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Abstract

Corrêa, Breno Perlingeiro; Amaral, Gustavo (Advisor). Simula-
tion and Analysis of SPDC-based Entangled Photon Pair
Source for Quantum Communications with Spectral Mul-
tiplexing. Rio de Janeiro, 2022. 83p. Dissertação de Mestrado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

The quantum internet has dragged the attention of many researchers
and companies. The essential element to accomplish it is entanglement. Distri-
buting entanglement allows the transmission of qubits without really sending
them through the quantum channel. Therefore, the source that produces these
entangled states shall do it reliably and with a competitive rate to classical
communication. This work presents a simulation tool for the most common en-
tangled photon pair source, the SPDC-based EPPS. Furthermore, using filters,
we can emulate the effect of cavity-enhanced SPDC. Optimizing the parame-
ters of the source, we achieved a 6dB gain on the Secret Key Rate compared
to a simple SPDC process.

Keywords
Entangled Photon Pair Source; Quantum Communication; Quantum

Network; Quantum Repeater.
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Resumo

Corrêa, Breno Perlingeiro; Amaral, Gustavo. Simulação e Aná-
lise de Fonte de Pares Emaranhados Baseada em SPDC
para Comunicação Quantica com Multiplexação Espectral.
Rio de Janeiro, 2022. 83p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

A internet quântica atrai a atenção de muitos pesquisadores e empresas.
O elemento essencial para realizá-la é o emaranhamento. A distribuição do
emaranhamento permite a transmissão de qubits sem realmente enviá-los
pelo canal quântico. Portanto, a fonte que produz esses estados emaranhados
deve fazê-lo de forma confiável e com taxa competitiva à de comunicação
clássica. Este trabalho apresenta uma ferramenta de simulação para a fonte de
pares de fótons emaranhados mais comum, o EPPS baseado em SPDC. Além
disso, usando filtros, emulamos o efeito do SPDC dentro de uma cavidade.
Otimizando os parâmetros da fonte, obtivemos um ganho de 6dB na taxa de
chaves secretas em comparação com um processo SPDC simples.

Palavras-chave
Fonte de Pares de Fótons Emaranhados; Comunicação Quântica; Redes

Quânticas; Repetidores Quânticos.
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“Science, my lad, is made up of mistakes, but
they are mistakes which it is useful to make,
because they lead little by little to the truth.”

Jules Verne, A Journey to the Center of the Earth.
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1
Introduction

At the beginning of the 20th century, the discovery and the studies of new
physical phenomena culminated in a new branch of physics, so-called modern
physics [1]. One of the products of this revolution is the theory called quantum
mechanics, which, in summary, describes the nature of atomic and subatomic
particles. As we shall see in the next chapter, this theory brings concepts that
are contestants to our daily experience. At first glance, the statistical aspect
of the measurements is intriguing. However, even if you accept it, there are
other concepts even more mesmerizing [2].

Indeed, in the beginning, many physicists were trustless with quantum
mechanics [3]. However, nowadays, researchers have proven most quantum me-
chanics predictions[4, 5]. Besides, we use many standard technologies developed
using this theory inside every digital equipment, such as diodes, transistors,
LEDs, and LASERs.

With the maturation of quantum mechanics at the end of the last century,
scientists created the concept of quantum computers [6]. Devices capable
of realizing computational operations on quantum states or bits, known as
qubits. Therefore, quantum algorithms take advantage of quantum mechanics
principles, for example, entanglement, one of the most fundamental tools. In
short, two entangled states are quantum systems correlated at such a level that
one cannot know which are the states individually, only by having information
about both.

This concept allows quantum algorithms to optimize operations and then
reduce the duration to accomplish tasks. One of the most famous examples is
Shor’s algorithm [7]. Peter Shor created it for quantum computers to find the
prime factors of an integer number. This algorithm runs in polynomial time,
while the fastest algorithm for classical computers runs in sub-exponential
time. Shor’s creation shows not only the promised superiority of the quantum
computer but, as we shall see in section 1.3, threats to our privacy.
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1.1
Distributed Quantum Computing and Quantum Teleportation

However, there is a gap between the theoretical and the practical quan-
tum computer [8]. Quantum computers nowadays are limited by the number
of qubits and the number of qubits that can interact. A way to overcome these
limitations is to distribute the processing of the algorithms through different
quantum processors, so-called distributed quantum computing [9, 10, 11, 12].
This idea consists of a net of quantum computers interconnected via a quantum
channel transmitting qubit using quantum teleportation.

Figure 1.1: Sketch of a simple quantum teleport protocol, between two proces-
sors, A and B.

Quantum teleportation is an entangled-based protocol to share qubit or
quantum states without the necessity of transmitting them through a channel
[13]. Suppose two quantum processors are working together in an algorithm.
A needs to send a resulting qubit of one of its operations to B. Between them,
there is an entangled pair source, which produces and transmits a pair of
entangled states, one to A and the other to B.

After receiving it, processor A will make a projective measure with the
desired qubit and the entangled particle on the basis formed by the maximum
entangled states. Since these states are called Bell’s states, this measurement
is called Bell’s state measurement. After this process, A transmits through a
two bits classical channel the result it got.

It is possible to demonstrate that after A’s measurement, B holds a qubit,
which is almost the one A wanted to transmit. The processor B needs to
make a unitary transformation, which will depend on the result information A
transmitted. Finally, after applying the right operation, B has the qubit that
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A has sent and can continue the algorithm. The mathematical proof for this
protocol is presented in chapter 2.

1.2
Quantum Network, Quantum Repeaters, and Entanglement Swapping

Besides overcoming the quantum computers’ limitations, sharing entan-
glement with different processors arouses the idea of quantum networks [14, 15].
These networks would connect quantum computers and allow the users to
exchange information. There is a long way for this occurs yet, however, re-
searchers and companies are investigating the best technologies, protocols, and
feasibility to make this happen [16, 17].

One of the most challenging obstacles for quantum internet is distance.
Although the information does not have to travel through the quantum
channel, the entangled states must pass. Commonly, these states are encoded in
a degree of freedom of a photon, for example, polarization or time-bin. Photons
are the predominant choice for long-distance transmissions due to their low loss
and interaction with the environment compared to other particles [18].

However, even if using optical fibers and photons at telecommunications
wavelength, the lowest attenuation factor is 0.2 dB per kilometer. Since we
are working in a single-photon regime, this attenuation corresponds to the
probability of a photon reaching the receiver. Therefore, considering a 400 km
optical fiber link (approximately Rio-São Paulo), the rate of success is 1 in 10
million photons will achieve. In other words, if we use an entangled photon
source with a pair generation rate of 100 MHz (which is a very high rate for
an entangled photon source), the rate of photons in the receiver is 1 Hz [19].

In classical communications, the solutions for the attenuation issue are
straightforward: increase the transmitter power or amplify the signal between
Tx and Rx. Both of these are impractical for quantum communications. The
transmitter is sending single photons, and enhancing the power means gener-
ating more photons, which would lead to a classical regime. Also, amplifiers
would not solve the case since one cannot copy quantum states without adding
noise, which is the principle of the no-cloning theorem [20].

How can we establish long distances communication using quantum chan-
nels? There is no definitive answer to questions yet, although the conceptual
solution is well accepted. Before understanding how it works, let us reformulate
the question: How can we distribute entangled states through long distances?
As we saw in the quantum teleportation protocol: if two parties can share
entanglement, they can send qubits. Moreover, we shall see other significant
protocols which are more reliable.
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The key to distributing entanglement through long distances is using
entanglement swapping [21, 22]. The process is very similar to quantum tele-
portation, but instead of teleporting a simple state, we teleport an entangled
state. For example, two parties, Alfred and Bruce, want to share entanglement,
and they are at a distance of L from each other. Between them, there are two
EPPS equally disposed. Each EPPS sends one photon to the closest node (A or
B). The other component of the pair goes to a measuring station. This station
performs a BSM with the incoming photons and then transmits the results to
Alfred and Bruce. After receiving the answer of the measure, Alfred or Bruce
applies a unitary transformation to their photon, so they share an entangled
state. The reader finds the mathematical proof of this process in chapter 2.

Figure 1.2: Illustration of the Entanglement Swapping between Alfred (repre-
sented by node A) and Bruce (represented by node B) described in the text. In
this configuration, the EPPSs are equally distributed between A and B. This
topology is commonly called quantum relay.

As we can see in the figure, the distance each photon shall pass is two
times less than they would go through if it was the previous setup. Although,
the chance of success would not change since A and B will share entangled
states only if each photon reaches the nodes. Mathematically, considering only
the attenuation, the probability of individual success is given by the Beer-
Lambert law:

PL/4 = e−α
L
4 (1-1)

Being L, the total distance between A and B, and alpha, the attenuation
coefficient of a photon on an optical fiber. Since the four events are independent
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and the entanglement swapping success depends on the four photons hitting
the endpoint, the probability is:

Prelay(S) =
(
PL/4

)4
=
(
e−α

L
4
)4

= e−αL (1-2)

Therefore, the result is the same for direct transmission and the scheme
depicted in figure 1.1. Actually, if we consider the efficiency of the BSM, the
success chance reduces, making this configuration even worse than the ones
cited before. However, if one could store the successfully transmitted states,
it would free the process from the dependence on the simultaneous success of
each transmission. Indeed, there is a device capable of doing this task, quantum
memory (QM).

There are different types of quantum memories, each with its peculiarity.
In general, these devices receive a photon, annihilate it, but hold its quantum
state. After a while, they emit a photon with the stored state. For some memo-
ries, the storage time is fixed, and others are on-demand, for example, memories
based on trapped rubidium atoms and Atomic frequency Comb memories, re-
spectively. Because each memory has there advantages and disadvantages, one
cannot select which is the best. However, the variety allows the users to choose
which memory fits best according to their requirements [23, 17].

To improve the topology presented in figure 1.2, Alfred and Bruce (A
and B, respectively) should have a quantum memory and the BSM station,
two: one for each incoming photon. After this alteration, the BSM station
will only measure after all the memories are filled. Consequently, the success
of the entanglement swapping does not depend on the photons arriving
simultaneously on the nodes [24]. This topology is the way to overcome the
long-distance issue and is well-known as the quantum repeater [25, 26, 19, 27,
28].

To calculate the probability of successfully distributing entanglement
for the quantum repeater, we shall look at the situation from a different
perspective. First, what is the probability of none or only of the entangled
pairs getting to the memory? It is one minus the probability of all pairs getting
into their memories. Therefore, it is one minus the probability of success for
the quantum relay (see equation 1-2). Besides, for generality, we shall consider
the efficiency of the BSM, so the expression is the following.

1− ηBSM Prelay(F ) = 1− ηBSM e−αL (1-3)
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Figure 1.3: Illustration of the Entanglement Swapping between Alfred (repre-
sented by node A) and Bruce (represented by node B) using quantum memo-
ries. These topology is well-known as quantum repeater.

Since, in this case, we have quantum memories, we can store successfully
transmitted states on them and try again the ones that went wrong. Therefore,
the probability of failure (PQR(F )) is the chance of getting no pairs distributed
or only one in all the attempts. Due to the independence of the events, PQR(F )
is:

PQR(F ) = (1− ηBSM Prelay)N =
(
1− ηBSM e−αL

)N
(1-4)

N is the number of attempts or, more rigorously, the number of modes.
For simplicity’s sake, let us consider temporal modes. The quantum memory
can receive photons for a window of time τ , and the EPPS generates pairs with
a certain rate R. Therefore, the number of modes (N) is τ × R for this case.
Since time and frequency are Fourier pairs, one can also use spectral modes.

With the expression for the likelihood of failing, it is easy to obtain the
success probability, since these events are complements.

PQR(S) = 1− PQR(F ) = 1−
(
1− ηBSM e−αL

)N
(1-5)

To understand the magnitude of the quantum repeater, we shall compare
its efficiency to the quantum relay and direct transmission. Before, we have to
make some assumptions: the attenuation coefficient is 0.2 dB/m (for a 1550
nm photon in optical fibers) [29], and the BSM efficiency is 0.5, which is the
maximum possible [30]. Figure 1.4 illustrates this comparison, plotting the
probability of success for a direct link, a quantum relay, and quantum repeaters
with 2, 5, and 10 modes.
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Figure 1.4: Plot of the efficiency for different configurations of link. Assuming
the attenuation coefficient of 0.2 dB/km (≈ 0.046 Np/km) and the Bell’s state
measurement efficiency, 0.5.

As expected, the quantum relay has the worst performance due to the
BSM insertion. Although the two-mode quantum repeater configuration is also
inferior to straightforward communication, as the number of modes increases,
the quantum repeater performs better on long distances. Therefore, we prove
the superiority of this setup and that it can solve the long-distance problem.

