
not asymptotically stable. The amplitudes of the numerical approximations for
a slight change from the zero solution do not increase indefinitely with time,
but neither they tend to the zero solution. This does not hold for the other
phase diagrams with ω = 2 and 4, cases where the amplitudes only increase
with time, being then unstable.

A great advantage of using Floquet theory is that conclusions can be
taken about the zero solution’s stability by solving the equations for only one
period T . Without using this theory, it would be necessary to obtain numerical
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approximations for larger periods of time to evaluate this behaviour.

Figure 4.5: Stability maps using Λ for the undamped Mathieu’s equation for
ω = 1, 2, 3 and 4, respectively.

4.1.2
Case II: damped system

For further analysis of the systems that can be described by the general
form of equation (3-1), one may analyze the damped Mathieu’s equation
[22; 32; 33], given by

ÿ + b ẏ + (δ + ϵ cos(ω t)) y = 0, (4-2)

where δ, ϵ and ω are the same parameters as the ones used for the undamped
case. Since we are dealing now with the damped Mathieu’s equation, a damping
coefficient is present, taken as a constant b. Once again the equation is written
in its two-dimensional first order form ẏ

ÿ

 =
 0 1

−[δ + ϵ cos(ω t)] −b

 y

ẏ

 . (4-3)

The goal now is to analyze the influence of damping on stability maps, as
mentioned in section 3.3.1. To compare it with the undamped case, the range
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Figure 4.6: Phase diagrams for the undamped Mathieu’s equation for ω =
1, 2, 3 and 4, respectively, for δ = 4 and ϵ = 2.

of the parameters δ and ϵ is as in figures 4.4 and 4.5. The numerical procedure
is followed as described in appendix E.

Stability maps for ω = 1 and 3 can be seen in figures 4.7 and 4.8, where
the dark blue area represents the unstable regions in the δ × ϵ plane plotted
with a grid of 0.02 for different values of damping b. One can observe in these
stability maps that the unstable regions have smoother borders when compared
to the undamped cases for these values of excitation frequency in figure 4.4.
It is also possible to notice that increasing the damping coefficient reduces the
unstable regions of the stability maps, that are shrunken as this happens.

Just as it was done for the undamped case, it is possible to make use of
the maximum value of the Lyapunov characteristic exponents (Λ). The same
stability maps just analyzed are now plotted by making use of the Λ values for
each pair of δ and ϵ, shown in figures 4.9 and 4.10. The regions of instability
are the same for both ways of plotting this map. Thus, the difference between
these maps and the ones in figure 4.5 for the chosen frequencies is provided by
the color-bar. In the damped cases, there are negative values of Λ, resulting
in the sharp “tongues” of stability in those maps. By only evaluating directly
the magnitude of the Floquet multipliers as in figure 4.5, these information
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Figure 4.7: Stability maps for the damped Mathieu’s equation with b = 0.1
and ω = 1 and 3, respectively.

Figure 4.8: Stability maps for the damped Mathieu’s equation with b = 0.5
and ω = 1 and 3, respectively.

are not shown, since the regions are restricted to stable/unstable areas. This
is a great advantage of using Λ in stability maps. Furthermore, it is possible to
notice that for greater damping values, the Λs assume more negative values.
Recalling section 3.3, this corresponds to asymptotic stability.

4.2
2DoF examples: mechanical and electromagnetic systems

In this section, several examples of 2DoF systems are going to be ana-
lyzed. The goal is to discuss the stability of the trivial solution of these 2DoF
systems using Floquet theory and see how parametric excitation influences
their stability. A purely mechanical system and a purely electromagnetic sys-
tem that can be described by the same differential equations are shown. Ap-
pendix C briefly discusses how to obtain the equations of motion of purely
electromagnetic systems, where an example is given so the reader can compare
the found dynamics with the examples given next.
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Figure 4.9: Stability maps using Λ for the damped Mathieu’s equation with
b = 0.1 and ω = 1 and 3, respectively.

Figure 4.10: Stability maps using Λ for the damped Mathieu’s equation with
b = 0.5 and ω = 1 and 3, respectively.

4.2.1
Case I: undamped system with one time-periodic coefficient

Two systems that can be described by similar differential equations are
depicted in figure 4.11. On the left, a 2DoF mechanical system is shown, com-
posed by two masses m1, m2 and three springs with stiffness coefficient k1, k2

and k3. Meanwhile, on the right in the same figure, an electromagnetic sys-
tem is seen, another system that can be described by the previous differential
equations. It is composed by two inductors l1, l2 and three capacitors with
capacitance c1, c2 and c3.

Since the intuition for mechanical systems is more clear, only this system
is going to be treated next. However, it is important to highlight that the
same conclusions about stability of the trivial solution can be made for the
electromagnetic system as well for the same used parameters. The differences
would lie in the physical interpretations of the system’s behaviour.
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Figure 4.11: 2DoF mechanical system with its electromagnetic equivalent
system for case I.

Parametric excitation can be introduced to the proposed mechanical
system in the spring connecting m1 to the wall. Thus, take k1 = k+ ϵ cos(ωt).
The dynamics of this non-autonomous system for unit masses (m1 = m2 = 1)
in matrix form is ÿ1

ÿ2

+
 [k + ϵ cos(ωt)] + k2 −k2

−k2 k2 + k3

 y1

y2

 =
 0

0

 . (4-4)

The natural frequencies of this undamped system when there is no
parametric excitation for k = k2 = k3 = 1 are, in rad/s,

ω1 = 1 and ω2 =
√

3 ≈ 1.732. (4-5)

By making use of equations (3-20) and (3-21), the critical frequencies can
be obtained, where the phenomenon of parametric resonance occurs. They are
of interest so the frequency intervals where instability takes place are known.
Using first equation (3-20), these frequencies are obtained, in rad/s, as

2 ω1 = 2, 2 ω1

2 = 1, 2 ω1

3 = 2
3 , . . .

2 ω2 ≈ 3.464, 2 ω2

2 ≈ 1.732, 2 ω2

3 ≈ 1.155, . . .

By making use of equation (3-21), these frequencies are, also in rad/s,

Σ ≈ 2.732, Σ
2 ≈ 1.366, Σ

3 ≈ 0.911, . . .

∆ = 0.732, ∆
2 = 0.366, ∆

3 = 0.244, . . .

where ∆ = ω2 − ω1 and Σ = ω1 + ω2.
The goal now is to use Floquet theory to evaluate the stability of the

trivial solution of this 2DoF system. Take then the dynamics in its two-
dimensional first order form
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ẏ1

ẏ2

ÿ1

ÿ2

 =


0 0 1 0
0 0 0 1

−(k + ϵ cos(ωt) + k2) k2 0 0
k2 −(k2 + k3) 0 0




y1

y2

ẏ1

ẏ2

 .

By using the numerical procedure described in appendix E, a stability
map on the ω×ϵ plane is plotted, shown in figure 4.12 and plotted with a grid of
0.001. The dark blue area represents the unstable cases for each pair (ω, ϵ) for
the fixed values of k, k2 and k3. Figure 4.12 shows that the unstable behaviour
occurs where expected: at the vicinities of the obtained critical frequencies.

Figure 4.12: Stability map for the 2DoF system with k = k2 = k3 = 1.

The same can be seen in figure 4.13, that shows the stability maps in
terms of Λ in the same range of the ω × ϵ plane, plotted with a grid of 0.005.
For each one of the pairs (ω, ϵ), the respective Λ is disposed in different colors
for different values of these exponents: the more red is the region of the map,
the more unstable, once the more positive is Λ the more unstable is the trivial
solution for that point in the map. This values can be seen through the color-
bars on the right side of the map.

Nonetheless, the predominance of the first order critical frequency is not
obvious by analyzing these maps. Thus, let us fix a value of ϵ so the plane
ω×Λ can be plotted. Using a grid of 0.001 and a chosen fixed value of ϵ = 0.3,
this plot is given in figure 4.14. It is possible to notice that the values of Λ
are positive in the vicinities of the critical frequencies, shown in the ω-axis in
figure 4.14. As expected, the color scale in figure 4.14 that provides the values
of Λ match with the values in figure 4.13. The predominance of the first order
critical frequency at 2ω1 can be clearly seen in this plot on the ω × Λ plane,
that is easier to see and faster to compute.
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Figure 4.13: Stability map for the 2DoF system with k = k2 = k3 = 1 using Λ.

Figure 4.14: ω × Λ plot for the system with k = k2 = k3 = 1.

To make a complete analysis, figures 4.15 and 4.16 show different phase
diagrams of y1 × ẏ1 and y2 × ẏ2, respectively, with a grid of 0.002 and during
100 s. The frequency ω = 1.5 was taken so a stable case could be discussed.
For each figure, the first row of figures 4.15 and 4.16 was plotted for the initial
conditions y1(0) = 1, y2(0) = 0, ẏ1(0) = 0, ẏ2(0) = 0 and y1(0) = 0, y2(0) = 1,
ẏ1(0) = 0, ẏ2(0) = 0, respectively. Meanwhile, their second row was plotted for
y1(0) = 0, y2(0) = 0, ẏ1(0) = 1, ẏ2(0) = 0 and y1(0) = 0, y2(0) = 0, ẏ1(0) = 0,
ẏ2(0) = 1, respectively.

As mentioned in section 2.2.2, phase diagrams for time-varying systems
can be challenging to analyze due to the explicit dependency of time on the
equations of motion. To make it easier to understand them, the motions’ start
points are marked with a red dot and the numerical approximations at the
final time are marked with a black dot. Figures 4.15 and 4.16 are showing
stable motions around the origin, but the general behaviour is quite complex.

DBD
PUC-Rio - Certificação Digital Nº 2112347/CA



Chapter 4. Stability analysis examples 61

Figure 4.15: Phase diagrams for y1 × ẏ1 with ω = 1.5, k = k2 = k3 = 1 and
ϵ = 0.3, where the start points are marked with red dots and the numerical
approximations at the final time are marked with black dots.

Figure 4.16: Phase diagrams for y2 × ẏ2 with ω = 1.5, k = k2 = k3 = 1 and
ϵ = 0.3, where the start points are marked with red dots and the numerical
approximations at the final time are marked with black dots.
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4.2.2
Case II: damped system with two time-periodic coefficients

The two systems that can be described by similar differential equations
are now depicted in figure 4.17. The differences between this example and
the previous one are: a second time-periodic parameter is introduced to the
system (on the stiffness coefficient k3 for the purely mechanical system or on
the capacitance c3 for the purely electromagnetic one) and the presence of
dissipation (through two dampers with constant damping coefficients b1, b2

for the purely mechanical system or two resistors with resistance r1, r2 for the
purely electromagnetic one).

