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Abstract

Sousa, Adailton José do Nascimento; Pesco, Sinesio (Advisor); R.V.
Bela (Co-Advisor). Dimensionless Ensemble Smoother With Mul-
tiple Data assimilation applied on an Inverse Problem of a mul-
tilayer reservoir with a damaged zone.. Rio de Janeiro, 2022. 69p.
Dissertação de Mestrado – Departamento de Matemática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

The ES-MDA has been extensively used concerning inverse problems of
oil reservoirs, using Bayesian statistics as the core. Important properties such
as permeability, skin zone radius, and skin zone permeability are estimated
from historical reservoir data using this set-based method. In this thesis, the
pressure measured at the well during an injectivity test was calculated using
an analytical approach of a multilayer reservoir, with skin zone, using the
Laplace Transform. Stehfest’s algorithm was used to invert the data to the
real field. Furthermore, using this approach, we were able to easily obtain the
flow rate in each layer as new data to be considered in the ES-MDA, enriching
the estimation of the targeted data. As we use flow rate and pressure as input
data in the ES-MDA, it is important to assure that the difference in orders of
magnitude does not influence our estimates. For this reason, we chose to use
the ES-MDA in the dimensionless form. Aiming at a greater precision of our
estimates, we used an algorithm to optimize the ES-MDA inflation factors.

Keywords
Ensemble smoother with multiple data assimilation; Injectivity Test;

Skin zone; Parameter Estimation .
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Resumo

Sousa, Adailton José do Nascimento; Pesco, Sinesio; R.V. Bela. Ensem-
ble Smooter adimensional com múltipla assimilação aplicado a
um problema Inverso de reservatório multicamadas com zona
de skin.. Rio de Janeiro, 2022. 69p. Dissertação de Mestrado – De-
partamento de Matemática, Pontifícia Universidade Católica do Rio de
Janeiro.

O ES-MDA tem sido usado amplamente no que diz respeito a problemas
inversos de reservatórios de petróleo, usando a estatística bayesiana como
cerne. Propriedades importantes como a permeabilidade, raio da zona de skin e
permeabilidade da zona de skin, são estimadas a partir de dados de histórico de
reservatório usando esse método baseado em conjuntos. Nessa tese, a pressão
medida no poço durante um teste de injetividade foi calculada usando uma
abordagem analítica de um reservatório multicamadas, com zona de skin,
usando a Transformada de Laplace. O algoritmo de Stehfest foi usado para
inverter os dados para o campo real. Além disso, ao usarmos essa abordagem,
conseguimos obter facilmente a vazão em cada camada como um novo dado a
ser considerado no ES-MDA, enriquecendo a estimativa dos dados desejados.
Por usarmos a vazão e a pressão como dados de entrada no ES-MDA, é de suma
importância que a diferença de ordens de grandezas não influencie em nossas
estimativas e por isso optou-se por usar o ES-MDA na forma adimensional.
Visando uma maior precisão de nossas estimativas, usou-se um algoritmo de
otimização dos fatores de inflação do ES-MDA.

Palavras-chave
Ensemble smoother com múltipla assimilação de dados; Teste de injeti-

vidade; Zona de Skin; Estimativa de Parâmetros.
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1
Introduction

The study of injectivity tests has been influential in petroleum reservoir
characterization. However, the determination of individual layer properties
on multilayer reservoirs remains a challenging task. Primarily due to the
high non-linearity of the problem. Due to its importance, some mathematical
formulations were developed to determine the pressure difference in injectivity
tests.

(BARRETO; PERES; PIRES, 2011) presents a perspective of calculating
the pressure difference on the real field; (NETO et al., 2020) presents a study
for three regions reservoirs, but only with one layer using an approach of the
Laplace domain. (MASTBAUM et al., 2021) use the same proposal and present
good results for reservoirs with two layers, extending this model to the case
with two regions. Also, (VIANA et al., 2022) presented a case considering
a reservoir with an arbitrary number of layers and regions, considering the
cross-flow, but with no damaged zone

The works that use an approach of results on the Laplace domain invert
their outcomes to the real field by the Stehfest algorithm (STEHFEST, 1970).
The problem studied in this thesis is an injectivity test, considering the skin
zone properties in a reservoir with an arbitrary number of layers. Therefore,
we consider a multilayer reservoir model with three regions.

Some advantages of using an analytical approach are the possibility of
obtaining asymptotic approximations and identifying characteristic signatures
and the ease compared to a numerical simulator. Furthermore, our characteri-
zation approach uses the pressure and each layer’s liquid rate data, obtaining
a robust reservoir characterization. Thus, the piston-like water displacement
assumption might not hinder the proposed characterization procedure.

We could quickly calculate the flow-rate in the Laplace domain with
pressure data. We needed to derive the pressure and obtain the flow rate,
launching the possibility of using it as another data to consider to estimate
the reservoir properties, which could increase the accuracy of estimative of the
parameters.

Also, using the differential equations for both phases in the reservoir
layers, it was possible to set up a system of linear equations to determine the
pressure difference in the Laplace field. Moreover, using the Stehfest algorithm
(STEHFEST, 1970), it was possible to invert the solution and the flow-rate to
the real domain.
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Chapter 1. Introduction 13

A classical approach to solving optimization problems is the use of
gradient-based algorithms. Nevertheless, this kind of method has a substantial
computational cost. An alternative that has been broadly used is ensemble-
based methods. Since this kind of method use statistic for estimating deriva-
tives, they do not need to calculate the gradient vector.

This thesis creates the initial ensemble using a normal distribution for
all estimated parameters and uses the method to estimate a final ensemble for
the parameters, fitting the observed data. We used the dimensionless ensemble
smoother with multiple data assimilation (ZHANG; REYNOLDS; OLIVER,
2002) in this work due to the difference in magnitude of the data.

In this thesis, we consider piston-like water displacement. As a result,
we lose little accuracy when computing the dynamic data. However, we can
obtain the liquid rate in each layer, which might enhance reservoir properties
estimation in a history-matching methodology. Comparing our technique with
the one proposed by (SILVA et al., 2021), we may obtain a more precise
characterization of each reservoir layer’s properties due to the insertion of
one more rich data corresponding to that specific layer.

Four different cases were presented, similar to the study of (SILVA et al.,
2021), trying to verify how it works for the different scenarios. For each case,
we estimated all layers’ permeability, radius, and permeability for the damaged
zone and aimed to fit the observed pressure difference data and flow rate data.
The main objective of this work is to extend the work of (SILVA et al., 2021),
including the flow-rate as data, but expanding the number of parameters to
be estimated, increasing the complexity of the problem.

This dissertation is divided into four chapters. Chapter 2 presents the
model to obtain the flow-rate and pressure difference responses. Chapter 3
uses the Dimensionless Ensemble Smoother with Multiple Data Assimilation
to estimate reservoir properties, which utilizes the flow-rate and pressure
difference as data. The results for four different cases were presented in chapter
4, and finally, chapter 5 exhibits the conclusion.
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2
Mathematical Model

In this chapter, we aim to explain the mathematical model used to obtain
pressure difference and flow-rate data. We first focus on the kind of reservoir
studied, then model the problem’s solution, using all restrictions.

The data obtained here is used later in Chapter 3 as input for the statistic
method applied. Also, it is possible to obtain the flow-rate after evaluating the
pressure difference in the Laplace Domain.

2.1
Reservoir Model

Figure 2.1: Reservoir Model

Figure 2.1 illustrates the reservoir model studied. An arbitrary number n

of layers are supposed, and each has distinct properties. Since a damaged zone
is considered, each layer will have three regions, one with properties of the
aqueous phase, the other with oil properties, and the region of the damaged
zone.

The following hypotheses are considered to build the formulation:

1. Constant thickness at each layer (hj)

2. Constant flow-rate during injection time

3. Constant initial pressure in all layers and small pressure gradients.
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Chapter 2. Mathematical Model 15

4. Flow-rate is isothermal, with negligible gravitational forces and rejecting
the impact of capillary forces

5. Oil properties are the same in all layers

6. Fluids behave are slightly compressible with constant viscosity.

7. A stratified reservoir

8. A piston-like water displacement

2.2
Modeling the solution

The condition that Each region has independent properties is presumed.
The waterfront radius (rF ) for the jth layer is calculated using the formulation
(BUCKLEY; LEVERETT, 1942):

rFj
=

√√√√√√r2
w +

t∫
0

qjdτ

24πϕjhj

f ′wt (2-1)

Considering a piston water displacement, it is known (NETO et al., 2020)
that f

′
w = 1

1 − Sor − Swi

.

Defining the hydraulic diffusivity (ηj) and fluid mobility (λ̂j) for the jth

layer for both damaged and reservoir zone as in (NETO et al., 2020):
In the damaged zone:

ηfsj
=

ksj
krfj

ϕµfct

and λ̂fsj
=

ksj
krf

µf

with f = w, o. (2-2)

In the reservoir zone:

ηfRj
=

kjkrfj

ϕµfct

and λ̂fRj
= kjkrf

µf

with f = w, o. (2-3)

As a result, there are two possible configurations:

1. The waterfront radius has overtaken the damaged zone (Figure 2.2)

2. The waterfront radius is within the damaged zone (Figure 2.3)
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Chapter 2. Mathematical Model 16

Figure 2.2: Configuration for rF > rs Figure 2.3: Configuration for rF < rs

Focusing on the configuration where rF < rs and aiming at the solution of
the system, the properties of each region and fluid within must be considered,
as well as the diffusivity equation for fluids with low compressibility. On an
arbitrary layer where the waterfront is within the damaged area, the conditions
led to certain equations on the respective regions, each one reflecting a specific
feature:

– The initial condition (IC) specifies the pressure distribution before the
water injection starts.

– The external boundary condition (EBC) reflects the conditions at the
extreme of the reservoir. A radially infinite reservoir is considered.

– The internal boundary condition (IBC) corresponds to how the water is
injected during the test.

– Coupling Conditions between Regions (CCR) depicts the encounter of
regions, yielding the pressure and flow-rate equality at the interface
between them.