Moreover, one can concatenate quantum repeaters to achieve even further
distances. We shall consider the two EPPS and the BSM station with two
memories an elementary link. Thus, one could copy and interconnect these
links, as illustrated in figure 1.5.

Figure 1.5: Concatenation of N elementary links of quantum repeaters between
Alfred (represented by node A) and Bruce (represented by the node B).

Therefore, the quantum repeater topology is a promise for the physical
layer of the quantum networks because it allows the distribution of entangle-
ment and overcomes the direct transmission efficiency. Henceforth, we shall
see one of the many applications one can do with shared entangled states.
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Ultimately, we shall discuss the focus of this dissertation, which is an element
present in all schemes and structures we have seen.

1.3
Quantum Key Distribution and BBM92

As discussed before, quantum computers, theoretically, can overcome the
processing time of classical computers [31, 32]. Thus, this will be an essential
tool for future calculations and simulations of our world [33]. On the other
hand, this is a threat to currently cyber safety [34, 35]. The RSA is the most
refined and reliable cryptography protocol for classical computers. In short, this
encryption bases its security on the fact that does not exist efficient algorithm
to factor large integers. In other words, it can take centuries to decompose the
integers and obtain the secret key, which encodes the messages.

However, in 1994, Peter Shor developed an algorithm for quantum
computers capable of factoring integers in a polynomial time, while the best
classical method scales exponentially [7]. Nowadays, does not exist quantum
computers able to break the RSA encryption due to the necessity of a large
number of qubits. But, it is a question of time for it to achieve this since the
investment in this technology increases year by year [36, 37].

The quantum threat, the name given to this information safety threat
that the quantum computation represents, arouses the discussion about reliable
communication. In 1984, Charles Bennett and Gilles Brassard developed the
first cryptography protocol based on quantum mechanics, the so-called BB84
[38]. Although it was not their purpose (since it was ten years before Peter
Shor came up with the algorithm to factor integers), this first protocol and the
ones sequenced are the solutions to the quantum threat [39].

The BB84 is the founder of the quantum key distribution (QKD). After
this, other protocols emerged. All of them inherited something from BB84,
which consists of two parties, Alice and Bob, producing and sharing a secret
random key through a quantum channel. Hence, one of the parties encrypts the
information using the shared key and sends it to the other through a classical
channel. Then, the receiver decodes the message and recovers the information.
To answer, they share another secret key and do the process again, similar to
the one-time pad protocol.

The security essence of QKD is associated with the no-cloning The
security essence of QKD is associated with the no-cloning theorem, which
infers that one cannot copy or amplify quantum states without introducing
noise [20]. For example, if an eavesdropper (so-called Eve) steals qubits from
the secret keys and tries to send copies of them to pass unnoticed. However,
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she will introduce noise (this attack is one the most straightforward and is
called intercept and resend). In other words, the qubit error rate (QBER) will
increase. Henceforth, researchers calculated a maximum QBER of 11%, which
indicates the limit where Eve has less information about the keys than the
receiver [40].

Moreover, the setup presented before, the quantum repeater, allows the
utilization of QKD to communicate. But they have to use an entangled-based
QKD since the design of quantum repeater is for entanglement distribution.
In other words, Alice or Bob do not have to prepare and send states, but they
have to share entangled states.

After the BB84, in 1991, Arthur Ekert developed the first entangled-
based QKD protocol, popularly called E91 [41]. The protocol bases its reli-
ability on violating locality, in other words, overcoming the Bell’s limit for
local measurements. One year after, the authors of BB84 with David Mermin
(BBM92) proposed a new entangled-based QKD without Bell’s theorem [42].
The security of BBM92 relies on the decomposition of the protocol into the
BB84.

Figure 1.6: Simple scheme for a BBM92 protocol.

The figure1.6 presents a block diagram for the BBM92 protocol. The
premise is that Alice and Bob want to send information safely. To facilitate
the comprehension, let us consider a third party called Charlie, responsible for
generating and sending the entangled photons. On the other hand, Alice and
Bob receive these photons and perform a Bell’s states measurement.

Without entering into the mathematics of quantummechanics (which you
can find in the next chapter), we shall understand the concept behind the BSM
of a single photon. Without losing generality, let us consider that the qubits are
encoded on the polarization state of the photons. Before the communication,
Alice and Bob must agree on two polarization basis. The standard ones are the
rectilinear and the diagonal basis. Besides, They must know which entangled
state Charlie will be sending them.
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After this preparation, Charlie starts sending photons. Alice and Bob
randomly choose one of the accorded basis to measure the incoming photon.
Both save their results and the basis for each. These steps configure the way
of implementing a BSM for polarization encoded photons.

Thus, Alice and Bob start the sifting step. They communicate via a
public classical channel, the basis they used for each measurement. Then, they
discard the result in which the bases are mismatched. Therefore, on average,
they now have half of the transmitted key, known as the sifted key. Now, the
two parties can sacrifice a part of the key to measure the error rate and verify
the reliability of the channel.

Finally, Alice and Bob have their secret key. Depending on the state
prepared by Charlie, one of the parties has to apply a bit of flip. Further, they
can implement error correction codes or make privacy amplification to improve
the robustness of the process [43, 44]. Thus, they can encrypt their information
and share it on a classical. Notice that the message must have the same length
as the key. Also, the protocol inherits from the one-time pad that the secret
key can be used by the parties once. Therefore, for each transmission, they
have to establish a new key.

Although QKD protocols are secure proof from quantum computers,
the performance of the processes and technologies for implementing them
are not high enough compared to classical communication [45]. The same
happens for the quantum repeater [46]. Therefore, some research groups and
companies aim to enhance the performance of these elements to make these
technologies marketable. This work intends to simulate and analyze one of
the most typical elements of quantum repeaters and entangled-based QKD,
the entangled photon-pair source based on spontaneous parametric down-
conversion.

1.4
Entangled Photon Pair Sources and The SPDC

All the schemes seen before have at least one entangled photon-pair
source since, to distribute entanglement, one must have a source of such states.
This element is crucial for the future of quantum communications. Even if one
has the most efficient and reliable quantum memory, although the states stored
are not entangled or not near one of the Bell states, one cannot implement
entanglement swapping. The same for the entangled-based QKD. The protocol
reliability depends on the fact that the qubits are not separable and correlated.

Consequently, it is essential for quantum communication the studies and
improvements on EPPSs. There are many methods of generating entangled
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photons, the pioneer and most common is the EPPS based on spontaneous
parametric down-conversion, for short SPDC. This process occurs in non-linear
mediums when a photon spontaneously interacts with itself due to the medium
characteristics. Then, it converts itself into two photons of lower energy (down-
conversion). And, since the process does not change the attributes of the
material, it is parametric [47, 48].

Although SPDC is the most typical method, it does not have the best
performance compared, for example, to quantum dots or Nitrogen vacancy on
diamonds. Indeed, the SPDC is not an efficient process, as we shall see in the
next chapter [49, 50]. However, SPDC does not demand cryogenic temperatures
or highly prepared materials [51]. In summary, to assemble an SPDC, one needs
a pulsed laser and a periodic poled non-linear crystal. Since this technology
has more than 20 years, the confection of this crystal is very mature, and there
are even corporations selling EPPS based on SPDC [52, 53].

Due to these facilities, it is interesting for researchers and companies
to improve the SPDC method. The main idea is to maintain the simple
implementation and make its performance competitive with the other process
of generating entangled photons pairs. One of the methods for enhancing the
efficiency of the SPDC is using filters or, even better, putting the crystal inside
a cavity, then producing entangled pairs frequency multiplexed [54, 55].

In this work, we shall implement simulations of an SPDC-based entangled
photon source and take some parameters of this source as figures of merits
for the analysis. Such parameters are spectral purity, second-order cross-
correlation, qubit error rate (QBER), and secure key rate [56]. In chapter 2,
the reader finds an overview of quantum mechanics and other concepts. Then,
in chapter 3, we shall understand the SPDC process. Chapter 4 presents the
simulation results and the analysis.

DBD
PUC-Rio - Certificação Digital Nº 2012314/CA



2
Theoretical Background

This chapter lays the foundations for the comprehension of spontaneous
parametric down-conversion. It starts with an introduction to quantum me-
chanics, enunciating and explaining its postulates. Then, using the quantum
approach, we shall see the harmonic oscillator. Elevating this, we will study a
system with two particles and learn about entanglement. With this knowledge,
we can examine the math around quantum teleportation and entanglement
swapping.

2.1
Postulates of quantum mechanics

Quantum mechanics is an extensive theory in physics responsible for
describing systems on an atomic scale. There are some postulates which
provide a mathematical approach for describing the phenomena. The number
of postulates and the order of enunciating them differs from book to book, but
overall, they get to the same point. Here we shall use [2] as a reference since
it is more detailed.

The first postulate enunciates that the state of a physical system can be
represented as a complex vector, a state vector, which belongs to a Hilbert
space, well known as a space state. It is relevant to notice that the state space
and the state vector are something to determine. Using Dirac’s notation, an
arbitrary state can be |ψ(t)〉.

The second postulate enunciates that every measurable physical quantity
can be represented as an observable operator acting in the system’s associated
Hilbert space. Following this, the third postulate affirms that the only mea-
surable results are the eigenvalues of the observable operator related to the
measurement. For example, consider an arbitrary measurement, represented
by an observable Â applied to a particle described in one of their eigenstates,
|un〉. The only possible result is the related eigenvalue, an.

Â |un〉 = an |un〉 (2-1)
What if the particle’s state was not the eigenstate of Â? The Fourth

postulate enunciates that the probability of measuring a specific eigenvalue
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of an observable is equal to the square module of the projection coefficient
of the current state in the correspondent eigenstate. The following equation
exemplifies the probability for a non-degenerated case.

P (an) = | 〈un|ψ〉 |2 (2-2)
The fifth postulate affirms that immediately after being measured, the

particle collapses to the projection of the initial state on the eigenstate related
to the measured eigenvalue. Following the previous example, the particle’s state
immediately after measuring an, |ψ′〉, is represented by equation 2-3, where Pn
is the projection operator on state |un〉.

|ψ′〉 = |un〉 〈un|ψ〉√
| 〈un|ψ〉 |2

= Pn |ψ〉√
〈ψ|Pn |ψ〉

(2-3)

Finally, the sixth postulate enunciates that the time evolution of state
|ψ(t)〉 is ruled by the Schrödinger equation, as shown in 2-4. Where Ĥ(t) is the
Hamiltonian operator, an observable associated with the system’s total energy.
One can obtain it from the classical Hamiltonian.

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (2-4)

If the Hamiltonian is time-independent, one can simplify the expression
above to 2-5. Otherwise, it is necessary to use methods for solving differential
equations.

|ψ(t)〉 = e−
iĤ
~ |ψ(t)〉 (2-5)

This mathematical formalism of this section provides us tools to inves-
tigate an essential classical system, the harmonic oscillator, but in light of
quantum mechanics. Furthermore, we shall extend this knowledge to under-
stand entanglement.

2.2
The Harmonic Oscillator and Fock States

Consider a simple, but essential case, an electromagnetic field confined in
a one-dimensional cavity. After doing some classical analysis, the Hamiltonian
for this system is obtained [57]. The equation 2-6 presents it, where p̂ and q̂

are the momentum and position operators, respectively. Both are Hermitian,
consequently observables.

Ĥ = 1
2
(
p̂2 + ω2q̂2

)
(2-6)

A more convenient approach is using two non-observable operators, well
known as annihilation and creation operators (2-7 and 2-8, respectively). These
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two provide a more straightforward method to find the allowed energies and
their related states.

â = (2~ω)−1/2(ωq̂ + ip̂) (2-7)

â† = (2~ω)−1/2(ωq̂ − ip̂) (2-8)
Rewriting the Hamiltonian in terms of â and â†:

Ĥ = ~ω
(
â†â+ 1

2

)
(2-9)

The product â†â has a relevant purpose, so-called number operator, n̂. We
denote its eigenstates as |n〉, consequently the eigenstates of the Hamiltonian.
A physical interpretation is that it corresponds to a state of a well-defined
number of photons inside the cavity, well-known as Fock state. Each of these
states has an energy associated En, eigenvalue of Ĥ. Hence, we shall see the
effect of applying the creation operator with the Hamiltonian, to understand
their purpose [57].

Ĥ(â† |n〉) = (En + ~ω)(â† |n〉) (2-10)

Ĥ(â |n〉) = (En − ~ω)(â |n〉) (2-11)
From now on, we understand the name of the operators â† and â. The

creation operator enhances the system’s energy by ~ω, therefore increasing
one photon of frequency ω. On the other side, the annihilation operator
exterminates a photon of energy ~ω. Attaching this to the Fock state, we
get to equations 2-12 and 2-13.