Figure 4.17: 2DoF mechanical system with its electromagnetic equivalent
system for case II.

Just as for the previous example, we are going to continue by addressing
the mechanical system. Taking k1 = k3 = k+ ϵ cos(ωt), the system’s dynamics
for unit masses is ÿ1

ÿ2

+
 b1 0

0 b2

  ẏ1

ẏ2

+

+
 [k + ϵ cos(ωt)] + k2 −k2

−k2 k2 + [k + ϵ cos(ωt)]

  y1

y2

 =
 0

0

 , (4-6)

that in its two-dimensional first order form is
ẏ1

ẏ2

ÿ1

ÿ2

 =


0 0 1 0
0 0 0 1

−(k + ϵ cos(ωt) + k2) k2 −b1 0
k2 −(k2 + k + ϵ cos(ωt)) 0 −b2




y1

y2

ẏ1

ẏ2

 .

The goal is to analyze how the introduction of a second time-periodic
coefficient and damping to the system influence the stability of the zero
solution. Notice first that the natural frequencies of the undamped system
without the parametric excitation are also the ones given in equation (4-5) for
the same parameters k = k2 = 1.
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The stability map in the ω × ϵ plane is provided in figure 4.18, plotted
with a grid of 0.001. The dark blue area represents the unstable areas for fixed
parameters k = k2 = 1, b1 = b2 = 0.1. Moreover, figure 4.19 shows the stability
maps in terms of Λ in the same interval of the ω× ϵ plane, plotted with a grid
of 0.005.

Figure 4.18: Stability map for the 2DoF system with k = k2 = 1 and
b1 = b2 = 0.1.

Figure 4.19: Stability map for the 2DoF system with k = k2 = 1 and
b1 = b2 = 0.1 using Λ.

When comparing figures 4.18 and 4.19, it might seem odd that they are
different, once the maps using Λ values has sharp “tongues”. If one notices the
color bar in figure 4.19, it is possible to see that the difference is due to the
fact that this stability map presents negative values for Λ, just as discussed
in the stability analysis of the damped Mathieu’s equation. These negative Λs
are a consequence of the present dissipation, that result in sharp “tongues” in
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the stability map that do not appear when only using Floquet multipliers in
figure 4.18, once this is restricted to the classification of stable/unstable areas.

Furthermore, by comparing figures 4.12 and 4.18 as well as figures 4.13
and 4.19, one can notice that the unstable intervals in the vicinities of the
critical frequencies that depend on Σ do not appear. This is a consequence of
the addition of a second time-periodic parameter that is equal to the already
existent one. However, even though some instability “tongues” disappear, the
remaining unstable areas are wider then with one time-periodic coefficient and
the values of Λ reach higher values.

Fixing ϵ = 0.3, the plane ω×Λ is plotted with a grid of 0.001 in figure 4.20,
where it is possible to see the predominance of first order critical frequencies.
By comparing figures 4.14 and 4.20, it is possible to notice that the addition
of damping to system for the same fixed parameters shifts the curve to lower
values in the Λ-axis, only being higher than zero in the vicinity of 2ω1. Notice
that this is the case for when both dampers have the same damping coefficient.

Moreover, one can notice that the critical frequencies corresponding to
Σ, Σ/2 and Σ/3 are not present in the plot. This is due to the two equal time-
periodic coefficients and was expected from the stability maps. This means
that adding time-periodic coefficients to the already parametrically excited
system is a way of cancelling instability areas, a type of vibration control for
this kind of system.

Figure 4.20: ω × Λ plot for the system with k = k2 = 1 and b1 = b2 = 0.1.

Furthermore, figure 4.21 shows the numerical approximations through
time with ϵ = 0.3, ω = 4 and initial conditions y1(0) = 0.001, y2(0) =
0, ẏ1(0) = 0, ẏ2(0) = 0. It is possible to see that both approximations for
a slight change from the trivial solution return to the origin, making this case
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not only stable, but asymptotically stable. This was expected for the chosen
parameters once the Λ value is negative.

Figure 4.21: Numerical approximations with ϵ = 0.3 and ω = 4.

One can also plot the phase diagrams, shown in figure 4.22, where
the beginning of the motion is marked with a red dot and the numerical
approximation at the final time (100 s) is marked with a black dot. The
expected behaviour from the former analysis of approaching the origin as time
increases can be seen. Notice that in the phase diagram for y2 × ẏ2 the motion
starts and finishes at the origin and that is why only the red dot can be seen.

Figure 4.22: Phase diagrams with ϵ = 0.3 and ω = 4.

4.2.3
Case III: damped system with one time-periodic coefficient

In this example, take the 2DoF mechanical system on the left of figure
4.23. It is composed by two masses m1, m2, a spring k1 and a damper b
connecting the first mass to a wall and one spring connecting both masses
with stiffness k2, a time-periodic coefficient taken as k2 = k + ϵ cos(ωt).
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This results in a parametric excitation occurring in all terms of the stiffness
matrix, including on the off-diagonal elements, differently from the previous
examples. An electromagnetic system that can be described in a similar matter
is depicted on the right in figure 4.23. It is composed by two inductors l1, l2,
two capacitors (one with constant capacitance c2 and another one with time-
periodic capacitance c1) and a resistor with resistance r.

Figure 4.23: 2DoF mechanical system with its electromagnetic equivalent
system for case IV.

Both of this systems can be described by similar differential equations,
but, just as for the previous examples, the mechanical system is going to be
addressed next. This system’s dynamics in matrix form for unit masses is ÿ1

ÿ2

+
 b 0

0 0

 ẏ1

ẏ2

+

+
 k1 + [k + ϵ cos(ωt)] − [k + ϵ cos(ωt)]

− [k + ϵ cos(ωt)] k + ϵ cos(ωt)

 y1

y2

 =
 0

0

 ,
The natural frequencies for the undamped system without parametric

excitation with m1 = m2 = 1, k1 = 3 and k = 1 are, in rad/s,

ω1 =
√

5 +
√

13
2 ≈ 2.074 and ω2 =

√
5 −

√
13

2 ≈ 0.835.

Let us now obtain the critical frequencies. Using equation (3-20) they
are, in rad/s,

2 ω1 ≈ 4.149, 2 ω1

2 ≈ 2.074, 2 ω1

3 ≈ 1.383, . . .

2 ω2 ≈ 1.67, 2 ω2

2 ≈ 0.835, 2 ω2

3 ≈ 0.557, . . .

By making use of equation (3-21), the obtained frequencies are, also in
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rad/s,

Σ ≈ 2.909, Σ
2 ≈ 1.455, Σ

3 ≈ 0.97, . . .

∆ ≈ 1.239, ∆
2 ≈ 0.62, ∆

3 ≈ 0.413, . . .

where ∆ = ω1−ω2 and Σ = ω1+ω2. Furthermore, the dynamics can be written
in its two-dimensional first order form

ẏ1

ẏ2

ÿ1

ÿ2

 =


0 0 1 0
0 0 0 1

−(k1 + k + ϵ cos(ωt)) k + ϵ cos(ωt) −b 0
k + ϵ cos(ωt) −(k + ϵ cos(ωt)) 0 0




y1

y2

ẏ1

ẏ2

 .

After writing the equations of motion in its state-space form, a stability
map obtained by using Floquet theory can be plotted through the numerical
procedure in appendix E. This stability map is given in figure 4.24, where the
ω×ϵ plane was plotted with a grid of 0.005. The dark blue area represents once
again the regions where instability takes place for fixed values k1 = 3, k = 1
and b = 0.2. Since there is a dissipative term, the instability “tongues” in the
stability maps are not sharp.

Figure 4.24: Stability map in the ω× ϵ plane for the 2DoF system with k1 = 3,
k = 1 and b = 0.2.

The stability maps in terms of Λ can also be obtained. The ω × ϵ plane
was plotted with a grid of 0.005, given in figure 4.25. By comparing figures 4.24
and 4.25, it is possible to notice that they differ in some important aspects as
a result of the gradient of Λ values. Figure 4.25 provides information about the
stability of the trivial solution by a classification of only stable or unstable. One
may also wonder why the stability map in figure 4.19 differs so profoundly from
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the one in figure 4.25. Even though the range of Λ values is not that different,
the heatmap plot used in the software MatLab provided the color gradient on
its on, making the lower values of Λ assume the dark blue color.

Furthermore, by making use of this stability map, it is also possible to
notice the existence of what is known as parametric anti-resonance, shown as
the dark blue area of stability in figure 4.25. It corresponds to the critical
frequency ∆, obtained by the subtraction of the found natural frequencies.
This phenomenon was briefly discussed in section 3.3.1 and is going to be
analyzed in more details next.

Figure 4.25: Stability map in the ω× ϵ plane for the 2DoF system with k1 = 3,
k = 1 and b = 0.2 using Λ.

Let us fix the value of ϵ as 0.3 to obtain the plot ω × Λ, just as it was
done for the previous examples. Using a grid of 0.001, this graphic is given
in figure 4.26. One may notice that a destabilizing effect only occurs for the
critical frequencies 2ω2 and Σ for the fixed amplitude ϵ. Meanwhile, the critical
frequencies ω2, 2ω2/3 and Σ/2 are associated to negative values of Λ, being
then a region of asymptotically stability of the trivial solution. This means that,
as a result of the existing damping, these critical frequencies do not result in
instability for the chosen value of ϵ. Furthermore, the critical frequency ∆ has
a stabilizing effect. As said previously, this frequency is associated with the
parametric anti-resonance phenomenon and results in an abrupt decrease in
the values of Λ. While the other critical frequencies result in rounded curves
at their neighbourhood, the curve around ∆ has a sharp form.

It is of interest at this moment to analyze the just seen facts with a
little more depth. By using the chosen value of ϵ, phase diagrams can be
obtained. This is done for different values of excitation frequency ω so it is
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Figure 4.26: ω × Λ plot for the system with k1 = 3, k = 1 and b = 0.2.

possible to compare the numerical approximations for each case. The used
parameters are k1 = 3, k = 1, b = 0.2 and ϵ = 0.3, with initial conditions
y1(0) = 0.001, y2(0) = 0, ẏ1(0) = 0, ẏ2(0) = 0.