Thereby, the following system of equations is headed for each layer:
The damaged zone (Region 1):
PDE:

1
r

∂

∂r

(
r

∂pj1

∂r

)
= 1

ηwsj

∂pj1

∂t
(r, t) with rw < r < rFj

and t > 0 (2-4)

IC:
pj1(r, t = 0) = pj (2-5)

For all layers, the inner boundary condition is (LEFKOVITS et al., 1961):
IBC:

(2-6)qj1 = −2πλ̂wsj
hj

(
r

∂pj1

∂r

)∣∣∣∣∣
r=rw
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Chapter 2. Mathematical Model 17

Region 2:
PDE:

(2-7)1
r

∂

∂r

(
r

∂pj2

∂r

)
= 1

ηosj

∂pj2

∂t
(r, t) with rFj

<r<rsj
and t>0

IC:
pj2(r, t = 0) = pj (2-8)

Due to the coupling between regions 1 and 2 is known (NIE et al., 2011)
that:
CCR:

(2-9)

pj1(rFj
, t) = pj2(rFj

, t)

qj1(rFj
, t) = qj2(rFj

, t)

Region 3:
PDE:

(2-10)1
r

∂

∂r

(
r

∂pj3

∂r

)
= 1

ηorj

∂pj3

∂t
(r, t) with rsj

<r<∞ and t>0

IC:
(2-11)pj3(r, t = 0) = pi

EBC:
(2-12)lim

r →∞
pj3(r, t) = 0

Due to the coupling between regions 2 and 3, (NIE et al., 2011):
CCR:

(2-13)

pj2(rsj
, t) = pj3(rsj

, t)

qj2(rsj
, t) = qj3(rsj

, t)

Coupling Conditions between Layers (CCL) portrays the encounter of
layers by the wellbore, causing the pressure equality and due to the principle
of mass conservation at the wellbore. Even though hydrostatic pressure must
be considered when comparing the difference of pressure for each layer, that
would be a problem for cases where the thickness is significant. Therefore in
this thesis, we do not consider the hydrostatic pressure and use the equations
produced (NETO et al., 2020):
CCL: 

∆pj1(rw, t) = ∆pj+1,1(rw, t)

qinj =
n∑

j=1
qj1(rw, t)

for j=1,...,(n-1) (2-14)

Equation (2-14) does not depend on whether or not the waterfront radius
has overtaken the damaged zone.

Using the Laplace transform in the equations (2-4) to (2-14) and deriva-
tions properties:
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Chapter 2. Mathematical Model 18

Region 1:
ODE:

(2-15)1
r

∂

∂r

(
r

∂p̄j1

∂r

)
= u

ηwsj

p̄j1(r, u) − pj1(r, t = 0)︸ ︷︷ ︸
=pi by Eq.(2-5)

Expanding the left-hand derivative and reorganizing the terms:

(2-16)∂2p̄j1

∂

(
r

√
u

ηwsj

)2 + 1

r

√
u

ηwsj

∂p̄j1

∂

(
r

√
u

ηwsj

) − p̄i = −pi

ηwsj

u

IBC:
(2-17)

(
r

∂p̄j1

∂r

)∣∣∣∣∣
r =rw

= − qj1

2πλ̂wsj
hj

1
u

Region 2:
In the same way as region 1, the subsequent ODE is obtained:

ODE:
(2-18)1

r

∂

∂r

(
r

∂p̄j2

∂r

)
= u

ηosj

p̄j2(r, u) − pj2(r, t = 0)︸ ︷︷ ︸
=pi by Eq.(2-8)

(2-19)∂2p̄j2

∂

(
r

√
u

ηosj

)2 + 1

r

√
u

ηosj

∂p̄j1

∂

(
r

√
u

ηosj

) − p̄i = −pi

ηosj

u

Region 3:
Similarly, the following ODE is obtained:

ODE:
(2-20)∂2p̄j3

∂

(
r

√
u

ηorj

)2 + 1

r

√
u

ηorj

∂p̄j3

∂

(
r

√
u

ηorj

) − p̄i = −pi

ηorj

u

EBC:
(2-21)lim

r →∞
p̄j3(r, u) = pi

u

Defining ∆p̄(r, u) = pi − p̄(r, u) and applying to the Equations (2-15) to
(2-21), the following equations are obtained:
Region 1:
ODE:

(2-22)∂2∆p̄j1

∂

(
r

√
u

ηwsj

)2 + 1

r

√
u

ηwsj

∂∆p̄j1

∂

(
r

√
u

ηwsj

) − ∆p̄j1 = 0

IBC:
(2-23)

(
r

∂∆p̄j1

∂r

)∣∣∣∣∣
r =rw

= − qj1

2πλ̂wsj
hj

1
u
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Chapter 2. Mathematical Model 19

Region 2:
ODE:

(2-24)∂2∆p̄j2

∂

(
r

√
u

ηosj

)2 + 1

r

√
u

ηosj

∂∆p̄j1

∂

(
r

√
u

ηosj

) − ∆p̄j2 = 0

For the Laplace domain, the coupling condition are given below (VIANA
et al., 2022):
CCR:

(2-25)


∆p̄j1(rFj

, t) = ∆p̄j2(rFj
, t)(

r
∂∆p̄j1

∂r

)∣∣∣∣∣
r=rFj

=
λ̂osj

λ̂wsj

(
r

∂∆p̄j2

∂r

)∣∣∣∣∣
r=rFj

(By Darcy’s Law)

Region 3:
ODE:

(2-26)∂2∆p̄j3

∂

(
r

√
u

ηorj

)2 + 1

r

√
u

ηorj

∂∆p̄j3

∂

(
r

√
u

ηorj

) − ∆p̄j3 = 0

EBC:
lim

r→∞
∆p̄j3(r, u) = 0 (2-27)

CCR:

(2-28)


∆p̄j2(rsj

, t) = ∆p̄j3(rsj
, t)(

r
∂∆p̄j2

∂r

)∣∣∣∣∣
r=rsj

=
λ̂orj

λ̂osj

(
r

∂∆p̄j3

∂r

)∣∣∣∣∣
r=rsj

(By Darcy’s Law)

CCL:

(2-29)


∆p̄j1(rw, t) = ∆p̄j+1,1(rw, t) for j=1:(n-1)

qinj = −
n∑

j=1

(
2πλ̂wsj

hj

(
r ∂∆p̄j1

∂r

)∣∣∣
r=rw

)

It is well-known (NETO et al., 2020) using Bessel Functions that the
pressure solution in the Laplace field for any layer j and region i is:

∆p̄ji = AjiK0

(
r

√
u

ηflj

)
+ BjiI0

(
r

√
u

ηflj

)
(2-30)

where f = o, w and l = s, R depending on each reservoir part. Aji and Bji

are coefficients to be determined. The following Bessel functions properties
(ABRAMOWITZ; STEGUN, 1964) are going to be used:

(2-31)lim
r →∞

K0(r) = 0

(2-32)lim
r →∞

I0(r) = ∞
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Chapter 2. Mathematical Model 20

Therefore, to satisfy Equation (2-30) and the external boundary condi-
tion of region 3, Equation (2-27), Bj3 must be zero. Thus, the pressure solution
in region 3 is:

(2-33)∆p̄j3 = Aj3K0

(
r

√
u

ηoRj

)

By Equation (2-23) and Equation (2-29):

−2π
n∑

j=1
λ̂wsj

hj

(
r

∂∆p̄j1

∂r

)∣∣∣∣∣
r=rw

= qinj

u
(2-34)

Thus, deriving (2-30) in r = rw and combining with equation (2-34):

2πrw

n∑
j=1

λ̂wsj
hj

√
u

ηwsj

[
Aj1K1

(
rw

√
u

ηwsj

)
− B1jI1

(
rw

√
u

ηwsj

)]
= qinj

u
(2-35)

Combining Equation (2-25) and Equation (2-30) for i = 1, 2, that is, for
region 2 and 3:

Aj1K0

(
rFj

√
u

ηwsj

)
+Bj1I0

(
rFj

√
u

ηwsj

)
= Aj2K0

(
rFj

√
u

ηosj

)
+Bj2I0

(
rFj

√
u

ηosj

)
(2-36)

Moreover, deriving Equation (2-36) and using the second part of Equa-
tion (2-25):

rFj

√
u

ηwsj

[
− Aj1K1

(
rFj

√
u

ηwsj

)
+ Bj1I1

(
rFj

√
u

ηwsj

)]

=
λ̂osj

λ̂wsj

rFj

√
u

ηosj

[
− Aj2K1

(
rFj

√
u

ηosj

)
+ Bj2I1

(
rFj

√
u

ηosj

)] (2-37)

Thereby:

Aj1K1

(
rFj

√
u

ηwsj

)
− Bj1I1

(
rFj

√
u

ηwsj

)

=
λ̂osj

λ̂wsj

√
ηwsj

ηosj

[
Aj2K1

(
rFj

√
u

ηosj

)
− Bj2I1

(
rFj

√
u

ηosj

)] (2-38)

Similarly, combining Equation (2-28) and Equation (2-30) for i = 2, 3:

Aj2K0

(
rsj

√
u

ηosj

)
+ Bj2I0

(
rsj

√
u

ηosj

)
= Aj3K0

(
rsj

√
u

ηoRj

)
(2-39)

In the same way, deriving Equation (2-39) and using the pressure CCR
shown in Equation (2-28):

Aj2K1

(
rsj

√
u

ηosj

)
− Bj2I1

(
rsj

√
u

ηosj

)
=

λ̂oRj

λ̂osj

√
ηosj

ηoRj

Aj3K1

(
rsj

√
u

ηoRj

)
(2-40)

Whereas, combining first part of Equation (2-29) and Equation (2-30):
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Chapter 2. Mathematical Model 21

Aj1K0

(
rw

√
u

ηwsj

)
+ Bj1I0

(
rw

√
u

ηwsj

)

= Aj+1,1K0

(
rw

√
u

ηwsj

)
+ Bj+1,1I0

(
rw

√
u

ηwsj

)
for j=1,...,(n-1)

(2-41)

One can combine equations (2-35),(2-36), (2-38), (2-39), (2-40) in a
linear system that represents the Coupling Conditions between Layers (CCL),
the Coupling Conditions between Regions (CCR), the initial state (IC), and
the external boundary condition (EBC), and the internal boundary condition
(IBC). So it is possible to calculate the coefficients Aji and Bji required on
Equation (2-30).