â |n〉 =
√
n |n− 1〉 (2-12)

â† |n〉 =
√
nthe+ 1 |n+ 1〉 (2-13)

Finally, we shall find the allowed energy values, En:

En = 〈n| Ĥ |n〉 = ~ω
(
n+ 1

2

)
(2-14)

We shall remark on the single-mode field analysis’ fascinating points. The
Fock states form an orthogonal complete set, serving as a basis for well-known
photon systems. The multimode field is naturally obtained since the problem
can be reduced into "M" single-mode fields, where "M" is the number of modes.
The last one is the most intriguing fact, the zero-point energy (ZPE). Following
the equation 2-14, the case without photons (n = 0) has energy equal to ~ω/2.
This fact gives rise to two other effects: Lamb Shift and the Casimir effect [57].

The quantum solution for the harmonic oscillator provides the notation
to describe the SPDC process. Since the system is composed of two states,
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Figure 2.1: The energy levels of an arbitrary harmonic oscillator.

there is a representation we shall study before the analysis. This description
allows us to write joint and incompletely known states. Finally, it leads us to
quantum entanglement.

2.3
Pure and mixed states

Initially, in this chapter, well-defined states were adopted to represent
quantum systems. However, if the state, in which the system is, is indistin-
guishable, this nomenclature is inadequate. Then, the density operator or den-
sity matrix emerges as a representation of these states. Suppose a quantum
system has probabilities pi of being in the |ψi〉 states, the density operator is
defined:

ρ ≡
∑
i

pi |ψi〉 〈ψi| (2-15)

This tool provides the characterization of states into pure, the well-
defined ones, and mixed, probability combination of pure states. In summa-
rizing, since the system can be represented as a state vector, it is called pure.
Otherwise, the exclusive representation is the density operator, then is called
mixed. A numerical way to define is by calculating the purity of the state,
which is given by the following.

P (ρ) =
∑
i

p2
i = Tr(ρ2) (2-16)

If the purity is 1, then is a pure state. Otherwise, if it is less than 1, the
state is mixed.
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2.4
Systems with two or more particles and Entanglement

Now, introducing the knowledge of systems with two or more particles.
Since it is a vector space, the state-space of a composite system is the tensor
product of the component systems [2]. Therefore, if there are N particles,
each in |ψi〉, the resulting space state is: |ψ1〉 ⊗ |ψ2〉 ⊗ .. ⊗ |ψN〉. A common
representation for composite systems is using one ket with the states inside.
For example, a two particles system, |ψ1〉 ⊗ |ψ2〉, it would be represented like
|ψ1ψ2〉.

If the joint state cannot be decomposed into pure states, the only solution
is to use the density operator. To obtain the reduced density operator, we must
do the partial trace of the matrix over the undesired system. Moreover, these
joint states which cannot be written into a tensor product of pure states are
called entangled.

As we have seen in the last chapter, entanglement is essential to quantum
communication and quantum computation. We shall analyze an example to
understand some of its implications. First, we define a two-eigenstates system,
like polarization, spin, or time-bin. Associated with these states are often used
a computational representation, so-called Qubit: |0〉 and |1〉. Now, consider the
following states composed of two Qubits:

|Φ+〉 = 1√
2
|11〉+ 1√

2
|00〉 (2-17)

Suppose that the state |1〉 measurement results in 1, on other hand, |0〉
results in -1. If we separate the particles and send one to Alice and the other
to Bob, the first to perform a measure knows exactly the other’s result. In
other words, if Alice measures first and gets 1, she knows exactly that Bob will
obtain the same result.

This state is called |Φ+〉 and it constitutes the Bell States, which are the
maximum entangled states. The other three states that constitute the set of
Bell states are:

|Φ−〉 = 1√
2
|00〉 − 1√

2
|11〉 (2-18)

|Ψ+〉 = 1√
2
|01〉+ 1√

2
|10〉 (2-19)

|Ψ−〉 = 1√
2
|01〉 − 1√

2
|10〉 (2-20)

Using the inner product note that these states are orthogonal to each
other and have norm 1. Therefore, this set forms an orthonormal basis for
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the bipartite space state. Besides, using the density matrix approach, one can
notice that the Bell states are pure (purity equals 1). However, if one tries
to split into two density matrices, using the partial trace, it results in two
maximum mixed states (I/2). Consequently, we verify that one only knows
the state, if one has information about both states, otherwise it is just a mixed
state, and the statistical result is always 50% for every measuring basis.

Indeed, entanglement is so unnatural for our daily experience that one of
the most brilliant minds of the 20th century, Albert Einstein, in collaboration
with Nathan Rosen and Boris Podolsky, used it as an argument to prove that
quantum mechanics is incomplete [3]. The EPR paradox suggested that this
strange effect (entanglement was not named yet) violates local realism.

However, we know, until nowadays, that the quantum theory describes
nature’s microscopic systems. Besides, entanglement is a feasible and measur-
able effect. And the proof of it came with the so-called Bell’s inequality.

The easiest way to understand this proof is by example. Suppose two
particles are generated and transmitted one to Alice and the other to Bob.
She is capable of measuring two properties that this particle has PQ and PR,
which results in a value Q and R, respectively. Bob also can measure two
properties PS and PT , which results in a value S and T, respectively. Q, R, S,
and T can assume values of 1 or −1.

Both randomly choose one of the possible projections and perform them
at the same time. After a large number of measures, the locality of this system
is examined by the following inequality:

E[QS] + E[RT ] + E[RS]− E[QT ] ≤ 2 , (2-21)

where E[·] represents the expected value of the term. This result is also called
CHSH after the initials of its four discoverers [58]. It is a specific component
of a set of inequalities so-called Bell’s inequalities. Therefore, systems that
attend the local realism accord to 2-21. However, for perfect entangled pairs,
this calculus leads to 2

√
2. Indeed, experiments show that local realism violated

[59]. are There are still open metaphysical discussions about realism and the
completeness of quantum mechanics and more, because of that. However,
it also gives us a powerful tool for quantum communication, entanglement.
Henceforth, we shall see the mathematical approach behind protocols seen in
the introduction, quantum teleportation, and entanglement swapping.
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2.5
Quantum Teleportation and Entanglement Swapping

In the introduction, we examined the use of entanglement as a tool for
communication. Then, we discussed two protocols, quantum teleportation, and
entanglement swapping. Here, we shall utilize the mathematical approach for
quantum mechanics to prove the functionality of these protocols.

First, we shall understand quantum teleportation since entanglement
swapping uses the same procedures but is more complex. Consider the scheme
in figure 1.1, and Alfred (represented by A) wants to send a qubit to Bruce
(represented by B). Between them, there is an entangled photon source, which
sends one entangled photon to Alfred and the other to Bruce. Without loss of
generality, consider that this source produces the state Ψ+.

Alfred’s state is:

|a〉 = α |0〉+ β |1〉 (2-22)
Where α and β belongs to the complex plane, and such that | 〈a|a〉 |2 = 1.

Then, after Alfred has received the entangled state, the total system state is:

|Ψtotal〉 = |a〉a
⊗
|Psi+〉AB (2-23)

Where the subscript denotes to which space that state belongs. One can
expand this expression and reorganize it to:

|Ψtotal〉 = 1
2[ |Φ+〉aA

⊗
(β |0〉B + α |1〉B)−

|Φ−〉aA
⊗

(β |0〉B − α |1〉B)+
|Ψ+〉aA

⊗
(α |0〉B + β |1〉B)−

|Ψ−〉aA
⊗

(α |0〉B − β |1〉B)]

(2-24)

Alfred performs a Bell state measurement on the received entangled state
and the state he wants to send Bruce. Using the reorganized equation (2-24),
one can notice that there is a 25% chance of Alfred measuring |Psi+〉 and
Bruce gets the state |a〉. But the other results are almost that state, Bruce has
to apply one of the Pauli operators on the receiving qubit. Therefore, Alfred
transmits through a classical channel to Bruce, which of the Bells states he
measured. Then, Bruce knows which operation he has to do to obtain |a〉 [60].

Noteworthy, if the state sent to Alfred and Bruce is another Bell state, the
only difference would be the operation that Bruce has to apply to obtain the
qubit Alfred wants to send. Besides, suppose that Alfred was intermediating
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this message, and he has just to deliver it to Bruce. Using the quantum
teleportation protocol, Alfred does not have access to the information [57].

Figure 2.2: Scheme of an Entanglement Swapping protocol between A and B,
assuming the sources produce the state |Φ+〉. For better understanding, the
photon going to A and B are represented by their letters and the ones that go
to the BSM are C and D.

Now, consider the scheme illustrated in figure 2.2, and Alfred and Bruce
want to share entanglement. Without loss of generality, suppose that the
sources produce the state |Φ+〉. The states going to Alfred and Bruce are
denoted by the letter A and B, respectively. The others are C and D, where C
is entangled with A and D with B. Therefore the total state for this case is:

|Ψtotal〉 = |Φ+〉AC
⊗
|Φ+〉BD (2-25)

Where the subscript denotes to which bipartite space that state belongs.
Similar to the quantum teleportation protocol, one can expand this expression
and reorganize it to:

|Ψtotal〉 = 1
2[ |Φ+〉CD

⊗
|Φ+〉AB + |Φ−〉CD

⊗
|Φ−〉AB +

+ |Ψ+〉CD
⊗
|Ψ+〉AB + |Ψ−〉CD

⊗
|Ψ−〉AB]

(2-26)

After reorganizing the state, it is easy to see that after measuring C
and D, on the Bells states basis, A and B are entangled. However, Alfred and
Bruce must know which is their state. Therefore, the BSM station transmits
the result through a classical channel. If the initials entangled states were
different, the only thing that would change is the correspondence of the
resulting measurement and entangled state.

These calculations consider that the sources always produce maximally
entangled states, which is not in accord with the practice. There are parameters
associated with the source that represents how close to the Bells states are
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the generated pairs. Henceforth, we shall understand the theory behind the
SPDC, the parameter that characterizes an EPPS, and which characteristics
of the SPDC are related to them.
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3
Spontaneous Parametric Down Conversion

In this chapter, we shall study the theory behind spontaneous parametric
down-conversion. First, we have a brief introduction to nonlinear optics and the
classical process of three-wave-mixing, which is the opposite of SPDC. Then,
we apply the quantum mechanics and mathematical concepts seen in the last
chapter to write the SPDC Hamiltonian and resulting state. Hence, we shall
study some figures of merit to characterize and evaluate the performance of
the source.

3.1
Nonlinear Optics and Three-Wave-Mixing

An electric field, applied in a medium, polarizes the molecules generating
dipoles in the opposite direction. The dipole per unit volume or polarization
(P (t)) depends on the electric field amplitude (E(t)) and medium parameters
[61].

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

]
(3-1)

The χ(i) represents the susceptibilities of the material, and the "i" is the
order of it. If the electric field strength is low, just the order one susceptibility
is considered. As the intensity increases, higher-order terms become more
relevant. Consequently, the nonlinear effect arises. The order depends on the
material’s crystal structure, particularly on its symmetry. The second-order
term is fundamental for the parametric down-conversion process. Therefore,
the crystal choice is restricted to mediums with a high second-order parameter,
like Lithium Niobate or Potassium Titanyl Phosphate.

Moreover, an essential discussion in nonlinear optics is the phase-
matching condition. This parameter is related to the momentum conservation
of the process, and also to the efficiency of the process.

Consider three electromagnetic waves propagating through a nonlinear
crystal, with frequencies ωp, ωs, ωi and wave-vectors kp, ks and ki, where p,
s and i stand for pump, signal, and idler, respectively. In this case, the phase
mismatch follows the expression 3-2. Mathematically, the phase mismatch (∆k)
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appears in the output’s intensity, in a square sine cardinal (Sinc) function, so
this is optimized when ∆k = 0.

∆k = kp − ks − ki (3-2)
The material’s birefringence is essential to achieving the phase-matching

condition. However, there are crystals, for which this parameter is not suffi-
cient. So, the solution is a technique called quasi-phase-matching. It consists
of using periodically poled crystals to obtain ∆k = 0. This material had its
structure engineered in such a manner that the orientation of one of the crys-
talline axes is inverted periodically. The periodic alternation complements the
∆k to make it zero. Back to the previous example, using a periodically poled
crystal the QPM equation is:

∆k = kp − ks − ki −
2π
Λ , (3-3)

where Λ is the polling period.

