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Abstract 

Benedetti, Kaio César Borges; Gonçalves, Paulo Batista; Lenci, Stefano; 

Rega, Giuseppe. Global analysis of stochastic nonlinear dynamical 

systems: an adaptative phase-space discretization strategy. Rio de 

Janeiro, 2022, 265p. Doctoral thesis – Civil and Environmental Engineering 

Department, Pontifical Catholic University of Rio de Janeiro. 

 

The aim of this thesis is to provide tools for the global analysis of 

nondeterministic dynamical systems with competing attractors considering 

parameter uncertainty and noise and apply them to real-world engineering 

problems. For this, an adaptative phase-space discretization strategy based on the 

classical Ulam method is proposed. Initially, a review of the mathematical 

definitions of dynamical systems, parametric uncertainty, and noise is presented, 

and the effect of randomness on the global dynamical structures is highlighted. 

Discretized transfer operators with the necessary modifications due to parameter 

uncertainty are derived. The stochastic basin of attraction and attractors’ 

distributions replace the usual basin and attractor concept. For parameter 

uncertainty cases, the phase-space is augmented with the corresponding 

probability space, resulting in a collection of transfer operators for which mean 

results are obtained. Two adaptative phase-space discretization strategies are 

proposed, one which only considers the attractors’ distribution and stochastic 

basins, and another that discretizes the stable and unstable manifolds. The first 

method is initially applied to the Helmholtz and Duffing oscillators under 

harmonic or parametric excitation with uncertain parameters or added load noise. 

They demonstrate the adaptive capabilities of the proposed methods, increasing 

the quality without overly increasing the computational cost. The time-

dependency of stochastic responses is demonstrated, with long-transients 

influencing the global behavior. Finally, the effect of uncertainties and noise on 

the basins’ areas, attractors distributions, and basin boundaries are discussed, 

which can be used to evaluate the dynamic integrity of the competing basins. 

Then, two electrically actuated Microelectromechanical Systems (MEMS), an 
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imperfect microcantilever and microarch, are investigated. The effect of added 

noise and parametric uncertainty on both structures is demonstrated. The results 

highlight the importance of randomness on the global dynamics of dynamical 

systems with competing attractors. 

 

Keywords 

Global nonlinear dynamics; Ulam method; Adaptative discretization; 

Parameter uncertainty and noise; Dynamic integrity 
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Resumo 

Benedetti, Kaio César Borges; Gonçalves, Paulo Batista; Lenci, Stefano; 

Rega, Giuseppe. Análise global de sistemas dinâmicos estocásticos não 

lineares: uma estratégia adaptativa de discretização do espaço de fase. 

Rio de Janeiro, 2022, 265p. Tese de Doutorado – Departamento de 

Engenharia Civil e Ambiental, Pontifícia Universidade Católica do Rio de 

Janeiro. 

 

O objetivo desta tese é fornecer ferramentas para a análise global de 

sistemas dinâmicos não determinísticos com atratores coexiostentes considerando 

incerteza paramétrica ou ruído e aplicá-las a problemas de engenharia. Para isso, é 

proposta uma estratégia de discretização adaptativa no espaço de fase baseada no 

método clássico de Ulam. Inicialmente, apresenta-se uma revisão das definições 

matemáticas de sistemas dinâmicos, incerteza paramétrica e ruído, destacando-se 

o efeito da aleatoriedade nas estruturas dinâmicas globais. Operadores de 

transferência discretos são derivados com as modificações necessárias devido à 

incerteza dos parâmetros. Bacias de atração estocásticas e distribuição dos 

atratores substituem o conceito usual de bacia e atrator. Para casos de incerteza 

paramétrica, o espaço de fase é aumentado com o espaço de probabilidade 

correspondente, resultando em uma coleção de operadores de transferência dos 

quais médias são obtidas. São propostas duas estratégias de discretização 

adaptativa no espaço de fase, uma que considera apenas a distribuição dos 

atratores e bacias estocásticas, e outra que discretiza as variedades estáveis e 

instáveis. O primeiro método é aplicado inicialmente aos osciladores de 

Helmholtz e Duffing sob excitação harmônica ou paramétrica com parâmetros 

incertos ou ruído adicionado ao carregamento determinístico. Eles demonstram as 

capacidades adaptativas dos métodos propostos, aumentando a qualidade sem 

aumentar demasiadamente o custo computacional. A dependência do tempo das 

respostas estocásticas é demonstrada, com longos transientes influenciando o 

comportamento global. Por fim, discute-se o efeito das incertezas e ruídos nas 

áreas das bacias, distribuições de atratores e limites das bacias, que podem ser 
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usados para avaliar a integridade dinâmica de sistemas com bacias coexistentes. 

Em seguida, dois Sistemas Micro-Eletro-Mecânicos (MEMS) atuados 

eletricamente, uma microviga em balanço e um microarco imperfeitos, são 

investigados. O efeito do ruído adicionado e da incerteza paramétrica em ambas as 

estruturas é demonstrado. Os resultados destacam a importância da aleatoriedade 

na dinâmica global de sistemas dinâmicos com atratores coexistentes. 

 

Palavras-chave 

Dinâmica global não linear; Método de Ulam; Discretização adaptativa; 

Incerteza de parâmetros e Ruído; Integridade dinâmica 
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1 

Introduction 

In recent decades nonlinear phenomena have become increasingly relevant 

in engineering design due to the increasing demand for high-performance 

engineering structures and devices. In addition, for nonlinear engineering 

problems, nondeterministic aspects have become increasingly important due to the 

sensitivity of nonlinear systems to parameter values, noise, and mathematical 

modeling hypotheses, among others. Small changes and variations can lead to 

unpredicted outcomes in a nonlinear problem, impacting the system's performance 

and safety. This is particularly important in the analysis of time-varying nonlinear 

engineering problems. 

The global dynamic analysis gives an understanding of the underlying 

nonlinear dynamics of complex engineering systems, showing how stable 

solutions are limited by other possible coexisting solutions. However, this type of 

analysis is nowadays impractical for large-scale systems due to the computational 

cost, being limited to reduced order models with a small number of degrees of 

freedom. 

The uncertainty quantification of engineering problems is a thriving 

research area, with contributions from many researchers to different aspects of the 

problem. Uncertainty analysis is known to be computationally demanding, 

increasing the model dimensionality in a global dynamic analysis. This hinders 

the applicability of this type of analysis, leaving the adoption of safety factors and 

lower bound estimates of design loads as the default engineering practice in the 

design process. Robust analyses that consider both global nonlinear dynamics and 

nondeterministic effects are rarely found in the literature, needing both theoretical 

and numerical developments to become feasible from a design point of view. 

There are plenty of examples that would benefit from such an analysis, such as the 

case of microstructures. 
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In the next sections, a review of the literature related to this line of research 

is presented. 

1.1. 

The nondeterminism in engineering dynamic analysis 

The nondeterministic design needs to account for aleatoric uncertainties, 

such as variability in material properties, and epistemic uncertainties, including 

errors due to imperfect analysis tools [1]. In real-life applications, both 

uncertainties are indistinguishable, and their added effect must be considered for a 

safe design. Generally, the mathematical model of a physical problem can be 

concisely written as 

 , ,u f   =  (1.1) 

where u is the dependent variables, f is the non-homogeneous terms, and  is a 

(differential) operator. Uncertainty is a lack of knowledge in  or f, represented 

here through random parameters λ or noise terms ω. Examples of other 

uncertainty types are: structural, that is, related to the underlying physics of the 

problem; algorithmic, coming from numerical errors and approximations in the 

computer model; and experimental, arising from measurement variability or 

interpolation errors. 

In the context of structural engineering, the need to include parameter 

uncertainties and noise in dynamic analyses has long been recognized [2, 3]. 

Many systems are highly sensitive to small variations in their material/geometrical 

properties, such as damping parameters or material constants, imperfections, 

boundary and initial conditions, and natural frequencies [2–5]. Koiter’s work in 

the field of structural stability, for example, has shown the drastic influence of 

unknown geometric imperfections on the load capacity of many engineering 

structures [6, 7]. Since then, imperfection sensitivity analysis has become an 

important topic in structural stability analysis [8]. The added influence of 

uncertainties has also been addressed [9]. Such sensitivities are particularly 

relevant in nonlinear dynamics. Gonçalves and Santee [10] have shown that 

different types of uncertainties, including geometric imperfections, can cause a 
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decrease in the load-carrying capacity of structures liable to buckling under 

dynamic excitation, similar to that observed in the static case. 

In addition, deterioration or evolution of the structure during its lifetime 

leads to increasing uncertainties which can affect its dynamic behavior. In 

structural dynamics, parameters such as the natural frequencies or damping are 

subject to uncertainty. This uncertainty may stem from a lack of knowledge of the 

parameter values and a lack of understanding of the behavior of the actual system. 

The problem can be stated in a probabilistic framework to account for the 

uncertainty in system parameters, leading to differential equations whose 

coefficients are modeled as random variables. 

Various techniques have been developed for the analysis of uncertainties in 

structural problems. For an overview of classical methodologies, such as Monte 

Carlo sampling, perturbation, moment equations, operator of the governing 

equations, generalized polynomial chaos (GPC), stochastic Galerkin, and 

collocation, refer to Xiu [11]. Long-time integration, a common analysis in 

nonlinear dynamics, suffers from accuracy loss if usual expansions of the random 

space are employed. More recent developments were devoted to mitigating this 

limitation and included the time-dependent GPC methodology presented by 

Gerritsma et al. [12], the stochastic time-warping polynomial chaos, and nonlinear 

autoregressive polynomial chaos proposed by Mai [13], and GPC with flow 

composition proposed by Luchtenburg et al. [14]. 

The study of time-dependent uncertainty is also important for structural 

dynamics, representing noisy loads and parametric excitations. Various sampling-

based methods have been developed where the governing systems are 

reformulated as stochastic differential equations. Arnold [15] presents the 

mathematical foundation of the theory of random dynamical systems, stochastic 

bifurcations, and their multiplicative ergodic theory. Han and Kloeden [16] 

discuss the numerical simulation and analysis of random ordinary differential 

equations. These works point out that noisy excitation represents a major 

difficulty in the uncertainty analysis, requiring the analyst to ponder the meaning 

of the results, either numeric or analytic. 

Overall, uncertainty considerations translate into analyzing responses 

distributed in probability space, that is, a macro view of all the possible outcomes 

of a given physical problem. Depending on the dynamical system, such 
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distributions could evolve with time, and fixed-point distributions can change due 

to uncertainty. Fortunately, such evolutions are also dynamical systems governed 

by a transfer operator [17]. Such operators are Markov type and thus linear, 

positive, and mass conserving. Ulam [18] hypothesized that transfer operators 

could be discretized and distributions approximated by histograms, defining what 

today is known as the Ulam method. Later, Hsu [19, 20] developed the 

generalized cell-mapping in an algorithmic perspective, which was proven to be 

equivalent to the Ulam method by Guder and Kreuzer [21].  

Several advances followed the cell-mapping theory developed by Hsu [19, 

20]. Hsu and Chiu combined the generalized cell-mapping with a previously 

developed simpler version, called simple cell-mapping, denominated hybrid cell-

mapping [22, 23]. There is already a separation between stochastic and parametric 

uncertainties in these works, with specific methodologies to deal with them 

focused on global dynamics. However, a proper probabilistic framework is 

missing. Later, Sun and Hsu [24] developed a short-time Gaussian approximation 

for nonlinear random vibration analysis. Han and coworkers explored this strategy 

extensively, considering nonautonomous cases [25] under colored noise [26], 

stochastic bifurcations in a turbulent swirling flow [27], and a combination with 

digraph algorithms [28]. The simple and generalized cell-mapping was recently 

reformulated by Yue et al. [29], the so-called compatible cell-mapping method. 

This method employs adaptative refinement of the phase-space, increasing the 

resolution of global attractors of random dynamical systems. In [30], Yue et al. 

demonstrated that this method refines stable and unstable manifolds similar to the 

subdivision and selection method developed by Dellnitz and coworkers [31–33], 

but with digraph algorithms instead. Another cell-mapping method is found in 

[34–36], designed with two distinct scales of cell spaces. The similarities between 

the transfer probability distributions obtained by Yue et al. [36] and the 

generalized committor functions defined by Linder and Hellmann [37] are 

evident. However, the latter is adequate for transient analysis, describing how 

transfer probabilities evolve with time. Finally, the phase-space dimension of 

engineering problems demands high-performance computing (HPC), as described 

by Andonovski [38] and Belardinelli and Lenci [39, 40]. Parallel computing 

strategies are fundamental, employing even general-purpose graphic cards (GPU) 

to this end [41]. 
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The Ulam method was the focus of various works. Klus et al. [42] compared 

different numerical approximations of the Perron-Frobenius operator and its dual, 

the Koopman operator. Dellnitz and coworkers [31–33] developed a subdivision 

strategy with box-covering to approximate complicated numerical behavior, 

implemented in the software package GAIO [43]. Further developments include 

the detection of transport barriers [44], the analysis of dynamical systems with 

parameter uncertainty [45], invariant sets of infinite-dimensional dynamical 

systems [46, 47], and a set-oriented path-following method for computation of 

parameter-dependent attractors [48]. Koltai and coworkers developed methods for 

global analysis without trajectory integration focused on basins of attraction [49, 

50] and nonautonomous systems [51]. A comparison of data-driven model 

reductions for dynamical systems based on the approximation of the transfer 

operators is given by Klus et al. [52]. Independently, Ding and coworkers 

investigated the original Ulam method and approximations of the Perron-

Frobenius operator by piecewise linear and quadratic functions [53] and higher-

order approximations in [54]. Recently, Jin and Ding [55] and Bangura et al. [56] 

applied spline and least-squares approximation for random maps. Specifically, 

they considered the Foias operator, which governs the mean flow of random maps 

[17]. 

 

1.2. 

Global dynamics and dynamical integrity considering uncertainty 

and noise 

The concept of elastic stability in statics began with the work of Euler on 

the critical buckling load of columns [57]. However, he left the concept of 

stability undefined. Later, Lagrange stated that a stable equilibrium point of a 

conservative system corresponds to a minimum of the total potential energy. 

The Lagrange theorem implicitly implies the local stability concept in the 

sense of Lyapunov. Still, only at the beginning of the twentieth century were 

the mathematical definitions of stability for a dynamical system, as well as 

stability theorems for nonlinear systems, first formulated by Lyapunov [58, 59]. 

According to the Lyapunov stability concept, dynamical systems are said to be 
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stable if small infinitesimal perturbations of the initial conditions lead to small 

deviations of the response, i.e., they cannot alter the system’s time-asymptotic 

behavior [58]. While in this classical definition of stability, perturbations are 

infinitesimal, in the real world, as observed by Thompson and co-workers [60–

62], perturbations have finite magnitudes. Thus, the system should be able to 

withstand finite, although small, changes in the initial conditions, returning 

asymptotically to the desired state. Consequently, beyond questions of local 

stability, a central role in the study of instability phenomena is played by the 

global features of phase-space, such as basins of attraction. 

Additionally, nonlinear dynamical systems usually display multistability 

due to local or global bifurcations or the presence of multiple potential wells. This 

is characterized by the occurrence of multiple attractors in the phase-space, each 

with its own set of converging initial conditions, denominated basin of attraction 

[63–65]. The basin topology can vary remarkably as a function of systems’ 

parameters, with their boundaries being smooth or fractal, depending on the stable 

and unstable invariant manifolds of the saddles lying on it [66]. Furthermore, the 

complexity of the interwoven basins of attraction increases with the number of 

coexisting solutions. In such cases, responses become extremely sensitive to any 

perturbation, with the final state depending crucially on the initial conditions. As 

an example, the basins of attraction of the coexisting solutions of an axially 

loaded cylindrical shell are depicted in Figure 1.1, for two different load 

parameters, see [65]. This is a complex structure with a prebuckling potential well 

and two additional pos-critical potential wells, with intense competition in phase-

space. Although the prebuckling well is the dominant one [65], the basins of the 

coexisting solutions within this well (black, violet and blue) are swiftly eroded, 

and fractality increases, as shown in Figure 1.1(a), due to the incursion and 

increasing competition of the basins of the out-of-well solutions, as observed in 

Figure 1.1(b). This explains the high imperfection sensitivity of axially loaded 

cylindrical shells, which leads to a loss of their load carrying capacity even in the 

static case [7]. 
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(a) In-well pre-buckling attractors and basins 

 
(b) Enlarged view containing out-of-well attractors 

Figure 1.1 – Example of the complex basin topology of the competing oscillatory solutions of an 

axially loaded cylindrical shell [65] 

Due to many nonlinear phenomena, compact basin regions can decrease, 

become fractal or disappear from the phase-space. This loss of basin robustness is 

identified as a loss of dynamic integrity of the respective attractor [60]. This is an 

important concept because attractors can only be observable if they are resilient to 

finite perturbations, that is, if their basins are robust enough and, therefore, they 

have an acceptable integrity value. If a basin is not robust enough, small 

unavoidable perturbations may lead the system to converge to another (sometimes 

undesirable) attractor or even escape to infinity. As an example, Figure 1.2 

compares the theoretical and experimental escape boundaries for an electrically 

actuated capacitive accelerometer studied by Lenci, Rega, and Ruzziconi [67]. 

The discrepancy between the theoretical and experimental escape boundaries is 

explained by the swift erosion of the orange and green basins, as observed by 
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comparing the basins of points Q and P. This issue can be correctly addressed by 

integrity profiles which measure the basins erosion process as a function of a 

relevant design parameter. As exemplified here, unless an attractor has a robust, 

compact basin, it will not be physically observable, and the adopted design 

parameters must take this into account. 

 

Figure 1.2 – Response of an electrically actuated capacitive accelerometer. (a) Stability chart with 

theoretical (in blue), experimental (in red) escape boundaries, and integrity contour lines (dashed). 

(b) Basins of attraction at points P and Q [68] 

Thompson and co-workers introduced the concept of dynamical integrity 

based on the systematic study of the topology and evolution of basins of attraction 

as a function of system parameters quantified by different integrity measures [60, 

61, 69]. In particular, they explored the erosion of basins of attraction due to 

fractal intrusions [70, 71]. Later, Rega and Lenci proposed the use of integrity 

measures as a tool to evaluate the actual safety of engineering systems in a 

dynamic environment. They developed and explored various integrity measures 

for safety quantification and applied these ideas to several mechanical systems 

[65, 67, 72–75]. They also have shown how global control strategies [63, 64, 76] 

can be used to prevent the basin erosion phenomenon. Figure 1.3 is a depiction of 

the three main integrity measures in the literature, which are the Global Integrity 

Measure (GIM), the Local Integrity Measure (LIM), and the Integrity Factor (IF). 

The GIM is the hypervolume (area in 2 ); the LIM is the minimum attractor-

basin boundary distance; the IF is the radius of the maximum inscribed 

hypersphere (circle in 2 ) in the basin [77]. 
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Figure 1.3 – Illustration of the three main integrity measures, the Global Integrity Measure (GIM), 

the Local Integrity Measure (LIM), and the Integrity Factor (IF)  

The variation of an attractor’s dynamic integrity measure against a relevant 

design parameter can be observed through integrity profiles [78]. Figure 1.4 gives 

a typical integrity profile up to the critical load of an attractor as a function of a 

chosen governing parameter. The Lyapunov local stability criterion states that the 

system is stable up to the bifurcation point. However, as shown in Figure 1.2 and 

Figure 1.4, it is not able to detect the erosion process. The integrity profile depicts 

an initial plateau corresponding to the uneroded basin, followed by a rapid 

integrity loss due to basin erosion. The rapid integrity loss has been usually 

termed a Dover cliff profile [79], an important phenomenon prior to the attractor 

loss of stability, which, for practical purposes, serves to indicate the unsafe region.  

 

Figure 1.4 – Classic integrity profile demonstrating the difference between Lyapunov stability 

concept and integrity loss of an attractor as a function of a governing parameter [78] 
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Dynamical integrity measure is not a simple quantity to obtain. Its practical 

implementation is far from trivial since no direct connection exists between the 

coexisting asymptotic states and their basins of attraction [72, 73, 80]. However, 

despite the growing difficulties in terms of numerical costs of the simulations as 

the number of dof increases, changing the paradigm from local to global dynamics 

leads to a deeper knowledge of system safety, as discussed in the lectures 

published in [78]. In this context, the derivation of low but reliable reduced order 

models (ROMs) becomes increasingly important [81–83]. 

In recent years, a growing number of applications have relied on multistable 

systems capable of assuming different equilibrium configurations without damage 

[84]. Detailed reviews of this topic and applications were recently published by 

Hu and Burgueño [85], Cao et al. [86], and Fang et al. [87], with applications 

including actuators, energy harvesters, composite structures, 

microelectromechanical systems (MEMS), robotics, energy absorbers, deployable 

structures, and programmable metamaterials. This enhances the importance of 

global dynamics in engineering analysis. Another growing research area where 

global dynamics can become an essential tool is the analysis of metastable 

systems found in physics, chemistry, biology, etc. Metastability is defined as the 

phenomenon where a system, under the influence of stochastic dynamics, explores 

its state space on different time scales [88, 89]. 

However, not only finite perturbations in initial conditions should be 

considered. Dynamical systems are inevitably influenced by unavoidable noise 

and uncertainties, which complicates the already complex deterministic dynamics 

of multistable nonlinear systems by introducing new dynamical behavior and a 

number of stochastic phenomena [90]. These phenomena are not accounted for in 

the set of differential equations that models the idealized deterministic system. 

Noise is also intrinsic to observations made on real systems, as illustrated by the 

vast literature on system identification [91–94]. Poon and Grebogi [95] showed 

that noise might move the system away from the neighborhood of the attractor 

towards the basin boundary and over a nearby saddle point to another basin of 

attraction, increasing the competition between the attractors. Noise may also cause 

the basins to merge or disappear [96], and when the noise amplitude is above a 

critical value, the distinction between two coexisting attractors is lost. In addition, 

noise may lead to stochastic bifurcations and a shift of the bifurcation point [97, 
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98]. The global stability of a state in the presence of noise depends on both the 

size of the basin of attraction and the dynamical behavior. Soliman and Thompson 

[99] showed that the addition of noise could affect the robustness of attractors, 

and stochastic integrity measures could assess the sensitivity of an attractor to 

noise-induced jumping. However, when multiple steady states coexist in a system, 

little is known about what governs the stability of each state under the effects of 

random perturbations. Parameter and model uncertainties, especially in the 

vicinity of bifurcation points, are also of importance [2–5]. 

Many authors explored the effects of noise excitations. The bifurcation 

scenarios of the noisy Duffing-van der Pol oscillator were studied by, among 

others, Schenk-Hoppé [100] and Sharma [101]. Later, the global analysis of the 

stochastic bifurcations in Duffing, previously considered by Ueda, and Duffing–

Van der Pol oscillators, were studied by the generalized cell mapping method by 

Xu et al. [102–104] and He et al. [105]. Basins were considered in the same sense 

as in deterministic problems through the generalized cell mapping (GCM) with 

partially ordered sets (posets) and directed graphs (digraphs) [106]. The impact of 

randomness on the basin boundaries is evident, showing how it diffuses as noise 

increases, eventually destroying the attractor. Although the results clarify the 

influence of noise on the attractor and basin evolution and possible bifurcations, 

the adopted basin definition lacks a proper stochastic description. Green et al. 

[107] studied the effect of white noise on an energy harvester described by 

Duffing-type nonlinearities, using the Fokker–Planck–Kolmogorov equation. 

However, the mono-stable system had just one global attractor, thus basin analysis 

was not needed. Local investigations of a softening-type Duffing oscillator with 

noise were conducted by Agarwal et al. [108]. Recently, the short-time Gaussian 

GCM approximation [24] was applied to the global analysis of a Duffing 

oscillator by Han et al. [28], but the deterministic definition of basins of attraction 

was maintained and, therefore, the results lack further quantification of the basin 

randomness. The path-integral methodology was applied to Duffing-type 

oscillators with noise by Cui et al. [109], Agarwal et al. [110], and Cilenti and 

Balachandran [111], but they also maintained the same deterministic 

interpretation for basins of attraction. Noise effects on the dynamic integrity were 

investigated in a Helmholtz-Duffing oscillator by Orlando et al. [112], and 

Helmholtz-type oscillator by Silva and Gonçalves [113], where also the 
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parametric uncertainty was considered. Sets sensitive to random noise were 

considered in the evaluation of safe basins and their dynamic integrity analysis as 

depicted in white in Figure 1.5, where a system with three coexisting attractors 

(black, blue and red basins) is investigated. Again, the results demonstrated the 

effect of randomness on the basin of attraction qualitatively, but the proper 

description is still an open issue. Stochastic perturbation methods can be applied 

to formulate the statistics’ governing equations in the case of parameter 

uncertainty, but restricted to local dynamics, as shown by Kamiński and 

Corigliano [114]. 

  
(a) Noise-free case (b) Noise-excited case  

Figure 1.5 – Three coexisting basins of attraction of a dynamical system under harmonic load for 

(a) noise-free and (b) noise-excited cases, with sensitive initial conditions marked in white [112]. 

 

1.3. 

Parametric uncertainty and noise in microstructures 

As an interesting example presenting diverse physical phenomena and 

applied in various fields, microelectromechanical systems (MEMS) are important 

devices with a broad range of applications [115–117]. Their theoretical analysis is 

diverse, with contributions from different fields, such as structural mechanics, 

electrostatics and electrodynamics, electromagnetism, piezoelectricity, 

electrothermal effects, and optics, to name a few. Also, these systems are rather 

flexible and can undergo large displacements due to their small scale in the 

presence of electrostatic and electrodynamic loads. Therefore, MEMS requires 
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complex multidisciplinary analysis to correctly capture all the physical 

phenomena involved. For this purpose, various techniques are employed, for 

example, finite element and boundary element methods [115, 118, 119], shooting 

method [120], reduced-order models [121–124], and perturbation methods [125–

127]. Notably, the multiple time scales method combined with a Galerkin 

procedure is a powerful strategy in order to obtain theoretical internal resonances, 

which have been validated by experimental results [127]. Numerical techniques 

have also been applied in the study of microbeams, such as pseudo-arclength 

continuation method with nonlocal constitutive relations [128–130]. These models 

are validated by comparing their results with experimental results and finite-

element solutions available in the literature. 

Younis and Nayfeh [125], Abdel-Rahman et al. [131], and Younis et al. 

[132] studied through an analytical approach and a reduced-order model 

(macromodel) the behavior of electrically actuated microbeam-based MEMS, with 

emphasis on their nonlinear resonant behavior. They modeled the beam as a 

partial integro-differential equation. Only nonlinearities due to midplane 

stretching and electrostatic load were considered, with displacements assumed to 

be small [133]. It is evident from the equation of motion that electrostatic loads 

result in strong nonlinearities with singularities. The analysis is carried out by 

dividing the actuation into a static part, due to the direct current voltage Vdc, and a 

dynamic part, due to an alternating current voltage Vac. The static problem is 

solved numerically by the shooting method, and pull-in voltages are obtained 

under varying axial force. Natural frequencies are also obtained, and they 

exhibited a good agreement with experimental results even near the pull-in 

voltage. Forced vibration and various internal resonance conditions were 

addressed by the multiple scales method [125]. In [125, 131], the dynamic 

problem is considered using Taylor-series expansion superimposed on the static 

solution. However, they fail to represent the electric force at voltages close to 

pull-in since the neglected terms in the Taylor-series expansion become 

significant. Younis et al. [131, 132] then proposed an alternative approach capable 

of describing the strong nonlinearities exactly, which shows better agreement with 

experimental data using fewer mode shapes. 

The described analytic procedure is relevant to this day, being applied to 

other MEMS problems, as reported in a recent review paper by Hajjaj et al. [115], 
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such as arch resonators [123, 126, 127, 134, 135], arches over flexible supports 

[136], functionally graded viscoelastic microbeams with imperfections [137], 

cantilever resonators [138–140], narrow microbeams subject to fringing fields 

[118, 119, 141] and microscale beams described by the modified couple stress 

theory [120, 128–130, 133, 142–144]. Also, in a recent contribution, Ilyas et al. 

[145] investigated the response of MEMS resonators under generic electrostatic 

loadings theoretically. The qualitative resonant behavior was analytically 

demonstrated by the multiple scale method, showing that the nonlinear 

electrostatic load leads to softening-type nonlinearity. In a companion paper, Ilyas 

et al. [146] investigated the simultaneous excitation of primary and subharmonic 

resonances of similar strength experimentally by using different combinations of 

AC and DC voltages, and two potential applications are experimentally 

demonstrated. 

Several types of uncertainties may be found in practical applications and 

may have a substantial influence on the behavior of MEMS, given their multi-

physical nature. In [147], Vig and Kim enumerate some noise sources, including 

fluctuations in temperature, adsorbing/desorbing molecules, outgassing, Brownian 

motion, Johnson noise, drive power, and self-heating. The reduced dimension of 

the microbeam intensifies all noise effects and instabilities that are negligible in 

macro-scale devices. Experimental investigations corroborate these conclusions 

[123, 148, 149]. The global dynamic analysis has shown to be a powerful tool to 

predict and quantify finite instability, which considers, heuristically, uncertainties 

in initial conditions, as evidenced by the works of Alsaleem et al. [149], 

Ruzziconi et al. [150], and Lenci et al. [67]. The influence of material parameters 

and their uncertainties on the nonlinear response has been highlighted in [151–

153], and the influence of uncertainties in geometric nonlinearities in [154–156]. 

Parametric uncertainties are also of interest in the analysis of MEMS [114, 157], 

such as geometric [126, 129, 130] and constitutive [133] uncertainties, which can 

be represented through a Monte Carlo approach, stochastic perturbation, or 

stochastic collocation. However, further investigation is needed to understand the 

effects of uncertainties on the response of MEMs, particularly on their global 

dynamics, where a stochastic framework is still to be developed. The coupling 

between global dynamics and parametric uncertainty in a probabilistic framework 

is yet to be discussed. 
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1.4. 

Objectives 

Global dynamic analysis is computationally expensive, increasing 

exponentially together with the phase-space dimension. The nondeterministic 

analysis is also, generally, computationally expensive. Therefore, the effects of 

noise and parameter uncertainty on the global dynamics of engineering structures 

have rarely been conducted, with the few known works devoted to the qualitative 

analysis of low-dimensional systems. In this scenario, the objective of this thesis 

is to present adaptative alternatives within an operator-oriented approach of the 

Ulam method for the global analysis of nonlinear dynamical systems with 

competing attractors. The stochastic basin of attraction definition by Linder and 

Hellmann [37] is adopted since it is, from the present point of view, the most 

natural with respect to the transfer operator’s theory. Here a hierarchical 

discretization of the phase-space is proposed, refining basin’s boundaries, 

attractors’ distributions, and manifolds to reduce de computational cost. Also, a 

procedure to obtain global structures in the mean sense of systems with parametric 

uncertainties is presented. These tools are applied to the analysis of two archetypal 

models, the Helmholtz and Duffing oscillators, and two MEMS structures, a 

microcantilever, and a microarch, to demonstrate the efficiency of the proposed 

methodologies in exploring the global behavior and safety of noisy and uncertain 

systems. Finally, the dynamic integrity analysis of these systems is conducted 

through a new integrity measure based on a given probability threshold. 

1.5. 

Structure of the thesis 

This thesis is subdivided into seven chapters, including this introduction, 

where basic concepts, bibliographic review, and objectives are presented. 

Chapter 2 presents the mathematical background of deterministic and 

nondeterministic dynamical systems, the axiomatic view of probability, the 

invariant phase-space structures, and the global operators, necessary for the 

understanding of nondeterministic global dynamics. The discretization of the 
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transfer operators in the space of indicator functions is derived, and the necessary 

modifications for stochastic or parametric uncertainty systems are discussed. 

Chapter 3 presents the refinement procedures of the phase-space, one 

focusing only on the basin boundaries and another considering the phase-space 

manifolds. The case of parametric uncertainty is discussed in more detail. A 

comparison of two subdivision strategies, one as a binary tree and another as a 

general r-tree, is given. 

In chapter 4, the numerical developments are applied to two archetypal 

systems, the Helmholtz and the Duffing oscillators, covering different bifurcation 

scenarios and coexisting solutions. The deterministic case, the parameter 

uncertainty case, and the additive white noise case are studied. Distinct global 

dynamics are analyzed, such as multiple wells, harmonic and parametric 

excitations, multiperiodic and chaotic solutions. Finally, the nondeterministic 

effect on the dynamic integrity is highlighted. 

In chapter 5, an imperfect microcantilever under electric actuation, whose 

equations are obtained from a three-dimensional Rayleigh beam formulation 

presented in Appendix A, is analyzed. The static and dynamic responses of a 

reduced-order model are presented. The global dynamics are analyzed with and 

without the phase-space local refinement, demonstrating the advantages of the 

proposed algorithm, specifically when there is an additive noise component. 

Finally, the dynamic integrity with noise is depicted. 

In chapter 6, an initially curved microarch under electric actuation is 

studied, formulated from a three-dimensional Rayleigh beam formulation 

presented in Appendix A. The static and dynamic responses are investigated, and 

a reduced order model (ROM) is derived using the nonlinear normal modes 

theory. The global dynamics of this ROM are investigated, and parametric 

uncertainty in the critical damping ratio and additive white noise is considered. 

The time dependency of the dynamic integrity in stochastic dynamics is 

demonstrated. The effect of nondeterminism on the manifolds is also discussed. 

Finally, chapter 7 presents the conclusions and suggestions for future works. 
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Mathematical background 

This chapter presents concise mathematical definitions of deterministic and 

nondeterministic dynamical systems. The discussion starts with the different flow 

definitions of deterministic dynamical systems, followed by the axiomatic view of 

probability and nondeterministic dynamical systems. Then, the influence of 

nondeterministic effects on invariant phase-space structures is discussed. The 

chapter ends with the discretization procedure of global phase-space operators, 

namely, the Perron-Frobenius, Foias, and Koopman operators. 

 

2.1. 

Definitions of deterministic dynamical systems 

The theory of dynamic systems is vast and complex, being an amalgam of 

several research fields, such as topological dynamics, ergodic theory, measure 

theory, and bifurcation theory [66, 158–162], among others. In a few words, a 

dynamic system is a representation of systems that change through time. 

Precisely, a dynamic system ( ), , t  consists of a phase-space , a time-space 

(additive semigroup) , and a flow φ such that 

( )

:

, ,tx t x





 →

 

(2.1) 

with properties 

( )
01. id ,

2. , , ,s t t s

x

x x s t



  +

=

=  
 (2.2) 

where ○ means composition, id  is the identity in , with 
0 x x = , and the 

second equation is the flow property. Usually, the dynamical system is referred to 
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by its flow . Also, the state of a dynamical system at time t can be designated as 

xt for simplicity. These structures are depicted in Figure 2.1. 

 

Figure 2.1 – General structures of a dynamical system 

The phase-space is usually endowed with some extra structure, such as 

manifolds or a (probability) measure [161]. Examples of such structures are the 

invariant manifolds of a fixed point, its evolution through time, and its distribution 

over the phase-space. The case where the phase-space  is a Euclidean space 

*,n n , is particularly important, describing several problems in the literature 

[66, 163]. 