Let us first compare a stable case where ω = 1 with the excitation
frequency where the parametric anti-resonance occurs ω = ∆. Figures 4.27
and 4.28 show the phase diagrams for ω = 1 and ω = ∆, respectively, where
once again the beginning of the motion is marked as a red dot and the end as a
black one. It is possible to see that for both cases the numerical approximations
are approaching the zero value, making the trivial solution for both excitation
frequencies asymptotically stable.

Figure 4.27: Phase diagrams with ω = 1.

However, there is no evident discrepancy between these phase diagrams.
After all, what is the difference between these cases? This can be graphically
answered by plotting the numerical approximations through time for both
excitation frequencies. Figures 4.29 and 4.30 show these plots for ω = 1
and ω = ∆, respectively. It is also possible to notice the asymptotic stable
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Figure 4.28: Phase diagrams with ω = ∆.

behaviour, where the difference between them relies on how fast the trivial
solution approaches zero. The numerical approximations with ω = ∆ for a
small deviation from the trivial solution approach zero for a shorter period of
time then with ω = 1.

Figure 4.29: Numerical approximations of the system’s response with ϵ = 0.3
and ω = 1.

Therefore, by strategically choosing the excitation frequency as the
frequency correspondent to the parametric anti-resonance phenomenon, it
allows one to make a vibration control of the analyzed system. Parametric
excitation can thus be used as a way of controlling vibration due to its
stabilizing effect on the system.

For a final analysis of this example, take the case where ω = 2ω2. Through
figure 4.26 it is possible to see that this corresponds to an unstable situation.
Since this is the case, one expects that the numerical approximations diverge
from the zero solution as time goes by. This behaviour can be seen in figure 4.31,
that provides us the system’s phase diagrams from 0 s to 150 s of simulation.
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Figure 4.30: Numerical approximations of the system’s response with ϵ = 0.3
and ω = ∆.

However, a different effect occurs for this excitation frequency that can be
seen through figure 4.32. This is a clear example of the importance of Floquet
analysis: if only a short period of time was taken in consideration for the
simulation, let us say until 30 s, the response would appear to be only decaying
with time, when it is clear by figure 4.32 that this is not the case for longer
periods of time. By solving IVPs for only one period T , one can use Floquet
analysis to analyze the stability of the trivial solution.

Figure 4.31: Phase diagrams with ω = 2ω2.
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Figure 4.32: Numerical approximations of the system’s response with ϵ = 0.3
and ω = 2ω2.

This last example of the use of Floquet theory to evaluate the stability of
a 2DoF system also clearly shows the advantages of using the maximum value
of the LCEs Λ as used in the numerical procedure provided in this dissertation.
This is due to the fact that the phenomenon of parametric anti-resonance could
not be perceived by only making use of Floquet multipliers as proposed by the
numerical procedure in appendix E.
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5
Electromechanical systems

As introduced in chapter 1, electromechanical systems are systems com-
posed by two different natures: one mechanical and another electromagnetic
[7; 8; 9; 10]. Thus, the energies present in this type of system also have distinct
origins: some are mechanical energies (such as kinetic and potential energies)
while others are electromagnetic energies (like magnetic and electrical energies)
[11; 12].

Electromechanical systems are characterized by the interaction between
their subsystems, meaning that the mechanical subsystem influences the
electromagnetic subsystem as well as the inverse [13; 14; 15; 16; 17]. Due to
this mutual influence, it is not sufficient to describe each subsystem separately
for an accurate description of their dynamics. One must take into account
parameters of both mechanical and electromagnetic natures [18; 19].

The mutual interaction between the subsystems is only possible through
coupling elements that provide a way of exchanging energy among them
[11; 12]. In general, for linear electromechanical systems, these coupling terms
appear in the equations of motion through gyroscopic and circulatory terms,
matrices G and N , respectively.

Knowing the dynamics of this kind of system enables one to take a step
further by introducing parametric excitation through time-periodic coefficients.
This makes it possible to use Floquet theory to make a stability analysis. Since
the simplest example of an electromechanical system must have at least two
coordinates (one mechanical and one electromagnetic), for this first approach
into stability analysis of the trivial solution of electromechanical systems,
a 2DoF system called electromagnetic loudspeaker is going to be analyzed.
Appendix D provides a brief introduction into how to obtain the equations of
motion of electromechanical systems, using the loudspeaker to exemplify this
[9; 18].
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5.1
Stability analysis for time-periodic electromechanical systems

As said previously, this type of system has two distinct origins: one
mechanical and another electromagnetic. With the used parametrization,
their natural frequencies are hybrid frequencies, once they are dependent on
parameters with both origins [37]. This also means that stability maps can be
obtained by varying a mechanical parameter and an electromagnetic one.

This chapter analyzes different models of an electromagnetic loudspeaker,
which dynamics is known [12; 9], given in more details in appendix D.
First, a general view of this system is presented, providing the elements that
compose it. The usual linear differential equations with constant coefficients
that describe the loudspeaker’s motion are then used to obtain the natural
frequencies and mode shapes for the undamped case. After that, the forced
response is going to be briefly analyzed. Thereafter, parametric excitation is
introduced to the system through a time-periodic stiffness parameter, making it
possible to make a stability analysis through Floquet theory for the undamped
and damped cases. Stability maps are also used to evaluate the stability of the
trivial solution.

5.1.1
Electromagnetic loudspeaker

Figure 5.1 provides an illustrative representation of an electromagnetic
loudspeaker [9; 12]. This system is composed by a mass m, a spring with
stiffness coefficient k, a damper with damping coefficient b, a voltage source
υ in series with a RL circuit (which means an inductor of inductance l and a
resistor of resistance r) and a moving-coil transducer with transducer constant
ρ. The parametrization used to describe the system’s configuration is the
displacement z of the mass from the mechanical subsystem’s equilibrium point
and the charge q passing through the circuit.

It is important to highlight that z is merely the displacement of the
mass m from the chosen equilibrium point. The spring and damper simulate a
membrane in the loudspeaker. The coupling enabling energy to flow between
the two subsystems is provided by the moving-coil transducer, an element
composed by a permanent magnet and a coil that can move in the z direction.
This element converts electrical power into mechanical power or vice versa and
cannot store energy [10; 18].
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Figure 5.1: Electromagnetic loudspeaker.

The general form of a system’s dynamics is given by equation (2-1), that
for this linear system with constant coefficients is, as developed in appendix
D, m 0

0 l

 z̈

q̈

+


 b 0

0 r

+
 0 −ρ
ρ 0


 ż

q̇

+
 k 0

0 0

 z

q

 =
 0
υ

 ,
(5-1)

where the dependence on time was omitted for notation simplification. Taking
the general form of equation (2-1), the matrices present in the system’s
dynamics are

M =
 m 0

0 l

 , D =
 b 0

0 r

 , G =
 0 −ρ
ρ 0

 , K =
 k 0

0 0

 ,
recalling that in the present system no coefficient matrix varies with time. It is
possible to notice that the coupling between the mechanical and electromag-
netic subsystems is provided by gyroscopic terms and that circulatory terms
are not present in the dynamics.

Next, several cases of the loudspeaker dynamics are going to be analyzed.

5.1.1.1
Case I: undamped autonomous model

First it is of interest to find the system’s natural frequencies [38; 39].
Taking equation (5-1) without a voltage source (υ = 0) and considering the
system with no dissipative terms (b = 0, r = 0), it is possible to rewrite the
equations of motion as

Eẋ+Hx = 0, (5-2)

where x(t) = [z(t) q(t) ż(t) q̇(t)]T , E =
 G M

M 0

 and H =
 K 0

0 −M

 .
The solutions of equation (5-2) are in the form
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x(t) = u eλt =
 ψ

λψ

 eλt (5-3)

where λ is a scalar that represents the eigenvalues and u the respective
eigenvectors. The second half of these eigenvectors has a multiplication by
λ as a result of how vector x is written: its lower half is the derivative of the
upper half. The eigenvalue problem (EVP) that must be solved is

(λ E +H)u = 0. (5-4)

Since u should be a non-null vector for a non-trivial solution, matrix
(λ E + H) must be singular and thus have a null determinant, resuming the
EVP for this case with no dissipation to

det[λ E +H] = det


k −ρλ mλ 0
ρλ 0 0 lλ

mλ 0 −m 0
0 lλ 0 −l

 = 0.

The characteristic function derived from it is thus

m2l2λ4 + (ρ2ml + kml2)λ2 = 0,

λ2(m2l2λ2 + ρ2ml + kml2) = 0.

The wanted eigenvalues are roots of this characteristic function. Solving
for λ leads to

λ1 =
√
k

m
+ ρ2

ml
i, λ2 = −

√
k

m
+ ρ2

ml
i and λ3,4 = 0,

where i =
√

−1 and λ3,4 is a double root. To obtain the eigenvectors
corresponding to each one of them, one must substitute the just found
eigenvalues into equation (5-4), where the vector u is now wanted.

For the first eigenvalue λ1, the EVP is (λ1 E + H)u1 = 0, that leads to
the system 

k −ρλ1 mλ1 0
ρλ1 0 0 lλ1

mλ1 0 −m 0
0 lλ1 0 −l




u11

u12

u13

u14

 =


0
0
0
0

 ,
where the constants u11, u12, u13, u14 are the unknown elements of the wanted
eigenvector u1. This system can be written as
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ku11 − ρλ1u12 +mλ1u13 = 0, (5-5)

ρλ1u11 + lλ1u14 = 0, (5-6)

λ1u11 −mu13 = 0, (5-7)

lλ1u12 − lu14 = 0. (5-8)

By the last two equalities (5-7) and (5-8), u13 = λ1u11 and u14 = λ1u12.
One can then substitute u13 and u14 into equations (5-5) and (5-6) to obtain

(k +mλ2
1)u11 − ρλ1u12 = 0,

ρλ1u11 + lλ2
1u12 = 0,

u12 = − ρ

l λ1
u11.

Therefore, (
k +mλ2

1 + ρ2

l

)
u11 = 0,[

k −m

(
k

m
+ ρ2

ml

)
+ ρ2

l

]
u11 = 0,

0 u11 = 0.

This leads to u11 ∈ R∗ and u12 = − ρ

l λ1
u11. Thus, the eigenvector u1

corresponding to the eigenvalue λ1 is

u1 =


1

−ρ/(l λ1)
λ1

−ρ/l

α, α ∈ R∗.

For λ2, this same procedure can be done, obtaining

(λ2 A+B)u2 = 0 → u2 =


1

−ρ/(l λ2)
λ2

−ρ/l

 ζ, ζ ∈ R∗.