Figure 3.1: Illustration of the periodically poled crystal and the momentum
conservation with the Quasi-Phase-Matching.

Classically, there is a nonlinear optical process called three-wave-mixing,
in which two beams (ω1 and ω2) focused on a crystal generate a third beam
(ω3) with the sum of frequencies (ω3 = ω1 +ω2). The intensity of the generated
beam is:

I3 = Imax
3 sinc2

(
∆kL

2

)
, (3-4)

where Imax
3 is the maximum intensity and L is the crystal length.

The reverse process, a pump wave producing two others with lower
frequencies (down-conversion), could not occur, only if the desired wavelengths
were also pumped. In this case, the method is parametric, because the crystal’s
proprieties are maintained, but not spontaneous, due to the necessity of the
two frequencies in the input.
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3.2
Spontaneous Parametric Down-Conversion

Now we shall analyze this case using the quantum mechanics formulation.
To initiate is necessary to obtain the Hamiltonian of the system. Assuming
the propagation of the wave along the z-axis, the operator electric field can be
written as:

Ê(z, t) = Ê(+)(z, t) + Ê(−)(z, t) , (3-5)
with Ê(−)(z, t) =

[
Ê(+)(z, t)

]†
.

Ê(+)(z, t) = i
∫ ∞

0
A(ω)â(ω)ei(k(ω)z−ωt)dω , (3-6)

where A(ω) is the amplitude, and â, the annihilation operator. Therefore, the
Hamiltonian is the pump, idler, and signal’s electric field integrated over the
volume V of the crystal [62].

Ĥ = ε0χ
(2)
∫
V
ÊpÊsÊidV , (3-7)

where ε0 is the vacuum electrical permittivity and χ(2) is the second-order
susceptibility of the crystal.

Figure 3.2: Illustration of Spontaneous Parametric Down-Conversion and the
energy conservation of the process. ωp, ωs and ωi refer to pump, signal and
idler’s frequenters, respectively.

Since no idler nor signal photon is entering the crystal, the initial state
is the tensor product of their vacuum states, as equation 3-8 shows. This
formalism, afforded by quantum mechanics, provides us to understand the
process’s spontaneity.

|ψ(0)〉 = |0〉s ⊗ |0〉i = |0, 0〉 = |0〉 (3-8)
The evolution of the system is:

|ψ(t)〉 = U(t) |ψ(0)〉 = e−i/~
∫ t

0 dt
′ ˆH(t′) |0〉 (3-9)

DBD
PUC-Rio - Certificação Digital Nº 2012314/CA



Chapter 3. Spontaneous Parametric Down Conversion 38

Applying the Hamiltonian of the SPDC and the initial state into the
equation 2-4, and using the first-order element of the Dyson series as an
approximation [63, 64], the system’s state is obtained.

|ψ(t)〉 = (1 + χ2) |0〉+ χ
∫ t

0
dt′
∫∫∫ ∞

0
dωpdωsdωiα(ωp)×

sinc(∆kL/2)ei∆kL/2ei∆ωt′ â†(ωs)â†(ωi) |0〉
(3-10)

∆ω is the pump frequency minus signal and idler’s frequency. α(ωp) is
the pump spectrum. The amplitudes factors were pulled out as approximation,
considering low variation with the frequency, so the parameter κ is:

χ = i
πLε0χ

(2)Ap(ωp)As(ωs)Ai(ωi)
~

(3-11)
The approximation in 3-10 is valid if the probability to generate a photon

pair in the interaction time t is small. So it is used the limit t→∞, then the
time integral becomes a Delta function of ∆ω. Hence, a simplified expression
for the state is obtained:

|ψ〉 =(1 + χ2) |0〉+

χ
∫∫ ∞

0
dωsdωiNΨα(ωs + ωi)sinc(∆kL/2)ei∆kL/2â†(ωs)â†(ωi) |0〉

(3-12)

By this equation, we shall obtain the essential element for the SPDC
process study, the Joint-Spectral Amplitude (JSA). It is defined by the
multiplication of the energy conservation, α(ωs + ωi) and phase-matching
functions, Φ(ωs, ωi):

Ψ(ωs, ωi) = NΨα(ωs+ωi) sinc(∆kL/2)ei∆kL/2 = NΨα(ωs+ωi)Φ(ωs, ωi) (3-13)

Where NΨ is such that
∫∫
dωidωs|Ψ(ωs, ωi)|2 = 1. Using the JSA, one can

consider the second order element of the Dyson series and obtain the following:

|ψ〉 = (1 + χ2) |0〉+ χ
∫∫ ∞

0
dωsdωiΨ(ωs, ωi)â†(ωs)â†(ωi) |0〉+

χ2

2

∫∫ ∞
0

dωsdωiΨ(ωs, ωi)â†(ωs)â†(ωi)×∫∫ ∞
0

dω′sdω
′
iΨ(ω′s, ω′i)â†(ω′s)â†(ω′i) |0〉

(3-14)

From this, we know that the probability of generating a pair is propor-
tional to |χ|2, but also, the probability of generating two pairs is proportional
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to |χ|4, and no pairs, to |1 + χ2|2. Therefore, we conclude that the probability
of generating no pairs is the greatest. Furthermore, since χ is proportional to
the electrical field amplitude, one can easily conclude that SPDC is not an
efficient process. Hence, we shall look for some figures of merit for the SPDC,
which are, commonly, used to characterize these types o sources.

3.3
Purity and Single Value Decomposition

The first figure of merit is purity. From 0 to 1, this parameter weights how
pure a state is. For the SPDC-based EPPS, we are interested in the spectral
purity of the photons, which means that if the joint spectrum amplitude is not
separable, the photons are pure. Moreover, If the source produces entangled
photon pairs in a well-defined state, thus it is pure. Otherwise, they are mixed.
Therefore, this parameter also evaluates the entanglement of the produced
photons.

In this case, the purity of the entangled photon source is directly related
to the shape of the Joint Spectral Amplitude, which is associated with the
crystal material, crystal length, polling period, temperature, and pulse width.
The following figure shows different shapes of Joint spectral intensity (JSI),
the absolute square of the JSA [65].

Figure 3.3: Different shapes for Joint Spectral Intensity, that leads to different
purities. From a to d, the purity is gradually increasing, since the shape is
getting more rounded. The purity for JSA a is Pa = 0.02; for JSA b, P = 0.2;
for JSA c, Pc = 0.7; and for JSA d, Pd = 1.

To calculate the purity of the Joint-spectral amplitude, first, we have to
decompose the Joint-Spectral amplitude into a basis of Hermitian functions
using the Schmidt Decomposition. The expression 3-15 shows the decompo-
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sition of the JSA in terms of two orthonormal sets of Hermitian functions,
uk(ωs) and vk(ωi). The rk are the coefficients that weight this functions [66].

χΨ(ωs, ωi) =
∑
k

rkuk(ωs)vk(ωi) (3-15)

However, due to computational limits, we cannot use infinite number of
coefficients and functions to decompose the JSA. Therefore, to apply this on
the simulations, there is finite decomposition for matrices that approximates
to the Schmidt Decomposition, The Singular Value Decomposition (SVD). In
summary, the SVD is eigendecomposition, i.e., decomposes a square matrix
in terms of its eigenvalues and eigenvectors. The expression 3-16 shows the
decomposition of the N×N sampled JSA matrix in two matrix U and V, which
are the eigenvectors matrices and R, a diagonal matrix with the eigenvalues in
a descending order.

χΨN×N = UN×NRN×NV
T
N×N (3-16)

One can open this equation to see the similarities to the Schmidt
decomposition in equation 3-15. The

χΨN×N =


| | |
u1 . . . uN

| | |


N×N


r1 0 0
0 . . . 0
0 0 rN


N×N


− v1 −

− ... −
− vN −


N×N

(3-17)

We can simplify this into equation 3-18, which approximates to the
Schmidt decomposition as N goes to infinity. Then, N has to be large enough
to fulfill this approximation, but not too large so the computer can solve in
a reasonable amount of time. In this work, we opted to use N = 1000, which
compared with higher values of N, had the same results and it takes just some
minutes to run. Figure 3.4 shows an example of modes and coefficients obtained
from a SVD used in the simulations.

χΨ(ωs, ωi)N×N =
N∑
k

rkuk(ωs)vk(ωi) (3-18)

From the coefficients of the decomposition, one can obtain the normalized
ones, λk.

λk = rk√∑
k r

2
k

= rk
B

(3-19)

Where B is called optical gain and it is the norm of rk. Since uk(ωs) and
vk(ωi) are orthonormal, it is trivial to notice that B2 equals |χ|2. Then, using
the normalized coefficients, one can calculate the purity of the generated states
using:
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Figure 3.4: a) and b) Show the three most effective modes obtained form
the SVD using N = 1000 for signal and idler, i.e, uk(ωs) and vk(ωi) for
k = 1, 2, 3, respectively. c) Presents the first 100 coefficients obtained for
this decomposition. This SVD uses the Joint-Spectral Amplitude developed
in section 4.1.

P =
∑
k

λ4
k (3-20)

From the decomposition, we can define operators, which form a basis for
the generated states.

Âk =
∫
dωsuk(ωs)â(ωs) and B̂k =

∫
dωivk(ωi)â(ωi). (3-21)
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3.4
Second-Order Auto- and Cross-Correlation

Other important figures of merit are the second-order autocorrelation and
cross-correlation functions, commonly called g2-auto and g2-cross, respectively.
The g-auto estimates how close to a pure single photon the source is developing
on idler and signal. The g2-cross evaluates the correlation between the two
produced states. The great this value, the closer the generated state is to a
maximum entangled state.

The correlation of nth-order is defined as a time-dependent function of
the electromagnetic field. For quantized electric fields operators, we have [57]:

g(n)(t1, . . . , tn) = 〈Ê
(−)(t1) . . . Ê(−)(tn)Ê(+)(t1) . . . Ê(+)(tn)〉
〈Ê(−)(t1)Ê(+)(t1)〉 . . . 〈Ê(−)(tn)Ê(+)(tn)〉

(3-22)

Considering the jitter and efficiency of the detector, we shall introduce
the detection time window, T(t), to the correlation [67].

g(n) =
∫
dt1T (t1)· · ·

∫
dtnT (tn) 〈Ê(−)(t1) . . . Ê(−)(tn)Ê(+)(t1) . . . Ê(+)(tn)〉∫

dt1T (t1) 〈Ê(−)(t1)Ê(+)(t1)〉· · ·
∫
dtnT (tn) 〈Ê(−)(tn)Ê(+)(tn)〉

(3-23)
Then, considering that T(t) is constant for a short detection time, one

can simplify the expression to:

g(n) =
∫ (n) dt1 . . . dtn 〈Ê(−)(t1) . . . Ê(−)(tn)Ê(+)(t1) . . . Ê(+)(tn)〉∫

dt1 〈Ê(−)(t1)Ê(+)(t1)〉· · ·
∫
dtn 〈Ê(−)(tn)Ê(+)(tn)〉

(3-24)

One can rewrite this expression using the annihilation and creation
operators since the Electric field operator is proportional to the annihilation.
Also, we can perform a Fourier Transform and operate on the frequency
domain. Therefore, the resulting expression is:

g(n) =
∫ (n) dω1 . . . dωn 〈â†(ω1) . . . â†(ωn)â(ω1) . . . â(ωn)〉∫

dω1 〈â†(ω1)â(ω1)〉· · ·
∫
dωn 〈â†(ωn)â(ωn)〉 (3-25)

One can change the basis to use the basis defined for the generated states,
and then [68]:

g(n) =
〈:
(∑

k Âk
†
Âk

)n
:〉

〈∑k Âk
†
Âk〉

n (3-26)

where 〈: · · · :〉 is used to simplify the equation, indicating that the
operators must be in normal order. Therefore, for the second-order auto-
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correlation, we obtain the following. [68].

g(2) = 1 +
∑
k sinh4(rk)(∑
k sinh2(rk)

)2 (3-27)

For a low gain regime, i.e., for low values of rk, one can use the
approximation that sinh(rk) ≈ rk and obtain the following:

g(2) ≈ 1 +
∑
k r

4
k

(∑k r
2
k)

2 = 1 +
∑
k λ

4
k

(∑k λ
2
k)

2 = 1 +
∑
k

λ4
k = 1 + P (3-28)

Therefore, for small values of B, the g2 is approximately 1 plus the purity.
Analogous, the nth-order cross-correlation depends on the quantized

electric field. Hence, we consider the two systems to be Idler and Signal
photons, i and s, respectively.

g(n,m)(t(s)1 , . . . , t(s)n ; t(i)1 , . . . , t
(i)
m ) =

〈Ê(−)(t(s)1 ) . . . Ê(−)(t(s)n )Ê(+)(t(s)1 ) . . . Ê(+)(t(s)n )× Ê(−)(t(i)1 ) . . . Ê(+)(t(i)m )〉
〈Ê(−)(t(s)1 )Ê(+)(t(s)1 )〉 . . . 〈Ê(−)(t(s)n )Ê(+)(t(s)n )〉 × . . . 〈Ê(−)(t(i)m )Ê(+)(t(i)n )〉

(3-29)

Accomplishing the same step for the auto-correlation, one can get to [68]:

g(1,1) = 1 +
∑
k sinh4(rk)(∑
k sinh2(rk)

)2 + 1∑
k sinh2(rk)

= g(2) + 1∑
k sinh2(rk)

(3-30)

Considering a low gain regime, one can obtain:

g(1,1) ≈ 1 + P + 1∑
k r

2
k

= 1 + P + 1
B2∑

k λ
2
k

≈ 1
B2 (3-31)

Since the optical gain is low, the term 1/B2 is greater than the other,
thus it is dominant.