Deterministic dynamical systems with continuous time-spaces , such as 

the real line or the positive real numbers, have been extensively studied in the 

literature. The Duffing equation [164] and the Helmholtz oscillator [63, 76] are 

important examples of such dynamical systems found in engineering. They are 

defined as differential equations 

( ), ,x f x t=  (2.3) 

where f(x, t) are continuous vector fields smooth in t [66, 163]. For such cases, the 

flow is defined as 

( )
0

0 , ,
t

t s
t

x x f x s ds = +   (2.4) 

and the differential eq. (2.3) is its generator structure. Such flows are 

diffeomorphisms: 
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( )
1

1. : , ,

2. where , , 1,

3. .

t

n

t t s

t t

t

x f x s C n

x x



 

 −

−

→  

  =  

 =

 (2.5) 

Note that the flow is assumed to be invertible, which means that the 

corresponding dynamical system can evolve backward in time. Also, smooth 

dynamical systems are defined when all endowed manifolds are smooth, i.e., at 

least of class C1 [15]. 

Discrete dynamical systems are another essential case, where =  and 

evolution occurring in discrete time steps. The logistic equation and the Hénon 

map are examples [163]. For these cases, the generator structures are difference 

equations, 

( )1 , ,t tx f x t+ =  (2.6) 

where f(xt, t) are discontinuous vector fields in t [66, 163]. The flows for such 

cases are the vector fields themselves, 

( ), .t tx f x t =  (2.7) 

Furthermore, these flows are automorphisms: 

( )1 1 0

1

1. : , ,

2. ,

3. .

n

n n n

n n

n

x x

x x



    

 

−

−

−

→  

=

 =

 (2.8) 

The flow is also assumed invertible, which implies the existence of a dynamical 

system ,n n−    that evolves backward in time. 

For noninvertible discrete maps, the time set is += . The respective 

flows are endomorphisms: 

( )1 1 0

1. : , ,

2. .

n

n n n

n

x x



    

+

−

→  

=
 (2.9) 

Since the inverse map does not exist, the past state of these systems cannot be 

reconstructed from the present. Root finding algorithms are important examples of 

such flows, where fixed points are their solutions [161]. 
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Dynamical systems can also be generated in functional phase-spaces , 

such as Banach spaces [165–167]. Well-posed evolutionary partial differential 

equations are examples of generator structures for such cases, where flows are 

families of bounded operators on  to . Such families are C0-semigroups, with 

properties (2.2) extended to Banach spaces. In the general sense, the time space is 

restricted to +  since the inverse flow is not guaranteed to exist. Other examples 

of generator structures with Banach spaces are functional equations, delayed 

differential equations, and integro-differential equations. 

Functional phase-spaces, in contrast to dynamical systems where 

*,n n  , possess infinite dimensions. This represents a significant 

difficulty since a discretization technique, such as the Galerkin method [168, 169], 

must be applied to the functional space. 

The spatial discretization of a deterministic time-dependent system results in 

a system of nonlinear ordinary differential equations. In this thesis, this system is 

assumed as a diffeomorphism, with flow given by (2.4). Their time-discretization 

through numerical methods, such as Euler, trapezoidal rule, or Runge-Kutta, 

results in noninvertible maps, with flows that are endomorphisms where the time-

set +=  corresponds to the number of integrated time-steps. The endomorphic 

construction is necessary to understand the transfer operators that are discussed in 

section 2.5. 

 

2.2. 

Axiomatic view of probability 

Before nondeterministic dynamical systems are discussed, some concepts 

from the theory of probability must be addressed. This discussion follows an 

axiomatic view of probability and can be checked in more detail in [170]. 
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A random experiment is modeled with a sample space , an event space 

2S , and a probability measure1  . They are organized in a tuple ( ), , S , 

which is also named probability space 2 . The sample space  is generally 

arbitrary, with elements λ. The event space 2S  is a σ-algebra of , with 

elements A. Specifically, 

 
1

1. ,

2. ,

3. , 1,2, , .

c

i i
i

A A

A i A


=



  

  =  

S

S S

S S

 
(2.10) 

Also, from the last two properties and De Morgan’s law [170], the event 

space is closed under countable intersections, 

 
1

, 1,2, , ,i i
i

A i A


=
  =  S S  (2.11) 

which implies that   S  since it is also valid for a countable collection of 

disjoint sets. At last, the probability measure is a positive function  : 0,1 →S  

such that 

 

1  A measure is a generalization of concepts such as length, area, volume, probability, etc. 

Generally, given a measurable space ( ),S , the set function  is a measure if the following 

properties are verified, 

( ) ( )

( )

    ( )

1. Non-negativity 0, ,

2. Null-empty set 0,

3. Countable additivity ,i j i i
i j ii

b b

b b b b


  

 =

 
 =   = 

  

S

 

If ( ) 1= , then it is also a probability measure. The first property, however, is relaxed for the 

eigenmeasures of the transfer operators in section 2.5, and can be signed or even complex-

valued. 

2 For general measures, the tuple ( ), ,S  is called a measure space. 
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 

 

       

1. 0, ,

2. 1,

3. .i j i i
i j ii

A A

A A A A





 


  

=

 =   =

S

 
(2.12) 

The expressions in (2.12) are also denominated axioms of Kolmogorov [170]. 

All conclusions from the theory of probability are defined directly or indirectly 

from these axioms. These structures are depicted in Figure 2.2. 

 

Figure 2.2 – General probability space ( ), , S  

The event space S  is implicitly defined in some cases, with only the sample 

space  and the probability measure   specified. For such cases, the event 

space S  is assumed as the Borel σ-algebra of the sample space, ( )B . Also, 

probability measures can be defined as 

  ( ), ,
A

A d A =   B  (2.13) 

for both continuous and discrete sample spaces. The derivative d   is the 

probability density or mass distribution, an essential structure in the analysis of 

random events. 

2.3. 

Definitions of nondeterministic dynamical systems 

Two separate cases must be considered to expand for nondeterministic 

systems, namely, the parameter uncertainty case and the stochastic case. In the 

parameter uncertainty case, parameters   are defined in a probability space 

( ), , S , where  is the parameter space of dimension p, ( )S  is a σ-algebra, 
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and   is a probability measure [171]. A dynamical system with such a parameter 

is  

( ) ( )

:

, ; ,tx t x



  

  →

 

(2.14) 

explicitly written as ( ), , , , , t S  and existing in the product space 

( ) ( ), , , B S . For simplicity, such dynamical systems are represented by 

the flow ( )t  , where the parameter dependency is given explicitly. 

A point, evolving according to eq. (2.14), is n + p dimensional. Each  -

value defines a dynamical system ( )t  , evolving independently from all other 

dynamical systems. Generally, the flow ( )t   depends nonlinearly on the 

parameter  , and care must be taken to choose the correct methodology to 

represent the probability space [172]. For example, stochastic Galerkin and 

polynomial chaos methods are known to lose convergence in the second moment 

for long time-integration [11]. Nevertheless, statistics can be obtained from the 

collection of dynamic systems ( ) ,t   , such as the mean attractors and 

mean basins of attraction, when they can be defined. 

The generator structures of dynamical systems ( )t   with 
*,n n   

are, for continuous time = , 

( ), ; ,x f x t =  (2.15) 

and for discontinuous time ( )+
=  

( )1 , ; ,t tx f x t + =  (2.16) 

where the vector fields depend explicitly on the probability space ( ), , S . For 

continuous-time systems = , flows are diffeomorphisms 

( ) ( )

( ) ( ) ( )

( ) ( )1

1. : , , , , ,

2. where , ; , 1,

3. .

t

n

t t s

t t

t

x f x s C n

x x

  

    

   −

−

→   

  =  

 =

S

 (2.17) 
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For ( )+
= , flows are 

( ) ( )

( ) ( )( )

( ) ( )

1 1 0

1

1. : , , , , ,

2. ,

3. if ,

n

n n n

n n

n

x x

x x

  

      

   

−

−

−

→   

=

 = =

S

 (2.18) 

which are automorphisms for =  or endomorphisms for += . In both 

structures (2.17) and (2.18), flows are also samples, having a one-to-one 

correspondence with each realization λ of the random parameter. Thus, a family of 

flows is generated by the probability space ( ), , S . A representation of the 

generated flows is depicted in Figure 2.3. 

 

Figure 2.3 – Family of flows generated by a probability space 

Therefore, the family of flows has the following properties 

( )( ) ( )1. ,t s s tx x    +=   

( )02. id ,x  =  (2.19) 

( ) ( ) ( ) ( )3.  is , measurable.t x    −B B S B 3  

The previous structure belongs to the broader class of measurable 

dynamical systems. Given a time set , a probability space ( ), , F , and a 

function θ, the flow is defined as 

( )

:

, ,tt



  

 →
 (2.20) 

 

3  A transformation :t →  over a measure space ( ), , F  is ( ) measurable −F  if 

( ) ( )1

t b−  F  for all ( )b F . 
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a measurable dynamical system ( ), , , , t F  is such that the following 

properties hold, 

( )

( )
0

1. ,

2. id ,

3.  is , measurable.

s t s t

t

    

 

 

+



=

=

F B F-

 (2.21) 

Furthermore, this dynamical system is measure-preserving if it is an 

endomorphism with ( )t = . The measure  is called invariant. Such measure 

is fundamental in the steady-state analysis, and endomorphic measurable dynamic 

systems are denominated metric dynamical systems. 

As an example, the dynamical system ( ), , t  generated by an ordinary 

differential eq. (2.3) is considered. The flow is the differential equation solution, 

( )t tx x x t = = . The phase-space is endowed with the Borel σ-algebra ( )B  by 

definition. Suppose that the system is conservative in the sense that the phase 

volume is preserved in time. For such systems, the Liouville’s theorem is 

applicable [17]: 

0,x f  =  (2.22) 

where ( ),x t  is the phase-space density, normalized as 1dx = . Equation 

(2.22) has a solution for all continuous vector fields ( ),f x t  smooth in ( ), . A 

measure with density d dx=  is then defined. Then, with the phase-space 

having a σ-algebra and a measure, one can conclude that the dynamical system 

generated by a conservative differential equation is measurable with 

( )( ), , , , tB . Even further, the Liouville’s theorem dictates that the 

density is constant in time [17], which implies the existence of an invariant 

measure. Therefore, this is a metric dynamical system. 

The previous example is vital since various physical models constitute 

conservative dynamical systems, such as planetary orbits, frictionless harmonic 

oscillators, among others. However, the dynamical systems generated by non-

conservative physical models can also be measurable since phase-space sets  
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will, in general, be Lebesgue measurable [158, 159]. Then, all dynamical systems 

will be assumed measurable from now on. 

Another class of dynamical systems with random parameters has the 

product   as a separable Banach space. Examples of generator structures are 

stochastic partial differential equations with spatial white noise and partial 

differential equations with random spatial properties [172–174]. These are much 

more complicated to analyze, with a discretization procedure taking place in both 

physical and probabilistic spaces. 

Stochastic cases were considered by Arnold [15]. He defines random 

dynamical systems as cocycles over stochastic processes, with the latter being 

measurable dynamical systems. Specifically, considering a metric dynamical 

system ( ), , , , t  F  over the probability space   (with given σ-algebra F  

and probability measure  ), a random dynamical system ( ), , , tB over 

( ), , , , t  F  is defined as 

( ) ( )

:

, ; ,tx t x



  

 →

 

(2.23) 

with the following properties 

( ) ( ) ( )

( )

( )

( ) ( ) ( )
0

1.  is , measurable,

2. :  form a cocyle over :

i. id , ,

ii. , , , .

t t

s t s t t s t



   

  

       +

  −

→

=  

=   

B B F B

 (2.24) 

The cocycle property 2.ii. can also be written as ( ) ( ) ( )s t s t tx x      + = . 

The conclusion is that random dynamical systems evolve together with a random 

space when the underlying metric dynamical system has a probability law. 

Therefore, the flow ( )t   obeys a probability law and is distributed accordingly. 

One could argue that the injective property of the flow ( )t   is violated in 

stochastic cases, but as can be concluded through property 1, there is one outcome 

for each sample  , thus maintaining this property.  

The random dynamical system definition (2.23) and properties (2.24) are 

interesting by also being able to describe general nonautonomous dynamics. For 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



59 

example, if the underlying metric dynamical system t  is a deterministic 

harmonic function, the probability measure is a Dirac delta for phase-angles 

between 0 and 2π, evolving with the excitation frequency, , and the resulting 

dynamics ( )t x   is harmonic. 

It is worth visualizing the evolution of a random dynamical system on 

 . While ω evolves with the flow θt, the cocycle ( )t   moves the point x 

along the fibers    . The cocycle property is also depicted. 

 

Figure 2.4 – Evolution of a random dynamical system 

The generator structures with 
*,n n   are separated into three main 

categories [15]: random maps with ( )+
= , 

( )1 , , ,t t tx f x t + =  (2.25) 

random differential equations with = , 

( ), , ,tx f x t =  (2.26) 

and stochastic differential equations with = , 

( ) ( ), , .dx f x t dt g x t dW= +  (2.27) 

The white noise dW is the formal derivative of the Wiener process [175]. It is not 

physically feasible, possessing constant power spectral density [176] and, as such, 

different methods of analysis must be applied. The flows for the random map, the 

random differential equation, and the stochastic differential equation are, 

respectively, 
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( ) ( ), , ,t t tx f x t   =  (2.28) 

( ) ( )( )
0

0 , , ,
t

t s s
t

x x f s ds     = +   (2.29) 

( ) ( ) ( )
0 0

0 , , ,
t t

t
t t

x x f x s ds g x s dW  = + +   (2.30) 

Also, the continuous-time flows are diffeomorphisms. In contrast, the 

discrete-time flows are endomorphisms, for noninvertible flows with += , or 

automorphisms, for invertible flows with = . 

As in the deterministic case, random dynamical systems can also be 

generated when  is a functional phase-space. However, the abstract setting is 

much more complicated due to the cocycle nature, with the underlying noise also 

being defined over a Banach space, usually, a Hilbert space [177], and the 

generator structure is a stochastic partial differential equation. It is known that 

stochastic differential equations with linear multiplicative noise effectively 

generate random dynamical systems. However, the case with nonlinear 

multiplicative noise is unclear. Stochastic partial differential equations usually are 

crude cocycles, whereas random dynamical systems are perfect cocycles. A 

perfection procedure makes changes in the space definitions, particularly in sets 

with zero probability, defining a time subset in which the crude cocycle is 

indistinguishable from the perfect cocycle [15]. Therefore, the cocycle perfection 

will be assumed in the analysis of continuous systems under stochastic 

excitations. 

The probabilistic framework represents a significant computational difficulty. 

Special techniques must be employed to access the full randomness of stochastic 

systems. According to some probability law, all deterministic quantities, namely 

attractors, repellors, saddles, and basins, become randomly distributed. Such facts 

arise from the interplay between the random parameter  , the stochastic system 

t , and the flow t , being particularly difficult to obtain in nonlinear cases. 

Therefore, one must resort to numerical strategies to verify such structures in a 

probabilistic sense. 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



61 

To summarize, the flow t x  of general nondeterministic dynamics is 

assumed to be dependent on some random event, such as a random parameter 

value λ in a probability space  or a noise sample ω in a probability space  , 

with the latter evolving according to another dynamical system t . The flow of 

those systems is generally labelled as ( ),t x    to specify that the evolution law 

is a function of these random events. It is also implied that the noise sample 

evolves according to t  together with the flow t , with this dependence 

suppressed in the notation. The complete structure is given in eq. (2.31). 

( ) ( )

:

, ; , , .tx t x



    

  →
 (2.31) 

The spatial discretization of a nondeterministic time-dependent system can 

result in many different complex nondeterministic dynamical systems, see Zhang 

and Karniadakis [174] for explorations with white noise cases and Le Maître and 

Knio [172] for parameter uncertainty cases. In this thesis, the nondeterminism is 

assumed to be small, so that the spatial discretization is performed 

deterministically. Then, nondeterminism is applied to the ensuing dynamical 

system, resulting in structures such as (2.15) for random parameters or (2.27) for 

white noise cases. 

 

2.4. 

Invariant structures of dynamical systems 

Moving on to the description of the invariant objects, one has, initially, 

attractors and their basins. Attractors are usually defined in the pushforward sense 

as regions A in the phase-space  to which initial conditions converge 

asymptotically as t → ∞. Other definitions of attractors exist in the literature, see 

Arnold [15], but the restriction to pushforward convergence allows the operator 

perspective, focus of this thesis, to be addressed naturally. Likewise, the set of all 

initial conditions that converge to a given attractor is defined as its basin, gA. 

Specifically, 
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 | limA t
t

g x x A
→

=  
. 

(2.32) 

As specified in Section 2.3, nondeterminism can be assumed in two 

different ways, namely parametric and stochastic. The resulting dynamical 

system for an uncertain parameter λ is augmented by the probability space, with 

uncertainty as an additional initial condition. On the other hand, the stochastic 

dynamic case is governed by a random dynamical system, i.e., a deterministic law 

driven by a stochastic process. The last case is theoretically more involved, 

inserting a diffusion of the solutions over . The distinction is necessary because 

stochastic dynamics can be globally approximated by an operator named Foias. In 

contrast, the parameter uncertainty case cannot, requiring a collection of Perron-

Frobenius operators to obtain valid statistics. Therefore, two different random 

parameters are adopted, λ for the parameter uncertainty and ω for stochastic 

dynamics, following the definitions in section 2.3. 

  
(a) Deterministic fixed-point (b) Nondeterministic fixed-point samples 

Figure 2.5 – Comparison between deterministic and random fixed-point attractors 

For general nondeterministic dynamics, the flow t x  is assumed to be 

dependent on some random event, such as a random parameter value λ in a 

probability space  or a noise sample ω in a probability space  , which evolves 

according to another dynamical system t . The flow of those systems is generally 

labeled as ( ),t x    to specify that the evolution law is a function of these 

random events. It is also implied that the noise sample evolves according to t  

together with the flow t , but this dependence is suppressed. Likewise, attractors 

can be described as dependent on random events λ and ω. This dependence is 

denoted as ( ),A   . Of course, attractors are also time-dependent if the flow is 

A ( )4 1,A  

( )1 3,A  ( )3 2,A  

( ),i jA  
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noise-driven, see Ochs [178], but this dependence is suppressed for clarity. As an 

example, fixed-point attractors become random points in  [15], see Figure 2.5. 

Because the outcome is not unique, the definition of convergence must be 

changed as well. Specifically, a random attractor is a phase-space set ( ),A    

such that the distance between it and some neighbor converges to zero in 

probability as t → ∞. This set attractor ( ),A    plays an important role in 

nondeterministic dynamics, being accompanied by a phase-space distribution fA. 

Figure 2.6 illustrates the distributions for the deterministic and nondeterministic 

cases, where the former was lifted to the random space   considering its 

distribution as a Dirac delta. Although the attractor ( ),A    is random, its 

distribution fA is not. Ochs [178] discusses the numerical approximation of 

attractors and invariant measures for random dynamical systems. He also presents 

an existence theorem for attractors and comments on their robustness under 

perturbations. In our framework, these correspond to stochastically driven systems 

with attractors ( ),A   . 

  
(a) Deterministic attractor (b) nondeterministic attractor 

Figure 2.6 – Comparison between deterministic and nondeterministic periodic attractor’s 

distributions 

The definition of basins of attraction for nondeterministic dynamical 

systems is much more complicated to address. Distinct definitions and methods 

for stochastic basins of attraction are found in the literature. Ochs [178] defines 

them as forward invariant random sets ( ),Ag    under the flow ( ),t x    in the 

probabilistic sense, 
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( ) ( ) ( ) , | lim , , 0 ,A t t
t

g x x A       
→

=   =    (2.33) 

the probability of a solution ( ),t x    not being in the attractor set goes to zero 

as time increases. Therefore, for each ( ),A   , there is a respective random set 

( ),Ag   , which is its basin of attraction in the probabilistic sense. It is evident 

that this definition gives a one-to-one relation between a random event, the flow, 

the attractors and the basins. Of course, this random inclusion represents a major 

computational difficulty, increasing the system dimensionality. 

Xu et al. [103] investigated the Ueda system with additive white noise, 

considering basins in the same sense as the deterministic problems through the 

generalized cell mapping (GCM) with partially ordered sets (posets) and directed 

graphs (digraphs) [106]. The impact of randomness on the basin boundaries is 

evident, showing how it diffuses as noise increases, eventually destroying the 

attractor. Although the results clarify the influence of noise on the attractor and 

basin evolution and possible bifurcations, the adopted basin definition lacks a 

proper stochastic description. Recently, the short-time gaussian GCM 

approximation [24] was applied to a Duffing oscillator by Han et al. [28], but the 

definition of basins was maintained and, therefore, the results lack further 

quantification of the basin randomness. Another strategy was followed by Silva et 

al. [179] and Orlando et al. [112], which considered random noise, but did not 

investigate its effect on the safe basin and dynamic integrity with an actually 

stochastic approach. Again, the results demonstrated the effect of randomness on 

the basin of attraction qualitatively, but the proper description is still an open 

issue. 

Later, Linder and Hellmann [37] proposed a generalization of stochastic 

basins of attraction of a stable state based on the fixed spaces of the Perron-

Frobenius t  and the Koopman t  operators in phase-space. Succinctly, they 

explored the coupling between general dynamical systems with two linear 

systems, one over the space of phase-space distributions f, with operator t , and 

another over the space of phase-space observables g, with operator t . Their 

duality property and the Ulam method [180] enable the derivation of the 
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discretized operators Ph and Kh = Ph
T. Then, stochastic basins of attraction can be 

defined as  

( )  

( )

: 0,1 ,A

A

g

x g x





→
 (2.34) 

that is, a value between 0 and 1 is assigned to each phase-space point x . This 

value is the probability that x, evolving according to a given dynamical system 

( ),t   , stays at A until a predefined time /t = , denominated the time-

horizon. The limit case ( )0Ag  corresponds to the classical (i.e., deterministic) 

definition of basin of attraction for t → . Linder and Hellmann [37] call the 

functions ( )Ag   ε-committors. Markov operators, such as the Foias operator t , 

can be adopted for stochastic dynamic system analyses [17]. Figure 2.7 presents 

the deterministic and stochastic cases of functions ( )Ag  . It is clear that it is an 

indicator function in the deterministic case while presenting values between 0 and 

1 for the stochastic case. 

  
(a) Deterministic basin (b) General stochastic basin 

Figure 2.7 – Comparison between deterministic and stochastic basin of attraction 

 

2.5. 

Global perspective and projection onto discretized phase-spaces 

The local analysis of dynamical systems is generally conducted from a 

geometric perspective. Specifically, the changes in the flow topology t  given a 

parameter space  can be described by bifurcation diagrams, where the relation 
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of fixed points of the steady-state solutions with the varying control parameters is 

depicted [163]. Stability is evaluated in the Lyapunov (infinitesimal) sense.  

This approach can be understood from a material (Lagrangian) perspective, 

following specific orbits as they change in time and in the parameter space. 

Although fundamental, this analysis becomes computationally prohibitive when 

large ensembles of orbits are of interest. Examples of such cases occur in 

stochastic dynamics [15] and parameter uncertainty, with non-unique outcomes. 

The natural alternative to the Lagrangian analysis is to investigate regions in 

phase-space  as orbits evolve in a spatial (Eulerian) perspective. The theoretical 

development is, however, more involved, needing the definition of flux operators 

in the phase-space. Some of these concepts, following [17, 42, 181–183], are 

reviewed. 

First, the deterministic case is considered. Associated with a given dynamical 

system ( ), , , tB  is another dynamical system over the space ( )1L , namely 

the space of distributions f over , that is 

( ) ( )

 

1 1: ,

,

t

t

L L

f f

→
 (2.35) 

with t  defined by  

 
1

, ,
t

t
B B

f dx f dx B
−

=    B  (2.36) 

being known as the Perron-Frobenius operator. Stationary solutions f of eq. (2.36) 

are such that 

  ,t f f=  (2.37) 

and they specify how attractors are localized in the phase-space [17]. For 

example, fixed points, periodic orbits, and limit-cycle attractors are described by 

Dirac distributions (.)C  supported on C such that 

0,
( ) .

1,
C

A

C A
x dx

C A



= 


 

(2.38) 
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The Perron-Frobenius operator t  can be understood as a transport of 

distributions under the flow t . Given an initial distribution f in the phase-space, 

t  drives it through the dynamics, as depicted in Figure 2.8. 

 

Figure 2.8 – Evolution of a distribution f under the Perron-Frobenius operator 
t
 

The function 
1

t B −
 is the preimage of the set B under the flow t , i.e., the 

collection of all x that map to B under t , that is 

 1  given , .t tB x x B t A − =   B
 

(2.39) 

The Perron-Frobenius operator is also a Markov operator; therefore, it is 

linear, positive ( )0 0tf f   , and non-expansive ( )1 1t L L
f f= . Its 

adjoint (dual) is the Koopman operator t , which defines a dynamical system in 

( )L
, the space of observables g over , 

( ) ( )

 

: ,

,

t

t

L L

g g

 →
 (2.40) 

explicitly given by 

  ( ).t tg g x=
 

(2.41) 

Stationary solutions of eq. (2.41) are given by 

  ,t g g=  (2.42) 

and they govern the basins of attraction distributions over the phase-space [37]. 

Finally, the duality property , ,t tf g f g=  between the two operators is 

expanded as [17] 
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    ( ) ( )1, ,t tg f dx g f dx f L g L=     .  (2.43) 

Systems with parameter uncertainty are described with a one-to-one 

relationship between the operators and the elements ( ), ,   S . Therefore, the 

operators are written as ( )t   and ( )t   for all ( ), ,   S . Specifically, the 

Perron-Frobenius operator is given by 

( ) ( ) ( )

( ) 

( ) 
( )1

1 1: ,

,

, , ,
t

t

t

t
B B

L L

f f

f dx f dx B
 





 
−

→

=     B

 
(2.44) 

where the inverse flow is 

( ) ( ) 1  given , , .t tB x x B t B    − =    B  (2.45) 

The Koopman operator with parameter uncertainty is  

( ) ( ) ( )

( ) 

( )  ( )( )

: ,

,

.

t

t

t t

L L

g g

g g x





  

 →

=

 (2.46) 

and the duality property is also defined locally, i.e., for each ( ), ,   S , 

( )  ( )  ( ) ( )1, ,t tg f dx g f dx f L g L  =     .  (2.47) 

With these definitions, the global analysis of flows ( )t   can be conducted 

independently for each ( ), ,   S . Therefore, the one-to-one relationship 

between parameter values   and flows ( )t   is maintained. 

The generalization for stochastic systems is obtained by the Foias operator 

[17, 55, 56]. First, notice that the indicator function of a set A is defined as 

( )
0,

id ,
1,

A

x A
x

x A


= 

  

(2.48) 

and has the following property for any dynamic system, 
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( ) ( )1id id ,
t

B t B
x x


 −=

 
(2.49) 

which allows rewriting eq. (2.36) as 

  ( )id .t B t
B

f dx x f dx=   
(2.50) 

For the case of random dynamical systems, the flow ( )t   depends on a 

probability space ( ), ,  F . By taking the mean of eq. (2.50) in ( ), ,  F , one 

obtains 

   ( )  ( )id ,t B t
B

f dx x f dx d  


=       (2.51) 

and the Foias operator is defined by changing the order of integration, 

  ( ) ( ) id .t B t
B

f dx x d f dx  


=       (2.52) 

Also, the notation can be simplified considering the subset of the probability 

space ( )x B  for which the dynamical system is in B  under the flow ( )t   [45], 

( ) ( ) : ,x tB x B   =  
 

(2.53) 

resulting in 

  ( )
( )

.
x

t
B B

f dx d f dx 


 
=  

 


   (2.54) 

The Foias operator t  is associated with random dynamical systems ( )t   

taking values in a phase-space ( ),B  and a probability space ( ), ,  F  at each 

time step. The case of stochastic processes ( ), , , t  F , which are systems that 

sample the probability space ( ), ,  F  continuously in time, is developed 

through the cocycle property, resulting in 

  ( ) ( ) ( ) id .s t B s t t
B

f dx x d f dx     +


=       (2.55) 
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with the composition property given by its differentiation. These developments 

show that the Foias operator t  gives a good generalization in the mean sense for 

the Eulerian analysis of random dynamical systems with continuous or discrete 

time. Furthermore, the adjoint operator is obtained by setting  

  ( )( ) ( ) ( ), ,t tg g x d g L   



=   .  (2.56) 

which is a mean Koopman operator over the probability space ( ), ,  F . 

The discretization of t  is given by the Ulam method [37, 42, 180], 

equivalent to the generalized cell-mapping [21]. Let  1, , kb b=  be a disjoint 

partition of the phase-space  into k sets. Additionally, consider the subspace 

( )1

h L   spanned by the normalized indicator functions of , i.e., it has basis 

 11 , ,1k , where ( )1 id
ii b im b= . ( )im b  is the measure in  and h is the 

characteristic size of the partition. A projection ( )1:h hQ L →  is then given by 

1 1

1 1 .
i

k k

h i i i
b

i i

Q f f dx f

= =

 
= = 

 
 

 

(2.57) 

Therefore, the discretized (projected) distribution is 
h hf Q f= . Following 

[180], the projection of t  is : ,h h h h h tP P Q → = . Substituting  t f  into eq. 

(2.57) results in  

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



71 

   

 

( )

( )
( )

1

1

1

1 1

1 1

, 1

1

, 1

, 1

1 ,

1 1 ,

1 1 ,

id 1

1 ,

1 .

j

t j

i

t j

k

h t i h t i

i

k k

i t i j
b

i j

k k

i i j
b

i j

k

i
b j

bii j

k
i t j

i j

ii j

k

i ij j

i j

Q f f Q

f dx

f dx

f
dx

m b

m b b
f

m b

f p







−

−

=

= =

= =

=

−

=

=

=

 
=  

 

 
=  

 

 
=  

 


=

=



  

  

 




 

 

(2.58) 

Then, the projected operator hP  is defined as 

( )
( )

1

1

1 1 , ,

k
i t j

h i ij j ij

ij

m b b
P p p

m b

 −

=


= =

 

(2.59) 

and, by observing (2.58), (2.59) is identified as a row-stochastic matrix. This 

expression coincides with the classical definition of the Ulam method [180], and 

the difference with the generalized cell mapping [21], which gives a column 

stochastic transfer matrix, is purely a computational implementation. Here, the 

Eigen C++ template library for linear algebra, available at 

http://eigen.tuxfamily.org, which presents both storage orders, is used. The 

column-major storage with the transposed formulation is chosen, following [21], 

since it is the standard for Eigen. 

Finally, the evolution of discretized distribution is then given by 

1 , 1

1 1

1 1 ,

1 1 ,

.

k k

i i i ij j

i i j

k k

i i i h i

i i

h h h

f f p

f f P

f f P

= =

= =

 =

 =

 =

 

 

 

(2.60) 
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These discretization results can be applied directly for parameter uncertainty 

systems. Of course, the probability space must also be discretized so that 

operators ( )h iP   for all ( ), ,i P    S  can be calculated. 

Now the discretization of the Foias operator t  can be obtained. 

Considering the same subspace of normalized indicator functions ( )1

h L   

and the projection operator ( )1:h hQ L → , and substituting  t f  into eq. 

(2.57), results in 

   

 

( )
( )

( )
( )

( )

1

1 1

1 1

, 1

, 1

1 ,

1 1 ,

1 1 ,

1 ,

1 ,

j

x j

x j
i

k

h t i h t i

i

k k

i t i j
b

i j

k k

i i j
b

i j

k

i
j

bii j b

k

i ij j

i j

Q f f Q

f dx

f d dx

f
d dx

m b

f p









=

= =


= =


=

=

=

 
=  

 

   
=    

   

 
=  

 

=









  

  

 



 

(2.61) 

where the projected operator : ,h h h h h tF F Q → =  is defined as 

( )
( )

( )
1

1
1 1 , .

x j
i

k

h i ij j ij
bij b

F p p d dx
m b

 


=

 
= =  

 




   (2.62) 

The Foias operator is a generalization for any random dynamical system in 

the mean sense, representing the global evolution of dynamical systems subject to 

a time-dependent random perturbation. Therefore, its discretization is an 

approximation in the mean sense of the flow for such systems, evolving mean 

distributions according to (2.49). Also, cases with both parameter uncertainty and 

stochastic dynamics can be represented similarly to ( )h iP  , that is, one 

discretized Foias ( )h iF   operator is calculated for each ( ), ,i P    S . 

The discretized Koopman operators hK  for both deterministic and 

nondeterministic cases are given by the transpose of hP  and hF , respectively, 
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thanks to their dual relations. It encodes the basins of attraction in its fixed space, 

,hgK g=  for an initial condition 0 id fg = , where f is an attractor’s distribution. 

Through the computation of ε-committor functions, the basins of attractions can 

be estimated and generalized for random dynamical systems [37]. For parameter 

uncertainty, the collections ( )if   and ( )ig   can be used in the computation of 

means in the space ( ), , P  S , approximating the mean statistics of the global 

dynamics. 
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Theoretical and numerical developments for adaptative 

phase-space refinement 

In this chapter, adaptative procedures are developed within the set-oriented 

approach of the Ulam method for the global analysis of nonlinear dynamical 

systems with competing attractors. The stochastic basin of attraction definition by 

Linder and Hellmann [37] is adopted since it is, from the present point of view, 

the most natural with respect to the transfer operator’s theory. Alternatives are 

also proposed to hierarchically discretize the phase-space in the stochastic basin of 

attractions’ boundaries. The procedure to obtain basins and attractors in the mean 

sense of systems with parametric uncertainties is also presented. Finally, a 

comparison of two discretized phase-space structures is presented. 

 

3.1. 

Boundary and attractor refinement procedures: the deterministic and 

stochastic case 

The evaluation of the projected operators Ph, eq. (2.59) and Fh, eq. (2.62), 

involves a considerable number of time integrations when a Monte Carlo [37, 45] 

or quasi-Monte Carlo [180] strategy is employed. Thus, the discretized operators 

Ph and Fh converge weakly to the continuous operators t  and t , respectively, 

as h → 0 [180]. However, the phase-space discretization inserts a numerical 

diffusion in the dynamical system [37, 49, 51], which inevitably changes the 

dynamics to a certain degree. A remedy is to increase the resolution, but this 

would impact the computational cost significantly. 

A possible and efficient strategy is proposed here involving identifying 

regions for further discretization, taking advantage that the projection operator 
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hQ , eq. (2.57), is not limited to cells of equal size, but only to disjoint partitions. 

To start the process, a disjoint partition of the phase-space into k boxes, 

 1, ,i kb b= , is defined, covering the phase-space window of interest, . 

Also, the subindex  0,1, 2,i =  indicates the refinement level of the partition. A 

subset i i  is also defined, including the boxes in which the flow t  must be 

evaluated to construct the entries of Ph, eq. (2.59), or Fh, eq. (2.62). Initially, it is 

presumed that no information regarding the phase-space flow is known, and 

therefore the flow is evaluated in all boxes, thus 0 0 . Then, the transfer 

matrices 
( )i

hP  or 
( )i

hF  are calculated. The flow t  of selected initial conditions in 

each 
ib  is computed, and then the integrals in eq. (2.59) or (2.62) are 

approximated through the Monte-Carlo or quasi Monte-Carlo approach. 

The attractors’ distributions are calculated from the transfer matrix 
( )i

hP  or 

( )i
hF . Recall that 

( )i
hP  and 

( )i
hF  are (row) stochastic matrices, and the fixed 

distributions corresponding to the attractors are eigenvectors with eigenvalues 

equal to 1 [37]. Therefore, an eigenvalue problem, 
( ) ( ) ( )i i i

hf P f=  or 
( ) ( ) ( )i i i

hf F f= , 

must be solved. Since 
( )i

hP  and 
( )i

hF  are sparse, asymmetric in general, and 

indefinite, this is a difficult computational problem, requiring specialized 

algorithms. Additionally, the unitary eigenvalue has geometric multiplicity equal 

to the number of identified attractors in the partition i . This poses a difficulty 

for the definition of the eigenvectors since geometric multiplicity means that they 

are not uniquely defined. To address this issue, the methodology proposed in [33] 

is adopted to construct a meaningful fixed eigenvector space in the sense of the 

problem, i.e., composed of distributions 
( ) ( )

( )1
0, 1

i i

L
f f = . 