Correspondingly, considering the model where the waterfront radius
exceeds the damaged zone, equations (2-35) and (2-41) will not change since
they only depend on Coupling Conditions between Layers (CCL). Then, the
following equations are obtained:
CCL:

Aj1K0

(
rsj

√
u

ηwsj

)
+Bj1I0

(
rsj

√
u

ηwsj

)
= Aj2K0

(
rsj

√
u

ηwRj

)
+Bj2I0

(
rsj

√
u

ηwRj

)
(2-42)

CCR:

Aj1K1

(
rsj

√
u

ηwsj

)
− Bj1I1

(
rsj

√
u

ηwsj

)

=
λ̂wRj

λ̂wsj

√
ηwsj

ηwRj

[
Aj2K1

(
rsj

√
u

ηwRj

)
− Bj2I1

(
rsj

√
u

ηwRj

)] (2-43)

Aj2K0

(
rFj

√
u

ηwRj

)
+ Bj2I0

(
rFj

√
u

ηwRj

)
= Aj3K0

(
rFj

√
u

ηoRj

)
(2-44)

IBC:

Aj2K1

(
rFj

√
u

ηwRj

)
− Bj2I1

(
rFj

√
u

ηwRj

)
=

λ̂oRj

λ̂wRj

√
ηwRj

ηoRj

Aj3K1

(
rFj

√
u

ηoRj

)
(2-45)

For a n layer reservoir, a 5n × 5n Linear System is acquired on both
methods. The matrix that represents the linear system is divided into blocks,
each block representing a layer. On the model where the waterfront is within
the damaged zone (rF < rs), the general block attained is:
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Chapter 2. Mathematical Model 22

(Mj)2 =



∆
j
K

1( r w

√ u

η w
s j

) −
∆

j
I 1

( r w

√ u

η w
s j

)
0

0
0

0
0

0
0

0

← 5(j − 1)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0

−
K

0( r w

√ u

η w
s j

)
−

I 0

( r w

√ u

η w
s j

)
0

0
0

K
0( r F

j

√ u

η w
s j

)
I 0

( r F
j

√ u

η w
s j

)
−

K
0( r F

j

√ u η o
s j

)
−

I 0

( r F
j

√ u η o
s j

)
0

K
1( r F

j

√ u η
w

s
j

)
−

I 1

( r F
j

√ u η
w

s
j

)
−

Γ j
2
K

1( r F
j

√ u η
o

s
j

) Γ j
2
I 1

( r F
j

√ u η
o

s
j

)
0

0
0

K
0( r s

j

√ u η o
s j

)
I 0

( r s
j

√ u η o
s j

)
−

K
0( r s

j

√ u

η o
R

j

)

0
0

K
1( r s

j

√ u η
o

s
j

)
−

I 1

( r s
j

√ u η
o

s
j

)
−

Λ j
2
K

1( r s
j

√ u η
o

R
j

)

K
0( r w

√ u

η w
s j

)
I 0

( r w

√ u

η w
s j

)
0

0
0

0
0

0
0

0

← 5(n− j)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0


(2-46)

Equation (2-46) only works for j = 2, ..., (n − 1), that is, for all layers
except the first and last. The constants ∆j, Γj2 and Λj2 are defined as follows:

∆j = 2πrwλ̂wsj
hj

√
u

ηwsj

, Γj2 =
λ̂osj

λ̂wsj

,

√
ηwsj

ηosj

, Λj2 =
λ̂oRj

λ̂osj

√
ηosj

ηoRj

(2-47)

For j = 1 and j = n, the matrix blocks are:
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Chapter 2. Mathematical Model 23

(M1)2 =



∆
1K

1( r w

√ u

η w
s 1

) −
∆

1I
1( r w

√ u

η w
s 1

)
0

0
0

K
0( r F

1

√ u

η w
s 1

)
I 0

( r F
1

√ u

η w
s 1

)
−

K
0( r F

1

√ u η o
s 1

)
−

I 0

( r F
1

√ u η o
s 1

)
0

K
1( r F

1

√ u
η

w
s

1

)
−

I 1

( r F
1

√ u
η

w
s

1

)
−

Γ 1
2
K

1( r F
1

√ u
η

o
s

1

) Γ 1
2
I 1

( r F
1

√ u
η

o
s

1

)
0

0
0

K
0( r s

1

√ u η o
s 1

)
I 0

( r s
1

√ u η o
s 1

)
−

K
0( r s

1

√ u

η o
R

1

)

0
0

K
1( r s

1

√ u
η

o
s

1

)
−

I 1

( r s
1

√ u
η

o
s

1

)
−

Λ 1
2
K

1( r s
1

√ u η
o

R
1

)

K
0( r w

√ u

η w
s 1

)
I 0

( r w

√ u

η w
s 1

)
0

0
0

0
0

0
0

0

← 5(n− 1)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0



(2-48)
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Chapter 2. Mathematical Model 24

(Mn)2 =



∆
n
K

1( r w

√
u

η w
s n

) −
∆

n
I 1

( r w

√
u

η w
s n

)
0

0
0

0
0

0
0

0

← 5(n− 1)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0

−
K

0( r w

√
u

η w
s n

)
−

I 0

( r w

√
u

η w
s n

)
0

0
0

K
0( r F

n

√
u

η w
s n

)
I 0

( r F
n

√
u

η w
s n

)
−

K
0( r F

n

√ u

η o
s n

)
−

I 0

( r F
n

√ u

η o
s n

)
0

K
1( r F

n

√ u
η

w
s

n

)
−

I 1

( r F
n

√ u
η

w
s

n

)
−

Γ n
2
K

1( r F
n

√ u
η

o
s

n

) Γ n
2
I 1

( r F
n

√ u
η

o
s

n

)
0

0
0

K
0( r s

n

√ u

η o
s n

)
I 0

( r s
n

√ u

η o
s n

)
−

K
0( r s

n

√
u

η o
R

n

)

0
0

K
1( r s

n

√ u
η

o
s

n

)
−

I 1

( r s
n

√ u
η

o
s

n

)
−

Λ n
2
K

1( r s
n

√ u
η

o
R

n

)



(2-49)

If n = 1, only the first six lines of the matrix presented in Equation
(2-48) are considered.

Similarly, for the first model (considering rF > rs), the general block and
blocks for j = 1 and j = n are:
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Chapter 2. Mathematical Model 25

(Mj)1 =



∆
j
K

1( r w

√ u

η w
s j

) −
∆

j
I 1

( r w

√ u

η w
s j

)
0

0
0

0
0

0
0

0

← 5(j − 1)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0

−
K

0( r w

√ u

η w
s j

)
−

I 0

( r w

√ u

η w
s j

)
0

0
0

K
0( r s

j

√ u

η w
s j

)
I 0

( r s
j

√ u

η w
s j

)
−

K
0( r s

j

√
u

η w
R

j

)
−

I 0

( r s
j

√
u

η w
R

j

)
0

K
1( r s

j

√ u η
w

s
j

)
−

I 1

( r s
j

√ u η
w

s
j

)
−

Γ j
1
K

1( r s
j

√ u η
w

R
j

) Γ j
1
I 1

( r s
j

√ u η
w

R
j

)
0

0
0

K
0( r F

j

√
u

η w
R

j

)
I 0

( r F
j

√ u

η w
r

j

)
−

K
0( r F

j

√ u

η o
R

j

)

0
0

K
1( r F

j

√ u η
w

R
j

)
−

I 1

( r F
j

√ u η
w

R
j

)
−

Λ j
1
K

1( r F
j

√ u η
o

R
j

)

K
0( r w

√ u

η w
s j

)
I 0

( r w

√ u

η w
s j

)
0

0
0

0
0

0
0

0

← 5(n− j)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0


(2-50)

The constants Γj1 and Λj1 are definied as below:

Γj1 =
λ̂wRj

λ̂wsj

,

√
ηwsj

ηwRj

, Λj1 =
λ̂oRj

λ̂wRj

√
ηwRj

ηoRj

(2-51)
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Chapter 2. Mathematical Model 26

(M1)1 =


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1K
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√ u
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) −
∆
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s 1

)
0

0
0
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0( r s

1

√ u

η w
s 1

)
I 0
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1

√ u

η w
s 1

)
−

K
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1

√
u

η w
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1

)
−

I 0
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1

√
u

η w
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1

)
0
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1

√ u
η
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s

1
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−

I 1
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1
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η
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1

)
−

Γ 1
2
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1( r s
1

√
u

η
w
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1

) Γ 1
2
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( r s
1

√
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η
w
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1

)
0

0
0

K
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1

√
u
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R

1

)
I 0

( r F
1

√
u

η w
R

1

)
−

K
0( r F

1

√ u

η o
R

1

)

0
0

K
1( r F

1

√
u

η
w

R
1

)
−

I 1

( r F
1

√
u

η
w

R
1

)
−

Λ 1
2
K

1( r F
1

√ u η
o

R
1

)

K
0( r w

√ u

η w
s 1

)
I 0

( r w

√ u

η w
s 1

)
0

0
0

0
0

0
0

0

← 5(n− 1)− 1→

. . .
. . .

. . .
. . .

. . .
0

0
0

0
0



(2-52)
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Chapter 2. Mathematical Model 27

(Mn)1 =


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−
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√
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

(2-53)

Regardless of the model, the subsequent modifications are applied if there
is no skin zone on the jth layer:

ηwsj
= ηwRj

λwsj
= λwRj

ηosj
= ηoRj

λosj
= λoRj

;

(2-54)
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Chapter 2. Mathematical Model 28

Thereby, the 5n × 5n Linear System may be expressed as:

M



A11

B11

A12

B12

A13
...