3.5
Visibility and Fidelity

From the calculation of the g2-cross, one can obtain another remarkable
figure of merit for entangled photon sources, the visibility of entanglement.
For better understanding, we shall consider the setup illustrated in figure
3.5-a, where we generate time-bin entangled photons. Each output goes to
a Michelson interferometer, where there is a short and a long arm, l1 and
l2, respectively. Therefore, idler and signal photons are time-bin encoded and
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entangled. If the photon goes through the short path, they are at the early
state |e〉. Otherwise, they are at the late state, |l〉.

|Φ+〉 = 1√
2
|ee〉+ 1√

2
|ll〉 (3-32)

Figure 3.5: a) A simple setup for generating time-bin entangled photons and
measuring the correlations. First, the entangled photons are generated by an
SPDC source and the signal and idler photons are split into two arms. Both
arms have a Michelson interferometer with a short and long path, l1 and l2,
respectively. After this, the photons impinge a beam splitter, dividing into
two arms, and both meet again on another BS, going to two photodetectors
(DET). On one of the arms, there is a phase modulator that introduces a delay
τ . Thus, the detection signals go to &, which counts the coincident counts. b)
Shows the common interference pattern obtained in this experiment. c) Shows
the coincidence-to-accidental ratio (CAR) for different values of τ .

After the generation of the states, they go through a beam splitter, which
separates into two arms. On one of them, there is a phase modulator adding
a delay τ . Then the arms meet again on another beam splitter, where the
outputs are connected to photodetectors. The trigger signals of the detectors
go to a system that counts the coincidences. Thus, figure 3.5-b illustrates an
expected interference pattern obtained by this measurement. Varying τ and
measuring the coincidence-to-accidental ratio for each of the curves obtained,
one can get the result illustrated in figure 3.5-c. From this, one can calculate
the visibility of entanglement using the following:

V = max−min
max+min

(3-33)

Note that this value belongs to the interval [0,1], where 1 means the
photons are in a maximum entangled state and zero, thermal distribution.
Besides, the states are entangled, only if, the visibility is higher than 1/3, and
it violates the CHSH if it is higher than 1/

√
2 [69, 70].

Since the visibility comes from the CAR, one can calculate it using the
second-order cross-correlation by the following expression:
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V = g(1,1) − 1
g(1,1) + 1 (3-34)

From the visibility, one can obtain another noteworthy figure of merit
that measures how accurate the produced state is from a maximum entangled
bell state, the fidelity. Before calculating this parameter, we shall simplify
considering that our generated photon pair is an imperfect entangled state
called the Werner state [71, 17]. Considering the setup illustrated in figure 3.5
and its outcome (eq. 3-32), one can represent the Werner state obtained by
the following density matrix:

ρEPPR = W |Φ+〉 〈Φ+|+ 1−W
4 I4 (3-35)

Where I4 represents the identity matrix of dimension 4× 4 and W is the
Werner parameter, which is the visibility of entanglement (W = V ). Thus, the
fidelity concerning the state |Ψ+〉 by definition is:

F = 〈Ψ+| ρEPPR |Ψ+〉 (3-36)
Therefore, one can write the Fidelity as a function of the visibility of

entanglement.

F = 3V + 1
4 (3-37)

3.6
Quantum Bit Error Rate and Secret Key Rate

Considering an entangled-based QKD protocol, two figures of merit are
essential: Quantum Bit Error Rate and secret key rate. As we have seen in
chapter 1, the most common sources for this yet are the EPPS based on
SPDC. The performance of the generation of the entangled photons is the
most influential on these parameters.

The QBER is, roughly, the ratio of the wrong qubits and all the qubits
after sifting. During the QKD protocol, the two parties randomly choose
qubits and sacrifice them to evaluate the QBER. As a security measure, they
know that the key is secret if the QBER is lower than 11% [40]. However, to
understand the reasons for these mistaken qubits and to estimate them, it is
fundamental to unravel the QBER. Therefore, one can write open the QBER
into three components [72].

Q = Qdet +Qacc +Qopt (3-38)
The first component, Qdet, agglomerates the errors due to the efficiency

and dark counts of the detectors and the distance. The second term, Qacc,
considers the accidental counts due to multiphoton emission, i.e., the source
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generates more than one pair simultaneously. For SPDC-based sources, this
parameter is related to the pump intensity. As we can see in equation 3-14,
the probability amplitude of producing two pairs goes with the square of χ,
which is proportional to the square root of the pump intensity.

The last component, Qopt, depends only on the performance of the source
to generate entangled states. Therefore, one can calculate this element using
the visibility of the interference pattern of the entangled photons pairs emitted
[72].

Qopt = 1− V
2 (3-39)

For future calculations, we shall consider the other terms than Qopt

negligible for the QBER. From the QBER, we can calculate the ratio of keys
generated and qubits received, or the Shor-Preskill bound, using the following
expression [56].

E = 1− (κ+ 1)H(Q) (3-40)
Where H(·) is the Shannon Entropy [73]:

H(Q) = −Q log2(Q)− (1−Q) log2(1−Q) (3-41)

And κ is the reconciliation efficiency, which, for perfect reconciliation, is
1. As the efficiency degrades κ increases. Using equation 3-40, one can obtain
the cutoff QBER (Qc), i.e., the highest error rate, for which the ratio is positive.
Table 3.1 presents some examples of the reconciliation efficiencies and their
respective cutoff QBER. Besides, that is the reason qubits with QBER higher
than 11% cannot be used as keys.

κ 1 1.11 1.22
Qc 0.11 0.101 0.094

Table 3.1: Table for different reconciliation efficiencies (κ) and their Quantum
Bit Error Rate cut off Qc.

With these values in hand, we can estimate the secret key rate (SKR):

SKR = R× PA−B × E (3-42)
Where R is the pump pulse rate, PA−B is the probability of a pair reaching

A and B (final nodes), and E is the rate of secret keys per pair received.
The pulse rate is commonly tunable. Therefore, only the probability remains
unknown. This parameter will depend on the chosen setup, for example, the
ones shown in chapter 1 for the quantum relay and quantum repeater. In the
next chapter, we shall simulate and analyze the usage of the SPDC-based
source for frequency multiplexed BBM92.
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4
Simulations and Analysis

In this chapter, we shall apply the knowledge we have gathered to
simulate an SPDC-based entangled photon pair source. The objective of this
work is to investigate the source characteristics and related parameters for a
frequency multiplexed quantum repeater setup. More specifically, we consider
a QR similar to the one presented in [27].

Therefore, we engineered the crystal and the pump so that the resulting
idler and signal are about 1550 and 795 nm, respectively. The idler wavelength
matches with the Erbium-based quantum memory, and, on the other hand, the
idler matches with Thulium-based QM. Besides, the C-band, which contains
the idler’s wavelength, has the lowest loss on optical fibers.

First, we shall understand how to make the simple simulation of the
SPDC. Understand the functions that constitute the Joint-Spectral Amplitude
and which parameters are relevant to this phenomenon. Then, we can change
these parameters and see the effects on the figures of merit. See the performance
of the SPDC as a source for a direct transmission of keys on a BBM92 protocol.

Finally, we shall apply filters on the JSA and multiplex signal and idler
into frequency channels. Subsequently, use this frequency multiplexed SPDC
as a source for a BBM92 and compare the results to the direct transmission.
Besides, analyze and compare different configurations.

4.1
Joint-Spectral Amplitude and Intensity

The nonlinear crystal and pump must fulfill the energy conservation
and quasi-phase-matching conditions to achieve the desired bands, B and
C. We shall use a periodic poling Lithium Niobate crystal (ppLN), in which
the highest element of the second-order susceptibility tensor is −20, 6 pm/V
(propagation axis) [74] and 7 µm of periodic poling. During the simulations,
we manage the pump laser wavelength of 523,5 nm and temperature of 40
degrees Celsius to obtain the idler wavelength of 1530 nm and signal of 795,7
nm.

To simulate the JSA, equation 3-13, we have to split it into two functions:
the energy conservation, alpha, and the phase matching, Phi. The energy
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conservation function corresponds to the normalized spectrum of the pump.
Considering Gaussian pulses for the pump, one can write alpha as:

α(ωs + ωi) = e−2π2σ2
t [ωp−(ωs+ωi)]2 (4-1)

Where σt is related to the pulse width, ∆t, full width at half maximum
(FWHM):

σt = ∆t
2
√

ln 2
(4-2)

Considering a pulse width of 50 ps the energy conservation function
obtained is in figure 4.1.

Figure 4.1: Energy conservation function for Gaussian pulse with 50 ps of
FWHM.

In equation 3-13, find the definition for the phase-matching function.
This function depends on the quasi-phase-matching parameter ∆k, which is in
equation 3-3. Expanding this equation, one obtains the following:

∆k = 2π
(
np
λp
− np
λp
− np
λp
− 1

Λ

)
(4-3)

In order to evaluate the refractive index inside the crystal for each
wavelength, we use a temperature-dependent Sellmeier equation as suggested
in [75]. The Sellmeier equation used in the simulation is presented in 4-
4, where ne is the refractive index. The parameters a1 to a6 and b1 to b4

are constants empirically obtained and f is calculated by an temperature-
dependent equation.

n2
e = a1 + b1f + a2 + b2f

λ2 − (a3 + b3f)2
a4 + b4f

λ2 − a2
5
− a6λ

2 (4-4)
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After the polling period is set, it is adjusted considering the thermal
expansion, as proposed in [76]. The equation 4-5 demonstrates how it was
implemented in the simulation. In 4-5, Λ is the polling period after the
expansion, Λ0 is the pre-determined one, T0 is 298.15 K, the coefficients α0

and α1 are constants empirically obtained.

Λ(T ) ≈ Λ0 + [α0(T − T0) + α1(T − T0)2] (4-5)
After calculating the refractive index inside the crystal and the polling

period for the simulation temperature, we can calculate the phase-matching
function. Considering a 10 mm crystal, Λ = 7 µm and a temperature of 40◦ C.

Figure 4.2: The absolute of the phase-matching function for a 10 mm crystal,
with polling period of Λ = 7 µm and at 40◦ C.

Figure 4.3: The overlapping region between the function of figure 4.1 and 4.2.
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Then, the JSA is the overlapping region between these two functions,
α(ωi + ωs) and Φ(ωi, ωs), as the figure 4.3. Therefore, the resulting Joint
Spectral Intensity is illustrated in figure 4.4. We use the intensity because
the JSA function is complex.

Figure 4.4: Joint-Spectral Intensity using the specification of figure 4.1 and
4.2.

Before continuing, it is essential to understand the effect of some param-
eters on the JSA shape. The energy conservation function width is inverse
proportional to the pulse width. The phase-matching function and crystal
length have a similar relation. After choosing the crystal type, the temperature
controls idler and signal wavelengths because it changes the phase-matching
function slope [65].

4.2
Figures of Merit and Key distribution

Assuming that the pump power is adjusted to result in a mean number
of pairs per pulse of 0.1 (µ = |χ|2 = 0.1), one can calculate the figures of
merit for the source described in the previous section. First, we shall use the
singular value decomposition, equation 3-18, to obtain the coefficients, then we
calculate the purity and the second-order cross-correlation. Using the single
value decomposition, using equations 3-20 and 3-30, respectively.

P = 0.016 and g(1,1) = 11.02 (4-6)
The parameters of the pump laser and the crystal produce energy

conservation and phase-matching function with close slopes, as figure 4.3
shows. Therefore, the JSI, figure 4.4, has this stretched shape, which causes
this low purity.
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Note, in this case, g(1,1) is approximately 1+P +1/B2, which is following
equation 3-31. One can calculate the visibility using this value and equation
3-34. And, following the steps of the previous chapter, we can also obtain the
estimation of the QBER and the key rate per photon arriving considering a
reconciliation efficiency of κ = 1.1.