The basins of attraction 
( )i

g  are obtained next. Lindner and Hellmann [37] 

demonstrated that the basin structure is described by the fixed space of the 

Koopman operator t . Since this operator is approximated by the transpose of the 

discretized transfer operators, 
( ) ( )

T
i i

h hK P =
 

 or 
( ) ( )

T
i i

h hK F =
 

, the basins of 

attraction are the solutions to the dual eigenvalue problem 
( ) ( ) ( )i i i

hg K g= . The 
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distributions 
( )i

f  and basins of attraction 
( )i

g  are the left and right eigenvectors of 

( )i
hP , respectively, with unitary eigenvalues. Numerically, 

( )i
g  are obtained 

interactively or as a solution to an ill-conditioned linear problem. Starting from a 

known attractor distribution, the distribution function indicator, 
( )
0 id
i

fg = , is 

defined according to eq. (2.48). The interactive strategy consists in solving, 

recursively, the equation 
( ) ( ) ( )

1

i i i

k h kg K g+ =  until ( ) ( )
1

i i

k k
L

g g 
+ −  . In the limit, 

( ) ( )
lim

i i

k
k

g g
→

= . Therefore, the observable 
( )i
kg  converges to the basin of attraction 

of 
( )i

f . The alternative strategy is to calculate basins of attraction as ε-committor 

functions by solving the ill-conditioned linear system [37] 

( ) ( )( ) ( ) ( )1 id ,
i i

h fI P g  − − =  (3.1) 

as employed by Benedetti and Gonçalves in [96]. 

The functions 
( ) ( )i

g   are discretizations of functions ( )Ag   in eq. (2.34), 

where the latter is defined over continuous phase-spaces, and the former is defined 

over discretized phase-spaces. As previously stated, the limit 
( ) ( ) ( )

0
lim

i i
g g




→
=  

corresponds to the basin of attraction of 
( )i

f  in the classical sense, see section 2.4. 

Each component of 
( ) ( )0 1
i

jg    gives the probability that a trajectory initially 

in box jb  converges to the distribution 
( )i

f  at time 1  . The time defined by 1   

is the number of interactions of the transfer operator 
( )i

hP  or 
( )i

hF . It gives a useful 

generalization for basins of attraction, encompassing both deterministic and 

stochastic (noise-driven) cases. Transient effects can be considered, adopting 

distinct initial states of attractors’ distributions and/or 0  . The problem of 

parameter uncertainty will be discussed in the next section since the ε-committor 

function is not directly generalized to such cases. 

Once the distributions 
( )i

f  and basins of attraction 
( )i

g  are calculated, they 

can be used to identify and flag subdivision and flow recalculation boxes. The 

attractors’ phase-space locations tend to have a high-density value, identified by a 

large value in a component of 
( )i

f . Therefore, the heuristic constraint 
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( )
,

i

j ff c
 

(3.2) 

is adopted to identify such regions. This strategy is straightforward since it only 

depends on the computed density in the jth box, whereas strategies considering the 

local upper bound L1 error need information about neighboring boxes [184]. 

However, it does not clearly define when the process should stop, needing a 

threshold discretization level to finish the process. 

Regarding the basins’ boundaries, if a saddle’s stable manifold passes 

through a box jb , then there will be values between 0 and 1 in the jth element of 

one of the associated basins 
( )i

g . That is, trajectories passing through boxes jb  

can converge to distinct attractors. This effect is also known as numeric diffusion 

[183] for deterministic systems, caused by discretization. For nondeterministic 

systems, both numeric and real diffusion can happen, and such regions increase as 

the uncertainty increases. Therefore, a second constraint is defined, 

( ) ( ) ( )1 2
0 1,

i

g j gc g c   
 

(3.3) 

identifying boxes that can converge to more than one attractor with significant 

probability. Again, this strategy depends only on the computed basin in the jth box. 

Other methodologies consider the neighbor´s information [185], but are 

computationally more involved. To the authors' knowledge, there is no upper 

bound local error definition for basins analogous to the upper bound L1 error for 

densities, as presented in [184]. Therefore, a heuristic criterion to stop the 

subdivision strategy must be adopted. In the analyzed examples, the highest ith 

level is defined a priori. 

Figure 3.1 illustrates the selection and subdivision process where the 

disjoint set and the flow field at two subsequent refinement levels i (left) and i+1 

(right) are reported in the upper (a) and lower (b) parts, respectively. Figure 3.1(a) 

(left) presents the i-th partition, with the 
( )i
jb  attractor or boundary boxes identified 

through (3.2) or (3.3) marked in green. In the corresponding flow of Figure 3.1(b) 

(left), the red arrows are those to be recomputed in the next step, either because of 

being directed inward/outward of the green boxes to be subdivided or because of 

coming from neighboring boxes as colored in red in Figure 3.1(a) (left). The 

newly formed collection of boxes (in yellow in Figure 3.1(a) (right)) defines the 
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subset 1i+  in which the flow will be computed at level i+1. Together with the 

white boxes, they form the new partition 1i+ , with the redefined flow given by 

Figure 3.1(b) (right). Density and boundary boxes are again identified through 

(3.2) or (3.3) and the selection and subdivision process repeats. The proposed 

procedure is summarized in Table 3.1 

(a) 

  

(b) 

  

Figure 3.1 – (a) Disjoint sets 
i
(left) and 

1i+
(right). Left: boxes for subdivision in green, 

labelled as 
( )

0*
i

jb= , and preimage boxes in red. Right: subset of boxes 
1i+
 that will be 

computed, and child boxes 
( )1

1 2*
i

jb
+

=  and ( )1

2 2 1*
i

jb
+

+= . (b) Corresponding initial (left) and updated 

(right) flow fields. 

The phase-space subdivision algorithm is organized in a binary tree 

structure [32], where 
( )i
jb  at a certain level i is the parent box of its subdivided 

boxes 
( )1

2

i

jb
+

 and 
( )1

2 1

i

jb
+

+  at level i + 1, such that 
( ) ( ) ( )1 1

2 2 1

i i i

j j jb b b
+ +

+=   and 

( ) ( )1 1

2 2 1

i i

j jb b
+ +

+ = . Examples of this structure are depicted in Figure 3.1(a). This 

allows optimal storage, subdivision, and search of elements. This strategy was 

previously used in the software GAIO [43]. 

The proposed procedure refines important phase-space regions, where crude 

discretizations would result in significantly different outcomes and can be applied 
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to external or parametric excitation problems with noise. The fundamental 

hypothesis is that the sequence of transfer matrices 
( )i

hP  and 
( )i

hF  converge in the 

( )1L  space, formally denoted as 
( )

( )1
lim 0 

i

h t
i L

P
→

− =  and 

( )

( )1
lim 0 

i

h t
i L

F
→

− = , and that their transpose 
( )i
hK  converges in the ( )L

 

space, formally denoted as 
( )

( )
lim 0 

i

h t
i L

K
→

− = . 

Table 3.1 – Refinement algorithm for box space 

0. Construct collection 
0

 and partition 
0

 of phase-space ; set i = 0 

1. Update 
( )i

hP  or ( )i
hF  with the new collection 

i
 from partition 

i
 

2. 
Obtain invariant distributions (attractors) 

( )i
f  solving the eigenvalue problem 

( ) ( ) ( )i i i

hf P f=  or 
( ) ( ) ( )i i i

hf F f=  

3. Calculate basins of attraction 
( )i

g  of each distribution 
( )i

f  

4. If 
maxi i=  then finish, else continue  

5. 
Identify sets for subdivision, corresponding to basins boundaries, eq. (3.3), and attractors 

distributions, eq (3.2) 

6. Refine identified sets and construct new collection 
1i+
 and partition 

1i+
 

7. Set i = i + 1 and go to step 1 

 

3.2. 

Refinement procedure for parameter uncertainty 

Here, the procedure for obtaining the mean results for dynamical systems 

with parameter uncertainty is outlined. Since the aim is to deal with general 

nonlinear dynamical problems, sparse sampling strategies of the parameter space 

are not adequate, given that the dynamical system may depend strongly on it, 

particularly when close to bifurcation points, as shown by Le Maître and Knio 

[172]. Since the analysis is limited to bounded parameter spaces, only a window 

of the phase-space is considered in all cases. 

If a parameter set  1 2, , , n   =  is defined with a constant interval 

1i i   − = − , a continuous probability measure   can be discretized as  
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( ) ,
2 2

i i iP 

 
   

      
= −   +    

      

(3.4) 

resulting in a discretization of the continuous bounded parameter space 

 1 , n   −  +   . Therefore, the continuous probability space ( ), , S  

can be effectively substituted by the discrete probability space ( ), , P  S , where 

S  is a σ-algebra over  . The resulting problem is a collection of deterministic 

or stochastic dynamical systems, pondered by the discrete probability  

measure P . Finally, the algorithm in Table 3.1 is applied to all  , and statistics 

are computed according to P . The mean values are calculated according to the 

rectangle rule, 

( ) ( ) ( ) ( )
1

; ; ,

n

i i

i

f f x d f x P   

=

=      (3.5) 

where ( );f x  represents any dynamical structure dependent on the parameter  , 

such as attractors’ distributions, basins of attraction, or manifolds. Eq. (3.5) is an 

approximation of an integral by a weighted sum, a strategy that has been used in 

uncertainty quantification [172]. No continuation procedure is necessary if the 

discretization methodology covers the entire phase-space window, identifying all 

existing attractors (which is not always the case, in particular when one wants to 

“zoom” around certain attractors/basins of interest). It is only required to 

determine to which branch the identified attractors with a parameter i  belong. 

The distance between the distributions of two attractors is calculated 

through the Lukaszyk-Karmowski metric [186], 

( ) ( ) ( ) ( )
1 21 2, , ; ; ,A AD A A d x y f x f y dxdy =   (3.6) 

where the function d(x, y) is the distance between two points x and y in  and 

( );Af x  are the attractors’ distributions calculated by the subdivision algorithm 

given a parameter λ. A small D(A1, A2) value means that the attractors A1 and A2 

belong to the same branch. This choice has two justifications: first, the operator 

approach always results in a discrete distribution, even in the deterministic case, 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



81 

and second, this approach can theoretically be applied also to noise-induced 

dynamics. 

If a smaller phase-space window is adopted, attractors outside of it are 

flagged as escape solutions. Escape solutions are identified previously and do not 

enter in the metric calculation, eq. (3.6). Also, there is no distinction between 

escape solutions and attractors outside the window, and basin structures that do 

belong to those attractors are also flagged as escape solutions. This can be an issue 

if an attractor moves outside the phase-space due to the parameter variation, 

altering the resulting density and basin. 

The parameter space subdivision procedure takes advantage of the fact that 

bounded probability spaces can be, by definition, decomposed into a countable set 

of discrete points. It can be viewed as an extension of the Ulam method but with a 

general probability measure instead of the usual Lebesgue measure. Also, it can 

be generalized to multidimensional parameter spaces. Adaptative discretization of 

the parameter space can reduce the computational cost of the discretization 

refinement [172]. 

 

3.3. 

Modifications to the refinement algorithm for the discretization of 

stable and unstable manifolds 

Traditionally, a flow :  →  of a given dynamical system is assumed 

as a closed flow, that is, the density is conserved over time. This leads to the 

existence of constant distributions f given by eq. (2.37). The set of all linearly 

independent f that are solutions of eq. (2.37) defines the Perron-Frobenius fixed 

space, see [17, 42, 181–183]. 

The recent developments of Klünker et al. [187] demonstrated that the Ulam 

method could be applied to the analysis of the stable and unstable manifolds, 

structures that organize the flow in the phase-space [181]. From the discretized 

operator hP , an open flow system is defined by eliminating boxes bj with the 

probability of the flow returning to them equal to 1. Numerically, this can also be 

achieved by setting zero the jth lines and columns of hP , forming a new operator 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



82 

hP . Distinct from the closed system operator hP , this new operator hP  is a row-

substochastic matrix, with a constant outflow of densities [187]. This matrix 

governs all transient states in the phase-space , with density decaying to zero 

everywhere in a finite time. The spectrum of hP  contains the stable and unstable 

manifolds, obtained as the eigenvectors with real and positive eigenvalues smaller 

than one. They are solutions of the systems 

,hp pP =  (3.7) 

,hq P q =  (3.8) 

where the left-eigenvectors p (respectively right-eigenvectors q) with larger real 

part governs the unstable manifolds (respectively stable manifolds). The 

corresponding continuous set is obtained by considering a Markov operator t  as  

( ) ( )

 

1 1: ,

,

t o o

t

L L

f f

→
 (3.9) 

where 
o   is the phase-space minus the attractors’ regions, which are given 

by ( )fix t . The flow in o  is open, that is, there is a continuous outflow of mass 

from o  to ( )fix t . Similarly, the dual operator is defined as 

( ) ( )

 

: ,

.

t o o

t

L L

g g

 →
 (3.10) 

Instead of using only conditions (3.2) and (3.3), the p and q eigenvectors of 

the open flow operator hP  are considered as additional criteria for the subdivision 

strategy. To this end, the algorithm in Table 3.1 is modified, specifically after step 

5, where the sets for subdivision are identified, adding the construction of hP , the 

calculus of its left and right eigenvectors, and the selection of boxes for 

subdivision. 

The open flow operator hP  is constructed from the original operator hP  and 

its invariant distributions f. It should be observed that the original strategy in [187] 

assumes that attractor sets bj are such that ; . 1h j jP = , which is based only on the 
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discrete setting. However, it can miss periodic, quasi-periodic, and chaotic 

attractors, since, as demonstrated by Lasota and Mackey [17], and by Hsu [188], 

their distributions are spread over many sets bj, all with ; , 1h j jP  . This is also 

problematic for stochastic systems, where attractors are diffused over large 

regions of the phase-space, as shown by Sun and Hsu [24]. Therefore, the boxes 

that cover the entire support of the attractors’ distributions, ( )supp f , are 

considered, allowing other types of attractors to be analyzed. Still, it was observed 

that if f is too concentrated, then its vicinity could behave as a long transient in the 

discrete space, preventing the manifold identification. To prevent this, the 

preimages of f should be considered as well in the construction of hP . 

The process starts by verifying if a given distribution f is too concentrated. 

This is checked by the ratio between the distribution’s indicator function support 

and the total volume of the phase-space window, 

( )supp ,xf c dx   (3.11) 

where f f=  in the first iteration. If eq. (3.11) is true, then the attractor is not too 

concentrated in the discretized space. If it is false, then f  is backpropagated 

through the Koopman operator, that is, : hf f K= , and eq. (3.11) is evaluated 

again. This process repeats until the condition is satisfied. Then, the jth lines and 

columns of hP  corresponding to ( )supp f  are set to zero. All other entries of hP  

are identical to hP . The construction of hP  is summarized in Table 3.2. 

Table 3.2 – Construction of open flow discrete transfer operator 
( )i

hP  

0. Take 
( )i

f f=  

1. Evaluate eq. (3.11). If true, then go to 3, else continue 

2 Backpropagate f  through the Koopman operator, 
( )

:
i

hf f K= , and go to step 1 

3. Define 
( ) ( )i i

h hP P= . Then, set to zero its jth lines and columns corresponding to ( )supp f  
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Next, the eigenvectors p and q are calculated by solving the eigenvalue 

problems (3.7) and (3.8) for the largest real part of μ. Finally, boxes bj satisfying 

the inequalities  

,j pp c  (3.12) 

.j pq c  (3.13) 

are selected for subdivision. Table 3.3 presents the refinement algorithm. 

Table 3.3 – Modified refinement algorithm for box space 

0. Construct collection 
0

 and partition 
0

 of phase-space ; set i = 0; 

1. Update 
( )i

hP  or 
( )i

hF  with the new collection 
i
 from partition 

i
; 

2. 
Obtain invariant distributions (attractors) 

( )i
f  solving the eigenvalue problem 

( ) ( ) ( )i i i

hf P f=  or ( ) ( ) ( )i i i

hf F f= ; 

3. Calculate basins of attraction 
( )i

g  of each distribution 
( )i

f ; 

4. Construct 
( )i

hP  according to Table 3.2; 

5. 
Solve eq. (3.7) and eq. (3.8), then select the 

( )i
p  and 

( )i
q  eigenvectors with larger real 

part of eigenvalue μ; 

6. If 
maxi i=  then finish, else continue; 

7. Identify additional sets for subdivision that obey eq. (3.12) and (3.13); 

8. Refine identified sets and construct new collection 
1i+
 and partition 

1i+
; 

9. Set i = i + 1 and go to step 1. 

 

3.4. 

Use of r-trees for phase-space subdivision 

Here the efficiency of using r-trees to organize the phase-space subdivision 

instead of binary trees used in GAIO [43] is investigated. Consider a 

hyperdimensional phase-space, subdivided progressively from depth 0 (20 box) to 

the n depth (2n boxes). Assume that the number of initial conditions in each box 

depends on the depth level, being (n – i + 1)d for a binary tree, where 0 ≤ i ≤ n, 

and (n – d i + 1)d for a r-tree, where 0 ≤ i ≤ n/d, and d is the phase-space 
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dimension. The total number T of initial conditions in all phase-space at a given 

level is, for the binary tree, is given by 

( )2 1
di

bT n i= − +  (3.14) 

and is, for a r-tree, 

( )2 1 .
dd i

nT n di= − +  (3.15) 

The cumulative number CT of initial conditions is, for the binary tree, 

( )
0

2 1 ,

n
di

b

i

CT n i

=

= − +  (3.16) 

and is, for a r-tree, 

( )
/

0

2 1 .

n d
dd i

n

i

CT n di

=

= − +  (3.17) 

By comparing eq. (3.16) and (3.17), the most advantageous procedure in terms of 

the total initial conditions can be quantified. For this, the expression CTn/CTb is 

plotted for various d values in Figure 3.2. All curves converge to a fixed ratio as 

the level depth increases. This stabilized ratio decreases as the phase-space 

dimension increases, indicating that the use of r-trees is more advantageous for 

larger dimensions and a complex phase-space structure. 

 

Figure 3.2 – Evolution of the ratio between cumulative initial conditions of a binary tree and a r-

tree with the depth level, for various phase-space dimension values d 
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Archetypal oscillators 

In this section, to understand the influence of noise and uncertainties on the 

global dynamics of multistable systems, the single-degree-of-freedom Duffing and 

Helmholtz oscillators are chosen. Despite their simplicity, Duffing and Helmholtz 

oscillators exhibit a rich dynamical behavior and have been used to describe the 

nonlinear dynamics of many real-world nonlinear systems for a wide range of 

frequency bands and amplitude of the excitation. Kovacic and Brennan [164] 

published a detailed historical review of the Duffing oscillator and its nonlinear 

dynamics, highlighting its application in engineering, physics, astronomy, 

mathematics, computer sciences, etc. The Helmholtz oscillator has been 

extensively used for the analysis of escape from a potential well (escape 

equation), with interesting applications ranging from ship capsize [189] to 

structures liable to asymmetric buckling [113, 190]. Also, Duffing and Helmholtz 

oscillators have been extensively used as a didactic tool for the phenomenological 

analysis of nonlinear dynamical systems [191–193] and to model the dynamics of 

structural systems liable to buckling since the presence of quadratic and cubic 

nonlinearities allows the description of the potential functions associated to the 

basic types of bifurcation [194]. The deterministic global dynamics and dynamic 

integrity of these two oscillators were previously explored in [63, 64, 76] and their 

results are here used as benchmarks. A proper probabilistic interpretation of the 

nondeterministic global dynamics, explored in Chapter 2, is adopted together with 

the concepts and numerical tools presented in Chapter 3. In this chapter, the 

algorithm shown in Table 3.1 is implemented to hierarchically discretizes the 

phase-space through a binary tree and obtain the attractors and basins’ 

distributions. The computations are performed by an Intel Core i7-7700HQ with 

eight logical processors of 2.8GHz, and the total available RAM is 24GB. The 

algorithm performance is measured by the reduced number of phase-space boxes, 

which is the primary cost in the computations. Total time was not evaluated, since 
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a parallel implementation with openMP (https://www.openmp.org/) was 

considered for the integration of the initial conditions. 

 

4.1. 

Helmholtz oscillator with harmonic excitation 

The first example consists of the standard dimensionless form of the 

damped harmonically excited Helmholtz oscillator, 

( ) 2 sin .x x x x A t sW   + + + + =  +  (4.1) 

where α is the mean linear stiffness value, the random variable λ is a truncated 

standard normal with density f(λ;0,1,-3,3), σ is a scaling factor, W  is a standard 

white noise process, and s is the noise standard deviation. Thus, the system is 

deterministic for σ = 0 and s = 0. For a normal distribution, the density decreases 

in a regular way with distance from the mean, most probable value. One 

drawback, however, is that it supplies a positive probability density to every value 

in (−∞, +∞), although the actual probability of an extreme event will be very low. 

In most cases, based on design codes and experimental values, the range of a 

given parameter is bounded. A mathematical way to preserve the main features of 

the normal distribution while avoiding extreme values is achieved by adopting a 

truncated normal distribution, in which the range of definition is finite at one or 

both ends of the interval [195]. 

The Helmholtz oscillator has one potential well, with two different classes 

of oscillations, bounded periodic nonlinear oscillations within the well and 

unbounded nonperiodic solutions [63]. This is a useful archetypal model, 

presenting escape, basin erosion, and integrity loss, and may describe the behavior 

of various dynamical systems. See, for example, [10, 113, 189, 190]. The values 

in Table 4.1 are adopted, resulting in three possible outcomes, a small amplitude 

oscillation, a large amplitude oscillation, and escape solutions [63]. 

  

https://www.openmp.org/
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Table 4.1 – Helmholtz oscillator parameters 

Parameter Value 

α -1 

λ ( );0,1, 3,3f  −  

β 1 

δ 0.1 

Ω 0.81 

 

Based on [63], the adopted phase-space window is    0.7,1.8 1,1= −  − . 

The initial box partition is defined as a division of 25 in each dimension, totaling 

32x32 = 1024 boxes of size {0.0781, 0.0625}, with one additional sink box that 

attracts the escape solutions. The procedure is conducted through 10 steps, with a 

final box size of {0.0024, 0.0020}. Also, the number of initial conditions per box 

depends on the box size, decreasing with refinement. The number of collocation 

points for each level is presented in Table 4.2. The usual Perron-Frobenius 

operator governs the phase-space distributions for the deterministic case, thus eq. 

(2.59) is considered. The fourth-order Runge-Kutta method is adopted for the 

construction of the flow 
T , with time-step T/200, where T = 2π/Ω and Ω is the 

forcing frequency. 

Table 4.2 – Discretization data for the Helmholtz oscillator  

Depth level Box-size Points per dimension Total collocation points 

10 {0.0781, 0.0625} 12 144 

11 {0.0391, 0.0625} 11 121 

12 {0.0391, 0.0313} 10 100 

13 {0.0195, 0.0313} 9 81 

14 {0.0195, 0.0156} 8 64 

15 {0.0098, 0.0156} 7 49 

16 {0.0098, 0.0078} 6 36 

17 {0.0049, 0.0078} 5 25 

18 {0.0049, 0.0039} 4 16 

19 {0.0024, 0.0039} 3 9 

20 {0.0024, 0.0020} 2 4 

 

The evolution of basins of attraction of the small and large amplitude 

solution as a function of the excitation magnitude ( )[0.05,0.08]A  is shown in 

Figure 4.1 (nonresonant attractor) and Figure 4.2 (resonant attractor), respectively. 

The attractors are marked in red. The black region corresponds to attractors 

distinct from the one being displayed, including escape solutions. The color scale 
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differentiates regions converging to the depicted attractor from probability zero to 

probability one. There is only one attractor for A = 0.05 (yellow basin). As 

expected for the deterministic case, the probability is either zero or one, with the 

exception of the folded fractal, see Figure 4.1(c, d) and Figure 4.2(c, d), where 

regions close to the boundaries have values between zero and one, since initial 

conditions in the same cell may, due to their finite size, converge to one of the two 

attractors or escape. After the emergence of the large amplitude attractor in the 

resonant region, the evolution of the basins’ boundaries shows increasing 

competition. The loss of integrity of the basins with increasing load is clarified by 

the decreasing area. The algorithm has shown to be robust enough to discretize the 

boundaries in highly fractal and intertwined basins, as observed in Figure 4.1(d) 

and Figure 4.2(c). The set of initial conditions outside the two coexisting basins 

corresponds to solutions diverging to infinity [63]. 

  
(a) A = 0.05 (b) A = 0.06 

  
(c) A = 0.07 (d) A = 0.08 

Figure 4.1 – Evolution of the Helmholtz oscillator small amplitude attractor’s basin (color bar) 

with the forcing magnitude 
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(a) A = 0.06 

  
(b) A = 0.07 (c) A = 0.08 

Figure 4.2 – Evolution of the Helmholtz oscillator large amplitude attractor’s basin (color bar) 

with the forcing magnitude 

Figure 4.3 presents the final box partition, 
20

, for an increasing excitation 

amplitude. It is evident that more boxes are needed to discretize the boundaries as 

the basin topology becomes more intricate. The partitions from level 10 up to 15 

are depicted in Figure 4.4 for A = 0.06 to demonstrate the refinement procedure. 

Green boxes satisfy one of the conditions (3.2) and (3.3), being either boundary 

boxes or attractor boxes. Specifically, the distribution threshold of eq. (3.2) is 

adopted as 
1010fc −= , while the boundary thresholds of eq. (3.3) are calculated as 

( )1
min 0.03gc g g= +   and 

( )2
max 0.01gc g g= −  . This permits the boundary 

thresholds to be subdivided, allowing long transient solutions due to crude initial 

discretization to be refined as well. For example, in Figure 4.4, the thresholds for 

the escape basin and the nonresonant basin are (0.03; 0.99) for all levels, while the 

resonant basin has (0.0299; 0.9874) at level 10 and (0.0201; 0.6635) at level 11, 

only attaining the limits (0.03; 0.99) for higher levels of discretization. For 

discretization levels equal to or lower than 11, the eigenvalues of Ph show that the 

resonant solution behaves as a long transient solution. This could lead to the 
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wrong assumption that there is no resonant solution unless the analysis proceeds 

to higher discretization levels. 

  
(a) A = 0.05, 16489 boxes (b) A = 0.06, 46186 boxes 

  
(c) A = 0.07, 203564 boxes (d) A = 0.08, 202561 boxes 

Figure 4.3 – Dependence of the final partition 
20

 of the Helmholtz oscillator as 

a function of the excitation magnitude A 

In Figure 4.4, red boxes are preimages of the green boxes, recalculated in 

each subsequent step, as explained in Section 3.2. The partition refinement is 

conducted by subdividing green boxes, thus locally refining the phase-space near 

attractors and boundaries. As the algorithm progresses, the green boxes 

concentrate at the basins’ boundary and the attractor, refining these regions in the 

phase-space, as desired. Finally, the total box count for each depth level and 

A = 0.06 is given in Table 4.3. A comparison of the current box count with a full 

discretization at a given level (maximum box count) is shown, with the last 

column representing the computational economy defined as the ratio between the 

maximum-to-current box count difference and the maximum box count. Lower 

economy values imply higher computational costs. This economy increases with 

the depth level, being over 90% from level 18 onwards. 
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(a) 
10

 (b) 
11

 

  

(c) 
12

 (d) 
13

 

  

(e) 
14

 (f) 
15

 

Figure 4.4 – Interactive partition evolution of the Helmholtz oscillator for A = 0.06. 

Green: cells for subdivision, red: cells for recalculation 
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Table 4.3 – Box count for the deterministic Helmholtz oscillator for A = 0.06 

Depth level 
Current box 

count 

Maximum box 

count 
Percentual Economy 

10 1024 1024 100.00% 0% 

11 1906 2048 93.07% 6.93% 

12 3596 4096 87.79% 12.21% 

13 4756 8196 58.03% 41.97% 

14 6426 16384 39.22% 60.78% 

15 8712 32768 26.59% 73.41% 

16 12104 65536 18.47% 81.53% 

17 16940 131072 12.92% 87.53% 

18 23816 262144 9.09% 90.91% 

19 33322 524288 6.36% 93.64% 

20 46186 1048576 4.40% 95.60% 

 

4.1.1. 

Effects of parameter uncertainty 

Before the influence of the parameter uncertainty is addressed, it is 

advantageous to understand the implications of considering an uncertain 

parameter near a bifurcation point. To this end, Figure 4.5 presents both the 

dependency of the stable responses on varying stiffness parameter α for the 

excitation magnitude A = 0.06 and the normalized probability distributions of 

α + σ λ. There is a clear interval of α where the resonant and nonresonant 

responses coexist. Two saddle-node bifurcations limit the interval, with two 

possible jumps for a continuous change of α, forming a hysteretic cycle. Only one 

of the responses exists outside this region, the resonant for α < -1.1 and the 

nonresonant for α > -0.92. Three cases are chosen to investigate the influence of 

parameter uncertainty, varying the standard deviation σ. For σ < 0.04, the 

probability of α + σ λ being outside of the hysteresis cycle is negligible. However, 

for σ ≥ 0.04, the uncertainty’s effect on the results cannot be neglected. This is 

illustrated in Figure 4.6 where bifurcation diagram probability densities for 

varying values of the scaling parameter σ are shown. They are obtained through a 

Monte Carlo analysis of the Helmholtz oscillator considering 10000 initial 

conditions uniformly distributed over the phase-space  for A = 0.06 using the 

Poincaré section at t = 1000T. For comparison purposes the bifurcation path of the 

deterministic system is plotted in grey. For σ = 0.01 already a small region in the 
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middle of the hysteretic cycle is affected by the uncertainty. As σ increases, the 

influence of uncertainty increases (see color bar), and at σ = 0.03 its influence is 

observed already beyond the hysteretic cycle, demonstrating the influence of the 

uncertainty on the two saddle-node bifurcations and consequently on the 

bifurcation values.  

 

Figure 4.5 – Bifurcation diagram of the Helmholtz oscillator as a function of the stiffness 

parameter α and A = 0.06 and the normalized probability distributions of α + σ λ for selected 

values of the scaling parameter σ 

   
(a) σ = 0.01 (b) σ = 0.02 (c) σ = 0.03 

   
(d) σ = 0.04 (e) σ = 0.05 (f) σ = 0.06 

Figure 4.6 – Bifurcation diagram probability densities estimated from a Poincaré section at 

t = 1000T using 100000 trajectories of the Helmholtz oscillator uniformly distributed over  for 

A = 0.06 and varying values of the scaling parameter σ 

The parametric analysis of the influence of parameter uncertainty on the 

global dynamics is conducted through partition levels 10 to 18 (see Table 4.2), 
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alleviating the computational cost without compromising the quality of the result. 

The parameter space is discretized into 30 values, and the mean basins of 

attraction and mean attractors’ densities are calculated through weighted sums, see 

Section 3.2. Since the system is deterministic for a fixed parameter value, the 

same time integrator of the previous analysis is considered, i.e., the fourth-order 

Runge-Kutta method with time-step T/200. This process is conducted in all the 

following analyses of systems with parametric uncertainty. 

Figure 4.7 and Figure 4.8 presents the mean distributions (first color bar) 

and basins (second color bar) for increasing levels of the scaling parameter  , 

demonstrating the effect of the probability distribution on the results. According 

to the adopted color scheme, the response for a set of initial conditions will 

converge to the expected attractor in the mean sense. The first and second 

columns refer to the small and large amplitude coexisting solutions, respectively. 

The effect of uncertainty is small for σ = 0.01, with only a slight spreading of both 

the attractors’ distributions and their basins’ boundaries. The latter concentrates 

near the saddle that is connected to the basin boundary. Furthermore, basins 

regions with a probability equal to one (yellow) almost coincide with the 

deterministic result. As the scaling parameter increases, the attractor distribution 

elongates (it is a one-dimensional structure embedded in the phase-space, an 

expected result according to the bifurcation diagram, Figure 4.5 and Figure 4.6) 

and approaches the boundary. The uncertain basin regions spread over the phase-

space, and for σ ≥ 0.05, there is no region with a probability equal to one to 

converge to the resonant attractor in the mean sense. The probability is lower than 

0.8 for σ = 0.06. Also, the nonresonant basin with a probability equal to one 

decreases steadily, indicating a decrease in its dynamic integrity. 
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(a.1) σ = 0.01, nonresonant (a.2) σ = 0.01, resonant 

  
(b.1) σ = 0.02, nonresonant (b.2) σ = 0.02, resonant 

  
(c.1) σ = 0.03, nonresonant (c.2) σ = 0.03, resonant 

  
(d.1) σ = 0.04, nonresonant (d.2) σ = 0.04, resonant 

Figure 4.7 – Helmholtz oscillator mean attractor distributions (first color bar) and mean basins of 

attraction (second color bar) for A = 0.06 and small to moderate values of the scaling parameter σ 
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(a.1) σ = 0.05, nonresonant (a.2) σ = 0.05, resonant 

  
(b.1) σ = 0.06, nonresonant (b.2) σ = 0.06, resonant 

Figure 4.8 – Helmholtz oscillator mean attractor distributions (first color bar) and mean basins of 

attraction (second color bar) for A = 0.06 and large values of the scaling parameter σ 

   
(a) σ = 0.01 (b) σ = 0.02 (c) σ = 0.03 

Figure 4.9 – Dependence of the final partition 
18

 of the Helmholtz oscillator’s mean fields as a 

function of the scaling parameter σ for A = 0.06 

The final box set for the three initial scaling parameters is given in Figure 

4.9, corresponding to the deepest level of all 30 λ-values for each σ-value. Table 

4.4 presents a comparison of the total box count for all σ-values. As the 

uncertainty parameter increases, the discretization procedure results in an 

increasing number of boxes, implying that the computational cost also increases 

with σ, as confirmed by the final box-counting. For σ ≥ 0.03, the final box 

counting does not change much since almost all potential well is discretized to the 
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deepest level. The computational efficiency decreases, as expected, as σ increases, 

since higher σ-values result in larger basin areas with a probability smaller than 

one, which requires a more refined discretization. A significant economy would 

be observed if deeper levels were considered in such cases. However, the 

probability space should also be refined; otherwise, the results would not improve 

quality. 

Table 4.4 – Box count for the Helmholtz oscillator with uncertainty at level 18 for A = 0.06 

σ 
Current 

box count 

Maximum box 

count 
Percentual Economy 

0.01 43666 262144 16.66% 83.34% 

0.02 74299 262144 28.34% 71.66% 

0.03 91422 262144 34.87% 65.13% 

0.04 95003 262144 36.24% 63.76% 

0.05 97649 262144 37.25% 62.75% 

0.06 105205 262144 40.13% 59.87% 

 

Figure 4.10 shows the variation of the Helmholtz oscillator normalized 

basins’ areas as a function of the scaling parameter σ for A = 0.06 and selected 

probability thresholds, quantifying the integrity of the system with parameter 

uncertainty. The weighted normalized basins’ areas are computed as 

  ( ),1
id

,
p

g gdx

dx




 (4.2) 

where g is a stochastic basin of attraction,   ( ),1
id

p
g  is an indicator function, 

which is equal to 1 if  ,1g p  and zero otherwise, and p is the probability 

threshold, between 0 and 1. In the deterministic limit (no uncertainty or noise and 

infinite resolution), the function g is an indicator function of the basin and eq. 