An1

Bn1

An2

Bn2

An3



=



qinj

u
0
...
0

 (2-55)

Using an index m representing the model, the matrix M is defined as
below:

M =
[
(M1)m (M2)m . . . (Mn)m

]
(2-56)

Therefore, once the coefficients A11 and B11 are determined, in the
Laplace domain, the well pressure solution is given (NETO et al., 2020) by:

∆p̄wf = A11K0

(
rw

√
u

ηws1

)
+ B11I0

(
rw

√
u

ηws1

)
(2-57)

Furthermore, Equation (2-6) correlates the pressure difference derivative
and the sandface flow-rate at each layer. In the Laplace field is possible to
obtain:

q̄j1 = −2πuλ̂wsj
hj

(
r

∂∆p̄j1

∂r

)∣∣∣∣∣
r=rw

(2-58)

The pressure difference profile presented in Equation (2-57) and the flow-
rate response given in Equation (2-58) can be converted to the real domain
through Stehfest Algorithm (STEHFEST, 1970).
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3
Ensemble-Based Methods

Ensemble-Based Methods have been widely applied to data assimilation
as an alternative to gradient-based algorithms (SILVA et al., 2021). One of
the biggest hurdles is the gradient calculation, which may not be simple
and computationally demanding. These Ensemble-Based Methods have the
advantage of not calculating the gradient vector but using statistics for
estimating derivatives.

Among the ensemble-based methods, the Ensemble Smoother
(LEEUWEN; EVENSEN, 1996) became a viable alternative in situations
where the restart required by the Ensemble Kalman Filter (EVENSEN, 1994)
was an obstacle. Nonetheless, Ensemble Smoother uses only one assimilation
step, making data estimation less efficient. A viable alternative is the Ensemble
Smoother with Multiple Data Assimilation (EMERICK; REYNOLDS, 2013).

3.1
Bayesian Statistics

Bayesian statistics are used to estimate the uncertainty related to our
data. This mechanism is advantageous for inverse problems due to the signifi-
cant lack of data and the high number of parameters to be estimated. Besides,
there are also errors yielded in the data measurement, which makes an esti-
mation of our data-related uncertainty desirable (SILVA; PESCO; JR, 2021).

This thesis presents a data-matching problem in reservoir engineering.
The data’s inaccuracy is relevant since it is intrinsically an inverse problem,
subject to reflect on when estimating model parameters such that their
production simulated responses match the observed data. As reservoir models
are often rough approximations of the actual models, a probabilistic view
considers the uncertainty related to the model and the data (SILVA; PESCO;
JR, 2021).

3.1.1
Linear Problem

Consider m ∈ RNm a vector of parameters and a data vector d ∈ RNd

with Nm being the number of parameters used and Nd the number of data.
The relation between these two vectors is:

d = Gm (3-1)
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Chapter 3. Ensemble-Based Methods 30

where G ∈ RNd×Nm is the sensitivity matrix of the data. If d is the observed
data dobs, equation (3-1) must be adapted due to the measurement error.
Assuming there is no error in the model parameters:

dobs = Gm + ϵ (3-2)

where ϵ ∈ RNd . In this thesis, this error is considered to be Gaussian with zero
mean and covariance Cd ∈ RNd×Nd . Thus, one can write down its probability
density function (PDF) as:

f(ϵ) = c1 × exp
{

− 1
2(dobs − Gm)T C−1

d (dobs − Gm)
}

(3-3)

Where c1 is a normalizing constant.
Suppose our vector of model parameters parameter m is initially uncer-

tain. Considering that m also assumes Gaussian distribution, one can write
down its prior PDF as:

f(m) = c2 × exp
{

− 1
2(m − mpr)T C−1

m (m − mpr)
}

(3-4)

Where c2 is a constant and mpr is the prior estimate of the variables and Cm

is the prior covariance of the model variable.
Using Bayes’ rule, it is possible to estimate the probability density

function of the model parameters given our observed data:

f(m|dobs) = f(dobs|m)f(m)
f(dobs)

(3-5)

Due to equation (3-2), the probability of measuring dobs given the vector
of model parameters m is the probability of the error ϵ:

f(dobs|m) = f(ϵ) (3-6)

Using Equations (3-3) to (3-6):

f(m|dobs) = c3 × exp
{

− 1
2(dobs − Gm)T C−1

d (dobs − Gm)−
1
2(m − mpr)T C−1

m (m − mpr)
} (3-7)

where c3 is a constant. Commonly the following notation is used:

f(m|dobs) = a × exp{−O(m)} (3-8)

where a is a normalizing constant and O(m) is the objective function, defined
as:

O(m) = 1
2(dobs − Gm)T C−1

d (dobs − Gm) + 1
2(m − mpr)T C−1

m (m − mpr) (3-9)

In order to maximize f(m|dobs), the minimization of the Objective
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Chapter 3. Ensemble-Based Methods 31

Function O(m) is aimed.

3.1.2
Maximum a posteriori estimate

Since the relation between parameters is linear, the objective function
O(m) is quadratic for any model parameter m ∈ RNm . With the intention
of minimizing O(m), the gradient ∇O(m) and its associated Hessian matrix
∇2O(m) are calculated as:

∇O(m) = GT C−1
d (Gm − dobs) + C−1

m (m − mpr) (3-10)

∇2O(m) = GT C−1
d G + C−1

m (3-11)
Focusing on equation (3-11) and knowing that C−1

d and C−1
m are sym-

metric: (∇2O(m))T = (GT C−1
d G + C−1

m )T

= (GT C−1
d G)T + (C−1

m )T

= (GT (C−1
d )T G) + (C−1

m )T

= GT C−1
d G + C−1

m

(3-12)

Therefore, ∇2O(m) is symmetric. Likewise, assuming that both C−1
d and

C−1
m are positive-definite, given a non-null arbitrary vector x ∈ Rm:

xT ∇2O(m)x = xT (GT C−1
d G + C−1

m )x

= xT GT C−1
d Gx + xT C−1

m x

= (Gx)T C−1
d Gx + xT C−1

m x > 0

(3-13)

Hence, ∇2O(m) is also positive-definite. Thereby, O(m) has an unique
minimum, obtained by setting ∇O(m) as zero:

∇O(m) = 0

GT C−1
d (Gm − dobs) + C−1

m (m − mpr) = 0

GT C−1
d (Gm − Gmpr + Gmpr − dobs) + C−1

m (m − mpr) = 0

GT C−1
d (Gm − Gmpr) + GT C−1

d (Gmpr − dobs) + C−1
m (m − mpr) = 0

GT C−1
d G(m − mpr) + +GT C−1

d (Gmpr − dobs) + C−1
m (m − mpr) = 0

(C−1
m + GT C−1

d G)(m − mpr) + GT C−1
d (Gmpr − dobs) = 0

(3-14)

From Equation (3-14), it is possible to determine the value of m such that
the minimum of O(m) is obtained and, therefore the maximum of f(m|dobs).
This vector is the maximum a posteriori estimate to the vector of model
parameters, denoted by mmap.

mmap = mpr + (C−1
m + GT C−1

d G)−1GT C−1
d (dobs − Gmpr) (3-15)
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Chapter 3. Ensemble-Based Methods 32

3.2
Ensemble Smoother

The Ensemble Smoother is an ensemble-based method that approximates
our sensitivity matrix using ensembles to estimate our vector of model param-
eters. Since there is no need to calculate the gradient vector, there is an advan-
tage in its computational use of it. This section will discuss the equations used
in the Ensemble Smoother, the iterative way to improve it (Ensemble Smoother
With Multiple Data Assimilation (EMERICK; REYNOLDS, 2013)), and fi-
nally, a way to use it iteratively without problems with dimension differences
in the data.

Considering the relation between the data d ∈ RNd and vector of model
parameters m ∈ RNm to be linear (Equation (3-1)), with the sensitivity matrix
G ∈ RNd×Nm , an ensemble of model parameters vector {m}j is created, where
j = 1...Ne and Ne ∈ N is the ensemble size. Thereby, an ensemble of the data
{d}j is also produced, with dj = Gmj. It is possible to estimate the covariance
matrix of the model parameters Cm:

Cm ≈ 1
Ne − 1

Ne∑
j=1

(mj − m)(mj − m)T (3-16)

where m is the mean of the ensemble of model parameters vectors. Using
equation (3-16), it is possible to approximate the matrices CmGT and GCmGT

presented in the equation (3-15) that defines the maximum a posteriori
estimate to the vector of model parameters.

CmGT ≈
( 1

Ne − 1

Ne∑
j=1

(mj − m)(mj − m)T
)

GT

≈ 1
Ne − 1

Ne∑
j=1

(mj − m)(mj − m)T GT

≈ 1
Ne − 1

Ne∑
j=1

(mj − m)(G(mj − m))T

(3-17)

Using Equation (3-17) and assuming d = Gm, the following approxima-
tion is obtained:

CmGT ≈ 1
Ne − 1

Ne∑
j=1

(mj − m)(dj − d)T

≈ Cmd

(3-18)

where Cmd is the cross-covariance matrix between the vector of model parame-
ters m and the data vector d. Likewise, it is possible to approximate the matrix
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Chapter 3. Ensemble-Based Methods 33

GCmGT , using equation (3-18):

GCmGT ≈ G
( 1

Ne − 1

Ne∑
j=1

(mj − m)(d − d)T
)

≈ 1
Ne − 1

Ne∑
j=1

G(mj − m)(dj − d)T

≈ 1
Ne − 1

Ne∑
j=1

(dj − d)(dj − d)T

≈ Cdd

(3-19)

where Cdd is the auto-covariance matrix of the data d. It is possible to update
Equation (3-15) using the approximations given by Equations (3-18), (3-19)
and the following identity:

(C−1
m + GT C−1

d G)−1GT C−1
d = CmGT (GCmGT + Cd)−1 (3-20)

Therefore, one may compute mmap as:

mmap = mpr + Cmd(Cdd + Cd)−1(dobs − Gmpr) (3-21)

The Ensemble Smoother updates each ensemble member’s model of
parameters m. Therefore the analyzed vector of model parameters is defined
for j = 1..Ne as:

ma
j = mf

j + Cf
md(Cdd + Cd)−1(duc,j − df

j ) (3-22)

Here, a depicts the analysis step, and f refers to the forward step. The
vector duc,j is the perturbed observed data, duc,j ∼ N (dobs, Cd).