Finally, for λ3,4 the EVP is (λ3,4 E +H)u3 = 0, that results in
k 0 0 0
0 0 0 0
0 0 −m 0
0 0 0 −l




u31

u32

u33

u34

 =


0
0
0
0

 .
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where the constants u31, u32, u33, u34 are once again the unknowns. By solving
this system one gets

ku31 = 0 → u31 = 0
u32 ∈ R∗

−mu33 = 0 → u33 = 0
−lu34 = 0 → u34 = 0

→ u3 =


0
1
0
0

 ι, ι ∈ R∗.

The eigenvectors and their respective eigenvalues were just obtained. In
summary, these eigenpairs are

λ1 =
√
k

m
+ ρ2

ml
i, u1 =

[
1 −ρ/(l λ1) λ1 −ρ/l

]T
,

λ2 = −
√
k

m
+ ρ2

ml
i, u2 =

[
1 −ρ/(l λ2) λ2 −ρ/l

]T
,

λ3,4 = 0, u3 =
[

0 1 0 0
]T
.

The eigenvalues λ1,2 and λ3,4 result, respectively, in the natural frequen-
cies

ω1,2 =
√
k

m
+ ρ2

ml
and ω3,4 = 0, (5-9)

while the normal modes are taken as the upper half of the found eigenvectors.
The natural frequency ω1,2 in (5-9) is a hybrid frequency, once it depends

on mechanical as well as electromagnetic coordinates, two variables with differ-
ent natures. It is also possible to notice that ω1,2 is composed of two portions:
k/m and ρ2/(ml). The former portion appears in the natural frequency of a
purely mechanical mass-spring system. Meanwhile, the latter portion involves
both mechanical and electromagnetic parameters.

The general solution for this system is given by a linear combination
involving the found eigenvalues and eigenvector, as in equation (5-3). The
solution can thus be written as

x(t) = (b1+a1t)


0
1
0
0

+a2 e
i ω1,2 t


1

−ρ/(l ω1,2 i)
ω1,2 i

−ρ/l

+a3 e
−i ω1,2 t


1

ρ/(l ω1,2 i)
−ω1,2 i

−ρ/l

 ,
(5-10)

where the constants b1, a1, a2, a3 are obtained by making use of initial
conditions.

In systems described simply by the mass and stiffness matrices, the
eigenvectors are composed by real elements and have a clear physical meaning.
However, the eigenvectors can be complex ones for other cases, providing the
interpretation that, even though they have the same oscillation frequency, they
do not pass through their equilibrium points at the same time. The nodal points
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are not fixed, unlike the case of real eigenvalues. Eigenvectors are complex
when at least one of the coefficient matrices is not symmetric or when it is not
possible to diagonalize the damping matrix through undamped mode shapes
[40]. Even though the loudspeaker system was taken in such a way that it has
no dissipative terms, the presence of the gyroscopic matrix, a skew-symmetric
matrix, leads to complex mode shapes.

It is of interest now to analyze in more details what these pairs of
natural frequencies and mode shapes mean. The first point that stands out
is that the null natural frequency ω3,4 is a consequence of a double root and
it corresponds to a real eigenvector u3 that does not depend on the system’s
parameters, differently from the other two eigenvectors. The solution regarding
this frequency cannot be given as the others and must be in the form of a linear
relation with time, as in equation (5-10).

Furthermore, the only coordinate present is u3 (the eigenvector corre-
sponding to the null natural frequency) is q, meaning that the portion of the
system’s solution that corresponds to a non-oscillatory response that increases
linearly with time involves only the charge of the circuit.

5.1.1.2
Case II: undamped non-autonomous model with a voltage source

Now that the free vibration model of the electromagnetic loudspeaker was
analyzed in more details, one may use the results from the previous section to
evaluate the forced response. The voltage source is no longer null and is taken
as harmonic in the form υ(t) = υ0 sin(ωt). Fixing the system’s parameters as
l = 1, m = 1, κ = 8 and ρ = 1, the non-null loudspeaker’s natural frequency
found in equation (5-9) is

ω1,2 =
√

8
1 + 12

1 . 1 = 3.

By solving the IVP with initial conditions z(0) = 1, q(0) = 0, ż(0) =
0, q̇(0) = 0 one can obtain numerical approximations of the system’s response
to the forced excitation. The goal is to show what happens to the system
when the excitation frequency equals the system’s natural frequency. Taking
υ0 = 1 and ω = ω1,2 = 3, the numerical approximations for z and q̇

are obtained, plotted in figure 5.2. The amplitudes of both coordinates are
increasing indefinitely with time, an expected behaviour discussed in section
2.1 and appendix A, corresponding to the resonance phenomenon.

Resonance and parametric resonance occur due to distinct types of
excitations. Let us now analyze the situation where the system’s excitation
is due to time-varying coefficients.
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Figure 5.2: Numerical approximations when ω = ω1,2 = 3.

5.1.1.3
Case III: undamped non-autonomous model with parametric excitation

Until now only the loudspeaker with constant coefficients was dealt with
so a few details regarding this electromechanical system’s dynamics could
be discussed without further complications. To continue with the stability
analysis, let us introduce parametric excitation to the system. Take k =
κ + ϵ cos(ωt), meaning that this model of the system has a time-periodic
coefficient in the stiffness term. It is thus being parametrically excited.

The equations of motion when there is no voltage source (υ = 0) or
dissipation (b = 0, r = 0) are, in matrix form, m 0

0 l

  z̈

q̈

+
 0 −ρ
ρ 0

 ż

q̇

+
 κ+ ϵ cos(ωt) 0

0 0

 z

q

 =
 0

0

 ,
that in its two-dimensional first order form is

ż

q̇

z̈

q̈

 =


0 0 1 0
0 0 0 1

−[κ+ ϵ cos(ωt)]/m 0 0 ρ/m

0 0 −ρ/l 0




z

q

ż

q̇

 .

Notice that the natural frequencies of the undamped system without
parametric excitation are just as obtained previously, given in equation (5-9),
where k is replaced by κ. Fixing the parameters as in the last section (l = 1,
m = 1, κ = 8 and ρ = 1), they are

ω1,2 = 3 and ω3,4 = 0.

Equations (3-20) and (3-21) can be used to obtain the critical frequencies
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just as it was done in chapter 4. Since one of the natural frequencies is equal
to zero, only the non-null natural frequency is needed to find the critical
frequencies. The relations obtained with (3-21) are already included in (3-20)
for this case. Therefore, using equation (3-20), the critical frequencies are, in
rad/s,

2 ω1,2 = 6, ω1,2 = 3, 2 ω1,2

3 = 2, ω1,2

2 = 1.5, . . .
The goal is to again make a stability analysis by using Floquet theory, but

now to evaluate stability of the trivial solution of this 2DoF electromechanical
system. A stability map in the ω × ϵ plane is given in figure 5.3, plotted with
a grid of size 0.01 for this case with no dissipation terms. The dark blue area
represents where instability of the trivial solution takes place according to
Floquet theory. In figure 5.3 is possible to see that instability occurs around
the found critical frequencies. The same can be seen in figure 5.4, that shows
the stability map in terms of Λ, plotted with a grid of 0.01. It is clearly seen
through this maps the dominance of the first order critical frequency.

Figure 5.3: Electromagnetic loudspeaker’s stability map in the ω × ϵ plane.

By fixing the excitation’s amplitude as ϵ = 0.3, it is possible to obtain Λ
while varying the excitation’s frequency ω. The main frequency that appears
in the ω × Λ plot for the chosen parameters is 2ω1,2, as shown in figure 5.5.
This means that, for small values of ϵ, instability is of most interest in the
loudspeaker when the excitation frequency approaches the double value of
the natural frequency of the undamped system without parametric excitation,
the already mentioned critical frequency of first order. For purely mechanical
systems as well as for purely electromagnetic ones, the higher effect of this first
order critical frequency is well known (as discussed, for example, in [2; 3]) and
it was addressed throughout chapter 4.
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Figure 5.4: Electromagnetic loudspeaker’s stability map in the ω × ϵ plane
using Λ.

Figure 5.5: ω × Λ plot for the electromagnetic loudspeaker with κ = 8, ρ = 1
and ϵ = 0.3.

Another plot of interest to discuss is the stability map in the ω×ρ plane
using Λ, shown in figure 5.6 for ϵ = 0.3. Through this figure it is possible
to notice that the excitation frequency may result in instability of the trivial
solution depending on the chosen value of ρ. The unstable “path” present
in this stability map occurs due to the change in the loudspeaker’s natural
frequency, once this dynamic property is dependent on the parameter value ρ,
clearly seen in (5-9).
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Figure 5.6: Electromagnetic loudspeaker’s stability map in the ω × ρ plane
using Λ for ϵ = 0.3.

5.1.1.4
Case IV: damped non-autonomous model with parametric excitation

By introducing terms of dissipation, the equations of motion when there
is no voltage source (υ = 0) are, in matrix form, m 0

0 l

  z̈

q̈

+
 b −ρ
ρ r

 ż

q̇

+
 κ+ ϵ cos(ωt) 0

0 0

 z

q

 =
 0

0

 ,
that in its two-dimensional first order form is

ż

q̇

z̈

q̈

 =


0 0 1 0
0 0 0 1

−[κ+ ϵ cos(ωt)]/m 0 −b/m ρ/m

0 0 −ρ/l −r/l




z

q

ż

q̇

 .

At this first moment, let us introduce dissipation to the system by making
only the damping coefficient b non-null. Thus, the resistance in the circuit
remains zero (r = 0). The goal is to see how the damping influences the
stability of the trivial solution of the electromagnetic loudspeaker by making
use of stability maps not used previously in this dissertation.

Taking ϵ = 0.3 and the same parameters used before (l = 1, m = 1,
κ = 8 and ρ = 1), one can plot a stability map in the ω × b plane, as depicted
in figure 5.7. It is possible to see that instability takes place only at a small
neighbourhood of ω = 2ω1,2 = 6, showing once again the higher effect of the
first order critical frequency in terms of instability of the trivial solution.

Taking a step further to introduce resistance into the electromagnetic
subsystem (now, r ̸= 0 as well as b ̸= 0), a stability map of interest is given in
the r × b plane. Figure 5.8 provides this plot for ϵ = 0.3 and ω = 2ω1,2 = 6.
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Figure 5.7: Electromagnetic loudspeaker’s stability map in the ω × b plane
using Λ.

This frequency was chosen so the effects of damping could be discussed in more
details for a situation where the excitation frequency is equal to the first order
critical frequency.