(4.2) reduces to the global integrity measure (GIM) [77]. This expression is a 

particular case of eq. (44) presented in [37], with ( )pert x  as a uniform density 

over the phase-space window . 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



99 

  
(a) nonresonant (b) resonant 

Figure 4.10 – Variation of the Helmholtz oscillator basins area as a function of the scaling 

parameter σ for A = 0.06, showing various probability thresholds (color bar) 

A probability threshold close to 1 is a conservative selection in terms of 

evaluation of the actual integrity, while a threshold of 0 would provide the area of 

the entire phase-space . Of course, a probability threshold close to 1 actually 

corresponds to the maximal integrity only for vanishing parameter uncertainty 

( = 0), i.e., in the deterministic case. When the parameter uncertainty increases, 

the probability one conservative threshold provides notably reduced values of 

integrity, with the correspondingly higher ones being attained only with 

probability thresholds that are meaningfully lower (and thus not conservative). 

This result shows the importance of such analysis since real applications will 

almost-sure present a parametric variability. 

Finally, Figure 4.11 presents a validation of the obtained results. Figure 

4.11(a) shows the probability density estimated using a Monte Carlo experiment 

considering 100000 initial conditions uniformly distributed over the phase-space 

window with σ = 0.04. Each response is integrated up to t = 1000T, demonstrating 

the influence of the parameter uncertainty on the Poincaré sections of the two 

attractors. The results agree with the attractors’ distributions, Figure 4.11(b), and 

the bifurcation diagram with respect to the support of the uncertainty parameter α, 

Figure 4.11(c), in terms of the attractor shape (plane curves), size, and probability 

distribution, thus matching the operator results and ratifying the present 

methodology. 
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(a) (b) 

 
(c) 

Figure 4.11 – (a) Probability density estimated from a Poincaré section at t = 1000T using 100000 

trajectories of the Helmholtz oscillator initially uniformly distributed over , (b) attractors’ mean 

distributions and (c) bifurcation diagram for A = 0.06 and σ = 0.04 

4.1.2. 

Effects of additive white noise 

The noise-induced dynamics is now investigated. The same time-integration 

parameters are adopted. However, the noise requires specialized integrators, so a 

fourth-order Runge-Kutta with half stochastic order is adopted for the 

construction of the flow 
T  [96], with time-step T/200, where T = 2π/Ω, and Ω is 

the forcing frequency. The transfer matrix of the noise-driven system is the Foias 

operator, and the projected operator is given by eq. (2.62). The probability integral 

in eq. (2.62) is solved by the Monte-Carlo method. Ten noise samples for each 

initial condition in each box are considered to calculate the discretized transfer 

operator Fh. Again, a sink box is defined to attract escape solutions. 
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(a.1) s = 0.002, nonresonant (a.2) s = 0.002, resonant 

  
(b.1) s = 0.004, nonresonant (b.2) s = 0.004, resonant 

Figure 4.12 – Influence of increasing white noise standard deviation s on the stochastic basins of 

attraction (second color bar) and attractors distribution (first color bar) 

of the Helmholtz oscillator for A = 0.06. Nonresonant vs resonant 

Figure 4.12 shows the results for the standard deviations s = 0.002 and 

s = 0.004. The influence of noise on the basin boundary is small. The basin 

structures present a pattern similar to the mean parameter results, with uncertainty 

associated with initial conditions only close to the boundaries. The crucial 

difference is the diffusion in the attractors’ distributions over the phase space as 

the standard deviation increases. Again, the resonant solution is more affected 

than the nonresonant one, with the attractor spreading over a larger area and 

approaching the basin boundary, thus indicating a decrease in its dynamic 

integrity and possible disappearance of this attractor under increasing noise. For 

s = 0.006, the resonant solution is destroyed, see Figure 4.13(a), and only the 

nonresonant solution and basin remain, including all initial conditions occupied 

previously by the two coexisting basins, indicating a sudden but localized increase 

in its dynamic integrity. Indeed, as the noise intensity increases even further, see 

results for s = 0.010, initial conditions initially in the resonant region start to 

escape, as indicated by the gray area in Figure 4.13(b.2), which corresponds to the 
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area with a probability lower than one in Figure 4.13(b.1). In Figure 4.12 and 

Figure 4.13, the steady spreading of the nonresonant attractor with the white noise 

standard deviation is observed. 

  
(a.1) s = 0.006, attractor (a.2) s = 0.006, escape 

  
(b.1) s = 0.010, attractor (b.2) s = 0.010, escape 

Figure 4.13 – Influence of increasing white noise standard deviation s on the stochastic basins of 

attraction (second color bar), attractors distribution (first color bar), and escape regions (third 

color bar) of the Helmholtz oscillator for A = 0.06. Bounded attractor vs escape 

  
(a) nonresonant (b) resonant 

Figure 4.14 – Time responses and power spectrum of the Helmholtz oscillator for A = 0.06 and 

s = 0. Nonresonant initial condition: (1.0; 0.13), resonant initial condition: (0.3; -0.13) 
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(a.1) s = 0.002, nonresonant (a.2) s = 0.002, resonant 

  
(b.1) s = 0.004, nonresonant (b.2) s = 0.004, resonant 

Figure 4.15 – Power spectrum of the Helmholtz oscillator for A = 0.06 and varying noise 

intensity. Light gray: 10 sample solutions; black: sample mean solution. Nonresonant initial 

condition: (1.0; 0.13), resonant initial condition: (0.3; -0.13) 

  
(a) s = 0.006, nonresonant (b) s = 0.010, nonresonant 

Figure 4.16 – Power spectrum of the Helmholtz oscillator for A = 0.06 and increasing noise 

intensity. Light gray: 10 sample solutions; black: sample mean solution. Nonresonant initial 

condition: (1.0; 0.13) 

The effect of noise on time responses and power spectrums is now 

addressed. For comparison, Figure 4.14 shows the deterministic case, with 

A = 0.06 and s = 0, for both attractors. Both power spectrums present peaks at the 

fundamental excitation frequency, ω = 0.81, and their super harmonics. The 

resonant solution, Figure 4.14(b), presents a richer spectrum with a higher number 

of excited harmonics. Figure 4.15 displays, for s = 0.002 and s = 0.004, the 

sample means, in black, and ten sampled time responses, in grey. The results 

show that the white noise masks the higher harmonics with a smaller power 

output of individual samples while they are still present, although with reduced 

power, in the sample means. The nonresonant results for s = 0.006 and s = 0.010 

are displayed in Figure 4.16. The effect of increasing noise is observed, masking 

both the fundamental frequency and its harmonics. The resonant attractor for these 

cases is destroyed, as demonstrated by the basins of attraction in Figure 4.13, and, 

therefore, it does not have a stationary power spectrum. 

The loss of stability of the resonant solution is identified by the eigenvalues 

of Fh slightly less than one. They correspond to long-transient solutions, that is, 

solutions that take a long time to converge to a given attractor. The influence of 
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noise on the transient responses can be observed in Figure 4.17. For small noise 

intensity, s = 0.006, the resonant solution takes a rather long time to converge to 

the nonresonant solution, see Figure 4.17(a). This corresponds to an eigenvalue of 

Fh with a value of almost one. The obtained value for the corresponding case, 

Figure 4.13(a), is 0.999990835. For s = 0.010, the convergence time is reduced. 

However, the resonant attractor can converge to either the nonresonant solution, 

Figure 4.17(b), or escape, Figure 4.17(c), with different probabilities. Again, this 

result corresponds to the one observed in the basin analysis, Figure 4.13(b). The 

eigenvalue is smaller, with a value of 0.993246847, corroborating the observed 

convergence time reduction. 

   
(a) s = 0.006, resonant to 

nonresonant 

(b) s = 0.010, resonant to 

nonresonant 

(c) s = 0.010, resonant to 

escape 

Figure 4.17 – Helmholtz oscillator’s resonant attractor long-time transient response due to high 

noise intensity for A = 0.06. Resonant initial condition: (0.3; -0.13) 

As shown by the previous results, the noise leads to uncertainty along the 

basin boundary, where the probability is less than one. As in the deterministic 

case, the transient noisy response becomes longer as initial conditions are further 

away from the attractor. The time-dependency of the basins of attraction is 

demonstrated in Figure 4.18 for A = 0.06 and s = 0.010. Values of ε ≈ 1 

(respectively, ε ≈ 0) correspond to a small (respectively, large) time-horizon, 

identifying regions where the time response converges in the mean sense to a 

given attractor after a small-time (respectively, large-time) interval. This 

corresponds to a small region surrounding the attractor, see Figure 4.18(a.1, a.1). 

As ε decreases, the time-horizon increases, and the obtained basin approaches its 

maximum size asymptotically. This is clear in Figure 4.18(a.2, a.3) and Figure 

4.18(c.2, c.3), where the basin stabilizes at its final configuration. For this noise 

intensity, there is no resonant attractor in the classical sense, with solutions 

decaying to the nonresonant attractor or escaping. Figure 4.18(b) demonstrates 
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what happens with the resonant region. Initially, solutions converge to the region 

where the resonant attractor exists for lower noise intensities, as demonstrated by 

the increase in basin area from Figure 4.18(b.1) to Figure 4.18(b.2). However, for 

large time-horizons, the supposed resonant basin decays to zero, see Figure 

4.18(b.3). To obtain the asymptotic basin of attraction for this noise level with 

methods based on time integration, the number of periods of integration would be 

prohibitively large. Also, if time-horizons smaller than 1e4 (ε > 1e-4) are 

considered, the resonant region would mistakenly be considered as a basin, being, 

in fact, a set of initial conditions with a long transient. 

   
(a.1) ε = 0.5, attractor (a.2) ε = 0.1, attractor (a.3) ε = 1e-4, attractor 

   
(b.1) ε = 0.5, resonant region (b.2) ε = 0.1, resonant region (b.3) ε = 1e-4, resonant region 

   
(c.1) ε = 0.5, escape (c.2) ε = 0.1, escape (c.3) ε = 1e-4, escape 

Figure 4.18 – Dependency of the stochastic basin of attraction (color bars) on the final time-

horizon 1/ε for A = 0.06, s = 0.010 

Long transients lead to large computation time to obtain the asymptotic 

response by usual time integration techniques. However, the proposed phase-
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space subdivision procedure can identify and separate these solutions from the 

true asymptotic behavior. Figure 4.19 contains the corresponding eigenmeasure 

for the resonant solution, which, however, is not strictly a distribution but a long 

transient. This is shown in Figure 4.19(b), where negative (blue) and positive 

(red) regions, each with absolute value 0.5f = , are separated, the former 

representing regions where the solutions stay for a long time before decaying to 

the permanent nonresonant attractor, in red, or escape, as already observed in the 

basins of attraction, Figure 4.13(b) and in the time responses, Figure 4.17(b, c). 

Indeed, according to Dellnitz and Junge [33], there are two scenarios where 

almost invariant sets can be observed. The first case occurs when cyclic 

components of a periodic attractor collide. Specifically, the cyclic components’ 

eigenvalues change from an absolute value of one to less than one. Only one 

attractor is involved in this process, changing its periodicity to an almost 

periodicity. The second case refers to the collision of two or more attractors, with 

at least one of them changing its eigenvalue from an absolute value of one to less 

than one. The attractor whose eigenvalue changes, loses stability, exhibiting a 

long transient solution. In this example, the resonant attractor loses stability by 

colliding with different probabilities (see Figure 4.18(a, c) for long time-horizons) 

with both the nonresonant attractor and the escape solution. A possible triple 

collision between the three distinct solutions, after which only two remain stable, 

may also occur for a very specific (i.e., coincident) probability value. 

The proposed measure to quantify the system’s integrity under various noise 

intensities is presented in Figure 4.20, for ε = 1e-8. Again, for each attractor, the 

measure is computed according to eq. (4.2). The nonresonant attractor resilience 

against the noise and the resonant attractor integrity loss for s ≥ 0.006 are clearly 

observed. Therefore, the proposed procedure can be used to quantify the influence 

of noise on any integrity measure. 

Figure 4.21 presents a comparison with a Monte Carlo experiment. The 

probability density estimated through 10000 initial conditions uniformly 

distributed over the phase-space window with s = 0.004 integrated up to 

t = 100000T is presented in Figure 4.21(a). The black areas represent high-density 

regions. They agree with the attractors’ distribution, Figure 4.21(b), obtained from 

the proposed methodology, validating the present strategy. 
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(a) absolute value 
(b) negative (blue) and positive (red) 

distributions 

Figure 4.19 – Helmholtz oscillator’s almost permanent eigenmeasure for A = 0.06, s = 0.010 

  
(a) nonresonant (b) resonant 

Figure 4.20 – Variation of the Helmholtz oscillator basins area as a function of the noise intensity 

s for A = 0.06, showing various probability thresholds (color bar). Time-horizon 1/ε = 1e8 

  
(a) (b) 

Figure 4.21 – (a) Probability density estimated from a Poincaré section at t = 100000T of 10000 

trajectories of the Helmholtz oscillator initially uniformly distributed over , (b) attractors’ mean 

distributions for A = 0.06 and s = 0.004 
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4.2. 

Duffing oscillator with harmonic excitation 

The second example consists of the standard dimensionless form of the 

damped harmonically excited Duffing oscillator, 

( ) 3 cos .x x x x A t sW   + + + + =  +  (4.3) 

Depending on the values of α and β, the Duffing oscillator can display different 

potential functions, ( )x , describing different classes of structural problems. For 

β > 0, a single-well potential is obtained for α > 0 and a double-well potential for 

α < 0. For β < 0 and α > 0, there is a single-well and two maxima leading to 

escape, while for α, β < 0, only escape solutions occur (unstable system). Thus, it 

is a good archetypal model, representing cases with competing potential wells, 

periodic to chaotic solutions, unbounded nonperiodic solutions, basin erosion, and 

loss of integrity. Initially, two cases are considered, Duffing with parameter 

uncertainty and noise. The adopted values for parameter uncertainty are obtained 

from [64] and summarized in Table 4.5. It represents a case with two potential 

wells and, depending on the forcing magnitude A, small and large amplitude 

solutions, multiple periodic solutions, chaotic solutions, and cross well 

oscillations can be obtained. The random variable   is a truncated standard 

normal with density f(λ;0,1,-3,3), and σ is a scaling parameter. Noise is also 

considered, where W  is a standard white noise process, and s is the noise standard 

deviation. For σ = 0 and s = 0, the system is deterministic. 

Table 4.5 – Duffing oscillator parameters for parameter uncertainty analysis 

Parameter Value 

α -0.5 

λ ( );0,1, 3,3f  −  

β 0.5 

δ 0.1 

Ω 0.8 

 

The investigated phase-space window is    2,2 1.1,1.1= −  − . The 

initial box partition is defined as a division of 26x25 = 2048 boxes of size 

{0.0625, 0.0688}, at depth level 11. The procedure is conducted through 6 steps, 
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with a final box of size {0.0078, 0.0086}. Table 4.6 presents the discretization 

data together with the total of collocation points at each level. 

Table 4.6 – Discretization data for the Duffing oscillator  

Depth level Box-size Points per dimension Total collocation points 

11 {0.0625, 0.0688} 11 121 

12 {0.0625, 0.0344} 10 100 

13 {0.0313, 0.0344} 9 81 

14 {0.0313, 0.0172} 8 64 

15 {0.0156, 0.0172} 7 49 

16 {0.0156, 0.0086} 6 36 

17 {0.0078, 0.0086} 5 25 

 

The Perron-Frobenius operator governs the phase-space distribution. Thus 

eq (2.59) is used for the deterministic case. The influence of the forcing 

magnitude is illustrated in Figure 4.22 to Figure 4.24. For A = 0.035, Figure 4.22, 

only two solutions are observed (attractors identified by a red dot), one in each 

well, with the basins of attraction displaying smooth boundaries. The final phase-

space subdivision demonstrates that indeed attractors and boundaries are refined. 

For A = 0.060, Figure 4.23, and A = 0.065, Figure 4.24, four attractors are 

identified, one resonant and one nonresonant attractor in each well. As the forcing 

magnitude increases and the new attractors appear, the basins become more 

convoluted with long thin tails with probabilities between 0 and 1 due to the 

discretization, suggesting that smaller boxes must be employed for the correct 

representation of the complex basin structure in these regions. 

  
(a) left potential well (b) right potential well 

Figure 4.22 – Basins of attraction (color bar) of the deterministic Duffing oscillator for A = 0.035 
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(a) left potential well, resonant attractor (b) right potential well, resonant attractor 

  
(c) left potential well, nonresonant attractor (d) right potential well, nonresonant attractor 

Figure 4.23 – Basins of attraction (color bar) of the deterministic Duffing oscillator for A = 0.060 

The dependency of the final partition 
17

 with A is demonstrated in Figure 

4.25. It is evident that the procedure indeed refines the regions close to the basins’ 

boundaries. However, cases where the boundaries are not localized still present a 

major computational difficulty. Figure 4.25(b) and Figure 4.25(c) are cases where 

basins become more convoluted due to the horseshoe effect with intertwined 

tongues. For these cases, large regions of the phase-space needed to be 

discretized, increasing the computational cost. A quantification of this cost is 

given in Table 4.7. Specifically, the last column shows the ratio between the 

maximum-to-current box count difference and the maximum box count. Lower 

values imply higher computational costs, as demonstrated by the last cases. 
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(a) left potential well, resonant attractor (b) right potential well, resonant attractor 

  
(c) left potential well, nonresonant attractor (d) right potential well, nonresonant attractor 

Figure 4.24 – Basins of attraction (color bar) of the deterministic Duffing oscillator for A = 0.065 

   
(a) A = 0.035 (b) A = 0.060 (c) A = 0.065 

Figure 4.25 – Dependence of the final partition 
17

 of the deterministic Duffing oscillator as a 

function of the amplitude of excitation A 

Table 4.7 – Box count for the deterministic Duffing oscillator at level 17 

A 
Current box 

count 

Maximum box 

count 
Percentual Economy 

0.035 19712 131072 15.04% 84.96% 

0.060 57492 131072 43.86% 56.14% 

0.065 96096 131072 73.32% 26.68% 
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4.2.1. 

Effects of parameter uncertainty 

Now the influence of uncertainty in the stiffness parameter of the Duffing 

oscillator is investigated. Figure 4.26 shows the bifurcation diagram as a function 

of the parameter α for A = 0.06 and the normalized probability distributions of 

α + σ λ for three values of σ. There are two pairs of attractors (in blue and red) 

corresponding to the solutions in each potential well. For α < -0.47, four 

coexisting solutions exist (see Figure 4.23 for the basins at the mean value). At 

α = -0.47, the nonresonant solutions disappear, and for α > -0.47, only two 

resonant attractors remain, one in each potential well. Similar to what was 

observed for the Helmholtz oscillator, the scaling parameter   changes the 

expected outcome considerably in the bifurcation region. Specifically, the α > -

0.47 region becomes statistically significant for σ > 0.02, as indicated by the 

superposition of the bifurcation diagrams and the normalized densities. Monte 

Carlo experiments of 10000 initial conditions uniformly distributed over the 

phase-space for varying σ-values demonstrate the influence of σ on the bifurcation 

diagram and bifurcation values, see Figure 4.27. The bifurcation diagram of the 

deterministic case is plotted in gray. 

 

Figure 4.26 – Bifurcation diagram of the Duffing oscillator as a function of the stiffness parameter 

α for A = 0.06 and the normalized probability distributions of α + σ λ for selected values of the 

scaling parameter σ 
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(a) σ = 0.01 (b) σ = 0.02 (c) σ = 0.03 

Figure 4.27 – Bifurcation diagram probability densities estimated from a Poincaré section at 

t = 1000T using 100000 trajectories of the Duffing oscillator with initial conditions uniformly 

distributed over  for A = 0.06 and varying values of the scaling parameter σ 

The analysis of the global dynamics considering the uncertain natural 

frequency is conducted through levels 11 to 17, the same levels used in the 

deterministic analysis. However, this resolution is not satisfactory for the analyzed 

attractors. To overcome this problem, an additional discretization of each attractor 

is performed: a local transfer matrix Ph of each attractor is computed and refined 

from levels 17 to 21, with 25 initial conditions per box for each level. Therefore, 

the basins boundaries have a maximum resolution corresponding to the 17th level, 

while the attractors have a maximum resolution corresponding to the 21th level. 

This is necessary to obtain a good representation of the attractors, for which the 

Poincaré sections are curves in the plane. Again, 30 parameter values are 

considered, and the mean basins of attraction and mean attractors’ densities are 

obtained. Since the system is deterministic for a fixed parameter, the same 

integrator is considered, i.e., the fourth-order Runge-Kutta method with time-step 

T/200. 

Initially, σ = 0.01 is adopted, see Figure 4.28. The parameter uncertainty 

diffuses the basins’ boundaries, similar to what is observed for the Helmholtz 

oscillator, see Figure 4.5. The attractors’ distributions also demonstrate the 

uncertainty effect. Due to a large number of coexisting attractors and the basins` 

competition, there is a significant diffusion of the boundaries, corroborating the 

influence of the parameter uncertainty in these regions. 
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(a) left potential well, resonant attractor (b) right potential well, resonant attractor 

  
(c) left potential well, nonresonant attractor (d) right potential well, nonresonant attractor 

Figure 4.28 – Mean basins of attraction (second color bar) and mean attractors distributions (first 

color bar) of the Duffing oscillator with A = 0.060 and σ = 0.01 

Figure 4.29 displays the mean basins and mean distributions of the Duffing 

oscillator attractors for σ = 0.02. As σ increases, the diffusion along the basins’ 

boundaries increases and spreads over larger regions of the phase-space, with the 

resonant region engulfing the nonresonant one, which is in agreement with Figure 

4.26. The degradation of the nonresonant basins of attraction is observed by the 

decreasing regions with probability equal to one and large regions of phase-space 

where the outcome is uncertain. This pattern continues in the last considered case, 

Figure 4.30, for σ = 0.03. The degradation of the nonresonant basins is so intense 

that all intra-well initial conditions have a non-null probability to converge to the 

resonant solution. 
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(a) left potential well, resonant attractor (b) right potential well, resonant attractor 

  
(c) left potential well, nonresonant attractor (d) right potential well, nonresonant attractor 

Figure 4.29 – Mean basins of attraction (second color bar) and mean attractors distributions (first 

color bar) of the Duffing oscillator with A = 0.060 and σ = 0.02 

Table 4.8 presents the dependency of the final partition, 
17

, with the 

scaling parameter, σ. As σ and the uncertainty of the outcome increases, the 

subdivision of most of the phase-space and a high degree of refinement becomes 

necessary, increasing the computational cost, with the computational cost 

approaching that of a computation without adaptative refinement but with a very 

refined, yet unknown, initial discretization. Thus, the proposed algorithm is 

computationally attractive when regions that must be refined are localized. This 

can be seen in the last two columns, where the current box count is almost equal 

to the maximum box count for the 17th level. 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



116 

  
(a) left potential well, resonant attractor (b) right potential well, resonant attractor 

  
(c) left potential well, nonresonant attractor (d) right potential well, nonresonant attractor 

Figure 4.30 – Mean basins of attraction (second color bar) and mean distributions (first color bar) 

of the Duffing oscillator with A = 0.060 and σ = 0.03 

Table 4.8 – Box count for the uncertainty Duffing oscillator at level 17 for A = 0.060 

σ 
Current box 

count 

Maximum box 

count 
Percentual Economy 

0.01 113841 131072 86.85% 13.15% 

0.02 124893 131072 95.29% 4.71% 

0.03 125382 131072 95.66% 4.34% 

 

Figure 4.31 shows the variation of the basins’ area as a function of the 

scaling parameter σ for A = 0.060 and various probability thresholds, computed 

through eq. (4.2). Again, a probability threshold close to 1 is a conservative 

measure, giving smaller integrity values, while a threshold of exactly 0 would 

give the area of the entire phase-space . The parameter uncertainty decreases 

the integrity measure of all four attractors as the scale parameter increases. 

However, the two nonresonant attractors show faster integrity loss than their 

resonant companions, as already perceived in Figure 4.28, Figure 4.29, and Figure 

4.30. 
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(a) left potential well, resonant attractor (b) right potential well, resonant attractor 

  
(c) left potential well, nonresonant attractor (d) right potential well, nonresonant attractor 

Figure 4.31 – Variation of the Duffing oscillator basins area as a function of the scaling parameter 

σ for A = 0.06, showing various probability thresholds (color bar) 

Figure 4.32(a) presents the probability density estimated from a Monte 

Carlo experiment considering 100000 initial conditions uniformly distributed over 

the phase-space window with σ = 0.03. Each response is integrated up to 

t = 1000T, demonstrating the influence of the parameter uncertainty on the 

Poincaré sections of the four attractors. The results agree with the attractors’ 

distribution, Figure 4.32(b), and the bifurcation diagram, Figure 4.32(c), in terms 

of the attractor shape (plane curves), size, and probability distribution, thus 

validating the operator results and endorsing the present methodology. 
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(a) (b)  

 
(c) 

Figure 4.32 – (a) Probability density estimated from a Poincaré section at t = 1000T considering 

100000 trajectories of the Duffing oscillator initially uniformly distributed over , (b) attractors’ 

mean distributions, and (c) bifurcation diagram for A = 0.060 and σ = 0.03 

4.2.2. 

Chaotic attractor under white noise 

The next example is the Duffing oscillator using the parameter values from 

[110], presented in Table 4.9. For these parameters, two attractors are obtained in 

the deterministic case: a period-1 attractor and a chaotic attractor. This example is 

used to demonstrate the capabilities of the proposed strategy to address not only 

periodic attractors but also nonperiodic attractors. 

The global analysis is carried out considering the phase-space window 

   3.5,3.5 3.5,3.5= −  − . The parameters of the subdivision procedure are 

summarized in Table 4.10. In the case of deterministic analysis, the Perron-

Frobenius operator, eq. (2.59), is adopted, whereas for the stochastic analysis, the 

Foias operator, eq. (2.62), is adopted. In the latter case, each point in each box is 

integrated ten times to evaluate the effect of noise for each set of initial 

conditions. 
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Table 4.9 – Duffing oscillator parameters for additive white noise 

Parameter Value 

α -0.5 

β 0.2 

δ 0.085 

Ω 0.71 

A 0.204 

 

Table 4.10 – Discretization data for the Duffing oscillator with a chaotic attractor 

Depth level Box-size Points per dimension Total collocation points 

13 {0.0547, 0.1094} 9 81 

14 {0.0547, 0.0547} 8 64 

15 {0.0273, 0.0547} 7 49 

16 {0.0273, 0.0273} 6 36 

17 {0.0137, 0.0273} 5 25 

18 {0.0137, 0.0137} 4 16 

 

  
(a) 1-period attractor (b) chaotic attractor 

Figure 4.33 – Basins of attraction and attractors’ densities for the deterministic Duffing oscillator 

with a periodic and a chaotic attractor 

The deterministic basins of the period-1 attractor and the chaotic attractor 

are shown in Figure 4.33. The influence of noise in such a case was previously 

studied in [96], where a box covering of the attractors was adopted instead of the 

present operator framework. Here a distinction between chaotic and nonchaotic 

solutions is observed in the attractors’ distributions. Since chaotic solutions 

usually spread over the phase-space, they have an intrinsic distribution that is not 

a Dirac delta function. Nevertheless, the subdivision procedure is capable of 

identifying and refining this distribution. This is similar to previous results [31–

33], where a subdivision procedure was adopted to cover attractors. Furthermore, 
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the basins’ boundaries are correctly identified, showing the capability of the 

proposed subdivision procedure. 

The effect of additive white noise with increasing standard deviation is 

illustrated in Figure 4.34 for s = 0.005 and Figure 4.35 for s = 0.008. The 

attractors’ distributions are more affected by noise in comparison with the basins’ 

boundaries, diffusing over the phase-space as s increases. The boundaries remain 

localized to a certain degree, but a small diffusion is also observed. The proximity 

of the chaotic attractor to the boundary is an important characteristic of this 

system, which is already observed in the deterministic basin (Figure 4.33(b)) with 

the considered excitation amplitude A. Increasing A would indeed lead to a 

boundary crisis (see also [77]), with the chaotic basin being completely captured 

by the periodic one. When adding a low noise intensity, an attractor-saddle 

connection (here already observed for s = 0.008, Figure 4.35) also occurs with the 

considered excitation amplitude A = 0.204, highlighting how the stochasticity 

leads to the occurrence of the global bifurcation event. Note also that in Figure 

4.35 the basins for a long time-horizon (1/ε = 1e8) are displayed. Actually, with 

the considered value of noise intensity (s = 0.008) as well as higher ones, regions 

with 100% certainty of staying at the chaotic attractor are actually inexistent, with 

all trajectories eventually converging to the period-1 attractor, as it will be shown 

later on. Therefore, the chaotic outcome for s > 0.008 only occurs as a long 

transient, with the final asymptotic attractor being periodic. 

  
(a) 1-period attractor (b) chaotic attractor 

Figure 4.34 – Stochastic basins of attraction (second color bar) and attractor’s densities (first color 

bar) for the Duffing oscillator with a chaotic attractor and additive white noise s = 0.005. 

Time-horizon 1/ε = 1e8 
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(a) 1-period attractor (b) chaotic quasi-attractor 

Figure 4.35 – Stochastic basins of attraction (second color bar) and attractor’s densities (first color 

bar) for the Duffing oscillator with a chaotic attractor and additive white noise s = 0.008. 

Time-horizon 1/ε = 1e8 

  

(a.1) s = 0.008, absolute value 
(a.2) s = 0.008, negative (blue) and positive 

(red) regions 

  

(b.1) s = 0.010, absolute value 
(b.2) s = 0.010, negative (blue) and positive 

(red) regions 

Figure 4.36 – Duffing oscillator with chaotic attractor – almost permanent eigenmeasures for 

selected noise intensities 

Figure 4.36 displays the corresponding eigenmeasure for selected values of 

the standard deviation. Similar to Figure 4.19, they are almost invariant, with 

eigenvalues equal to 0.999999995 for s = 0.008 and 0.999999882 for s = 0.01. In 

this case, two solutions collide, the period-1 and the chaotic attractor. The period-

1 attractor remains stable, with eigenvalue 1. Trajectories stay in each region 
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depicted in Figure 4.36(a.2, b.2) for a long time before decaying to an attractor. In 

this example, chaotic solutions decay to the period-1 solution, as observed in 

Figure 4.35. 

   
(a) s = 0.000 (b) s = 0.005 (c) s = 0.008 

Figure 4.37 – Dependence of the final partition 
18

 of the chaotic Duffing oscillator’s stochastic 

fields as a function of the standard deviation s 

The final partition 
18

 is depicted in Figure 4.37 for increasing noise levels. 

The results confirm that the proposed subdivision procedure can identify and 

refine regions of higher diffusion, especially the attractors’ densities, minimizing 

the numerical diffusion across the entire phase-space. Table 4.11 gives 

information on the total box count and the achieved economy. Since the basin 

boundaries are localized for all noise levels, the algorithm performs well, with 

economy values higher than 75%, for all cases. 

Table 4.11 – Box count for the chaotic Duffing oscillator’s stochastic field at level 18 

s 
Current box 

count 

Maximum box 

count 
Percentual Economy 

0.000 37061 262144 14.14% 85.86% 

0.005 48772 262144 18.61% 81.39% 

0.008 58250 262144 22.22% 77.78% 

 

Figure 4.38 and Figure 4.39 illustrate the time-dependency of the basins of 

attraction for s = 0.01. Values of ε ≈ 1 correspond to small time-horizons, 

identifying regions that converge to a given attractor after a small-time interval in 

the mean sense. As ε decreases, the time-horizon increases, approaching the 

asymptotic limit of all time responses, that is, the steady-state basin of attraction. 

Figure 4.38 shows the results for the period-1 attractor. Initially (ε = 0.9 and 

ε = 0.5), only a small region of initial conditions surrounding the attractor is 

obtained with a high probability of converging to the noisy attractor. For ε = 0.1, a 
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much larger region with varying probability is detected. For ε = 1e-4 (long 

transient), a large region with probability equal to one is obtained whose topology 

is rather similar to the basin of the period-1 attractor obtained in the deterministic 

case and for lower values of the standard deviation (see Figure 4.33 to Figure 

4.35). Figure 4.39 shows that up to this time-horizon the two attractors are clearly 

distinct, see Figure 4.38(d) and Figure 4.39(d). For smaller values of ε (longer 

time-horizon), all solutions converge to the period-1 attractor, with its basin 

covering the whole phase-space. The chaotic attractor basin vanishes completely 

for this time-horizon, as shown in Figure 4.39(f). According to [110], jumps from 

the chaotic to the period-1 attractor were not expected for s < 0.02. This shows 

the importance of considering long transients in this kind of analysis, although 

this increases the computational effort. However, in many applications, transient 

basins are of importance [61, 112, 196], and the present results clearly 

demonstrate the impact of noise on them and how transient basins of noisy 

systems can be used to evaluate the system safety. Also, it can be used in control 

algorithms. 

   
(a) ε = 0.9 (b) ε = 0.5 (c) ε = 0.1 

   
(d) ε = 1e-4 (e) ε = 1e-6 (f) ε = 1e-8 

Figure 4.38 – Dependency of the stochastic basin of attraction for the period-1 attractor with 

additive white noise and s = 0.010 on the time-horizon 1/ε 
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(a) ε = 0.9 (b) ε = 0.5 (c) ε = 0.1 

   
(d) ε = 1e-4 (e) ε = 1e-6 (f) ε = 1e-8 

Figure 4.39 – Dependency of the stochastic basin of attraction for the chaotic attractor with 

additive white noise and s = 0.010 on the time-horizon 1/ε 

Figure 4.40 shows, for ε = 1e-8, the variation of the basins’ area as a 

function of the scaling parameter σ for A = 0.060 and selected probability 

thresholds. Again, for each attractor, the integrity measure is computed employing 

eq. (4.2). The basin area of the period-1 attractor remains constant for small 

values of s up to s=0.050, being about 40% of the total area of the adopted 

window, while the remaining 60% belongs to the chaotic attractor. However, 

when s increases beyond this threshold, the period-1 attractor basin area increases 

steadily with the noise intensity s, converging to one at s = 0.01. In this range, the 

chaotic attractor displays an increasing loss of integrity with noise, as already 

illustrated by the analysis of its basin and distribution. This system represents a 

noise-sensitive case whose global effect is non-trivially enhanced also due to the 

relatively low amplitude value (A = 0.060) considered for the deterministic 

excitation, with one attractor suddenly vanishing in the asymptotic sense for a 

small parameter change. 
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(a) 1-period attractor (b) chaotic attractor 

Figure 4.40 – Variation of the Duffing oscillator basins area as a function of the noise intensity s 

for A = 0.06, showing various probability thresholds (color bar). 

Time-horizon 1/ε = 1e8 

A Monte-Carlo experiment was conducted to demonstrate the time-

dependency of the attractors for s = 0.01 and the difference with the results 

presented in [110]. The initial condition ( ) ( ), 0,0x x =  at the center of the chaotic 

region was integrated 5000 times with the fourth-order stochastic Runge-Kutta. 

Figure 4.41 presents the histograms for three time-horizons, 1000T, 10000T, and 

the final value of 100000T. For 1000T, the results already indicate that some 

samples converge to the period-1 attractor, see Figure 4.41(a). The other 

histograms show that, as time progresses, an increasing number of samples 

converge to the period-1 region. This validates the previous results obtained 

through the proposed operator perspective, demonstrating the time-dependency of 

the responses and their respective basins. 