Nevertheless, the Ensemble Smoother is not expected to produce
trustable estimates of the vector of model parameters in nonlinear problems,
such as most history-matching problems. Mainly since (REYNOLDS; ZAFARI;
LI, 2006) has shown that the Ensemble Smoother update process is alike to
applying a single Gauss-Newton iteration with full-step size using the sensitiv-
ity matrix estimated from the prior ensemble. To avoid this hurdle, iterated
forms of Ensemble Smoother were proposed, such as the Ensemble Smoother
with Multiple Data Assimilation (ES-MDA), which assimilates the same data
multiple times.

3.2.1
Ensemble Smoother with Multiple Data Assimilation

Using the ensemble smoother, we apply a single Gauss-Newton correction
and considering a Multiple Data Assimilation, it is possible to develop, in a
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Chapter 3. Ensemble-Based Methods 34

sense, an iterative ensemble smoother. Thereby, more mine corrections in the
ensemble are executed. The covariance matrix associated is inflated, aiming to
absorb the changes in the model. The updated equation of the vector of model
parameters is defined as:

mk+1
j = mk

j + Ck
md(Ck

dd + αk+1Cd)−1(dk
uc,j − dk

j ) (3-23)

where k = 0, . . . , Na − 1 and Na ≥ 1 is the number of assimilations, and
j = 1, . . . , Ne. The set {αi}Na

i=1 refers to the set of the inflation factors, which
must satisfy the following equation:

Na∑
i=1

1
αi

= 1 (3-24)

The proof of Equation (3-24) is shown in (EMERICK; REYNOLDS,
2013) and the exigency of Equation (3-24) is due to the necessity to establish
the equivalence between the single and multiple data assimilation, i.e., the
vector of model parameters obtained in Equation (3-22) has to be a sample
of the posterior probability density function. An important consequence of
Equation (3-24) is that αk ≥ 1, ∀k, aiding the choice of these inflation factors.

The covariance matrices approximated from the ensemble can also be
defined as:

Ck
md = ∆Mk(∆Dk)T (3-25)

Ck
dd = ∆Dk(∆Dk)T (3-26)

Where:
∆Mk = 1√

Ne − 1
(mk − mk) (3-27)

∆Dk = 1√
Ne − 1

(dk − d
k) (3-28)

Thereby, the ES-MDA algorithm is summarized as follows:

1. Choose the number of assimilations Na ≥ 1, the number of ensembles
Ne ≥ 1 and the inflation factors αk.

2. For i = 1, . . . Na:

(a) Run the ensemble from time zero.

(b) For j = 1, . . . Ne:

i. Perturb the observation vector using duc,j = dobs + √
αiC

1/2
d zd,j,

with zd,j ∼ N (0, INd
).

(c) Update the ensemble using Equation (3-22).

Note that, for each assimilation, duc is recomputed. The mentioned pro-
cedure reduces the problem of matching outliers in the ensemble (EMERICK;
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Chapter 3. Ensemble-Based Methods 35

REYNOLDS, 2013). Nonetheless, by using a MDA process, the values of Na

and all inflation factors {αk}Na

k=1 must be selected before the data assimilation.
One simple choice for all αk is αk = Na, ∀k. Note that this alternative

regards Equation (3-24). Despite this, other options were built, such as (LE;
EMERICK; REYNOLDS, 2016) and (RAFIEE; REYNOLDS, 2017), assuming
decreasing values of αk and invariably using the Equation (3-24).

Regarding the number of assimilations Na and also the number of
ensembles Ne, that must be appropriate, primarily owing to the relation
between these numbers and the computational cost, (SILVA et al., 2021)
indicated a suitable set of values for these numbers in the ES-MDA considering
a specif problem of estimating individual layer properties with data generated
from the analytical formulation proposed by (BARRETO; PERES; PIRES,
2011), Na = 4 and Ne = 1000.

3.2.2
Dimensionless ES-MDA

The variables in the vector of model parameters may have different di-
mensions and variances. It could develop difficulty for the ES-MDA (RAFIEE;
REYNOLDS, 2017). Normalization of the variables could be necessary. Pre-
venting that, (ZHANG; REYNOLDS; OLIVER, 2002) formulated a dimen-
sionless sensitivity matrix of the data:

Gd = C
−1/2
d GC1/2

m (3-29)
Note that the matrix ∆Mk can be comprehended as the ensemble

approximation of the square root of Cm at step k:

Cm ≈ ∆Mk(∆Mk)T (3-30)

C1/2
m ≈ ∆Mk (3-31)

Likewise, assuming the linear relation between model parameters and
data, the following is achieved:

∆Dk = G∆Mk (3-32)

Applying Equation (3-31) in Equation (3-29):

Gk
d ≈ C

−1/2
d G∆Mk (3-33)

Furthermore, using Equation (3-32) in the last equation:

Gk
d ≈ C

−1/2
d ∆Dk (3-34)
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Chapter 3. Ensemble-Based Methods 36

Now the rewriting of Equation (3-22) is aimed using the dimensionless
sensitivity matrix. Focusing on the term Ck = Ck

md(Ck
dd + αk+1Cd)−1, it is

possible to rewrite Ck using Equations (3-25) and (3-26):

Ck = ∆Mk(∆Dk)T (∆Dk(∆Dk)T + αk+1Cd)−1 (3-35)

Assuming Cd to be symmetric and knowing that Cd = C
1/2
d INd

C
1/2
d , where

INd
is the Nd × Nd identity matrix. The following is acquired:

Ck = ∆Mk(∆Dk)T (C1/2
d (C−1/2

d ∆Dk(∆Dk)T C
−1/2
d + αk+1INd

)C1/2
d )−1

= ∆Mk(∆Dk)T C
−1/2
d (C−1/2

d ∆Dk(∆Dk)T C
−1/2
d + αk+1INd

)−1C
−1/2
d

(3-36)

From Equation (3-34), (Gk
d)T = (∆Dk)T C

−1/2
d , and the right-hand size

appears in Equation (3-36) . Replacing this term:

Ck = ∆Mk(Gk
d)T (Gk

d(Gk
d)T + αk+1INd

)−1C
−1/2
d (3-37)

Replacing Ck computed in the ES-MDA updated equation is obtained
the Dimensionless ES-MDA equation:

δmk+1
j = (Gk

d)T (Gk
d(Gk

d)T + αk+1INd
)−1yk

j (3-38)
where δmk+1

j = (∆Mk)†(mk+1
j − mk

j ) is the dimensionless updated vector of
parameters, and (∆Mk)† is the pseudo-inverse of ∆Mk, and yk

j = C
−1/2
d (dk

uc,j −
dk

j ) is the dimensionless vector of the data.

3.3
Inflation Factors Analysis

The ES-MDA has proven to be a promising method for history matching
problems (EMERICK; REYNOLDS, 2013), but the main drawback is the
designation of the number of assimilations Na, and the inflation factors
{αk}Na

k=1 before the data assimilation. The most straightforward choice of
inflation factors is to set them equal to Na, but this selection might produce
overcorrection among model parameters (LE; EMERICK; REYNOLDS, 2016).

Adaptive methods for calculating inflation factors during data assim-
ilation were proposed to avoid this obstacle, such as in (LE; EMERICK;
REYNOLDS, 2016), where two methods are presented, the ES-MDA-RS, using
a predetermined level as a maximum quota for the model parameters and the
ES-MDA-RLM, using the discrepancy principle, inspired by (HANKE, 1997)
and (IGLESIAS; DAWSON, 2013).

Another alternative for adaptive ES-MDA algorithm was proposed on
(IGLESIAS, 2014), using the same update equation of the ES-MDA, but the

P
U

C
-R

io
 - 

C
er

tif
ic

aç
ão

 D
ig

ita
l N

º 
19

12
78

0/
C

A



Chapter 3. Ensemble-Based Methods 37

choice of inflation factors is based on the discrepancy principle and is used as
the stopping criterion.

Nevertheless, the number of assimilation in these procedures is unknown
a priori, since it depends on stop criteria for calculating inflation factors.
(RAFIEE; REYNOLDS, 2017) shows an example of when IR-ES fails to
converge after more than 200 iterations. Moreover, (RAFIEE; REYNOLDS,
2017)s also showed cases that needed at least 20 assimilation steps to converge.

Since the increase of assimilations steps yields a run of the mathematical
model presented in Chapter 2 for each ensemble member, it is crucial to
minimize the number of assimilations for computational purposes. This thesis
uses a procedure presented on (RAFIEE; REYNOLDS, 2017) to generate the
inflation factors. One advantage is that the number of assimilation in this
method can be assumed a priori, avoiding computational efficiency problems.

3.3.1
Inflation factor generation based on the discrepancy principle

This thesis uses the approach presented in (RAFIEE; REYNOLDS, 2017)
to calculate inflation factors. The first inflation factor α1 is calculated using the
discrepancy principle. The following elements are calculated using a geometric
descendence scheme based on the computation of α1.