The stability map in figure 5.8 provides stability information in terms
of parameters of both mechanical and electromagnetic natures. It also shows
that instability takes place at the chosen excitation frequency ω = 2ω1,2 only
for very small values of both damping and resistance. For higher values of this
coefficients, the trivial solution is stable, showing that instability at this first
order critical frequency can be suppressed.

Figure 5.8: Electromagnetic loudspeaker’s stability map in the r×b plane using
Λ.
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6
Conclusions

Stability analysis is applicable to many fields of knowledge, from mechan-
ics to electronics and fluid dynamics. To fully comprehend its applications, one
must first be familiarized with basic concepts that lead not only to a formal
understanding of this topic, but also to an intuition of what it means for a
motion to be stable or unstable. To achieve this, the dissertation provided the
needed background to start stability analysis studies. The presented theory
encompassed: resonance; stability; what an equilibrium position is; examples
of phase diagrams and how to analyze them so a system’s motion can be eval-
uated; linearization of differential equations around equilibrium points. After
that, the difference between autonomous and non-autonomous systems was
given.

To continue, stability in the sense of Lyapunov was introduced. The
dissertation’s main topic of interest was to analyze stability of the trivial
solution of linear systems with time-periodic coefficients, thus Floquet theory
was presented. This theory enables one to make stability statements about the
trivial solution of this type of system. Then, stability maps, transition curves
obtained through a perturbation method and the phenomenon of parametric
resonance were discussed by making use of the example of Mathieu’s equation.

Afterwords, Mathieu’s equation was studied in more details. The trivial
solution’s stability was analyzed for the undamped and damped cases while
making use of stability maps and phase portraits. After that, several examples
of two degrees of freedom systems with parametric excitation that encompass
mechanical as well as electromagnetic systems were given to exemplify the
use of Floquet theory and evaluate how parametric excitation influences the
stability of their trivial solution. To do so, stability maps, phase diagrams and
the plane ω × Λ were discussed throughout this dissertation.

Each example was approached so different features could be presented
and analyzed in more details. The advantages of using Floquet theory became
clear, that allows one to make stability statements about the trivial solution
by only solving the dynamics for one period T . Without using this theory, it
would be necessary to obtain numerical approximations for larger periods of
time to evaluate the behaviour. The phenomenon of parametric anti-resonance
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and its capability of controlling vibration were also discussed. Furthermore,
the advantages of using the maximum value of the Lyapunov characteristic
exponents Λ became clear: stabilizing and destabilizing effects can be seen by
making use of such values, providing important information about stability of
the trivial solution that would be lost if only the magnitude of the Floquet
multipliers were directly analyzed.

After these examples, electromechanical systems were introduced. A
brief explanation of how to obtain their equations of motion was given so
then stability could be addressed. Then, a specific example was used to
analyze stability of several different cases: an electromagnetic loudspeaker.
The undamped system’s natural frequencies were obtained, that are hybrid
frequencies for the used parametrization, once they depend on parameters of
both natures (mechanical and electromagnetic). By making use of different
stability maps, the stability of the trivial solution was discussed.

The numerical procedure used throughout the dissertation was provided
in a step by step procedure. Its disadvantages and difficulties were also
discussed as well as ways to overcome them so satisfactory results in stability
maps are obtained. In resume, one of the goals of this dissertation was
to provide a numerical procedure to evaluate the stability of the trivial
solution of linear time-periodic systems through Floquet theory. Also, several
examples were analyzed by making use of this procedure. Another goal of this
dissertation was to introduce stability analysis for electromechanical systems.

At this point, one may have noticed that the seen theory for linear time-
periodic systems was used only for systems with parametric excitation present
in stiffness coefficients. A possible way of continuing this study would be to
evaluate stability when the time-periodic coefficient is given, for example, in
gyroscopic terms. The same path followed throughout this dissertation could
be used (obtaining approximations of the transition curves, plotting stability
maps and phase portraits, etc). The electromechanical system of a DC motor
would be an example of interest, once its standard form has no stiffness terms
and the coupling between the mechanical and electromagnetic subsystems is
given by gyroscopic terms.

Another possible way of continuing this stability study would be to make
stability analysis for more examples of electromechanical systems. This would
be a step further into the comprehension of this type of system.
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A
Free vibration and harmonic excitation of a SDoF system

A.1
Response to free vibration

Take figure 2.3, a simple single degree of freedom (SDoF) system with free
vibration [20]. This system is composed by a mass m, a spring with stiffness
coefficient k and a damper with coefficient b. For this example, equation (2-1)
becomes

mÿ(t) + bẏ(t) + ky(t) = 0, (A-1)
with initial conditions y(0) = y0, ẏ(0) = v0. For a first approach, take the
undamped case (b = 0), that resumes equation (A-1) to

ÿ(t) + ω2
ny(t) = 0. (A-2)

where ωn is known as the system’s natural frequency, given by

ωn =
√
k

m
.

The proposed solution to solve this equation of motion is taken in the
form

y(t) = eλt, (A-3)
where λ is an unknown scalar that is wanted. Substituting (A-3) into the
equation of motion (A-2),

λ2 eλt + ω2
n e

λt = 0,

(λ2 + ω2
n) eλt = 0.

Since eλt cannot be zero, this leads to

λ2 + ω2
n = 0,

λ1,2 = ± ωn i.

Two values of λ were found, resulting in two possible solutions. Now it
is possible to obtain the general solution by substituting the found values λ1,2

into (A-3). Since equation (A-2) is linear, the system’s response is given by a
linear combination of both possible solutions, that in its general form is
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y(t) = b1e
i ωn t + b2e

−i ωn t,

where i =
√

−1 and b1, b2 are complex constants that can be obtained
by making use of the initial conditions. This represents a purely oscillatory
solution, also called simple harmonic motion. It is possible to rearrange it and
substitute the complex exponential by sines and cosines functions to express
the solution as

y(t) = a sin(ωnt+ ϕ),
where a and ϕ are real constants. This can also be written as

y(t) = a1 cos(ωnt) + a2 sin(ωnt),

where a1 and a2 are real constants that are obtained by making use of the
provided initial conditions. Deriving y(t) and evaluating at t = 0,

y(0) = y0 → a1 cos(0) + a2 sin(0) = y0,

ẏ(0) = v0 → −a1 ωn sin(0) + a2 ωn cos(0) = v0.

Solving this system, the constants a1 and a2 can be found in terms of the
generic initial conditions. They are

a1 = y0 and a2 = v0

ωn

.

The system’s solution is then given by

y(t) = y0 cos(ωnt) + v0

ωn

sin(ωnt).

Taking, for example, the natural frequency as ωn = 2 and the initial
conditions y0 = 1 and v0 = 0, it is possible to plot the solution y(t) over time,
given in figure A.1.

Figure A.1: Solution of the undamped SDoF system.
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Let us now analyze the damped case. Equation (A-1) can be rewritten
as

ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = 0, (A-4)

where ωn is the natural frequency of the undamped system and ξ is

ξ = b

2
√
km

,

known as the damping ratio.
Substituting the same proposed solution (A-3) into the equation of

motion (A-4), one gets

λ2 eλt + 2ξωn λ e
λt + ω2

n e
λt = 0,

(λ2 + 2ξωnλ+ ω2
n) eλt = 0.

Since eλt cannot be zero,

λ2 + 2ξωnλ+ ω2
n = 0.

Solving for λ, the roots of this equation are

λ1,2 =
−2ξωn ±

√
(2ξωn)2 − 4ω2

n

2 ,

λ1,2 = ωn(−ξ ±
√
ξ2 − 1).

Depending on the damping ratio, the values of λ can be real or complex.
Therefore, it is possible to classify the system’s response due respect to its
damping ratio: if 0 < ξ < 1 the motion is said to be underdamped; if ξ > 1
it is overdamped and when ξ = 1, is said to be critically damped. Also, when
ξ = 0, the system has no damping, corresponding to the undamped case. Each
one of these cases are going to be discussed next.

For the underdamped case, the eigenvalues assume complex conjugate
values, resulting in a solution of the form

y(t) = e−ξωnt
[
a1e

i ωn

√
1−ξ2 t + a2e

−i ωn

√
1−ξ2 t

]
,

where a1 and a2 are complex constants that can be obtained by making use of
the initial conditions. This can also be written as

y(t) = a e−ξωnt sin (ωd t+ ϕ) ,

where a and ϕ are constants corresponding to the amplitude and phase shift,
respectively, and ωd = ωn

√
1 − ξ2. Making use of the initial conditions, one

can find that
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a =

√√√√(v0 + ωn ξ y0)2 + (ωd y0)2

ω2
d

and ϕ = tan1
(

ωd y0

v0 + ωn ξ y0

)
.

The solution y(t) for the underdamped case is shown in figure A.2 with
damping ratio ξ = 0.1 and the same initial conditions and natural frequency
as the ones used for the undamped case. The dashed black curves represent
the “envelope” of this decaying oscillatory motion, given by e−ξωnt.

Now analyzing the overdamped case, the eigenvalues assume distinct real
values, resulting in a solution of the form

y(t) = e−ξωnt
[
a1e

−ωn

√
ξ2−1 t + a2e

ωn

√
ξ2−1 t

]
,

where a1 and a2 are, once again, constants obtained by using initial conditions.
One can find that these constants are

a1 =
−v0 +

(
−ξ +

√
ξ2 − 1

)
ωny0

2ωn

√
ξ2 − 1

and a2 =
v0 +

(
ξ +

√
ξ2 − 1

)
ωny0

2ωn

√
ξ2 − 1

.

The solution y(t) for the overdamped case can also be seen in figure A.2
with the same initial values and natural frequency as before and damping ratio
ξ = 2. This solution returns to the rest position without oscillation.

Let us analyze now the last case, the critically damped motion. Its
solution cannot be given in the same way as for the other two damped cases,
once this results in two equal eigenvalues λ1,2 = −ωn. The solution for this
case must be in the form

y(t) = (a1 + a2t) e−ωnt.

where a1 and a2 are again constants obtained by using the initial conditions.
By doing so, one obtains

a1 = y0 and a2 = v0 + ωny0.

Figure A.2 shows this solution with the same initial values and natural
frequency of the previous cases, but now with ξ = 1. This value of damping
ratio can be thought as the one that separates the oscillatory response from the
non-oscillatory one. Also, for the used initial conditions, the critically damped
solution returns to the rest position faster then the overdamped one.
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Figure A.2: Effect of damping on the solution for free vibration.