   
(a) 1 1000T =  (b) 1 10000T =  (c) 1 100000T =  

Figure 4.41 – Histograms of 5000 samples with initial condition ( ) ( ), 0,0x x =  at selected time-

horizons, for s = 0.010 
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4.3. 

Parametrically excited Duffing oscillator 

This final example illustrates the behavior of a parametrically excited 

Duffing oscillator with noise, described by 

( ) 3cos 0.x x A t sW x x  + + +  + + =  (4.4) 

The adopted parameters are summarized in Table 4.12. They represent a 2:1 

parametric resonance, where the natural frequency is one, and the parametric 

excitation frequency is two. For these parameters, there is one potential well 

delimited by two saddles. This example is based on [197], where quasiperiodic 

oscillations of the vocal folds are investigated. The parameters of the subdivision 

procedure are summarized in Table 4.13. In the deterministic case, the Perron-

Frobenius operator is adopted, eq. (2.59), whereas for the stochastic analysis, the 

Foias operator is adopted, eq. (2.62). For the latter case, each point in each box is 

integrated ten times to obtain the effect of noise for each set of initial conditions. 

The global analysis is carried out considering the phase-space window 

   1.99,2.01 1.09,1.11= −  − . This particular window was chosen to avoid the 

attractors or repellors at ( ) ( ), 0,0x x =  to be at a box edge, helping the refinement 

convergence. 

Table 4.12 – Parametrically excited Duffing oscillator parameters 

Parameter Value 

α 1 

β -1 

δ 0.1 

Ω 2.0 

 

The results of the deterministic global analysis for increasing values of A are 

shown in Figure 4.42. Initially, the free vibration results are obtained (A = 0.00), 

Figure 4.42(a). The yellow region corresponds to the equilibrium point at 

( ) ( ), 0,0x x = , while black corresponds to escape. The yellow region for A ≥ 0.50 

is associated with the period-2 oscillations, characteristic of the main parametric 

resonance region at twice the natural frequency. This is indicated in the transfer 
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operator Ph by a minus one eigenvalue. The Markovian nature of the transfer 

operators has a spectral radius of one, i.e., all eigenvalues are within the unit circle 

in the complex plane [37]. The cyclic behavior is identified through eigenvalues 

with an absolute value of one but a real part less than one. Specifically, the 

eigenvalues corresponding to an attractor are  

( )1 2

, ,
n I r

r n e



−

=
 

(4.5) 

where r ≥ 1 is the periodicity of the attractor and 1 ≤ n ≤ r. For r = 1, there is only 

one eigenvalue μ1,1 = 1; for r = 2, there are two, μ 2,1 = 1, and μ 2,2 = -1, and so on. 

For more details, refer to [33]. 

Table 4.13 – Discretization data for the parametrically excited Duffing oscillator  

Depth level Box-size 
Points per 

dimension 

Total collocation 

points 

11 {0.0625, 0.0688} 12 144 

12 {0.0625, 0.0344} 11 121 

13 {0.0313, 0.0344} 10 100 

14 {0.0313, 0.0172} 9 81 

15 {0.0156, 0.0172} 8 64 

16 {0.0156, 0.0086} 7 49 

17 {0.0078, 0.0086} 6 36 

18 {0.0078, 0.0043} 5 25 

19 {0.0039, 0.0043} 4 16 

 

As the forcing amplitude increases, the safe basin area decreases, with 

increasing incursive tongues from the escape region eroding the original stable 

basin, a mechanism common to all periodically driven nonlinear damped 

oscillators with the ability to escape from a potential well [198]. Due to a global 

bifurcation, shortly after the Melnikov tangency, large incursive fractal fingers 

start to penetrate into the yellow parametrically resonant basin. The basins for the 

last three amplitude values, A = {0.75, 0.80, 0.85}, Figure 4.42(f, g, h), show a 

central region with increasing fractality, resulting in a rapid rate of erosion of the 

safe area. 
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(a) A = 0.00 (b) A = 0.50 

  
(c6) A = 0.60 (d) A = 0.65 

  
(e) A = 0.70 (f) A = 0.75 

  
(g) A = 0.80 (h) A = 0.85 

Figure 4.42 – Basins of attraction (color bar) and attractors of the parametrically excited 

deterministic Duffing oscillator as a function of the excitation magnitude A 
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4.3.1. 

Effects of parametric white noise 

The noise-induced dynamics are considered next. An amplitude of A = 0.6 

with varying noise intensity s is adopted. The transfer matrix of the noise-driven 

system is the Foias operator, Fh. The probability integral in eq. (2.62) is solved by 

the Monte-Carlo method. Ten noise samples for each set of initial conditions in 

each box are considered to calculate the discretized transfer operator Fh. 

  
(a) s = 0.01 (b) s = 0.02 

 
(c) s = 0.03 

Figure 4.43 – Stochastic basins of attraction (second color bar) and the period-2 attractor’s density 

(first color bar) of the parametrically excited Duffing oscillator for A = 0.6 as a function of the 

noise intensity s 

Figure 4.43 presents the results for the three noise levels, s = 0.01, 0.02, and 

0.03. The effect of noise on the probability density of this periodic attractor is 

clearly demonstrated by its swift diffusion over the phase-space. The basins’ 

boundaries are also affected by noise, becoming blurred as noise increases. The 

case with s = 0.03, Figure 4.43(c), is interesting because the periodic counterpart 

is an almost invariant eigenmeasure, with eigenvalue equal to -0.999999973. The 

depicted eigenmeasure corresponds only to the permanent eigenvalue, λ = 1. This 
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is an almost cyclic behavior, that is, a collection of frequently cyclically permuted 

sets as the dynamical system evolves [33]. These sets are depicted for the selected 

values of s in Figure 4.44. The two colors identify the two distinct cyclic sets. 

This behavior corresponds to the first scenario described by Dellnitz and Junge 

[33], where cyclic components lose stability. 

   
(a) cyclic sets, s = 0.01 (b) cyclic sets, s = 0.02 (c) almost cyclic sets, s = 0.03 

Figure 4.44 – Stochastic (almost) cyclic behavior of the parametrically excited Duffing oscillator 

for A = 0.6 and increasing noise intensity s 

For the next noise level, s = 0.04, there is no attractor in the asymptotic 

sense. The previous attractors are long transient solutions, decreasing the 

probability density as time evolves. The eigenvalues of the transfer matrix Fh 

demonstrate this, with a value of 0.999999719. This long transient behavior is 

depicted in Figure 4.45, where the variation of the areas that converge to the 

initial attractors as a function of the time-horizon 1/ε is depicted. For 1/ε ≥ 1e6, 

Figure 4.45 (e, f), the basin loses stability, with zero probability of converging to 

the initially stable attractor. The opposite is observed when the sink cell is treated 

as an attractor, Figure 4.46. The escape region remains almost identical to the 

previous case until 1/ε = 1e4. For the last cases with 1/ε ≥ 1e6, Figure 4.46 (e, f), 

the basin set is absorbed by the escape basin (see the long-time instability of the 

period-2 attractor in Figure 4.47. 

The proposed measure to quantify the system’s integrity is presented in 

Figure 4.48, for ε = 1e-8. The product between the period-2 attractor probabilities 

and its normalized basin area for each threshold, eq. (4.2), is depicted with its 

noise dependence. As before, the attractor loses stability at s = 0.04, accompanied 

by a fast decrease in safe area. It is again shown that the results can be used to 

quantify the effect of noise on the dynamic integrity measures. 
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(a) ε = 0.9 (b) ε = 0.5 (c) ε = 0.1 

   
(d) ε = 1e-4 (e) ε = 1e-6 (f) ε = 1e-8 

Figure 4.45 – Dependency of the stochastic basin of attraction for the period-2 attractor with 

white noise on the time-horizon 1/ε. s = 0.04 

   
(a) ε = 0.9 (b) ε = 0.5 (c) ε = 0.1 

   
(d) ε = 1e-4 (e) ε = 1e-6 (f) ε = 1e-8 

Figure 4.46 – Dependency of the stochastic basin of attraction for the escape solution with white 

noise on the time-horizon 1/ε. s = 0.04 
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Figure 4.47 – Parametrically excited Duffing oscillator’s long-time instability due to 

high noise intensity for A = 0.60 and s = 0.04 

 

Figure 4.48 – Parametrically excited Duffing oscillator – period-2 basin area versus the noise 

intensity s for various probability thresholds (color bar). Time-horizon 1/ε = 1e8 
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Nonlinear response of an imperfect microcantilever static 

and dynamically actuated considering uncertainties and 

noise 

A theoretical investigation is conducted on an imperfect MEMS device 

constituted of an imperfect clamped-free microbeam electrostatically and 

electrodynamically actuated with added noise. Using Hamilton’s principle, the 

nonlinear equation of motion is derived by considering the nonlinear electric load, 

the geometric nonlinearities up to the third order, and the geometric imperfections. 

Additive white noise is considered to model forcing uncertainties, and the 

Galerkin modal discretization method is employed to generate stochastic 

differential equations of Itô type, which are solved by the stochastic Runge-Kutta 

method. Finally, the global dynamics are investigated by the generalized cell 

mapping [19, 22, 23], through which the appropriate transfer operators are 

constructed. The effects of additive noise on resonant and non-resonant solutions 

are observed, changing the probability measures and basins of attraction. Special 

attention is given to the effect of imperfections and noise on the pull-in instability. 

The computations are performed by an Intel Core i7-7700HQ with eight logical 

processors of 2.8GHz, and the total available RAM is 24GB. 

 

5.1. 

Nonlinear Rayleigh microcantilever electrically actuated 

The planar flexural imperfect Rayleigh beam equation is derived based on 

the 3D formulation presented in Appendix A, where Euler-Bernoulli beams are 

modeled, and the effect of rotary inertia is also considered. Assuming only planar 

motions, nonplanar displacements and the Euler angles ψ and ψ0 become zero, see 

the trigonometric relations (A21) and (A23). Three coordinate systems are 
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considered for the beam’s kinematic definitions, which are the reference system 

(X, Z), the undeformed coordinates of the imperfect beam configuration (ξ0, ζ0), 

and the deformed configuration, (ξ, ζ). The reference and undeformed systems are 

Lagrangian frames of reference, with the former corresponding to the perfect 

model. The deformed axes define an Eulerian reference frame. The undeformed 

axes represent the imperfect model in a stress-free configuration. The undeformed 

arclength is identified by s, while the deformed arclength is identified by s̃. The 

resulting undeformed and deformed coordinate systems with respect to the 

reference system are given in Figure 5.1. The actuation plate is also depicted at a 

distance d. The axial and transversal displacements are denoted by u and w, 

respectively, and w0(x) is the initial geometric imperfection. An elastic isotropic 

linear material is considered. 

 

Figure 5.1 – Imperfect undeformed and deformed beam and coordinate systems 

Trigonometric relations for the Euler angles θ and θ0 restricted to the plane 

X-Z are obtained by setting to zero the displacements v and imperfections v0 in 

eqs. (A22) and (A24), resulting in  

( )

( )

2
2 2

0

2

0

2
2 2

0

sin ,

1

1
cos ,

1

w

w u w

w u

w u w





−
=

  − + +

 − +
=

  − + +

 (5.1) 

0 0

2

0 0

sin ,

cos 1 .

w

w





=

= +
 (5.2) 

Similarly, the axial elongation in the plane X-Z is defined as 
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( )
2

2 2

01 1.e w u w   = − + + −  (5.3) 

The final equations of motion are given by  

( )

2

01
,

2 1

nc

u u

e

u w d
G A Q

u dt u





  + +  
  = − = −  +     

l
 (5.4) 

( )
,

2 1

nc

w w

e

w d
G A Q

w dt w





   
 = − = −    +    

l
 (5.5) 

with Aθ given by eq. (A54), and the Lagrangian kernel ℓ by 

( )2 2 2 21
.

2 2 2
e

D
mu mw J






 = + + − + l  (5.6) 

The eqs. (5.4) and (5.5) are exact within the adopted theory. Approximate 

equations are obtained by expanding then in Taylor series of the displacements w 

and imperfection w0 up to the third order and axial displacement u up to the 

second order since u<<w. Thus, the equations of motion with polynomial 

nonlinearities are given by 

2

1 ,
2 2

w
mu D w w J w w 




   
   = − + −  

   
 (5.7) 

( )

( )

2

0 0

2

0 0 ,
2 2

w wmw c w Q D w w w w w w

w
w w w w J w w w w







     + − = − + + +

  
       + + + + −   

   

 (5.8) 

where the relation (A46) is assumed and axial loads Qu* are neglected. 

The axial displacement is obtained from eq. (5.3), resulting in 

2

0
0

1
2 ,

2

s

u w w w ds  = − +  (5.9) 

By substituting eq. (5.9) into eq. (5.7), the Lagrange multiplier can be 

written as 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



136 

2

0

2 2 2 .
s s

L

D w w J w w m w w w dsds        = − + +   
(5.10) 

Finally, the equation of motion is obtained by substituting the Lagrange 

multiplier, eq. (5.10), into eq. (5.8), resulting in the following integro-differential 

equation of motion 

( )

( ) ( )

2

0 0 0 0

2 2 2

2
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2

1 1

.
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s s
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

   
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 

       + + + + −
  


   + 

 

 (5.11) 

which is the same equation used in [96] obtained through a simplified 

bidimensional formulation. 

The associated boundary conditions of the clamped-free beam are given by, 

( ) ( )

( ) ( ) ( )

0, 0, 0,

, , , 0.

w t w t

w L t D w L t J w L t 

= =

  = − =
 

(5.12) 

Considering a parallel plate capacitor with a rectangular cross-section, the 

electrostatic force Qw can be written as [116] 

( )

2

2
,

2
w

b V
Q

d w


=

−
 

(5.13) 

where b is the beam width, d is the initial gap for a perfect beam, ε is the free 

space permittivity, and V is the applied voltage. 

Equation (5.11) is then nondimensionalized considering the following 

parameters 
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L D d d L b b L





  
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= =

= = =

= =

= = =
 

(5.14) 

resulting in  
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 

 (5.15) 

where * is dropped for brevity. The nondimensional boundary conditions are 

( ) ( )

( ) ( ) ( )

0, 0, 0,

1, 1, 1, 0,

w t w t

w t w t J w t

= =

  = − =
 

(5.16) 

and the nondimensional electrostatic load is given by 

( )

2
*

22
,

2 1
w

b V
Q

d w


=

−
 (5.17) 

with the singularity now at 1w = . 

The total applied voltage is the sum of the direct current (Vdc) and the time-

dependent alternate current (Vac), i.e.: 

( ) ( ).dc acV t V V t= +
 

(5.18) 

The displacement is, therefore, decomposed into its dynamic and static parts as, 

( ) ( ) ( ), , .d sw t x w t x w x= +
 

(5.19) 

Considering only the DC voltage in eq. (5.15), substituting eqs. (5.18) and 

(5.19) into eqs. (5.15) and (5.17) and setting to zero all terms with time 

derivatives, the static displacement component 
sw  is obtained from the following 

nonlinear equilibrium equation 
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2
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   

 (5.20) 

where 
0s sw w w= + .  
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The additional dynamic displacement ( ),dw t x  is assumed as a perturbation 

of the static equilibrium position, and the resulting equation of motion is obtained 

by substituting eqs. (5.18) and (5.19) into eqs. (5.15) and (5.17) and expanding in 

Taylor series of wd up to the third order, resulting in 
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 

 (5.21) 

where 
0s sw w w= +  and 0d sw w w w= + + . The sum of zeroth-order terms is equal 

to zero since they correspond to the static equilibrium position, eq. (5.20). 

The geometric imperfection shape and the static and dynamic displacement 

fields are expanded in terms of the linear vibration modes. The Galerkin method is 

employed to discretize the equation of motion using as interpolation functions the 

linear vibration modes. The assumed mode expansion is derived from the 

boundary value problem considering the undamped linearized equation of motion. 

The linear vibration modes are the solution of the linearized equation of motion 

0,ivw J w w
− + =

 
(5.22) 

with boundary conditions (5.16). Equation (5.22) corresponds to a Rayleigh beam, 

where the rotational inertia is considered [199]. The solution of eq. (5.22) is 

( ) ( ) ( ) ( )
1

,
i

i

i

w s t w t F s



=

=
 

(5.23) 

where w(i) is the ith modal amplitude and Fi is the ith natural mode of vibration. 

The natural modes are, for boundary conditions (5.16) [199],  

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



139 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

2 2

2

cosh cos

cos cosh
sinh sin ,

sin sinh

i i i i

i i i i i
i i

i i i i i i

F s C b s a s

a A b b b
b s a s

a b A b b a

= − −

+  
−  

+  

 (5.24) 
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Ci are normalization constants with respect to the orthogonality condition of eq. 

(5.22), which is given by [199] 

1
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1
,i

i i i

C

F J F F ds

=
 +

 
(5.26) 

and the natural frequencies are the roots of the nonlinear transcendental equation 

( ) ( ) ( )

( ) ( ) ( )

4 4

2 2 2 2

cos cosh

sin sinh 2 0.

i i i i

i i i i i i i i

b a a b

b a a b a b a b

+ +

− + =
 (5.27) 

In most of the present chapter, a first mode expansion is adopted for both 

the geometric imperfection w0, the static deflection ws, and the dynamic deflection 

wd, leading to a sdof reduced-order model, a usual procedure in the literature. 

Regarding geometric imperfection and static deflection, the first mode is the 

dominant one. As for the dynamic deflection, the excitation frequency is adopted 

close to the first natural frequency. In the rest of the text, the symbols for the 

modal amplitudes will be adopted as the same as those adopted for the state 

variables, namely w0, ws, and wd, simplifying the notation. 
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5.2. 

Nonlinear equilibrium and deterministic local dynamics 

The nondimensional constants adopted here are the same employed in [124] 

and [131]. They are summarized in Table 5.1. 

Table 5.1 – Microbeam geometric and material nondimensional parameters 

Parameters Symbol Values 

Width *b  0.25 

Initial gap *d  0.0046 

Free space permittivity (V-2) *  2.9446 e-10 

Damping 
*

wc  0.05 

Rotational inertia 
*J  6.76875e-7 

 

5.2.1. 

Static actuation 

The discretized equilibrium equation is obtained by multiplying eq. (5.20) 

by the denominator ( )
2

1 sw−  and then applying the Galerkin method considering 

the linear vibration modes as interpolating functions. The nonlinear equilibrium 

paths are obtained through a pseudo arc-length continuation procedure together 

with the Newton-Raphson method [200, 201]. The stability of the static solution is 

verified using the minimum potential energy criterion. Initially, the static response 

results are compared with the experimental results from [140]. Figure 5.2 show 

the results for the perfect beam and two imperfection levels, w0, clarifying the 

influence of the imperfection uncertainties on the results. The displacement ws is 

evaluated at s = 1, considering only the first linear vibration mode in the Galerkin 

approximation. Additionally, analytical results considering a modal expansion 

with three linear modes and w0=-0.05 is displayed for comparison. A good 

agreement between the experimental results and analytical results is observed up 

to pull-in. Specifically, the perfect system static pull-in load is 65.34, while the 

experimental result is 68.5. The resulting ratio is 0.953, showing the validity of 

the formulation for loads in the vicinity of the pull-in limit. It should be observed 
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that the imperfection level in the experiment is not mentioned in [140], but from 

the results, it is concluded to be small. 

Figure 5.3(a) shows the nonlinear response of the beam under DC actuation 

for selected levels of geometric imperfection. Here continuous lines correspond to 

stable solutions while dashed lines correspond to unstable solutions. Figure 5.3(b) 

shows the typical cusp catastrophe surface by introducing the imperfection 

magnitude as a second control parameter. 

 

 

Figure 5.2 – Comparison of the static response at s = 1 of the microbeam under DC actuation for 

selected levels of geometric imperfection 

 

 
(a) (b) 

Figure 5.3 – Static response of the microbeam under DC actuation for selected levels of geometric 

imperfection: (a) nonlinear equilibrium paths (b) cusp catastrophe surface 

The pull-in instability is observed in all cases, being the pull-in voltage 

particularly sensitive to the imperfection level and sign. The perfect system 

obtained pull-in voltage is 65.341V, being in good agreement with the formula 

presented in [116], where the pull-in voltage is 67.443V for the constants adopted 
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in [124] and [131]. The imperfection changes the pull-in voltage band; for w0 > 0, 

the gap between the beam and the actuator plate decreases, resulting in lower pull-

in voltages and a system more susceptible to this type of instability. On the other 

hand, the pull-in load and consequently the stability increases for w0 < 0, since the 

distance between the beam and the plate increases. This dependency is illustrated 

in Figure 5.4. 

 

 

Figure 5.4 – Dependency of the static pull-in voltage on the magnitude and sign of the geometric 

imperfection 

The dependency of the natural frequency of vibration on the DC voltage is 

well known for microelectromechanical beams [116]. In order to investigate the 

combined influence of the DC voltage and geometric imperfection magnitude on 

the natural frequencies, eq. (5.21) is linearized, and the damping coefficient and 

AC voltage are set to zero, resulting in 
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s
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d



        − = − + + +  
 − 

    + +

 
    + −  
   

 (5.28) 

where the influence of the imperfection and DC voltage can be observed. 
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Figure 5.5 – Natural frequency of vibration dependency against DC voltage and imperfection w0 

Figure 5.5 shows the influence of the imperfection magnitude w0 and DC 

voltage on the lowest natural frequency. As expected, the imperfection 

significantly affects the natural frequency of vibration. Also, in the region of the 

cusp catastrophe in Figure 5.3(b), the system shows three distinct frequencies, two 

with real values (ω2 > 0) and one with imaginary value (ω2 < 0). The real 

frequencies correspond to stable solutions, while the imaginary frequency 

corresponds to the unstable solution. Also, for a threshold of approximately 

w0 > 0.3, only one frequency persists for all DC voltages, corroborating the result 

presented in Figure 5.4. 

 

5.2.2. 

Dynamic actuation 

For the dynamic analysis, a direct current voltage Vdc = 45V is adopted (see 

Figure 5.1). The periodic alternate voltage between the beam and the substrate is 

given by 

( )cos ,ac acV V t   (5.29) 

where V̅ac is the forcing magnitude and   the forcing frequency. 

The values of static deflection ws depend on the imperfection magnitude, as 

shown in the static analysis. The static deflection for the six selected levels of 

imperfection, varying from 0 to 0.05, is shown in Table 5.2. 
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Table 5.2 – Static deflection as a function of the imperfection magnitude for Vdc = 45V 

w0 ws 

0 0.057977 

0.01 0.060345 

0.02 0.062895 

0.03 0.065648 

0.04 0.068636 

0.05 0.071892 

 

Five different equations of motion are obtained from eq. (5.21) by applying 

the first mode Galerkin expansion for values of Vdc, w0, and ws given in Table 5.2. 

For the calculations, the fourth order Runge-Kutta method is employed, with a 

time-step / 4000,t T =  where T is the period of excitation, T = 2π/Ω. Resonance 

curves are obtained through a pseudo arc-length continuation of periodic orbits 

[200, 201] for three values of the forcing magnitude, namely V̅ac = 1, 5, 10. The 

stability of each solution is verified through the analysis of Floquet multipliers 

(eigenvalues of the monodromy matrix), which also allow the characterization of 

the bifurcation type. 

Figure 5.6 displays the resonance curves of the microbeam for selected 

values of AC actuation and increasing imperfection level w0 and Vdc = 45. As in 

the static case, continuous lines denote stable solutions and dashed lines unstable 

solutions. According to [133], the nonlinear response could be either softening or 

hardening, depending on which nonlinearity prevails, load or geometric. The 

expected response for the initial gap d presented in Table 5.1, chosen to match an 

experiment [140], is of softening type, with the load nonlinearity stronger than the 

geometric nonlinearity [133]. Therefore, the presented results agree with the 

previously obtained results, displaying softening nonlinear response for all values 

of w0 and V̅ac. 

As V̅ac increases, a pull-in bandwidth develops, thus making the system 

more susceptible to dynamic pull-in instability. The imperfection decreases the 

values of V̅ac for which the pull-in band appears and increases the pull-in 

bandwidth, as illustrated in Figure 5.7 for V̅ac = 10. Also, of notice is, in all cases, 

the resonant peak at a forcing frequency equal to half of the natural frequency 

where a second pull-in band is observed for w0 ≥ 0.03. As the imperfection level 

increases, the resonant peak at a third of the natural frequency also increases, 
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leading to an additional resonance region that may influence the microbeam 

dynamic response. 

  
(a) w0 = 0.00 (b) w0 = 0.01 

  
(c) w0 = 0.02 (d) w0 = 0.03 

  
(e) w0 = 0.04 (f) w0 = 0.05 

Figure 5.6 – Frequency-response curves for selected values of AC actuation, with Vdc = 45. SN – 

saddle-node bifurcation, PD – period-doubling bifurcation 
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(a) w0 = 0.00 (b) w0 = 0.01 

  
(c) w0 = 0.02 (d) w0 = 0.03 

  
(e) w0 = 0.04 (f) w0 = 0.05 

Figure 5.7 – Frequency-response curves for Vdc = 45 and Vac = 10. Pull-in bandwidth as a function 

of the imperfection magnitude. SN – saddle-node bifurcation 

 

5.3. 

The deterministic and stochastic global dynamics 

The global analysis of the electrostatically actuated microbeam is initially 

investigated considering the phase-space  
2

3,3= − , with the boundaries 

assumed as of the absorbing type. This region is discretized with 300x300 boxes, 
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with 5x5 initial conditions uniformly distributed within each cell. The same 

equations of motion used in the local dynamic analysis are considered, with 

parameters given in Table 5.1 and Table 5.2. Moreover, an additive stochastic 

excitation W  is also considered, resulting in stochastic differential equations of 

Itô type. A stochastic Runge-Kutta method of fourth order in drift and half order 

in diffusion is employed, with a time-step / 4000,t T =  where T = 2π/Ω is the 

period of excitation. For the stochastic cases (σ ≠ 0), each initial condition is 

integrated 100 times, resulting in 2500 trajectories for each cell. The time interval 

of integration corresponds to one excitation period in all cases, resulting in a one-

period stochastic transition matrix pij, that is, a Perron-Frobenius discretized 

operator for the deterministic case, eq. (2.59), or the Foias discretized operator for 

the stochastic case, eq. (2.62). Probability density distributions and (stochastic) 

basins of attraction are then obtained through the classical Ulam method, 

following Section 3.1. 

   
(a) w0 = 0.01, σ = 0.00 (b) w0 = 0.01, σ = 0.01 (c) w0 = 0.01, σ = 0.02 

   
(d) w0 = 0.02, σ = 0.00 (e) w0 = 0.02, σ = 0.01 (f) w0 = 0.02, σ = 0.02 

Figure 5.8 – Microbeam stochastic basin of attraction for Vdc = 45, V̅ac = 1, Ω = 2.8, low 

imperfection and noise levels. Light blue: non-resonant attractor, black: pull-in 
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(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.02 

Figure 5.9 – Microbeam stochastic basin of attraction for the non-resonant attractor, with Vdc = 45, 

V̅ac = 1, Ω = 2.8, w0 = 0.05 

First, numerical simulations have been carried out for the nonlinear system 

with Vdc = 45, V̅ac = 1, and Ω = 2.8. Six combinations of the parameters w0 and σ 

are considered with w0 = 0.01, 0.02, and σ = 0, 0.01, 0.02. For these six cases, 

only one attractor exists, as observed in Figure 5.6(a, b). The stochastic basins of 

attraction are depicted for the selected values of w0 and σ in Figure 5.8, where the 

light blue region corresponds to the periodic 1T non-resonant attractor and black 

to pull-in, i.e., zero probability of converging to the non-resonant attractor. This 

basin persists for all noise levels, with minor changes near the saddle region, 

suggesting that the attractor is resilient to noise for small imperfection levels and 

noise magnitudes. The noise effect is more evident in the attractor’s distribution. 

As the noise increases, the Poincaré section of the attractor spreads to larger 

regions in phase-space, as indicated by the red region in Figure 5.8. 

The next example demonstrates the effect of higher imperfection levels on 

the results. As shown in Figure 5.6, the softening nonlinearity increases with the 

imperfection magnitude. Considering again Vdc = 45, V̅ac = 1, Ω = 2.8 but 

w0 = 0.05, the deterministic microbeam has a non-resonant and a resonant 

attractor, as shown in Figure 5.6(f). Figure 5.9 shows the stochastic basin of 

attraction of the non-resonant periodic attractor for σ = 0, σ = 0.01, and σ = 0.02, 

while Figure 5.10 shows the results for the resonant attractor, and Figure 5.11 

depicts the set of initial conditions leading to pull-in. The non-resonant attractor’s 

overall size decreases in comparison with the previous case, Figure 5.8. For 

σ = 0.00, the basin boundary is well defined, as shown in Figure 5.9(a), Figure 

5.10(a, b), and Figure 5.11(a), with the black regions corresponding to initial 

conditions leading to pull-in, demonstrating the destabilizing effect of the 

geometric imperfections. As the noise increases, the probability of the noisy 
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response converging to the resonant attractor decreases, and its basin shrinks with 

only 10~20% of solutions asymptotically converging to this region for σ = 0.01, 

as observed in Figure 5.10(c, d). In contrast, as shown in Figure 5.9(b), most trials 

converge to the non-resonant attractor. The pull-in region remains practically 

unaltered except for a small region near the saddle. For σ = 0.02, only the non-

resonant solution remains, comprising the regions initially occupied by the non-

resonant and resonant basins. The probability density distribution evolution with 

the noise level clarifies this, Figure 5.14, showing the collapse of the resonant 

solution and the spread of the noisy non-resonant attractor. For σ = 0.00, two well-

defined peaks are observed, while for σ = 0.01, the noisy resonant attractor 

spreads to a large region with low probability and approaches the noisy non-

resonant attractor. Finally, for σ = 0.02, the resonant attractor completely 

disappears, while the remaining attractor spreads over a larger region of the phase 

plane, see Figure 5.9(c). Still, the pull-in region remains largely unaffected by 

noise. 

The results presented in Figure 5.9 and Figure 5.10 distinguish themselves 

from previous noise considerations from Orlando et al. [112], Silva and 

Gonçalves [113], and Silva et al. [179]. In these previous works, a given state is 

marked as unbounded if the noise leads at least once to unbounded oscillations 

during the Monte Carlo analysis. Here, on the other hand, the probability of an 

initial condition leading to unbounded oscillations is calculated for each cell. 

Although the computational demand is significantly higher, the exact probability 

quantification allows addressing the effect of uncertainties more precisely. Also, 

the decrease in the probability of a given region directly influences its dynamic 

integrity [67, 77]. This effect must be taken into account in systems with noise. 
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(a) σ = 0.00, 2D view (b) σ = 0.00, 3D view 

 

 
(c) σ = 0.01, 2D view (d) σ = 0.01, 3D view 

Figure 5.10 – Microbeam stochastic basin of attraction for the resonant attractor, with Vdc = 45, 

V̅ac = 1, Ω = 2.8, w0 = 0.05 
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(a) σ = 0.00, 2D view (b) σ = 0.00, 3D view 

 

 
(c) σ = 0.01, 2D view (d) σ = 0.01, 3D view 

 

 
(e) σ = 0.02, 2D view (f) σ = 0.02, 3D view 

Figure 5.11 – Set of initial conditions leading to pull-in, with Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05 
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(a) σ = 0.00 

   
(b) σ = 0.01 

   
(c) σ = 0.02 

Figure 5.12 – Microbeam time histories with Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, 

and non-resonant initial condition ( ) ( )1 1, 0,0w w =  

Figure 5.12 and Figure 5.13 show the effect of noise on the time histories. 

The initial condition in the non-resonant region, Figure 5.12, reveals increasing 

irregularity as noise increases, whereas solutions with the initial condition in the 

resonant region, Figure 5.13, lose stability and converge to the non-resonant 

attractor as noise increases, Figure 5.13(c). The probability density distribution 

evolution with the noise illustrates this, Figure 5.14, showing the collapse of the 

resonant solution. As verification, Monte Carlo experiments were conducted, 

where each initial condition was integrated for 10000 periods, generating 5000 

samples. The final time histograms for σ = 0.01 and σ = 0.015 are shown in Figure 

5.15. For σ = 0.015, the paths starting in the resonant initial condition almost 

entirely end in the non-resonant region, as correctly addressed by the probability 

density distributions in Figure 5.14. The differences between the Monte Carlo 
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experiments, Figure 5.15, and the probability density distributions, Figure 5.14, is 

due to the limited phase-space discretization adopted in the Ulam method, where 

the quality of the results depends on discretization, requiring a refinement analysis 

to check the convergence. The other constraint is choosing one starting point for 

the Monte Carlo experiment since the Ulam method gives mean values of the 

solutions starting in all the phase-space. Nevertheless, the results are in qualitative 

agreement, showing the potentiality of the present strategy. Also, the present 

results demonstrate that the decrease of the probability of a given region directly 

influences its dynamic integrity measures [65, 187], and this must be taken into 

account in systems with noise. 

   
(a) σ = 0.00 

   
(b) σ = 0.01 

   
(c) σ = 0.02 

Figure 5.13 – Microbeam time histories with Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, 

and resonant initial condition ( ) ( )1 1, 0.1,0.6w w = −  
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(a) σ = 0.00 

  
(b) σ = 0.01 (c) σ = 0.02 

Figure 5.14 – Microbeam attractor’s probability density distribution for Vdc = 45, V̅ac = 1, Ω = 2.8, 

high imperfection: w0 = 0.05 
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(a) σ = 0.010, ( ) ( )1 1, 0,0w w =  (b) σ = 0.010, ( ) ( )1 1, 0.1,0.6w w = −  

   
(c) σ = 0.015, ( ) ( )1 1, 0,0w w =  (d) σ = 0.015, ( ) ( )1 1, 0.1,0.6w w = −  

Figure 5.15 – Microbeam’s histograms for two initial conditions at time t = 10000T integrated 

5000 times for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05. (a, c) non-resonant initial condition, (b, d) 

resonant initial condition 

A system with a medium level of AC actuation, V̅ac = 5 and w0 = 0, is now 

considered to demonstrate the noise impact in more detail. Again, there are two 

coexisting periodic attractors due to a region of hysteresis (see Figure 5.6). Figure 

5.16 shows the non-resonant stochastic basin of attraction for 0 ≤ σ ≤ 0.014. There 

are little or no qualitative changes observed in the basin area for these noise 

levels, displaying the same behavior observed for V̅ac = 1, apart from spreading 

the Poincaré section, with the low probability region restricted to the long tail. 

However, the resonant stochastic basin, Figure 5.17, changes significantly, with 

finger-like regions leading to pull-in (see Figure 5.18) eroding the basin. These 

finger-like regions are similar to those observed in the escape equation due to a 

homoclinic tangle [57, 62]. The probability of the resonant solution along the 

boundaries of these finger-like regions decreases with the noise level, as shown by 

the color scale, diffusing from the boundary to the compact region. Also, a 
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significant spread of the attractor is observed, approaching the basin boundary as 

the noise level increases. This also affects the probability of pull-in, as shown in 

Figure 5.18. The color scheme is the same as in the previous figures for V̅ac = 1. 