Starting from Equation (3-38), setting k = 0 (using the prior ensemble)
one can update the mean of the model parameters m as:

m1 = m0 + ∆M0(G0
d)T (G0

d(G0
d)T + α1INd

)−1C
1/2
d (dobs − d

0) (3-39)

One can notice that m1 is the solution of the regularized least squares
problem defined as

x1 = argmin
x

{1
2 ||G0

dx0 − y0||2+α1

2 ||x0||2
}

(3-40)
where

x = (∆Mk)†(m1 − m0) (3-41)
and

y = C
−1/2
d (dobs − d

0) (3-42)
Equation (3-41) represents the Tikhonov regularization method

(RAFIEE; REYNOLDS, 2017) with regularization parameter α1 used to
the ill-posed problem:

G0
dx0 = y0 (3-43)

The term α1 controls the relevance of each term of sum in Equation
(3-40). If α1 is too large, both high and medium frequency components in
the solution of Equation (3-41) are ruled out, and the solution may not be
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Chapter 3. Ensemble-Based Methods 38

physically viable. Meanwhile, if α1 is too tiny, high-frequency components are
included in the solution, and it is usually too oscillatory to be a tolerable
solution. Here the discrepancy principle (VOGEL, 2002) is used to determine
the optimum regularization parameter α1. It is straightforward to adopt that
the data mismatch is greater than the noise level due to the data. Otherwise,
there is no point in matching the data. So it is possible to write:

||y||> η (3-44)
or

||C−1/2
d (dobs − d

0)||> η (3-45)
where η is the noise level defined as:

η2 ≡ ||C−1/2
d (dobs − Gmtrue)||2 (3-46)

Assuming that dobs = Gmtrue + ϵ, where ϵ ∼ N (0, Cd), η assumes a
χ2-distribution with mean Nd (BARLOW, 1989). Thereby, it is acceptable
(TARANTOLA, 2005) to assume η =

√
Nd. From Equation (3-43), (G0

dx1 − y)
is the difference between the regularized solution of Equation (3-39) and the
data vector y. Therefore, the discrepancy principle says that the minimum
regularization parameter α1 should regard the following:

η = ||G0
dx1 − y|| (3-47)

Equation (3-47) has a unique solution for α1 (GROETSCH, 1984). Using
Equations (3-39) and (3-40) it is possible to depict the regularized solution of
the inverse problem x1:

x1 = (G0
d)T (G0

d(G0
d)T + α1INd

)−1C
1/2
d (dobs − d

0) (3-48)

By Equations (3-48) and (3-42), it is possible to rewrite Equation (3-47):

η = ||G0
dx1 − y||= α1||(G0

d(G0
d)T + α1INd

)−1C
1/2
d (dobs − d

0)|| (3-49)
Using this expression for η, and replacing on Equation (3-44):

||C−1/2
d (dobs − d

0)||> α1||(G0
d(G0

d)T + α1INd
)−1C

1/2
d (dobs − d

0)|| (3-50)

It is possible to obtain equality on (3-50) by multiplying the left-hand
size by an appropriate constant ρ ∈ (0, 1), yielding on:

ρ||C−1/2
d (dobs − d

0)||= α1||(G0
d(G0

d)T + α1INd
)−1C

1/2
d (dobs − d

0)|| (3-51)

Therefore, Equation (3-51) states a relation between the approximation of
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Chapter 3. Ensemble-Based Methods 39

the norm of the dimensionless forecast data mismatch vector (term multiplied
by ρ). With a higher value of ρ, a slighter decrease in the data mismatch is
achieved by more damping with a more significant value of α1. The following
condition for the regularization parameter was proposed by (HANKE, 1997):

ρ2||C−1/2
d (dobs − d

0)||2≤ α2
1||(G0

d(G0
d)T + α1INd

)−1C
1/2
d (dobs − d

0)||2 (3-52)

It was shown that, for a stable solution of the inverse problem, it is
sufficient to the regularization parameter to satisfy Equation (3-52). Below,
we show how (RAFIEE; REYNOLDS, 2017) evaluates the right-hand side of
Equation (3-52) using the SVD of G0

d, yielding on a method to determine the
minimum inflation factor that guarantees Equation (3-52).

Let UΛV be the SVD decomposition of G0
d. Where U ∈ RNd×Nd is

an orthogonal matrix and its columns are the left singular vectors of G0
d,

V ∈ RNe×Ne is an orthogonal matrix, and its columns are the right singular
vectors of G0

d, and Λ ∈ RNd×Ne is a matrix with all singular values of G0
d in its

diagonal entries. The singular values are ordered as:

λmax ≡ λ1 ≥ λ2 ≥ . . . ≥ λN ≡ λmin ≥ 0 (3-53)

Where N is the minimum between Nd and Ne.Using the singular value
decomposition, it is possible to write:

C ≡ G0
d(G0

d)T + α1INd
= (UΛV T )(UΛV T )T + α1INd

(3-54)
Since U and V are orthogonal:

C ≡ U(ΛΛT + α1INd
)UT (3-55)

So the inverse of C is given by:

C−1 = UΓUT (3-56)
Where Γ ∈ RNd×Nd diagonal matrix with its jth diagonal entry defined

as:

γj = 1
λ2

j + α1
(3-57)

Using Equation (3-42) and the definition of C given in (3-54), Equation
(3-52) can be rewritten as:

ρ2 ≥ α2
i

||C−1y||2

||y||2
(3-58)

Given that the columns of U form an orthonormal set, y can be inter-
preted as a linear combination of all column vectors of U :
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Chapter 3. Ensemble-Based Methods 40

y =
Nd∑
l=1

clul (3-59)

where cl are real scalers and ul is the lth columns of U and since U is an
orthogonal matrix:

||y||2= yT y =
Nd∑
j=1

c2
j (3-60)

In the same way,

||C−1y||2=
( Nd∑

i=1
γiuici

)T( Nd∑
i=1

γiuici

)
=

Nd∑
j=1

γ2
j c2

j (3-61)

Replacing the results of Equations (3-60) and (3-61) on Equation (3-58):

ρ2 ≤ α2
1

∑Nd
j=1 γ2

j c2
j∑Nd

j=1 c2
j

(3-62)

This equation can be solved numerically to obtain the value of α1 that
satisfies the discrepancy principle. The ratio on the right-hand side represents
a weighted average of the squared eigenvalues of C−1. If y is equal to constant
times the kth eigenvector, then it is possible to rewrite the last equation as:

ρ2 ≤ α2
1γ2

k = α2
1

(λ2
k + α1)2 (3-63)

Or equivalent to:

α1 ≥ ρ

1 − ρ
λ2

k (3-64)

In general, the largest value of α1 that satisfies Equation (3-62) is
achieved when y is parallel to the singular vector corresponding to the largest
singular value and the smallest value of α1 is obtained when y is aligned to the
singular vector linked to the smallest singular value. So, the optimum value
of α1 is between these values. (RAFIEE; REYNOLDS, 2017) propose that α1

should be computed as:

α1 = ρ

1 − ρ
λ

2 (3-65)

where λ is the mean of all singular values of G0
d and it is calculate as:

λ = 1
N

N∑
j=1

λj (3-66)

Where N is the number of non-zero singular values of G0
d.

3.3.2
Geometric inflation factors generation

This subsection shows how (RAFIEE; REYNOLDS, 2017) calculates
the ES-MDA inflation factors. One advantage of the following method is the
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Chapter 3. Ensemble-Based Methods 41

possibility of establishing the number of assimilations Na a priori.
(RAFIEE; REYNOLDS, 2017) conjectured that selecting a low number

of assimilations, e.g., from 4 to 8, with a proper selection of the inflation factors,
would be enough to obtain good results when using the ES-MDA.

Given an initial condition, the first inflation factor α1 is obtained using
Equation (3-65), with ρ = 0.5. Therefore, one can compute α1 as:

α1 = λ
2 =

(
1
N

N∑
j=1

λj

)2

. (3-67)

The execution presented in (RAFIEE; REYNOLDS, 2017) of the IR-
ES method (IGLESIAS, 2014) and the method used in (LE; EMERICK;
REYNOLDS, 2016) indicate that the inflation factors usually decrease within
the iterations of iterative ES. The results using the ES-MDA (LE; EMERICK;
REYNOLDS, 2016) also suggest a drop in the calculated inflation factors.
This thesis assumes they monotonically decrease with the rise of the index
k representing the current assimilation step as in(EMERICK; REYNOLDS,
2013).

Considering a geometric generation of the inflation factors with geometric
ratio β, one may compute αj as:

αj = βj−1α1, (3-68)
where β ∈ (0, 1), and j = 1 . . . Na. To evaluate the common ratio, Equation
(3-68) is used in Equation (3-24):

1
βj−1

1
α1

= 1
αj

1
α1

Na∑
j=1

1
βj−1 =

Na∑
j=1

1
αj

1
α1

Na∑
j=1

1
βj−1 = 1

Na∑
j=1

1
βj−1 = α1.

(3-69)

The well-known summation of the geometric sequence is used in Equation
(3-69) to achieve

1 − ( 1
β
)Na−1

1 − 1
β

= α1. (3-70)

Equation (3-70) can be solved for β ∈ (0, 1). With the value of β, all inflation
factors can be calculated using Equation (3-68).

In summation, the method for calculating the inflation factors proposed
by (RAFIEE; REYNOLDS, 2017) allows the specification of the number of
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Chapter 3. Ensemble-Based Methods 42

data assimilation Na and generates the first inflation factor α1 using Equation
(3-67). The common ratio β can be computed using Equation (3-70). Finally,
the inflation factors can be computed using Equation (3-68). The pseudo-code
of the ES-MDA-GEO is presented below.

1. Choose the number of data assimilation Na and number of ensembles Ne.

2. Calculate the initial ensemble {m0
j}Ne

j=1.

3. Calculate the inflation factors {αi}Na
i=1 as follow:

(a) Evaluate ∆D0 as defined in (3-28) and the dimensionless sensitivity
matrix G0

d as defined in (3-34).

(b) Compute α1 using Equation (3-67).

(c) Compute β using equation (3-70).

(d) Calculate the remaining inflation factors using Equation (3-68).

4. For i = 0 . . . Na − 1

(a) If i> 0

i. Run the ensemble from time zero.
ii. Evaluate ∆Di as defined in Equation (3-28).
iii. Compute Gi

d using Equation (3-34).

(b) Evaluate ∆M i as in Equation (3-27).

(c) For j = 1 . . . Ne

i. Perturb the observation vector using duc
i
j = dobs + √

αiC
1/2
d zi

j,
with zi

j ∼ N (0, INd
).