A.2
Response to harmonic excitation

After this initial analysis of a SDoF system with free vibration, an applied
external force is introduced to it, depicted in figure A.3. The external force is
taken as harmonic of the form f(t) = f0 cos(ωt), where f0 is the amplitude
and ω, its frequency. The analysis can also be made if the force was in the
form f0 sin(ωt) or f0 e

iωt.

Figure A.3: SDoF system with an applied external force.

The system’s equation of motion is

ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = F0 cos(ωt), (A-5)

where F0 = f0/m. The initial conditions are taken as y(0) = y0, ẏ(0) = v0. The
total response y(t) is a sum of a homogeneous solution yh(t), found by using
the system with free vibration as in the previous section, and by a particular
solution yp(t), found by considering the applied external force. The response
y(t) = yh(t)+yp(t) can be fully obtained by making use of the initial conditions
provided to the system.

Evaluating first the undamped case (ξ = 0), the equation of motion is
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ÿ(t) + ω2
ny(t) = F0 cos(ωt), (A-6)

The particular solution is proposed to be in the same form of the forcing
term. Thus, it is taken as

yp(t) = Y0 cos(ωt), (A-7)

where Y0 is the amplitude of the forced response. Substituting this into the
equation of motion (A-6),

−ω2Y0cos(ωt) + ω2
nY0cos(ωt) = F0cos(ωt),

(−ω2Y0 + ω2
nY0 − F0)cos(ωt) = 0,

implying that

−ω2Y0 + ω2
nY0 − F0 = 0,

Y0 = F0

ω2
n − ω2 ,

with ω ̸= ωn. This means that the particular solution for the case where the
natural frequency and the excitation frequency are not the same is

yp(t) = F0

ω2
n − ω2 cos(ωt).

The total solution y(t) is a sum of the homogeneous and particular
solutions, that in this cases results in

y(t) = a1 sin(ωnt) + a2 cos(ωnt) + F0

ω2
n − ω2 cos(ωt),

where a1 and a2 are found by making use of the initial conditions. Deriving
y(t) and evaluating at t = 0,

y(0) = y0 → a1 sin(0) + a2 cos(0) + F0

ω2
n − ω2 cos(0) = y0,

ẏ(0) = v0 → a1 ωn cos(0) − a2 ωn cos(0) − F0ω

ω2
n − ω2 sin(0) = v0.

The constants a1 and a2 are then

a1 = v0

ωn

and a2 = y0 − F0

ω2
n − ω2 .

The system’s solution is thus given by

y(t) = v0

ωn

sin(ωnt) +
(
y0 − F0

ω2
n − ω2

)
cos(ωnt) + F0

ω2
n − ω2 cos(ωt). (A-8)

Notice that if f0 = 0, meaning there is no external force, the values of
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a1 and a2 are the same as for the undamped free vibration case discussed
previously, as expected. It is also possible to see through equation (A-8) that
the response’s amplitude becomes larger as the excitation frequency approaches
the natural frequency, once the denominator of F0

ω2
n − ω2 becomes very small.

When these values are equal (ω = ωn), the found solution does not apply
anymore. For this case, the particular solution must be in the form

yp(t) = t Y0 sin(ωt),

once the proposed particular solution in equation (A-7) is also a solution
for the homogeneous solution when both frequencies are equal. The term
t sin(ωt) in the proposed solution foresees that the response will be unbounded
independently of the homogeneous portion. By substituting this in the equation
of motion, the constant Y0 is obtained by doing

ωY0cos(ωt) + ωY0cos(ωt) − tω2Y0sin(ωt) + tω2
nY0sin(ωt) = F0cos(ωt),

(2ωY0 − F0)cos(ωt) + (−tω2Y0 + tω2
nY0)sin(ωt) = 0.

Since ω = ωn,

2ωY0 − F0 = 0,

Y0 = F0

2ω ,

The particular solution is then

yp(t) = F0

2ω t sin(ωt)

and the total solution is in the form

y(t) = a1 sin(ωnt) + a2 cos(ωnt) + F0

2ω t sin(ωt).

By making use of the initial conditions and the fact that in this situation
ω = ωn, the solution is

y(t) = v0

ω
sin(ωt) + y0 cos(ωt) + F0

2ω t sin(ωt).

By analyzing this result, one can see that for this given frequency the
solution’s amplitude grows indefinitely as times passes. This is the definition
of the resonance phenomenon. Figure A.4 provides this response, where the
dashed black lines show the “envelop” in which the response’s amplitude grows
without bound, given by F0

2ω t.
Let us now discuss the damped case, where the equation of motion is

given by equation (A-5). For this case, the proposed particular solution is in
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Figure A.4: Solution of the undamped SDoF system with an external harmonic
force, where y0 = v0 = 0, ω = ωn = 2 and f0 = 1.

the form
yp(t) = Y0 cos(ωt− θ),

that can also be written as

yp(t) = Y0cos(θ)cos(ωt) + Y0sin(θ)sin(ωt).

yp(t) = d1cos(ωt) + d2sin(ωt).

Therefore, d1 and d2 are constants that satisfy

Y0 =
√
d2

1 + d2
2 and θ = tan−1

(
d2

d1

)
.

Substituting the proposed solution into the equation of motion,

(−ω2d1 +2ξωωnd2 +ω2
nd1 −F0)cos(ωt)+(−ω2d2 +2ξωωnd1 +ω2

nd2)sin(ωt) = 0,

implying that

−ω2d1 + 2ξωωnd2 + ω2
nd1 = F0,

−ω2d2 + 2ξωωnd1 + ω2
nd2 = 0. (A-9)

These constants are then

d1 = (ω2
n − ω2)F0

(ω2
n − ω2)2 + (2ξωωn)2 and d2 = 2ξωωnF0

(ω2
n − ω2)2 + (2ξωωn)2

and the amplitude and phase shift of the particular solution are

Y0 = F0/k√√√√[1 −
(
ω

ωn

)2
]2

+
[
2ξ
(
ω

ωn

)]2
and θ = tan−1


−2ξ ω

ωn

1 −
(
ω

ωn

)2

 . (A-10)
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Now it is possible to obtain the full solution. For the underdamped case
it is

y(t) = a e−ξωntsin(ωdt− ϕ) + Y0cos(ωt− θ),
where the constants a and ϕ of the homogeneous solution can be obtained by
making use of the initial conditions provided to the system.

Through the total solution is possible to notice that, for large values of
t, the homogeneous solution approaches zero due to the exponential with the
negative exponent (e−ξωnt). Even more: the greater the value of the damping
ratio ξ, the faster the solution’s amplitude tends to zero. With this transient
stage of damped decaying motion, the particular solution becomes the main
part of the total solution for long periods of time, taking a steady-state
harmonic oscillation form with frequency ω [6; 20].

The effect of damping in the steady-state response can be discussed by
analyzing figure A.5, that shows plots of ω/ωn × Y0k/F0 and ω/ωn × θ. For
low damping ratios the amplitude is overly large at specific frequencies, seen
when the amplitude is at its maximum value. By differentiating the relation of
Y0 in equation (A-10) in terms of the ratio ω/ωn, one can conclude that this
maximum occurs at ω

ωn

=
√

1 − 2ξ2.

The term inside the square root must be positive for the amplitude to
achieve a maximum value, implying that this is valid only for damping ratios
ξ lower than 1/

√
2 (or 70.7%). In the limiting case where ξ approaches 0, then

ω/ωn → 1, where the phase shift is π/2. The applied external force and the
system’s velocity are then at phase. They do not oppose each other, making
the response reach great amplitudes.

Figure A.5: Effect of damping on the particular solution.
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B
Floquet’s theorem

The goal here it to prove the Floquet’s theorem, enunciated in theorem
3.1 in section 3.3 [27]. To achieve this, several lemmas must be first addressed
and they are proven next. Consider the first order linear differential equation

ẋ(t) = A(t) x(t), (B-1)

where x(t) = [y ẏ]T ∈ R2n is the system’s solution. A(t) ∈ C2n×2n is the
coefficient matrix, that is time-periodic with period T , which means that for
T > 0, A(t) = A(t + T ) for every t ∈ R. For a set of n linear independent
solutions (x1(t), x2(t), ..., x2n(t)) of this equation, it is possible to define

Φ(t) = [ x1(t) x2(t) ... x2n(t) ],

the fundamental matrix, a non-singular matrix where it’s columns are the linear
independent solutions of (B-1). Notice that, if a x(t) satisfies equation (3-4),
then w(t) = x(t+ T ) also does [35; 27], as it is possible to conclude by doing

ẇ(t) = ẋ(t+ T ) = A(t+ T )x(t+ T ) = A(t)w(t), t ∈ R.

Lemma 1 Let Φ(t) be a fundamental matrix of equation (B-1). Then any non-
singular constant matrix B makes Ψ(t) = Φ(t)B also a fundamental matrix of
(B-1).

Proof. Φ(t) is a non-singular matrix by definition, implying that Ψ(t) is also a
non-singular matrix. Thus it is possible to derive and obtain

Ψ̇ = Φ̇B = AΦB = AΨ,

meaning that Ψ(t) is indeed a fundamental matrix of equation (B-1). ■

Lemma 2 Let Φ(t) be a fundamental matrix of equation (B-1). Then Υ(t) =
Φ(t+ T ) is also a fundamental matrix of (B-1).

Proof. By deriving Υ(t) = Φ(t+ T ) one gets

Υ̇(t) = Φ̇(t+ T ) = A(t+ T )Φ(t+ T ) = A(t)Υ(t),

meaning that Υ(t) is indeed a fundamental matrix of equation (B-1). ■
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Lemma 3 Let Φ(t) be a fundamental matrix of equation (B-1). Then there
exists a non-singular matrix R such that Φ(t+ T ) = Φ(t)R.

Proof. By lemma 2, one knows that Υ(t) = Φ(t + T ) is also a fundamental
matrix of equation (B-1). Defining, for all t,

R∗(t) = Φ−1(t)Υ(t),

one gets that

Υ(t) = Φ(t)Φ−1(t)Υ(t),

= Φ(t)R∗(t). (B-2)

Now, fixing a time t0 and taking R = R∗(t0),

Υ(t0) = Φ(t0)R. (B-3)

By lemma 1, one can also take Υ0(t) = Φ(t)R, that by fixing the time t0
leads to

Υ0(t0) = Φ(t0)R. (B-4)
Two fundamental matrices were just obtained: Υ(t) and Υ0(t). Through

equations (B-3) and (B-4), it must follow that Υ(t0) = Υ0(t0). Thus, by
uniqueness of solutions, Υ(t) = Υ0(t). This means that matrix R∗(t) must
equal R for all t.