   
(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.012 

  
(d) σ = 0.013 (e) σ = 0.014 

Figure 5.16 – Evolution of the microbeam non-resonant stochastic basin of attraction as a function 

of the noise level Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, low noise level 

   
(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.012 

  
(d) σ = 0.013 (e) σ = 0.014 

Figure 5.17 – Evolution of the microbeam resonant stochastic basin of attraction as a function of 

the noise level for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, low noise level 
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(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.012 

  
(d) σ = 0.013 (e) σ = 0.014 

Figure 5.18 – Set of initial conditions leading to pull-in as a function of the noise level for 

Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, low noise level 

   
(a) σ = 0.015 (b) σ = 0.02 (c) σ = 0.025 

Figure 5.19 – Evolution of the microbeam stochastic basin of attraction as a function of the noise 

level for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0 

   
(a) σ = 0.015 (b) σ = 0.02 (c) σ = 0.025 

Figure 5.20 – Set of initial conditions leading to pull-in as a function of the noise level for 

Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0 
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A drastic change occurs for σ = 0.015, see Figure 5.19(a) and Figure 

5.20(a). For this noise level, the two basins of attraction cannot be distinguished 

from each other, which indicates that jumps can happen between the possible 

three outcomes. As the noise increases even further (σ = 0.02), no initial condition 

has more than a 50% probability of converging to the resonant region, Figure 

5.19(b). For the last noise level (σ = 0.025), the resonant solution no longer exists, 

merging with the pull-in region, see Figure 5.20(c), with only the non-resonant 

attractor remaining. Time series solutions for initial conditions in the non-resonant 

and resonant regions are shown in Figure 5.21 and Figure 5.22 to complement the 

analysis. As expected, the pull-in occurs for σ = 0.025 and an initial condition in 

the resonant region. 

   
(a) σ = 0.015 

   
(b) σ = 0.020 

   
(c) σ = 0.025 

Figure 5.21 – Microbeam time histories for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, 

and non-resonant initial condition ( ) ( )1 1, 0,0w w =  
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(a) σ = 0.015 

   
(b) σ = 0.020 

   
(c) σ = 0.025 

Figure 5.22 – Microbeam time histories for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, 

and resonant initial condition ( ) ( )1 1, 0.4,0.4w w = −  

The evolution of the probability density distribution is depicted in Figure 

5.23. The first notorious change happens between the deterministic case, Figure 

5.23(a), and the first stochastic case, Figure 5.23(b). The deterministic case has 

well-defined attractors. This is expected for deterministic systems, where Poincaré 

sections of periodic attractors possess Dirac delta distributions. As the noise level 

increases, the resonant solution’s sensibility to noise is clearly observed, 

spreading the attractor over the phase-space. The last cases, Figure 5.23(g, h), 

show the vanishing of the resonant solution due to the high noise level. Monte 

Carlo experiments were conducted for verification, where each initial condition 

was integrated for 10000 periods, generating 5000 samples, see Figure 5.24. As 

expected, the non-resonant attractor is stable for all three noise levels, see Figure 

5.24(a, c, e), agreeing with the Ulam method results. The resonant attractor loses 
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stability for the last noise case, Figure 5.24(f), with even some solutions 

converging to the nonresonant attractor. Escaped solutions are not depicted in the 

histogram because they are not located in a limited-size phase-space. Still, the 

percentage of escaped solutions is 81.78%, and only 11.54% of these sample 

paths are in the resonant region at time t = 10000T, qualitatively agreeing with the 

Ulam method. 
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(a) σ = 0.00 (b) σ = 0.01 

  
(c) σ = 0.012 (d) σ = 0.013 

  
(e) σ = 0.014 (f) σ = 0.015 

  
(g) σ = 0.02 (h) σ = 0.025 

Figure 5.23 – Microbeam attractor’s probability density distribution as a function of the noise 

levels for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0 
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(a) σ = 0.015, ( ) ( )1 1, 0,0w w =  (b) σ = 0.015, ( ) ( )1 1, 0.4,0.4w w = −  

  
(c) σ = 0.020, ( ) ( )1 1, 0,0w w =  (d) σ = 0.020, ( ) ( )1 1, 0.4,0.4w w = −  

  
(e) σ = 0.025, ( ) ( )1 1, 0,0w w =  (f) σ = 0.025, ( ) ( )1 1, 0.4,0.4w w = −  

Figure 5.24 – Microbeam’s histograms of two initial conditions at time t = 10000T integrated 

5000 times for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0. (a, c, e) non-resonant initial condition, (b, d, f) 

resonant initial condition 
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5.4. 

The refinement procedure applied to the microcantilever 

Now the influence of the proposed refinement procedure, where the phase-

space is hierarchically subdivided, on the results is investigated. The phase-space 

window    1,1 2,2= −  −  is adopted, and the boundaries are assumed as of the 

absorbing type. The phase-space is initially at level 10, with 32 boxes in each 

dimension, increasing up to level 18 via the refinement algorithm, Table 3.1. The 

discretization data is given in Table 5.3 

Table 5.3 – Discretization data for the microcantilever  

Depth level Box-size Points per dimension Total collocation points 

10 {0.0625, 0.125} 12 144 

11 {0.0312, 0.125} 11 121 

12 {0.0312, 0.0625} 10 100 

13 {0.0156, 0.0625} 9 81 

14 {0.0156, 0.0312} 8 64 

15 {0.0078, 0.0312} 7 49 

16 {0.0078, 0.0156} 6 36 

17 {0.0039, 0.0156} 5 25 

18 {0.0039, 0.0078} 4 16 

 

The time integration scheme is the same adopted in the previous analysis, 

with time-step Δt = T/4000. For the stochastic cases, each initial condition is 

integrated ten times. At each level, a transition matrix is constructed, that is, a 

discretization of the Perron-Frobenius operator when the system is deterministic, 

eq. (2.59), or discretization of the Foias operator when the system is stochastic, 

eq. (2.62). Probability density distributions and (stochastic) basins of attraction 

are then obtained through the classical Ulam method, following Section 3.1. 

Finally, the phase-space is subdivided following the algorithm in Table 3.1, and 

the process is repeated until the final level. 

The results for small imperfections and different noise levels are presented 

in Figure 5.25. The refinement algorithm reveals the basin boundaries in more 

detail, reducing the numerical diffusion due to discretization observed in Figure 

5.8(a, b, c). Additionally, the localized discretization of the attractor allows its 

density to be correctly depicted for stochastic cases, see Figure 5.25(b, c), with its 

diffusion being properly quantified. These results provide new insights into the 
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previous analysis, demonstrating the capabilities of the proposed subdivision 

strategy. 

 
(a) w0 = 0.01, σ = 0.00 

  
(b) w0 = 0.01, σ = 0.01 (c) w0 = 0.01, σ = 0.02 

Figure 5.25 – Microbeam global dynamics obtained after the application of the refinement 

algorithm for Vdc = 45, V̅ac = 1, Ω = 2.8, low imperfection and noise levels. Outer color bar: 

attractor’s density, inner color bar: stochastic basin of attraction 

  
(a) nonresonant attractor (b) resonant attractor 

Figure 5.26 – Microcantilever deterministic global dynamics obtained after the application of the 

refinement algorithm for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05. Attractors marked in red. Color 

bar: basin of attraction 
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(a) nonresonant attractor (b) resonant attractor 

Figure 5.27 – Microcantilever global dynamics obtained after the application of the refinement 

algorithm for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, σ = 0.005. First color bar: stochastic basin of 

attraction, second color bar: attractors’ densities 

  
(a) σ = 0.010 (b) σ = 0.015 

Figure 5.28 – Microcantilever nonresonant attractor global dynamics obtained after the 

application of the refinement algorithm for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05. First color bar: 

stochastic basin of attraction, second color bar: attractor’s density 

The results for a larger imperfection value, w0 = 0.05, are now obtained. The 

deterministic case is presented in Figure 5.26. Compared with the previous results, 

Figure 5.9(a) and Figure 5.10(a, b), it is observed that the refinement strategy 

shows the basins’ boundaries in much more detail, as expected. Regions with 

probability values between 0 and 1 are small, showing that the numerical diffusion 

is indeed mitigated. Figure 5.27 shows the results for the stochastic case with 

σ = 0.005. The diffusion of the attractors’ distributions is demonstrated, with the 

resonant attractor being more affected by it. The basins’ boundaries diffusion is 

not large, being localized to specific regions in phase-space. Higher noise 

intensity is depicted in Figure 5.28. For σ ≥ 0.01, only the nonresonant attractor 

remains for sufficient large time-horizons. Increasing the noise intensity past 

σ ≥ 0.01 only increases the spreading of the nonresonant attractor over the phase-

space, as observed in the distributions. This result could be thought of as in 
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contradiction with the Monte-Carlo experiment in Figure 5.15(a, b). However, the 

Monte-Carlo was conducted only until t = 10000T, and here the expected outcome 

for larger time-horizons is observed. This will be made clear in the following 

transient analysis. 

The transient analysis is demonstrated in Figure 5.29 and Figure 5.30, for 

σ = 0.01, and in Figure 5.31 and Figure 5.32, for σ = 0.015. For the first noise 

case, σ = 0.01, it is observed that for time-horizons 1/ε ≤ 10000T, the usual basin 

is obtained, see Figure 5.29(a, b, c) and Figure 5.30(a, b, c). The vanishing of the 

resonant region is only observed for larger time-horizons, which is completely 

absent for 1/ε = 1e7T. This result confirms the Monte-Carlo experiment in Figure 

5.15(a, b), which was conducted only until t = 10000T, a time for which a 

separation between the basins is still observed. For the second noise case, 

σ = 0.015, the degradation of the resonant region occurs much earlier, as observed 

in Figure 5.31(c) and Figure 5.32(c) for 1/ε = 1e3T. The case for 1/ε = 1e4T again 

is validated by the Monte-Carlo experiment in Figure 5.15(c, d), with only a small 

probability for initial conditions in the resonant region to converge to the resonant 

solution and the majority decaying to the nonresonant solution. The transient 

basin analysis is only possible because the separation between the basins is very 

refined. The adoption of a crude refinement in these regions could result in wrong 

time-horizon values of basin decay since the numerical diffusion is not 

sufficiently mitigated in such cases, therefore justifying the adoption of the 

proposed algorithm. 
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(a) ε = 0.1 (b) ε = 1e-2 (c) ε = 1e-4 

   
(d) ε = 1e-5 (e) ε = 1e-6 (f) ε = 1e-7 

Figure 5.29 – Dependency of the stochastic nonresonant basin of attraction (color bars) on the 

final time-horizon 1/ε for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, σ = 0.010 

   
(a) ε = 0.1 (b) ε = 1e-2 (c) ε = 1e-4 

   
(d) ε = 1e-5 (e) ε = 1e-6 (f) ε = 1e-7 

Figure 5.30 – Dependency of the stochastic resonant region (color bars) on the final time-horizon 

1/ε for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, σ = 0.010 
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(a) ε = 0.1 (b) ε = 1e-2 (c) ε = 1e-3 

  
(d) ε = 1e-4 (e) ε = 1e-5 

Figure 5.31 – Dependency of the stochastic nonresonant basin of attraction (color bars) on the 

final time-horizon 1/ε for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, σ = 0.015 

   
(a) ε = 0.1 (b) ε = 1e-2 (c) ε = 1e-3 

  
(d) ε = 1e-4 (e) ε = 1e-5 

Figure 5.32 – Dependency of the stochastic resonant region (color bars) on the final time-horizon 

1/ε for Vdc = 45, V̅ac = 1, Ω = 2.8, w0 = 0.05, σ = 0.015 
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(a) nonresonant attractor (b) resonant attractor 

Figure 5.33 – Microcantilever global dynamics obtained after the application of the refinement 

algorithm for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.000. Attractors marked in red. Color bar: 

basin of attraction 

The last analyzed case is a perfect microcantilever, w0 = 0, with nonresonant 

and resonant solutions. Figure 5.33 displays for the deterministic case the basins’ 

boundaries in much more detail, if compared to the initial investigation, Figure 

5.16(a), Figure 5.17(a), and Figure 5.18(a), as expected. Stochastic cases are 

presented in Figure 5.34, for the nonresonant attractor, and in Figure 5.35, for the 

resonant attractor. In both cases, the attractors’ distributions spread over the 

phase-space as noise increases. A different outcome is observed for the analysis 

with phase-space hierarchical subdivision: for noise intensity σ ≥ 0.013, the 

resonant solution vanishes for long time-horizons. In the initial investigation, this 

was only observed for σ ≥ 0.015, see Figure 5.19 and Figure 5.20. Also, the 

resonant and nonresonant regions could not be separated from each other, whereas 

the subdivision strategy is capable of differentiating each outcome. Also, in the 

last nonresonant basin, Figure 5.34(f), the color bar is shown as continuous to 

illustrate that there is a small probability that initial conditions in the resonant 

region converge to the nonresonant attractor, as observed in the Monte-Carlo 

experiment, Figure 5.24(f). 
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(a) σ = 0.010 (b) σ = 0.012 

  
(c) σ = 0.013 (d) σ = 0.015 

  
(e) σ = 0.020 (f) σ = 0.025 

Figure 5.34 – Microcantilever nonresonant attractor global dynamics after the use of the 

refinement algorithm for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0. First color bar: stochastic basin of 

attraction, second color bar: attractor’s density 
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(a) σ = 0.010 (b) σ = 0.012 

Figure 5.35 –Microcantilever resonant attractor global dynamics for Vdc = 45, V̅ac = 5, Ω = 2.8, 

w0 = 0 after the use of the refinement algorithm. First color bar: stochastic basin of attraction, 

second color bar: attractor’s density 

The transient analysis for σ = 0.013 and σ = 0.025 are detailed in Figure 

5.36 and Figure 5.39, for the nonresonant attractor, in Figure 5.37 and Figure 5.40 

for the resonant region, and in Figure 5.38 and Figure 5.41 for the escape region. 

For the lower noise intensity, σ = 0.013, the resonant region only vanishes after a 

long period of time. That is, the transient feature of this solution is made clear 

only for time-horizons 1/ε > 1e10T. The Monte-Carlo experiments were 

conducted only up until 1e4T, missing the long-transient characteristic of this 

solution in Figure 5.24(b, d). Once again, this is only possible if the resonant and 

nonresonant regions are properly separated, which would demand a very refined 

phase-space, whereas the subdivision strategy can do so without increasing the 

computational cost. The case with σ = 0.025 shows that the resonant region 

vanishes much earlier, with 1/ε = 1e4T, also with some solutions leading to the 

nonresonant attractor, see Figure 5.39(d), while the majority leads to escape, see 

Figure 5.41(f). This is in agreement with the Monte-Carlo experiment, Figure 

5.24(e, f), where this same outcome is observed. 
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(a) ε = 0.9 (b) ε = 1e-2 (c) ε = 1e-4 

   
(d) ε = 1e-8 (e) ε = 1e-10 (f) ε = 1e-12 

Figure 5.36 – Dependency of the stochastic nonresonant basin of attraction (color bars) on the 

final time-horizon 1/ε for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.013 

   
(a) ε = 0.9 (b) ε = 1e-2 (c) ε = 1e-4 

   
(d) ε = 1e-8 (e) ε = 1e-10 (f) ε = 1e-12 

Figure 5.37 – Dependency of the stochastic resonant basin of attraction (color bars) on the final 

time-horizon 1/ε for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.013 
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(a) ε = 0.9 (b) ε = 1e-2 (c) ε = 1e-4 

   
(d) ε = 1e-8 (e) ε = 1e-10 (f) ε = 1e-12 

Figure 5.38 – Dependency of the stochastic escape region (color bars) on the final time-horizon 

1/ε for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.013 

  
(a) ε = 0.9 (b) ε = 1e-2 

  
(c) ε = 1e-4 (d) ε = 1e-6 

Figure 5.39 – Dependency of the stochastic nonresonant basin of attraction (color bars) on the 

final time-horizon 1/ε for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.025 
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(a) ε = 0.9 (b) ε = 1e-2 

  
(c) ε = 1e-4 (d) ε = 1e-6 

Figure 5.40 – Dependency of the stochastic resonant basin of attraction (color bars) on the final 

time-horizon 1/ε for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.025 

  
(a) ε = 0.9 (b) ε = 1e-2 

  
(c) ε = 1e-4 (d) ε = 1e-6 

Figure 5.41 – Dependency of the stochastic escape region (see color bars) on the final time-

horizon 1/ε for Vdc = 45, V̅ac = 5, Ω = 2.8, w0 = 0, σ = 0.025 

Figure 5.42 shows, for ε = 1e-8, the variation of the basins’ area as a 

function of the noise intensity σ for the perfect case, w0 = 0, and an imperfect case, 

w0 = 0.05, for selected probability thresholds. For each attractor, the measure is 
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computed employing eq. (4.2). The basin area of the nonresonant attractor 

demonstrates resilience against noise. For the perfect case, the area is almost 

constant with only a small increase due to the erosion of the resonant basin as σ 

increases. The diffusion of the basins’ boundaries can be observed in the perfect 

case in Figure 5.42(a). As noise increases, a divergence of the various probability 

thresholds is observed. For the imperfect case, the vanishing of the resonant basin 

results in an increase in the basin area of the nonresonant attractor, jumping from 

10% of the window area to almost 15% of the total area, for all probability levels. 

The sensitivity to noise of the resonant responses is correctly depicted in both 

cases, showing that this measure can be considered for the quantification of 

dynamic integrity of systems under noise. 

  
(a) nonresonant attractor, w0 = 0.00 (b) resonant attractor, w0 = 0.00 

  
(c) nonresonant attractor, w0 = 0.05 (d) resonant attractor, w0 = 0.05 

Figure 5.42 – Variation of the microcantilever basins area as a function of the noise intensity σ for 

Vdc = 45, Ω = 2.8, (a, b) V̅ac = 5, (c, d) V̅ac = 1, showing various probability thresholds (color bar) 
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Parameter uncertainty and noise effects on the global 

dynamics of an electrically actuated microarch  

An investigation of parameter uncertainty and noise effects on the nonlinear 

oscillations of a planar microarch electrically actuated is conducted. Extensional 

effects are considered, resulting primarily from an axial load. An initial geometric 

imperfection is also considered. A reduced order model is derived from a 2-mode 

expansion following [202], allowing the analysis to be performed in a 

bidimensional phase-space. The modified subdivision algorithm developed in 

Sections 3.3 and 3.4, given in Table 3.3, is adopted. The phase-space is 

hierarchically discretized into a quadtree, and stable and unstable manifolds are 

obtained. The effect of additive white noise and parametric uncertainty in the 

damping coefficient are investigated. The computations are performed by an Intel 

Core i7-7700HQ with eight logical processors of 2.8GHz, and the total available 

RAM is 24GB. The algorithm performance is measured by the reduced number of 

phase-space boxes and initial conditions, which represent the primary cost in the 

computations. Total time was not evaluated since a parallel implementation with 

openMP (https://www.openmp.org/) was considered for the integration of the 

initial conditions. 

 

6.1. 

Nonlinear Euler-Bernoulli microarch electrically actuated 

A Microelectromechanical System (MEMS) model is derived based on the 

experimental and numerical analyses in [123]. The microstructure is simulated as 

a fixed-fixed imperfect microbeam, with length L and a constant rectangular 

cross-section of width b and thickness h. The initial geometric imperfection is 

described by a function 
0( )w s . As in [123], residual stresses are represented by a 

https://www.openmp.org/
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constant axial load P, which produces the axial displacement uB at the right end of 

the beam. Assuming only planar motions, the Euler angles ψ and ψ0 become zero, 

see the trigonometric relations (A21) and (A23). Furthermore, this formulation 

assumes zero torsional displacements, with the Euler angles ϕ and ϕ0 set to zero. 

The resulting undeformed and deformed coordinate systems with respect to the 

reference system are given in Figure 6.1. The actuation plate is also depicted at a 

positive distance d in the adopted reference system. 

 

Figure 6.1 – Orientation of imperfect undeformed and deformed coordinate systems of the 

microarch with respect to the reference system 

Considering the full nonlinear planar equations of motion (5.4) and (5.5) 

and the Lagrangian multiplier definition in eq. (A53) to account for the axial 

deformation, the extensional equations of motion take the form 

( ) ( )2

01 ,
1

ncu e
u u

e

D d
G A u w Q

u dt u



   

  = + + + = −    +    

l
 (6.1) 

( )
,

1

ncu e
w w

e

D d
G A w Q

w dt w



   

 = + = −    +    

l
 (6.2) 

with Aθ given by eq. (A54), Δe given by eq. (5.3), and the Lagrangian kernel ℓ 

defined as 

( )2 2 2 21
.

2 2 2

u
e

D D
mu mw


= + − − l  (6.3) 

The rotary inertia Jη is order of magnitudes smaller than the other constants. Thus, 

the angular velocity is not considered in eq. (6.3), simplifying the development 

even further. 
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Finally, eqs. (6.1) and (6.2) are expanded up to the third order in the state 

variables w and u and in the geometric imperfection w0. The axial displacement u 

is, in this formulation, assumed to be of the first order. The expanded equations 

are 

2

0 ,
2

u u u

w
mu c u Q D u w w D w w


   

    + − = + + +  
   

 (6.4) 

( )( )

( ) ( ) ( ) 

2

0 0

2

0 0

2
2

1 .

w w u

w
mw c w Q D w u w w D w w w w w

w w w w w w u w u w



            + − = + + + + −     


         + + + + +


 (6.5) 

The impact of the extensional assumption is evident, with the axial displacement 

present in both equations. 

The microarch analyzed by Ruzziconi et al. [123] accounts for an initial 

axial displacement as a boundary condition in s = L. The axial boundary 

conditions are written as 

( ) ( )0, 0, , ,Bu t u L t u= = −  (6.6) 

Assuming u to be time-independent and the axial distributed load Qu to be zero in 

eq. (6.4) and integrating the result two times with respect to s, the axial 

displacement is obtained as 

0 1 2

0

.
2

s

u

Dw
u w w w w ds C s C

D

 
   = − + + + + 
 




 (6.7) 

By applying the boundary conditions (6.6), the constants iC in (6.7) are obtained, 

resulting in 

0

0

0

0

2

.
2

L

B

u

s

u

Ds w s
u w w w w ds u

L D L

Dw
w w w w ds

D





 
   = + + − 
 

 
   − + + 
 







 (6.8) 
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It is important to mention that only the initial displacement w0 is stress-free. The 

boundary condition uB imposes an initial deformation that is not in equilibrium. 

Thus, the corresponding w must be calculated. 

The condensed flexural equation of motion is obtained by substituting the 

axial displacement, eq. (6.8), into eq. (6.5), leading to 

( )

( )

( ) ( )( )

( )

2
iv

0
0

2

iv iv

0

2
iv iv

0
0

20
0 0 0 0

2

2

2

2

2
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w B w

L

u

L

B

u

D w
mw c w D w w u w w ds Q
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D D
w w w w w ds
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D w
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w w
D w w w w w w w w w

D
w w
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 






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 

 
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 

             + + + + +   
  
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

2 .w w

 
   

 

 (6.9) 

The left side of Eq. (6.9) is identical to the equation obtained by Ruzziconi et al. 

[123], where it is equated to zero. The difference between the models is due to the 

nonlinearities in eqs. (6.4) and (6.5) that are considered here. Finally, clamped 

boundary conditions are considered at both ends after the imposed axial 

displacement. Thus 

( ) ( )

( ) ( )

0, 0, 0,

, , 0.

w t w t

w L t w L t

= =

= =
 (6.10) 

A parallel plate capacitor with a rectangular cross-section is assumed, with 

the electrostatic force Qw written as [116] 

( )

2

2
,

2
w

b V
Q

d w


=

−
 

(6.11) 

where b is the beam width, d is the initial gap for a perfect system, ε is the free 

space permittivity, and V is the applied voltage. 

Eq. (6.9) is nondimensionalized considering the following parameters 
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 (6.12) 

resulting in  
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 (6.13) 

where * is dropped for brevity. The nondimensional electrostatic load is given by 

[116] 

( )

2
*

22
,

2 1
w

b V
Q

d w


=

−
 (6.14) 

with the singularity now at 1w = . 

The total applied voltage is the sum of the direct current (Vdc) and the time-

dependent alternate current (Vac), i.e.: 

( ) ( ).dc acV t V V t= +
 

(6.15) 

The displacement is, therefore, decomposed into its dynamic and static parts, 

( ) ( ) ( ), , .d sw t x w t x w x= +
 

(6.16) 
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The static displacement component 
sw  is obtained by substituting eqs. 

(6.15) and (6.16) into eq. (6.13) and setting to zero all terms with derivatives with 

respect to time. The resulting nonlinear equilibrium equation is 
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0 23
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 (6.17) 

where 
0s sw w w= + . 

The static and dynamic displacement fields are expanded in terms of the 

linear vibration modes, and the Galerkin method is employed to discretize the 

equation of motion. The linear vibration modes are solutions of 

0,ivw w+ =  (6.18) 

subjected to boundary conditions (6.10). Equation (6.18) corresponds to the 

classic linear Euler-Bernoulli beam [199]. Its solution is 

( ) ( ) ( )
1

, i i

i

w s t w t F s



=

=  (6.19) 

where wi is the ith modal amplitude and Fi is the ith natural mode of vibration, 

which, for the clamped-clamped boundary conditions (6.10), are given by [199],  

( ) ( ) ( )

( ) ( )

cosh cos

sin sinh
sinh sin ,

cos cosh

i iF s C s s

s s

 

 
 

 

= − +

+  −  − 

 (6.20) 

where Ci are the modal amplitudes normalized using the orthogonality condition 

[199] 
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1
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.i

i

C
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=


 

(6.21) 

The natural frequencies are the nontrivial solutions of the characteristic equation 

cos cosh 1.  =  (6.22) 

The initial displacement field w0 is assumed in the form of the clamped-

clamped beam buckling mode, given by 

0
0

2
1 cos ,

2

y s
w

L

  
= −   

  
 (6.23) 

which is rewritten in nondimensional form as 

( )( )
*

* 0
0 1 cos 2 ,

2

y
w s= −  (6.24) 

with 
*

0 0y y d= . The magnitude y0 is the maximum initial rise of the imperfect 

beam in s* = 0.5.  

The present formulation is valid for shallow arches under small to moderate 

displacements. Also, the capacitor assumption [116] dictates that the system 

behaves as parallel plates. The parameters of Ruzziconi et al. [123] consider these 

constraints and therefore are adopted in this study. They are summarized in Table 

6.1. 

Table 6.1 – Microarch geometric and material parameters 

Parameters Symbol Values 

Width b* 0.1268 

Nominal gap d* 0.0016 

Free space permittivity (V-2) ε* 3.4273e-7 

Axial stiffness βu 668643.74 

Initial transversal displacement at s* = 0.5 
*

0y  -1.9243 

Initial axial displacement at s* = 1 uB 6.7288e-5 

 

The minus sign of 
*

0y  implies that the total initial gap is larger than the 

nominal gap. In dimensional form, the maximum initial gap is y0 + d = 2.047e-6. 

The nondimensionalization in [123] of the displacement fields is with respect to a 

nominal micrometer, while here, the nominal gap is adopted. Thus, the pull-in 
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position becomes w = 1. Hereafter the symbol * is dropped for brevity unless 

stated otherwise. The only exception is the actuation load V and its static Vdc and 

dynamic Vac components, which are in units of Volt (V). 

 

6.2. 

Nonlinear equilibrium at static actuation 

The static response of the microarch is now investigated. Initially, the modal 

equations are obtained. Following a classical procedure [116], eq. (6.17) is 

multiplied by its denominator, and then a Galerkin projection using the linear 

modes is conducted, resulting in the system of equations 

(

)

2 1

3
0

,
2

i in j ijn j k ijkn u n i in i j ijn

i j k ijkn i j k l ijkln i j k l m ijklmn

n i in i j ijn i j k ijkn i j k l ijkln

dc
i j k l m ijklmn n

w w w w w w w

w w w w w w w w w w w w

w w w w w w w w w w

b V
w w w w w F ds

d





  −  +  + + + + 

+ + =

+ + + + +

+ 

C C C

C C C

D D D D D

D

 (6.25) 

where wi are static modal amplitudes, the tensor constants are given in Appendix 

B, and the Einstein summation convention is adopted. Eq. (6.25) presents 

nonlinearities up to the fifth order with coupling between all linear modes. The 

nonlinear equilibrium paths are obtained through a pseudo arc-length continuation 

procedure together with the Newton-Raphson method [191, 192], and their 

stability is verified through the maximum eigenvalue of the Jacobian matrix. 

The static equilibrium responses for various imperfection levels are 

displayed in Figure 6.2, considering an increasing number of modes, namely, the 

first, third and fifth linear modes (symmetric modes). The vertical axis 

corresponds to the total static displacement 
sw  at the middle of the microarch 

span, s = 0.5, with respect to the perfect reference system. That is, it accounts for 

the displacement due to the static actuation Vdc, the initial imperfection y0, and the 

initial axial displacement ub. Recalling the nondimensional relations in (6.12), the 

displacement ( )* 0.5 1sw =  corresponds to the pull-in, and results for ( )* 0.5 1sw   

are not physically admissible. 
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(a) y0 = 0 (b) y0 = -1 

  
(c) y0 = -2 (d) y0 = -3 

Figure 6.2 – Comparison of the microarch static response for different modal expansions and 

levels of initial imperfection. – stable, -- unstable 

At least the first two symmetric modes are necessary to predict with 

precision the nonlinear response before pull-in occurs for all imperfection levels 

and, consequently, the associated potential energy function and the ensuing global 

dynamics. Specifically, the absolute error of the limit point load using the 1-mode 

expansion is much higher in comparison with that obtained with the 2-mode 

expansion, see Figure 6.3. For y0 ≥ -2, the 2-mode expansion absolute error with 

respect to the 3-mode expansion is one order of magnitude less than that of the 1-

mode expansion. This indicates the viability of the 2-mode expansion for shallow 

arches, being a good compromise between quality of results and difficulty of 

analysis. Notice that, although the imperfection magnitude y0 is a multiple of the 

nominal gap d, it is still very small in comparison to the nominal microarch span L 

[123]. The maximum absolute displacement corresponds to 0.477% of the 

microarch span, therefore, the displacements are still very small. Finally, 
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symmetry-breaking bifurcations are not considered, so asymmetric modes are not 

investigated. 

 

Figure 6.3 – First limit-point load absolute error of the 1 and 2 modes expansions with respect to 

the three modes expansion 

6.3. 

Formulation of the reduced order model 

Here the concept of normal nonlinear modes is used to derive a reliable sdof 

ROM for the microarch [83]. The usual procedure to obtain the modal equations 

of motion is to define the displacement w as a sum of static and dynamic 

components, expand the dynamic part in Taylor series and then apply a Galerkin 

projection onto the linear modes, eq. (6.20) [116]. This procedure was considered 

in the dynamic analysis of the microcantilever in Section 5.2. The resulting 

system represents a dynamic perturbation of the static position. Depending on the 

excitation frequency and the expected displacement amplitude, several linear 

modes are necessary to describe the original continuous problem correctly [202]. 

This is a problem for global dynamic analysis since the phase-space dimension 

increases with the number of modal equations n (dimension 2n), and 

discretizations of multidimensional spaces are computationally prohibitive, 

especially when noise and uncertainties are considered. 

To address this issue, a reduced order model of eq. (6.13) is here derived. 

By multiplying eq. (6.13) by its denominator and then applying the Galerkin 

projection without separating static and dynamic displacement components, the n-

th modal equation takes the form 
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( )

(

)

32

i w i in j ijn j k ijkn i in j ijn j k ijkn

u n i in i j ijn i j k ijkn i j k l ijkln

i j k l m ijklmn n i in i j ijn i j k ijkn

i j k l ijkln i j k l m ijklmn dc

w c w w w w w w w w

w w w w w w w w w w

w w w w w w w w w w w

b
w w w w w w w w w V V

d





   + − + +  −  +  +   

+ + + + +

= + + + +

+ + +

A A A

C C C C C

C D D D D

D D ( )
1

2

0

,ac nF ds

 (6.26) 

where the Einstein summation convention is adopted, and the constant tensors are 

given in Appendix B. The electrostatic load V is separated into static and dynamic 

contributions due to the direct current voltage Vdc and alternating current voltage 

Vac. This is a strongly nonlinear equation, with second-order nonlinearities in the 

inertia and damping terms and up to fifth-order nonlinear stiffness terms. Modal 

systems obtained from eq. (6.26) are highly coupled, complicating the analysis. 

Following the results from the static analysis, the symmetric 2-mode 

expansion system is adopted. However, the adoption of the 2-mode expansion 

results in a 4-dimensional phase-space, which is still complicated to analyze. An 

alternative is to restrict the analysis to solutions embedded in a lower dimensional 

invariant manifold [83], following the definition of nonlinear normal modes of 

Shaw and Pierre [202]. 

To construct the ROM, the symmetric 2-mode system is expanded using 

Taylor series around a static equilibrium position 
( ) ( )( )1 2

, ,s s dcw w V  given by the 

solution of the symmetric 2-mode expansion of eq. (6.25) up to fifth order. The 

resulting first-order differential system is 

( ) ( )( )

1 1

1 2

1 1 1 2 1 2

,

, , , , , , , ,s s dc ac

d
w w

dt

d
w F w w V w w w w V

dt

=

=

 (6.27) 

( ) ( )( )

2 2

1 2

2 2 1 2 1 2

,

, , , , , , , .s s dc ac

d
w w

dt

d
w F w w V w w w w V

dt

=

=

 (6.28) 

For the following numerical analysis, the static position is calculated 

assuming Vdc = 0.7V, as in [123], with parameters from Table 6.1, and 

( ) ( )1 2
0.8382, 0.0200s sw w= − = . Then, the procedure described in [202] is applied. 
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One of the modal amplitudes is taken as the independent manifold variable 

(master pair), while the others are assumed as dependent variables (slave 

coordinates). Here the first modal amplitude and the corresponding velocity are 

adopted as governing or master coordinates, and the second modal amplitude and 

velocity as slave coordinates. Expanding w2 up to the fifth order results in 

5

2 0 , 1 1

1 0

,

n

n i i

i n

n i

w a a w w−

= =

= +  (6.29) 

5

2 0 , 1 1

1 0

.

n

n i i

i n

n i

w b b w w−

= =

= +  (6.30) 

The constants are obtained by substituting eq. (6.29) and (6.30) into the first 

and second of eqs. (6.28), respectively, and setting damping and forcing terms to 

zero. Applying the second equation in (6.27) to eliminate the acceleration terms, 

and retaining terms up to fifth power of 1w  and 1w , results in 

5 5

1;0 1; , 1 1 2;0 2; , 1 1

1 0 1 0

,

n n

n i i n i i

i n i n

n i n i

C C w w C C w w− −

= = = =

+ = +   (6.31) 

5 5

3;0 3; , 1 1 4;0 4; , 1 1

1 0 1 0

,

n n

n i i n i i

i n i n

n i n i

C C w w C C w w− −

= = = =

+ = +   (6.32) 

which are dependent of the constants ai,n and bi,n in eqs. (6.29) and (6.30). The 

nonlinear polynomial system  

1;0 2;0

3;0 4;0

1; , 2; ,

3; , 4; ,

0,

0,

0, , ,

0, , ,

i n i n

i n i n

C C

C C

C C i n

C C i n

− =

− =

− = 

− = 

 (6.33) 

governs the coefficients ai,n and bi,n of eq. (6.29) and (6.30). In this case, there are 

forty-two equations up to the fifth power in ai,n and bi,n. Solving this problem 

results in the nonlinear normal mode governed by 
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( ) ( )

( )

1 1

5 4 2 4

1 1 1 1 1

2 3 2 2

1 1 1 1

2 4

1 1 1

,

5.0854 14.3037  0.0035 2.4554E 6

121.6181 0.0224 762.4990 0.0114

1385.5761 0.0172 1.5913E 5 .

d
w w

dt

d
w w w w w

dt

w w w w

w w w

=

= + + − − −

+ + − −

− + −

 (6.34) 

Figure 6.4 illustrates the two-dimensional manifold of the nonlinear normal 

mode given by eq. (6.34). This manifold is tangent to the plane corresponding to 

the linear normal mode at the origin. 