(d) End for

(e) Update the vector of model parameters using Equation (3-38)

5. End for
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4
Results

The dimensionless ES-MDA was applied in a series of cases to test the
conformity of the mathematical method presented in Chapter 2. Except for
the permeability and skin zone radius and permeability used as the parameter
model, all other reservoir parameter was given as constant in all cases.

The cases presented here are based on (SILVA et al., 2021), but the data
estimated here cover the skin factor and the permeability and radius of the skin
zone individually. Furthermore, there is also an estimate for the permeability
of the layer.

In the work of (SILVA et al., 2021), pressure data were calculated using
the model developed by (BARRETO; PERES; PIRES, 2011). On the other
hand, in this work, the formulation developed by (VIANA et al., 2022) was
used. Although this model assumes a piston-like water displacement, it allows
the flow rate data in each layer to be calculated (BELA; PESCO; BARRETO,
2022).

4.1
Proposed Methodology

In Chapter 2, we presented a mathematical formulation to evaluate each
layer’s pressure difference and flow-rate. To increase uncertainty, artificial
Gaussian noise was added to the pressure data to simulate a more realistic field
case condition since, in an actual field injectivity test, pressure measurement
is usually noisy due to measurement errors such as tidal effects (SILVA et
al., 2021). Besides, only a few entrances of the observed flow-rate data were
considered since, in a realistic field, the flow-rate data is hard to calculate all
the time.

Subsequently, the pressure difference and flow-rate responses are consid-
ered the observed data in the dimensionless ES-MDA. This thesis uses the
dimensionless ES-MDA because of the significant difference between the mag-
nitudes within the observed data of pressure difference and flow-rate response.

Each Layer’s permeability, skin zone radius, and skin zone permeability
were chosen as model parameters for the dimensionless ES-MDA. In this
study, we consider the number of ensembles Ne = 1000 and the number of
assimilations Na = 4 as suggested by (SILVA et al., 2021).

Oil properties were considered to be the same in all layers. A piston-like
water displacement is assumed, and the water injection is supposed to last ten
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Chapter 4. Results 44

hours. Fluid and rock information are shown in Table 4.1.

cr (cm/kgf) cw(cm2/kgf) co(cm2/kgf) µw (cP) rw(m)
8.00 · 10−5 4.04 · 10−5 1.14 · 10−4 0.52 0.108

Table 4.1: Table for Input parameters

The initial ensemble was set up such that a random vector of skin zone
radius was created. This vector sorts normally distributed values between 0.108
m and 1.5 m. All along the data assimilation, the logarithm transformation
of layer permeability and skin zone permeability is used since we assume
the measurements are Gaussian. Therefore, they are sorted from a normally
distributed range that varies according to the individual layer permeabilities
and skin zone permeabilities. The initial guess for each layer skin zone
permeability lower limit is 10 mD, and the upper limit consists of 1000 mD. For
the layer permeability, the lower limit is 50 mD, and the upper limit consists
of 5000 mD.

Table 4.2 portrays all case properties for each layer. Note that the skin
zone radius is assumed to be the sum of the skin zone length and rw. For all
cases, the presented results include a graph of the observed data pressure
difference response, the initial ensemble computed, and the final ensemble
evaluated. The mean of the final ensemble also was displayed. Furthermore,
the derivative is also displayed, and during an injectivity test, a characteristic
signature may be identified if there is a formation damaged. Nevertheless,
in this thesis, we added a Gaussian noise that may impair the characteristic
signature.

Moreover, a graph for the observed data flow-rate response is presented.
Also, both initial and final ensembles are displayed. Even though there is no
practical interpretation of the final ensemble mean, it is shown, providing a
visual representation of how, as a whole, the final ensemble represents the
observed flow-rate. For all cases, each parameter estimated has a histogram
graph comparing the initial ensemble, the final ensemble, and the actual value
of the parameter.
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Chapter 4. Results 45

Case qinj ϕ µ0 Layer kj hj kjskin
rjskin

(m3/d) (cP) (mD) (m) (mD) (m)
A 500 0.32 5.1 1 1000 10 500 0.408 (0.3+rw)

2 1000 15 100 0.608 (0.5+rw)
B 200 0.12 1.0 1 600 10 240 0.358 (0.25+rw)

2 600 10 - -
C 400 0.15 1.5 1 1000 10 250 0.508 (0.4+rw)

2 1200 8 400 0.608 (0.5+rw)
3 800 7 300 0.308 (0.2+rw)

D 100 0.25 2.3 1 600 15 150 0.308 (0.2+rw)
2 800 10 200 0.308 (0.2+rw)

Table 4.2: Table for all Cases Properties

4.2
Case A

Case A portrays a two-layer reservoir with the same permeability on both
layers but different skin zone properties. The oil viscosity is greater than the
water one, and a porosity of 32% is considered, as shown in Table 4.2. Results
for case A are shown in Figure 4.1 to 4.8. The pressure variation response
(Figure 4.1) at the final ensemble is significantly more narrowed than the initial
one. Likewise, the final ensemble range is substantially close to the observed
data. This behavior corroborates that ES-MDA returned good results for each
layer with damaged zone properties.

The derivative demeanor in Figure 4.1 seems unstable. This is explained
by the noise included in pressure behavior. Since the derivative is calculated
using the Stehfest Algorithm (STEHFEST, 1970) that uses the pressure
information, the noise included reverberates on the derivative behavior.

Furthermore, the same demeanor appears on the flow-rate response
(Figure 4.2). The initial ensemble is more spread than the final ensemble, which
appears to converge to the observed data. It endorses that the Dimensionless
ES-MDA had dealt well with the vast magnitude difference between pressure
variation and flow-rate.

In case A, only the flow-rate for Layer 1 was estimated. This choice was
made because, in case A, there are only two layers, and the flow-rate on the
second layer at any particular time will be the difference between the flow-rate
injection and the value estimated for layer 1. This is a direct consequence of
the mass conservation principle, considered in the mathematical formulation
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Figure 4.1: Pressure response for case A
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Figure 4.2: Flow-Rate response on layer 1 for case A

in Chapter 2.
The diagrams in Figures 4.3 and 4.4 depict the skin zone permeability

estimations for layers 1 and 2, respectively. In both cases, it is possible to
observe a convergence. Even though there is a slight error comparing the actual
and estimated values, this can be explained by the complexity of the problem,
and in both layers, the actual value is inside the final ensemble histogram.

The skin zone radius histograms for layer 1 and 2 (Figures 4.5 and
4.6) shows that the estimated values frequently got close to the actual value.
Overall, the results for both layers indicate a good conversion towards the
reservoir skin zone radius.
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Figure 4.3: Permeability of the damaged zone histogram on layer 1 for case A
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Figure 4.4: Permeability of the damaged zone histogram on layer 2 for case A

The histograms in Figures 4.7 and 4.8 correspond to both layers’ estima-
tive permeabilities. It indicates an explicit cramped range conversion at the
final ensemble to the actual value estimated. Altogether, the results for both
layers suggest that ES-MDA converges toward the reservoir’s permeability.

It is possible to see that the insertion of a flow-rate response as data
for the ES-MDA increases the estimation accuracy for each layer’s properties.
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Figure 4.5: Radius of the damaged zone histogram on layer 1 for case A
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Figure 4.6: Radius of the damaged zone histogram on layer 2 for case A
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Figure 4.7: Permeability histogram on layer 1 for case A
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Figure 4.8: Permeability histogram on layer 2 for case A

Even the individual skin zone properties that, due to the problem’s complexity,
are sometimes calculated with the skin factor that correlates both radius and
permeability on the same value, as in (SILVA et al., 2021), had good estimation
values, close to the actual ones and presenting a sharp conversion.

4.3
Case B

Case B describes a two-layer reservoir with the same permeability and
layer thickness on both layers but different skin zone properties. Only the first
layer has a damaged zone in this case, and a porosity of 12% is considered, as
shown in Table 4.2.

Results for case B are shown in Figure 4.9 to 4.16. As in case A, the final
ensemble for pressure variation response (Figure 4.9) appears to tighten much
more than the initial one. Besides, it appears to have an excellent conversion
to the observed data, endorsing the idea that ES-MDA had dealt well with the
estimation for each layer’s properties.

Once again, the pressure variation derivative conduct (green triangles in
Figure 4.9) seems unstable. And as explained for case A, the noise added on
case B data causes this type of behavior since Stehfest Algorithm (STEHFEST,
1970)) is used.

In addition, the flow-rate response estimation (Figure 4.10) had good
results. The final ensemble is much more narrow than the initial one and
coincides with the observed data. Once more, the ES-MDA appears to have
handled the considerable difference of magnitude within the input data.

The histograms for skin zone permeabilities (Figures 4.11 and 4.12)
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Figure 4.9: Pressure response for case B
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Figure 4.10: Flow-Rate response on layer 1 for case B

illustrate the skin zone permeability evaluations for layers 1 and 2. For layer
1, it is possible to see a good conversion since the histogram is threadlike and
appears to assemble to the actual value of the skin factor permeability. For layer
2, since there is no damaged zone, the actual permeability is the permeability
for layer 2. Considering that the real value is inside the histogram that seems
to have a good conversion, good results were obtained.

The skin zone radius histogram for layer 1 (Figure 4.13) shows that the
estimated values are frequently near the actual value. The outcomes for layer
1 indicate good conversion since the initial ensemble histogram is much more
for spread than the final one and gives the impression that it coincides with
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Figure 4.11: Permeability of the damaged zone histogram on layer 1 for case B
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Figure 4.12: Permeability of the damaged zone histogram on layer 2 for case B

the skin zone radius.
In layer 2, there is no skin zone, so its radius is zero. Nevertheless, since

an initial ensemble was provided as an input for the ES-MDA, the algorithm
will try to converge to a value inside it. Therefore, since the option of the
radius being empty on the initial ensemble is not considered, the ES-MDA
will converge to a possible value on the initial ensemble, and the demeanor

P
U

C
-R

io
 - 

C
er

tif
ic

aç
ão

 D
ig

ita
l N

º 
19

12
78

0/
C

A



Chapter 4. Results 52

shown in Figure 4.14 is plausible. Despite not interfering with delta p, since
the permeabilities for the skin zone are suitable. It can be a consequence of
spurious correlations, they can be improved with localization techniques, but
in this particular problem that is complex.
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Figure 4.13: Radius of the damaged zone histogram on layer 1 for case B
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Figure 4.14: Radius of the damaged zone histogram on layer 2 for case B

The outcomes for both layers’ permeabilities estimation are pointed out
in Figure 4.15 and Figure 4.16. In general, the two final ensembles seem to have
a sharpened conversion, and in both cases, the results appear to be synergistic
with the actual values for each layer’s permeability.