Recalling that Υ(t) = Φ(t+T ), it is possible to obtain by equation (B-2)

Υ(t) = Φ(t)R∗(t),

Φ(t+ T ) = Φ(t)R.

Therefore, R is a non-singular constant matrix such that Φ(t + T ) =
Φ(t)R. ■

Also, since matrix R is independent of time, by setting t = 0 and using
lemma 2, one gets

R = Φ−1(0)Υ(0) = Φ−1(0)Φ(T ).
Taking Φ(0) = I, it follows from this last relation that R = Φ(T ), making

it possible to use lemma 3 to obtain

Φ(t+ T ) = Φ(t)Φ(T ). (B-5)

After these initial ideas, one can enunciate the Floquet’ theorem.
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Floquet’s theorem: The fundamental matrix Φ(t) with Φ(0) = I has a
Floquet normal form

Φ(t) = Q(t)eBt

where Q ∈ C1(R) is a T -periodic (Q(t) = Q(t+ T )) invertible matrix for all t
and B ∈ C2n×2n is a constant matrix given by B = 1

T
ln(Φ(T )).

Proof. It follows from lemma 3 that there exists a matrix R such that

Φ(t+ T ) = Φ(t) R.

By also knowing that that there exists a complex matrix B such that
eBT = R for a non-singular square matrix R (as proved, for example, in [27])
and using equation (B-5), one gets that

R = Φ(T ) = eBT .

If Q(t) = Φ(t) e−Bt is taken, for all t one has

Q(t+ T ) = Φ(t+ T ) e−B(t+T )

= Φ(t) R e−Bt e−BT

= Φ(t) eBT e−Bt e−BT

= Φ(t) e−Bt

= Q(t).

This result leads to
Φ(t) = Q(t)eBt.

meaning that Q(t) is T -periodic as well as that Q(0) = Φ(0)e0 = I. Since
exponentials of square matrices are invertible, the matrix e−Bt is invertible,
which means that Q(t) also is.

■
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C
Dynamics of electromagnetic systems

The goal here is to obtain the dynamics of a purely electromagnetic
system by making use of the Lagrangian method. The used notation is as
follow:

– Em is the magnetic energy;

– Ee is the electric energy;

– E∗
m, E

∗
e are the respective co-energies, meaning the magnetic co-energy

and the electric co-energy;

– Z is the Lagrangian function for an electromagnetic system.

The Lagrangian function for a purely electromagnetic system is

Z = E∗
m − Ee. (C-1)

Being qi a generalized coordinate of the system, each differential equation
for an electromagnetic system dynamics can be found by applying the formula

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi

= dδW

dδqi

. (C-2)

Therefore, to obtain the equations of motion through this method, one
must first find the energies that can be present in the system [9; 10]. Take
the case of a capacitor, an element composed by two plates that transfer
charge from one to another. Its capacity to store electric energy is known
as a capacitance c. The constitutive relation for an ideal and linear capacitor
is

q = c e,

where q is the charge and e, the difference of potential between the capacitor’s
plates. The electric energy stored in an ideal capacitor is obtained by calcu-
lating the work done by this element. Integrating the power inserted in the
circuit to obtain this work leads to

Ee(q) =
∫ t

0
eq̇ dt =

∫ q

0
e dq,

= q2

2c.
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The electric co-energy can be obtained by doing

E∗
e (e) = eq − Ee(q),

= c e2

2 .

Thus, the general forms for the electrical energy and co-energy are

Ee(q) = 1
2

s∑
i,r

( 1
cir

qi qr

)
,

E∗
e (e) = 1

2

s∑
i,r

(cir ei er) .

where s is the number of capacitors and cir is the mutual capacitance between
two capacitors with capacitances ci and cr, that in some cases cannot be
neglected.

Now, take the case of an inductor, element that stores energy in the form
of a magnetic field. The constitutive law for linear inductors is

ϑ = l q̇,

where l is the inductance and ϑ is known as the flux linkage. It is possible to
do the same process done for the capacitor to obtain the energy provided to
the system by this element. Thus, by knowing that e = dϑ/dt, the magnetic
energy in a circuit is

Em(ϑ) =
∫ t

0
eq̇ dt =

∫ ϑ

0
q̇ dϑ,

= ϑ2

2l .

To obtain the magnetic co-energy, it is sufficient to do as before, getting

E∗
m(q̇) = ϑ q̇ − Em(ϑ),

= l q̇2

2 .

The general forms of the magnetic energy and co-energy are

Em(ϑ) = 1
2

s∑
i,r

( 1
lir

ϑi ϑr

)
,

E∗
m(q̇) = 1

2

s∑
i,r

(lir q̇i q̇r).

For non-conservative elements such as voltage sources and resistors, the
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concept of virtual work (δW ) is used. For voltage sources, it is given by

δfi
= υi δqi,

while for resistors it is given by

δd = ri q̇i δqi.

To exemplify how to obtain the dynamics of an electromagnetic system,
take figure C.1. This circuit is composed by two inductors with inductances
l1, l2, three capacitors with capacitance c1, c3, c2, two resistors with resistance
r1, r2 and a voltage source υ. Notice that this example has two degrees
of freedom (three distinct currents, but only two are independent from the
others). The equation with the existent constraint is q3 = q1 − q2.

Figure C.1: 2DoF electromagnetic system.

The energies necessary for the construction of the Lagrangian function
are

E∗
m = l1

2 q̇2
1 + l2

2 q̇2
2,

Ee = q2
1

2c1
+ q2

2
2c3

+ q2
3

2c2
= q2

1
2c1

+ q2
2

2c3
+ (q1 − q2)2

2c2
,

By equation (C-1), the Lagrangian function for this system is

Z = E∗
m − Ee

= l1
2 q̇2

1 + l2
2 q̇2

2 −
[
q2

1
2c1

+ q2
2

2c3
+ (q1 − q2)2

2c2

]
.

Since there are non-conservative elements in the system, the virtual work
must be obtained. It is

δW = δf − δd

= υ δq1 − (r1 q̇1 δq1 + r2 q̇2 δq2) .

By calculating the partial derivatives of the Lagrangian function the
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equations of motion can be found. Thus, for q1,

∂Z

∂q1
= −q1

c1
− q1 − q2

c2
,

d

dt

(
∂Z

∂q̇1

)
= l1q̈1,

dδW

dδq1
= υ − r1q̇1.

For the coordinate q2,

∂Z

∂q2
= −q2

c3
+ q1 − q2

c2
,

d

dt

(
∂Z

∂q̇2

)
= l2q̈2,

dδW

dδq2
= −r2q̇2.

The equations of motion are obtained by using the formula in equation
(C-2). The equations of motion are

d

dt

(
∂Z

∂q̇1

)
− ∂Z

∂q1
= dδW

dδq1
→ l1q̈1 + r1q̇1 +

( 1
c1

+ 1
c3

)
q1 − 1

c2
q2 = υ,

d

dt

(
∂Z

∂q̇2

)
− ∂Z

∂q2
= dδW

dδq2
→ l2q̈2 + r2q̇2 +

( 1
c3

+ 1
c2

)
q2 − 1

c2
q1 = 0.

Writing in matrix form,

 l1 0
0 l2

 q̈1

q̈2

+
 r1 0

0 r2

 q̇1

q̇2

+


( 1
c1

+ 1
c3

)
− 1
c2

− 1
c2

( 1
c2

+ 1
c3

)

 q1

q2

 =
 υ

0

 .
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D
Dynamics of electromechanical systems

When dealing with electromechanical systems, it is necessary to take into
account parameters of both mechanical and electromagnetic origins. It is not
sufficient to describe each one of its subsystems separately and thus a method
to achieve this is needed. The Lagrangian method is chosen to approach this
problem, an energetic method that allows a formulation in a way that makes it
possible to obtain the system’s dynamics as a whole. The Lagrangian function
for an electromechanical system [8; 9; 18] is

Γ = T ∗ − V + E∗
m − Ee ± U∗, (D-1)

where U∗ is a possible coupling term that can have an electric or magnetic
origin. The signal depends on its origin: if it is magnetic (U∗

m) the signal is
positive and if it is electric (U∗

e ) the signal is negative. The other energies
present in this Lagrangian function (the magnetic co-energy E∗

m and the
electric energy Ee) were discussed in appendix C.

Being zi a generalized coordinate of the system, each differential equation
for the electromechanical system dynamics can be found by applying the
formula d

dt

(
∂Γ
∂żi

)
− ∂Γ
∂zi

= d δW

d δzi

. (D-2)

D.1
Example: electromagnetic loudspeaker

To exemplify this, take the electromechanical system in figure 5.1, known
as electromagnetic loudspeaker [9; 11; 12]. This system is composed by a mass
m, a spring with stiffness coefficient k, a damper with damping coefficient b,
a voltage source υ in series with a RL circuit (which means an inductor of
inductance l and a resistor of resistance r) and a moving-coil transducer with
transducer constant ρ. The coupling enabling energy to flow between the two
subsystems is provided by the moving-coil transducer. The spring and damper
simulate a membrane in the loudspeaker.

The parametrization used to describe the system’s configuration is the
displacement z of the mass from the mechanical subsystem’s equilibrium point
and the charge q passing through the circuit. Also, it is important to highlight
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that z is merely the displacement of the mass m from the chosen equilibrium
point.

The Lagrangian method is now going to be used to find the equations
that describe the system’s dynamics. The energies present in the system are

T ∗ = mż2

2 ,

V = kz2

2 ,

E∗
m = lq̇2

2 ,

Ee = 0,

where the electric energy is null because there is no capacitor present in the sys-
tem. For further information about the electromagnetic part see appendix C.
Also, as said before, the coupling term is given by the moving-coil transducer.
The energy provided by this element is

U∗
m = ρq̇z.

Notice that this energy is dependent of both variables z and q.
The Lagrangian function given in equation (D-1) for this system is

Γ = T ∗ − V + E∗
m − Ee ± U∗,

= mż2

2 − kz2

2 + lq̇2

2 + ρq̇z.

Since there are non-conservative elements in the system, the virtual work
must be found. It is given by

δW = δf − δd

= υ δq − (r q̇ δq + b ż δz) .

By obtaining the partial derivatives of the Lagrangian function the
equations of motion can be found. Thus, for the mechanical coordinate z,

∂Γ
∂z

= −kz + ρq̇,

d

dt

(
∂Γ
∂ż

)
= mz̈,

d δW

d δz
= −bż.