  

Figure 6.4 – Two-dimensional invariant manifold of the reduced order model 

By substituting eq. (6.29) and eq. (6.30) into eq.(6.27), the first-order 

nonlinear equations of the forced and damped system are given by 
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(6.35) 

which is a reduced order model for vibrations in the pre-buckling potential well, 

with ( ) ( )1 1, 0,0w w =  as the energy minimum. 

If 
( ) ( )1 2

w wc c= , the damping is significantly simplified, which is the case 

adopted in [123]. Here, the damping ratio   is the same for the two modes, 

leading to distinct values for 
( )1

wc  and 
( )2

wc , and also to nonlinear damping terms in 

eq. (6.35). 

 

6.4. 

Frequency response under dynamic actuation 

The dynamic actuation is given by the periodic voltage, 

( )cos ,acV A t=   (6.36) 

where A is the forcing magnitude, and Ω is the forcing frequency. The damping 

coefficients are given in terms of the damping ratio,  , as 
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( )

( )

1

1

2

2

2 ,

2 ,

w

w

c

c





=

=
 (6.37) 

where ω1 and ω2 are the first and second natural frequencies. The natural 

frequencies are a function of the static voltage Vdc, the initial axial displacement 

uB, and the initial imperfection y0. For the parameters in Table 6.1 and Vdc = 0.7V, 

the natural frequencies are ω1 = 37.6699 and ω2 = 116.7780. 

The analysis is conducted with the software Continuation Core and 

Toolboxes (COCO) [203]. Initially, the free vibrations of the 2 dof model, 

described by the 2-mode expansion, eq. (6.26), and the conservative reduced order 

model, eq. (6.34), are compared. The backbone curves are shown in Figure 6.5 in 

terms of the transversal displacement w  at s = 0.5, with respect to the reference 

frame, and in Figure 6.6 in terms of the modal amplitudes w1 and w2. A softening 

behavior is observed, which is the expected behavior of a shallow arch. The two 

models agree qualitatively well in terms of the transversal displacement w and the 

first modal amplitude w1, even for large displacements. The two models diverge in 

the second modal amplitude w2 for frequencies lower than 35, as observed in 

Figure 6.6(b). However, w2 is much smaller in comparison to w1, in this range 

which minimizes the impact of the difference between the models, as shown by 

the resonance curves in Figure 6.7. These results demonstrate the quality of the 

reduced order model as a lower dimensional substitute for the original modal 

expansion when excitation frequencies concentrate around the first natural 

frequency. 

 

Figure 6.5 – Backbone curves for the first mode natural frequency 

of the total displacement w  at s = 0.5 
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(a) (b) 

Figure 6.6 – Backbone curves for the first natural frequency 

in the modal amplitudes (a) w1 and (b) w2 

The resonance curves for both models are compared in Figure 6.7 for 

A = 17V, ξ = 0.05, and ξ = 0.03. Two resonance regions are observed, one at 

Ω = 37.2 and other at Ω = 18.6. The former corresponds to the first mode natural 

frequency, while the latter is a subharmonic resonance. The subharmonic 

resonance is due to the term Vac
2 in both the reduced model, eq. (6.35), and the 2 

dof model, eq. (6.26). Specifically, the subharmonic resonance is more prominent, 

with larger displacement values. Markers identify the bifurcation points: saddle-

node bifurcation points in green and period-doubling bifurcation points in red. 

Stable and unstable solutions are identified by respectively continuous and dashed 

lines. The reduced order model agrees well with the 2 dof model, again showing 

its capability, including the point where the saddle-node bifurcation occurs. 

Finally, the impact of increasing forcing amplitude is demonstrated in Figure 6.8, 

for ξ = 0.05, in Figure 6.9, for ξ = 0.03, and in Figure 6.10, for ξ = 0.01. The 

main resonant region exhibits small amplitude vibrations for the two former cases, 

while the subharmonic region presents much larger vibration amplitudes. For 

smaller damping ratios, ξ = 0.01, Figure 6.10, a more complex response is 

observed, with the main resonant region exhibiting large amplitude vibrations. 

This shows the importance of the damping parameter on the results. Thus, the 

influence of damping uncertainty will be explored later in this chapter. 
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(a) ξ = 0.05 (b) ξ = 0.03 

Figure 6.7 – Resonance response curves for A = 17V and varying ξ. Saddle-nodes in green, 

period-doubling points in red. – stable, -- unstable 

  

Figure 6.8 – Resonance response curves of the reduced order model for ξ = 0.05 and varying 

amplitude A. Saddle-nodes in green, period-doubling points in red. – stable, -- unstable 

  

Figure 6.9 – Resonance response curves of the reduced order model for ξ = 0.03 and varying 

amplitude A. Saddle-nodes in green, period-doubling points in red. – stable, -- unstable 
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Figure 6.10 – Resonance response curves of the reduced order model for ξ = 0.01 and varying 

amplitude A. Saddle-nodes in green, period-doubling points in red. – stable, -- unstable 

 

6.5. 

Global dynamic analysis 

6.5.1. 

Deterministic results 

The deterministic global dynamics of the arch are now discussed. The 

subharmonic resonance region is investigated, considering a forcing frequency 

Ω = 15. The amplitude of excitation is A = 17V for all cases. The fourth order 

Runge-Kutta integrator is adopted for the construction of the flow 
T , with time-

step T/2000. 

The analyzed phase-space window is    2,3 70,60= −  − , which 

contains the relevant attractors. The initial box partition is defined as a division of 

25 in each dimension, totaling 32x32 = 1024 boxes of size {0.1562, 4.0625}. The 

procedure is conducted through four steps, with a final box size of 

{0.0098, 0.2539}, box subdivision is accomplished using the quadtree procedure. 

The number of initial conditions per box depends on the box size, decreasing with 

refinement. Table 6.2 presents the number of collocation points for each depth 

level. 

The changes in the basins of attraction topology in the subharmonic 

resonance region with the damping ratio ξ are shown in Figure 6.11. For ξ = 0.05, 

the two basins are robust, with well-defined smooth boundaries. As the damping 
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ratio decreases, both basins’ integrity degrades, with escape tongues gradually 

eroding them, with the resonant basin more affected than the nonresonant one. 

This is also evident in Figure 6.12, where the increase of the escape region with 

the damping ratio is presented. Also, the resonant and the nonresonant basins 

become more intertwined as ξ decreases. 

Table 6.2 – Discretization data for the Reduced order model 

Depth level Box-size Points per dimension Total collocation points 

10 {0.1562, 4.0625} 11 121 

12 {0.0781, 2.0312} 9 81 

14 {0.0391, 1.0156} 7 49 

16 {0.0195, 0.5078} 5 25 

18 {0.0098, 0.2539} 3 9 
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(a.1) ξ = 0.05, nonresonant (a.2) ξ = 0.05, resonant 

  
(b.1) ξ = 0.03, nonresonant (b.2) ξ = 0.03, resonant 

  
(c.1) ξ = 0.01, nonresonant (c.2) ξ = 0.01, resonant 

Figure 6.11 – Basins’ distributions (color bar) dependency with the critical damping ratio ξ, for 

A = 17V and Ω = 15. Attractors marked in red 

   
(a) ξ = 0.05 (b) ξ = 0.03 (c) ξ = 0.01 

Figure 6.12 – Escape regions’ distributions (color bar) dependency with the critical damping ratio 

ξ, for A = 17V and Ω = 15 
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(a.1) ξ = 0.05, stable manifold (a.2) ξ = 0.05, unstable manifold 

  
(b.1) ξ = 0.03, stable manifold (b.2) ξ = 0.03, unstable manifold 

  
(c.1) ξ = 0.01, stable manifold (c.2) ξ = 0.01, unstable manifold 

Figure 6.13 – Dependency of the stable and unstable manifolds distributions (color bar) with the 

critical damping ratio ξ. A = 17V, Ω = 15 

Complementary to the basins analysis, Figure 6.13 presents the evolution of 

the stable and unstable manifolds of the saddle lying along the basin boundary in 

the subharmonic resonance region with the damping ratio. The stable and unstable 

manifolds for ξ = 0.05, Figure 6.13(a), are the simplest ones, in agreement with 

the smooth boundaries observed in Figure 6.11(a). The structures become more 

complex for lower damping ratios, as shown in Figure 6.13(b, c). Figure 6.13(a.1, 

b.1, c.1) illustrates the geometry of the stable manifolds and the increasing 

stretching and folding process as damping decreases, which increases the basin 
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fractality and sensitivity to initial conditions near the basins’ boundaries, which 

are expected to increase with the addition of noise. The unstable manifolds 

converging to the two attractors also exhibit an increasingly complex structure as 

damping decreases, Figure 6.13(a.2, b.2, c.2). Figure 6.14 shows the superposition 

of the stable manifold (in green) and the unstable manifold (in blue). Numerous 

transverse intersections (in red) are observed for low damping ratios, implying the 

existence of a topological horseshoe. These observations show that the damping 

coefficient significantly influences the microarch global dynamics. 

  
(a) ξ = 0.05 (b) ξ = 0.03 

 
(c) ξ = 0.01 

Figure 6.14 – Stable (blue), and unstable (green) manifolds superposition (in red) for different 

damping ratio ξ. A = 17V, Ω = 15 

Figure 6.15 demonstrates how the final partition 
18

 changes with the 

damping ratio. As expected, the most refined regions correspond to the attractors’ 

stable and unstable manifold regions. Regarding the algorithm efficiency, Figure 

6.16 displays the total box and initial conditions count, while Figure 6.17 compare 

the discretization values with an equivalent full discretization of the phase-space 

for a given depth level. As expected, the case with the most complex structures, 

ξ = 0.01, led to the largest box and initial conditions count for all levels. The ratios 

in Figure 6.17 demonstrate the capability of the proposed procedure in 
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comparison with a full discretized phase-space. With ratios respectively lower 

than 40% and 70%, the method could fully depict the dynamical system attractors, 

basins, and complex stable and unstable manifolds. The lower box and initial 

conditions count were observed for the case with simple phase-space structures, 

which is again an expected outcome. 

   
(a) ξ = 0.05 (b) ξ = 0.03 (c) ξ = 0.01 

Figure 6.15 – Dependency of the last partition 
18

 with the critical damping ratio ξ, 

for A = 17V and Ω = 15 

  
(a) (b) 

Figure 6.16 – Evolution of the (a) cumulative box count and (b) cumulative initial conditions 

count with the critical damping ratio ξ, for A = 17 and Ω = 15 

  
(a) (b) 

Figure 6.17 – Ratio between the localized refinement and full discretization of the (a) cumulative 

box count and (b) cumulative initial conditions count for A = 17V, Ω = 15 
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6.5.2. 

Effects of additive white noise 

On one hand, almost all theoretical and most numerical studies of nonlinear 

dynamics are performed for idealized noise-free systems; on the other hand, in 

experiments, and real-life noise is ubiquitous. Adding a stochastic excitation W  

to the second equation of the reduced order model (6.35), results in a stochastic 

differential system, which is here interpreted as of Itô type. The sampling 

numerical integration of this system is obtained by a stochastic Runge-Kutta 

method of fourth order in drift and half order in diffusion, with the same time-step 

of the deterministic case, T/2000. Ten samples for each set of initial conditions are 

integrated for the construction of the discretized Foias operator Fh in eq. (2.62); 

see Section 2.5. The number of collocation points for each depth level is shown in 

Table 6.3. The higher number of collocation points compared to the deterministic 

case is to better represent the changes in global dynamics due to the stochastic 

excitation. 

Table 6.3 – Discretization data for the stochastic Reduced order model 

Depth level Box-size Points per dimension Total collocation points 

10 {0.1562, 4.0625} 12 144 

12 {0.0781, 2.0312} 10 100 

14 {0.0391, 1.0156} 8 64 

16 {0.0195, 0.5078} 6 36 

18 {0.0098, 0.2539} 4 16 

 

Initially, the effect of noise on the attractors and basins is investigated, and 

the results are displayed in Figure 6.18, for the nonresonant attractor, and in 

Figure 6.19, for the resonant attractor. A damping ratio ξ = 0.03 is adopted in this 

section. As Lindner and Hellmann [37] discussed, the generalization of stochastic 

basins of attraction for noisy dynamical systems, which assigns to each phase-

space region a probability of converging to a specific attractor, given a fixed time-

horizon, is adopted. In all cases, the time-horizon for the stochastic basin 

computation in eq. (3.1) is 1/ε = 1e9, giving the expected outcome. For σ = 0.5, a 

mild diffusion of both attractors is observed, see Figure 6.18(a) and Figure 

6.19(a). The basins boundaries maintain the same structure as in the determinist 
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case, but a slight diffusion is already evident, with regions with a probability 

between 0 and 1 appearing. These regions are here referred to as nondeterministic. 

Also, the noise results in the spreading of both attractors over the phase-space, 

with the resonant attractor seemingly more sensitive to it. As noise increases up to 

σ = 1.4, these effects increase, the attractors spreading over larger regions of 

phase-space and basin boundaries becoming more diffused, Figure 6.18(d) and 

Figure 6.19(d). The distance between the resonant attractor and its basin’s 

boundary decreases considerably, indicating a loss of dynamic integrity for this 

system. For σ ≥ 1.6, only the nonresonant attractor is observed. The previous 

resonant basin becomes nondeterministic, being partially absorbed by the 

nonresonant basin: initial conditions in this region have a probability between 

40% and 50% to converge to the nonresonant attractor after 1e9 periods of 

excitation, and the complementary probability corresponds to escape. The 

stochastic basin’s change for σ ≥ 1.6 is akin to a global bifurcation, drastically 

changing the outcome for this system. 

The nonautonomous character of stochastic dynamical systems suggests that 

stochastic basins are time dependent. An investigation of the transient behavior is 

desirable for σ ≥ 1.6, when the resonant attractor disappears. To this end, the 

transient behavior for σ = 1.6 is addressed. Increasing values of the time-horizon 

1/ε are considered in eq. (3.1), with the initial condition idf marking the 

nonresonant and resonant attractor, and escape solution. The results for σ = 1.6 are 

summarized in Figure 6.20, for the nonresonant attractor, in Figure 6.21, for the 

resonant attractor, and in Figure 6.22, for the escape solution. Similar results are 

obtained for sigma σ = 1.8 and σ = 2.0. The first three time-horizons, with ε = 0.5, 

ε = 1e-1, and ε = 1e-2, show the transient stochastic basin spreading in phase 

space but already with regions of probability lower than one, see Figure 

6.20(a, b, c), Figure 6.21(a, b, c), and Figure 6.22(a, b, c). The resonant basin 

starts to decrease for ε ≤ 1e-7, that is, after 1e7 periods of excitation. This is 

demonstrated in Figure 6.21(d, e), for ε = 1e-7 and ε = 1e-8. For ε = 1e-9, Figure 

6.21(f), the resonant basin completely disappears, with initial conditions in this 

region either converging to the nonresonant basin or the escape region. These 

results stress the time dependency of basins in stochastic systems. Due to 

computational limitations, the system is assumed ergodic for 1/ε ≥ 1e9, that is, it 

has converged to the steady-state response after 1e9 periods of excitation. 
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(a) σ = 0.5 (b) σ = 1.0 

  
(c) σ = 1.2 (d) σ = 1.4 

  
(e) σ = 1.6 (f) σ = 1.8 

 
(g) σ = 2.0 

Figure 6.18 – Stochastic nonresonant attractors’ distributions (first color bar) and basins’ 

distributions (second color bar) for varying noise intensity. A = 17V, Ω = 15, ξ = 0.03 
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(a) σ = 0.5 (b) σ = 1.0 

  
(c) σ = 1.2 (d) σ = 1.4 

Figure 6.19 – Stochastic resonant attractors’ distributions (first color bar) and basins’ distributions 

(second color bar) for varying noise intensity. A = 17V, Ω = 15, ξ = 0.03 

   
(a) ε = 0.5 (b) ε = 1e-1 (c) ε = 1e-2 

   
(d) ε = 1e-7 (e) ε = 1e-8 (f) ε = 1e-9 

Figure 6.20 – Dependency of the nonresonant basin’s distributions (color bar) with the time-

horizon 1/ε. A = 17V, Ω = 15, ξ = 0.03, σ = 1.6 
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(a) ε = 0.5 (b) ε = 1e-1 (c) ε = 1e-2 

   
(d) ε = 1e-7 (e) ε = 1e-8 (f) ε = 1e-9 

Figure 6.21 – Dependency of the resonant region’s distribution (color bar) with the time-horizon 

1/ε. A = 17V, Ω = 15, ξ = 0.03, σ = 1.6 

   
(a) ε = 0.5 (b) ε = 1e-1 (c) ε = 1e-2 

   
(d) ε = 1e-7 (e) ε = 1e-8 (f) ε = 1e-9 

Figure 6.22 – Dependency of the escape region’s distributions (color bar) with the time-horizon 

1/ε. A = 17V, Ω = 15, ξ = 0.03, σ = 1.6 

The integrity measure proposed in eq. (4.2) is now applied to quantify the 

noise influence on the system’s dynamic integrity. Figure 6.23 shows the result 

for 0 ≤ σ ≤ 2 and 1/ε = 1e9. The nonresonant attractor dynamic integrity, Figure 
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6.23(a), corroborates its resilience to noisy perturbations, with its basin area being 

practically constant for σ < 1.6. Also, the probability is practically equal to one for 

all initial conditions. For σ > 1.6, the integrity measure increases, but the results 

show a more marked variation of the probability with large regions with p < 0.5. 

However, the basin area with probability p =1.0 remains practically constant. The 

resonant attractor dynamic integrity measure, Figure 6.23(b), shows a steady 

decline, with an abrupt Dover cliff integrity loss at σ = 1.6, as already observed in 

Figure 6.19. If a conservative p-value is required, for example, p ≥ 0.8, then the 

constant decline of the basin area can be viewed as a warning for σ < 1.6. 

  
(a) nonresonant (b) resonant 

Figure 6.23 – Integrity profile of the weighted basins area as a function of the noise intensity σ for 

A = 17V, Ω = 15, ξ = 0.03. Color scale corresponds to the probability threshold p. 

Time-horizon 1/ε = 1e9 

Continuing the discussion of the dynamic integrity, its dependency on the 

adopted time-horizon is illustrated in Figure 6.24, where the variation of the basin 

area is plotted for increasing values of the time-horizon 1/ε for selected 

probability thresholds p. Initially, the basin area increases up to a plateau, as 

expected for short transients, and between 102 and 106 periods of excitation, the 

integrity of both attractors remains practically unchanged, however, the resonant 

attractor shows a significant probability variation, indicating its high sensitivity to 

noise. The basin area only changes after 106 periods of excitation, with the 

resonant basin vanishing completely after 109 periods. Classical methods, which 

rely on the time integration of each initial condition up to the time-horizon, would 

be too expensive to represent the permanent state of this system. Therefore, the 

approximation of the flow structure in phase-space becomes advantageous, 

considerably diminishing the computational cost. 
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(a) nonresonant (b) resonant 

Figure 6.24 – Integrity profile of the weighted basins area as a function of the time-horizon 1/ε for 

A = 17V, Ω = 15, ξ = 0.03, σ = 1.6. Color scale corresponds to the probability threshold p 

The final analysis consists in investigating the noise effects on the stable 

and unstable manifolds and the flow structures in phase-space. Figure 6.25 and 

Figure 6.26 show the stable and unstable manifolds for noise levels before and 

after the stochastic bifurcation, respectively. In addition, Figure 6.27 shows the 

superposition of the stable and unstable manifolds. These results show that the 

diffusive nature of the noise also affects the flow structures. Stable and unstable 

manifolds spread over the phase-space with decreasing densities and increasing 

intersections. The stable manifold is particularly important, with the tongues 

observed in the deterministic case (Figure 6.13(b.1)) spreading to the point of not 

being distinguishable from each other, Figure 6.25(d.1). The results after the 

stochastic bifurcation, Figure 6.26, depict a drastic change. The stable manifolds, 

Figure 6.26(a.1, b.1, c.1), coalesce and occupy the whole resonant region. This is 

in agreement with the transient basins observed in Figure 6.21. Also, the saddle-

attractor paths in Figure 6.26(a.2, b.2, c.2) spreads even more. These results 

suggest that this stochastic bifurcation implies a change of the permanent basin to 

a transient one due to the stable manifold accretion. These results are important 

because it allows one to develop a fundamental understanding of this complex 

phenomenon. 
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(a.1) σ = 0.5, stable manifold (a.2) σ = 0.5, unstable manifold 

  
(b.1) σ = 1.0, stable manifold (b.2) σ = 1.0, unstable manifold 

  
(c.1) σ = 1.2, stable manifold (c.2) σ = 1.2, unstable manifold 

  
(d.1) σ = 1.4, stable manifold (d.2) σ = 1.4, unstable manifold 

Figure 6.25 – Dependency of the stable and unstable manifolds’ distributions (color bar) with the 

noise intensity σ before the stochastic bifurcation. A = 17V, Ω = 15, ξ = 0.03 
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(a.1) σ = 1.6, stable manifold (a.2) σ = 1.6, unstable manifold 

  
(b.1) σ = 1.8, stable manifold (b.2) σ = 1.8, unstable manifold 

  
(c.1) σ = 2.0, stable manifold (c.2) σ = 2.0, unstable manifold 

Figure 6.26 – Dependency of the stable and unstable manifolds’ distributions (color bar) with the 

noise intensity σ after the stochastic bifurcation. A = 17V, Ω = 15, ξ = 0.03 

The results also illustrate how noise affects the features of the attractors, 

changing the structure of the unstable and stable manifolds and the homoclinic 

tangencies (HTs), a topic rarely investigated in the technical literature [204], and 

that deserves further attention. The trajectory is driven out of the neighborhood of 

the attractor by noise over a certain number of iterates which causes considerable 

local deformation of the attractor (formation of "tails"). 
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(a) σ = 0.5 (b) σ = 1.0 

  
(c) σ = 1.2 (d) σ = 1.4 

  
(e) σ = 1.6 (f) σ = 1.8 

 
(g) σ = 2.0 

Figure 6.27 – Stable (blue), and unstable (green) manifolds superposition (in red) for different 

noise intensity σ. A = 17V, Ω = 15, ξ = 0.03 
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A comparison of the cumulative number of integrated initial conditions 

against a hypothetical complete subdivision at level 18 with 16 initial conditions 

per box is given in Figure 6.28, for increasing noise magnitude σ. The 

computational advantage of the proposed algorithm in Table 3.3 is evident, with 

ratios of 0.7 even for the highest noise amplitude. From the binary – r-tree 

comparison in Figure 3.2, it is concluded that a binary tree refinement of the 

phase-space would result in a larger number of integrated initial conditions. 

Therefore, the r-tree refinement procedure is computationally advantageous and 

should be considered instead of the binary tree. 

 

Figure 6.28 – Dependency of the cumulative integrated initial conditions ratio with the noise 

amplitude σ. A = 17V, Ω = 15, ξ = 0.03 

 

6.5.3. 

Effects of parametric uncertainty of the critical damping ratio 

As shown in the previous sections, damping has a critical influence on the 

global dynamics of the microarch. However, damping is usually difficult to model 

or measure since it stems from different sources. Thus, it is important to 

investigate the influence of damping uncertainty on global dynamics. The 

variation of the frequency responses in Figure 6.8 to Figure 6.10 demonstrates 

how the subharmonic oscillations vary with the damping ratio ξ. However, as an 

estimated parameter, it is usually associated with a distribution, defined as a 

random parameter of a given probability space. To better understand how this 

uncertainty affects the global dynamics, the effects of this assumption on the 

subharmonic global dynamics of the microarch, with A = 17V and Ω = 15, is 
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investigated. Here, the modified refinement algorithm, Table 3.3, is applied in 

conjunction with a probability space discretization, explained in Section 3.2, to 

obtain mean global structures. 

The damping ratio is assumed as uniformly distributed over the real 

continuous interval [a, b], that is, ξ ~ U(a, b). The computation of the mean 

structures is accomplished through the Gauss-Legendre quadrature, a common 

choice for treating uniform random variables through spectral expansion [172]. 

Taking ξstd as a standard random variable uniformly distributed over [-1, 1], 

ξstd ~ U(-1, 1), the damping ratio can be defined as 

( )
( ) ( )

std std .
2 2

b a b a
  

− +
= +  (6.38) 

It is clear that ξ(-1) = a and ξ(1) = b. The probability  X    is given by 
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where f(ξ) is the probability density of ξ. Differentiating both sides of eq. (6.39) 

with respect to x and applying eq. (6.38) by taking X =  and 
std x = , one 

obtains 
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 (6.40) 

Therefore, the damping ration ξ ~ U(a, b) can be represented by eq. (6.38). This 

allows the Gauss-Legendre quadrature in [172] to be applied for ξstd and the 

original ξ is obtained through eq. (6.38). In the following application, ten 

collocation points are adopted, discretizing the probability space into 10 points. 

Four cases are considered adopting a = 0.04, 0.03, 0.02, 0.01, and b = 0.05. 

The interval [a, b] = [0.04, 0.05] represents a low uncertainty case, and the 

interval [a, b] = [0.01, 0.05] represents a high uncertainty case. Figure 6.29 shows 

the mean basins and attractor’s distributions for the four cases, showing how these 

structures change as uncertainty increases. In the first case with ξ ~ U(0.04,0.05), 

Figure 6.29(a), the effect of uncertainty is already evident in the mean basins, 

diffusing their boundaries. That is, regions with probabilities different from 0 and 
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1 to converge to either attractor start to appear. Again, these regions are referred 

to as nondeterministic. The uncertainty already affects the resonant attractor, with 

its mean distribution forming a curve in the phase-space. The nonresonant 

attractor, however, stays localized. This pattern is observed for all uncertainty 

cases, with the resonant attractor mean distribution spreading over a curve in 

phase-space as uncertainty increases. Also, the nonresonant mean basin diffusion 

depicts increasing regions with probability lower than one. In the last case, Figure 

6.29(d), large nondeterministic regions are observed for both attractors, and the 

deterministic region of the resonant attractor is confined to a small area in phase-

space. This suggests that the resonant attractor is sensitive to uncertainty in the 

damping ratio. 

Figure 6.30 shows how the escape region is affected by the uncertainty in 

the damping ratio. As the uncertainty increases, nondeterministic escape zones 

inside the original deterministic basins of attraction regions appear. The last case, 

Figure 6.30(d), demonstrates how large uncertainties deteriorate the classical 

basin of attraction, with large nondeterministic regions. Finally, the results are 

time-independent since the parametric uncertainty of ξ does not depend on time. 

Therefore, there is no influence of time-horizons on the stochastic basins. 

Classical global analysis methods, such as the Grid of starts, could be considered 

with low time-horizons, with the uncertainty addressed, for example, through a 

Monte-Carlo method. However, this would still be computationally expensive 

since such a method demand that initial conditions are integrated until the time-

horizon is reached, whereas the Ulam method/Generalized cell-mapping 

approximates the phase-space flow through only one period of integration for each 

set of initial conditions. 
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(a.1) nonresonant, ξ ~ U(0.04,0.05) (a.2) resonant, ξ ~ U(0.04,0.05) 

  
(b.1) nonresonant, ξ ~ U(0.03,0.05) (b.2) resonant, ξ ~ U(0.03,0.05) 

  
(c.1) nonresonant, ξ ~ U(0.02,0.05) (c.2) resonant, ξ ~ U(0.02,0.05) 

  
(d.1) nonresonant, ξ ~ U(0.01,0.05) (d.2) resonant, ξ ~ U(0.01,0.05) 

Figure 6.29 – Mean attractors’ distributions (first color bar) and mean basins’ distributions 

(second color bar) for varying damping ratio ξ distributions. A = 17V, Ω = 15 
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(a) ξ ~ U(0.04,0.05) (b) ξ ~ U(0.03,0.05) 

  
(c) ξ ~ U(0.02,0.05) (d) ξ ~ U(0.01,0.05) 

Figure 6.30 – Escape regions’ distributions (color bar) for varying damping ratio ξ distributions. 

A = 17V, Ω = 15 

  
(a) nonresonant (b) resonant 

Figure 6.31 – Integrity profile of the weighted basins area as a function of the lower parameter 

uncertainty boundary a for A = 17V, Ω = 15. 

Color scale corresponds to the probability threshold p 

Figure 6.31 displays the dynamic integrity profiles proposed in eq. (4.2) for 

the analyzed uncertainty cases as functions of the lower parameter boundary a. 

The first case, a = 0.05, corresponds to the deterministic result with ξ = 0.05. The 

nonresonant attractor shows a steady integrity decrease for all probability 

thresholds p. Surprisingly, the resonant basin shows an initial increase and 

inflection point p > 0.8, before decreasing with a, showing that the system can 

DBD
PUC-Rio - Certificação Digital Nº 1812821/CA



214 

gain or lose integrity for mild uncertainty cases, depending on the adopted 

probability threshold p. 

The effects of parametric uncertainty on the stable and unstable manifolds 

are depicted in Figure 6.32. The manifolds interactions and rate of mixing are 

illustrated in Figure 6.33. The mean structures diffuse over the phase-space as 

uncertainty increases, increasing the complexity of the flow structures in phase-

space. For the lower uncertainty case, Figure 6.32(a) and Figure 6.33(a), the 

unstable manifold remains simple. However, the stable manifold is already 

diffused over a large region. There is already a diffusion of the saddle shown by 

the red crossing in Figure 6.33 (a). This reflects the basins topology in Figure 

6.29(a), with large nondeterministic regions. The unstable manifolds, Figure 

6.32(a.2, b.2, c.2, d.2), show regions of high probability, corresponding to the 

attractors’ densities support observed in Figure 6.29, with the support of the 

nonresonant attractor localized in a small region, while the support of the resonant 

attractor spreads along a curve. The stable manifolds, Figure 

6.32(a.1, b.1, c.1, d.1), display an increasingly complex structure as uncertainty 

increases, with increasing regions of intercession, as observed in Figure 6.33(d), 

which explains the erosion process quantified in Figure 6.31. However, the 

adopted probability space discretization must be taken into account, since the 

phase-space structures for each ξ-value are highly localized, and the probability 

space discretization through n collocation points may artificially insert 

discontinuities into the mean structures, needing for their correct display a larger 

value of n. This effect is known in the uncertainty quantification literature, 

motivating the development of adaptative discretization techniques of the 

probability space [172]. 
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(a.1) stable, ξ ~ U(0.04,0.05) (a.2) unstable, ξ ~ U(0.04,0.05) 

  
(b.1) stable, ξ ~ U(0.03,0.05) (b.2) unstable, ξ ~ U(0.03,0.05) 

  
(c.1) stable, ξ ~ U(0.02,0.05) (c.2) unstable, ξ ~ U(0.02,0.05) 

  
(d.1) stable, ξ ~ U(0.01,0.05) (d.2) unstable, ξ ~ U(0.01,0.05) 

Figure 6.32 – Dependency of the stable and unstable manifolds’ distributions (color bar) with the 

damping ratio ξ distributions. A = 17V, Ω = 15 
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(a) ξ ~ U(0.04,0.05) (b) ξ ~ U(0.03,0.05) 

  
(c) ξ ~ U(0.02,0.05) (d) ξ ~ U(0.01,0.05) 

Figure 6.33 – Stable (blue), and unstable (green) manifolds superposition (in red) for different 

damping ratio distributions ξ. A = 17V, Ω = 15 

A comparison of the cumulative number of integrated initial conditions 

against a hypothetical complete subdivision at level 18 with 16 initial conditions 

per box is given in Figure 6.34, for selected uncertainty boundaries, a. Again, the 

computational advantage of the proposed algorithm, Table 3.3, is evident, with 

ratios lower than 0.4, even for the highest uncertainty case analyzed. 

 

 

Figure 6.34 – Dependency of the cumulative integrated initial conditions ratio with the lower 

uncertainty boundary a. A = 17V, Ω = 15
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Conclusions 

Uncertainties in engineering systems are unavoidable and can drastically 

change their behavior. Also, noise is inevitable in the operational stages. The 

computational cost of both global dynamic and nondeterministic analysis makes it 

difficult to consider these phenomena simultaneously in a complex system. Trying 

to address these limitations, adaptative phase-space discretization strategies for 

the global analysis of nonlinear dynamical systems with competing attractors were 

proposed. These strategies made it possible to observe the influence of uncertainty 

on basins of attraction, attractors, and manifolds, and enable the quantification of 

dynamic integrity measures, as illustrated by the examples. Here, the contributions 

are highlighted, subdivided into two main aspects: the main formal and numerical 

contributions, resulting in the development of the proposed algorithms, and the 

phenomenological observations based on the selected applications, covering 

different bifurcation scenarios. Finally, a list of suggestions following the present 

research is given. 

 

7.1. 

Main formal and numerical contributions 

Initially, the definitions of attractors and basins with nondeterministic 

effects were discussed. In the usual pushforward sense, attractors are regions in 

phase-space to which a set of initial conditions converge as time goes to infinity. 

However, this definition cannot be adopted when uncertainty is considered, with 

attractors being randomly distributed in phase-space. The solution was to consider 

not the attractors but their distributions in phase-space. Another feature of interest 

is the basin of attraction, defined as the set of all initial conditions in the phase 

space that converge asymptotically to a given attractor. The classical basin 
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definition must also be modified when uncertainty is considered, being, in this 

case, random sets distributed according to a random parameter. Therefore, another 

definition, named stochastic basin of attraction, was adopted here. It consists of a 

probability map assigned to the entire phase-space, indicating the probability of a 

set of initial conditions converging to a given attractor. These two definitions, that 

is, attractor’s distribution and stochastic basin of attraction, are dual through the 

transfer operators, a crucial property in the development of this thesis. 

Furthermore, they converge to the classical definition when the underlying 

dynamics are deterministic. 

The Ulam method, a classical discretization method of flows in phase-space, 

was adopted in the present work. This method was described and extended here to 

nondeterministic cases, and, finally, a unified description was formulated based on 

the Perron-Frobenius, Koopman, and Foias linear operators. The many 

applications in the literature of the Ulam method to stochastic dynamical systems 

suggest that it is the most natural discretization method within the uncertainty 

framework. 

Specifically, the Foias transfer operator governs the flow in the mean sense, 

allowing the application of the Ulam method to stochastic dynamical systems. The 

case with parameter uncertainty is more complicated to analyze. The phase-space 

of such cases was here augmented to accommodate the uncertain parameter space, 

which was also discretized. This allowed the computation of statistics of the 

global structures. 

However, the phase-space discretization leads to numerical diffusion. The 

usual procedure in literature is to increase the resolution (discretization of phase-

space), which increases the computational cost dramatically. Since there are 

regions in phase-space where the flow is unimportant, two adaptative phase-space 

discretization strategies to refine relevant regions, such as basins’ boundaries, 

attractors’ distributions, and manifolds, were proposed. Each strategy can be 

summarized in three main steps: identification, refinement, and calculation. The 

first strategy uses a heuristic basin boundary definition, whereas the second one 

considers the stable manifold of the saddles lying along the basin boundaries. 

Both strategies are capable of mitigating numerical diffusion in the analyzed 

cases, maintaining a low computational cost. Finally, binary and r-tree structures 
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were used to organize the phase-space, with the r-tree structure leading to smaller 

computational costs within the refinement strategy. 

The question of how to measure the dynamic integrity of nondeterministic 

systems was also addressed. A new integrity measure, based on previous 

definitions and on the classical global integrity measure, was proposed. It 

quantifies the global area of the basin of attraction for selected probability 

thresholds, thus providing the designer with information on the degree of safety of 

a given dynamical system. 

 

7.2. 