V = 0.8336 (4-7)

Q = 0.0831 (4-8)

E = 0.132 (4-9)
Now, with these figures of merit, we can use this source to transmit

qubits directly. Then, calculate the achievable secret key rate for this source
using equation 3-42. However, we first have to define the probability (Pab) of the
photons arriving at the receivers. Since we are considering direct transmission,
Pab is the probability of generating pairs, p(n > 0), times the probability of it
arriving at the other side and origin a detection on both sides. For simplicity,
we consider the source close to A, so the attenuation for the signal photon is
negligible. Then, the idler photons go through an optical fiber of length d.

Figure 4.5: Scheme for the simulation of direct transmission. We consider that
A is so close to the source that the distance is negligible.

Therefore, the probability of A and B receiving a pair is:

Pab = η2
dete

−αdp(n > 0) (4-10)
To calculate the likelihood of the source emitting pairs, we shall remem-

ber the distribution of the SPDC process, equation 3-14. However, since we
are looking only for the probabilities, we can simplify and look only for the
coefficients of the Dyson series [63]:

|ψSPDC〉 = (1 + χ2) |0, 0〉+
∞∑
n=1

χn

n! |n, n〉 (4-11)
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Then, the probability of having one or more pairs from the source is
the projection on all the |n, n〉, where n ∈ N∗. Therefore, one can write the
following:

p(n > 0) =
∞∑
n′=1

| 〈n′, n′|ψSPDC〉 |2

| 〈ψSPDC |ψSPDC〉 |2
=

∑∞
n=1

|χ|2n

(n!)2

| 〈ψSPDC |ψSPDC〉 |2
(4-12)

The norm of |psiSPDC〉 is:

| 〈ψSPDC |ψSPDC〉 |2 = |1 + χ2|2 +
∞∑
n=1

χ2n

(n!)2 = |1 + χ2|2 + I0(2|χ|)− 1 (4-13)

Where I0(x) is the modified Bessel function of the first kind [77].
Therefore, one can rewrite equation 4-12 using this and the χ2 = −µ and
χ2 = −µ (eq.3-11):

p(n > 0) =
I0(2√µ)− 1

|1− µ|2 + I0(2√µ)− 1 (4-14)

We can calculate the achievable secure key rate for different distances by
adjusting the pump pulse rate to 100 MHz and assuming the attenuation of
fiber 0.2 dB/km.

SKRdir = RE Pab (4-15)

Figure 4.6: Achievable secret key rate using the SPDC-based source developed
in the previous section with a pump rate of 100 MHz.
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4.3
Filtering Signal and Idler

One can implement a frequency multiplexed quantum repeater protocol
to reach further distances without compromising the secret key rate [24]. As we
have seen in the first chapter, multiple modes increase the chance of successful
entanglement distribution.

To multiplex the photon pairs, one must generate them in close bands
and split each channel. One typical way of doing so is using a cavity-enhanced
SPDC, i.e., putting the nonlinear crystal used for SPDC inside a cavity
structured for the signal and idler wavelengths [55]. Furthermore, one can
implement the channel separation using a Virtually-Imaged Phased Array
(VIPA) as a mapper [78].

To simulate this scenario, we opted to use an array of lossless filters
matched to the signal and idler central wavelengths. Therefore, we can emulate
the results of a cavity-SPDC and have more control of the number and
bandwidth of channels. Hence, we calculate the filtered JSA using the following
[79].

Ψfiltered(ωi, ωs) = Ψ(ωi, ωs)Ai(ωi)As(ωs) (4-16)
Here and after, when we use filter bandwidth, the reader shall consider

this value for signal and idler filters. Both filters’ bandwidths are matched in
frequency to achieve the best purity. Moreover, the centers of the filters are
matched following the energy conservation equation.

Using the JSA we have been developing, we can implement filters and
analyze the impact on the source figures of merit. Figure 4.7 exhibits the
previous JSA after filters with 10 GHz bandwidth. We increased the pump
power until the filtered µ result was 0.1. to maintain consistency. Note the
JSA shape got more rounded, which directly affected the purity, increasing it
to 0.749. On the other hand, the second-order cross-correlation did not improve
much since we managed to maintain the average number of photons and the
g2cross is approximately inversely proportional to this (see equation 3-31).

To implement multiple filters, we shall first analyze the behavior of these
figures of merit on different parts of the spectrum. Then, we can define the
total bandwidth to split into multiple channels. Therefore, we sweep the central
wavelength of the filters and evaluate for each case the average pair number,
purity, and second-order cross-correlation.

We can define these different values of central wavelength as a possible
channel. Accordingly, the figures give us the parameters for choosing the
bandwidth best suits our scenario. Analyzing figure 4.8, we see that the purity
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Figure 4.7: The filtered JSI using the previous conditions and filters bandwidth
of 10 GHz. This JSI is multiplied by the χ2. The pump power was adjusted
so we obtain µ = 0.1, i.e., integrating this function over the idler and signal
wavelengths, we obtain 0.1.

Figure 4.8: Purity sweeping the central wavelength of the filters, using a 10
GHz filter.

degrades as the filter departs from the center of the JSA. This effect is due
to the peripheral filtered JSA shape being less rounded than the centered.
In opposition to this effect, figure 4.9 shows the g(1,1) increasing as the filter
departs from the center. To understand this, look for the behavior of the µ
in figure 4.10. Remember that g(1,1) is approximately one over µ (eq. 3-31).
Therefore, since the average photon number reduces, the second-order cross-
correlation increases.

Looking only for the g2 values does not give us a clue about the operating
bandwidth for the channels since it only increases. Therefore, using the average
photon pair, one can determine the lowest µ they accept, then define a
bandwidth for the channels. Here and after, we shall use the limiting µ as
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Figure 4.9: Second-order cross-correlation sweeping the central wavelength of
the filters, using a 10 GHz filter.

Figure 4.10: Average photon pair number sweeping the central wavelength of
the filter, using a 10 GHz filter.

one-quarter of the maximum, in this case, 0.025. Using this specification, the
operating band we got for this setup is approximately 530 GHz. Thus, we can
define an equation for the maximum number of channels.

Nchan = Bop

αoccBfilter
(4-17)

Nchan represents the maximum number of channels, Bop is the operating
band for the channels, Bfilter is the filter bandwidth and αocc is the occupation
factor. The occupation factor is the ratio of channel and filter bandwidth.
Considering αocc = 2, we obtain a maximum of 26 channels to use.

Moreover, another important step for the channels is defining the pump
pulse rate since the filtering broads the pulses. We shall understand this
problem more as we further into it. First, we must obtain the marginal
spectrum for signal and idler. The equation for the marginals is as follows.

|Ψidler(ωi)|2 =
∫
dωs|Ψ(ωi, ωs)|2 (4-18)
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|Ψsignal(ωs)|2 =
∫
dωi|Ψ(ωi, ωs)|2 (4-19)

Therefore, using these equations, one can apply the filtered JSA (devel-
oped before) and obtain the marginals in figure 4.11.

Figure 4.11: Marginals Spectrum for Signal and Idler after a 10 GHz filter.

Assuming the marginals are Gaussians, one can calculate the pulse in the
time domain. Figure 4.12 presents the idler pulse for this marginal.

Figure 4.12: Idler pulse obtained from the marginals in figure 4.11.
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Considering the repetitions of the pump pulse, we can replicate these
pulses dislocated T from each other, where T is 1/R. Figure 3 shows the
pulses from figure 2 for two rates: 1 GHz and 10 GHz.

Figure 4.13: Two idler pulses generated by the source for different pump pulse
rates. On top, the pump rate is 1 GHz, and the other is 10 GHz, which
corresponds to the filter bandwidth.

We shall look forward to the crosstalk between the generated envelopes
to analyze the effect of this overlapping. The crosstalk measures the influence
of the neighboring pulses in a pulse time slot. Accordingly, one can define the
crosstalk as follows.

C =
∫ (n′+1)T/2

(n′−1)T/2 |
∑
n p(t+ nT )|2dt−

∫ (n′+1)T/2
(n′−1)T/2 |p(t+ n′T )|2dt∫ (n′+1)T/2

(n′−1)T/2 |p(t+ n′T )|2dt
(4-20)

Where the function p(t) represents the envelope of the pulse and the
integral is throughout the n′ pulse. Figure 4.14 shows the crosstalk for different
pulse rates fixing the filter bandwidth at 10 GHz. From this, we can define
limiting crosstalk to choose the best pump rate for the source. Therefore,
choosing the maximum crosstalk of -60 dB, we get the maximum rate of
approximately 3.8 GHz.

Considering this limit of -60 dB for the crosstalk, we can calculate
the maximum rate for different filters’ bandwidths using the simulations. In
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Figure 4.14: Corsstalk sweeping the pump rate for a 10 GHz filter.

addition, we can use equation 4-17 and the value obtained by the simulations
for the operating band, i.e., 530 GHz, to calculate the achievable number of
modes as a function of the filter’s bandwidth. Thus, figure 4.15 shows the
resulting curves for these calculations on the same plot. Moreover, the green
dashed lines indicate the corresponding rate and number of modes for the
1GHz bandwidth filter chosen, which are 3.8 GHz and 26, respectively.

Figure 4.15: The achievable number of modes and the maximum rate consid-
ering the -60 dB crosstalk limit as functions of the filter bandwidth. The curve
in blue corresponds to the number of modes. On the other hand, the red curve
represents the maximum rate. Moreover, the values for the 10 GHz filter used
in this work are highlighted by the green dashed lines, i.e., R = 3.8 GHz and
26 Channels.
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4.4
Frequency Multiplexed Key Distribution

Now, we shall define the setup for multiple channels to implement the
filtered SPDC source created in the last section. Based on figure 4.5, we can
introduce mappers using the VIPA as in article [78], to split the channels at
A and B. Figure 4.16 defines the scheme for this.

To analyze the system performance, one can look for the secret key rate
described in equation 3. First, we shall define the expression for the probability
of a pair reaching A and B, Pab. Analogous to what we have done in chapter 1
for the quantum memories, we shall look for the scenario of getting no photons,
then find the complement of this event.

Figure 4.16: Setup for distributing entangled photons from multiple channels
generated by the filtered SPDC source.

Therefore, the probability of no photons reaching A or B for a single
channel is:

Pm = 1− (ηdetηmap)2e−αdpm(n > 0) (4-21)
Where pm(n > 0) is the probability of the mth mode generating pairs,

similar to equation 4-14, but for the mode m. Moreover, µm is the average
number of photons per pulse.

pm(n > 0) =
I0(2√µm)− 1

|1− µm|2 + I0(2√µm)− 1 (4-22)

Back to equation 4-21, ηdet and ηmap are the efficiencies of the detection
and mapping, respectively. Although the VIPA used in [78] shows a dependency
of the frequency on the efficiency, i.e., it degrades as the wavelength departs
from the central, the operating bandwidth of the source is narrow enough
to consider the efficiency constant. Since the channels are not correlated, the
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probability for all M channels together is the product of them. Accordingly,
we can now define Pab, which is the complement of this product.

Pab = 1−
M∏
m

[
1− (ηdetηmap)2e−αdpm(n > 0)

]
(4-23)

After defining Pab, we shall calculate the secret key per qubit received.
Since we cannot insert this parameter into a product of the probabilities, we
consider the average key rate per qubit received weighted by the probability of
only one mode being successful. Thus, first, we shall calculate this probability,
p(m).

p(m) =
 M∏
k=1,k 6=m

pk(n = 0)
 pm(n > 0) (4-24)

Where pm(n > 0) comes from equation 4-22 and pm(n = 0) is the
complement to this.

pm(n = 0) = 1− pm(n > 0) = (|1− µm|2)
(|1− µm|2) + I0(2√µm)− 1 (4-25)

Therefore, the weighted average secret key per qubit received, [E], is
given by the following:

[E] =
M∑
m=1

p(m)Em (4-26)

Where Em is the Shor-Preskil bound, defined by eq. 3-40, but calculated
for each mode m. It is relevant to stress the fact that this calculation is an
approximation and gives the lower bound for the actual secret key per qubit
rate. It is a lower bound because we are not considering that multiple modes
can have success. Moreover, the multiple success implicates that the receiver
must make a choice on which mode to use. Here, we can create a criterion
for this. Looking at figure 4.9, one can conclude that the modes far from the
center have better visibility. Therefore, the criterion is to choose the success
mode that is further from the central mode.

Using equations 4-23 and 4-26, one can define the expression for the
secrete key rate, SKR.