DBD
PUC-Rio - Certificação Digital Nº 2112347/CA



Appendix D. Dynamics of electromechanical systems 105

For the electromagnetic coordinate q, one has

∂Γ
∂q

= 0,

d

dt

(
∂Γ
∂q̇

)
= lq̈ + ρż,

d δW

d δq
= υ − rq̇.

The equations of motion for the electromagnetic loudspeaker are obtained
by using the formula in equation (D-2). They are

d

dt

(
∂Γ
∂ż

)
− ∂Γ
∂z

= d δW

d δz
→ mz̈ + bż + kz − ρq̇ = 0,

d

dt

(
∂Γ
∂q̇

)
− ∂Γ
∂q

= d δW

d δq
→ lq̈ + rq̇ + ρż = υ.
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E
Numerical procedure

After understanding the needed theory for a stability analysis approach
seen throughout this dissertation, it is of interest to make a general step by step
procedure of how to apply Floquet theory in numerical simulations. The first
step is to write the system’s equations of motion in its state space form and
make a function out of it, where the time-varying parameters must be present
in the inputs. Take, for example, a function system(t, x, ω, a, b) describing
a generic system’s dynamics. Here, t represents time, x is the state vector, ω
represents the frequency of the time-periodic coefficient and a, b are parameters
of the system.

Define a function system where the analyzed equations of motion are
written in their state space form.

The output should be the state vector’s derivative.

The goal is to plot stability maps. This type of map allows one to obtain
regions of stability and instability for given range of parameters composing
the system. To make a stability map, it is necessary to define the varying
parameters and the wished interval for each one of them, that will be the axis
of the stability map.

As an example, let us fix the value of the parameter b and vary the
parametric excitation frequency ω as well as the parameter a. This means that
b is taken as a scalar, while the other two are taken as vectors, called here ωvec

and avec, respectively. Take length(ωvec) and length(avec) as the size of each
vector.

Define scalar b

Define vector ωvec, where each element is ωvec(i), for i = 1, . . . , length(ωvec)

Define vector avec, where each element is avec(j), for j = 1, . . . , length(avec)

One loop for each one of the parameters being varied is needed to plot
the map. It is important to notice that, since the frequency is varying in this
example, the period T = 2π/ωvec(i) is also varying in each loop. Furthermore,
it is not possible to start the interval of ωvec at zero, once it would result in
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a division by zero when obtaining T . If instead of the excitation frequency,
the parameter b was being varied, the period T term inside the loop could be
placed outside it.

In this case, for each pair ωvec(i) and avec(j) numerical approximations of
the fundamental matrix must be obtained. The monodromy matrix can thus be
obtained for the present pair of parameters. Afterwords, one may use directly
the Floquet multipliers to evaluate the stability of the trivial solution or make
use of the maximum value of the Lyapunov characteristic exponents (Λ).

Start loop for every element ωvec(i), with i = 1, . . . , length(ωvec)

T = 2 ∗ π/ωvec(i)
tspan = period from 0 to T

Start loop for every element avec(j), with j = 1, . . . , length(avec)

Numerical integrations

Obtain the monodromy matrix

Evaluate the Floquet multipliers or use Λ

End loop for every element avec(j)

End loop for every element ωvec(i)

Now, each one of the steps inside both loops are going to be dealt with
in more details. This means that, from this point on, every step is done for
each pair ωvec(i) and avec(j).

First, it is possible to obtain numerical approximations of the system’s
solutions for each pair ωvec(i) and avec(j) by solving initial value problems
(IVPs), where the initial conditions must be chosen to go accordingly to
theorem 3.1.

For a nDoF system, 2n IVPs must be solved here. Thus, for every pair
ωvec(i) and avec(j), 2n numerical integrations of system are done for one period
T . The result of a single IVP is a matrix with 2n columns and a number of rows
that depends on the step of the numerical integrator or of a step predefined
by the user to do this numerical integration.

Without lost of generality, take a two degrees of freedom (2DoF) example.
For this case, four IVPs must be solved. Since the fundamental matrix must
be equal to the identity matrix for time zero, the initial conditions are taken
as the columns of the identity matrix. For each one of the IVPs one gets a
vector of time and a matrix with four columns and number of rows equal to
the size of the time vector.
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For each pair ωvec(i) and avec(j):

First IVP of system
Initial conditions: [1 0 0 0]T

Interval of integration: tspan
Result of the numerical integration:

vector t1 of time and matrix X1 with size length(t1) × 4

Second IVP of system
Initial conditions: [0 1 0 0]T

Interval of integration: tspan
Result of the numerical integration:

vector t2 of time and matrix X2 with size length(t2) × 4

Third IVP of system
Initial conditions: [0 0 1 0]T

Interval of integration: tspan
Result of the numerical integration:

vector t3 of time and matrix X3 with size length(t3) × 4

Fourth IVP of system
Initial conditions: [0 0 0 1]T

Interval of integration: tspan
Result of the numerical integration:

vector t4 of time and matrix X4 with size length(t4) × 4

By recalling equation (3-11), that shows that the monodromy matrix R
equals the fundamental matrix at time T for Φ(0) = I, one must allocate the
last row (called here lastrowXs , for s = 1, 2, 3, 4) of each one of the obtained
matrices X1, X2, X3, X4 as columns of R. This follows because the numerical
integrations were done for an interval from 0 to T , meaning that the last
rows of the obtained matrices correspond to the numerical approximations at
time T . Afterwords, the Floquet multipliers γ can be obtained by solving the
eigenvalue problem (EVP) Ru = γu.

For the example of a 2DoF system being carried out here, R is a 4 × 4
matrix and thus four Floquet multipliers are found.
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x1(T ) = X1(lastrowX1 , :)T

x2(T ) = X2(lastrowX2 , :)T

x3(T ) = X3(lastrowX3 , :)T

x4(T ) = X4(lastrowX4 , :)T

Monodromy matrix R =


| | | |

x1(T ) x2(T ) x3(T ) x4(T )
| | | |


Solve the EVP Ru = γu to obtain the Floquet multipliers γp, p =
1, 2, 3, 4

Now it is possible to make stability statements about the trivial solution
as discussed in chapter 3.3. The first possibility is by evaluating directly the
magnitude of the obtained Floquet multipliers. For the trivial solution to be
considered unstable, it is sufficient for one of the Floquet multipliers to have
magnitude greater than one. The classification regarding stability is restrained
here to simply stable or unstable.

For the 2DoF example used until this point, at least one of the four
Floquet multipliers need to have magnitude higher than one to consider the
trivial solution as unstable.

If at least one |γp| > 1, for p = 1, 2, 3, 4, the trivial solution is unstable

Save in a matrix result(j,i) the value 1

If all |γp| ≤ 1, for p = 1, 2, 3, 4, the trivial solution is stable

Save in a matrix result(j,i) the value 0

The matrix result as used here will have size length(avec) × length(ωvec)
and is forced to assume the value 1 for an unstable case and 0 for a stable
case. It is possible to complete this matrix by doing this to every pair ωvec(i)
and avec(j), obtaining a stability map in the ω × a plane when plotting it, for
example, with a heatmap command in MatLab. This would result in a map of
only two colors since it is restricted to ones and zeros.

However, one may also evaluate stability using the maximum value of
the Lyapunov characteristic exponents (Λ). In this case, after obtaining the
Floquet multipliers for a pair ωvec(i) and avec(j), equation (3-14) is used. Thus,
for the 2DoF example used until this point:
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Use equation (3-14) to obtain the LCEs µp, p = 1, 2, 3, 4

Save the value of Λ = max(µp) in a matrix result(j,i)

Then, both loops are closed and the result matrix is obtained. Using this
second approach, the matrix result also has size length(avec)×length(ωvec), but
now each element equals the value of Λ and not only zeros and ones. It is also
possible to plot this result matrix by using a heatmap command in MatLab,
that results in a map with a gradient of colors for the values of Λ in the ω× a

plane.
Furthermore, another way of making use of the LCEs is by plotting the

ω × Λ plane. To achieve this, the only varying parameter (thus, vector) is the
excitation frequency and the other parameters are taken as constants, chosen
from the start. Therefore, only one loop is needed to obtain the values of Λ.
Thus, for the 2DoF example used until this point:

Start loop for every element ωvec(i), with i = 1, . . . , length(ωvec)

T = 2 ∗ π/ωvec(i)
tspan = period from 0 to T

Numerical integrations

Obtain the monodromy matrix

Obtain the Floquet multipliers

Use equation (3-14) to obtain the LCEs µp, p = 1, 2, 3, 4

Save in a vector Λvec(i) the maximum value of the µp, p = 1, 2, 3, 4

End loop for every element ωvec(i)

Where the numerical integrations, obtaining the monodromy matrix,
finding the Floquet multipliers and obtaining the LCEs are the same as
previously explained. Afterwords it is possible to use the vectors ωvec and
Λvec to obtain a curve in the ω × Λ plane.

E.1
General discussions

The examples in this dissertation were made using the MatLab software.
Throughout the examples, the Runge-Kutta method of 4th and 5th order was
used, the ode45 function in MatLab, with the default relative error tolerance
of 10−3 and absolute tolerance of 10−6 of the ode45 function.

Moreover, it is important to highlight the following: when using the
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Floquet multipliers γ to obtain stability maps, the criterion that γp > 1 for all
p to be considered unstable does not always provide satisfactory results. Due to
numerical truncation/approximations used by the software itself when finding
the Floquet multipliers [3], at times it is needed to increase the criterion to
|γp| > 1.01 for all p to obtain accurate stability maps.

Furthermore, two different heatmap plots were proposed in this section:
one that uses only Floquet multipliers and another one that makes use of the
maximum value of the Lyapunov characteristic exponents Λ. The former forces
the map to assume the value 1 for unstable cases and 0 otherwise, thus in the
examples throughout this dissertation a dark blue color is chosen to represent
unstable regions and a light blue color to represent stable ones. Meanwhile,
the latter provides a map with a gradient of the maximum values of LCEs,
Λ. It would also be possible to force 0 and 1 values when using the LCEs by
applying the condition that they should be unstable if at least one of the values
of LCEs were higher than zero and stable otherwise. However, the gradient was
used as a way of comparing stability maps. The use of Λ also provides some
advantages, that are discussed in details in chapter 4.

Notice that taking only the maximum value of Floquet multipliers to
create a gradient (as done with Λ) would not be possible, once they are
distorted by the period T [28]. Meanwhile, the maximum value of LCEs is
not [35] and can be used as done here.
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