Phenomenological observations 

The developed numerical strategies were then applied to two widely used 

archetypal nonlinear oscillators, the Helmholtz and the Duffing oscillators, and to 

two microelectromechanical systems. The effects of uncertain parameters and 

noise on systems with coexisting solutions, nonlinear resonance, multiple 

potential wells, and escape to infinity, among others, were investigated. The 

proposed strategies mitigated the numerical diffusion, highlighting the real 

diffusion. 

 

7.2.1. 

Helmholtz and the Duffing oscillators 

The deterministic Helmholtz oscillator displayed three possible outcomes: a 

nonresonant attractor, a resonant attractor, and escape solutions. The adaptative 

discretization procedure obtained the attractors and the boundaries of the basins 

with high fidelity, even when the basin boundary becomes fractal and highly 

convoluted. It was demonstrated that the subdivision strategy could mitigate 

numerical diffusion, a common hindrance inherent to many phase-space 

discretization procedures found in the literature. A comparison with the initially 

refined discretization showed that the economy achieved by the proposed 

procedure could be as high as 90% for highly refined levels. Next, the Helmholtz 
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oscillator with a random stiffness parameter was considered, with the uncertainty 

parameter defined as a truncated normal variable to prevent large spurious values. 

Mean basins and densities were obtained for varying uncertainty intensity, being 

the attractors’ densities described by one-dimensional structures in the phase-

space. As the uncertainty increases, broader regions along the basins’ boundaries 

needed to be refined. Here, the economy of the proposed methodology was 

verified through a box count procedure. The results quantified the decrease of the 

safe basin area of both attractors, particularly the resonant one, with increasing 

uncertainty. For high uncertainty values, no set of initial conditions had a 100% 

probability of converging to the resonant attractor. The results were validated by a 

Monte Carlo analysis, demonstrating the efficiency of the proposed methodology. 

Increasing noisy excitation led to an increasing diffusion of the attractors, 

affecting particularly the resonant attractor which approaches the basin boundary. 

This led to a global bifurcation due to a connection between the resonant attractor 

and the saddle. After this bifurcation, the resonant basin vanished, and solutions 

either converged to the nonresonant attractor or escaped. The detailed analysis of 

the global bifurcation showed that formerly resonant solutions become long 

transients after a critical noise intensity. Long transient solutions were detected by 

the almost invariant eigenmeasures, identifying regions where solutions stayed for 

a long time with basins of attraction varying with the adopted final time horizon. 

The dependence of the basin on the time horizon identified here is important 

information for the integrity analysis, vibration control, and other applications 

where the transient response becomes important. 

Next, the Duffing oscillator under harmonic excitation with added noise and 

uncertainties was investigated considering two sets of parameters: one leading to 

two potential wells with resonant and non-resonant attractors within each well, 

other leading to one periodic attractor coexisting with a chaotic attractor. The box 

count comparison showed that the base and the last discretization levels must be 

increased to obtain a significant computational economy as the number of 

coexisting attractors and, consequently, the basin competition increases. 

Therefore, deeper levels must be considered to attain a significant economy when 

compared to the full discretization of the phase-space. Regarding the effect of a 

random linear stiffness, addressed by considering the first parameter set, the 

nonresonant solutions were more sensitive to uncertainty, losing stability in the 
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mean sense for larger uncertainty values, as corroborated by the erosion of the 

corresponding basin areas with the uncertainty level. However, all basins’ areas 

with probability equal to one decreased steadily with the uncertainty, with large 

regions of phase-space showing high sensitivity, which should be considered in a 

dynamic integrity analysis. The effect of added noise excitation was investigated 

for the second parameter set. The adaptative discretization was able to refine both 

the chaotic attractor and its basin boundary. The proximity of the chaotic attractor 

to the basin boundary led to an attractor-saddle connection, which occurs even for 

low noise levels. The chaotic attractor became a long transient solution, with the 

basin of attraction being dependent on the time-horizon for large noise levels. 

Monte Carlo analysis also confirmed the result. The basin area followed the same 

pattern, indicating the stability loss of the chaotic attractor with noise. The 

attained economy depends on the noise level and, consequently, on the flow’s 

diffusion level. 

Finally, the parametrically excited Duffing oscillator with added noise was 

investigated. This allowed the analysis of a different scenario where a period-2 

attractor and escape coexist, with increasing competition observed as the 

excitation amplitude increased. The cyclic component of the attractor lost stability 

as noise increased, with the attractor behaving almost cyclically. Again, 

depending on the noise level, the attractor can lose stability, behaving as a long 

transient solution, with the obtained basin depending on the adopted time-horizon. 

Time-history and spectrum analysis for varying noise confirmed these 

conclusions. 

 

7.2.2. 

Microelectromechanical Systems 

A growing interest in the mechanical behavior of Microelectromechanical 

Systems or MEMS in various engineering fields has been observed in recent 

decades. With the numerical procedure validated through the analysis of the two 

archetypal oscillators, the global dynamic analysis of two engineering problems, a 

microcantilever and a microarch, both electrically actuated, was conducted. In 
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both cases, the equations of motion were derived based on a three-dimensional 

imperfect Rayleigh beam formulation. 

The static nonlinear response of the microcantilever under DC voltage 

displayed two limit points, delimiting the unstable branch of solutions that 

separates the two stable branches, leading to a multistability range and hysteresis. 

If the imperfection magnitude is added as a second control parameter, the obtained 

surface exhibit the typical cusp geometry, where one stable solution may suddenly 

jump to an alternate outcome due to the existence of competing solutions. The 

prevailing solution was highly dependent on imperfection and noise levels. The 

pull-in instability was present in most cases, being the pull-in voltage sensitive to 

the imperfection level and sign. When the imperfection decreases the gap between 

the beam and the actuator plate, the pull-in voltage reduces, and the system 

becomes more susceptible to this type of instability. On the other hand, the pull-in 

load increases when the gap increases, and no static pull-in was observed after a 

certain threshold value. Also, the lowest natural frequency was significantly 

affected by the simultaneous effect of the DC voltage and geometric imperfection, 

becoming zero at the limit points in the region of the cusp catastrophe, where it 

showed two distinct vibration frequencies. The resonance curves of the imperfect 

microbeam under AC actuation exhibited a softening response since the load 

nonlinearity (which was of the softening type) was stronger than the geometric 

nonlinearities (which was of the hardening type) for small values of the initial 

gap. In these resonant regions, the coexistence of a stable non-resonant and a 

resonant branch was observed bending toward lower frequencies regions. As the 

forcing magnitude increased, it increased the multistability range. Also, a pull-in 

bandwidth developed, thus making the system more susceptible to dynamic 

instability. The imperfection decreased the values at which the pull-in band is 

formed. Therefore, higher imperfections increase the vulnerability of the 

microbeam to dynamic pull-in instability. In all cases, the resonant peak at a 

forcing frequency equal to half the natural frequency exhibited a softening 

behavior too, and led in some cases to pull-in bandwidth. As the imperfection 

level increased, the resonant peak at a third of the natural frequency also 

increased, leading to an additional resonance region that may influence the 

microbeam dynamic response.  
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The initial classical global dynamic analysis, without phase-space 

refinement, revealed that the erosion of the basins of attraction depends not only 

on the amplitude and frequency of the AC voltage but also on the imperfection 

level and the noise magnitude. As the noise level increased, the probability along 

the basin boundaries diffused, dramatically increasing the microbeam sensitivity 

to initial conditions. The influence of noise on the time response of competing 

attractors may lead to complex responses with successive jumps between the 

competing attractors. Both examples showed that attractors could disappear or 

merge depending on the noise level, significantly influencing the microbeam 

nonlinear dynamics, and the threshold value of the intensity for noise generating a 

transition from coexistence to extinction was estimated. Finally, these results were 

compared to the proposed refinement algorithm, showing that the results without 

refinement missed the transient characteristic of some basins. Furthermore, the 

refinement algorithm could separate the basins even for large noise levels, which 

showed that the loss of integrity occurs at lower noise levels compared to the 

classical analysis. 

The microarch was the last analyzed model. It was taken as a clamped-

clamped structure, with an initial stress-free curvature and imposed axial 

displacement. The axial displacement was condensed, and a flexural beam model 

was derived. Its static response under DC actuation displayed two limit points 

which delimited the unstable solutions branch and led to a multistability range and 

hysteresis. It was shown that two symmetric linear modes are the minimum 

necessary for qualitative analysis. 

A reduced order model, based on the first two symmetric linear modes, was 

derived for the dynamics in the vicinity of a given static position, following the 

definition of nonlinear normal modes of Shaw and Pierre [202]. The free vibration 

response and the frequency response under AC actuation demonstrated the 

validity of the proposed model when compared against the classical 2-mode 

discretization. A main subharmonic resonant region was identified, with the main 

resonant region being excited only for low damping ratios. A pull-in band 

developed for increasing AC voltage at the subharmonic frequency. In all cases, a 

softening response was obtained due to the initial beam curvature and load. 

The global dynamics in the subharmonic region were studied with the 

proposed refinement procedure. The manifolds were also obtained, and an r-tree 
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phase-space structure was adopted in this analysis. A potential well with 

nonresonant and resonant solutions was observed, and the impact of different 

damping ratios and added noise was investigated. The basins and manifolds of the 

deterministic case demonstrated a convoluted partition of the phase-space for low 

damping ratios. Then, a low damping ratio case was investigated under noise, and 

the transient characteristic of the solutions was again observed. This was 

evidenced in the integrity profiles, which showed a Dover cliff when the noise 

amplitude varied and also a dependency on the adopted time-horizon. The 

manifolds under noise showed that, in the case of a long-transient solution, its 

basin merges with the stable manifold due to the diffusion effect. Finally, the 

uncertainty of the critical damping ratio was investigated, where a uniform 

distribution was adopted. The spread of the attractors along the bifurcation path as 

the interval increases was observed, again a distinct result in comparison to noisy 

cases. Their basins also spread over the phase-space. The integrity profile revealed 

the gradual integrity loss of both solutions. Finally, the manifold analysis 

demonstrated how they spread over the phase-space due to parameter uncertainty. 

This work presented an alternative for the classical phase-space 

discretization, applying it to different dynamical systems under various 

bifurcation scenarios. In summary, the examples demonstrated the efficiency of 

the developed algorithms, based on the concept of operators, in the global analysis 

of dynamical systems. The relevant contributions enable the analysis, control, and 

design of systems at different scales, in a multiphysics context, considering 

unavoidable imperfections, uncertainties and noise. The thesis also highlights the 

role played by global analysis in unveiling the nonlinear response and actual 

safety of engineering systems in different environments and shows that the 

nondeterministic effects should be considered in global dynamics analyses. 

 

7.2.3. 

Evaluation of Uncertainty Effects 

Based on the summarized results described in the previous subsections, the 

following phenomena are observed: 
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For the stochastic cases, the influence of noise on the attractor’s diffusion is 

more prominent than the diffusion of the basin boundaries. As the stochastic 

attractor increases, it approaches the basin boundary leading to a global 

bifurcation where the basin disappears and merges with other basins, generally 

after a very long transient. The proposed methodology is able to detect the long-

transient solutions and, consequently, the basin loss of integrity for high noise 

intensity. The loss of integrity after very long transients induced by noise was 

observed in several cases, being this phenomenon validated through Monte-Carlo 

experiments. In such cases, for smaller numbers of periods of integration, the 

stochastic attractor seems to be stable, showing that integrity is time-dependent 

and that classical methods, such as Grid-of-Starts, may lead to wrong results. 

Finally, the manifolds’ analysis suggested that this loss of integrity is associated 

with a stable manifold accretion. 

The parameter uncertainty cases displayed other new phenomena as well. 

As predicted through Monte-Carlo, the occurrence of parametric uncertainty leads 

to the spread of the attractors along bifurcation paths. Contrary to the noisy case, 

basins are increasing diffused over large regions of phase-space, leading to a 

gradual decrease of the basin area for each probability threshold. For large 

uncertainties, basins may have no set of initial conditions in phase-space with a 

100% probability of convergence to their attractors. Thus, the system outcome in 

these regions becomes unpredictable. Finally, random parameters in problems 

with complex dynamics result in cumulative manifold intersections as the 

uncertainty increases. Specifically, an aliasing effect, which is a common issue in 

the discretization of probability spaces, is observed in attractors’ distributions, 

basins’ boundaries, and manifolds. 

The observations suggest that there is a strong relationship between the 

computational efficiency of the proposed strategies and the phase-space 

complexity. That is, simpler dynamics lead to a high computational economy. In 

all cases, the probability threshold p of the proposed integrity measure governs the 

basins’ safety level. Finally, the examples show that nondeterminism is a potential 

hazard to be accounted for in the design of nonlinear structures. 
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7.3. 

Suggestions for future works 

Although this study has presented novel results regarding stochastic dynamic 

systems, it also demonstrates new demands for specific investigations that may be 

explored in future works. As a continuation of this thesis, the following research 

topics are suggested: 

• Improvement of the subdivision strategy, focusing on reducing the number of 

integrated initial conditions and required memory, possibly employing 

analytical and semi-analytical methods, such as harmonic balance, multiple 

scales, homotopy, etc; 

• Investigation of continuation strategies in the transfer operator space; 

• Improvement of the subdivision strategy for the analysis of systems with 

parameter uncertainty – mitigation of the aliasing effect, reduction of the 

number of computed transfer operators; 

• Investigation of different discretized spaces, substituting the space of constant 

functions by linear functions, for example; 

• Comparison of the present technique with different strategies applied to the 

generator equation, such as finite differences, finite volumes, and finite 

elements; 

• Global dynamic analysis of different multidimensional beam problems 

derived using the presented formulation, involving flexural-flexural, flexural-

torsional, flexural-extensional interactions based on appropriate reduced order 

models for each case; 

• Investigate other nondeterministic effects, such as multiparameter 

uncertainty, multiplicative noise, and colored noise; 

• Global dynamic analysis of other continuous structures, formulated as 

reduced order models, such as hyperelastic membranes, shells, problems 

involving fluid-structure interaction, etc; 

• Definition of other dynamical integrity measures for nondeterministic 

systems. 

• Exploitation of dynamic integrity analysis and outcomes in a non-

deterministic environment for systems safety evaluations. 
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Appendix A 

Formulation of imperfect Rayleigh beams 

The present formulation follows the works of [205–211] where Euler-

Bernoulli beams are modeled, with nonlinearities up to the third order with the 

effect of rotary inertias also considered [212]. The kinematics of an imperfect 

beam is defined with respect to three curvilinear coordinate systems: the deformed 

axes (ξ, η, ζ), the undeformed axes (ξ0, η0, ζ0), and the reference axes (X, Y, Z). 

The undeformed axes correspond to a stress-free configuration and define a 

Lagrangian frame of reference, while the deformed axes define an Eulerian frame 

of reference. The undeformed arclength is identified by s, while the deformed 

arclength is identified by s̃. All three frames are illustrated in Figure A1. 

 

Figure A1 – Orientation of imperfect undeformed and deformed frames with respect to the 

reference axis 

A.1 

Rotation matrices, Euler angles, curvatures, and angular velocities 

The relation between the reference frame with each configuration is given 

by matrices [T] and [T0]. By applying three successive rotations, the reference 

axes are transformed into one of the curvilinear axes: 
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  ,

X

Y

Z

i i

i T i

i i







   
   

=   
   

    

(A1) 

 
0

0

0

0 ,

X

Y

Z

i i

i T i

ii







   
    

=   
   

     

(A2) 

where {iξ, iη, iζ}, {iξ0, iη0, iζ0}, and {iX, iY, iZ} are unit vectors of the axes (ξ, η, ζ), 

(ξ0, η0, ζ0) and (X, Y, Z), respectively. The matrices [T] and [T0] are functions of 

Euler angles ψ, θ, and ϕ, 

1 0 0 cos 0 sin cos sin 0

[ ] 0 cos sin 0 1 0 sin cos 0 ,

0 sin cos sin 0 cos 0 0 1

T

   

   

   

 −   
    

= −    
    −      

(A3) 

0 0 0 0

0 0 0 0 0

0 0 0 0

1 0 0 cos 0 sin cos sin 0

[ ] 0 cos sin 0 1 0 sin cos 0 ,

0 sin cos sin 0 cos 0 0 1

T

   

   

   

−     
     

= −
     
     −     

 

(A4) 

where 
0  = + . Given that [T] and [T0] are rotation matrices, the following 

properties hold: 

   

   

1 *

0 0

1 *

,

.

T T

T T

−

−

=

=
 

(A5) 

where * denotes transposition. A complete description of Euler rotations can be 

found in [212, 213]. To summarize, the transformations from the reference axes to 

the deformed or undeformed configurations are schematized below. 
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(a) (b) 

Figure A2 – Transformation from the material axes to the (a) deformed and (b) undeformed 

configuration using Euler angles 

By definition, the {iξ, iη, iζ} and {iξ0, iη0, iζ0} frames are orthogonal. 

Therefore, the following property holds: 

,j k jki i  =
 

(A6) 

for j,k as (ξ, η, ζ) or (ξ0, η0, ζ0). Differentiating the relation (A6) results in  

,

0,

j k j k

j j

i di di i

i di

 = − 


 =  

(A7) 

defining antisymmetric relations between the undeformed and deformed axes and 

their derivatives. This property will be observed in the construction of the 

curvature and angular velocity matrices. 

With the definition of the derivatives of the deformed and undeformed axes, 

the curvature and angular velocity matrices are obtained. Differentiating (A1) and 

(A2) with respect to the undeformed configuration (Lagrangian frame) and using 

property (A5) results in 

   
*

,

i i

i T T i

i i

 

 

 

   
   =   
   
   

 (A8) 
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


Xi

Yi

Zi
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0

0

0
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0
i

0
i

0
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0

0

0
0
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   
0 0

0 0

0 0

*

0 0 .

i i

i T T i

i i

 

 

 

   
      =   
   
      

 (A9) 

where ( ) d ds = . The curvature matrices relate the curvilinear axes spatial 

derivative with itself. By inspecting the expressions (A8) and (A9) one obtains 

     
*

0

0 ,

0

K T T

 

 

 

 

 

 

 −
 = = − 
 − 

 (A10) 

     
0 0

0 0

0 0

*

0 0 0

0

0 ,

0

K T T

 

 

 

 

 

 

 −
 = = − 
 

−  

 (A11) 

where the curvatures are given by 

sin ,

sin cos cos ,

cos cos sin ,

i i

i i

i i

  

  

  

   

     

     

  =  = −

  =  = +

  =  = −

 (A12) 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

sin ,

sin cos cos ,

cos cos sin ,

i i

i i

i i

  

  

  

   

     

     

  =  = −

  =  = +

  =  = −

 (A13) 

Next, the expression (A1) is differentiated with respect to time. Applying 

property (A5) results in 

   
*

,

i i

i T T i

i i

 

 

 

•

•

   
   

=   
   
   

 (A14) 

where ( ) d dt• = . The angular velocity matrix relates the time derivative of the 

curvilinear axes to themselves. Inspecting the expression (A14) results in the 

definition 
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     
*

0

0 ,

0

T T

 

 

 

 

  

 

•

 −
 

= = − 
 −   

(A15) 

where the angular velocities are 

sin ,

sin cos cos ,

cos cos sin ,

i i

i i

i i

  

  

  

   

     

     

=  = −

=  = +

=  = −
 

(A16) 

In contrast with the curvature definition, the undeformed configuration is 

time-independent, resulting in a zero undeformed angular velocity. Additionally, 

the curvatures can be determined directly from the angular velocity matrix [ω] by 

applying Kirchhoff’s kinetic analogy [214]. 

 

A.2 

Kinematics 

A beam element with undeformed and deformed lengths ds and ds̃ is 

considered. The perfect length dx is also specified since the stress-free 

configuration is not the reference frame. The geometric relations between ds̃ and 

ds with the perfect length are shown in Figure A3. 

  
(a) (b) 

Figure A3 – Geometric relations (a) ds̃ – dx and (b) ds – dx 
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From Figure A3, the deformed and undeformed lengths ds̃ and ds are 

written as functions of the reference length dx and the initial and total 

displacements, 

( )
22 2 2 ,ds dx du dv dw= + + +  (A17) 

2 2 2 2

0 0 .ds dx dv dw= + +  (A18) 

The variation of the reference length with respect to the Lagrangian frame, xˊ, is 

obtained from eq. (A18), resulting in 

2 2

0 01 .x v w  = − −  (A19) 

being dependent only on the imperfections. Therefore, if the system is perfect, 

then eq. (A19) will be constant, and the reference and Lagrangian frames will 

coincide, as expected. Similarly, the variation of the deformed length with respect 

to the Lagrangian frame, s̃ˊ, is obtained from eq. (A17) and eq. (A19), resulting in 

( )
2

2 2 2 2

0 01 .s u v w v w     = + − − + +  (A20) 

Trigonometric relations between the Euler angles and displacements can 

also be obtained from Figure A3. The deformed configuration, Figure A3a, gives 

( )

( )

2
2 2 2

0 0

2 2

0 0

2
2 2 2

0 0

sin ,

1

1
cos ,

1

v

v u v w

u v w

v u v w






=

   + + − −

  + − −
=

   + + − −

 (A21) 

( )

( )

( )

2
2 2 2 2

0 0

2
2 2 2

0 0

2
2 2 2 2

0 0

sin ,

1

1

cos ,

1

w

v w u v w

v u v w

v w u v w





−
=

    + + + − −

   + + − −

=

    + + + − −

 (A22) 

while the undeformed configuration, Figure A3b, gives 
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0
0

2

0

2 2

0 0

0
2

0

sin ,
1

1
cos ,

1

v

w

v w

w






=

−

 − −
=

−

 (A23) 

0 0

2

0 0

sin ,

cos 1 .

w

w





= −

= −
 (A24) 

The elongation of the beam’s principal axis is defined based on eq. (A20), 

and is given by  

( )
2

2 2 2 2

0 01 1.e

ds ds
u v w v w

ds

−
     = = + − − + + −  (A25) 

With this expression, the deformation in any point of a transversal section can be 

readily obtained, assuming that warping, transversal shear strain, and Poisson’s 

effect are negligible. 

 

A.3 

Small strain tensor 

For the definition of the small strain tensor, see Figure A1. Initially, a point 

P0 of the undeformed configuration is considered, located at (x, v0, w0) in the 

reference frame {iX, iY, iZ}. This point then moves to a new position (0, η0, ζ0) in 

the undeformed frame {iξ0, iη0, iζ0}. Therefore, the final position vector Rs is the 

sum of the vector in the reference frame and the vector in the undeformed frame, 

0 00 0 0 0 .s X Y ZR xi v i w i i i  = + + + +
 

(A26) 

Similarly, a point P of the deformed configuration is considered with coordinates 

(x+u, v+v0, w+w0) in the reference frame {iX, iY, iZ}. Then it moves to a new 

position (0, η, ζ) in the deformed frame {iξ, iη, iζ}. Finally, the position vector Rs̃ 

of the final location is the sum of the vector in the reference frame and the vector 

in the deformed frame, 
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( ) .s X Y ZR x u i v i wi i i  = + + + + +  (A27) 

The total derivative of the undeformed position vector Rs with respect to the 

undeformed frame is given by 

( )
0 0 0 00 0 ,s X Y ZdR x i v i w i ds i ds i ds i d i d         = + + + + + +  (A28) 

where the approximations 
0 0 0 0, , ,d d d d            are considered 

since warping is neglected. Similarly, differentiating the deformed position vector 

Rs̃ with respect to the undeformed frame results in 

( ) .s X Y ZdR x u i v i w i ds i ds i ds i d i d          = + + + + + + +    (A29) 

Using eqs. (A8) and (A9), the derivatives of the unit vectors in expressions 

(A28) and (A29) can be simplified, resulting in 

   

   

   

0 0 0 0 0 0 0

0 0 0

*

0 0

*
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, , , ,

, , , ,

0, , , ,

s X Y ZdR x v w i i i ds

i i i ds

d d i i i

      

  

   

 

  =  +

− −  +

 

 (A30) 

   

   

   

*

*

*

, , , ,

, , , ,

0, , , .

s X Y ZdR x u v w i i i ds

i i i ds

d d i i i

      

  

   

 

   = +  +

− −  +

 

 (A31) 

Finally, by substituting eqs. (A1), (A2), and (A19) into eqs. (A30) and 

(A31), they can be recast with respect to a single frame of reference, which gives 

     (
   )  

0 0 0 0

2 2

0 0 0 0 0

*

0

1 , , , ,

0, , ,

s

X Y Z

dR v w v w ds T ds

d d T i i i

      

 

   = − − + − −  +

  

 (A32) 

     (
   )  

2 2

0 0

*

1 , , , ,

0, . , ,

s

X Y Z

dR v w u v w ds T ds

d d T i i i

      

 

    = − − + + − −  +

 

 (A33) 
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The expressions (A32) and (A33) are fully nonlinear, and, differently from 

the formulation presented in [213], they are all referred to the reference frame 

{iX, iY, iZ}, which facilitates the understanding of the displacements and rotations. 

The Lagrange strain tensor 

( )
1

2
s s s sdR dR dR dR −   (A34) 

is considered to obtain strains with respect to the Lagrangian frame {iX, iY, iZ}. If 

the full nonlinear expressions (A32) and (A33) are used, the resulting strains will 

contain higher-order terms. By considering small initial and total displacements 

and rotations, the transformation matrices [T] and [T0] are close to the identity. 

Therefore, by also neglecting higher-order terms, the eq. (A34) is approximated as 

( )    
*1

, , , ,
2

s s s sdR dR dR dR ds d d ds d d     −      (A35) 

where ε is the small strain tensor with components 

( ) ( )

( )

( )

0 0

0

0

,

1
,

2

1
,

2

0,

e    

  

  

  

      

   

   

  

=  − − + −

= − −

= −

= = =

 (A36) 

and Δe is the principal axis normal strain, defined in eq. (A25). 

 

A.4 

Generalized Lagrangian 

The undeformed frame {iξ0, iη0, iζ0} is assumed as the energy referential to 

calculate the Lagrangian. First, it is necessary to derive the kinetic and potential 

energies, T and U, respectively. The kinetic energy is composed of translational 

and rotational portions. By taking the undeformed frame {iξ0, iη0, iζ0} as the 

principal axes of inertia, the inertia tensor becomes diagonal, simplifying the 

formulation. Therefore, the kinetic energy is 
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( ) 2 2 2 2 2 21
,

2S

T m u v w J J J ds       = + + + + +  (A37) 

where m is the linearly distributed mass, Jξ, Jη, and Jζ are the linearly distributed 

rotational inertia, S is the undeformed beam length, and the angular velocities are 

defined in (A16). The imperfections do not contribute to the kinetic energy since 

they are time independent. Lastly, the rotational inertias are defined as 

( )2 2

2

2

,

,

,

A

A

A

J d d

J d d

J d d







    

  

  

= +

=

=






 (A38) 

where ρ is the density, and A is the sectional area. 

A linear elastic constitutive model is considered to obtain the potential 

energy, 

: , =C  (A39) 

where σ is the Cauchy stress tensor, ε is the small strain tensor defined in (A36), 

and C is the fourth-order elastic constitutive tensor, which is also diagonal with 

respect to the undeformed principal axes of inertia, (ξ0, η0, ζ0). The potential strain 

energy is then 

( ) ( ) ( ) 2 2 21

2
e

S

U D D D ds              = −  + − + − + −  (A40) 

with the curvatures defined in (A12) and (A13). The stiffness constants are 

( )

( )

( )

( )

1 2

2 2

2

2

1 2

2

1 2

2 ,

,

2 ,

2 ,

u
A

A

A

A

D d d

D d d

D d d

D d d







   

    

    

    

= +

= +

= +

= +







 (A41) 
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where μ1 and μ2 are the first and second Lamé parameters. The term λ is 

introduced to simplify the formulation for cases where Δe is negligeable and 

where it is not, following [206]. Finally, the Lagrangian T U= −L  is 

( ) ( )
( ) ( ) 

( )
( )

( ) 

2
2 2 2

2 2

2

0 0

2

0 0 0 0 0

2

0 0 0 0 0

1
sin

2

sin cos cos cos cos sin

1
sin sin

2

sin cos cos sin cos cos

cos cos sin cos cos sin .

S

S

e

m u v w J

J J ds

D

D

D ds



 







  

         

    

         

          

= + + + − +

+ + − −

  − + +

   + − − +

   − − + − 





L

 (A42) 

 

A.5 

Equations of motion 

Hamilton’s principle establishes that the trajectory between two instants 𝑡1 

and 𝑡2 is the path which makes stationary the functional 

2

1

t

t
dt= H L . (A43) 

By considering nonconservative forces, the extended Hamiltonian takes the form, 

2

1

.
t

nc
t

W dt= +H L  (A44) 

The work of the external nonconservative forces, considering external 

distributed loads Qα and damping coefficients cα, results in 

  ,nc nc nc nc

nc u v w
S

W Q u Q v Q w Q ds    = + + +  (A45) 

where 

 , , , , .ncQ Q c u v w    = − =  (A46) 

Therefore, eq. (A44) is, in variational form, 
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 

2

1

2

1

0,

t

nc
t

t
nc nc nc nc

u v w
t S

W dt

l Q u Q v Q w Q dsdt

  

    

= + =

+ + + + =



 

H L
 (A47) 

where l  is the kernel of the Lagrangian, 

.
S

ds= L l  (A48) 

The Lagrangian (A48) is a functional of the type 

( , , , , , , , , , , , , , , , , , , )x t u v w u v w u v w u v w           L , with sixteen state variables 

plus the Lagrange multiplier. The imperfections are known a priori. Thus, they are 

not state variables. Four differential equations are obtained from (A47) by 

applying the calculus of variations, 

( )

2 2

0 01
,

2 1

nc

u u

e

u v w d
G A A Q

u u dt u
 

 


   + − +   
  = + − = −    +     

l
 (A49) 

( )
,

2 1

nc

v v

e

v d
G A A Q

v v dt v
 

 


    
 = + − = −      +    

l
 (A50) 

( )
,

2 1

nc

w w

e

w d
G A Q

w dt w





   
 = − = −    +    

l
 (A51) 

,ncA Q =  (A52) 

with the Lagrange multiplier, in extensional cases, given by 

2 ,u eD = −   (A53) 

and the terms A are 

2 2

, ( , , ),A
t x

    
  

  
= + − =

    

l l l
 (A54) 

The boundary conditions of the extensional beam are 
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0

0,

s L

u v w u v w

s

G u G v G w H u H v H w      


=

=

 
  − − − + + + = 

 

l
 (A55) 

and the boundary conditions of the inextensional beam are 

( )

( )
0

1

0.
1

u
u v w v

s L

u
w

s

H
G u G v G w H v v

u

H
H w w

u

    




=

=

  
 − − − + − +  

  +  

  
 − = 

+   

l

 (A56) 

The variations of the Euler angles   and   with respect to the state variables are 

obtained by deriving eqs. (A21) and (A22). Finally, the terms H are 

, ( , , ).H u v w 
   

   
= + =

      

l l l l
 (A57) 

The eqs. (A49) to (A52) form a nonlinear system without an analytical 

solution. Thus, an approximate solution is necessary to analyze the beam motion. 

The exact equations of motion for the imperfect beam are obtained by substituting 

eqs. (A54), the definitions of the Euler angles, eqs. (A21), (A22), (A23), and 

(A24), and the axial elongation, eq. (A25), into eqs. (A49), (A50), (A51), and 

(A52). If the axial elongation is relevant, then eq. (A53) is applied [207, 208]. If it 

is not, that is, if the beam can be assumed inextensional, then eq. (A53) is not 

applied. Instead, the axial elongation, eq. (A25), is imposed equal to zero, 

rendering the axial displacement as  

2 2 2 2

0 01 1 ,u v w v w    = − − − − −  (A58) 

and then the axial equation, (A49), is solved for the Lagrange multiplier, see [205, 

206]. In both extensional and inextensional cases, the resulting equations are 

difficult to analyze due to the strong nonlinearities. In this thesis, following [205–

208], the equations of motion are expanded in Taylor series of the state variables, 

, , , ,u v w   and the imperfections, 0 0 0, , ,v w   up to the third order. 
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Constant tensors resulting from the Galerkin expansion of 

the microarch problem 

( )
1

2

0
0

1 ,in i nw F F ds= −A  (B1) 

( )
1

0
0

2 1 ,ijn i j nw F F F ds= −A  (B2) 

1

0

,ijkn i j k nF F F F ds= A  (B3) 

( )
1

2 iv

0
0

1 ,in i nw F F ds = −  (B4) 

( )
1

iv

0
0

2 1 ,ijn i j nw F F F ds = −  (B5) 

1
iv

0

,ijkn i j k nF F F F ds =   (B6) 

( )
1

2

0 0
0

1 ,n B nu w w F ds= −C  (B7) 

( ) ( )

( )

1 1
2

0 0 0
0 0

1 1
22

0 0 0
0 0

1 2 1

1 ,

in B i n i n

i n

u w F F ds w w F F ds

d w F ds w w F ds

 
 = − − − − 

 

  −

 

 

C

 (B8) 
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( )

( )

( ) ( )

1 1

0 0
0 0

21 1
2

0 0
0 0

1 1 1
22

0 0 0 0
0 0 0

2 1

1
2

1 2 1 ,

ijn B i j n i j n

i j n

j i n i n

u w F F F ds w F F F ds

d
F F ds w w F ds

d w F ds w F F ds w w F F ds

 
 = − − − − 

 

  − −

 
   − − − 

 

 

 

  

C

 (B9) 

( ) ( )

( )

21 1 1
2

0 0 0
0 0 0

1 1 1
2

0 0 0
0 0 0

1

0

1 2 1
2

2 1

,

ijkn k j i n i n

k i j n i j n

B i j k n

d
F F ds w F F ds w w F F ds

d w F ds w F F F ds w F F F ds

u F F F F ds

 
   = − − − − − 

 

 
   − − + 

 



  

  



C

 (B10) 

( )
21 1 1

0 0
0 0 0

1 1
2

0
0 0

2 1
2

,

ijkln k l i j n i j n

l i j k n

d
F F ds w F F F ds w F F F ds

d w F ds F F F F ds

 
   = − − − 

 

  

  

 

C

 (B11) 

21 1

0 0

,
2

ijklmn l m i j k n

d
F F ds F F F F ds  = − C  (B12) 

( ) ( ) ( ) 
1

1
2 2iv 2

0 0 0 0 0
0

0

1 1 ,n B n B i nu w w F ds u w d w F w F ds


  = − + −
D  (B13) 

( )

( ) ( )

( ) ( )

( )

( )

( )

1
21

2 iv

0 0 0 0
0

0

1
2 iv iv

0 0
0

1 2
2 2

0 0

0

1 1
22 iv

0 0 0
0 0

1 2
2

0 0

0

2 2

0 0 0

1 2

2 1

1

1

1

1

in i n

u

B i i n

i n

u

i n

j i n

u

i i

d
w F ds w w w F ds

u w F w F F ds

d
w w F F ds

d w F ds w w F ds

d
w w F F F ds

w d F w w F w







 
  = − + + 

 

 
− − + 

 

 − +

  − −

  − +

    − +














 

D

( )( )
1

2

0 0 0

0

,i nF w w F ds


  +


 (B14) 
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( )( )

( )

( )
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21

2 iv

0 0 0
0

0
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iv iv

0 0
0

1
21

2 iv

0 0
0

0

1
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0 0 0

0
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2
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1 2

4 1

1 2

2 1 2

1
2

ijn i j n

u
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u
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u
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d
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





 
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 

 
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  
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




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2
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
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 
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 


    − + +
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

   
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
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  
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
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u

k i j n
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d
F F ds w w w F F ds
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