SKR = RPab [E] (4-27)
Using equation 4-27, we can implement a simulation for this scenario at

different distances. For this simulation, we must have some assumptions. First,
the detector and mapper efficiencies are constants for all the modes and are
0.7 and 0.5, respectively. Accordingly to the last section, our criterion for the
µ and filter allows us to use 26 channels, and the maximum pump rate is 3.8
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GHz. Therefore, using these values, we obtain the graph illustrated in figure
4.17.

Figure 4.17: Secret key rate over the distance between A and B for 26 channels
and pump rate of 3.8 GHz. Besides, the detector and mapper efficiencies were
considered constant for every channel, 0.7 and 0.2, respectively. The fiber
attenuation is 0.2 dB/km and also constant for all the modes.

Finally, we can analyze the SPDC source: the influence of the mean pho-
ton number on the secret key rate. µ is tunable by changing the intensity of
the pump pulses since they are directly proportional. As it increases, the prob-
ability of photons reaching A and B increases. However, the QBER enhances
because the second-order cross-correlation is, approximately, inversely propor-
tional to µ. Therefore, we shall simulate the SKR for different values of the
mean photon pair of the central channel and find an optimal operation.

Figure 4.18: The secret key rate for different values for the mean number of
pairs generated by the central channel. The distance d was fixed at 100 km.
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Using the same assumptions for the efficiencies and a 100 km distance
link, we calculate the secret key rate for different values of µ, figure 4.18. We
obtain the optimal µ for best performance sharing keys from this figure, which
is µopt = 0.067.

4.5
Entanglement Swapping with Multiple Channels

Now that we implemented our source on a QKD protocol and improved
the parameter to get the best SKR of the filtered JSA, we can use this devel-
oped source on a more versatile protocol, entanglement swapping, which allows
entanglement distribution. For better understanding, figure 4.19 illustrates the
setup which we are simulating.

Figure 4.19: Setup for the entanglement swapping with multiple channels.

The idea of the system follows the one presented in section 2.5, but
we added the quantum memories and the mapper to map frequency modes
into spatial modes going to different detectors. Here, we considered atomic
frequency comb (AFC) quantum memories because this allows preparing a
frequency selective QMmatching our channels [80]. As explained at the begging
of this chapter, we chose the wavelengths to match the specification for the
memories used in [27] and the low loss on optical fibers. Furthermore, the
Filtered SPDC EPPSs are close to the QM to the end nodes A and B, so these
distances are negligible compared to d.

To analyze the performance and compare it to the previous setups,
we shall use the entanglement swapping to implement BBM92 and measure
the secret key rate. Following the same paths as before, we shall define the
probability of at least one mode being successful (Pab), which comes from the
chance of having no detections. Therefore, first, we calculate the probability
of a specific mode m not originating a detection:

Pm = 1− [pm(n > 0)ηdetηmapηQM ]2 ηBSM (4-28)
Where pm(n > 0) is the probability of the mth mode producing one or

more pairs, which we defined by eq. 3. The efficiencies are denoted by η, and
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the subscripts, BSM, det, map, and QM stand for, Bells State measurement,
detection, mapper, and quantum memory, respectively. The terms are squared
because we have it two times on the setup. As done before, with Pm, one can
define Pab as follows.

Pab = 1−
M∏
m=1

1− [pm(n > 0)ηdetηmapηQM ]2 ηBSM (4-29)

Moving on to the next step, we shall calculate the ratio of secret keys and
qubits received by A and B. Here, we are using the identical approximation
as before, assuming the lower bound with the weighted average of secret keys
per qubit received, [E]. However, the addition of the BSM and QM affects
the QBER, thus, changing the Em. Therefore, we must, first, calculateMoving
on to the next step, we shall calculate the ratio of secret keys and qubits
received by A and B. Here, we are using the identical approximation as before,
assuming the lower bound with the weighted average of secret keys per qubit
received, [E]. However, the addition of the BSM and QM affects the QBER,
thus, changing the Em. Therefore, we must, first, calculate overall visibility, as
defined in [17].

Vm = (VmVQMVmap)2VBSM (4-30)
Where Vm, VQM , Vmap and VBSM are the visibilities for the source,

quantum memory, mapper, and BSM, respectively. The source visibility follows
equation 3-34. Besides, in equation 4-30, the visibilities are squared due to the
number of those elements on the setup. The other terms one can obtain by the
fidelities using equation 4-31, which comes from the Werner states described in
section 3.5. The fidelities and the efficiencies for the simulations, we got from
the article [17]. Moreover, in table 4.1, we indicate the values we are using.

Vj = 4Fj − 1
3 , for j = BSM, QM and map (4-31)

Parameters from [17]
FQM 0.968
FBSM 0.972
Fmap 0.97
ηBSM 0.5
ηQM 0.4

Table 4.1: Summarizing the values for the fidelities and efficiencies used on the
further calculations. FQM ,FBSM , and Fmap are the fidelities for the quantum
memory, Bell state measurement, and mapper (referred to in the article as
feed-forward spectral mode-mapping), respectively. ηBSM stands for the Bell
state measurement efficiency and ηQM for the quantum memory efficiency.

Now, with the visibilities in hand, we can use equation 3-39 to calculate
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the QBER. Thus, we implement these values on the equation of the Shor-
Preskil bound for each channel, obtaining Em. Furthermore, as in the previous
section, we use the average secret key per qubit weighted on the chance
of success of a single mode. However, since we are using two sources, the
probabilities are squared.

[E] =
M∑
m=1

p(m)2Em (4-32)

Finally, coupling equations 4-29 and 4-32 and assuming the pump rate
calculated in section 4.3, we can calculate the secret key rate for the BBM92
over the entanglement swapping setup. Figure 4.20 shows the result of this
simulation for different distances, d.

Figure 4.20: Secret key rate over distance for the entanglement swapping setup
described before using the filtered source developed in the last section. The
efficiencies are detailed in the text.
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5
Conclusion and future works

The simulation of the SPDC-based source provides us with a tool to
manipulate parameters and extract their effect on the process. Using the
knowledge described in chapters 2 and 3, we developed this compact class
presented in appendix A. We implemented the program in different scenarios
to obtain the results for the last chapter. Using these outcomes, we were able
to improve the performance of the source. Figure 5.1 shows the comparison of
the SKR for the direct transmission (considering the efficiency of the detectors)
and the 26 channels using the filtered SPDC source.

Figure 5.1: Secret key rate for the three different setups discussed before using
the source developed and optimized in this work. Therefore, we used managed
the pump to produce a maximum average number of pairs of 0.067 and a pulse
rate of 3.8 GHz.

Using the values we acquired from the optimization of the source perfor-
mance, we observe that the filtered SPDC secret key rate is four times greater
than the direct transmission. Thus, we obtained a 6 dB improvement using
the 26 channels setup. Nonetheless, there is still room for improvement since
we are considering the lower bound for the calculations of the SKR.

Now, comparing the entanglement swapping with 26 channels perfor-
mance with just one multimode source, we observe that this application de-
grades the SKR. Indeed, we expected this since we are adding other imperfect
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devices, thus reducing the overall efficiencies and visibilities. However, the en-
tanglement swapping setup is a robust protocol that allows two parties not just
to share a secret key but entanglement. Therefore, one can implement this sys-
tem in different applications, more than just QKD, e.g., quantum repeater and
distributed quantum computing. This generality makes our work more notable
since these implementations are the core of the future of quantum internet.

Moreover, we are willing to use the simulation developed here to extract
results and use them as inputs to other programs more focused on protocols,
e.g., Netsquid [81]. Therefore, not relying only on the lower bound approxi-
mations but having a more accurate and robust simulation. Besides, we can
implement more complexities to the problem and analyze other effects on the
physical layer, e.g., dispersion. To improve the simulations, we can implement
the equations for a cavity SPDC, making the bandwidth and channel separa-
tion control more complex than the presented in this work but more accurate
and feasible.

Therefore, we conclude this work by developing a preliminary tool
for simulating SPDC sources frequency multiplexed channels. Although we
still have some lapidary to do, we could show its utility by optimizing the
parameters of the source and applying them to three different setups.
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A
Codes

from numba import j i t
import numpy as np
import matp lo t l i b . pyplot as p l t

# Basic func t i on to use j i t

@j i t ( nopython=True , p a r a l l e l = True , fastmath = True )
def MatrixProd (A,B) :

return A∗B
@j i t ( nopython=True , fastmath = True )
def power ( a , n ) :

return np . power (a , n)

@j i t ( nopython=True , p a r a l l e l = True , fastmath = True )
def Sum (x ) :

return np .sum( x )

def H(Q) : return −Q∗np . log2 (Q)−(1−Q)∗np . log2 (1−Q)

class LN_Crystal :
def __init__( s e l f ,TempK = 313 , Polper = 7 , L = 15 e3 ) :

s e l f .T = TempK−273
s e l f . Polper = Polper
s e l f . L = L

#index
s e l f . a = [5 . 35583 , 0 . 100473 , 0 . 20692 , 100 , 11 . 34927 , 1 . 5334E−2]
s e l f . b = [ 4 . 6 2 9E−7 ,3.862E−8 ,−0.89E−8 ,2.657E−5]
s e l f . f = ( s e l f .T−24.5)∗( s e l f .T+570.82)
s e l f . term1 = s e l f . a [ 0 ] ;
s e l f . term2 = s e l f . b [ 0 ] ∗ s e l f . f ;
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#po lpe r
alpha = [ ( 3 . 4 ) ∗ 1E−6 ,(−1)∗1E−9]
T0 = 25
f0 = 1/Polper
sin_beta0 = (−1) ∗ 1/Polper
F0 = 2∗ s in_beta0
F_T = F0 + 2∗ f 0 ∗( alpha [ 0 ] ∗ ( s e l f .T−T0) + alpha [ 1 ] ∗ power (

s e l f .T−T0 , 2 ) )
s in_beta = F_T/2
s e l f . po l ingPer i od = power ((−1)∗ sin_beta ,−1)
s e l f . check = (F_T − F0)∗1 e−3

def indexTemp ( s e l f , wavelength ) :
a = s e l f . a
b = s e l f . b
f = s e l f . f
term3 = ( a [ 1 ] + b [ 1 ] ∗ f ) / ( power ( wavelength , 2 ) − power ( a [ 2 ] +

b [ 2 ] ∗ f , 2 ) )
term4 = ( a [ 3 ] + b [ 3 ] ∗ f ) / ( power ( wavelength , 2 ) − power ( a [ 4 ] , 2 ) )
term5 = a [ 5 ] ∗ np . power ( wavelength , 2 )

return np . sq r t ( s e l f . term1 + s e l f . term2 + term3
+ term4 − term5 )

class KTP_Crystal :
def __init__( s e l f ,TempK = 313 , Polper = 7 , L = 15 e3 ) :

s e l f .T = TempK−273
s e l f . Polper = Polper
s e l f . L = L

#po lpe r
alpha = [ ( 3 . 4 ) ∗ 1E−6 ,(−1)∗1E−9]
T0 = 25
f0 = 1/Polper
sin_beta0 = (−1) ∗ 1/Polper
F0 = 2∗ s in_beta0
F_T = F0 + 2∗ f 0 ∗( alpha [ 0 ] ∗ ( s e l f .T−T0) + alpha [ 1 ] ∗

power ( s e l f .T−T0 , 2 ) )
s in_beta = F_T/2
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s e l f . po l ingPer i od = power ((−1)∗ sin_beta ,−1)
s e l f . check = (F_T − F0)∗1 e−3

def indexTemp ( s e l f , wavelength ) :

return np . sq r t (1 .94460+1.617∗ wavelength ∗∗2/
( wavelength ∗∗2−0.047)−0.0149∗wavelength ∗∗2)

class EPPS:
def __init__( s e l f , Crys ta l=’LN ’ ,Numpoints=1000 , c=3e8 ,

eps =8.854∗1e−12,xi_2=20.6∗1e−12,tw=50e−12,R=100e6 ,
peakPower=1,diam=4.1∗1e−6,pumpWave=0.5235 ,
id le rRange = [1 . 5 27 , 1 . 5 33 ] ,
in t eg ra l_range = [1 . 5 27 , 1 . 5 33 ] ,TempK=313 , Polper=7,L=15e3 ) :

s e l f . Numpoints = Numpoints
s e l f . pumpWave = pumpWave

i f Crysta l == ’LN ’ :
s e l f . c r y s t a l = LN_Crystal (TempK=TempK, Polper=Polper , L=L)

e l i f Crysta l == ’KTP’ :
s e l f . c r y s t a l = KTP_Crystal (TempK=TempK, Polper=Polper , L=L)

else :
s e l f . c r y s t a l = LN_Crystal (TempK=TempK, Polper=Polper , L=L)

s ig_t = tw/(2∗np . sq r t (np . l og ( 2 ) ) )

s e l f . idlerWave = np . l i n s p a c e ( id le rRange [ 0 ] , id le rRange [ 1 ] ,
Numpoints )

s e l f . signalWave = np . f loat_power (1/pumpWave −
1 ./ s e l f . idlerWave ,−1)

s e l f . I d l e r , s e l f . S i gna l = np . meshgrid ( s e l f . idlerWave ,
s e l f . signalWave )