Thus, the results obtained for case B seem to describe the reservoir
properties well. Altogether, ES-MDA had good results handling a reservoir
with a layer without a damaged zone. Including a few flow-rate data as an
input suggests a good aid for the outcomes.
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Figure 4.15: Permeability histogram on layer 1 for case B
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Figure 4.16: Permeability histogram on layer 2 for case B

4.4
Case C

Case C illustrates a three-layer reservoir with different permeabilities and
skin zone properties on all layers. The complexity of the problem is increased
since more layers are taken into account, and a porosity of 15 % is considered,
as shown in Table 4.2.

Results for case C are shown in Figure 4.17 to 4.27. The pressure variation
response (Figure 4.17) shows a good demeanor for the final ensemble. It
matches the observed data and is more controlled than the initial one. The
results ratified that ES-MDA transmitted each layer’s properties, even with
an extension of the complexity of the problem, adding one more layer.

Moreover, since there are three layers, in this case, estimating the flow-
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Figure 4.17: Pressure response for case C

rate response for two of them is reasonable. Here, we choose to calculate the
flow-rate response for layers one and two. With the same argument presented
in case A, it is not helpful to estimate the third layer since it is possible to
calculate using the first two, using the mass conservation principle.

The flow-rate response for layers one and two are presented in Figure
4.18 and Figure 4.19. On the whole, the assimilation yielded good results for
both layers. As in the pressure variation response, the final ensemble on each
layer is much more narrowed than the initial one. Besides, it seems to suit the
observed data for both layers.
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Figure 4.18: Flow-Rate response on layer 1 for case C
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Figure 4.19: Flow-Rate response on layer 2 for case C

The histograms in Figures 4.20, 4.21, and 4.22, sketch the skin zone
permeability estimation for all three layers. The final ensemble seems to
converge on all situations since the histogram its histogram is much more
limited than the initial one. Despite a modest error comparing the actual value
and the one to which the ensemble converges on layers one and two, the real
value is inside the final ensemble histogram for both cases.

Moreover, it is possible to observe that, whereas, on layers one and two,
the final ensemble is slightly more spread for the third layer (Figure 4.22). The
increased complexity of the problem could explain this demeanor. Since more
parameters are estimated, some of them may be evaluated with more extended
possible values.

Interestingly, despite a more widespread histogram for the final ensemble
on layer three, it seems to converge to the actual value of the third layer skin
zone permeability. This fact sustains that ES-MDA had dealt well with the
increase in complexity of the problem.

Overall, the skin zone permeability outcomes when adding a new layer
were good. Besides, it is possible to observe a good conversion for the value on
the third layer. In all situations, the actual value is inside the final ensemble
histogram.
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Figure 4.20: Permeability of the damaged zone histogram on layer 1 for case
C
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Figure 4.21: Permeability of the damaged zone histogram on layer 2 for case
C

The skin zone radius histograms for all layers (Figures 4.23, 4.24, and
4.25) yielded good results on the final ensemble. For the three cases, the
outcomes seem to converge toward the actual values, and the histogram is
way more restricted than the initial one.
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Figure 4.22: Permeability of the damaged zone histogram on layer 3 for case
C

0 0.5 1 1.5

Skin zone radius

0

100

200

300

400

500

600

700

800

900

1000

F
re

q
u

e
n

c
y

r s
 t
ru

e

Initial Ensemble

Final Ensemble

Figure 4.23: Radius of the damaged zone histogram on layer 1 for case C

Similar to the skin zone permeability demeanor, on the third layer (Figure
4.25), the final ensemble histogram for the skin zone radius is more spread than
the other two. Once again, the amplification of the complexity of the problem,
adding more parameters, and increasing the non-linearity explain this type of
behavior.
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Figure 4.24: Radius of the damaged zone histogram on layer 2 for case C
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Figure 4.25: Radius of the damaged zone histogram on layer 3 for case C

The skin zone radius results when adding a new layer were generally good.
Further, the third layer radius outcome presented an excellent conversion to
the real value. In all situations, the actual radius is inside the final ensemble
histogram.
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The histograms in Figures 4.26, 4.27, and 4.28 correspond to all layers’
estimative permeabilities. The final ensemble outcomes for the three situations
depict a good demeanor, with a shorter range than the initial one.
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Figure 4.26: Permeability histogram on layer 1 for case C
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Figure 4.27: Permeability histogram on layer 2 for case C

On the third layer permeability estimation (Figure 4.28), it is possible to
notice a feeble error comparing the actual value and the one in which the final
ensemble converges. Nonetheless, this behavior is plausible due to the rise of
entanglement of the problem, adding another layer. Moreover, the actual value
is inside the final ensemble histogram.

Therefore, good results were acquired in case C. Naturally, drawbacks
appear due to the additional layer. Nevertheless, ES-MDA appears to handle
well the additional parameters estimated.
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Figure 4.28: Permeability histogram on layer 3 for case C

4.5
Case D

Case D consists of a two-layer reservoir where layer properties differ,
but skin factors and radius are the same. Thus, the waterfront overcomes the
damaged zone in each layer approximately simultaneously.

Results for case D are shown in Figure 4.29 to 4.36. The Pressure
variation response (Figure 4.29) at the final ensemble presents a threadlike
demeanor, being more limited than the initial one. Also, the final ensemble
seems to agree well with the observed data. In (SILVA et al., 2021), part of
the final ensemble in this case was unstable, possibly due to the similarity
between layer skin zone radius. Thereby, adding the flow-rate as observed data
for ES-MDA seems to aid in the stability of this case.
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Figure 4.29: Pressure response for case D
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On flow-rate response for this case (Figure 4.30), as in the others, the
initial ensemble is more dispersed than the final one. Moreover, the final
ensemble seems to match the observed data. The ES-MDA appears to have no
problem of instability to fit the observed data, which could occur due to the
configuration of the problem or the difference between flow-rate and pressure
variation magnitude
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Figure 4.30: Flow-Rate response on layer 1 for case D

The skin zone permeability outcomes for both layers are presented in
Figure 4.31 and Figure 4.32. In the two situations, it is possible to notice
conversion on the final ensemble histogram. Despite a slight error contrasting
the value that the final ensemble converges and the actual one in both cases,
for the two layers, the real value is inside the final histogram.P
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Figure 4.31: Permeability of the damaged zone histogram on layer 1 for case
D
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Figure 4.32: Permeability of the damaged zone histogram on layer 2 for case
D

The skin zone radius values estimated for each layer in case B are
presented in Figure 4.13 and Figure 4.14. It is possible to observe a high
frequency near the actual value in both scenarios. The outcomes for the two
layers indicate a conversion to the true values of the skin zone radius.
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Figure 4.33: Radius of the damaged zone histogram on layer 1 for case D
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Figure 4.34: Radius of the damaged zone histogram on layer 2 for case D

The histograms in Figures 4.35 and Figure 4.36 portray both layers’
estimative permeabilities. The final ensemble seems to converge on both
situations, with a narrow range. On both layers, the real value is inside the
final histogram, even though it appears to have a modest error, weighing the
value with the one the final ensemble converges.
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Figure 4.35: Permeability histogram on layer 1 for case D
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Figure 4.36: Permeability histogram on layer 2 for case D

Therefore, ES-MDA seems to have dealt well with case D and provided
good results. Adding the flow-rate as observed data gives the impression of a
good aid for stability for the final ensemble, a problem that appears on (SILVA
et al., 2021).
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5
Conclusion and Future Works

In this thesis, we applied an analytical approach to an oil reservoir with
an arbitrary number of layers in the Laplace domain using a piston-like water
displacement to obtain a linear system concerning all layer and fluid properties,
considering skin zone properties.

Solving the linear system obtained by the mathematical formulation,
it was possible to calculate the pressure difference in the Laplace domain.
Moreover, it was possible to obtain the flow-rate data deriving the pressure
difference data quickly. Finally, using the Stehfest algorithm (STEHFEST,
1970), we could return to the actual domain and use them as input data for
the static model.

We used the calculated flow-rate and pressure difference responses as
input for the parameters estimation process. Here, we use the dimensionless
ES-MDA due to the difference of magnitude in the input data vector. On the
Dimensionless ES-MDA, we considered the vector of parameters to be evalu-
ated as each layer permeability, skin zone radius, and skin zone permeability.

Also, an inflation factor analysis for the ES-MDA was considered, aiming
to improve the static method’s accuracy. Four cases were presented, testing the
technique on different conditions, aiming to observe if changing some reservoir
properties would not present good results in fitting the observed data and
estimating the parameters.

The results were promising for all cases. Adding little information about
the flow-rate and using the dimensionless ES-MDA improves the results
presented on (SILVA et al., 2021), even when increasing the complexity and
computing more parameters. For all cases, the actual value for all parameters
is inside their final histogram. The data fitting for pressure difference and
flow rate also worked for all situations, even for case D, in which (SILVA et
al., 2021) had a problem fitting the pressure difference data. Therefore, the
applied method met expectations for all cases, showing good convergence.

An idea for future work is to consider the complete relative permeability
curve as in article (SILVA et al., 2021), not only a piston-like water displace-
ment. One possible approach is to consider the entire relative permeability
curve as an iterative of multiple piston-like water displacement. Another sug-
gestion is to reflect on the possibility of cross-flow between each layer as in
(VIANA et al., 2022), changing the construction of the linear system of the
mathematical model. Both options increase the problem’s complexity but are
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closer to a more realistic situation.
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