# Amplitude
hbar = 1.054571∗1 e−34 #J/s
indp = s e l f . c r y s t a l . indexTemp (pumpWave)
s e l f . modeArea = np . p i ∗diam∗∗2/4
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s e l f . averagePower = R∗tw∗peakPower /0 .94
s e l f . I = s e l f . averagePower /( s e l f . modeArea )
s e l f .E = power (2∗ s e l f . I /( c∗ eps ∗ indp ) , 1/2)
s e l f . Xi = 2∗np . p i ∗xi_2∗L∗1e−6∗ s e l f . modeArea∗ s e l f .E∗ eps /(

hbar∗1 j )

# Mu ca l c u l a t i o n − Energy conserva t ion
Fs = c∗1 e6/ s e l f . S i gna l
Fi = c∗1 e6/ s e l f . I d l e r
F = Fs+Fi
F0 = c/pumpWave∗1 e6
s e l f . Alpha = np . exp(−2∗power (np . p i ∗ s ig_t ∗(F−F0 ) , 2 ) )

# Phi Ca l cu l a t i on − Momentum conserva t ion
i n d i = s e l f . c r y s t a l . indexTemp ( s e l f . I d l e r )
inds = s e l f . c r y s t a l . indexTemp ( s e l f . S i gna l )

kp = 2∗np . p i ∗ indp/pumpWave
k i = 2∗np . p i ∗ i n d i / s e l f . I d l e r
ks = 2∗np . p i ∗ inds / s e l f . S i gna l

Dk = 2∗np . p i / s e l f . c r y s t a l . po l ingPer i od
Dkm = (kp−ki−ks−Dk)

s e l f . PSI = MatrixProd (np . exp (1 j ∗Dkm∗L/2) , np . s i n (Dkm∗L/2)/(
Dkm∗L/2))

# Join t s p e c t r a l ampl i tude and i n t e n s i t y
s e l f . JSA_mod = MatrixProd ( s e l f . Alpha , s e l f . PSI )
s e l f . JSI_mod = power (np . abso lu t e (MatrixProd ( s e l f . Alpha ,

s e l f . PSI ) ) , 2 )

Nf = s e l f . Normal izat ion (Numpoints=Numpoints , c=c ,
id le rRange=integra l_range ,
pumpWave=pumpWave ,L=L , tw=tw)

s e l f . JSA_mod = Nf∗ s e l f . JSA_mod
s e l f . JSI_mod = Nf∗∗2∗ s e l f . JSI_mod
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s e l f . JSA = s e l f . Xi∗ s e l f . JSA_mod
s e l f . JSI = np . abso lu t e ( s e l f . Xi )∗∗2∗ s e l f . JSI_mod

def Normal izat ion ( s e l f , Numpoints=1000 , c=3e8 ,
id le rRange = [1 . 5 27 , 1 . 5 33 ] ,
pumpWave=0.5235 ,L=10e−3,tw=50e−12):

s ig_t = tw/(2∗np . sq r t (np . l og ( 4 ) ) )

idlerWave = np . l i n s p a c e ( id le rRange [ 0 ] , id le rRange [ 1 ] ,
Numpoints )

signalWave = np . f loat_power (1/pumpWave − 1 ./ idlerWave ,−1)
Id l e r , S i gna l = np . meshgrid ( idlerWave , signalWave )

# Mu ca l c u l a t i o n − Energy conserva t ion
Fs = c∗1 e6/ S igna l
Fi = c∗1 e6/ I d l e r
F = Fs+Fi
F0 = c/pumpWave∗1 e6
Alpha = np . exp(−2∗power (np . p i ∗ s ig_t ∗(F−F0 ) , 2 ) )

# Phi Ca l cu l a t i on − Momentum conserva t ion
indp = s e l f . c r y s t a l . indexTemp (pumpWave)
i nd i = s e l f . c r y s t a l . indexTemp ( I d l e r )
inds = s e l f . c r y s t a l . indexTemp ( S igna l )

kp = 2∗np . p i ∗ indp/pumpWave
k i = 2∗np . p i ∗ i n d i / I d l e r
ks = 2∗np . p i ∗ inds / S igna l

Dk = 2∗np . p i / s e l f . c r y s t a l . po l ingPer i od
Dkm = (kp−ki−ks−Dk)

PSI = MatrixProd (np . exp (1 j ∗Dkm∗L/2) , np . s i n (Dkm∗L/2)/(
Dkm∗L/2))

# Join t s p e c t r a l ampl i tude and i n t e n s i t y
JSI_mod = power (np . abso lu te (MatrixProd (Alpha , PSI ) ) , 2 )
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s e l f . Nf = power (np . t rapz(−np . t rapz (JSI_mod , x=idlerWave ) ,
x=signalWave ) ,−1/2)

return s e l f . Nf

def F i l t e r ( s e l f , c=3e8 , name=’ i d l e r ’ , lamb0=1.531 , band=1e9 ) :
d l = lamb0∗∗2∗band/( c∗1 e6 )
s i g = dl /(2∗np . sq r t (np . l og ( 2 ) ) )

i f name == ’ i d l e r ’ :
return np . exp(−( s e l f . idlerWave−lamb0 )∗∗2/(2∗ s i g ∗∗2))

else :
return np . exp(−( s e l f . signalWave−lamb0 )∗∗2/(2∗ s i g ∗∗2))

def F i l t e r i n g ( s e l f , f c e n t e r_ i d l e r = 1 .5305 , band_idler=100e6 ,
f c en t e r_s i gna l =0.7957 , band_signal=100e6 ) :

i d l e r F i l t e r = s e l f . F i l t e r (name=’ i d l e r ’ ,
lamb0=f c en t e r_ id l e r ,
band=band_idler )

s i g n a l F i l t e r = s e l f . F i l t e r (name=’ s i g n a l ’ ,
lamb0=fcen t e r_s i gna l ,
band=band_signal )

s i g n a l F i l t e r . r e s i z e ( s i g n a l F i l t e r . s i z e , 1 )
s e l f . FJSA = i d l e r F i l t e r ∗ s e l f . JSA∗ s i g n a l F i l t e r
s e l f . FJSI = power (np . abso lu t e ( s e l f . FJSA) , 2 )

def Mu l t i p l e_ f i l t e r s ( s e l f , N f i l t e r s = 1 ,
f c e n t e r_ i d l e r = np . array ( [ 1 . 5 3 0 5 ] ) ,
band_idler=10e6 , band_signal=10e6 ) :

f c en t e r_s i gna l = 1/(1/0.5235−1/ f c e n t e r_ i d l e r )
i d l e r F i l t e r = s e l f . F i l t e r (name=’ i d l e r ’ ,

lamb0=f c e n t e r_ i d l e r [ 0 ] ,
band=band_idler )

s i g n a l F i l t e r = s e l f . F i l t e r (name=’ s i g n a l ’ ,
lamb0=f c en t e r_s i gna l [ 0 ] ,
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band=band_signal )

for i in l i s t ( range (1 , N f i l t e r s ) ) :
i d l e r F i l t e r = i d l e r F i l t e r + s e l f . F i l t e r (name=’ i d l e r ’ ,

lamb0=f c e n t e r_ i d l e r [ i ] ,
band=band_idler )

s i g n a l F i l t e r = s i g n a l F i l t e r + s e l f . F i l t e r (name=’ s i g n a l ’ ,
lamb0=f c en t e r_s i gna l [ i ] ,
band=band_signal )

s i g n a l F i l t e r . r e s i z e ( s i g n a l F i l t e r . s i z e , 1 )
s e l f .MFJSA = i d l e r F i l t e r ∗ s e l f . JSA∗ s i g n a l F i l t e r
s e l f .MFJSI = power (np . abso lu t e ( s e l f .MFJSA) , 2 )
s e l f . i d l e r F i l t e r = i d l e r F i l t e r

def p lo tJSI ( s e l f ) :
f i g , ax = p l t . subp lo t s ( )
ax . set ( x l ab e l = ’ I d l e r ␣Wavelength␣ [nm] ’ ,

y l ab e l = ’ S i gna l ␣Wavelength␣ [nm] ’ ,
t i t l e = ’ Jo int ␣ Spec t r a l ␣ I n t e n s i t y ’ )

ax . inver t_yax i s ( )
cs = ax . contour f ( s e l f . I d l e r ∗1e3 ,

s e l f . S i gna l ∗1e3 ,
s e l f . JSI , 100 ,
cmap=’ v i r i d i s ’ )

f i g . c o l o rba r ( cs )
p l t . show ( )

def plotFJSI ( s e l f ) :
f i g , ax = p l t . subp lo t s ( )
ax . set ( x l ab e l = ’ I d l e r ␣Wavelength␣ [nm] ’ ,

y l ab e l = ’ S i gna l ␣Wavelength␣ [nm] ’ ,
t i t l e = ’ Jo int ␣ Spec t r a l ␣ I n t e n s i t y ’ )

ax . inver t_yax i s ( )
cs = ax . contour f ( s e l f . I d l e r ∗1e3 ,

s e l f . S i gna l ∗1e3 ,
s e l f . FJSI , 100 ,
cmap=’ v i r i d i s ’ )

f i g . c o l o rba r ( cs )
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p l t . show ( )

def plotMFJSI ( s e l f ) :
f i g , ax = p l t . subp lo t s ( )
ax . set ( x l ab e l = ’ I d l e r ␣Wavelength␣ [nm] ’ ,

y l ab e l = ’ S i gna l ␣Wavelength␣ [nm] ’ ,
t i t l e = ’ Jo int ␣ Spec t r a l ␣ I n t e n s i t y ’ )

ax . inver t_yax i s ( )
cs = ax . contour f ( s e l f . I d l e r ∗1e3 ,

s e l f . S i gna l ∗1e3 ,
s e l f .MFJSI , 100 ,
cmap=’ v i r i d i s ’ )

f i g . c o l o rba r ( cs )
p l t . show ( )

def SVD ( s e l f , opt = ’ normal ’ ) :
# Sing l e va lue decomposi t ion
i f opt == ’ normal ’ :

s e l f .U, s e l f . r , s e l f . Vt = np . l i n a l g . svd ( s e l f . JSA)

e l i f opt == ’ f i l t e r e d ’ :
s e l f .U, s e l f . r , s e l f . Vt = np . l i n a l g . svd ( s e l f . FJSA)

e l i f opt == ’ mu l t i_ f i l t e r e d ’ :
s e l f .U, s e l f . r , s e l f . Vt = np . l i n a l g . svd ( s e l f .MFJSA)

else :
print ( ’ERROR! ␣Wrong␣ opt ion ␣ ( opt ) . ’ )
return None

s e l f .B = np . l i n a l g . norm( s e l f . r )

def Purity ( s e l f ) :
lamb = s e l f . r / s e l f .B
s e l f .P = Sum(np . power ( lamb , 4 ) )
return s e l f .P

def g2c ro s s ( s e l f ) :
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d l i = s e l f . idlerWave [1]− s e l f . idlerWave [ 0 ]
d l s = −np . power ( s e l f . pumpWave/( s e l f . idlerWave−

s e l f . pumpWave) , 2 )∗ d l i

s e l f . true_B = power (np .sum( s e l f . r ∗∗2∗np . abs ( d l i ∗ d l s ) ) , 1 /2 )

r = ( s e l f . r / s e l f .B)∗np . abs ( s e l f . true_B )

s e l f . g2 = 1 + Sum( power (np . s inh ( r ) , 4 ) ) / power (Sum( power (
np . s inh ( r ) , 2 ) ) , 2 ) + power (Sum( power (
np . s inh ( r ) ,2)) , −1)

return s e l f . g2

def V i s i b i l i t y ( s e l f ) :
s e l f .V = ( s e l f . g2 − 1)/( s e l f . g2 + 1)
return s e l f .V

def QBER ( s e l f ) :
s e l f .Q = (1− s e l f .V)/2
return s e l f .Q

def PairRate ( s e l f , k ) :
s e l f .Rp = 1−(1+k)∗H( s e l f .Q)
return s e l f .Rp
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